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Abstract 
 
The thesis investigates the usage of multigraphs to understand citation patterns 
among researchers in the Chilean astronomical and astrophysics community. The 
usage of multigraphs to study scientific networks in local contexts has been 
acknowledged in early developments from the sociological study of science and 
knowledge but has been scarcely addressed in current empirical research. This 
research will show that multiple networks can contribute to investigating why 
scientific networks evolve, considering stable processes that mix social, cognitive, 
and situational dimensions.  

In this research, processes of group formation using multigraphs are 
considered to enlighten the patterns of citations among researchers. The co-
evolution of different networks is analysed, incorporating different levels (three-
modes) and types of relationships that are jointly investigated. First, to understand 
how a group of academics generate interpersonal intercitations after the arrival of 
the Atacama Large Millimeter/submillimeter Array. And, secondly, to inquire 
how the local scientific community prepares for the arrival of the Vera C. Rubin 
Observatory.  

For the analysis, it is used quadratic assignment procedures and stochastic 
actor-oriented models. This research offered methodological advances to 
understand multilevel networks exploring new goodness of fit, often used in 
statistical network models, for multiplex and three-mode multilevel networks. 
And suggest as an analytical strategy the analysis of samples of multilevel 
networks to investigate broader communities. 

The research shows that the usage of citation-based measures is difficult to 
understand and that the consideration of different interpersonal relationships and 
the context allowed recovering the social dimension of the intercitation. The social 
relationships grounded on scientific collaboration and space proximity based on 
institutional affiliation are more accurately suited to understand the co-evolution 
of the networks and the intercitation among astronomers than cognitive-based 
networks when measured as the tendency to publish in similar journals. And, in 
the broader community, there is a tendency upon intercitation among researchers 
affiliated in the same external research centres creating closure in scientific niches 
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(i.e., research centres) as a community's tendency towards diversity and multi-
connectivity.  
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Chapter 1. 
 

Introduction 
 
 

1.1. Introduction 
 
Chile has been called the ‘capital’ of astronomy and astrophysics because during 
the decade of 2020-2030 it will have nearly 70 per cent of the world's ‘viewing 
capacity’ (Bronfman et al., 2002; Gibert, 2011; CONICYT, 2012; Barandiaran, 2015; 
Espinosa-Rada et al., 2019; Guridi et al., 2020). For this reason, the Chilean 
astronomical community has a competitive advantage, with the potential to shape 
the research front of the discipline (Espinosa-Rada et al., 2019) and to create a 
spillover to help to develop the country (CONICYT, 2012; Guridi et al., 2020).  

From a network perspective, this case study is appealing because the 
development of this community involves the participation of researchers and 
organisations. Some of the particularities are that access to the telescopes shapes 
this scientific community at a national level. In which Chileans have 10 per cent of 
the observational times of the telescopes in the country. The community have been 
described as a small community (López et al., 2005; Gibert, 2011; and SOCHIAS 
census 2009, 2013, 2016, 2019), varying from only 21 researchers in 2000 (Gibert, 
2011) to up to 255 professional researchers since the last census of the Chilean 
Astronomy Society (SOCHIAS) in 2019. The usage of these facilities depends on 
the local institutional affiliation guarantee given by a ‘white list’ of researchers 
with access to these observatories. The role and interdependency of the 
organisations and the astronomers in the development of the community can be 
represented as a multilevel network (Lazega & Snijders, 2016) shaped in an 
organisational field (Galaskiewicz & Wasserman, 1989; Scott, 1995; Powell et al., 
2005).  

This thesis uses the astronomical and astrophysics community in Chile as 
an empirical case study to understand the multilevel interrelation between 
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researchers and organisations by proposing some advances in both empirical and 
methodological issues.  It offers a perspective that connects with previous research 
in the sociology of science and knowledge (Mullins, 1972, 1973; Chubin, 1976), 
with contemporaneous advances from the social network perspective (Lazega & 
Snijders, 2016), highlighting some theoretical discussions and possibilities to 
model scientific networks from a sociological angle. Such issues and perspectives 
are discussed in three articles that constitute the body of the thesis. 

The first article (Chapter 2) explores some of the limitations and 
methodological considerations of using citation as a proxy for social and cognitive 
relationships (Merton, 2000; White et al., 2004). As a previous theoretical 
background of the first article, this chapter (section 1.2.1) addressed that the ties in 
citation networks are difficult to understand, and there are different 
interpretations about their meaning (Mulkay, 1974; Gilbert, 1977; Nicolaisen, 
2008).  

The second article (Chapter 3) investigates the pattern of citations in 
combination with other types of relationships in a group of established academics 
in the development of the Chilean astronomical and astrophysics community. 
From a network perspective, the theoretical background of this study recognises 
the discussion of section 1.2.1 of this chapter, considering that the citations and co-
authorships are proxies of social relationships deduced from the ‘formal channel’ 
of communications used through bibliometric information (Schrum & Mullins, 
1988; Zuccala, 2006). Chubin (1976) conjecture that multiple relationships can help 
to recover the underlying structure using these indicators. In addition, the paper 
identifies the relevance of the evolution of the local discipline considering the 
processes of peer recognition (Zuckerman, 1967; Merton, 1968a) – as is reviewed 
more extensively in section 1.2.2 - and the group formation (Mullins, 1972, 1973) –
reviewed in more details in section 1.2.3 and 1.2.4.  

The last article (Chapter 4) moves one step forward and considers 
researchers and organisations beyond the group of established academics in the 
departments of astronomy and astrophysics. Theoretically, this issue is explored 
in section 1.2.5 of this chapter considering two issues: the first is regarding the 
delimitation of cohesive subgroups, and the other is how to investigate the presence 
of similar mechanisms among organisations.  
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In the remaining pages of this Introduction, I overview first the theoretical 
background of the thesis to explore how different networks allowed 
understanding scientific networks from a multilevel perspective. Then, I give 
some context of the astronomical and astrophysics community in Chile that is 
further explored in the empirical chapters of this thesis. Finally, I present how the 
three articles are connected following the theoretical background presented in this 
chapter. 
 

1.2. Towards a Multilevel Perspective for Socio-Cognitive Networks 
 
This section gives an overview of the theoretical backgrounds of the thesis 
exploring the combination of different networks for the understanding of socio-
cognitive networks (Merton, 2000; White et al., 2004; White, 2011) – as the 
conflation of social, cognitive, and situational dimension in science. When only 
one type of relationships is analysed, it is likely to produce a ‘structural confusion’ 
(Holland & Leinhardt, 1974) in which the ‘true’ underlying structure will require 
a multigraph to describe the scientific networks (Chubin, 1976).  

Holland & Leinhardt (1974) identify that a possible distortion in the 
measurement of social networks could be associated with different components of 
the relationships, which is, in principle, an operationalisation issue. From their 
perspective, a 
 

‘mechanism that produces distortion might be termed ‘structural 
confusion.’ The true structure underlying a group may have different 
components such as admiration, friendship, and common side interests. 
Indeed, a single term such as friendship could have effectively different 
role connotations to group members who occupy different positions in 
the structure. This type of structure would really need a ‘multigraph’ to 
describe it – for example, several different directed graphs on the same 
nodes considered collectively.’ (Holland & Leinhardt, 1974: 208, 
emphasis is mine) 
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The ‘structural confusion’ is considered an issue in the study of science and 
knowledge, in which the combination of graphs could represent more accurately 
the ‘real structure’ underpinning scientific networks (Chubin, 1976). In the studies 
based on citation and other scientific relationships (e.g., co-authorship, 
colleagueship, trusted assessorship, mentorship), the argument was made, 
assuming that ‘If the structure changes with each distinct graph, then all must be 
constructed as approximations of the true structure. Taken together, these 
approximations should yield the least distorted representation of the true specialty 
structure.’ (Chubin, 1976: 455, emphasise is mine)1. Because of the disjunction of the 
social and cognitive dimension of scientific networks, creates a fictional 
detachment of structures and a disciplinary division between bibliometrics - often 
focused on the cognitive dimension - and the sociology of science – that emphasise 
the social dimension - (Merton, 2000; Gläser, 2001). The confusion relies on treating 
citation as part of only one of the dimensions, without considering its mixture or 
conflation as social and cognitive at the same time as a complex social-cognitive 
network. To overcome the ‘structural confusion’, multigraphs are considered in this 
thesis to explore social, cognitive, and situational components – often when actors 
are nested in laboratories or organisations - of scientific networks. 
 

1.2.1 The ‘Structural Confusion’ in Citations 
 
In the sociological analysis of scientific and knowledge networks, scientific 
relationships as a cognitive or social factor are not easy to understand. Citation is 
one of the puzzling elements in the delimitation between cognitive and social 
factors, in which some researchers treated it as a ‘cognitive’ dimension, while 
others consider that it is a ‘social’ dimension (Lievrouw et al., 1987; Merton, 2000; 
Leydesdorff, 2008). This thesis follows previous research considering that citation 
is an approximate measure of social processes that are social and intellectual at the 
same time (as in Crane, 1972: 20; Chubin, 1976: 451-452; White, 20112). 

 
1 Crane mentioned that ‘Since scientists in research areas can have a number of different types of social 
relationships with one another, it is necessary to use a variety of indicators to measure social organization’ 
(1972: 41). 
2 Howard D. White used ‘socio-cultural’ instead, which might be more appropriate to emphasise the 
contextual dimension in which researchers are embedded. 
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In empirical research, the distinction between citation as a ‘cognitive’ or 
‘social’ dimension is considered part of the operationalisation in the type of 
relationships for networks analysis. Some researchers that use networks to study 
scientific specialities, such as Mullins (1972), differentiate between cognitive 
(characterised by the paradigm development, problem success and puzzle-
solving) and social dimensions (focusing on communicational, co-authorship, 
colleagueship, and apprenticeship). Small (1977) made a similar distinction, while 
less specific, emphasising that co-citations allowed distinguishing the cognitive 
and/or the social state of a speciality. Schrum & Mullins (1988) differentiated 
between ‘interaction’ considered as communication, information flow or general 
contact (e.g., co-authorship, ‘in-house’ citation), and ‘interest’ that can be inferred 
from co-occurrence on bibliographic or referential lists (e.g., citations). Moody 
(2004) was emphatic in distinguishing between citation and social networks, in 
which the first does not capture the informal interaction structure compared to the 
last. Leydesdorff (2008) traces a distinction, arguing that co-occurrences in 
bibliometric research should be treated differently from social networks that often 
refer to concrete relations. More recently, Basov, Breiger and Hellsten (2020) 
distinguished between the social ties (e.g., friendship, information exchange, or 
co-citations among actors) and the semantic associations (e.g., symbols, ideas, 
meanings). 

Citations are perhaps one of the less clear types of relationships in which 
the ‘structural confusion’ can be further considered because citations are often a 
black box. Citations are usually investigated using the products of science (e.g., 
such as papers, books, technologies), and the trace of these products involves 
stabilisation of previous processes that then become ‘black boxes’ (Whitley, 1970)3. 
The products tend to give proper credits to other scientists through bibliographic 
references producing a traceable scientific network and receiving evaluation from 
other researchers. The citation does not address ‘the reasons why scientists 

 
3 While stable relational patterns can reveal the presence of communication, it does not unravel the nature 
and specificity of those relations (Lievrouw, 1989), which can be further explored through mixed methods 
(Mitchell, 1969; Bellotti, 2015). Among many of the issues that can be further explored are, for example, 
what is at stake in the research, the content of controversies, the struggles between members of similar 
invisible colleges, among others. Topics that have been extensively addressed in the social studies of science 
and technology (e.g., Felt et al., 2017). 
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normally cite other papers, and why authors choose to cite particular papers rather 
than others.’ (Gilbert, 1977: 114). There is no clarity on what citation is measuring, 
a perspective shared by Mulkay (1974). Compared with the citation-based 
measures, the co-word analysis (Callon et al., 1983; Latour et al., 2012) tend to give 
direct access to the content of the research topics regarding the use of concepts, 
words, and the co-occurrence of terms. It has been criticised that those terms could 
have different meanings in a different context. Leading that their use is not specific 
enough, requiring a more accurate boundary and stability in which their usage 
could be meaningful (Leydesdorff, 1997; van den Besselaar & Heimeriks, 2006) 
and explored with more details. 

There are different interpretations about the usage of citations (Nicolaisen, 
2008). A first perspective considers that citation is an institutional device that 
solves the problems of rights and priority claims and emphasises which work was 
fruitful for the contributions (Merton, 1973: chapter 14). Citations are granted as 
an argument implicitly attached to other oeuvres (e.g., Smith, 1981), and the 
references that achieve authority and are more visible becoming more recognised. 
The institutional perspective is criticised considering that there are references that 
are challenged, contradicted, or unimportant, which are aside from the arguments, 
and neither is clear how ‘findings’ reported in a paper can be matched as 
‘property’ or ‘income’ (Gilbert, 1977). Citations can be used to understand the 
institution of science through maps of knowledge. The citations can be considered 
signals used to generate ‘maps’ of science, in which citations have similarities 
when they have related topics, titles, or commonly perceived citations (Morris & 
der Veer, 2009). For example, in co-citations, the focus is on ‘citer's consensus’ in 
an open-ended field where other authors perceived the work of two authors to be 
related (White, 2011). 

A second interpretation is treating references as a ‘tool of persuasion’ 
oriented to the scientific community or part of it. If some consensuses were 
previously achieved, then the reference becomes scientific knowledge. This 
dimension emphasised the reward of recognition, validity, and significance of the 
article's work. The paper's recognition changes its status as a document that is 
treated as new, important, and valid. These qualities are not evident to the paper's 
audience, and these findings tend to rely on previously accepted references 
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making it more effective to cite a paper with scientific authority. Considering the 
scientists' interest, the citation is often used as a persuading strategy (Latour & 
Woolgar 1986) oriented to other colleagues (justification of the position, 
demonstrate novelty, or how the findings illuminate or solve previous problems). 
Researchers tend to cite ‘erroneous’ papers and ignore ‘trivial’ or ‘irrelevant’ 
papers (Gilbert, 1977). From this second perspective, the references are embedded 
in the papers and act as an allegiance of a particular scientific community sector. 
According to this perspective, there are two common approaches to identify 
persuasion (White, 2004), one is according to the citation contexts, and the other is 
according to the choice of the cited works regardless of their content. 

Some empirical research relativise that citation is a matter of persuasion. 
Different empirical studies classified the references according to their content and 
intention to disregard that citation is only motivated by interest or a ‘tool of 
persuasion’. For example, Chubin & Moitra (1975), following Moravcsik & 
Murugesan (1975), classify the references considering that some of the citations are 
essential or supplementary for the main argument, and other citations negate 
other references. The essential or supplementary arguments are thereafter 
continued to be cited, while the negated documents decline their citations in time, 
which tend to be institutionally constrained through journals peer-reviewers or 
disciplinary consensus. Most of the time, the authors' intentions in using the 
references are not usually available to analyse how they are expressed in the 
content of the work, thus becoming highly complex to have a deeper 
understanding (Camacho-Miñano & Núñez-Nickel, 2009). If researchers know 
about the topic, there is a variety of interpretation of the given references, making 
this enterprise complex (Nicolaisen, 2008). 

The third interpretation about citations is the handicap principle, in which 
the references are utilised as threat signals (Nicolaisen, 2008). Latour (1987) 
considers that reference interplays between transforming a fact into fiction or vice 
versa through two strategies. The first strategy is incorporating, or not, references 
that give insights into whether the citation is strong and serious as stacking of 
references strategy. The second strategy is to modalise the cited documents 
modifying the references to align with the article's argument. This perspective has 
been criticised because it gives an arbitrary element in which it seems that authors 
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cite whatever is needed for their proposes. Nicolaisen believes that ‘the handicap 
principle ensures that citing authors honestly credit their inspirations and sources 
to a tolerable degree – enough to save the scientific communication system from 
collapsing’ (2008: 629). Nicolaisen assumed that scholars are well-informed actors 
that have a broader understanding of the literature and field covered by sets of 
references. Citing, for example, 'pioneer' references suggested from peer-
reviewers, technical papers, or authors that become classics in a specific area of 
research. Other researchers recognise the references used, which could be 
potentially challenged (e.g., in peer-review journals or further publications). 

From a network perspective, a different and complementary interpretation 
is that citation ‘can be interpreted as networks of interpersonal contacts’ (Lievrouw, 
1989: 617). While 'not always involves underlying personal exchanges and that 
unknown references are an essential component…' (Milard, 2014: 2461). From this 
perspective, different studies have assumed that when researchers know each 
other, they tend to cite more often (Schrum & Mullins, 1988; White et al., 2004). 
The tendency is explained assuming that there is a homophilous effect (Lazarsfeld 
& Merton, 1954; Feld, 1981; McPherson et al., 2001) – or the effect that actors that 
share similar social attributes tend to be attracted to each other - in which 
colleagueship, among others, can drive similarities on research perspectives 
(White et al., 2004). Social ties allowed understanding patterns of citations but are 
not sufficient because a researcher might know someone and not cite her or cite 
someone they do not know (White, 2001), in which case intellectual factors can be 
considered part of the disposition of information and knowledge. For White et al., 
there is no ‘clear temporal arrow in the matter: citing may or may not lead to 
meeting, and meeting may or may not lead to citing’ (2004: 112). As was previously 
suggested, White et al. considered that ‘intellectual ties and social ties cannot 
always be neatly separated’ (2004: 112), especially when roles are considered (e.g., 
co-authorship, department colleagues or mentor/students). Researchers are also 
considered part of many social circles that varies in terms of their level of 
acquaintances, ranging from strangers, contactable researchers, peers, members of 
the same invisible colleges, the same team, or co-authors (Milard, 2014). White 
prefer to use the notion of socio-cognitive networks (as in Merton [2000]) which 
make clear the intercitation structure – ‘the record of who has cited whom within a 
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fixed set of authors’ (White, 2011: 275) - that can conflate both dimensions. 
Combining citation with other social relationships might allow overcoming the 
‘structural confusion’ (Holland & Leinhardt, 1974). 

The exploration of citations is still a puzzling endeavour, challenging to 
understand theoretically and requiring further scrutiny. This thesis's first article 
used a methodological perspective to disentangle the main citation components 
when used as a direct citation, bibliographic coupling or co-citation. The combination 
of direct citation, bibliographic coupling and co-citation is a strategy that is gaining 
popularity (e.g., Small, 1997; Persson, 2010; Wang et al., 2019). The assumption to 
explore their differences is whether the usages of citation itself can derive in 
a multigraph in which the 'true' underlying structure can be discovered (Holland 
and Leinhardt, 1974). The conjecture is that if the citation can be interpreted as a 
cognitive and a social element (Crane, 1972; Small, 1977), then many different 
graphs can be used to describe these relationships (Chubin, 1976) as a socio-
cognitive network (Merton, 2000; White et al., 2004).  
 

1.2.2 Processes and Peer Recognition in the Evolution of Science 
 
Building on the social network perspective that considers that citation is related to 
other social components, this thesis moves one step forward to explore different 
relationships' interdependency and the patterns involved to understand citation 
co-evolution. This section explores one of these patterns, known as the Matthew 
effect, as the relevance of peer recognition processes that enhance the visibility of 
researchers. From a network perspective, the analytical perspective to understand 
the Matthew effect (Lazega & Jourda, 2016) was developed by Price (1976) - further 
explored by Barabási & Albert (1999) - and was investigated in fixed groups (White 
& Breiger, 1975; Breiger, 1976; Mullins et al., 1977).  

R.K. Merton and H. Zuckerman conceptualise the peer recognition tendency. 
They use as a case study the Nobel laureates in science and other recognised 
scientists to explore the patterns and publication practices of the topmost elite 
scientists (Zuckerman, 1967; Merton, 1968a).  Merton defines The Matthew effect 
as ‘the accruing of large increments of peer recognition to scientists of great repute 
for particular contributions in contrast to the minimizing or withholding of such 
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recognition for scientists who have not yet made their mark’ (1988: 609). To avoid 
the misunderstanding of the effect in terms of the relevance of a single event, 
Merton emphasises that this effect is ‘Conceived of as a locally ongoing process and 
not as a single event, the practice of giving unto everyone that hath much while 
taking from everyone that hath little will lead to the rich getting forever richer 
while the poor become poorer’ (1988: 610, emphasise is mine). The Matthew effect, 
according to Merton (1968), violates the universalism norm of science - the 
propensity of a truth-claims subject to preestablished impersonal criteria. 

In the study of Zuckerman, she identifies that Nobel laurates tend to 
collaborate more often with other researchers that are distinguishable and highly 
productive, and ‘They are also in a position, even before receiving the prize, to 
exercise noblesse oblige, the generosity expected of those occupying undisputed 
high rank, by granting authorship to junior collaborators’ (1967: 396). The mentor-
mentee generosity of consolidated research in helping less advantaged researchers 
positively affect producing more collaboration and working as a team. And, 
working as a team and having more collaboration allow more success in science 
(Wang & Barabási, 2021: 88). 

Price discovered different skewed distributions using citations (Price, 
1965)4 as tendencies similar to the Matthew effect. To explain the shape of the 
distribution, Price (1963) used the concept of invisible colleges hypothesised as the 
increasing formation of groups gathered in institutions and journals, that day-to-
day share communication through publications, and that overlaps in other groups 
defining an invisible college emphasising on the concrete interactions. In his 
perspective,  

 
‘For each group there exists a sort of commuting circuit of 
institutions, research centers, and summer schools giving them an 
opportunity to meet piecemeal, so that over an interval of a few 
years everybody who is anybody has worked with everybody else 
in the same category. […] Such groups constitute an invisible 
college, in the same sense as those first unofficial pioneers who 

 
4 Previously identified and rediscovered in different contexts (e.g., Lotka, 1926; Simon, 1955). 
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later banded together to found the Royal Society in 1660. In exactly 
the same way, they give each [researcher] status in the form of 
approbation from his peer, they confer prestige, and, above all, 
they effectively solve a communication crisis by reducing a large 
group to a small select one of the maximum size that can be 
handled by interpersonal relationships.’ (1963: 85) 

 
Price considered that the evolution of knowledge was done by an elite of 

researchers5 gathered into groups creating interpersonal relationships. Afterwards, 
the group create relationships with other groups through formal or informal 
communication using, among others, papers, manuscripts, letters (today e-mail) 
or meeting trough conferences, seminars or other academic activities. The group 
and the communication with other researchers create an invisible college, in which 
‘the apex of the triangle is not a single beloved individual but an invisible college; 
its locale is not a dusty attic of a teaching laboratory but a mobile commuting circle 
of rather expensive institutions’ (1963: 90). Using the network of bibliographic 
references afterwards, he indicates the nature of the scientific research front that is 
built on recent work, questioning ‘whether there is a probability that the more a 
paper is cited the more likely it is to be cited thereafter’ (Price 1965: 512). He further 
suggests that ‘one of the major tasks of statistical analysis is to determine the 
mechanism that enables science to cumulate so much faster than nonscience that 
it produces a literature crisis’ (Price, 1965: 512). 

Merton, Zuckerman, and Price rely on elites to explain the effect that they 
were observing. These elites are often considered as a scientific research group that 
certifies knowledge, and the manifestation of this is indicated in different 
dimensions, such as achieving accumulative advantages because of their 
belongingness to major research centres, having more rewards (e.g., prizes or 
citations), funding (Merton, 1988), or the control of committees, allocate research 
funds, informal influence (Mulkay, 1976). More recently, the skewed distribution 
of the preferential attachment has been revisited in the context of scientific networks 

 
5 For Price, different scientific roles, such as the scientific elite, leaders of groups, or lower-level scientists, 
were considered part of informal communication networks of scholars shaped by an elite of researchers with 
different affiliations. 
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(Fortunato et al., 2018) in which, among others, the ‘hub actors’ (as a type of elite) 
accumulate connections on time, leading to a ‘richer-get-richer’ situation (Barabási 
& Albert, 1999; Newman, 2001a; Clauset et al., 2009)6.  

According to the preferential attachment, the main explanation of the skewed 
distribution is that scientists cannot read all the papers published. Therefore, it is 
often the case that discovering papers leads to the bias that papers that are already 
cited tend to be encounter more often in the readings and therefore are more cited 
emulating the Matthew effect (Wang & Barabási, 2021: 184-185). The relation 
between the preferential attachment and the Matthew effect is that the recognition 
of the papers is often given to the most prestigious authors but not all co-authors. 
Price (1976) formalises this pattern in which the overall growth of the scientific 
literature contributes to the pool of papers available. The preferential attachment 
mechanism is then the tendency of researchers to select one of these papers that 
do not have a uniform distribution.  

Further exploration considered other patterns that explain why citations 
increase as a process of accumulation by the information available in science. The 
first explanation was suggested in Price as exponential growth mechanism. He 
explained this pattern as the contemporaneousness and immediacy of science and 
the ‘recognition that so large a proportion of everything scientific that has ever 
occurred is happening now, within living memory. To put it another way, using 
any reasonable definition of a scientists, we can say that 80 to 90 per cent of all the 
scientists that have ever lived are alive now’ (Price, 1963: 1). Another common 
citation pattern is the first-move effect, which considers that the ‘first papers’ to 
appear in the literature tend to accumulate more citations regardless of the content 
(Newman, 2009). And another common explanation is the fitness effect 
mechanism, in which two equal cited papers will attract more citations if one of 
them is considered as higher quality (Bianconi & Barabási, 2001). In the three 
scenarios, the explanation for accumulation does not consider the specific context 
in which the citation is done nor the relevance of interpersonal relationships as 

 
6 This empirical tendency has received many controversies in the use of the theory that underlines 
the mechanism (Scott, 2011; Bonacich, 2004), the methodology involved (Handcock & Jones, 2003; 
Broido & Clauset, 2019), and more recently considered as a sub-cultural clash between nomothetic 
and ideographic perspectives in the understanding of this pattern (Jacomy, 2020 for a review of 
different controversies). 
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in intercitation contexts. Similar to Crane's observation, ‘When individuals in a 
system are not in communication with one another, the probability that a member of 
the system will adopt an innovation remains constant and the pattern of growth is 
linear’ (1972: 23, emphasise is mine). 

The peer effect can be associated with open-ended fields (White, 2011) 
exploring collaboration as a social dimension. The preferential attachment 
mechanism was identified in co-authorship in the disciplines of biology, physics 
and mathematics (Newman, 2004). And it was interpreted as the tendency of 
research that collaborates more in the past in having more co-authors in the future 
and, therefore, authors with more collaborators will increase their social circles of 
collaborators creating hubs in science (Newman, 2004). Wagner & Leydesdorff 
(2005) considered that the preferential attachment mechanism of collaboration could 
be explained by dividing the tendency into three stages. The first (‘the hook’) stage 
is associated with the arrival of newcomers or transients into the field from other 
disciplines. Then, the continuants mediate the entrance of juniors, which is in the 
middle (sometimes acting as ‘gatekeepers’). Finally, the tail is associated with 
the continuants and terminants (the ‘hubs’), which are at the end of their career and 
an indicator of science institution. They further theorise that ‘when choosing 
between two possible links, they will seek someone who is already highly 
connected and therefore has access to resources and reputation’ (Wagner & 
Leydesdorff, 2005: 1615), emphasising the decision of individuals and the 
relevance of more prestigious researchers. 

A different approach uses social networks to identify social boundaries to 
explore the Matthew effect considering an elite of researchers or organisations. 
Some empirical research identify an elite group of biomedical research in which 
there is a group of ‘leaders’ that the rest of the researchers are more ‘aware’ and 
that are more ‘visible’ in comparison with the ‘followers’ that might allow the 
‘leaders’ to have access to new ideas, techniques, colleagues and students (Breiger, 
1976, expanding from White & Breiger, 1975). In the case of elite universities, for 
example, in a longitudinal study of Stanford University faculty members (Rawling 
& McFarland, 2011), it was identified that collaboration and colleagueship secure 
more grant submissions and are more likely to achieve grants when interpersonal 
relationships are considered. Alternatively, multi-university collaboration is said 
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to produce the highest-impact papers, but there is stratification in science among 
fewer higher rank universities that collaborate with other universities in similar 
positions (Jonas et al., 2008). Lazega & Jourda (2016), through the analysis of an 
elite of oncologists in France, identifies how members of organisations can borrow 
relational capital from other colleagues through indirect contacts and affiliation 
ties. This social bounded context allowed exploring other processes and relational 
structures to understand the evolution of science. 
 

1.2.3 Processes of Group Formation in the Evolution of Science 
 
In this section, the discussion is narrowed to the group formation processes. In 
forming groups, different relations are created in more specific contexts and 
emphasising different elements involved in the evolution of science, such as the 
situations, potentiality to create information or communicate, among others. This 
theoretical review connects with a classic discussion in the sociological study of 
science and knowledge, in which an active generation of researchers was trying to 
understand why different relational structures emerge from their local context. 
This section argues that this delimitation is highly related to the contemporaneous 
understanding of processes and structures from a network perspective, consonant 
with current methodological advances in social network modelling.  

From a theoretical perspective, to identify why and how knowledge grows 
as processes in science, Diane Crane (1972) uses the concept of invisible 
colleges, examining the cognitive culture of the scientific communities with more 
details. From her approach, she was concerned about the cumulative 
advantages analysed by Price (1963) – called preferential attachment more recently 
(Barabási & Albert, 1999) - and theorised empirically by the Matthew effect (Merton 
1968) as was reviewed in the previous section. Even when the regularity was 
acknowledged through a distribution, Crane considered that it was not sufficient 
to explain why the scientific knowledge growth and takes the form of this highly 
skewed distribution, neither an explanation of how the social relationships were 
affecting the production of ideas. From a network perspective, it can be related to 
identifying additional elements in the formation of groups – and entities with 
different levels - within scientific communities that can affect knowledge growth. 
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From this regard, Chubin & Studer considered local context, ‘one must remember 
that institutional structures out of which the ideas arise may actually be 
‘distorting’ our perceptions of scientific development’ (1979: 186, emphasis is mine). 

From the perspective of the sociological study of science and knowledge, 
different models were explored to understand the growth and internal dynamics 
of the scientific knowledge considering social networks (e.g., Crane, 1972; Mullins, 
1972, 1973; Mulkay et al., 1975; Chubin, 1976). This exploration motivated the 
conceptual delimitation of invisible scientific colleges (Price, 1963; Crane, 1972; 
Lievrouw et al., 1987; Zuccala, 2006), paradigms (Kuhn, 2012), scientific 
communities (Hagstrom, 1965), research networks (Mulkay et al., 1975), scientific 
collectivities (Woolgar, 1976), scientific specialities or fields (Chubin, 1976, 1985), 
among others (Hagstrom, 1976; Shubin & Mullins, 1988; Morris & der Veer, 2009; 
Raimbault & Joly, 2021) that were further analysed through networks. As can be 
noticed, the terminology has been perplexing, and some of the particularities that 
these different versions shared are that they tend to consider emergent relational 
structures in the formation of scientific groups that arise from local interactions in 
social settings evolving from groups and then amorphous networks as the 
foundation of the growth of scientific knowledge.   

As a case in point, in the dynamic model of Mullins (1972, 1973), he 
identifies different stages in which a scientific speciality grows in a (new) discipline 
starting from the formation of groups. The explanations behind the evolving 
process were the universities' context in the United States and the country's 
conditions allowing to have such particularities (Mullins, 1983). From this 
perspective, the first stage was called the normal stage, in which researchers were 
creating their innovations but were isolated from the usual activities guided by 
dominant ideas (the paradigm). The network stage was the second phase in which 
different network layers appear, connecting the researchers with more people, 
specifically those connected with the research and training centre in which the 
original ideas arise. The third stage is called the cluster stage, in which other centres 
hire students that were part of the original movements. Finally, the speciality 
stage in which the ideas become part of the everyday activities of science and then 
established as part of state of the art (e.g., works become routine, textbook appears, 
ideas are developed outside the centres of origins). The last stage becomes the 
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background in which new groups may develop, and all the stages tend to overlap 
in regular activities of science.  

A different model to explain the evolution of specialities was suggested by 
Chubin (1976). For him, the flow of ideas starts in workgroups characterised for 

their propinquity in time # (e.g., feedback from colleagues in the same laboratory 

or department). Then, moves in time # + 1 into clusters of researchers regularly 

meeting to discuss new ideas and findings. Finally, it moves in time # + 2, creating 
an amorphous network structure that links clusters and their parts (representing 

the entire specialities). In time # + 3, it is assumed the relevance of marginals, or 

‘outsiders’, and time # + ( corresponds to the expansion of the originated 
knowledge to non-specialists7. From this perspective, a paradigm is said to govern 
first a group of practitioners whose community structures can be unravelled, 
considering the changes over time from the small scale compared to cumulative 
tendencies. 

The model of Chubin was similar to Mullins but lessening the number of 
early stages while incorporating more explicitly the relevance of ‘marginals’ and 
non-specialists in later stages. The model of Mullins is used as a baseline to explore 
with more detail further developments. The following sections argue that 
Mullins’s model facilitates tracing a ‘backbone’ between the theoretical discussions 
from the early sociology of science and knowledge related to social networks and 
current modelling strategies (e.g., Snijders, 2016) to study scientific networks. 
Mullins (1972, 1973) perspective incorporates some elements that many of the 
forthcoming models ignored: the relevance of local configurations in the 
evolutionary process and the interdependency of multigraphs that aimed to resolve 
the ‘structural confusion’ as emphasised by Chubin (1976).  
 

1.2.4 Micro-mechanisms in Scientific Networks 
 

 
7 From this perspective, ‘marginal innovators’ can be highly influential (Granovetter, 1973), leading to the 
question to what extent the core and the periphery are interrelated, with the potentiality of creating the birth 
of new specialities (Crane, 1969; Chubin, 1976). And, when the ‘marginals’ increase their number, they can 
challenge the scientist’s speciality to reject the prevailing paradigm (Kuhn, 2012). 
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The model of Mullins (1972, 1973) assumed dyads8 as a minimum structure named 
‘paradigmatic group’. In Figure 1, Mullins present the ‘paradigmatic group’, in 
which he shows two types of relationships. The first relationship between actor A 
and B is the colleagueship of researchers in the same place, and the other arrows 
are the informal communication with external actors. He presents from this 
structure two actors that have no necessarily social connections (actor C and D) 
but are having communications with others. He emphasises that ‘The minimal 
requirement of such an entity is two or more established scientists who have shifted 
from one viewpoint to another (Gestalt shift), and who might [i.e., actor A and B] 
or might not be [i.e., actor C and D] in communication with one another’ (Mullins, 
1972: 54-55, emphasise is mine9). Mullins stressed that ‘specific social development 
precedes the literature’ (1973: 246), and social relationships are different from the 
actual content of the work in which researchers might be engaged (Lievrouw et 
al., 1987). This relational structure assumed that an idea could occur independently 
by several people (where discoveries are after claimed in the race of publications) 
(Merton, 1973: chapter 14), and these researchers move to a similar cognitive 
situation according to similar problems. The social dimension follows, in which 
these researchers began to talk with available others to discuss the ‘puzzles’ and 
involve others in studying these problems. For Mulkay et al. (1975), the publication 
of a paper (or the communication of results in different formats) is crucial as a 
statement for further research in the earliest stage, expecting reactions from others. 
The model of Chubin emphasises the group, mentioning that ‘The smallest unit 
and the one in which ideas are first broached is the work group. Relations here are 
based on propinquity – that is, communication among colleagues in the same 
laboratory or department. Perhaps feedback from colleagues will generate a new 
draft of the paper’ (1976: 456).  
  

 
8 Attributed initially to Simmel (1950: part 2, chapter 3), dyads' is often related to the distinction between 
three possible stages between two actors. The first possibility is not having a tie between two actors. The 
second is that only one of the actors create a tie (asymmetric tie), and the third stage is two actors sharing a 
mutual tie (Wasserman & Faust, 1994). 
9 The emphasis on established scientists was considered one of the particularities of this perspective, allowing 
a further understanding of these groups' development for science policy and their career patterns (Chubin, 
1985). Crane (1969) select an elite identifying common attributes, while others, such as Crawford (1971), 
use nominations. These actors can either be distinguished ‘endogenously’ using information from the 
network criteria or ‘exogenous’ variables to identify them. 
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Figure 1 The paradigm group stage in the model of Mullins (1972)  

 
The groups are considered in these perspectives as the baseline for the 

argumentation of Mullins (1972). He considers that groups depend on cognitive, 
social (interpersonal) and situational dimensions associated with departments or 
laboratories, which, together, can be operationalised as a multigraph because he 
incorporates in the representation different types of relationships (i.e., 
communications, colleagueship, co-authorship, and studentship) as co-
constitutive of the same process. For Kuhn, ‘[a] paradigm is what the members of 
a scientific community share, and, conversely, a scientific community consist of 
[researchers] who share a paradigm’ (2012: 175), which is social and cognitive at 
the same time. The paradigm groups in ‘normal science’ does not necessarily evoke 
a new paradigm but have the potentiality to become one. The paradigmatic 
groups might share an interest in solving a new problem (or a problem that they 
did not know before how to resolve), can communicate with others that share 
common or complementary perspectives, in which there a previous construction 
of trust ties, share speciality or complementarity between the researchers10. For 
example, Rawlings et al. emphasised how cohesion overlap intellectual and 
collaboration, in which ‘teams that are more intellectually diverse have greater 
potential for interpersonal influence’ (2015: 1691). 

 
10 The existence of many fields, growing and declining, and the links to some of the concepts, allowed the 
co-existence of many areas of research and diffusion of innovation, in which controversies allowed creating 
more differentiation between groups often related with the solution of significant problems and the 
appearance of anomalies (Crane, 1972: 37-39). 
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The groups are the minimum stable relational unit of analysis that allows 
identifying and studying the emergence of the local subnetwork or relational 
structures for the developments and evolution of knowledge, the internal 
dynamics inside disciplines, and the formation of potential (new) disciplines11. The 
social dimension of groups is often based on ‘a number of people who interact with 
one another in accord with established patterns.’ (Merton, 1968b: 339, emphasise is 
mine), giving to its frequency of interaction, in which people defined themselves 
as ‘members’, and is defined by others as belonging to the group12.  

Institutional affiliations often shaped group because researchers participate 
in daily situations in which actors share informal communication. The connection 
between researchers that share foci in which joint activities are organised involve 
informal communication (Feld, 1981). Scientific teams may share the same 
institutional affiliations, but the spatial proximity encourages informal 
communication (Katz & Martin, 1997) (e.g., laboratories, astronomical 
observatories, research centres and university departments) in which the 
colleagueship ties are promoted (Mullins, 1972). Actors share the same space of 
relation in which they incorporate the cognitive dimension of the organisational 
forms, where they share the same reference and knowledge space and institutional 
proximity that constrain their environment (Boschma, 2005). 

Another subsequent relational structure in Mullin’s model (1972) is called 
the network stage. As is presented in Figure 2, actor A and C are co-authoring a 
work. Actors A and B are colleagues in the same department or laboratory, and 
authors A, B, and C have informal communication, while actor C is starting 
external communications. According to Mullins, he considers that ties are 
stabilised in patterns of at least one co-authorship or different types of triads13 

 
11 Disciplines tend to create boundaries. Scientists are often organised in networks across different disciplines 
with more or less overlapping, for example, as Bellotti et al. (2016b) reviewed in exploring the Italian 
academia. 
12 Stable relationships are then different from events or contingent interactions that are more situational, not 
stable, but can become a pattern. The continuum between events and states have a long tradition in the 
network perspective (e.g., Homans, 1950; Boissevain, 1968; Borgatti & Halgin, 2011b; Crossley, 2011). The 
complexity of other interactions and the identification of relationships that can be present in the context of 
science was addressed from ethnographic studies in the context of studies about science and knowledge (e.g., 
Collins, 1974; Knorr-Cetina, 1982) and, more generally, in the tradition of the network anthropologists (e.g., 
Mitchell, 1969). 
13 The theory about triads is associated with Simmel (1950: part 2, chapter 4). 
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(similar to the labelling scheme assigned by Holland & Leinhardt, 1970; Davis & 
Leinhardt, 1972) of scientists engaging in informal communication, or 
colleagueship, over some time (Mullins, 1972: 58). The stable patterns of at least 
one co-authorship are consonant with the definition of group in Merton (1968b), 
while the previous usage of ‘groups’ does not necessarily consider this 
characteristic and is assumed simultaneously as a stage of potentiality and the 
presence of possible interactions in the form of informal communication. The 
particularity of this stage is that the stability of a tie could be simultaneously 
within the group (e.g., inter-department or project of research) or between groups 
(e.g., inter-organisations), involving different types of relationships such as 
informal communication, colleagueship, co-authorship and apprenticeship (as 
a multigraph)14. According to Mulkay et al. (1975), in their interpretation of the 
stages, a second stage could achieve an intellectual consensus, in which newcomers 
acts as an apprenticeship to an established research network or are led by a mature 
scientist.  

One of the particularities of Mullins (1972) network stage is that at the social 
level, there are member exchanges in different institutional arrangements, and 
recruitment of researchers (often younger scientists), creating rapid growth and 
turnover. Chubin considers this relational structure as a cluster of researchers, ‘who 
regularly exchange information and who may even assemble to discuss new ideas 
or findings’ (1976: 456). The pattern of been embedded in collaboration networks 
have been studied in specific settings (e.g., Friedkin, 1978; Tuire & Erno, 2001; 
White et al., 2004; Rawlings et al., 2015; Stark et al., 2020) and using ethnographies 
(e.g., Knorr-Cetina, 1982; Collins, 1998), in which researchers ‘share ideas, use 
similar techniques, and otherwise influence each other’s work’ (Moody, 2004: 213). 
In this stage, the entire network increases the number of ties and decreases the 
number of disconnected or independent researchers. 
 

 
14 According to Lievrouw et al. (1987), the ‘informal communication’ should be investigated through 
qualitative methods, while others (Schrum & Mullins, 1988; Zuccala, 2006) considers that the relationships 
can be approximated from the ‘formal channel’ of communications used through bibliometric information. 
From the perspective of this thesis, the second approach is used in which the institutional affiliations 
approximate the ‘informal communication’, while it is agreed that mixed methods (e.g., Lievrouw et al., 
1987) are ideal for a better understanding of the processes. 
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Figure 2 The network stage in the model of Mullins (1972) 

 
The first two stages in the Mullins model and the proposal of Chubin 

allowed emphasising the relevance of local patterns in the subnetworks for the 
stability of more complex structures. In these models, the emphasis was on group 
formation instead of the Matthew effect, and both perspectives can complement each 
other if they are mutually contemplated as simultaneously operating local 
patterns. These patterns are often considered as mechanisms (Hedström & 
Bearman, 2009) that are semi general because they can explain certain types of 
phenomena. The mechanisms are somehow general (not restricted to a specific 
time, place, identity of actors, the content of beliefs, or type of actions) and have 
specific pattern linking different types of entities requiring stability in the social 
forms. Mechanisms assume a constellation of entities and their organised 
activities, creating regularities that bring a particular type of outcome. Compared 
with less stable and contingent interactions on different spatial and temporal 
frames that may produce different outcomes, the mechanisms require a certain 
level of stability of the relationships between entities in specific contexts (Merton, 
1968b). 

Similar to Mullins (1972, 1973) early model that identifies dyads and triads, 
recent models allowed distinguishing how and why different processes emerge 
from local processes using statistical network models (e.g., Block et al., 2019). Some 
of the common elements that share these analyses are that they assume that the 
global structures depend on the presence of simultaneously operating local 
structures or configurations (Robins et al., 2005) – expressed in statistical models 
such as the exponential random graph models (Lusher et al., 2012). Other models 
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consider that the decisions of actors in the creation of social ties (Snijders, 2001) as 
the processes responsible for the formation of network structures - as in statistical 
perspectives such as the stochastic actor-oriented model (Snijders et al., 2010) or 
the dynamic network actor models (Stadtfeld & Block, 2017). Mullins (1972) model 
considered dyads and triads without exploring the specificity of the type of forms 
and their relevance to shaping the networks. In the sociological study of science 
and knowledge, group formation was considered an indispensable element. These 
patterns often represent local social regularities or micro-mechanisms that can 
explain the network and consider different entities involved in the analysis. 

A comparatively new research area addressed the exploration of these 
micro-mechanisms and their relevance for shaping the networks. For example, to 
investigate homophily between departments, spatial proximity, topics, disciplines 
or considering social attributes such as gender or race (Kronegger et al., 2012; 
Cimenler et al., 2015; Harris et al., 2015; Peng, 2015; Dhand et al., 2016; Luke et al., 
2016; Zinilli, 2016; Fagan et al., 2018; McLevey et al., 2018; Wang et al., 2018). Or to 
address the tendency of creating transitivity (as a type of triadic structure) within 
scientific networks (Kronegger et al., 2012; Zinilli, 2016; Sciabolazza et al., 2017; 
McLevey et al., 2018). And the tendency of popular actors to receive more ties in 
comparison with the other researchers within the network as it was suggested in 
the Matthew effect (Peng, 2015; Dhand et al., 2016; Harris et al., 2015; McLevey et 
al., 2018; Zhang et al., 2017). The organisations have been considered a relevant 
research area to understand collegiality (Wang et al., 2013; Gondal, 2018; 
Purwitasari et al., 2020; Stark et al., 2020). Simultaneously using different micro-
mechanisms has facilitated the further consideration of the different dimensions 
underpinning the network structure, but less has been done to explore these 
micro-mechanisms using multigraphs. 

From the different models reviewed until now - and using Mullins model 
as a reference -, cognitive, social (interpersonal), and situational (often in 
departments or laboratories) dimensions are considered building blocks for the 
emergence of different relational structures. Zuccala (2006) considered these three 
main components (i.e., subject speciality, social actors, and information use 
environment) for the evolution, decline, and formation of scientific networks. This 
thesis's second article addresses the co-evolution of some of these entities to 
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understand why scientists create interpersonal intercitations when different social 
elements are simultaneously considered, such as the Matthew effect and the 
relevance of groups in the contexts of a scientific discipline using cross-level micro-
mechanisms. The second article explores how the micro dimension represents the 
network from a methodological perspective, ‘operational definitions of this 
relation [communications used to link scientists] to determine their relative 
goodness-of-fit as aggregate representations’ (Chubin, 1976: 451) in which it is 
explored different goodness of fit for complex networks as a diagnostic often used 
in current statistical models for the study of social networks.  
 

1.2.5 Ill-defined Structures in Scientific Fields 
 
Moving beyond dyads or triads as groups require further consideration for the 
delimitation of boundaries concerning researchers and disciplines because it is no 
longer straightforward to identify an intuitive type of relational structure without 
considering potential ties of actors at longer distances (e.g., from other disciplines 
or indirect ties) and that often involve marginal actors.  

This issue was addressed, among others, by Diana Crane, in which she 
considered a broader definition of invisible colleges, in comparison with 
Price, considering scientists with a common interest in amorphous research areas. 
For example, she mentioned how physicists indicate that their disciplines' 
subfields constantly shifted their boundaries considered ‘fluid’ (Crane, 1972: 13). 
Using Kadushin (1966) concept of ‘social circle’, Crane (1972: 13) identify that this 
concept is the best way to describe the social organisation of the members of 
research based on impersonal networks in an invisible college. She recognises that 
the boundaries of the social circle are challenging to define and mentioned that 
 

‘Indirect interaction, interaction mediated through intervening parties, 
is an important aspect of the social circle. It is not necessary to know a 
particular member of a social circle in order to be influenced by him. 
Not only can a scientist be influenced by publications written by authors 
whom he has never met, but he can also receive information second-
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hand through conversation or correspondence with third parties’ 
(Crane 1972: 13-14)  

 
She aimed to identify the interaction between the cognitive and socials 

component of science by exploring groups in communities that share common 
interests (as is suggested by Kadushin, 1966). Kadushin (and Crane) starts from 
the shared interests and then moves to locate the people involved (Bott, 1968: 315). 
In a similar perspective, Mulkay et al., following Barnes (1954), considered that ‘a 
relatively intensive concentration of interest ties as a research network even though, 
because some and perhaps many ties are not reciprocal, the network will not 
necessarily have a natural boundary.’ (1975: 189, emphasise is mine). Schrum and 
Mullins (1988) considered co-occurrence on bibliographic or references to identify 
the common interests from a methodological perspective. 

Mullins recognise these natural boundaries or amorphous structures and 
named them part of his model's third stage as clusters15 or invisible 
colleges (Hagstrom, 1976). As is presented in Figure 3, the model of Mullins (1972) 
becomes more complex in which co-authorships increase (e.g., actor B, E and H, 
or C and D), there are students involved (e.g., actor B and C, or D and F), 
colleagueship (e.g., A with B, or E with G) and informal communication (e.g., A 
with C, or D with F), which together present a growing multigraph. The 
particularities of these structures were that ‘A cluster forms when scientists 
become self-conscious about their patterns of communication and begin to set 
boundaries around those who are working on their common problem’ (Mullins, 
1972: 69), recognised by those who are inside or outside the cluster and considered 
as more stable than the dyadic and triadic structures which constitute them having 
their own culture (e.g., own history, set of beliefs, theories). Hagstrom considered 
that the clusters ‘vary considerably in size, interconnectedness, internal 
stratification, clarity of boundaries, and visibility to members and non-members’ 
(1976: 758). After comparing with alternative delimitations, Hagstrom (1976) 
prefers to call the cluster an invisible college to clarify terminology, and that was 

 
15 The cluster of Mullins (1972) is further considered as the equivalent of invisible college (Lievrouw, 1990), 
and more recently, cohesive subgroup (Everett & Borgatti, 2019). 
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further re-defined by Lievrouw as ‘a set of informal communication relations 
among scholars or researchers who share a common interest or goal’ (1990: 66), 
which does not imply formal institutional structure (Zuccala, 2006). Concordant 
with Mullins (1972), the clusters were assumed to have not achieved yet formal 
structure, and the growth rate was less rapid than the network phase. According to 
Mullins’s model, this structure could not maintain itself beyond co-authorship and 
the informal communications among the researchers involved if they change. They 
gather into summer schools meeting (as a more contingent situation or focus of 
activity), but there was no formal institutional society. 
 

 

 
Figure 3 The cluster stage in the model of Mullins (1972) 

 
One of the most critical elements for the clusters (in Mullins terminology) is 

the perception of belongingness into the invisible college (Hagstrom, 1965) that 
generate conceptual and methodological divisions. A further argument suggested 
that neither membership, interactions, nor formal membership is sufficient to 
explain membership to the communities (Gläser, 2001). The perception argument 
contrasts with the social dimension, dividing the intellectual and social dimension 
distinguished before, in which bibliometricians tend to use the role of third parties 
in citations to reinforce this argument (e.g., co-words, bibliographic coupling or 
co-citation) (Morris & der Veer, 2009), disregarding the social dimension. One of 
the implications is that the perception from third parties allowed clarifying 
the invisibility of the colleges. Instead, the socio-cognitive network considers the 
overlapping between intellectual and social dimensions (Merton, 2000; White et 
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al., 2004). For example, this perspective is concordant with Zuccala’s (2006) 
definition of invisible colleges that combine the shared interest or interactions 
among subject speciality of research engaged in formal or informal 
communication, or an overlapping model introduced by Rawlings et al. (2015) or 
Stark et al. (2020) in which the flow of knowledge depends on both dimensions.  

The delimitation of boundaries involved a frosty debate about the 
definition of these ill-defined boundaries. In which the discussion was often raised 
according to methodological preferences and stressing the relevance of scientific 
practices. Some researchers highlighted the relevance of creating boundaries 
according to bibliometric studies to consider broader researchers beyond the 
scientific domain (Small & Griffith, 1974; Gläser, 2001; Raimbault & Joly, 2021). 
Other researchers combined the bibliometric approach with questionaries (White 
& Breiger, 1975; Breiger, 1976; Mullins et al., 1977; Bourdieu, 1988). From another 
perspective, researchers emphasised the relevance of ethnographic studies and the 
scientific practices (e.g., Collins, 1974, 1981; Knorr-Cetina, 1982; Wenger, 1998) to 
explore the difficulties of creating scientific boundaries. The exploration of 
specialities (Chubin, 1976) or research networks (Mulkay & Edge, 1973; Mulkay et 
al., 1975) as a unit of analysis were considered as coherence structures (Whitley, 
1983) which in practice were difficult to discern. For example, Collins (1974: 177-
178) suggested in his ethnographical study about a gas laser (known as TEA) that 
a way to shape a network could start from the contact to a laboratory, in his case, 
the Canadian defence research laboratory as an ego-network (the core-set), and 
then trace the other actors involved in the diffusion of knowledge16. Woolgar 
(1976) argued that identifying collectivities becomes challenging when 
memberships are doubtful, in which actors that are not in the ‘core’ are considered 
part of the periphery limiting their relevance17. Collins (1974) and Woolgar (1976) 
perspectives emphases on the relevance of broader environments. 

 
16 In the following years, Collins (1981, 1988) will identify the core-set through controversies and the social 
contingencies of those involved in experimentations and observations, but in which it is not possible to know 
who is inside or outside the core-set. 
17 Notice the parallel between these alternatives and the quasi-groups (Meyer, 1966: 115-116) 
or stars and zones relationships described by Barnes (1969: 60-61) - then described as personal network 
(Boissevain, 1974: 26-27) -, which have been recently (re) used to trace ‘hard-to-reach’ or ‘hidden 
populations’ (Gile & Handcock, 2010) or to extract partial network in extensive networks (Stivala et al., 
2016).  
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The delimitation of these ill-defined structures is still an ongoing debate in 
the current network perspectives18. A popular terminology, and used more 
recently to identify these invisible colleges, is ‘community detection’, in which 
actors in a ‘community’ would be more closely connected than actors in other 
subgroups. Traditionally, these have been based on some forms that distinguish 
between ‘inside’ and ‘external’ subgroups, roles, or common properties 
(Fortunato, 2010; Fortunato & Hric, 2016). The aim of ‘community detection’ is to 
identify the partitions using the graph's information (Fortunato, 2010). When a 
highly connected community is considered, then is assumed to be a cohesive 
subgroup - which is a more general concept -, leading that the ‘community 
detection’ would be a particular case of ‘blocks’19 (Everett & Borgatti, 2019), used 
for the understanding of scientific specialities (e.g., White & Breiger, 1975; Breiger, 
1976; Mullins et al., 1977; Burt & Doreian, 1982).  

The fourth and last stage of the network evolutionary model of Mullins 
(1972) was the speciality stage (Figure 4) that adopts the form of a formal 
organisation (e.g., recruitment procedures, a test of membership, journals, 
meetings, other locations that support its work, among other). A speciality is 
an ‘institutionalized cluster which has developed regular processes for training 
and recruitment into roles which are institutionally defined as belonging to that 
specialty’ (Mullins, 1972: 74). Speciality is the last stage of the Mullins model, and 
for the case of the ‘phage workers’, they were then absorbed into molecular 
biology and further becoming part of the normal activity of science. As the last 
stage of the process, its resolution becomes part of the curriculum of teaching 
programmes, with validated rules and processes for technical solutions, increased 
graduate students, and attendance in meetings, among others (Mullins, 1973). The 
students themselves colonise organisations, and this speciality is institutionalised 
into journals, positions and centres (Shubin & Mullins, 1988). Then 

 
18 In scientometrics, the exploration of speciality is still an ongoing agenda identifying meso-level structures 
from the macro perspective using techniques such as co-words, co-citation or bibliographic coupling (Gläser, 
2001), and as is have been considered from the science of science (Fortunato et al., 2018; Wang & Bárabasi, 
2021). The debate is concordant with the current understanding of network delimitations and the specification 
problem in network analysis (Laumann et al., 1983). 
19 From a sociological perspective, 'blocks' has been treated as positions that represents role sets (e.g., 
White et al., 1976) or as social niches (e.g., Lazega, 2001) 
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institutionalisation is the crucial element to achieve the status of a speciality, and 
the ‘research areas which have become established take a long time to die out 
altogether’ (Mulkay et al., 1975).   
 

 

 
Figure 4 The specialty stage in the model of Mullins (1972) 

 
The final stage of Mullins (1972, 1973) model assumed that after achieving 

the speciality, it becomes part of the standard canon of scientific activities in a 
circuit of different universities. The particularity of becoming part of the 
establishment of the universities are, on the one hand, that the dissemination of 
specialities into organisations generates that speciality becomes more challenging 
to observe in isolation in which researchers might be part of other paradigms 
groups and networks (in Mullins's terminology). The specialities have many 
overlaps between specialities in the work of researchers, articles, scientific 
instruments and methods, and journals (Gläser, 2001). And, because they are part 
of the curriculum of universities and expected knowledge from graduate students, 
organisations are the guarantors of achieving these expected minimums.  

Instead of using the speciality, further developments have suggested 
considering organisations – primarily because of the relevance of disciplinary 
departments (Jacobs & Frickel, 2009) - to identify some social boundaries. They 
were assuming that the interrelationships between the researchers and their 
institutional affiliation in laboratories, departments, among others, are co-
constitutive and assumed to have a ‘dual position’ (Breiger, 1974; Lazega et al., 
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2008; Bellotti et al., 2016a; Lazega & Jourdá, 2016) because researchers are often 
‘nested’ into these places. 

Some of the perspectives that use organisational fields consider that these 
boundaries only exist when organisations are institutionally defined, in which  
 

‘[t]he process of institutional definition, or ‘structuration’, consist on 
four part: an increase in the extent of interaction among organizations 
in the field; the emergence of sharply defined interorganizational 
structures of domination and patterns of coalition; an increase in the 
information load with which organizations in a field must contend; and 
the development of a mutual awareness among participants in a set of 
organizations that they are involved in a common enterprise’ 
(DiMaggio & Powell, 1983: 148)  

 
In this context, an organisational field in the aggregate constitutes an area of 

institutional life in which organisations share key suppliers, resources and product 
consumers, regulatory agencies, and other organisations that produce similar 
services or products. From some recent network perspectives, the consideration of 
organisational fields is appealing to identify exchange through networks (e.g., 
Galaskiewicz & Wasserman, 1989; Stadtfeld et al., 2016) and understand scientific 
networks (e.g., Powell et al., 2005; Lazega et al., 2008). 

Some organisations share interests that tend to be structured into a similar 
field, in which there are similar forces that made them more similar to one another 
in time. This particularity has been conceptualised as a homogenisation process 
through isomorphism, considered as ‘a constraining process that forces one unit 
in a population to resemble other units that face the same set of environmental 
conditions’ (DiMaggio & Powell, 1983: 149). The isomorphism can be by 
competition (with other groups) or institutional (at the disciplinary level). For the 
first case, the organisations' homogenisation is the rationality that emphasises the 
market competition, niche changes, and fitness measure. Institutional 
isomorphism competes for resources and customers and political power and 
legitimacy, either social or economic fitness. 
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The consideration of cohesive subgroups and organisational fields allowed 
creating an ill-defined boundary for the study of scientific networks. In the 
contemporary multilevel analysis of networks (Snijders, 2016), different 
alternatives have been made to analyse the differences within or between cohesive 
subgroups in the study of scientific networks. Some studies compare different 
disciplines or similar substantive research considering different cohesive 
subgroups (e.g., Kronegger et al., 2012; Ferligoj et al., 2015; Sciabolazza et al., 2017; 
Akbaritabar et al., 2020). Other studies have investigated the analysis of inter-
organisations (e.g., Powell et al., 2005; Lazega et al., 2008), in which the relevance 
of the organisations is highlighted. These investigations explored common micro-
mechanisms or constraints that can be present in relatively broader and defined 
populations. 

In this section, two aspects were raised: The first is the difficulties in 
generating boundaries among researchers in the tradition of the sociological study 
of science and knowledge. The second was the consideration of organisational 
fields as a perspective that allowed exploring similar constraints among 
organisations. The third article of this thesis addresses the identification of 
common mechanisms between a sample of organisations to identify whether the 
patterns are similar or vary according to the organisations' position in the field. 
The positions of the organisations can be either in the core or the periphery of a 
scientific field. From a methodological perspective, the contribution explores an 
alternative operationalisation of a cohesive subgroup that relies on two simple 
premises. First, assumed that actors are situated in the same organisations, which 
is reasonable to expect a minimum level of colleagueship because they are co-
workers. Second, it incorporates researchers who share the same interests – 
publishing in the same discipline- as the members of these organisations or as an 
'outsider' actor citing researchers from these institutions. 
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1.3. Astronomy and Astrophysics in Chile 
 
For the empirical exploration of the local relational structures and the processes that 
allowed the evolution of scientific networks, this thesis analyses the case of the 
Chilean astronomy and astrophysics discipline. Some of the main reasons to 
explore this case are that the size of the researchers working in this area is 
relatively small (López et al., 2005; Gibert, 2011) (~200 professional researchers in 
2017 according to the Chilean Society of Astronomy), and the access of the 
telescopes held in this country is restricted to the members of ‘Chilean Institutions’ 
included in a ‘white list’ in charge of SOCHIAS20. The development of the 
discipline in this country is relatively recent, in which the first astronomical 
program was created in 1965 (University of Chile), the second astronomical 
program appeared only in 1990 (Pontifical Catholic University of Chile), and in 
2012 there were nine astronomical departments (CONICYT, 2012). According to 
SOCHIAS, in 2020, 21 organisations were investigated in areas related to 
astronomy and astrophysics in this country21. Currently, in the context of 
astronomy, ‘Chile, local universities played a key role, including the development 
of endogenous capabilities for astronomical research.’ (Guridi et al., 2020: 5). As 
can be noticed, this specific context relies on the discipline22 and the organisations 
to administrate the access to time observation23.  

 
20 Extracted from: https://sochias.cl/access-to-chilean-telescope-time/ (last time visited: 30/03/2021). 
Noticed that post-doctoral, visiting academics, and PhD student can apply for the time of observation if they 
are sponsored by academics hired in Chilean institutions. For example, to apply for ALMA time of 
observation – currently, the largest radio astronomical observatory held in Chile – ‘Each proposal must have 
at least one permanent Chilean faculty member among the proposers (PI or co-I)’ (extracted 
from: http://www.das.uchile.cl/~alma_crc/ [last time visited: 11/04/2021]). For CNTAC, there is a temporal 
restriction as well: ‘For the purpose of applying for CNTAC time, a Chilean astronomer is defined as a 
resident scientist working in a Chilean institution. 'Resident Scientists' are those scientists who maintain 
continuous residence in Chile for at least 9 months.’ (extracted 
from: http://www.das.uchile.cl/das_cntac_rules.html [last time visited: 11/04/2021]). 
21 Extracted from: https://sochias.cl/astronomia-en-chile/universidades/ (last time visited: 11/04/2021).  
22 Previous research has noticed the isolation of astronomy from other disciplines (Leydesdorff & Rafols, 
2009; Jansen et al., 2010; Van Noorden, 2015), and in the Chilean case (Cárdenas et al., 2015). 
23 Considered one of the most relevant researchers' assets (McCray, 2000; Jansen et al., 2010), which 
according to the evaluation processes – as in the Atacama Large Millimeter/Submillimeter Array - is based 
on a collective review that is biased in favour of less risky proposals (Espinosa, 2015), disciplinary bounded 
and with stables paradigms (Heidler, 2011, 2017). Elites of researchers in astronomy – such as in the astro-
informatic speciality – emphasise the relevance of the priority in the discoveries (Espinosa-Rada et al., 2019). 
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The local community has access and the monopoly of an impressive 
amount of time observation. The main reasons are because, in Chile, there is the 
Atacama Desert, which is the driest non-polar place in the world located and 
surrounded by two mountain chains giving unique geographical conditions for 
astronomical observations (Guridi et al., 2020), which the Office protects quality 
and transparency of the skies through the Protection of the Skies of Northern Chile 
(OPCC). This condition allowed this country to hold nearly 40 per cent of the 
world's earth-bounded telescopes' astronomical capacity and the most important 
astronomical observatories (list of current observatories in Appendix A). In the 
decade of 2020, it will be home to almost 73 per cent of the world's total 
astronomical infrastructure since the incorporation of new telescopes and 96 per 
cent of the southern hemisphere's scientific observation capacity (CONICYT, 2012; 
Unda-Sanzana, 2018 in Guridi et al., 2020). In 1997 (Decreto 1766), the government 
ensured that the Chilean astronomy community receives 10 per cent of the 
observing time of the international observatories built in the country and will own 
10 per cent of the Large Synoptic Survey Telescope [LSST] computer cluster. The 
disposition of resources geographically based and the propinquity in a country 
allowed to identify the location-dependence and the emergence of ‘national core’ 
of researchers (i.e., a national subset of an international speciality) (Gläser, 2001: 
201-203) that are shaped by the access to these technologies. 

Previous research emphasised the problems of generating a local 
community in an underdeveloped country. This situation has been considered as 
a risk of ‘producing a quasi-colonial form of dependencies on foreign partners’ 
(Guridi et al., 2020: 2; also, in Espinosa-Rada et al., 2019), or conjectured that 
‘Chile’s trajectory shows just how hard it is to build ‘scientific community’ and 
‘research infrastructure’, both important to how scientists practice their work’ 
(Barandiaran, 2015: 143). According to Barandiaran, it is difficult to assume that 
Chile has a ‘national scientific community’ because there is no stable funding that 
can sustain the community, the funding available reinforces the quantitative 
productivity indicators, there is no sufficiently ‘dense communication network 
among scientists’, among others (2015: 146-147). According to Guridi et al. (2020), 
this situation changed after the fieldwork of Barandiaran in 2009, in which the 
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disproportional benefits to foreign organisations were reverted despite initial 
missteps. 

In terms of the ‘national scientific community’, members of this community 
seem to maintain fluid communication. For example, in SOCHIAS’s newsletter24, 
it is possible to track the history of the community, the arrival of new members, 
the creation of new departments, some relevant events, discoveries, among others. 
The astronomers working in the Chilean institutions have access to resources 
administrated by the local community. Different sources for local astronomical 
development are available that mix local and foreign funding (e.g., ESO–
Government of Chile Joint Committee funded projects since 1998, ALMA-ANID 
since 2005, Gemini-ANID since 2005, QUIMAL since 2009, China-ANID since 
2015, among others). The observational time is allocated by the Chilean Telescope 
Allocation Committee (CNTAC) and the National Commission for Science and 
Technology (CONICYT) through the APEX and Gemini SUR Committees 
bounding and promoting the internal developments of astronomy and 
astrophysics in this country. 

Two periods are further analysed, which presents some differences in their 
context that might be related to the arrival of new technology and the government 
strategies to seek competitive advantages to leverage Chile depending on the 
development of the local scientific community. One of the periods corresponds to 
a few years after the Atacama Large Millimeter/submillimeter Array (ALMA) 
arrival in 2011 - which is currently the largest radio astronomical observatory - full 
operative in 2013. In this period, the government created the Atacama 
Astronomical Park in 2013 as a strategic zone for the exclusive usage of 
astronomical observatories in the Chajnantor Plateau despite being one of the 
richest zones for mineral extraction (the main economic activity of this country). 
A few years before, other telescope classes were settled in this country, 
incorporating some of the largest observatories in optical astronomy (e.g., the 
Magellan Telescope or the Very Large Telescope) (Guridi et al., 2020), representing 
a different branch of this discipline. Previous research identifies how the time 
observation is allocated in ALMA, and the results indicate that there was a clarity 

 
24 Extracted from: https://sochias.cl/material-de-interes/newsletters/ (last time visited: 11/04/2021) 
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upon the quality of the research projects for the allocation of the time observation 
that often corresponds to established researchers (Espinosa, 2015). The Chilean 
astronomical community was highly isolated from other disciplines (Cárdenas et 
al., 2015). During this period (approximated between 2013-2015), Chilean 
astronomers had access to some of the largest telescopes for optical and radio 
astronomy at the same time, and for a couple of years (in average 2 or 3 years), 
each astronomer, after having the allocation time for observation, had the 
exclusivity of using the information before it is openly available. 

Some years later, a different scenario and context occurred in which a new 
class of observatories based on survey telescopes was starting to become part of 
the national discussion. In 2017, the Chilean government had an interest in the 
development of astronomy to spur economic activity to national advantage 
(Arancibia et al., 2020; Guridi et al., 2020) because of the arrival of the Vera C. 
Rubin Observatory (a.k.a., the Large Synoptic Survey Telescope [LSST]), 
considered to be the research front of the discipline (Espinosa-Rada et al., 2019). 
This class of telescope represent the age of the digital era in astronomy (McCray, 
2014; Hoeppe, 2014), which is a new variation of telescopes (e.g., the Sloan Digital 
Sky Surveys [SDSS] or the 2df Galaxy Redshift Survey [2df GRS]). Compared with 
previous telescopes (optical or radio), this type of observatory creates an 
automated mapping of the sky that will deliver thousands of petabytes of images 
and data integrated into virtual observatories such as the Virtual Observatories 
(VO) in which the information become available immediately. One possible 
implication of this is that the new ‘data-turn’ in astronomy can change some of the 
current and predominant astronomers' basic research practices. In which previous 
research mentioned that astronomers change their norms and behaviours 
considering that sharing, ownership, and access of data become more challenging 
once the data become available for the whole world – open access- (McCray, 2014) 
and where there is no need to write a proposal for time allocation (Heidler, 2011) 
as it is usual in current astronomy. In comparison with the previous period, at this 
moment, I conjecture that it was a period of change and some internal variation – 
corresponding with the second stage of the theoretical model of this research, but 
more open to their social environment. This period corresponds to the preparation 
of the national community for the arrival of the LSST. 
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1.4. The Present Studies 
 
In this section, the three empirical articles that constitute the thesis's corpus are 
briefly presented, highlighting how they are connected and some of their 
contributions. 

The three studies explore multigraphs to deal with what is called the 
‘structural confusion’. The confusion is investigated through a deeper 
understanding of the ties between different types of networks (i.e., using direct 
citation, co-citation, bibliographic coupling, and collaboration) and, with more 
emphasis in this thesis, collective actors in a different level (i.e., institutional 
affiliations and journals in this case) using multigraphs. In each article, at least one 
type of relationship can be assumed as social and cognitive, considering that both 
relationships constitute a social-cognitive network operationalised differently but 
conflated in interpersonal or intercitation relationships contexts. The three studies 
aim to make a methodological contribution. 

As was presented in this introductory chapter, the last two articles consider 
different processes and structures at a different level of abstraction, similar to the 
model of Mullins (1972, 1973) and the different exploration about the processes of 
group formation (e.g., Mulkay et al., 1975; Chubin, 1976; Woolgar, 1976), and the 
consideration of peer recognition according to the Matthew effect (Price, 1963; 
Zuckerman, 1967; Merton, 1968a). More precisely, the second article investigates 
the relevance of local processes analysing different relationships (i.e., citations and 
co-authorship). This study investigates the relevance of collective actors (i.e., 
journals and organisations) in the co-evolution of a discipline, in which the 
identification of certain micro-mechanisms, such as different types of groups or 
the Matthew effect, allowed exploring how together they can resemble the network 
of the Chilean astronomy and astrophysics discipline. The third article moves one 
step forward to explore the variation within and between cohesive substructures, 
considering the local relational processes and the relevance of micro-mechanisms 
in the network formation. Also, investigates with more flexibility ‘outsiders’ actors 
assumed to share common interests in the discipline of astronomy and 
astrophysics and their relationship with the ‘core actors’ to explore the variations 
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in the potential isomorphism between organisations. From a methodological 
perspective, the second study uses an analysis of multilevel network perspective, and 
the third study a multilevel analysis of network (Snijders, 2016) that deals with the 
different understanding of ‘levels’ from a multilevel perspective.  

Study 1. Citations are challenging to understand because they mix or 
conflate social, cognitive, and situational dimensions often when researchers are 
aware of each other (Chubin & Studer, 1979; Schrum & Mullins, 1988; White et al., 
2004). In the first article (chapter 2), a methodological perspective is used to 
investigate whether the combination of different types of representations that use 
citations (i.e., direct citation, bibliographic coupling, and co-citations) can recover an 
underlying ‘real structure’ (Holland & Leinhardt, 1974) of this network. The 
combination of these different types of relationships have been suggested in recent 
scientometrics literature to have a more accurate representation of citations (Small, 
1997; Persson, 2010; Wang et al., 2019) – called the author normalised weighted direct 
citation. The research question that motivates the first paper is, 

 
What are some of the consequences of the combination of different citation-based 
networks into a common representation? 
 
The first article addressed some methodological considerations in 

combining derived citations networks (i.e., direct citation, bibliographic 
coupling and co-citations) between authors – which is called the author normalised 
weighted direct citation. To explore the author normalised weighted direct citation, are 
considered different similarity measures often used in scientometrics to study 
citation-based measures such as the Jaccard index, cosine similarity, and association 
strength (Ahlgren et al., 2003; van Eck & Waltman, 2009; Egghe & Leydesdorff, 
2009). For the exploration, a quadratic assignment procedure (QAP) and multiple 
regression quadratic assignment procedure (MR-QAP) (Krackhardt, 1988; Dekker 
et al., 2007) are estimated. The (MR) QAP is used considering the different citation-
based measures to understand the implication of the normalisation and how they 
give more relevance to different dimensions of the citation network when the 
components are combined. This contribution suggested that combining different 
normalisations requires distinguishing between an analytical interest in the shared 
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cognitive dimension according to the community's perception or the 
communicational trace between the actors. 

Study 2. For the analysis of peer recognition and group formation, 
contemporaneous models can analyse both types of processes simultaneously to 
understand the evolution of scientific networks (e.g., Ferligoj et al., 2015; 
Kronegger, 2012; Zinilli, 2016; Purwitasari et al., 2020). While recent studies have 
addressed the use of networks that consider two types of ‘levels’ (i.e., 
organisations and actors; Wang et al., 2013; Gondal, 2018; Purwitasari et al., 2020). 
In this second article, we advance in the understanding of the evolution of the 
scientific network methodologically for three ‘levels’ (i.e., organisations, actors, 
and journals), and multiple relationships (i.e., co-authorship and citation) between 
them. New and already available measures for diagnostics for statistical models 
for social networks are explored. The diagnostics (Hunter et al., 2008) helps to 
identify how the decisions of actors (Snijders, 2001) or the local neighbourhood of 
actors – as a subnetwork – can explain the emergence of the entire network (Robins 
et al., 2005) as a type of linkage between micro and macro level (Snijders & 
Steglich, 2015; Stadtfeld, 2018). Two research questions oriented this paper, 

 
How a group of academics generate interpersonal intercitations considering the co-
evolution of a multilevel network? 
How well the micro-level represents macro features at the network level in a three-
mode multilevel and multiplex networks? 
 
The second article analyses the period of formation of the astronomical 

community after the arrival of ALMA – the largest radio astronomical facility - to 
understand the co-evolutionary interdependency of scientists and entities of 
different levels and the interpersonal intercitation patterns in a group of 
academics. The main methodological contribution is to expand available goodness 
of fit (Lospinoso & Snijders, 2019) for a three-mode (i.e., relationships within 
researchers, between organisations and journals) and multiplex network (i.e., 
citation and co-authorship) in the context of stochastic actor-oriented 
models (Snijders, 2001; Koskinen & Edling, 2012; Snijders et al., 2013). Some 
extensions and already available measures of the goodness of fit are then proposed 
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for dyadic similarity-based mechanisms (i.e., E-I index, Yules Q, IQV and dyadic 
similarity distance-based for reciprocal ties), relational-based mechanisms (i.e., 
effective size, constraint and two overlapping triadic censuses) and proximity-
based mechanisms (i.e., mixed multilevel degree distribution, mixed multilevel 
geodesic distribution, and mixed multilevel quadrilateral census). The results 
suggest that social relationships grounded on scientific collaboration and space 
proximity based on institutional affiliation are more accurately suited to 
understanding the networks' co-evolution in a scientific network than cognitive-
based networks such as the journal network. 

This contribution was made in collaboration with Elisa Bellotti, Martin 
Everett, and Christoph Stadtfeld. Alejandro wrote the complete draft, and he 
conducts the analysis, creates the codes, and suggests new measures for the 
goodness of fit. Elisa contributes to the complete supervision of the investigation 
and made theoretical clarification of the paper. Martin contributes to the 
investigation's full supervision and suggests incorporating some of the paper's 
goodness of fit. Christoph collaborates in exploring different potential micro-
mechanisms, reviewing the adequacy of different modelling specifications, and 
interpreting some of the mechanisms contemplated in the model. 

Study 3. The cohesive subgroups are challenging to delimitate in the current 
development of social networks (Fortunato, 2010; Fortunato & Hric, 2016; Everett 
& Borgatti, 2019), and from a sociological perspective in the study of science and 
knowledge, there was a frosty debate about their interpretation and delimitation 
(e.g., Collins, 1974; Small & Griffith, 1974; Woolgar, 1976; Mullins et al., 1977; 
Callon et al., 1983; Gläser, 2001). The last study offers an alternative of cohesive 
subgroups that relies on two assumptions: first, it aggregates researchers situated 
in the same organisations where it is reasonable to expect a minimum level of 
communication between co-workers in which colleagueship can be expected. 
Second, it incorporates researchers who share the same interests – publishing in 
the same discipline- as the members of these organisations. Using the notion of 
organisational fields from a network perspective (de Nooy, 2003; Powell et al., 
2005; Ramos-Zincke, 2014), the study compares the presence of similar constraints 
distinguishing between those organisations that are in the core of the field in 
comparison with other institutions that are in the periphery (Borgatti & Everett, 
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2000). From a methodological perspective, when networks become bigger, they 
are often sparse, and some models for the analysis of social networks (e.g., 
Snijders, 2001; Lusher et al., 2012) become difficult to estimate. Therefore, this 
study advances in proposing an alternative that uses as a strategy a sample 
of cohesive subgroups – using as a methodological strategy a second-zone multilevel 
sampling from a second-mode focal actor – for networks that are ‘not too small’.  Two 
questions are considered in this paper, 

 
How do the regular join patterns of intercitations among researchers in 
organisations – as meso-level social forces – vary within scientific communities? 
Do researchers in core organisations have similar patterns compared to other 
institutions on the periphery? 
 
The last article analyses the transitional period in which astronomers and 

astrophysics were preparing for the arrival of the Observatory C. Rubin (a.k.a., 
Large Synoptic Survey Telescope). This telescope will be one of the biggest of his 
kind and represent a branch of astronomy of the so-called ‘data-turn’ in astronomy 
(McCray, 2017). In 2017 the Chilean government considered the development of 
big data in astronomy as a potential area of interest for the development of this 
country (Espinosa-Rada et al., 2019; Arancibia et al., 2020). The main objective of 
this study is to extend the analysis of the case study to a sample of networks to 
address how the regular join patterns of intercitations among researchers in 
organisations, as meso-level social forces, have similar constraints within different 
organisations depending on their position (as core or periphery [Borgatti & 
Everett, 2000]) in the field, and considering interpersonal intercitational contexts. 
In this approach, it is used as a strategy a meta-analysis stationary stochastic actor-
oriented model (Snijders & Baerveldt, 2003; Snijders & Stiglich, 2015; Block et al., 
2019) and used as a methodological approach a second-zone multilevel sampling from 
a second-mode focal actor in networks that are ‘not too small’. The second-mode focal 
actor is a cohesive subgroup, where institutional affiliation is first identified, and 
then all their members. All the researchers cited or cited from the organisation's 
members are considered, including their institutional organisations. The results 
indicate that researchers in this community are not preserving endogamic 
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recognition within their organisations. And, actors tend to cite other researchers 
affiliated in the same research centres, creating closure in specific research niches 
due to diversity and multi-connectivity in this scientific community. 
 
  



 
 

41 

Chapter 2 
 

Authors standing on the shoulders of other authors:  
Unpacking the author normalised weighted direct citation 

 
Alejandro Espinosa-Rada* 

*The Mitchell Centre for Social Network Analysis/Sociology, The University of Manchester 

 
Abstract 
In this article, I review the author normalised weighted direct citation metric to 
decompose its main components and identify how each of its elements changes its 
prevalence according to different similarity measures. For the exploration, I 
decompose each of the author citation-based elements through an illustrative 
example to identify their particularities. Using an empirical case, I use multiple 
regression quadratic assignment procedures to identify each component's 
contribution according to the normalisations. The results indicate that according 
to the similarity, each of the citation components used to create the author 
normalised weighted direct citation can have a different contribution requiring 
further consideration in selecting the normalisation. I suggest that a possible 
interpretation in selecting the normalisations is whether there is an interest in the 
shared cognitive dimension according to the community's perception or the 
authors' communicational trace. 
 
Keywords  
Author Citation; Author Co-citation; Author Bibliographic Coupling; Author 
Normalised Weighted Direct Citation; Scientific Networks; Scientometrics. 
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2.1 Introduction 
 
The use of scientific publications is the primary type of communication in science 
that allows the mapping of science. This mapping science can be done at different 
scales such as disciplines, research fields within disciplines, subfields, and 
research topics at the lowest level (van den Besselaar & Heimeriks, 2006). 
Researchers in (sub) fields share common base knowledge, in which they can 
identify a similar set of research questions, methodologies and shared overlapping 
references. Nevertheless, exploring these social-cognitive networks (Merton, 2000; 
White et al., 2004) requires a suitable representation, and recent developments 
suggested combining different perspectives. However, while the mixture of 
measures is suggestive in principle, it is not clear what are some of the 
consequences of the combination of different citation-based networks into a 
common representation. 

There are different approaches to identify social-cognitive networks. Some 
of these include (1) citation-based measures, which depend on the references of the 
documents; (2) text-based measures that focus on the text and contents of the works 
(e.g., titles, abstracts, or full text); and (3) hybrid measures that employ both 
approaches (Ahlgren & Colliander 2009; Liu 2017). All these representations are 
part of interlocking multilevel networks (i.e., multi-modal, or linked networks) in 
which, for the same work it is possible to construct different types of networks. 
Example of these networks are bibliographic coupling, co-citation networks or 
direct citation networks (a.k.a. intercitation or cross citation) for the citation-based 
measures, and co-word of terms for the text-based measures. These networks are 
intrinsically related, and the derived networks (Batagelj & Cerinsek 2013; Batagelj 
2020) can help us explore different dimensions of the scientific networks. 

These representations have different interpretations that depend on 
references, but they focus on different social-cognitive dimensions. For Garfield, 
Sher & Torpie (1964) and Price (1965), direct citations – or the tendency of an author 
to cite another author – allows us to identifying development patterns within a 
particular field. The direct citations represent the self-organisation of current 
literature topics among authors (Klavans & Boyack 2017), often used to investigate 
how researchers ‘stands on the shoulders of other authors’. Also, coupling authors into 



 
 

43 

a co-citation analysis – as the tendency of two authors to be cited together by later 
authors - represent the intellectual structure of a given scientific field (McCain, 
1990). Co-cited authors tend to be grouped based on similar topics, methodologies, 
and social affinities as perceived by citers (White 2003), thus positioning the 
authors in a common intellectual space. The highly cited authors represent the 
field's knowledge base (Zhao & Strotmann, 2014). Another approach is a 
bibliographic coupling – two authors are coupled if they are citing the same authors 
in their references. The bibliographic coupling aims to identify research fronts or 
core documents (Glänzel & Czerwon, 1996) that reveal what active researchers are 
currently working on (Zhao & Strotmann, 2008, 2014; Klavans & Boyack, 2017). 

A more recent alternative uses the three citation-based measures together 
through a normalised weighted direct citation to address the representations' 
differences. The assumption is that combining indirect citation (bibliographic 
coupling and co-citation) and direct citation allowed identifying cited authors that 
are out of the citing paper topic (Persson 2010; Wang et al. 2019). These measures 
can complement each other, obtaining additional information to improve the 
measures' reliability (Glänzel & Czerwon 1996). This tendency of combining 
different measurement is becoming more popular in recent years, for example, 
combining citation with the information of the venue of the publication and 
keywords (Bu et al., 2016) or the combination of multiple metadata for knowledge 
representations (Bu et al.,2018). 

Much has been said about the accuracy and relevance of the different 
citation-based measures (i.e., direct citation, co-citation, and bibliographic 
coupling). Recent developments suggested the possibility of merging the three 
measurements to complement each other, known as the combined linkage or 
normalised weighted direct citation (Small, 1997; Persson, 2010; Wang et al., 2019). 
However, there is a lack of clarity in the implications of doing the combinations, 
which overlaps with two relevant discussions in scientometrics. First, there is an 
ongoing debate in understanding the accuracy of these measures and how they 
capture different dimensions through citations (Shibata et al., 2009; Boyack & 
Klavans 2010; Glänzel & Thijs 2017; Klavans & Boyack 2017). Second, because 
these networks depend on other networks, there is also an ongoing debate on 
dealing with the citation networks' projection (Ahlgren et al., 2003; Leydesdorff, 
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2008; Egghe & Leydesdorff, 2009; van Eck & Waltman, 2009). These two issues 
require firstly more clarity in what the citation-based measures mean and secondly 
the implications for the projection of the matrices often involved in the 
construction of these measures. However, there is less understanding of how 
sensible the weighted direct citation is when different similarity measures are 
considered for the normalisations. The citation-based alternatives have different 
meanings, and each citation-based option is reviewed to understand the weighted 
direct citation network in an empirical setting using multiple similarity measures. 
Clarifying these two dimensions allows identifying the implications of combining 
these representations. 

In the following, I will address these three issues, in turn, to understand an 
empirical case study from the perspective of the author's works to identify the 
manifestation of the socio-cognitive interrelationships (Merton, 2000; White et al., 
2004) of the authors in a scientific field. To do so, I disentangle with a detailed 
illustrative example of the construction of the four different measures identifying 
some of the implications and characteristics that arise from the matrix 
transformations of citation networks. Then, I highlight some of the current 
discussions according to normalisation processes often used in scientometrics 
literature. Next, through a quadratic assignment procedure (QAP), I use the 
different citation-based measures to understand their implication on this case of 
study. Then, I identify how these measures relate to each other and how the 
normalisation gives further relevance to the combined measure dimensions 
according to the normalisations. Finally, I highlight the main findings of the 
explorative analysis. I suggest that a possible interpretation of the normalisation 
difference may vary according to interest in the shared cognitive dimension 
according to the community's perception or the authors' communicational trace. 
 
2.2 Scientific and Knowledge Networks 
 
Most of the analyses for scientific networks use a standard strategies projection of 

two-mode networks25. Following this approach, and considering a ) matrix of 

 
25 According to Borgatti and Halgin (2011a), ‘two-mode graphs’ refers to a representation of 
different types of entities or ‘modes’, and affiliation networks is a particular case that emphasizes 
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works-by-author26 in which *!" = 1 if the ,th work is written by the -th author, and  

*!" = 0 otherwise, then it is possible to analyse the relationship of both ‘modes’ 
directly as a two-mode network, or we can use both sets of nodes separately, or 
separately and then jointly (Everett and Borgatti, 2013, 2018). One of the most 
common strategies in scientometrics studies is to use the separation of nodes as an 
ordinary one-mode network using matrix projections. The projections of a matrix 

), are formed by taking the product of the matrix ) with its transpose to form 

))′, whose ,-th cell gives the number of authors that both works , and - share 

and )′), the number of common oeuvres (i.e., a body of writings done by a 

person [White & Griffith, 1981]) that share author , and - (i.e., collaboration 
network).  

In this approach are that the value of the ,-th cell in ))′ or )′) are often 
not considered. Also, there are some problems with the interpretation of scientific 
networks. For example, in co-authorship, papers with many authors produce large 
complete sub-graphs that obscure some collaboration structures by over-
representing works with many values (Batagelj & Cerinsek, 2013). Some 
alternatives address these issues, but I first disentangle the projections used as the 
baseline of direct citation, co-citation and bibliographic coupling as the building 
block for the normalised weighted direct citation. 
 

2.2.1 Direct Citation Networks 
 
Previous research has emphasised that direct citation is more accurate for 
capturing research fronts (Shibata et al., 2009) and trace well the socio-cognitive 
and historical development of knowledge (Klavans & Boyack, 2017). The directed 
citation network is based on the product of two two-mode matrices. The first 

matrix is based on a given matrix 0 of authors-by-works in which 1!" = 1 if the ,th 

author’s oeuvre cite a -th work, and  1!" = 0 otherwise. For simplicity, I will assume 

 
relations such as participations or memberships. For example, people and demographic 
characteristics (case-by-variables matrix) can be represented as two-mode graphs but is not 
considered an affiliation network.   
26 As it was mentioned by White and Griffith: ‘’Author’ in this context means something like what 
the French call an oeuvre – a body of writings by a person – and the person himself.’ (1981: 163) 
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that each author in 0 is a first solo author of a set of citing work for illustrative 

proposes. Also, and together with a second matrix ) as defined previously, the 

product of 0) = 2, in which 2 is the matrix used for the direct citation. For this 

particular case, the ,-th values of 2 is the number of ways an author , cite (or can 

reach) another author -. Which is the trace from the -#ℎ work in 0, and the same 

work ,#ℎ in ). The matrix 2 is the baseline for co-citation, and bibliographic coupling. 
In comparison with co-citation and bibliographic coupling, direct citations 

focus on the links and the relevance of the structures (Hummon & Doreian, 1989), 
as an iteration and flow of information that is aggregated in the direct author 
citation to investigate how researchers ‘stands on the shoulders of other authors’. 
Garfield uses the metaphor that ‘If one consider the book at the macro unit of 
thought and the periodical article the micro unit of thought, then the citation index 
in some respects deals in the submicro or molecular unit of thought’ (1955: 122) 
because researchers often cite other contributions due to particular ideas instead 
of complete concepts. However, recall that this limited measure is blind to the 
citation's intention (e.g., Mulkay, 1974; Gilbert, 1977; Nicolaisen, 2008; Milard, 
2014), and the act of citing and the value involved in the tie is difficult to 
interpret. For example, I can cite an author once in the reference, but the 
hypothetical author can be more relevant for the paper's argument. In contrast, a 
different second author can be mentioned several times and might have a 
secondary relevance in the same work. 

In the following example, I illustrated how two non-negative matrices, 0 

(Table 1) and ) (Table 2), are connected through the same work as is represented 

in a temporal two-mode graph (Figure 5). The temporal two-mode graph 4 =

(6, 8, 9#, 9$%#), has a set of authors 6 = {<#, … , <&} and a different set of works 8 =
{?#, … , ?'}. And, has two different types of temporal connections, the ties 9$ is a set 

of edges that connect authors in 6 to works in 8 in time #, and 9$%# as a different 

set of edges in which work in 8 connects to an author 6 in time # − 1. Notice that 

in the example (Table 1), author 4 is not present in matrix 0 (time #) but appears 

in ) (time # − 1), this node is assigned with the value of 0 for the missing edges in 
this illustration (as in Table 1), and not incorporated in the empirical analysis in 
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the forthcoming section. Also, consider that 0 and ) are incident matrices, 
referred to as occurrence matrices in the literature of scientometrics.  

 
Table 1 Author Citing Papers 
 

 Paper 1 Paper 2 Paper 3 Paper 4 
Author 1 1 0 0 0 
Author 2 0 1 0 0 
Author 3 0 1 1 1 
Author 4 0 0 0 0 
Author 5 0 0 0 1 

 
 
Table 2 Paper Cited and Their Authors 
 

 Author 1 Author 2 Author 3 Author 4 Author 5 
Paper 1 1 1 1 0 0 
Paper 2 0 0 1 0 0 
Paper 3 0 0 1 1 0 
Paper 4 0 0 0 1 1 
Total: 1 1 3 2 1 
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Figure 5 A Temporal Two-mode Network 
 
 

 
 

 

 
 

 
 
 

Author citing paper in time A (author sender and paper receiver), and paper cited 

and their authors in time A − B (paper sender and author receiver). 
 

Through the multiplication of the two-mode matrices 0 and ), the direct 
citation network is derived in Table 3 and represented as a graph in Figure 6, in 
which the diagonal corresponds to the authors' self-citations. As can be noticed, the 
direct citation represents the walks of the authors and the parallel dissemination of 
the written paper to several other authors (i.e., diffusion by replication [Borgatti, 
2005]) that are aggregated considering the scientific documents of early works and 
their researchers.  
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Table 3 Direct Citation as the Number of Walks of Distance Two from Author C 

to Author D 
 

 Author 1 Author 2 Author 3 Author 4 Author 5 
Author 1 1 1 1 0 0 
Author 2 0 0 1 0 0 
Author 3 0 0 2 2 1 
Author 4 0 0 0 0 0 
Author 5 0 0 0 1 1 

 
 
 
 
 
 
 
 
 
 
 

Figure 6 Projection of the Number of Walks of Distance Two from Author C to 

Author D 
 

In this representation, the matrix 2 (Table 3) identifies the number of walks 

in which an actor in time # reach at a distance of two another author in time # − 1. 

Also noticeable is that author three cite in two different papers (?) and ?*) author 
four, while the other authors are cited only through one document (Figure 5). From 
this representation, the number of walks increases because of the number of 

publications that refer to the same author27. For example, author three contributes 

 
27 Another area for mapping networks focused on finding the main paths considering the direct 
citation. The main paths often adopt a direct acyclic graph (DAG) structure (while in rare 
circumstances, there might be loops, especially when there are ‘forthcoming’ references) (Hummon 

1 

0 

0 

2 

1 

<# 

<( 
 

<) 
 

<* 
 

<+ 
 

2 

1 

1 
1 

1 

1 



 
 

50 

to 45% of the total walks from # to # − 1. This representation will consider that 
author four is more cited without considering the self-citations (Figure 6). 
However, in this illustrative example, the popularity of author four is given by the 
number of publications that traverse the relationship between the authors. The 

matrix 2 is used as the building block for the upcoming representations.  
 

2.2.2 Co-citation Networks 
 
The author co-citation allowed mapping scientific networks (Rosengren, 1968; 
Small, 1973; Marshakova, 1973 for co-citation; White & Griffith, 1981 for author co-
citation). This measure assumes that if two authors are cited together by later 
authors, then it is more likely that their intellectual oeuvres are perceived as 
related in a field even if they do not create a direct citation. Co-citation often 
represents well-established authors' work. It is assumed that oeuvres need to 
mature to appear (Zhao & Strotmann 2008) and reflect the past structure of 
knowledge (van den Besselaar & Heimeriks 2006). Hence, this measure 
(and bibliographic coupling) can be seen as a manifestation of an intellectual 
relationship that is perhaps unobservable through direct citation. We could 
deduce the co-citation matrix using direct citation 
 

EF2, = 2′2 
 

Following the illustrative example, through the citation network the co-
citation matrix is constructed (Table 4 and Figure 7).  
 
  

 
& Doreian, 1989; Batagelj et al., 2014). Here, I limited the review to the most straightforward 
representation used as the building block for other citation representations. Also, is used direct 
citation as a one-time window (! − 1), which can expand for longitudinal couplings (Small, 1997). 
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Table 4 Co-citation Full Counting Matrix 
 

 Author 1 Author 
2 

Author 
3 

Author 
4 

Author 5 

Author 1 1 1 1 0 0 
Author 2 1 1 1 0 0 
Author 3 1 1 6 4 2 
Author 4 0 0 4 5 3 
Author 5 0 0 2 3 2 

 
 
 
 
 
 
 
 
 
 
 

Figure 7 Co-citation full counting network 
 

Intuitively, this representation assumes that two authors would be co-cited 
if both appear in the references of a common work from later works. In this 
network, author 3 is publishing paper 2, paper 3 and paper 4. Therefore, the 

number of walks from co-citing author 3 and author 4 at time # − 1 from the 

perspective of authors in # at a distance of two are from G3 → I2 → G3, G3 → I3 →

G3, G3 → I3 → G4 and G3 → I4 → G4. Which are coupled directly in paper 3 and 
‘indirectly’ couple by authors through the other papers written by author 3. 

Similarly, the number of walks coupling author 4 and author 5 are from G3 → I3 →

G4, G3 → I4 → G4 and G5 → I4 → G5 that are directly co-cited in paper 4, but 
‘indirectly’ couple by author considering the other walks. A third example is from 
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author 3 to author 5, who is not directly connected by any paper but is ‘indirectly’ 

connected by author 3 through the walk G3 → I3 → G3 and G3 → I4 → G5.  
In the example, one author (i.e., author 3) can increase the number of walks 

between two other actors when there are more cited actors in the references, 
increasing the co-cited authors' weight. 
 

2.2.3 Bibliographic Coupling  
 
The bibliographic coupling introduced by Kessler (1963), and further expanded 
for authors by Zhao and Strotman (2008), is considered a complement of co-
citation. This measure relies on the coupling of authors by other researchers in the 
community, without the cited authors' active engagement as in the direct citation. 
Bibliographic coupling describes better the research-front topics (Glänzel & Thijs 
2017), but sometimes this might depend on the subject of interest (Boyack & 
Klavans 2010). The bibliographic coupling has the limitation that two articles 
might cite different references and still be coupled together. Also, because the 
inter-citations are very sparse, the coupled bibliography is often dominated by a 
few citations (Liu 2017). This measure is mathematically similar to co-citation, 
 

L,2F = 22′ 
 

However, bibliographic coupling focuses on how two authors are coupled 

if they are citing the same authors in their references (consider that the 2, is 

equivalent to changing the direction of all the ties in 2 and remaining constant the 
diagonal).  In this example (Table 5 and Figure 8), author two and author three are 
tied with a value of 2 because they are both citing paper 2.   
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Table 5 Bibliographic Coupling with Full Counting Matrix 
 

 Author 1 Author 2 Author 3 Author 4 Author 5 
Author 1 3 1 2 0 0 
Author 2 1 1 2 0 0 
Author 3 2 2 9 0 3 
Author 4 0 0 0 0 0 
Author 5 0 0 3 0 2 

 
 
 
 
 
 
 
 
 
 

Figure 8 Bibliographic Coupling Full Counting Network 
 

Therefore, the assumption is that because paper 2 is written by author three, 

then there is a walk of distant two from # − 1 to # from G3 → I2 → G2 and G3 →

I2 → G3. Similarly, author three and author five have a bibliographic coupling 
because there are three walks of distant of two that indirectly connect them from 

# − 1 to # (i.e., G4 → I3 → G3, G5 → I4 → G3 and G5 → I4 → G5). Notice that this 
walk depends on time t. Therefore, author 4 disconnect the network because it 

only appears in # − 1. Also, self-citation (such as author 1 citing itself and author 
3) assumed in this representation that there is a direct connection between its work 
and the cited work. However, some references, and therefore their authors, might 
be out of topic.  

Certain studies suggest that bibliographic coupling and co-citation analysis 
are more accurate for the long-term manifestation of relevant topics (Klavans & 
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Boyack 2017). In terms of clustering, bibliographic coupling tends to cluster recent 
papers and the old papers to a lesser extent. On the contrary, co-citation clusters 
old works but cannot cluster recent documents that are not yet cited, and direct 
citation tends to cluster more important documents (Boyack & Klavans 2010). 
 

2.2.4 Normalised Weighted Direct Citations 
 
Direct citation, bibliographic coupling, and co-citations tend to have different 
meanings, trace the walks' flow differently, and emphasise different dimensions 
of the temporality of the works and their authors. Small (1997) suggested using 
the three perspectives combined into a single measure to recover multi-year 
citation. A more recent approach has suggested a potential combination of the 
direct citation with weighted co-citation and bibliographic coupling to compute a 
new measure. In the example of Persson (2010, Figure 9), paper A is citing directly 
paper B (i.e., a direct citation). However, the link is enhanced because they are both 
citing paper C (i.e., bibliographic coupling), and D cites A and B (i.e., co-citation).  
 
 
 
 
 

 
Figure 9 Diagram of the Normalised Weighted Direct Citation (extracted from 

Persson, 2010) 
 

The generalisation of the normalised weighted direct citation (Wang et al., 

2019) stands that author G citing author M is represented as, 
 

N)O2-. =P */! ∗ */"(0/ + R/ + S/)/∈1
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Where, 0/ is the normalised direct citation28, R/ the normalised co-citation 

strength, and S/ is the normalised bibliographic coupling, and U is the set of work 
relationships. In which the work relationship is expressed as,  
 

U = {V|V = G! → M" , *FVX	G! ∈ *FVX	Z[#	G, *FVX	M" ∈ *FVX	Z[#	M} 
 

Also, work set G is author G’s oeuvre, and the set M are the author M’s 

oeuvre. Then, V2 are the work of author G in work relationship V, and V3 are the 

work of author M in work relationship V. As was noticed in the illustration before, 
the connections between authors is based on the intermediary works and, for 
simplicity, each author was considered to have one oeuvre without co-authorship. 
The generalisation of Wang et al. (2019) allowed expressing a more accurate 

situation that also included the set of works in G. However, they also included */! 

as the G’ contribution to paper V2, and */" the contribution of author M to paper V3, 

which considered that author in A’ can be in different positions of the byline 
hierarchy of the work (e.g., the first author of a work, in the middle or the last 

author). If the position of the author G and M does not matter, then */! = */" = 1, 
which is often the case when a solo or first author extraction is considered.  

Using the notation above for the entire matrix, and without any type of 
normalisation or positional contribution in the work byline hierarchy, then, the 
expression only takes into consideration the strength of the citation 
communication in which the equation is just 
 

N)O2 = 2 + EF2, + L,2	

  

 
28 Notice that in Wang et al. (2019), the direct citation is not normalised, assuming that this 
component is more relevant than the others and adds according to the relationship's strength. For 
Small (1997), direct citation weighted twice than any indirect tie. I will not make that assumption 
due that is not clear what the intensity of the connection could mean for each author, and instead, 
I will also normalise this measure for the following exploration. Further consideration should 
explore potential limitations, for example, to maintain the direction of the relationships or the 
intensity of the relationship without normalisation. 
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Table 6 Weighted Direct Citations with Full Counting Matrix 
 

 Author 1 Author 2 Author 3 Author 4 Author 5 
Author 1 5 3 4 0 0 
Author 2 2 2 4 0 0 
Author 3 3 3 17 6 6 
Author 4 0 0 4 5 3 
Author 5 0 0 5 4 5 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Weighted Direct Citations with full counting network 
 

The ties are now enhanced in the illustrative example, adding the different 
measures, and considering their weight (Table 6 and Figure 10). As can be noticed 
from the arcs, the number of papers plays an indispensable role in the co-citation 
and bibliographic coupling, increasing mutual co-occurrences, and one author is 
capable of bias in the number of walks increasing co-occurrences. For example, 
considering the tie from author three and author four, author three is responsible 
for all the walks between itself and the other author. Author three add two direct 

ties through paper 3 and paper 4 (i.e., G3 → I3 → G4 and G3 → I4 → G4), and then 
four possible ties through co-citations passing through paper 2, paper 3 and paper 
4. Bibliographic coupling in this particular case plays no role in the connection 
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because author four is not present in time #. However, when the weighted direct 
citation from author three and author five is considered, there are many internal 
variations in the type of walks and have the same weighted score as the ties 
reviewed before. From author three and author five, there is only one direct 

citation (i.e., G3 → I4 → G5), author three is also responsible for the two co-
citations (through paper 2 and 4, and the second arc passing through paper 3 and 
4 to connect author three and five). Authors four and five contribute to three arcs 
passing through papers 3 and 4 to connect authors three and five. In both cases, 
the number of papers increases the reachability between the authors.  

Up to now, I have not normalised any of the measures considered. Instead, 
I explore the weighted direct citation directly without further normalisation. Many 
limitations arise from the example. One of them is that I did not focus on the co-
authorship network's potential role, which can partially explain some of the walks, 
increasing the possible paths. For example, author two and author three can be 
part of the same paper changing the citation's interpretation, in which case, it is 
not possible to distinguish which of the author decided to create some of the ties 
without further information or additional assumptions. Also, specific authors can 
be cited many times in the list of reference, which will increase its weight 
considerably, and the network will no longer reliably inform about the relevance 
of the number of intervening documents. 

To avoid walks' overabundance in the analysis, some researchers 
differentiate between citations that rely on text or socio-cognitive dimensions and 
social networks of concrete relations, or proxies, between agents (Leydesdorff, 
2008). This differentiation affects how the matrices are treated for citation 
networks, but the suggested difference for citation networks disappears when the 
matrices are dichotomised but are relevant when the weighted and normalisation 
are considered. For example, Leydesdorff & Vaughan mentioned that ‘if an author 
is cited twice in one (set of) papers and three times in another, the number 
of affiliations [e.g., Borgatti & Halgin, 2011a] – as this measure is called in social 
network analysis – is 6, while the number of co-occurrences remains only 2’ (2006: 
1625). Considering the illustration described, let suppose that there are three 

papers and two authors in an ) asymmetrical matrix (Table 7). 
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Table 7 Asymmetrical Occurrence Matrix 

 Author 1 Author 2 Total: 
Paper 1 2 0 2 
Paper 2 3 0 3 
Paper 3 0 1 1 

 

Following classical projections ())′), the asymmetrical occurrence matrix 
often used from a social network perspective is derived from a matrix 
multiplication (Table 8) as was previously described.  
 
Table 8 Affiliation of the Occurrence Matrix (Projection) 

 Paper 1 Paper 2 Paper 3 
Paper 1 4 6 0 
Paper 2 6 9 0 
Paper 3 0 0 1 

 
If the second option is used, then the co-occurrence matrix is derived from 

the minimum overlapping (Table 9). In the diagonal of the matrix, the marginal is 
imputed (i.e., the total number of citations in the example) to recover some of the 
lost information during the matrix transformation (Leydesdorff, 2008), retrieving 
the underlying distribution of the original matrix. For this matrix, each possible 
mutual dyads of papers are compared (paper 1-2, 1-3 and 2-3) to identify the 
minimum in which they co-occurred using Morris (2005) nonbinary overlap 
function. For example, for the dyad of papers 1 and 2, paper 1 is citing the first 
author two times, and paper 2 is citing the same author three times in the 
occurrence matrix. Therefore, the minimum overlapping of that mutual dyad is 2 
in the resulting co-occurrence matrix (equation reviewed in next section).  
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Table 9 The Co-occurrence Matrix (Minimum Overlapping) 
 Paper 1 Paper 2 Paper 3 

Paper 1 2 2 0 
Paper 2 2 3 0 
Paper 3 0 0 1 

 
Consequently, normalisations aim to overcome some of these issues when 

the network projections are used because the number of ties in the transformed 
network can be distorted with the size of the elements involved and the walks 
considered. This behaviour of the matrices was identified at the beginning of the 
formulation of some of these measures (e.g., Small, 1973; White & Griffith, 1981; 
Salton & McGill, 1983). For example, when there are too many authors in a paper 
or many references in a document, it will give more predominance to the 
researchers, which will seem similar to other researchers that also appear more. 
Also, these measures are sensitive to the productivity of an author. Notice that the 

total number of citations of authors in ) in Table 2 is no longer available in other 
representations.  

The theoretical assumption is that the walk's weight in intellectual networks 
should be treated differently as information events, primarily when co-citation 
and bibliographic coupling are used. The network focused on how often an author 
appears in the representation. Borgatti (2005) identifies this issue more generally, 
considering that there are expectations of the flows according to different 
centrality measures in social networks (which should be considered in the author 
citation-based representations). Therefore, the normalisation used implicitly can 
assume that the flowing of ‘unit of thought’ in the citation network has a socio-
cognitive dimension. The normalisations can either use the weight as a proxy 
between agents through conventional projections or consider the overlapping 
between their ideas. These are two theoretical distinctions used to estimate 
similarity measures.  
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2.3 Normalising Weighted Citation-based Networks 
 
It is not straightforward to decide how to normalise the different matrices to 
identify the two authors' underlying ties. There is a recent consideration in 
simultaneously using the two projections, which does not necessarily imply losing 
information (Everett & Borgatti, 2013, 2018). According to Leydesdorff, in the 
internet research ‘one often can no longer retrieve the entire document set [i.e., the 
original matrix] that is needed to construct the co-occurrence matrix, but one can 
construct these matrices directly, for example, by searching in a domain with 
Boolean ANDs’ (2006: 1616), which is a limitation for the scientometrics analysis.  

At least three different options are often used in scientometrics to overcome 
some of the issues that arise from the transformation of the matrices. One of them 

is to dichotomise the matrix (e.g., when |1!"| 	> 	0, as formulated by Breiger [1974]) 
considering a specific threshold, which leads to the arbitrariness of deciding which 

value is the most suitable for 1!" = 1. However, dichotomisation might overcome 
some of the challenges of using weighted networks (e.g., the number of cliques 
that often arise). The backbone can reduce the original network and preserve the 
most significant edges considered more significant (Neal, 2014). Different 
alternatives are available in the literature to create a more reasonable 
dichotomisation. However, there is no straightforward method to distinguish 
which is the best option while new options are becoming available (Schoch, 2021), 
and due to that, few authors can bias the number of possible walks. This issue 
requires further scrutiny for citation networks. While the abundancy of alternative 
strategies is becoming available, a further question is whether to create the 
threshold initially or if it is preferable to use a weighted network with the full 
information instead.  

A second alternative is assuming the relevance of the position of the authors 
in the papers. One of the main alternatives is the normalisation process for co-
authorship proposed by Newman (2001c) that has been recently discussed with 
different alternatives to conduct a fractional approach within different 
bibliometric measures (Batagelj & Cerinsek, 2013; Perianes-Rodriguez et al., 2016; 
Leydesdorff & Park, 2016; Batagelj, 2020). The fractional counting approach 
assumes that each action should have equal weight, regardless of the number of 



 
 

61 

authors, citations, or references of a publication (Perianes-Rodriguez et al., 2016). 
This perspective might be reasonable in scientific disciplines in which 
alphabetisation is more common (e.g., mathematics, economics, or high energy 
physics) or in situations in which the scientific group are more preeminent in the 
decision of citing. For the directed citation network, on the other hand, we could 
approximate the weighted contribution of each author using some known 
weights, fractional approach (Leydesdorff & Park, 2016) or assuming a harmonic 
counting to quantify the byline hierarchy (Hodge & Greenberg, 1981; Hagen, 2013). 
However, previous knowledge is needed to identify the practices of citing 
according to different areas of knowledge, and Wang et al. (2019) explored this 
alternative for author weighted direct citation using harmonic counting. 

A third option, and a popular alternative often used to analyse scientific 
networks, is based on specific types of local similarity between nodes to identify 
how similar the two authors are. This strategy is often used as an input for 
multidimensional scaling to visualise maps of scientific networks (visually 
represented as close relationships between the authors' positions). One of the 
drawbacks of this alternative is that there are many different options available, 
and it is not simple to discern which one is a better option (Ahlgren et al., 2003)29. 
However, in scientometrics, some of the normalisations most used are the Jaccard 
and cosine that have been traditionally the most compared similarity measures for 
symmetric and asymmetrical matrices (Leydesdorff, 2008), and association strength 
is also suggested as a preferable candidate in scientific networks (van Eck & 
Waltman, 2009; Egghe & Leydesdorff, 2009).  

Considering some notations, and generalising the previous matrices, 2M is 

expressed as any of the three citation-based matrices reviewed before (i.e., 2, EF2,, 

L,2). Also, let (EL)!' denote the element in the ,th row and Xth column of 2M in 

which (!" = ∑ (EL)!'(EL)'"'4#  is the number of common neighbours X between 

node , and -. And, considering the row sum of - in the matrix 2M (i.e., the out-

degree), then X" = ∑ (EL)!"!4# , and the column sum of the , node in the matrix 2M 

(i.e., the in-degree) is X! = ∑ (EL)!""4# .  

 
29 Other common strategies emphasise links, often used in the social network perspective (for a 
review, see Wasserman & Faust, 1994; Borgatti & Halgin, 2011a; Borgatti, Everett & Johnson, 2018). 
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There are two different options to specify	X! and X", which are often used 
for further normalisations in scientometrics (Ahlgren et al., 2003; Leydesdorff, 
2008; van Eck & Waltman, 2009). One option is not considering the self-edges from 

, to , (i.e., self-citation, the number of walks considering the mediating papers from 
the reviewed networks or the diagonal in the overlapping co-occurrence matrix), 
as it is regularly used in the network perspective (Borgatti & Halgin, 2011a; 
Newman, 2018; also, Ahlgren et al., 2003 in scientometrics). The other option is 
imputing information from previous matrices into the diagonal of the derived 

matrices. For the case of the direct citation, to calculate X! and X" extra information 

is extracted from the ) matrix imputed in the self-edges 2!! = ∑ )!""4# . And, for 
the cases of co-citations and bibliographic coupling, the information is extracted 

from the 2 matrix imputed in the self-edges EF2,!! = ∑ 2!""4#  and L,2!! = ∑ 2!""4# , 

in which the self-edge is considered for the estimation of X! and X". The second 
strategy is preferred in the literature of scientometrics (Leydesdorff, 2008; van Eck 
& Waltman, 2009; Zhou & Leydesdorff, 2015). 

For the case of Jaccard, this index is defined as the ratio between the number 
of times a relation between two authors is observed together divided by the 

number of times X! or X" are observed.  
 

!̂" =
(!"

X! + X" − (!"
 

 

And, when the data is not binary but have integers (as 2), there are some 
options for weighted networks using Weighted Jaccard (a.k.a., Ružička) (see 
Schubert 2013; Schubert & Telcs, 2014), defined as 
 

^5#$ =
min	((!")
max	((!")

 

 
In particular, some of the characteristics of the Jaccard index are that it does 

not take into account the shape of the distribution because it relies on 
the intersection of two sets considering the sum of the two sets (Leydesdorff, 2008), 
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while strongly skewed distribution can be addressed using weighted 
Jaccard (Schubert & Telcs, 2014), which is often the case for measures based on 
citations.  

The cosine (a.k.a., Ochiai coefficient or Salton’s index/measure), on the other 
hand, is defined as the ratio between the number of times of relationships between 

two authors and the geometrical mean, in which X! and X" are observed. Its 
interpretation is according to the angle between the two elements that are 
normalised, in which their directionality is explored (0 if they are orthogonal 
[perpendicular and therefore independent] or 1 if they are pointing in exactly the 
same direction) and not according to its magnitude.  
 

2F!" =
(!"

cX!
(cX"

(
 

 
In scientific networks, Salton cosine similarity is often recommended instead 

of Pearson correlation due that the later normalise to the mean distribution, which 
is not the case of cosine, which can be seen as a nonparametric version sufficiently 
able to deal with skewed distributions and the prevalence of zeros in citation 
matrices (van Eck & Waltman, 2008; Zhou & Leydesdorff, 2015). Notice 
that cosine and Jaccard are based on relative overlapping patterns. And, when only 
the co-occurrence matrix is available, the Ochiai coefficient is equivalent to the 
cosine similarity in the occurrence matrix (see Zhou & Leydesdorff, 2015), in which 
case in the Ochiai coefficient is expressed as 
 

dE!" =
min	((!")

cX!
(cX"

(
 

 
Finally, despite the popularity of cosine and Jaccard, the association strength 

(a.k.a., probabilistic affinity index, proximity index, pseudo-cosine) is also an alternative 
for similarities for scientific networks (van Eck & Waltman, 2009). This measure 
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builds on the ratio between the observed tie and the expected values of the same 
tie based on its degree, assuming statistical independence.  
 

G!" =
(!"
X!X"

 

 
One of this measure's characteristics is that it corrects for the size effect (van 

Eck & Waltman, 2009). On the contrary, Jaccard and cosine do not correct for the 
size effect and, as a consequence, they have on average higher values of ties that 
occur more frequently. In comparison with these measures, association 
strength does not depend on the frequency in which the ties occur.  

From a more substantive interpretation, cosine and Jaccard are based on 
overlapping measures, while association strength is based on the expectation of 
observed ties compared to expected ties (van Eck & Waltman, 2009). This 
distinction can be related to the socio-cognitive dimension, in which the 
overlapping measures can be considered to be closer to 
a text or cognitive interpretation of citation. Simultaneously, the difference 
between observed and expected ties relies more on the structural social dimension 
of the citations. 
 

2.4 Database  
 
For this comparison, I will use the Chilean community's information extracting the 
complete record of all researchers that were institutionally affiliated in Chile in 
2017 and published in the topic of ‘Astronomy and Astrophysics’ in the Microsoft 
Academic database. One of the features that have Microsoft Academic in 
comparison with other well establish databases (such as Google Scholar, Web of 
Science, Astrophysics Data System and Scopus-Elsevier) is that it can extract 
complete records of all references of each paper (which is currently a limitation in 
databases such as the Web of Science or Scopus Elsevier), and recent studies show 
that cover a significant amount of citation in comparison with similar databases 
(Martín-Martín et al., 2021; Visser et al., 2020). 
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With the references' information, it is possible to distinguish between 
directed citations (from paper p to paper q) with complete information of each of 
the refereed papers, allowing extracting complete co-author information. 
However, I limit the analysis to Chileans' references to analyse a local 
geographically environment and the particularities that this community has when 
their institutions are settled in Chile. After extracting the data, I manually 
disambiguate the institutional affiliation and the authors of the database. The total 

numbers of researchers (cited and citing) are < = 1,021, and the total number of 

papers (cited and citing) are ? = 3,105, some basic description of the cited authors 
and papers in Table 10. 
 
Table 10 Descriptive of the Chilean Astronomers and Astrophysics Database 

 Size Mean Standard 
Deviation 

Median Minimum Maximum 

Cited 
papers 

2,505 23.132 16 23.978 1 199 

Cited 
authors 

943 5.621 9.618 2 1 102 

 
The main reason to demarcate the country and the discipline is that the 

astronomical community in Chile is considered to be small (~255 astronomers in 
2019). Also, according to the census of astronomers of the Chilean Astronomical 
Society (SOCHIAS), the 70 per cent of the earth infrastructure for astronomical 
observations will be settled in this country, and these astronomers have 10 per cent 
of the total observation of these telescopes if they are working in an institution that 
is also settled in the country. Therefore, creating this boundary will be used as a 
proxy to explore the citation between actors that, because of the small size of this 
community, they are likely to know each other because of their joint participation 
in committees30, they are likely to compete for the same national funding and for 

 
30 For example, the Chilean Telescope Allocation Committee (CNTAC), Chilean Telescope 
Allocation Committee for APEX telescope, the Chilean Telescope Allocation Committee for Gemini 
Sur telescope, ALMA-CONICYT Committee, CAS-CONICYT Committee, NAOC-SOCHIAS 
Committee, GEMINI-CONICYT Committee, ESO-Chile Committee, QUIMAL Committee, among 
others. 
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the allocation of time observations of these telescopes. This feature allows 
identifying not only the cognitive dimension but also the social elements. 
 

2.5 Quadratic assignment procedure 
 
Different normalisations are compared in empirical settings often used Pearson 
and Spearman correlation to identify if there is much difference between the 
various measures and whether these measures are monotonically and/or linearly 
related (van Eck & Waltman, 2009). I will also use the quadratic assignment 
procedure (QAP) to control the interdependency often present in dyadic network 
data (Krackhardt, 1988; Dekker et al., 2007). The main characteristic of QAP is that 
allowed to correlate whole matrices and estimate its significance comparing the 
observed matrix with a correlation of thousands of reference set of matrices in 
which their labels (rows and matching columns) are permuted. This strategy 
allows to maintain the network structure but knowing that the permuted matrices 
are independent of the observed networks. Then, the p-values are estimated, 
comparing how different was the proportion of correlations of the independent 
matrices with the observed correlation.  

Also, I use the multiple regression quadratic assignment procedure (MR-
QAP) using double semi-partialing (Dekker et al., 2007) to identify the 
contribution of different citation-based matrices to the normalised weighted direct 
citation measure. Parameters of MR-QAP can be interpreted in the same way as 
ordinary least squares (OLS) analysis, are suitable for weighted networks, deal 
with fluctuations of time, and make statements about effect size (Elmer & 
Stadtfeld, 2020). For this case, the full model can be expressed as, 
 

N)O2	 = 	e6 + e#2 + e(EF2, + e)L,2 + [!" 
 

Where N)O2	is the normalised weighted direct citation as the dependent 

variables, 2 stands for direct citation, EF2, co-citation and L,2 bibliographic 

coupling, and parameter e' are coefficients, and [!" the error terms of authors , 

and -.The dependent variable should be interpreted at the dyadic level of how 
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similar are two authors, and because this socio-cognitive network is not 
independent, the standard errors obtained through OLS should not be considered.  
 

2.5.1 Empirical analysis of the normalisations 
 
In this section, I analyse the contribution of the metrics of direct author citation, 
bibliographic coupling, and the co-citation to the weighted direct citation when 
different normalisations are used. In the following, I identify the correlation of 
each combination of citation-based measures according to the different 
normalisations to identify empirically how these dimensions are related. Then, 
and for each combination of the citation-based measures, I conduct an MR-QAP to 
identify which dimensions have more prevalence when Jaccard, cosine and 
association strength are used. I identify for each combination of the citation-based 
measures how strongly related are these measures with each other using 
correlation. I use Pearson correlation to identify the linear relation between the 
matrices and Spearman correlation for the monotonical relations (reported in 
Table 11). For this data, there are apparent differences between the use of different 
normalisations and their relation. 

Considering Table 11, when weighted Jaccard is used in this empirical case, 
the normalised weighted direct citation is very strongly and monotonically (and 
linearly) related with co-citation, while direct citation and bibliographic coupling 
are strongly related (monotonically and linearly) between each other. This can be 
interpreted as a predominance of overlapping between members that appear in 
the co-citation to also appears in the normalised weighted direct citation, and the 
same between direct citation and bibliographic coupling. Moreover, because the 
weighted Jaccard does not consider the slope of the distribution (e.g., number of 
times the citation has been cited), bibliographic coupling and direct citation seem 
to be more related than the other measures. 
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Table 11 Correlation Based on Quadratic Assignment Procedure with 
Normalisation 
 

 Direct 
Citation 

Bibliographic 
Coupling 

Co-citation Normalised Weighted 
Direct Citation 

Correlation considering Weighted Jaccard 
Direct Citation - 0.630*** 0.050*** 0.306*** 
Bibliographic Coupling 0.845*** - -0.055*** 0.342*** 
Co-citation 0.168*** 0.142*** - 0.851*** 
Normalised Weighted Direct Citation 0.750*** 0.753*** 0.740*** - 
Correlation considering Cosine/Ochiai 
Direct Citation (Cosine) - 0.120*** 0.241*** 0.354*** 
Bibliographic Coupling (Ochiai) 0.057*** - -0.153*** 0.476*** 
Co-citation (Ochiai) 0.318*** -0.115*** - 0.743*** 
Normalised Weighted Direct Citation 0.567*** 0.527*** 0.732*** - 
Correlation considering Association Strength 
Direct Citation - 0.084*** 0.484*** 0.513*** 
Bibliographic Coupling 0.049*** - 0.068*** 0.300*** 
Co-citation 0.416*** 0.146*** - 0.865*** 
Normalised Weighted Direct Citation 0.942*** 0.252*** 0.657*** - 
Note: *** p < 0.001. The numbers of draws to use for the quantile estimation are 3,000. Upper right triangle are 
Spearman correlations, and lower left triangle are Pearson correlations.  

 
For the case of cosine and Ochiai index, co-citation still prevails in its strong 

correlation with normalised weighted direct citation overlapping more. However, 
when the imputed diagonal is considered in the numerator, and because this 
measure deals better with zeros and skewed distributions, bibliographic coupling 
and direct citation do not longer correlate much. The bibliographic coupling has a 
moderate (monotonically and linear) correlation with weighted direct citation, 
which reveals what active researchers are currently working on (Zhao & 
Strotmann 2008, 2014; Klavans & Boyack 2017). Recall that the interpretation relies 

on the number of citations in the occurrence matrix (X! and X"), implying that it is 
normalised to the total number of citations instead of maximum overlapping in 
the network. Nonetheless, from an empirical perspective, this measure emphasises 
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still co-citation more strongly and increases the relevance of bibliographic 
coupling, which can be interpreted as a predominance for indirect relationships of 
the academic field rather than emphasising direct ties among authors. 
 
Table 12 Regression Based on Quadratic Assignment Procedure 

 
Dependent 
Network 

Predictor Weighted 
Jaccard 

 Cosine/ 
Ochiai 

 Association 
Strength 

 

  $ 
(&'	$) 

* $ 
(&'	$) 

* $ 
(&'	$) 

* 

NWDC Intercept 0.026*** 
(0.000) 

0.000 1.409*** 
(0.000) 

0.000 0.010*** 
(0.000) 

0.000 

 Direct 
Citation 

0.887*** 
(0.010) 

0.287 1.186*** 
(0.014) 

0.458 1.148*** 
(0.002) 

0.912 

 Bibliographic 
Coupling 

0.980*** 
(0.008) 

0.460 0.622*** 
(0.021) 

0.460 1.183*** 
(0.010) 

0.233 

  +% =0.515 +% =0.443 +% =0.911 
NWDC Intercept 0.026*** 

(0.000) 
0.000 0.409*** 

(0.000) 
0.000 0.010*** 

(0.000) 
0.000 

 Direct 
Citation 

1.710*** 
(0.005) 

0.553 0.713*** 
(0.013) 

0.276 0.963*** 
(0.002) 

0.765 

 Co-citation 0.977*** 
(0.003) 

0.706 0.816 *** 
(0.024) 

0.684 1.067*** 
(0.006) 

0.364 

  +% =0.934 +% =0.657 +% =0.964 
NWDC Intercept 0.026*** 

(0.000) 
0.000 0.409*** 

(0.000) 
0.000 0.010*** 

(0.000) 
0.000 

 Bibliographic 
Coupling 

1.276*** 
(0.004) 

0.599 0.811*** 
(0.0.13) 

0.599 0.947*** 
(0.013) 

0.186 

 Co-citation 0.991*** 
(0.003) 

0.716 1.013*** 
(0.021) 

0.850 1.977*** 
(0.008) 

0.673 

  +% =0.990 +% =0.941 +% =0.526 

Note: $ for the unstandardised beta, (&'	$) for the standard error of the unstandardised beta, * for 

standardised beta, and ∗∗∗ . < 0.001. The numbers of draws to use for the quantile estimation are 

5,000. Each matrix was log transformed, and +% = +&'(%  for all cases. NWDC: Normalised Weighted 
Direct Citation. 
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When association strength is used to normalise the citation-based measures, 
the correlation between the normalised weighted direct citation and co-citation is 
also strong, consistent between the three cases reviewed. Nonetheless, in contrast 
with the other cases, direct citation increases its relevance with a moderate 
correlation with the unified measure and co-citation, which was previously 
considered as the tendency of self-organisation of current literature topics among 
authors (Klavans & Boyack 2017) or as patterns of developments in particular 
fields (Garfield et al., 1964; Price, 1965). Association strength measure also corrects 
the size effect and is less sensitive to the frequency in which the ties occur, 
capturing more predominantly the walks of the direct citations. 

The correlations previously highlighted are further explored in Table 12 
using MR-QAP. For different combinations of the citation-based measures 
considering each normalisation, it is possible to identify the relation of some of the 
matrices to explain the normalised weighted direct citation. In terms of explained 
variation, for weighted Jaccard, the use of direct citation or bibliographic coupling 

with co-citation explain 93% and 99% of the total variation, respectively 
(indicating the presence of high collinearity between the measures). As previously 
explored in the correlation, direct citation and bibliographic coupling have a 
similar contribution when used interchangeably with co-citation. These might 
suggest that in this particular case, and as we notice for the correlation between 
the networks (Table 11), direct citation and bibliographic coupling tend to be 
highly related. The interpretation for this normalisation might be aligned with the 
tendency of weighted Jaccard to give more prevalence on the intellectual structure 
of the field combining different temporalities into the representation, slightly 
giving more emphasis to the tendency of the patterns of new developments 
expressed in this particular case through direct citation and bibliographic 
coupling, but in combination with the knowledge baseline of the co-citations.  

When cosine or Ochiai index are used to normalise the four measures, the 
model that explains more variation is when bibliographic coupling and co-citation 

are used as predictors (U( =0.941). In this particular case, the emphasis is given for 
indirect references instead of direct relations because co-citation assumes that two 
authors are cited together by later author and bibliographic coupling consider that 
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two authors will appear linked if they are citing the same authors of the same 
references. However, there is no consideration to the direct citation among the 
authors, which gives more predominance to the perceived network in this 
scientific field. The intensity of co-citation is more predominant than bibliographic 

coupling (e7$&8 = 0.850, ? < 0.001 and e7$&8 = 0.599, ? < 0.001 respectively), 
which bias favours the work of well-established authors. 

Finally, the association strength emphasises more in favour of the pattern 
of development on this field and the arcs of the network through direct citations 
compared to the perceived ties when the association strength is used as a 
normalisation. This situation can be noticed through the relevance given to direct 

citation when bibliographic coupling (U( =0.911) or co-citation (U( =0.964) are 
controlled to explain the normalised weighted direct citation. For both models, the 

intensity of direct citation prevails (e7$&8 = 0.912, ? < 0.001 and e7$&8 = 0.765, ? <

0.001 respectively). From this particular case, local concrete links between authors 
appear to be more relevant than the global intellectual structure perceived by the 
researchers in this field. Which, for the empirical case considered here, can suggest 
that researchers might be citing more frequently recent literature.  
 

2.6 Discussion 
 
I have reviewed through an illustrative example the main building blocks (i.e., 
direct citation, bibliographic coupling, and co-citation) to create the author 
weighted direct citation. The main point of using these measures together is to 
complement each other, allowing recovering the different emphasis of time 
considered in the various citation versions, as was reviewed during the illustrative 
example, and penalising works out of topics. I disentangle how different walks 
arise between authors traversing works or how researchers ‘stand on the shoulder 
of other authors’, which identifies the patterns of developments of multiple fields 
as the building block of further analysis. For co-citation, it was considered how the 
past is emphasised as the knowledge base, and bibliographic coupling, on the 
contrary, gives more prevalence to active researchers and their current works. As 
can be noticed, the relevance of time differs in the three cases. 
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A further distinction is between the socio-cognitive citation network that 
divided into two different dimensions. The first relies on minimum overlapping 
to emphasise the citation networks' cognitive dimension, while the second used the 
conventional projections to give more prevalence to the social dimension. This 
distinction is also considered implicitly in the network's normalisations 
when Jaccard and cosine are used because they depend on relative overlapping 
measures. On the contrary, association strength compares the observed and 
expected ties, which is more similar to the social dimension.  

In the empirical case reviewed, Jaccard and cosine normalisation emphasise 
the authors' indirect connections in the field. Simultaneously, the association 
strength gives more relevance to the direct citations when used in the empirical 
example. As previously identified, similarities do not come without controversies 
(e.g., Ahlgren et al., 2003; Leydesdorff, 2008; Egghe & Leydesdorff, 2009; van Eck 
& Waltman, 2009). As I have argued through an empirical case, the suitable 
measure can be sensitive to the normalisations used, which in practice does not 
give much support to the combination of these three measures without further 
consideration of the normalisation's impact in the first place. The reasons are 
that Jaccard, and Cosine rely on overlapping elements, which for this particular 
case, emphasise more on the role of third parties in the assignation of co-
concurrency in which the past citation was more predominant than the citation of 
active research in both cases. However, association strength does not rely on 
overlapping and instead rely on the strength of the relationships (van Eck & 
Waltman, 2009), which is consistent in this empirical case giving more relevance 
to the direct citation in the merged measure.  

These representations are often used to conduct further fine-grained 
analysis identifying mechanisms operating in the network, detecting invisible 
colleges, among others, and the baseline network is crucial for the exploration of 
some of these features. While the idea of combining these measures seems 
appealing, up to now have been normalised using fractional counting (Persson, 
2010; Wang et al., 2019), which assumes that each author should be treated equally 
in the byline hierarchy. Fractional counting and harmonic counting require 
previous knowledge of the relevance of the positions in different knowledge areas 
but are theoretically straightforward in their motivations. When this information 
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cannot be assumed, an additional option is to rely on similarities in citations' 
patterns. In this case, I have explored how the transformation and normalisation 
of the network change the representation baseline. Specific dimensions are related 
to each other, having different meanings and becoming empirically sensitive to the 
normalisation used. 

Theoretically, this delimitation might also represent different types of 
distinctions in the scientific fields under inquiring according to external forces (i.e., 
other individuals coupling researchers) or as a trace of direct walks in the network 
(i.e., author citing authors). It might be reasonable that the aforementioned 
external forces or direct traces operate in the representation of the socio-cognitive 
network, and the weighted author direct citation can capture some of its common 
elements. Nevertheless, it is still unclear which normalisation to use and the 
theoretical explanation to motive the decision. A first attempt can be an interest in 
emphasising the fields' external elements as the common interest in the shared 
cognitive dimension according to the community's perception or the authors' 
communicational trace. In both cases, the field's shared understanding seems to 
have a relevant role in justifying the weighted normalised direct citation. There is 
much more to learn about the combination of different measures, e.g., using 
different strategies that capture the backbones of the network, the combination of 
fractional/harmonic counting, other normalisation measures, and/or the 
simultaneously uses of works and authors. And further research should be done 
to identify differences in terms of short and long-term manifestations of the 
citation ties. More research is needed to explore the potential consequences of 
merging these measures.  
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Chapter 3 
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Abstract  
This paper aims to understand how a group of academics create interpersonal 
intercitations considering the co-evolution of a multilevel network. To achieve 
this, it explores the relevance of the closures by affiliation and closures by 
association mechanisms, expanding some diagnostics to distinguish the 
contribution of the cross-level effects in the representation of relevant features in 
a complex three-mode multilevel and multiplex network. This approach uses the 
stochastic actor-oriented model for one-mode and bipartite networks to link 
micro-macro processes using a dataset of a scientific community from 2013 to 2015. 
New and already available measures for diagnostics are used for statistical models 
for social networks to identify how micro-mechanisms trigger different structures 
at the macro level. The results suggest that social relationships grounded on 
scientific collaboration and space proximity based on institutional affiliation are 
more accurately suited to understand the co-evolution of the networks in a 
scientific network than cognitive-based networks measured as the similarity in 
publishing in the same journals. 
 
Keywords 
Scientific Networks; Multilevel Networks; Citation Network; Collaboration 
Network; Multiplex Networks; Network dynamics; Stochastic Actor-Oriented 
Model; SIENA  
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3.1 Introduction 
 
Three main areas determine the presence of ties in dynamic social networks 
(Rivera, Soderstrom and Uzzi, 2010) from the perspective of the network’s theory 
of networks (Borgatti and Halgin, 2011b). The first is dyadic similarity (assortative) 
mechanisms in which the dynamic process of the network rely on the 
compatibility and complimentary of the actor attributes. The second is relational 
mechanisms which capture the importance of direct and indirect connections 
between the actors. The last mechanisms are based on proximity, in which the 
source of the network is at the level of physical and cultural environments. In this 
paper, proximity mechanisms are explored to understand how a group of 
academics generate interpersonal intercitations considering the co-evolution of a 
multilevel network. 

Few studies use the three types of mechanisms in a dynamic actor-oriented 
perspective simultaneously, and fewer of them explore the co-evolutionary 
interdependency of actors and entities of different levels in scientific networks. 
None of them considers interpersonal intercitation contexts (White et al., 2004; 
White, 2011; Milard, 2014) considered as the tendency of creating ‘in house’ 
citations within a fixed setting – as a set of authors that share a similar context 
(Chubin & Studer, 1979; Schrum & Mullins, 1988). In previous studies on scientific 
networks, dyadic similarity and relational mechanisms are often used (Ferligoj et 
al., 2015; Kronegger, 2012; Zinilli, 2016; Stark et al., 2020). Purwitasari et al. (2020) 
also studied the relationship between author and topics as part of the cultural 
environment of researchers using a longitudinal scientific network controlling for 
the other mechanisms. While there are a few studies available, this approach is still 
narrow in the context of scientific networks, and none of them conducts 
diagnostics to distinguish the contribution of the cross-level mechanisms as meso-
level social forces in the representation of relevant features for three-mode 
multilevel networks at the level of the system as a whole. As far as we are aware, 
there are no studies that use statistical diagnostics to distinguish how well the 
micro-level represents macro features at the network level in a three-mode 
multilevel and multiplex networks. 
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Micro-level and macro-level features can be distinguished using the different 
types of mechanisms, in which the micro-processes are the local unit of analysis 
responsible for the emergence of the network, and the macro-processes 
correspond to the properties of the network as a whole (Robins et al., 2005; Snijders 
& Steglich, 2015; Stadtfeld, 2018) in this case. Simulations are often used to explore 
the linkage between the micro and macro level in a dynamic network. The 
simulation replicates the observed system constrained by the estimated 
parameters corresponding to specific statistics in a random network using a 
Markov Chain Monte Carlos approximation, thus creating a sample of possible 
networks. Then, these simulated samples of networks are contrasted with the 
observed network to replicate some substantive features of the network itself. 
Different diagnostics are then expanded and conducted to identify how the micro-
mechanisms represent additional macro features, allowing to identify whether the 
inclusion of specific mechanisms results in better models. Some of the diagnostics 
that are considered in this study are for dyadic similarity types of mechanisms, 
such as an E-I index distribution, Yules Q and IQV index for the same covariates, 
and a Euclidian distribution for similar covariates. Some measures considered are 
in line with the study of social capital (Burt, 1992), and we propose an overlapping 
multiplex triadic census as a diagnostic of relational mechanisms for parallel or 
multiplex networks of the same group of actors. Additional fits are explored for 
proximity-based mechanisms for two-mode and three-mode multilevel networks, 
such as mixed degree distributions, the mixed geodesic distance distribution, and 
a mixed quadrilateral census. 

As a case study, the Chilean astronomers are explored as a unique scientific 
community suitable to derive complex structures, which is also a relatively small 
group for the analysis. This community has a national scientific discipline 
institutionally bounded with privileged access to some of the most relevant 
telescopes in the world. The years analysed corresponds to the period of formation 
of this astronomical community after the arrival of the Atacama Large 
Millimeter/submillimeter Array (ALMA), which is currently the biggest radio 
astronomical facility earth bounded.  

The following sections explore the co-evolution of multilevel networks to 
identify why scientists are attracted to create interpersonal intercitations in a 
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scientific group. The theoretical background of the research is first presented to 
distinguish the different tie-based mechanisms in the context of the study of 
scientific networks. Some extensions of the goodness of fit are then proposed for 
dyadic similarity-based mechanisms, relational-based mechanisms and 
proximity-based mechanisms. Next, the data and the methodology used for the 
analysis are described. The measurement and relevance of the closure by affiliation 
and closures by association mechanisms are presented as two proximity-based 
mechanisms. Finally, the usefulness of the micro-mechanisms is investigated 
using the case study to explore the suggested diagnostics is demonstrated. This 
article concluded with a discussion of using a dynamic multilevel approach in the 
analysis of scientific networks. 
 

3.1 Theoretical background 
 

3.1.1 Mechanisms for the sociological study of scientific networks 
 

Dyadic similarity-based mechanisms are mostly a pairwise phenomenon 
studied as actors' tendency to create ties with other actors with similar or different 
social attributes (Lazarsfeld & Merton, 1954; McPherson et al., 2001). In the 
sociological study of science and knowledge, different types of social 
characteristics are either ascribed (e.g., gender, age, nationality and ethnicity) or 
acquired and, therefore, accumulated (e.g., academic hierarchy, citations and 
resources) (Merton, 1988). The relationship between these attributes was studied 
in some scientific networks considering the tendency of homophilous ties (the 
trend of actors in creating relations with others that share similar social 
characteristics) or heterophilous ties as the contrary tendency. For example, 
gender homophily is a reliable mechanism for team formation (Ruef et al., 2003; 
Bear & Woolley, 2011). This homophily tendency in science can create social 
boundaries. For instance, men tend to develop close social ties with other men, 
and women scientists tend to lack closeness and reciprocity compared to male–
male relationships (Etkowitz et al., 2000; Jha & Welch, 2010). A complementary 
strategy is the heterophily tendency in science, in which scientists are likely to 
collaborate with others with different skills, knowledge and know-how, which are 
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complementary. As Moody remarked, it ‘is easier to bring in a new author than it 
is to learn new material oneself’ (2004, p. 217). 

Other extensively used types of mechanisms in the literature of scientific 
networks are based on relations. Most of these approaches use macro topologies 
and big networks to characterise the structures of scientific communities (e.g., 
Barabási & Albert, 1999; Newman, 2001a; Moody, 2004; Price, 1965; Watts & 
Strogatz, 1998). And some of these mechanisms can also be tractable in the 
sociological study of science and knowledge. For example, because of the unequal 
distribution of recognition in science, Merton, in collaboration with Zuckerman 
(1967), emphasises that there is a Matthew Effect (Merton, 1968a, 1988) in which 
scientists with more peer recognition tend to accumulate even more credit and that 
scientists with few or even no credit tends to obliterate their tendency to earn the 
same peer recognition. These patterns have been generalised in the study of 
networks as the tendency of actors to receive more connections in science, such as 
citation (Price, 1965) and collaboration (Newman, 2001b). According to Mullins 
(1972, 1973), the evolution of scientific networks involves social, cognitive, and 
situational dimensions that allowed the emergence of groups in the form of dyads 
and triads to understand specialities, in line with recent empirical research 
(Kronegger et al., 2012; Zinilli, 2016; Stark et al., 2020).  

Proximity-based mechanisms have been recently studied in multilevel scientific 
networks, predominantly in cross-sectional networks (Lazega et al., 2008; Bellotti, 
2012; Bellotti et al., 2016a). The primary approach is to study how institutional 
sharing affiliation creates scientific networks. For example, inter-individual and 
inter-organisational dependencies in science interact in a joint multilevel approach 
where the ‘dual position’ corresponded to a form of status, allowing the 
identification of the strategies used for individuals to appropriate, accumulate and 
manage their resources and the ones from their organisation (Lazega et al., 2008). 
Some previous studies have demonstrated the advantages and disadvantages of 
being part of big or small institutions in scientific networks (Bellotti, 2012; Lazega 
et al., 2013; Bellotti et al., 2016a) when there is a joint interdependency within inter-
individual and inter-organisational leading to a different pattern of collaboration 
between scientists. Individuals also have different foci in which joint activities are 
organised, creating clusters and becoming tied interpersonally (Feld, 1981). For 
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example, scientific teams may share the same institutional affiliations, but the 
spatial proximity encourages informal communication (Katz & Martin, 1997). 
Actors share the same space of relation in which they also incorporate the 
cognitive dimension of the organisational forms, where they share the same 
reference and knowledge space and institutional proximity that constrain their 
environment (Boschma, 2005). 
 

3.1.2 Micro–macro linkage in dynamic networks 
 
Compared with macro-mechanisms, relatively few approaches use micro-
mechanisms in the study of scientific networks. These micro-mechanisms can 
either be tie-based (conditional probability of a connection given the rest of the 
network) or actor-based (actor choices to optimise utility based on their outgoing 
ties) (Block et al., 2019). These micro-mechanisms rely on local configurations 
(Robins et al., 2005) or actors' actions (Snijders, 2001) that generate the network, 
thus avoiding direct interpretations of aggregated structures in distributions or 
features of the entire network. With this distinction, one will be able to prevent 
ecological fallacies between the analytical levels (Robinson, 1950) in interpreting 
scientific networks, avoiding set conclusions about the characteristic of one level 
deduced from the other. This study argues that using the micro-mechanisms gives 
a wider variety of different processes in creating links that facilitate the 
interpretation and explanation of the emergence of scientific relationships. It 
should be noted that the micro-mechanisms can be linked with network macro-
mechanisms if researchers are interested in the connections with topologies at the 
level of the network as a whole. 
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Figure 11 A Multilevel Network 

 
A multilevel network is a complex structure in which actors can have ties within 

and between levels. In this case, each set defines a micro and macro level, 
respectively. A bipartite network (Breiger, 1974) – or even a tripartite network 
(Fararo & Doreian, 1984) - can be established between nodes from two adjacent 
levels as a meso level (Wang et al., 2013; Bellotti et al., 2016a) (Figure 11). This 
network representation enriches the complexity of the analysis incorporating 
cross-levels dependency (e.g., Lazega et al., 2008; Bellotti, 2012; Snijders et al., 2013; 
Wang et al., 2013; Broccatelli et al., 2016), referred in here as meso-level social 
forces to emphasise the role of the meso-level network. Little is known about the 
processes that generate the system when co-evolved in an interdependent process 
of multiplex and (tri)bipartite networks.  

Another gap in the study of scientific networks is the linkage between these 
micro-processes that produce structural features at the level of the network 
considered as a 'macro level'. A formal way of evaluating the micro-macro 
connection uses statistical goodness of fit for social networks (Snijders & Steglich, 
2015; Stadtfeld, 2018). The goodness of fit will compare the observed values with 
a simulated population of networks that are constrained by estimated parameters 
to replicate the entire network. This approach has been extensively applied in 
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static (Hunter et al., 2008; Robins et al., 2009) and dynamic networks at the end of 
the periods (Lospinoso, 2012; Lospinoso & Snijders, 2019). One of the fundamental 
limitations of using this approach is that it is unclear which auxiliary statistic to 
use to make the diagnostic. If the model cannot reproduce relevant features, there 
would be little confidence in the inferences. Substantial deviation from these 
features would indicate that the model is not a good proxy for generating the 
processes or the data is not sufficiently accurate, needing further scrutiny (Wang 
et al., 2020). Therefore, the features not included in the model should be selected 
using substantive reasons or knowing a priori the measures of interest of the 
observed network. 

There is not always clear which are the reasons to select the feature to evaluate. 
Hunter et al. (2008) published one of the first papers proposing this goodness of 
fit, and most of the applications use this reference to justify the selection of the 
features for the diagnostic. Their paper argues that degree should be included to 
explore the aggregated structures of interest because of the attention paid in the 
literature. Secondly, there are some statistics (i.e., curved or alternating 
parameters) that improve the convergence of specific statistical models, especially 
for problems of convergence in exponential random graph models (Lusher et al., 
2012) and less often in stochastic actor-oriented models (Snijder 2001; Snijders et 
al., 2010). Thirdly, geodesic distance is relevant in the social network theory to 
understand the speed and robustness of diffusion across networks. Currently, 
there are options beyond relational mechanisms (e.g., indegree distribution, 
outdegree distribution, geodesic distribution, clique census and triad census) for 
the behavioural and dyadic similarity-based mechanisms (Lospinoso & Snijders, 
2019; Wang et al., 2020) and proximity-based mechanisms for two levels (Hollway 
et al., 2017; Wang et al., 2020). 
 

3.1.3 Features for goodness of fits 
 
This paper presents some alternatives for ‘aggregated micro features’ rather than 
‘proper macro’ features (Snijders & Steglich, 2015) that do not pretend to be 
exhaustive options. These alternatives are for the goodness of fit for dyadic 
similarity-based mechanisms (i.e., E-I index, Yules Q, IQV and dyadic similarity 



 
 

83 

distance-based for reciprocal ties), for relational-based mechanisms of two 
networks from the same set of actors (i.e., effective size, constraint and two 
overlapping triadic censuses) and proximity-based mechanisms for two or three-
mode multilevel networks (i.e., mixed multilevel degree distribution, mixed 
multilevel geodesic distribution and mixed multilevel quadrilateral census). Some 
network models have an actor-oriented perspective which tends to be closer to the 
social theory (Snijders, 2001; Stadtfeld & Block, 2017; Block et al., 2019). Therefore, 
this article uses some measures often used to describe ego networks when alter–
alter ties are available (Crossley et al., 2015; Perry et al., 2018; McCarty et al., 2019) 
that could be meaningful for the descriptive analysis of the network. 

Two different measures are used for dyadic similarity mechanisms as 
additional alternatives to edgewise similarity (Lospinoso & Snijders, 2019). The 
first measure is the E-I index of Krackhardt and Stern (1988) that identify 
homophily in the network. This index differentiates between actors that share the 
same covariate (I) compared to the other actors with a different covariate (E). 

 

mn =
m − n
m + n

 

 
This measure allows the estimation of an index for categorical variables that 

oscillates between perfect homophily (-1) and perfect heterophily (+1). Because of 
its particularity, this measure can be expanded into different types of centrality 
measures, normalisations and consider other substantive properties (Everett & 
Borgatti, 2012). For this case, the E-I index is calculated at the actor level for the 
reciprocal ties. Since the E-I index only looks at the relationships that were formed 
and not the pool of potential actors, the Yules Q is added to account for this extra 
information; In which X is the number of non-chosen alters that have the same 

categories of actor ,, and Y is the number of non-chosen actors - that have different 
categories.  

 

o =
nR − m0
nR + m0
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Another measure often used is Agresti’s Index of Qualitative Variation (IQV), 
which is a normalisation of Blau’s H index. 

 

no6 =
1 − ?#

( − ?(
( − ?)

( −⋯− ?/(

1 − 1/V
 

 

Where V is the number of categories of the covariate r, and ?! is the proportion 

of ties to actor ,. Compared to the E-I index, this measure also has a 
straightforward interpretation, where the minimum is 0 if all ties are in one 

category and the maximum is 1 if each category has the same number of 
connections.  

Another measure for dyadic similarity-based mechanisms is a variation of the 
dyadic similarity distance measure (Lospinoso & Snijders, 2019). The dyadic 

similarity calculates the outer product between r! and r"; where r! is the attribute 

of the focal actor, and r" is the attribute of the alters of ego. 
  

s(,, -) = 1 − |r!r"
9| 

 
Then, the measure is normalised using the range of the numerical covariate for 

this dyadic similarity measure (Lospinoso & Snijders, 2019). 
 

(FVt(s(,, -)) =
s(,, -)

maxus(,, -)v − min	(s(,, -))
 

 
This similarity measure is 1 if the two actors have the same value and 0 if one 

has the highest and the other the lowest possible value, which allows for a 
generalisation of the measure. Dividing by the number of reciprocal ties, the 
emphasis is on how similar the actor is compared to its reciprocal ties. 

For relational mechanisms, useful alternatives are often used to analyse ego 
networks and structural holes. These measures are the effective size and constraint 
to estimate social capital, according to Burt (1992). Effective size measures the size 

of the network of actor , controlling for the redundancy of ties were, 
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P w1 −P ?!:t":
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:

 

 

In which ℎ ≠ ,, -, and ?!: is the proportion of ,′Z network time and energy 

invested in the relationship with actor ℎ, and t": is the marginal strength of the 

contacts of - in its relationship with ℎ. Dyadic constraint focuses on how an actor 

- impose structural constraint to the actor , to exchange resources. 
 

z?!" +P ?!:
:

?!:{
(
 

 
Further explanations and details of these measures are in Borgatti (1997) and 

Everett and Borgatti (2020). 
The overlapping triadic census is suggested to study the triadic isomorphic 

classes of a multiplex network, calculating the triadic census (Davis & Leinhardt, 
1972) of two (or more) overlapping matrices. The two matrices could be directed 

(s!" ≠ s"!), undirected (s!" = s"!), or one of each. Still, adding undirected and 
directed matrices overrepresented specific configurations. This 
overrepresentation occurs because undirected networks are restricted to four 
triadic isomorphic classes (labelled as 003, 102, 201 and 300 in the MAN convention 
[Holland & Leinhardt, 1976]) while directed networks have 16.  

A second alternative to study the overlapping of two networks is the mixed 
multiplex triad census (Figure 12). In the following, only the possible classes of 
triads in an undirected network (red) in certain triads of the directed network (in 
blue) are presented for simplicity. The corresponding triad of the overlapping 
triadic census (black) is given, which reduce most of the possibilities in the form 
of the MAN convention.  
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Figure 12 Mixed Multiplex Triad Census for Two One-mode Networks
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Some measures are expanded to achieve multilevel features for proximity-

based mechanisms. This line of research has been widely used in the study of two-
mode networks (Breiger, 1974; Borgatti & Everett, 1997; Latapy et al., 2008) and 
three-mode networks (Fararo & Doreian, 1984). Recently, some multilevel features 
have been suggested for static (Lazega, 2008) and dynamic networks (Everett et 
al., 2018). And, there is a new extension of the goodness of fit for bipartite networks 
using stochastic actor-oriented models that distinguish between ‘belonging’ and 
‘not belonging’ to entities of second levels (Wang et al., 2020). 

Certain extensions are proposed for two-mode and three-mode multilevel 
networks. One of them is the mixed multilevel geodesic distribution, that can be 
calculated using a meta-matrix (Krackhardt & Carley, 1998; Carley, 2002) 
(reachability could be another option). The network should be jointly represented 
in a common structure to identify the geodesic distances between the actors of the 
different levels. For example, as a bipartite network, the actor level with a higher 

level (! = #	%	&) can be represented. A second subgraph can be the actor level 

with the lower level (' = #	%	() also creating a two-mode network. Finally, an 

actor matrix as a directed relationship is possible ()	 = 	#	%	#, where *!" ≠ *"!). 

Where # is the mode of individuals, & is the mode of a ‘higher’ entity, and ( is a 
third mode of a ‘lower’ entity31. Such type of structure can be represented using a 

join matrix for the analysis of a multilevel network Ω#, in which, in this case, the 
links between the higher and lower levels are restricted for simplicity considering 
the directed network, such as, 
 

Ω# = -
0 !$ 0
! ) '$

0 ' 0
/ 

 

 
31 Note that the levels are analytically delimited and potentially interchangeable as ‘higher’ or ‘lower’ 
(examples of entities could be organisations, departments, groups, topics, technologies, papers, 
and semantics), in which it is assumed that one of the entities has a relationship with the other if actors 
intermediate them. 
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Another distribution that uses the matrix of Ω# is the mixed multilevel degree 
distribution (an alternative to this distribution could be the join distribution of 
indegree and outdegree). For this measure, the Borgatti and Everett (1997) 
extension of Freeman (1978) is used to normalise the degree centralities to analyse 

bipartite networks. Here, each mode can have a total of # or & degree according 
to the opposite sets for each mode. For this reason, it is considered the number of 
connections for A or B in relation to their opposite set, 
 

2&1)23 =
*(#!)
&

 

 
 

Where 2&1)23 is the normalised degree of the actor level in comparison with 

a ‘higher’ or ‘lower’ level (i.e., & = ( for the equation). By expanding the measure 
of Borgatti and Everett (1997), in this case, one of the levels can freely interact 
within and between the levels. For these reasons, the ‘higher’ and ‘lower’ levels 
have the same properties as Borgatti and Everett (1997) measures for the bipartite 
network, in which each level is normalised using as the denominator of the degree 

the actor level (#) (i.e., the opposite level in a bipartite network that can be either 
outdegree or indegree). The actor level can interact with all the levels. For these 
reasons, an equivalent extension for a directed network is assuming normalisation 

for the degree of the actors ()#(#!)), considering the possible connections within 

its level and between the other levels32.  
 

)#(#!)
2(# − 1) + & + (

 

 
Finally, the mixed multilevel quadrilateral census is used as a direct expansion 

from the triadic census of Hollway, Lomi, Pallotti and Stadtfeld (2017) (Figure 13). 
Rather than using the original terminology, this census has the form of a diamond 

 
32 The notation in Borgatti and Everett (1997) is !! for nodes’ own vertex set, and !" is the size of 
the other set. Here, ! is the actor level, " is the ‘lower’ level, and # is the ‘higher’ level. 
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(i.e., complete subgraph without one edge). It also has broader features because it 
has more connections between the actors in comparison with the triadic motif. In 
the quadrilateral census, there are situations in which different configurations 
tend to have the same nomination but are different (e.g., 01D1, 01U1, 11D1, 11U1, 
01D1, 01U1, 12D1 and 12U1). The nomination of Hollway et al. (2017) will be 
maintained for comparison reasons. When the configuration has the same label, to 

distinguish between them, 9 is added in the label when there is one path between 

‘higher’ and ‘lower’ levels. And : is considered if there is a walk between the 

nodes. For cases 101, 1 is added on the configuration that is not connected.  
 

 
Figure 13 Quadrilateral Census in a Multilevel Network 
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There are many potential features for the goodness of fit, and theoretical 
reasons should motivate their selection. These features allow the combination of 
statistical network analysis with a descriptive analysis of social networks. As far 
as we know, most of the studies using dyadic similarity-based mechanisms in 
statistical network models take for granted the correct representation of 
homophilous processes at the macro level. This article offers a list of potential 
alternatives to be implemented in statistical models. Similarly, the mixed 
multilevel structure allows the connecting of the micro–macro levels for complex 
networks (e.g., bipartite, tripartite, multiplex, or multilevel), allowing the 
identification of potential features that are currently not well represented in the 
available goodness of fits. 
 

3.3 Data 
 
This study aims to understand how academics create 
interpersonal intercitations considering the co-evolution of a multilevel network. 
To conduct the exploration, use proximity-based mechanisms and the diagnostic 
method presented in the previous section in the context of a complex three-mode, 
multilevel and multiplex scientific network on a relatively small scientific 
community. 
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 Description 

Networks  
Citation network Direct network of scientists citing other scientists in this national 

discipline 
Collaboration network Undirected network of scientists collaborating with other 

scientists in this national discipline 
Institutional affiliation 

network 
Bipartite network of authors and their institutional affiliation 

Publishing in the Web of 
Science network 

Bipartite network of authors connected with journals from the 
Web of Science 

Covariates  
Foreigner Nationality of the astronomers 

Age First paper published in the Web of Science 
Citations Accumulated number of citations of the astronomer for each 

year in the Web of Science 
Publications Accumulated number of publications of the astronomer for each 

year in the Web of Science 
Type of organisation The organisations could be universities, research centres or 

astronomical observatories 
Year of institutions Year in which the institution consolidated a formal group of 

astronomers, department or equivalent held in universities 
Impact factor Impact factor of the journal citation reports in the Web of Science 

in the last five years 
Astronomical journals Journals categorised as ‘astronomy and astrophysics’ in the Web 

of Science 
Interdisciplinary journals Journals that are classified as interdisciplinary in the Web of 

Science 
National-based journals Journals that are regional based 

Table 13 Summary of the Data Used in the Analysis 
  



 
 93 

The astronomical and astrophysics community in Chile has a strong presence 
in local science policy (Espinosa-Rada et al., 2019). And the national dimension is 
relevant to have access to the telescopes in this country, in which national 
committees allocate the time observation (e.g., The Chilean Telescope Time 
Allocation Committee, CNTAC). Chilean astronomers tend to apply to the 
national resources for science (National Commission for Scientific and 
Technological Research, CONICYT) because universities require that scientists 
apply to those funding for institutional accreditation. The funding mix local and 
foreign resources for the local development of this community (e.g., ESO–
Government of Chile Joint Committee funded projects, ALMA-ANID, Gemini-
ANID, QUIMAL, among others). 

Data collection took place between May and June 2014, and data was corrected, 
updated, and expanded until October 2019. The data corresponds to the local 
group formation (Mullins, 1972, 1973) period of astronomers and astrophysics a 
few years after the recent arrival of the Atacama Large Millimeter/submillimeter 
Array (ALMA) in 2011 full operative in 2013 – the biggest radio astronomical 
observatory worldwide of that time. For the data collection, a list was created of 
all relevant researchers and university departments, including research institutes 
that host astronomer and astrophysics academics in Chile during 2014 with access 
to 10 per cent of the astronomical facilities' observation time settle in the country. 
This percentage is not trivial because the Chilean astronomical community held in 
its territory some of the most relevant astronomical infrastructures (such as VLT, 
the Magellan Telescopes, ALMA and soon the E-ELT and GMA) and will have 10 
per cent of the LSST computer cluster in 2023. That represents near 70 per cent of 
the entire infrastructure on earth. 

Overall, 6,008 documents were recorded for the 87 astronomers in ten Chilean 
Institutions from 1971 to 2017. WOS has a well-developed database actively used 
in scientometrics studies. Table 13 summarises the data used in the following 
analysis – data collection, descriptive information and change statistics in the 
appendix (section C and D). 

For the forthcoming analysis, data from 2013 until 2015 is used. This was the 
period in which the data was gathered initially for this cohort of astronomers and 
astrophysicists. 
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3.4 Method 
 
The evolution of the intercitation network is modelled using the stochastic actor-
oriented models (SAOMs) (Snijders, 2001, 2005, 2017; Snijders et al., 2010), 
implemented through the RSiena package (Ripley et al., 2021). This approach is 
suitable for the analysis because it considers the co-evolution of the undirected, 
directed, and bipartite networks. The SAOMs model is being used as a model that 
can analyse interdependent processes expressing a multilevel approach with 
coupled outcomes that have their timing rate. This approach is known in the 
literature as an ‘analysis of multilevel network’ (AMN) in comparison with the 
‘multilevel analysis of networks’ (MAN) (Snijders, 2016). This study concentrates 
on the first case. Below, a brief description of the model is provided. More detail 
and technical explanation are elsewhere, for one-mode networks (Snijders 2001, 
2005, 2017; Snijders et al., 2010) and two-mode networks (Koskinen & Edling, 2012; 
Snijders et al., 2013). 

Four networks are analysed in this study. The first network corresponds to a 
directed network of actors citing other scientists. The second network is an 
undirected network of actors co-authoring papers as a proxy of collaboration 
within the actors. For these cases, all researchers have at least one publication at 
the beginning of the period. A third network is the institutional affiliation of the 
scientists (controlled using structural zeros for institutions that were not formed 
in the observed period; additional information in the Appendix, Section D). The 
last network is the journal network in which the scientists are publishing during 
the period under analysis. In this case, because all actors, institutions and journals 
were available in the time under study, there are no structural zeros for these cases. 

The SAOMs analysis assumes that there is an unobservable continuous time 
measured in discrete observations. Through simulation, the continuous time is 
estimated as a Markov process in which actors optimise their ‘micro-steps’ in the 
short term as outgoing ties across the networks (creating, dropping, or 
maintaining their network ties). For this case, the models would assume that actors 
control their outgoing aggregated citation and collaboration ties and their 
affiliation, or the events of publishing in a scientific journal that can be changed at 
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any point in time. The rates indicate the expected average number of change 
opportunities for each actor in each period as the difference in the network's speed 
between actors. 

The interpretation should assume some regularity in the network evolution 

from time ;%&' to ;%, in which the actors are deciding whether they will create the 
aggregate ties to an actor (authors, institutions or journals), maintain the 
relationship, or drop the connection in the considered year of this relatively short 
period. For the case of the collaboration network, the model proposed by Snijders 
and Pickup (2017) is followed, in which the actors negotiate their collaboration 
following a ‘one-sided initiative with reciprocal confirmation’. In this model, when 
a scholar has the opportunity to consider a change in the collaboration tie, they 
would prefer changing the tie that is most satisfactory to both sides, considering 
that when this tie is created, the other actor has to agree. 

Different linear ‘evaluation functions’ are estimated to control for the utility of 
an actor when they decide to change their ties as the micro regularities in the 
network evolution. Defined below are the characteristics to which the actors seem 
to be attracted (Snijders et al., 2013).  

The first evaluation function shows which change in the network an actor 
decides to realise concerning their institutional affiliation or in the journal that they 
published, and this is expressed as an ‘objective function’ for bipartite networks: 

 

 <!
((%, >) =?@%( A!%

( (%, >)
%

+ B!(;, %, C)  

 
The second is defined as the ‘objective function’ for the citation and 

collaboration network in which the actor decides to change a tie as: 
 

 <!
)(%, >) =?@%)A!%

) (%, >) + B!(;, %, C)
%

  

 

The functions <!( and <!) control the evaluation (‘objective function’) of actor D’s 

and their current state according to the two-mode networks (E) and the one-mode 
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network (F). The statistical G!%
(,) captures the different effects. Each of these effects 

describes a process of the evolution of the network. Some of these effects are 
structurally endogenous (e.g., transitivity or out-degrees) or exogenous covariates 
(e.g., nationality or accumulation of citations), estimated by the weighted 

parameter @% from the data estimated through the method of moments (Snijders, 
2001). In each equation is also considered a random variable, indicating the part of 
the actor’s preference that is not represented in the systematic component 

<!(@, %!↝") or <!(@, >!↝"), respectively.  
Each actor has a multinomial choice probability in the evaluation function 

where an actor D makes a particular tie change in the network. As in the notation 

of Stadtfeld et al. (2016), it is considered that %!↝" as the network % after actor D 

changes the tie to C (created or dropped), and %!↝! = % as the tie maintained. The 

same is applicable for >!↝,, with ℛ) and ℛ( as the set of ‘receiving’ actors in the 

network (citation or collaboration network F, institutional affiliation, or 

publication in journals in E). The probability of actor D making an outgoing tie 

change in the network % or > is defined as: 
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As an interdependent process, F depends on E and vice versa. The SAOM 
model is a reasonable model to analyse the dynamic multilevel structure of this 
community.  

There is a recent discussion about the accuracy of different dynamic networks 
(Block et al., 2018, 2019; Leifeld & Cranmer, 2019) in which the two main 
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approaches of the controversy are TERGMs (Hanneke et al., 2010; Desmarais & 
Cranmer, 2012; Leifeld & Cranmer, 2019; Robins & Pattison, 2001) and SAOMs. 
For the ‘ERGM family’ (including LERGM [Koskinen & Lomi, 2013; Snijders & 
Koskinen, 2013; Koskinen et al., 2015] and StERGM [Krivitsky & Handcock, 2014] 
for dynamic alternatives), there are some extensions for ‘multiplex’, ‘multi-layer’, 
‘multi-relational’, or ‘multilevel’ networks (e.g., Krivitsky, 2012; Wang et al., 2013; 
Krivitsky et al., 2020). These ‘tie-based’ models have not been extended yet in 
temporal networks for the co-evolution of different networks. Because this study 
is interested in how the network evolves based on a multilevel and multiplex 
network, the analysis is restricted to SAOMs. 

Further details, explanations of the relational and covariates effects and 
modelling specifications SAOMs models can be found in Ripley et al. (2021). 
 

3.5 Measurement  
 

3.5.1 Dependent variables 
 
The first network to explore is the citation network as an approximate measure of 
social processes that are considered as social and intellectual at the same time 
(Crane, 1972; Chubin, 1976; White, 2011). A citation is a proxy estimated from the 
‘formal channel’ of communications used through bibliometric information 
(Schrum & Mullins, 1988; Zuccala, 2006) in which the act of citing is according to 
the oeuvres of the researchers (White, 2011). Citing can be measured as a directed 
network when one scientist decides to quote someone else assuming 
interpersonal intercitation contexts (Lievrouw, 1989; Schrum & Mullins, 1988; 
White et al., 2004; Milard, 2014). The matrix is dichotomised, and the diagonal is 
assumed to be zero (additional exploratory analysis using weighted network in 
the Appendix, Section G and H). Another network often used to analyse science is 
scientific collaboration, where co-authoring is used as a proxy (Mullins, 1972; 
Chubin & Studer, 1979; Moody, 2004) as an undirected network. A third network 
is the bipartite network of scientists affiliated in institutions, considering that the 
common social settings are relevant as a context to explore multilevel mechanisms 
(Mullins et al., 1977; Lazega et al., 2008). The bipartite network of scientists 
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publishing in scientific journals is used33, in which the visibility of the journal 
contributes to the prominence of the positions of the researchers within small 
groups (Burt & Doreian, 1982). 
 

3.5.2 Explanatory variables 
 
All the covariates in the analysis are centred, and Section E of the Appendix 
summarises the type of effects included in the model considering a graph 
representation and the mathematical expression. The micro-mechanisms used for 
the analysis are briefly explained using the three types of mechanisms reviewed 
before. 

For relational-based mechanisms, some default effects are used, such as 
reciprocity, for the citation network, as a measure of ‘awareness’ between 
researchers (Breiger, 1976) and for the consideration of ‘in-house’ relationships 
(Chubin & Studer, 1979; Schrum & Mullins, 1988), and density for the fourth 
networks because of its relevance in social contexts. The triadic triplets and 
transitive ties effects are used to control local clustering processes (Mullins, 1972, 
1973) in the citation and the collaboration network. As a local hierarchical measure 
in the citation network, the transitive reciprocal triplet effect is used (Block, 2015). 
Recall that reciprocity and transitivity are not directly applicable for bipartite 
networks because ties within actors are not possible. The four-cycle effect is 
incorporated as a structural equivalent measure for the journal network 
(interpreted as the disposition of a portfolio of journals and a social position 
measure [Burt & Doreian, 1982]). Scientists are rarely affiliated with two or more 
organisations simultaneously, and the four-cycle effect would not be used for this 
network. 

Different effects based on the degree are used to control for the Matthew effects 
and peer recognition (Zuckerman, 1967; Merton, 1968a). These measurements are 
the indegree effects that capture the Matthew effect directly (Snijders, 2011) in the 
citation network and the journal network. Indegrees often adopted a skewed 
distribution (Price, 1965), and this effect is added to control for the speed of the 

 
33 Journals are used instead of other semantic networks due that venues are often more institutionally stable. 
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changes of citations. A degree measure is used in the collaboration network to 
control the researchers' tendency to have more co-authors (Newman, 2004). For 
the network of universities, the degree represents the size of the institution (can be 
interpreted as big or small ponds). Outdegree measures are used to identify the 
participation of the actors in each network. For the citation network, this 
represents the tendency to cite other colleagues of the national group as an ‘in-
house’ tendency (Chubin & Studer, 1979). This can be interpreted as the tendency 
to publish in the journal network, and in the institutional affiliation network, this 
represents the number of institutional affiliation that each scientist has. For the 
citation network and the institutional affiliation, the assortativity mechanism is 
also added, describing the tendency of actors to send more ties to other actors that 
have higher indegrees, which is reasonable in scientific networks to represent the 
reinforcement of active actors on the Matthew effect (Merton, 1968a) and with 
more visible positions in small groups (Breiger, 1976; Mullins et al., 1977). In the 
institutional affiliation network, this tendency is also present at the second level. 
It is considered that actors affiliated with more institutions are also affiliated with 
organisations or research centres with comparatively more actors. Because of the 
tendency of the citation networks to be sparse, the truncated outdegree is 
controlled. 

The dyadic similarity-based mechanisms are measured through homophilous 
(heterophilous) tendencies. For the ascribe measure, locals and foreigners are 
distinguished in the astronomical community. As a proxy of nationality, 
foreigners are considered scientists born or studied their bachelor’s degree in a 
country different from Chile. The year of the first publication is also used as a 
proxy of age to control for seniority. A negative similarity effect might be an 
indicator of heterophily or 'status' tendencies between seniors and academics in 
early careers (younger researchers might cite more often consolidated academics) 
(Merton, 1988). This measure is subtracted for the wave under study, and if 
scientists have not published yet, it is set to zero. Acquired attributes use the 
accumulation of citations as a direct measure of recognition. Even when the 
citation is not necessarily a good indicator of quality (Mulkay, 1974; Gilbert, 1977; 
Nicolaisen, 2008), it is considered as a perceived measure of recognition or quality 
(Price, 1976; Barabási & Albert, 1999; Bianconi & Barabási, 2001), used for hiring, 
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institutional promotion, or the estimation of aggregated indicators such as the H 
index. The citations are often skewed and not a normally distributed variable, the 

covariate is transformed using the log(Q! + 1), as many publications did not 
receive citations, increasing the number of zeros. The same treatment of the 
variable is used for the number of accumulated publications (Merton, 1988). 

We also control for parallel network effects (multiplex network) as a particular 
type of relational-based mechanisms, referred to as relational multiplex 
mechanisms. First, we identify whether the citations arise due to the collaboration 
and if collaboration generates citations. These differences reflect the inter-

citation dimension driven by social and cognitive networks as a mixed process 
(White, 2001; White, Wellman & Nazer, 2003; Milard, 2014). The effect of degree 
and transitivity between the networks is added to distinguish the relevance of 
cognitive networks driven by concrete interactions, such as collaboration 
networks. For the degree-based measure, the trend of having more co-authors in 
the tendency of citing other researchers is controlled. The effect of co-citation 
(White & Griffith, 1981) of collaborators (when actors are referred together by the 
focal researcher) is also considered. Other effects incorporated are the tendency to 
cite an author if two researchers share a joint co-author and the tendency of two 
actors collaborating to be cited by the same authors. The possibility that two 
different authors co-cite the same researchers in the citation network as a variation 
of the co-citation effect is included. These mechanisms are interpreted for the 
relationship between citation and collaboration networks as a tendency towards 
specialities (Mullins, 1972, 1973). It is not expected that sharing citations would 
lead to collaboration; neither is it expected that the collaborators of a cited scholar 
would lead to a potential co-authorship. For this case, it is believed that social 
relationships are more appropriate for social closure than intellectual connections. 

There is less empirical research for proximity-based measures than the other 
types of mechanisms, and in this study, we use two different mechanisms to 
capture the interrelation between levels as a cross-level effect. A different 
approach is used in the original delimitation of Rivera et al. (2010). Here, it is 
assumed that rather than inferring the relevance of context in creating ties as a 
bipartite network, it can be studied directly through a multilevel structure. 
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The closure by affiliation and by association mechanisms are used (Lomi & Stadtfeld, 
2014). These mechanisms are distinguished for social and cognitive networks, in 
which for the social network, it is expected that scientists will tend to cite and 
collaborate if they share an institutional affiliation because of spatial proximity 
(Chubin & Studer, 1979; Katz & Martin, 1997; Boschma, 2005). The cases in which 
the ties are also reciprocal for the citation network are also considered. A similar 
affiliation closure at the level of journals is expected, in which actors that publish 
in similar journals will tend to cite and collaborate because of cognitive proximity 
and reciprocate their citations. For the institutional affiliation, the tendency of 
association closure will not be controlled because these networks are stable, and 
extended periods will be needed to identify whether the tendency of actors to cite 
or collaborate with other actors leads to affiliation in the same institutions. The 
study has limitations for this effect because, by design, its network controls for 
academics already affiliated with institutions. This study will control the 
association closure in journals (Burt & Doreian, 1982), as actors' expected tendency 
to cite and collaborate with academics aspiring to publish in similar journals. 

From the empirical research reviewed insofar, it is expected that scientists prefer 

social and cognitive multilevel closure processes when they decide to send ties in their 

scientific networks. 
Some additional control variables are used in the estimated models. First, the 

impact factor of the journals in the Web of Science in the last five years is used as 
a measure of scientific recognition. Previous studies in dynamic actor-oriented 
models for scientific networks (Ferligoj et al., 2015; Kronegger et al., 2012) have 
used this measure as a dichotomy variable distinguishing between the 25 per cent 
top journals in the field (quartile 1) in comparison with the rest of the quartiles. 
This article treats the journal's quality on a different level without dichotomising. 
Some journals are from 'astronomy and astrophysics, which are interdisciplinary 
and regional-based (i.e., Slovakia, Mexico, Australia and Japan) that are 
characteristics controlled in the model. Astronomy is considered an endogenous 
and isolated area of research (Leydesdorff & Rafols, 2009; Jansen et al., 2010). It is 
expected to positively affect the category of astronomy and astrophysics and a 
negative effect on its interdisciplinary measure. It is also considered that the 
regionally based indicator should be negative since the discipline might be 
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globally oriented. Finally, the type of institution in the affiliation network (i.e., 
universities, research centres and astronomical observatories) is also included, in 
which all actors are affiliated with at least one university. 
 
3.6 Results 
 
Model 1 is a baseline model that includes structural and covariates effects without 
considering the multiplex or multilevel effects. The networks can be interpreted as 
independent change models (Stadtfeld & Lomi, 2016). Model 2 includes multiplex 
effects and the parameters of model 1. The estimation indicates whether there is a 
tendency to increase the likelihood of occurrence of a tie in the other network. 
Model 3 includes multilevel effects and the parameters of model 1. The estimation 
also indicates whether there is a tendency to increase the likelihood of occurrence 
of a tie between networks of different levels. Model 4 is the full model that adds 
the baseline model, the multiplex effects, and multilevel effects together. The 
convergence t-ratio for all reported statistics in Table 14 are smaller than 0.1 in 
absolute values and has an overall maximum convergence < 0.25.  

Overall, the four models (Table 14) have similar parameters, and they achieve 
good convergence in most of the measured features except for the multiplex 
goodness of fit for the overlapping triadic census (details of the p-values for all 
goodness of fit measured in the Appendix are available in Section F). Models 3 and 
4 achieve a reasonable convergence on multiplex features. In the following 
sections, the parameters of model 4 are interpreted, and the parameters of other 
models when there are differences in significance according to conventional 
thresholds in empirical research are highlighted. 
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Full Model Multiplex Model Multilevel Model Baseline Model 

Effect par. (s.e.) par. (s.e.) par. (s.e.) par. (s.e.) 
Citation Network (One-mode Network Dynamic) 
Rate (period 1) 18.13 (3.655) 17.778 (3.639) 16.820 (2.355) 17.059 (2.197) 
Rate (period 2) 18.847 (4.361) 19.449 (4.199) 18.132 (2.689) 18.765 (2.671) 
Rate indegree 0.048 ** (0.017) 0.048 ** (0.015) 0.020* (0.009) 0.019 * (0.008) 
RM: Outdegree (density)  –3.344 *** (0.328) –3.233 *** (0.336) –3.533 *** (0.379) –3.313 *** (0.369) 
RM: Reciprocity  0.929 *** (0.197) 0.936 *** (0.122) 1.484 *** (0.187) 1.516 *** (0.114) 
RM: Transitive triplets 0.142 *** (0.020) 0.144 *** (0.019) 0.191 *** (0.029) 0.191 *** (0.027) 
RM: Transitivity 
reciprocated triplets 

–0.127 *** (0.021) –0.128 *** (0.021) –0.186 *** (0.027) –0.186 *** (0.024) 

RM: Transitive ties 1.328 *** (0.174) 1.363 *** (0.174) 1.399 *** (0.170) 1.440 *** (0.167) 

RM: $%!&'()'' 
(popularity) 

0.271 * (0.108) 0.252 * (0.107) 0.533 *** (0.126) 0.500 *** (0.120) 

RM: $*+,&'()'' 
(popularity) 

–0.151 ** (0.048) –0.142 ** (0.047) –0.300 *** (0.055) –0.293 *** (0.052) 

RM: $*+,&'()'' 
(activity) 

0.553 *** (0.108) 0.542 *** (0.108) 0.702 *** (0.127) 0.667 *** (0.124) 

RM: Outdegree at least 
one 

–2.452*** (0.343) –2.390 *** (0.331) –2.715 *** (0.383) –2.572 *** (0.340) 

RM: Assortativity –0.223*** (0.035) –0.218 *** (0.035) –0.305 *** (0.042) –0.288 *** (0.041) 
RM: 4-cycles 0.004 † (0.002) 0.003 † (0.002) 0.015 *** (0.002) 0.014 *** (0.002) 
C: Nationality alter 
(1=Chilean) 

–0.092 (0.063) –0.056 (0.058) –0.010 (0.065) 0.033 (0.061) 

C: Nationality ego 
(1=Chilean) 

–0.239*** (0.055) –0.199 *** (0.052) –0.176 ** (0.062) –0.119 * (0.056) 

DSM: Nationality ego x 
Nationality alter 

–0.082 (0.099) –0.036 (0.095) 0.087 (0.102) 0.157 (0.099) 

C: Citations alter 0.204 *** (0.035) 0.201 *** (0.034) 0.241 *** (0.041) 0.234 *** (0.038) 
C: Citations ego 0.025 (0.030) 0.038 (0.027) 0.022 (0.031) 0.030 (0.028) 
DSM: Citations 
accumulated similarity  

0.054 * (0.027) 0.063 * (0.026) 0.081 ** (0.029) 0.097 *** (0.028) 

DSM: Age similarity  
(year first paper) 

–0.030 (0.021) –0.032 (0.021) –0.020 (0.021) –0.020 (0.021) 

DSM: Papers accumulated 
similarity  

–0.093 † (0.056) –0.096 † (0.055) –0.122 * (0.061) –0.132 * (0.058) 

C: Time 0.216 *** (0.061) 0.202 *** (0.057) 0.271 ** (0.099) 0.265 ** (0.083) 
Iterations 12,161 11,937 12,033 11,832 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001; 
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: 
Control; PM: Proximity mechanisms. To control for time heterogeneity, we add a linear time variable (Lospinoso & 
Snijders, 2019) 
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Continuation 
        

Effect 
Citation Network (One-mode Network Dynamic) 
RMM: Collaboration 
network 

1.329 *** (0.109) 1.340 ***  (0.108)         

RMM: Degree 
collaboration 

–0.066 * (0.028)  –0.070 **  (0.026)         

RMM: Co-author closure 
(Collaboration) 

–0.129 ***  (0.017) –0.129 ***  (0.017)         

RMM: Association 
closure (Collaboration) 

0.082 *** (0.024) 0.082 *** (0.023)         

RMM: Co-citation 
closure 

0.084 ***  (0.010) 0.082 *** (0.010)         

PM: Affiliation closure 
(Institutions) 

0.426 *** (0.123)     0.608 *** (0.129)     

PM: Affiliation closure 
(Journals) 

0.032 (0.049)     0.100 * (0.050)     

PM: Reciprocity X 
Affiliation closure 
(Institutions) 

–0.069 (0.247)     –0.027 (0.242)     

PM: Reciprocity X 
Affiliation closure 
(Journals) 

0.000 (0.095)     –0.010 (0.095)     

Collaboration Network (One-mode Network Dynamic) 
    

Rate (period 1) 1.050 (0.168) 1.064 (0.170) 0.951  (0.146) 0.957 (0.149) 
Rate (period 2) 1.261 (0.186) 1.292 (0.197) 1.148 (0.160) 1.172 (0.168) 
RM: Outdegree 
(density)  

–2.878 *** (0.649) –2.429 *** (0.603) –2.768 *** (0.598) –2.074 *** (0.545) 

RM: Transitive triads 0.362 *** (0.056) 0.338 *** (0.052) 0.334 *** (0.050) 0.311 *** (0.048) 
RM: Transitivity ties 2.075 *** (0.534) 2.138 *** (0.515) 2.342 *** (0.520) 2.426 ***  (0.512) 
RM: Degree –0.300 *** (0.087) –0.303 *** (0.086)  –0.268 *** (0.077) –0.275 *** (0.071) 
C: Nationality 
(1=Chilean) 

0.192 (0.197) 0.269 (0.179) –0.082 (0.165) 0.003 (0.146) 

DSM: Nationality ego x 
Nationality alter 

–0.063  (0.445) 0.138 (0.427) –0.071 (0.410) 0.103 (0.383) 

C: Citations 0.107  (0.085) 0.139 † (0.082) 0.189 * (0.078) 0.219 ** (0.071) 
DSM: Citations 
-..+#+/-,'&	12#2/-)2,3% 

 –0.024 (0.030) –0.034 (0.030 –0.018 (0.027) –0.028 (0.026) 

RMM: Citation network 2.539 *** (0.724) 2.631 *** (0.685)         
PM: Affiliation closure 
(Institutions) 

1.274 ** (0.393)     1.596 *** (0.378)     

PM: Affiliation closure 
(Journals) 

0.075  (0.172)     0.168 (0.150)     

Iterations 12,161 11,937 12,033 11,832 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001; 

     

Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; 
PM: Proximity mechanisms. To control for time heterogeneity, we add a linear time variable (Lospinoso & Snijders, 2019) 
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Continuation 
        

Effect 
        

Institutional Affiliation in Institutions (Bipartite Network Dynamic) 
Rate (period 1) 0.243 (0.062) 0.243  (0.061) 0.242 (0.061) 0.242 (0.061) 
Rate (period 2) 4.654 (0.628) 4.669 (0.632) 4.658 (0.658) 4.641 (0.664) 
RM: Outdegree (density)  –0.988 * (0.466)  –0.983 * (0.489) –0.989 * (0.485) –0.996 * (0.469) 
RM: Indegree 
(popularity) 

0.113 ** (0.040) 0.114 ** (0.043) 0.113 ** (0.042) 0.113 ** (0.039) 

RM: Outdegree (activity) 0.358 * (0.158) 0.360 *  (0.161) 0.359 * (0.161) 0.357 * (0.156) 
RM: Assortativity –0.361 † (0.191) –0.364 † (0.198) –0.362 † (0.196) –0.359 † (0.189) 
C: Type of Organisation 
(1=University) 

0.042 (0.185) 0.040 (0.182) 0.042  (0.186) 0.040 (0.180) 

DSM: Citations 
accumulated similarity  

2.103 * (0.841) 2.110 * (0.872) 2.111 * (0.843) 2.110 * (0.844) 

Journals in the Web of Science (Bipartite Network Dynamics) 
     

Rate (period 1) 4.095 (0.520) 4.070 (0.494) 4.093 (0.503) 4.068 (0.497) 
Rate (period 2) 3.896 (0.520) 3.879 (0.486) 3.889 (0.508) 3.870 (0.498) 
RM: Outdegree (density)  –3.541 *** (0.223) –3.552 *** (0.218) –3.543*** (0.219) –3.554*** (0.220) 
RM: Cycle of fourth 0.015 ** (0.005) 0.015 ** (0.005) 0.015 ** (0.005) 0.015 ** (0.005) 

RM: $%!&'()'' 
(popularity) 

0.418 *** (0.048) 0.424 *** (0.046) 0.418 *** (0.047) 0.424 *** (0.046) 

RM: Outdegree (activity) 0.084 ** (0.029) 0.084 ** (0.029) 0.084 ** (0.028) 0.084 ** (0.029) 
C: Interdisciplinary 
Journal 
(1=Interdisciplinary) 

0.015 (0.290) 0.009 (0.292) 0.013 (0.292) 0.014 (0.294) 

C: National-based journal 
(1=National)  

–0.309 (0.364) –0.315 (0.359) –0.314 (0.352) –0.304 (0.357) 

C: Astronomical journal 
(1=Astronomy) 

0.263 * (0.128) 0.263 *  (0.128) 0.264 * (0.127) 0.264 * (0.130) 

C: Impact Factor 0.022  (0.094) 0.024  (0.093) 0.023 (0.094) 0.023 (0.095) 
DSM: Citations 
accumulated similarity  

–0.043 (0.446) –0.032 (0.456) –0.046 (0.458) –0.043 (0.446) 

RMM: Citation to journal 
agreement 

0.026 (0.029)     0.027 (0.030)     

RMM: Co-authorship to 
journal agreement 

–0.015  (0.024)     –0.017 (0.026)     

Iterations 12,161 11,937 12,033 11,832 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001; 
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; 
PM: Proximity mechanisms. To control for time heterogeneity, we add a linear time variable (Lospinoso & Snijders, 2019) 

 
Table 14 SAOM Models for the Evolution of the Citation Network, Collaboration Network, 

Scientists Affiliated with Institutions and Scientists Publishing in Journals from the Web of 
Science 
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At the micro-level and for relational mechanisms, there is a tendency for 
scientists to prefer local transitivity processes when they decide to send ties in their 
scientific network in one-mode networks. For the relational-based mechanisms in 
the different types of models, as was expected, density is negative in the four 
networks, and reciprocity is positive for the citation network. The transitivity 
effect is positive in both versions (e.g., in the full model and for the citation 

network @ = 0.142, GT = 0.020, and @ = 1.328, GT = 0.174) indicating that this is 
an attractive effect for citing and collaborating with other scientists. Consistent 
with previous research (Block, 2015), the transitivity reciprocated triplet is 

negative (@ =–0.127, GT = 0.021 in the full model) as a tendency against 
reciprocation within transitive triplets indicating local hierarchies in the network 
expected in scientific networks. There is a similar tendency in the case of the 
collaboration network, where transitive triads and transitive ties are also attractive 

for closing co-authorship (@ = 0.362, GT = 0.056 and @ = 2.075, GT = 0.534 
respectively), similar to findings in previous research (Kronegger et al., 2012; 
Ferligoj et al., 2015; Purwitasari et al., 2020). In the bipartite network of scientists 
publishing in Web of Science journals, the effect of generating four-cycle is also 

positive and more significant (@ = 0.015, GT = 0.005).  
The four models represent well the selected features of the relational-based 

mechanisms using the goodness of fit as a diagnostic in the citation and 
collaboration network. The goodness of fit test proposed by Lospinoso and 
Snijders (2012, 2019) is used to assess whether an estimated model fits the data 
well. The result shows similarities on average between the observed and simulated 
networks, using the macro features such as geodesic distribution, triad census and 
clique census (up to 10 levels).  

Scientists prefer degree-based processes when they decide to send ties in their 
scientific networks in the citation network, collaboration network and the bipartite 
network of scientists publishing in journals. For the indegree as a Matthew effect 

(Snijders, 2011), this is positive (@ = 0.271, GT = 0.108 in the full model) as was 
expected. Scientists that receive more citations in this national disciplinary 
network tend to be more attractive among the academics. Researchers that cite 

more are also more attractive (@ = 0.553, GT = 0.108 in the full model). Authors 
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that are referring to someone who also cites other researchers more are less 

attractive (@ =–0.151, GT = 0.048 in the full model), which we interpreted as the 
tendency to cite the source actor rather than the intermediary. There is a negative 
tendency to cite actors that send more ties and that are citing other researchers that 

have higher indegree citations within this group (@ =–0.223, GT = 0.343 in the full 
model). The assortativity effect could represent a social niche effect within this 
scientific group, avoiding citing many popular researchers and as a tendency in 

favour of specialities (Chubin, 1976). The outdegree of at least one is negative (@ =

−2.452, GT = 0.343), which inversely represents a positive tendency of not 
sending ties to the group (that could be because of citations outside this group). 

For the collaboration network, the tendency of having more co-authors is less 

attractive for further collaborations (@ = −0.300, GT = 0.087). According to the 
descriptive analysis, this network is highly stable. Therefore, we interpreted this 
effect as a tendency to maintain a local stock of collaborators that is also confirmed 
by the positive transitive, and according to previous interpretations (Purwitasari 
et al., 2020). For the bipartite network of scientists affiliated with institutions, the 
institution's size makes them more attractive. As was previously mentioned 
regarding the relevance of big ponds (Lazega et al., 2008), at least the attractiveness 
of being affiliated with big institutions affects scientists' decision in this network 

is more significant (@ = 	0.113, GT = 0.040). It is attractive to be affiliated with 

more than one institution (the effect is positive and more significant) (@ =

0.358, GT = 0.158), which in this community tends to represent participation in 
astronomical observatories or research centres with public funding. Being 
affiliated with more institutions where these organisations are also with 

comparatively more actors has a negative effect (@ = −0.361, GT = 0.191). As an 
assortativity effect, we interpret this effect as the tendency of positioning and 
differentiation within the community. For the journal network, publishing in 

popular journals (@ = 0.418, GT = 0.048) or being productive (@ = 0.084, GT =

0.029) increases the attractiveness in being accepted by Web of Science journals.  
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The structures are well represented in the goodness of fit using indegree and 
outdegree distributions for the citation network and degree distribution for the 
other networks, considering the macro-level. 

From the perspective of dyadic similarity mechanisms, there is less evidence 
that scientists prefer homophilous processes when they decide to send ties within 
their scientific networks for a citation network and the other networks. This 
mechanism is less significant in the case of the tendency of the scientists to cite 

other actors that share the same nationality (not too significant)	(@ = −0.082, GT =

0.099). Citation similarity is positive (@ = 0.054, GT = 0.027) in which there is a 
tendency for mutual reinforcement of well-established scientists in this 
community. The effect of age similarity is negative and less significant even when 

the expected heterophily is present (@ =	– 0.030, GT = 0.021), contrary to what we 
were expecting. The heterophily in the accumulative number of publications is 

more significant and negative (@ = 	– 0.093, GT = 0.056). Considering citation and 
publications, we do find a heterophilous reinforcement of accumulative 
advantages in acquired attributes, but not in ascribed characteristics (Merton, 
1988) such as age and nationality for the citation network. We did not appreciate 
homophily for the collaboration network between researchers that share the same 

nationality (@ =–0.024, GT = 0.445) or a similar number of citations (@ = 	 −

0.063, GT = 0.030). The similarity citation effect is positive in the tendency of being 

affiliated with institutions (@ = 2.103, GT = 0.841). Finally, regarding publishing 
in Web of Science journals, the tendency that two scientists share the same or 

similar attributes in the case of citations does not show significance (@ =

–0.043, GT = 0.446). There is a heterophily tendency to have similar accumulated 

publications (@ =–0.093, GT = 0.056) that increase its significance level when the 
multiplex effects are not considered (such as in the multilevel or baseline model). 
The heterophily, in this case, represents the tendency of less productive 
researchers to collaborate with more productive scholars. 
  



 
 109 

Figure 14 Goodness of Fit E-I index Distribution 

 
Left: Citation network. Right: Collaboration network 

 
Figure 15 Goodness of Fit Yule-Q Distribution 

 

 
Left: Citation network. Right: Collaboration network 

 
In the macro features for the proposed dyadic similarity-based mechanisms, the 

E-I index, Yule-Q, IQV, the similarity distribution and Burt’s measures performed 
well in all cases. The observed citation and collaboration networks tend to have 
more homophily considering the nationality of the actors (E-I index and Yule-Q in 
Figure 14 and 15) for reciprocal ties, which is reasonable in the context of a local 
community (62% are Chileans). The homophily in the model is not significant 
considering the micro-mechanisms. There should be caution in making 
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conclusions about the characteristic of the macro-level deduced from the micro-
level. 

According to the IQV index the researchers have more heterogeneity in the 
number of contacts of a different nationality in the citation and collaboration 
network (Figure 16). The tendency in the micro-mechanisms of sending ties if the 
scholars are Chilean, compared to being from abroad, seems to be negative and 

more significant (@ =–0.239, GT = 0.055). We interpret this as a distinction 
between the condition of the researchers and their attractions at the micro-level. 
The network is more homophilous and heterogeneous at the macro-level, 
considering the nationality of the researchers, but they are attracted to the 
international researchers at the micro-level for the cognitive network. The results 
are less significant considering the other control variables and homophily effect of 
nationality covariate in the citation and collaboration networks, with a mixed 
tendency between models that requires further scrutiny. 
 

Figure 16 Goodness of Fit IQV Distribution 

 

 
Left: Citation network. Right: Collaboration network 
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Figure 17 Goodness of Fit Effective Size 

 
Left: Citation network. Right: Collaboration network 

 

 

Figure 18 Goodness of Fit Constraint 
 

 
Left: Citation network. Right: Collaboration network 

 
We consider Burt’s measures to identify structural holes as the potentiality of 

brokerage when there is a lack of connection between the alters of an ego (Figure 
17 and 18). The observed networks at the actor level represent increasingly 
effective size where actors tend to be more disconnected from each other. Because 
there is more constraint, there are also less structural holes. Degree-based 
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measures might be some of the potential micro-mechanisms responsible for these 
tendencies, and a certain type of cohesive subgroups might exist in this network, 
and further exploration could be made in this direction. 

There is also a heterophily in the macro-structure in the observed network of 
citation and collaboration (Figure 19). This heterophily measures a particular 
distribution of similarity in which researchers show a greater difference than their 
reciprocal ties, which displays mixed evidence in the micro-mechanisms on the 
estimated models. 

 
Figure 19 Goodness of Fit Similarity Distribution 

 

 
Left: Citation network. Right: Collaboration network 
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0.002 and	@ = 0.014, GT = 0.002 respectively). The co-citation, expressed as the 
tendency of the focal author that is citing one author to cite their collaborator, is 

positive and more significant (@ = 0.084, GT = 0.010). Having the same 
collaborators has a negative effect on the tendency of the actors to close the triadic 

relationship with a citation (@ = −0.129, GT = 0.017), contrary to what we were 
expecting, and that need further investigation. One possible interpretation is that 
authors might be promoting the works of others. There is an association closure 
when two authors previously collaborated, and one of them cites a third author, 
which triggers the focal author's interest to be attracted to referring the other 

author (@ = 0.82, GT = 0.024). And, the tendency to publish in a Web of Science 
journal is not significantly attractive, in terms of association closure, for actors that 

were previously collaborating or citing (@ = 0.026, GT = 0.029 and @ =

−0.015, GT = 0.024 respectively).  
Differentiating between the network as a whole and the simulated network, we 

conducted the diagnostics using the overlapping triad census (Figures 20 and 21). 
Two of the models estimated were not able to achieve reasonable goodness of fit 
(Model 1 and Model 2). We explored other multiplex effects that were added into 
Model 3 and the full model achieving a p-value different to zero, as a threshold 
suggested in Lospinoso and Snijders (2019). For the extended overlapping triadic 
census, we reached the expected boundary, and, in the simpler overlapping triadic 
census, the model performs better. The exploration of the multiplex network was 
expected to be challenging because of the complexity of the model. 
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Figure 20 Goodness of Fit Overlapping Triadic Census 
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Figure 21 Goodness of Fit Mixed Layer Triadic Census 
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Finally, considering the main hypothesis that scientists might prefer multilevel 

closure processes when they decide to send ties in their scientific networks, there is some 
support for these processes at the micro-level. For the proximity mechanisms, 
there are some meso-level social forces across different networks in the outgoing 
ties for the institutional affiliation, but not for the journals from the Web of Science. 
In the case of affiliated closure, scientists that share institutional affiliation increase 

the attractiveness for citing other colleagues from the same institution (! =
0.426, )* = 0.123). There is a less significant tendency to reciprocate the ties within 

the same universities (! = −0.069, )* = 0.247). Therefore, results might indicate 

that within the departments, there are also hierarchies within cited scientists and 
others that mention them in proximate places. The closure by affiliation is more 

significant and positive in the case of the collaboration network (! = 1.274, )* =
0.393).  

Actors that publish in the same journals are less significantly attracted to citing 

a researcher already publishing in the same journal (! = 0.032, )* = 0.049) and 

are even less likely to reciprocate a citation (! = 0.000, )* = 0.247). The same 

tendency for the collaboration network can be appreciated (! = 0.075, )* =
0.172). For this group, it is less significant to publishing in journals in the Web of 

Science than researchers that they are citing	(! = 	0.026, )* = 0.029), and it is 

negative and less significant in the collaboration network (! = 	 − 0.015, )* =
0.024) as an associated closure. The significance of the coefficients increases when 

the multiplex effects are not considered (multilevel model). Previous research 
using co-authorship and scientific topics has a non-significant but positive effect 
on association closure (Purwitasari et al., 2020). In comparison with topics, our 
interpretation is that publishing in journals requires combining different skills and 
perspectives to create a joint oeuvre (Moody, 2004). This might explain the 
difference in the direction of the parameters as two sides of a similar issue. We 
interpret this as a tendency in favour of concrete social relations compared with 
cognitive closure (Mullins, 1973; White et al., 2004) for expanding invisible colleges 
because they are bound by physical proximity and considering a proxy of concrete 
relationships through co-authorship.   
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Figure 22 Goodness of Fit Three-mode Mixed Outdegree Distribution 

 
Left: Citation Network. Right: Collaboration Network 

 
Figure 23 Goodness of Fit Three-mode Mixed Indegree Distribution 

(Normalised) 
 

 
Left: Citation Network. Right: Collaboration Network 

 
Figure 24 Goodness of Fit Three-mode Mixed Geodesic Distance Distribution 

 

 
Left: Citation Network. Right: Collaboration Network 
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Figure 25 Goodness of Fit Mixed Multilevel Quadratic Census 
 

 
 

 
a) Citation network, institutional affiliation network and journals in the Web of Science 
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b) Collaboration network, institutional affiliation network and journals in the Web of Science 
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The representation of the multilevel network at the macro level considers the 
three-mode normalised mixed outdegree and indegree distribution, the mixed 
geodesic distribution and the quadrilateral census that has reasonable goodness of 
fit (Figures 22 to 25). The normalisation of the three-mode mixed outdegree 
distribution (Figure 22) and indegree distribution (Figure 23) allows us to describe 
the most central actors comparing researchers, institutions and journals in a 
standard measure for this group (e.g., Borgatti & Everett, 1997), which could be 
helpful for further analysis. We also checked the non-normalised version for the 
two-mode and three-mode degree distributions for inferential purposes that 
achieved a reasonable convergence (Appendix, Section F).  

Comparing the model without proximity mechanisms (Models 1 and 3), we can 
contrast how well some of the multilevel features are represented using micro-
mechanisms to explore the multilevel features between the citation network, the 
scientists affiliated with institutions and the scientists publishing in journals. The 
inclusion of these effects (associative and affiliation closure) achieves a better fit of 
the model. This is the case for the three-mode mixed outdegree distribution and 
the mixed quadratic census for the citation and collaboration networks. For the 
three-mode mixed indegree distribution in the citation network, the fit performs 
poorly in Model 4 compared to Model 2, considering that there are consequences 
when the multiplex effects are incorporated. The geodesic distributions perform 
slightly better in the model that does not add the proximity-based mechanisms. 

The main hypothesis is supported for proximity-based micro-mechanisms that 
consider concrete relationships and physical proximity through institutional 
affiliation. The results are mixed for cognitive proximity for the participation in 
the Web of Science journals. Further research should be done exploring other 
cognitive measures such as topics or other semantic networks (e.g., Roth & Cointet, 
2010; Purwitasari et al., 2020; Stark et al., 2020). And, distinguishing between the 
levels of the citation and collaboration networks within scientists, and the co-
evolutionary interdependency with the same scientists affiliated with institutions 
and publishing in the Web of Science, allows us to explore the presence of the 
different types of mechanisms considered in this study at the micro and macro 
levels of this network. At the micro-level of actors deciding whom to cite, whom 
to collaborate with, where to be affiliated or where to publish in the Web of 
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Science, there are no apparent differences in how the interdependence of other 
levels affects the multilevel network. The effect seems stable across networks, 
rarely affected by the presence of different levels. In some cases, significant effects 
diminish, which could be produced by power issues in incorporating more 
parameters. At the network level, the difference starts to trigger, enriching the 
prevalence of certain features conditioned to the effect at the micro-level under 
consideration.   
 
3.7 Discussion 
 

The results support the presence and relevance of some of the general types of 
mechanisms, in which scientists prefer local transitivity, degree-based and 
relational multiplex mechanisms. There is less support for ascribed homophily 
and some support for acquired homophily as a process of accumulative 
advantages. For the main hypothesis, the social relationships based on scientific 
collaboration and space proximity, and based on institutional affiliation, are more 
accurate in understanding the co-evolution of the networks in a scientific network 
when it is considered closure by affiliation, in comparison with cognitive-based 
networks measured through the journal network. There should be some caution 
in the interpretation of the co-evolutionary process and the micro-macro linkages. 
The mechanisms are different between the networks, and some of the features are 
better represented than others. These complex structures are well represented with 
few proximity-based micro-mechanisms. 

Some of the limitations of this approach in the context of scientific networks are 
that the SAOM is less suitable for longer relationships unless extended periods of 
times are aggregated (e.g., Ferligoj et al., 2015; Purwitasari et al., 2020) or 
considered. We envisage that this particular issue could be explored further using 
novel extensions of the SAOMs for hierarchical multilevel networks of separate 
waves (e.g., Koskinen et al., 2015 using LERGMs). Further exploration should be 
done to consider the weighted aspect of the network often present in scientific 
networks. An alternative could be adding the weight of the network as a dyadic 
covariable. One limitation is that the weighted network is a function of the 
dependent variable requiring further assumptions. A second option might be to 
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identify a cut point distinguishing between weak or strong ties, as is currently 
available in SAOMs (Elmer et al., 2017). Assigning a threshold would require 
further exploration and adding more networks would greatly increase the 
complexity of the model. From an empirical perspective, we expect to advance in 
some of these directions in further analysis. 

Most studies that use inferential models to analyse networks take for granted 
the correct representation of homophily or heterophily as a macro-structure 
through the estimation of micro-mechanisms. In this article, we extended and 
applied already available measures for the goodness of fit. These are the 
similarity–distance distribution, the E-I index distribution, Yule-Q distribution, 
and the IQV for the goodness of fit, approaches that can be expanded using other 
measures. Using already available statistics allows the combination of descriptive 
and inferential analysis, which can be further explored with a backward inductive 
strategy to identify which micro-mechanisms were responsible for the correct 
representation of macro-structures. 

We propose different goodness of fit for multilevel and multiplex networks in 
this paper. These are the two-mode and three-mode mixed geodesic distance 
distributions, a two-mode and three-mode mixed degree distribution (for indegree 
and outdegree at the actor level), two overlapping triadic censuses for multiplex 
networks, and the mixed quadratic census for multilevel and three-mode 
networks. These features are complex and achieving a good convergence using a 
structural perspective might allow exploring the dynamics of multilevel networks 
and the connections between the levels. These diagnostics can also be strategies 
for identifying misspecifications or potential unobserved effects. In this paper, we 
have shown that even by achieving the standard goodness of fit currently available 
in SAOM, we might be confounding other macro-structures that otherwise would 
be indistinguishable, which we might believe are substantively relevant to 
representing multilevel networks. 
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Chapter 4 
 

Meso-level social forces in an inter-organisational scientific field 
 

Alejandro Espinosa-Rada* 
*The Mitchell Centre for Social Network Analysis/Sociology, The University of Manchester 

 

Abstract 
Scientific networks of researchers and their institutional affiliations are 
interdependent processes that affect each other to create scientific relationships. 
However, how do the regular join patterns of intercitations among researchers in 
organisations – as meso-level social forces – vary within scientific communities? 
Do researchers in core organisations have similar patterns compared to 
institutions on the periphery? To explore this, I analysed an inter-organisational 
field within an astronomical discipline. I used the Microsoft Academic database to 
collect data and a novel methodological strategy using a meta-analysis stationary 
stochastic actor-oriented model to deal with multilevel networks. I used a sample 
of personal networks within organisations (astronomical observatories, research 
centres and universities) to compare different case studies. The results indicate 
that researchers in this community do not preserve endogamic intercitation within 
their organisations. Moreover, researchers affiliated with the same external 
research centres tend to create intercitation in specific research niches. This 
tendency push toward diversity and multi-connectivity. 
 
Keywords 

Multilevel Scientific Networks; Scientific Communities; Social Network Analysis; 
Sociology of Organisations; Stochastic Actor-oriented Models  
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4.1 Introduction 
 
Researchers have a dual position according to their peers and their affiliated 
institutions in scientific communities (Bellotti et al., 2016a; Lazega et al., 2008; 
Lazega & Jourdá, 2016). However, how do the regular join patterns of 
intercitations among researchers in organisations – as meso-level social forces – 
vary within scientific communities? Do researchers in core organisations have 
similar patterns compared to other institutions on the periphery? 

Organisations engaging in shared activities are said to have similar 
pressures in terms of reputation and regulation (Meyer & Rowan, 1977; DiMaggio 
& Powell, 1983), which can vary according to their relative position in the inter-
organisational field (Galaskiewicz & Wasserman, 1989; Powell et al., 2005). Prior 
research emphasises that organisations can be more important for scientific 
outcomes than the relational capital of individuals (Lazega et al., 2006). The dual 
position of actors in organisations allows the identification of social status as a 
meso-level perspective (Lazega et al., 2008) because they acquire social position 
according to peer recognition (Merton, 1968a) and the institution to which they are 
affiliated (Merton, 1988; Lazega & Jourdá, 2016).  

Individuals and collective actors tend to create relational infrastructures as, 
for example, social niches or forms of social status leading to a collegial oligarchy 
responsible for the establishment, harmonisation, and creation of new norms, its 
interpretation, and priorities (Lazega, 2018). The dual position in scientific 
networks can be reinforced in the process of accumulating peer-recognition 
(Merton, 1968a) by members of their own organisation as an endogamic process 
(Chubin & Studer, 1979), or can be promoted as a process of stabilisation among 
core organisations in inter-organisational fields as an ‘in-group’ tendency of 
authors who know each other, creating interpersonal intercitation (Schrum & 
Mullins, 1988; White et al., 2004; Milard, 2014).  

 Understanding meso-level social forces – as the regular join patterns 
among researchers in organisations – provides insights into the mechanisms that 
remain stable across different levels (individuals and collective) according to their 
social position in the inter-organisational field. From a theoretical perspective, the 
actors in science are considered to have objective relations between positions 
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already won in previous struggles. The position gives access to the monopoly of 
scientific authority (prestige, recognition, and fame, among others) depending on 
the actor’s position in the institutional hierarchy and the recognition of others 
(Bourdieu, 1975), in which the fields that become established push towards 
homogenisation (DiMaggio & Powell, 1983). One way of representing these social 
positions in fields is through social networks (e.g., Bottero & Crossley, 2011; de 
Nooy, 2003; Powell et al., 2005; Ramos-Zincke, 2014). These allowed some 
community morphological properties in terms of relationships between 
researchers and organisations to be mapped, identifying the distribution and 
heterogeneity of their relative positions. By mapping the morphological relational 
structure, social network exploratory analysis can identify organisations in the 
core and other institutions on the periphery (Borgatti & Everett, 2000). 

A wide variety of regularities are used in empirical analysis from a network 
perspective (Rivera et al., 2010). These regularities are specific mechanisms that 
operate at the micro-level, responsible for the emergence of social networks as 
macrostructures (Robins et al., 2005; Snijders & Steglich, 2015; Stadtfeld, 2018) 
formalised in features of simultaneously operating effects. There is scarce 
empirical research exploring the meso-level social forces operationalised as cross-
level effects as specific micro-mechanisms in scientific networks (Lazega et al., 2008; 
Gondal, 2018; Purwitasari et al., 2020) or the interdependency between two 
different networks.  

Most of the empirical analysis of scientific networks describes the micro-
mechanisms in case studies. It does not compare organisations according to their 
social positions in the context of scientific fields. There are current statistical 
developments for social network analysis (Snijders & Baerveldt, 2003; An, 2015) 
that compare micro-mechanisms in different cases to understand the similarities 
and differences in broader populations. To identify the similarities and differences 
in the micro-mechanisms of the different organisations, stationary stochastic actor-
oriented models (Snijders & Stiglich, 2015; Block, Stadtfeld & Snijders, 2019) were 
used.  

The institution members are considered the core set for each organisation, 
and the outsiders or marginal actors relevant for network formation processes are 
identified (Crane, 1969; Mullins, 1972, 1973; Chubin, 1976). A similar strategy is 
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used to reduce the size of large networks and then merge the resulting cohesive 
subgroups to estimate the common micro-mechanisms of the network when it 
becomes larger (Stivala et al., 2016). The suggested strategies offer an extension 
that uses information from one level combined with the other, characterised as 
multilevel networks, known as a second-zone multilevel sampling from a second-mode 
focal actor. Which, in this case represent extended opportunity structures (Lazega 
et al., 2013) of organisations. 

The astronomical and astrophysics discipline in Chile is used as an example 
for the empirical investigation of this strategy. Chile has geographical conditions 
that enable it to have nearly 70 per cent of the global astronomy infrastructure. 
Scholars in universities and research centres in this country have access to ten per 
cent of the observation time of all these telescopes, generating an organisational 
field within the observatories. The year analysed corresponds to a particular 
moment when the Chilean government became interested in the development of 
astronomy to spur economic activity to national advantage (Guridi et al., 2020). 
This was because of the impending arrival of the Vera C. Rubin Observatory (a.k.a. 
the Large Synoptic Survey Telescope [LSST]), considered to be at the research 
forefront of the discipline (Espinosa-Rada et al., 2019). With the increasing interest 
in multi-disciplinary research, various research centres, observatories and local 
universities started preparing for this joint enterprise (Espinosa-Rada et al., 2019; 
Arancibia et al., 2020).  

First, empirical studies that identify common micro-mechanisms in the 
study of scientific networks are reviewed. Then, the case study exploring the 
multilevel properties of a scientific community is presented. The subsequent 
section analyses the results, comparing different organisations within the inter-
organisational field to identify the common cross-level effects responsible for the 
stability of this field. Finally, a discussion of the main findings is presented. 
 

4.2 Micro-mechanisms in multilevel scientific networks 
 
Recent studies have investigated the interdependency of the different levels to 
study scientific networks that identify the cross-effects between levels (Lazega et 
al., 2008; Bellotti et al., 2016a). The interdependency of systems can be 
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reconstructed at least within two or more partially interlocked levels that can have 
different synchronisations in terms of their co-evolution (Brailly et al., 2016). These 
levels have different relations between entities. There is a flow of resources, 
positions in the system and strategies that individuals must use to appropriate, 
accumulate and manage their resources and the organisations' resources (Lazega 
et al., 2008). Academic institutions are considered corporate actors that 
institutionally represent the cluster of academics working there (Bellotti, 2012). 
These actors provide the infrastructure, organisational and intellectual 
environment facilitating intellectual cultures (e.g., research topics)34. Here, 
scholars shape their possibilities and are constrained by the places where they 
participate (Chubin, 1976). 

Researchers create relationships with people they meet at the micro-level 
that facilitate knowledge production (e.g., advice exchange, collaboration or 
mentorship) (Mullins, 1972, 1973). Networks assume that actors (individual and 
aggregate) are simultaneously in everyday micro-interactions and affiliations at 
the higher macro-level (Bellotti, 2015). They are considered to create stable 
patterns (Merton, 1968b: 339), contrasting with more contingent interactions35, and 
assuming the duality of social life (Breiger, 1974) as an interdependent process. 
Researchers have investigated various approaches to identify common network 
effects in case studies within scientific communities in recent years. These studies 
often analyse scientific networks considering one level. When the juxtaposition of 
other levels is considered, a common practice is to treat this extra network level as 
an attribute.  

Micro-mechanisms allow an understanding of the network sub-structures 
responsible for the emergence of the network as a social system (Robins et al., 2005) 
and knowledge of how institutions are sustained and modified by individuals 
(Powell & Colyvas, 2008; Powell & Rerup, 2017). Different types of scientific 

 
34 For a more comprehensive understanding of the practices and the processes in which researchers 
create different types of interactions and relationship,  mixed methods has been used in 
combination with social networks (e.g., Mitchell, 1969; Mulkay et al., 1975; Lievrouw et al., 1987; 
Bellotti, 2015) 
35 Stable patterns are different from events or contingent interactions that are more situational, not 
stable, and can become a pattern. The continuum between events and states has a long tradition in 
the network perspective (e.g., Homans, 1950; Boissevain, 1968; Borgatti & Halgin, 2011b; Crossley, 
2011).  
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networks analysed the relevance of some of these network micro-mechanisms and 
studied stable relationships without considering the interdependency between 
levels. Some considered scientific networks from the level of authors studying 
collaboration networks (Fagan et al., 2018; Ferligoj et al., 2015; Akbaritabar et al., 
2020), grant research (Zinilli, 2016), combining different scientific networks into a 
similar measure (Sciabolazza et al., 2017) or exploring different measures 
separately (Cimenler et al., 2015; Luke et al., 2016; Harris et al., 2017). Other 
approaches used emergent or collective entities as the unit of analysis, 
investigating similar citation mechanisms between disciplines (McLevey et al., 
2018) or journals (Peng, 2015). 

In line with identifying the relevance of micro-mechanisms, creating 
scientific relationships is also described in the sociology of science and knowledge 
literature identifying different mechanisms. From some of these perspectives, 
scientists tend to reciprocate (Hagstrom, 1965; Breiger, 1976). The assortative 
tendency is another type of mechanism (Rivera et al., 2010) in terms of popularity 
or activities (Price, 1965; Barabási & Albert, 1999; Newman, 2004) or similarity-
based patterns sharing different acquired or ascribed social attributes that 
differentiate scholars (Merton, 1968a, 1988; Cole & Cole, 1973). Actors tend to 
create dyad relationships or transitivity (Mullins, 1972, 1973), or different type of 
closure within the scientific networks, creating invisible colleges of thought 
(Crane, 1972; Lievrouw et al., 1987; Zuccala, 2006). Researchers may share 
activities based on the subject matter, school of thought or university affiliation 
that often create personal and professional interactions among scholars as a 
multilevel closure (Mullins, 1972; Chubin & Studer, 1979; Feld, 1981). Collective 
actors may also create inter-organisational networks that allow them to generate 
more innovations, comparative advantages, or social niches through their 
tendency for multi-connectivity (Powell et al., 2005). 

More specifically, studies that explore different micro-mechanisms often 
investigate how scientists share different attributes in science as a homophily 
process, in which actors sharing similar social attributes tend to interact more often 
in comparison with others that have different attributes (Lazarsfeld & Merton, 
1954; McPherson et al., 2001). Some of the common indicators are the same gender 
or race, joint affiliation within college or departments, spatial proximity or 
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similarity between topics or discipline (Cimenler, Reeves & Skvoretz, 2015; Dhand 
et al., 2016; Fagan et al., 2018; Harris et al., 2017; Kronegger et al., 2012; Luke et al., 
2016; McLevey et al., 2018; Peng, 2015; Wang, Bu & Xu, 2018; Zinilli, 2016). These 
studies control for attributes such as age, gender or race, academic position, 
academic degree, research interest or discipline, the author's position in the 
papers, the number of authors or publications in papers or accumulative citations. 
Some of these attributes are ascribed and others are acquired (Merton, 1988). There 
are also similarities in terms of belonging to entities as collective actors. The 
similarity between these attributes are treated as homophily tendencies, mixing at 
the same level researcher’s attribute and focus of activities (Feld, 1981).  

Other types of micro-mechanisms often measured in the study of scientific 
networks are dyadic or triadic closures as local configurations for group formation 
at the level of the researchers (Mullins, 1972, 1973; Chubin, 1976) often aim to 
identify transitivity processes in science. A less explored effect are tie-based 
relationships often present in scientific networks, such as weak or strong ties 
among researchers. As far as I am aware, there is one study that uses this effect, 
adding a dyadic effect into the model, controlling for other micro-mechanisms, 
and considering the frequency in communication such as personal contacts 
(strong) and professional networks (weak) as a relevant aspect to form ties 
(Cimenler et al., 2015).  

A transitivity triad involves actors !, ", and #, which is transitive if whenever 

! → " and " → #, then ! → # (Wasserman & Faust, 1994). The study of transitivity in 
scientific networks identifies the probability that two scholars would collaborate 
if they shared collaborators (Newman, 2001b, 2004) by using different types of 
triadic isomorphism classes (Davis & Leinhardt, 1972) and further specifications 
(Hunter & Handcock, 2006; Snijders et al., 2006). This local structure has been 
further studied as micro-mechanisms in scientific networks (Dhand et al., 2016; 
Fagan et al., 2018; Harris et al., 2015; Kronegger et al., 2012; Luke et al., 2016; 
McLevey et al., 2018; Peng, 2015; Sciabolazza et al., 2017; Zhang et al., 2017; Zinilli, 
2016).  

Another common type of mechanism is the peer recognition tendency of 
actors to send or receive more scientific ties than others. In the social network 
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perspective, this was identified as the tendency of actors to receive more 
nominations as a friend than others as a 'social dynamic effect' (Moreno & 
Jennings, 1938), and as a relevant feature of macro-level networks represented in 
the skewed distribution of different scientific networks (Price, 1965; Barabási & 
Albert, 1999; Newman, 2004). From the perspective of micro-mechanisms in 
scientific networks, this is often one of the features considered in the analysis 
(Dhand et al., 2016; Harris et al., 2015; McLevey et al., 2018; Peng, 2015; Zhang et 
al., 2017). 

Consequently, it would be expected to identify different general types of 
mechanisms for the first level of scientific networks. These mechanisms are 
classified as accumulative advantages (Merton, 1988; McPherson et al., 2001), 
assortativity-based mechanisms as a local peer recognition effect (Merton, 1968a, 
1988), and dyadic or triadic processes corresponding to group formation (Mullins, 
1972, 1973; Chubin, 1976). 

A different perspective uses an analysis of multilevel networks (Snijders, 2016) 
in which the cross-effects are directly explored, maintaining the network levels 
separately – within and between levels – and assuming that a second level has a 
certain level of compactness in which a type of collective agency could be deduced. 
This second level allows the study of scientific networks to identify the relevance 
of intermediary entities between scholars (Gondal, 2011) or to explore cross-effects 
such as three-path, triadic closure incorporating both entities and shared attributes 
in the intermediary levels (Wang et al., 2013; Gondal, 2018; Purwitasari et al., 2020).  

In these applications, triadic closure considering two different levels tends 
to be a common mechanism in scientific networks (e.g., Wang et al., 2013; Gondal, 
2018; Purwitasari et al., 2020) and has been explored in other applications as the 
tendency to create closure by affiliation or association (Lomi & Stadtfeld, 2014; 
Fujimoto, Snijders & Valente, 2018). In the case of closure by affiliation, actors tend 
to create ties with other actors if they belong to a similar second level entity (e.g., 
if two actors are affiliated with the same scientific institutions, they tend to create 
a tie between them). Closure by association assumes that actors would tend to 
create ties (i.e., participate or become a member) to the second level entity if 
associated with an actor that already belongs to that level. For example, if an actor 
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creates a tie with another actor affiliated with an institution, the first actor would 
be attracted to the same institution. 

From a more abstract and general viewpoint, the context or global 
perspective can be considered (Snijders, 2016) by identifying the position of the 
actors in the organisational fields. Some particularities of the organisational field 
are the increase in interactions among organisations, the identification of the inter-
organisational structure of domination and patterns of coalitions, the information 
flowing in the organisation and the mutual awareness among participants in a 
joint enterprise (DiMaggio & Powell, 1983). From this perspective, there is an 
emphasis on the organisational environment’s relevance affecting the 
organisations through their inter-dependency as a vertical or horizontal process.  

Following the work of Warren in its understanding of the community 
structures, Scott and Meyer (1991) distinguish the tendency of organisations to 
have vertical and horizontal patterns of relations linking the social units within 
and among communities, leading to a prevalence of extra-community relations 
and declination of the autonomy and cohesiveness of the community. Lazega et 
al. (2016) also identify a similar pattern in researchers that seek advice. In which, 
actors seek advice from competitors more often if they share the same social niche 
as an endogamic process. Multi-connectivity is the tendency of organisations to 
have multiple links (direct and through chains of intermediaries) and a preference 
for diversity (Powell et al., 2015). From this research’s perspective, and in 
stationary scientific networks, the closure by affiliation and closure by 
association triadic multilevel closure differentiates a tendency of actors to maintain 
the endogamy as a vertical pattern or multi-connectivity as a horizontal pattern 
among organisations, respectively.  
 
 
 
 
 

Figure 26 Closure by Affiliation and Closure by Association 
a) Left: Closure by affiliation (ego); b) Centre: Closure by association; c) Right: 
Closure by affiliation. Black circles represent researchers, white squares represent 
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the core organisation of the personal network, and grey squares represent external 
organisations. The dashed line corresponds to tie formation, and the solid lines are 
simulated as previous ties. 
 

Figure 26 represents different micro-mechanisms controlling for vertical 
and multi-connectivity in the different patterns of creating 
interpersonal intercitations. From a variation of a type of closure by affiliation, we 
can identify whether researchers prefer creating interpersonal intercitations – 'the 
record of who has cited whom within a fixed set of authors' (White, 2011, p. 275) – 
within their organisations as a vertical or endogamic process (Figure 26a). 
Previous research identifies that in intra-laboratories, there is often a self-citation 
tendency when actors are part of the same organisations (Chubin & Studer, 1979). 
Closure by affiliation can represent the multi-connectivity pattern as the tendency 
of actors that share more external affiliations to create more interpersonal 
intercitation ties (Figure 26b) from a broader 'in-group' (Schrum & Mullins, 1988; 
White et al., 2004). Closure by association identifies multi-connectivity as the 
tendency of actors already creating intercitation ties to other actors to be attracted 
to being affiliated to the same external organisations (Figure 26c). These micro-
mechanisms allow exploration of the standardisation and the context in which the 
researchers create interpersonal intercitations. This scientific community is 
expected to have 
 
H1a: A closure by affiliation tendency within members of the same institution. 
H1b: A closure by affiliation and closure by association of actors that tends to be 
affiliated to external organisations. 
 

Even when similar forces could be prevalent across different organisations, 
variations and specificities are often expected from a field perspective (Wooten & 
Hoffman, 2017), leading incumbents’ actors in more stable fields to reproduce 
themselves over more extended periods. They can maintain rules and cultural 
norms specific to their domain (Fligstein & McAdam, 2012), which can be 
considered as the tendency of core organisations to be more endogamic and 
generate more multi-connectivity to maintain the field. Recent developments that 
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focus on the analysis of micro-mechanisms to compare overall tendencies across 
cases studies or different networks use multilevel network analysis (Snijders, 2016).  

From this perspective, cohesive subgroups36 (Fortunato, 2010; Everett & 
Borgatti, 2019) are distinguished in scientific networks. The prevalence of micro-
mechanisms among these cohesive subgroups is explored within disciplines and 
then compared with other disciplines or similar substantive research focus 
(Ferligoj et al., 2015; Kronegger et al., 2012; Sciabolazza et al., 2017; Akbaritabar et 
al., 2020). In these studies, the aim is to explore the stability of these micro-
mechanisms and identify specific effects and their change in significance 
according to the disciplines or similar substantive research focus. When effects are 
similar between these cohesive subgroups, similar micro-mechanisms are present. 
Common constraint could be recognised as a process toward homogenisation and 
stability.  

The variation of these micro-mechanisms could be compared in a two-step 
approach (estimating the model, then comparing the cohesive subgroups between 
them) (Ferligoj et al., 2015; Kronegger et al., 2012). Another option is through a 
one-step analysis (Sciabolazza et al., 2017; Akbaritabar et al., 2020), where the 
variation between the cohesive subgroups is included as cross-effects to control 
for the internal variation (in this case, it often uses the second level as an attribute 
of the first level). A second hypothesis is an expectation that 
 
H2: There will be variations in the strategies of the cohesive subgroups, in which 
organisations in the core will tend to be more endogamic (closure by affiliation [ego]) 
and have more multi-connectivity among organisations (closure by association and 
affiliation) than institutions on the periphery.  
 

The different hypothesis uses the interdependency of the two levels to 
analyse multilevel networks to explore closure by affiliation and closure by 
association mechanisms. From a multilevel network analysis perspective, the 

 
36 In the sociology of science and knowledge, the cohesive subgroups are often considered as 
an invisible college (Crane, 1972; Lievrouw et al., 1987; Zuccala, 2006), which had been referred to 
other different terminologies such as 'research clusters', ‘specialities’, ‘research network’, 
‘collectivities’, ‘scientific community’, among others (Hagstrom, 1976; Schrum & Mullins, 1988; 
Morris & der Veer, 2009). 
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differences among effects between cohesive subgroups in a scientific community 
can be analysed. To explore the multilevel property of scientific networks, 
considering the micro-mechanisms responsible for the emergency of global 
patterns, the interdependency of different entities and the variation of these micro-
mechanisms between groups in a scientific community, I would study a national 
scientific field. 
 
4.3 Data and Methodology 
 

4.3.1 Data 
 

The astronomical and astrophysical community in Chile currently has access to 
some of the most relevant astronomy infrastructure worldwide. There is an inter-
organisational complex network of international research groups, local research 
centres, both public and privately funded, and different universities in this 
scientific community. Chile has geographical conditions that enable it to have 
nearly 70 per cent of the astronomy infrastructure. Scholars in universities and 
research centres in this country have access to ten per cent of the observation time 
of all these telescopes. 

For the analysis, the complete record of researchers affiliated in 
organisations settled in Chile in 2017 and published under 'Astronomy and 
Astrophysics' in the Microsoft Academic database was extracted. This year 
overlaps with the period in which the ASTROdata program was created, funded 
by the Strategic Investment Fund of the Economic Ministry through the Digital 
Transformation Agency (CTD) of the Chilean Economic Development Agency 
(CORFO). This program aimed to identify and initiate measures and investments 
to diversify and grow the Chilean economy using natural advantages in 
astronomy and astrophysics (Espinosa-Rada et al., 2019; Arancibia et al., 2020) and 
was considered as having a spill-over capacity to help in the development of the 
country (Guridi et al., 2020). The organisations became a principal focus of inquiry 
because of the upcoming arrival of the Vera C. Rubin Observatory (a.k.a. the Large 
Synoptic Survey Telescope [LSST]) – one of the biggest telescopes worldwide that 
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would create an impressive amount of information, leading to the so-called data 
turn in astronomy (McCray, 2017).  

After extracting the data, the institutions and the authors of the database 
were manually disambiguated. Microsoft Academic was used as it can extract 
complete records of all references to each paper covering a significant amount of 
citation (Martín-Martín et al., 2021; Visser, Jan van Eck & Waltman, 2020) rather 
than other well-established databases (such as Google Scholar, Web of Science, 
Astrophysics Data System and Scopus-Elsevier) which cannot. By using this 
information and the references, it is possible to distinguish between directed 
citations (from paper p to paper q) with complete information on each paper 
referred to, allowing the extraction of all authors indexed in the references. The 
analysis is limited to references within authors affiliated with institutions located 
in Chile to analyse the local environment. The total number of authors considered 
in the references is based on the number of Chilean authors (i.e., affiliated to 
institutions located in this country) participating in the paper and not the total 
number of authors (including researchers from abroad).  

The total numbers of researchers (cited and citing) were % = 440 within 

2017, and the number of different institutions of the researchers in 2017 was ) =

29. As a proxy of accumulative citations, the number of citations accumulated was 
extracted. Then the average citation from all the papers in which they were co-
authors was considered. The type of organisation (i.e., university, research centre 
or astronomical observatory) and the size of each institution were identified for 
organisational purposes.  

There are a variety of organisations (acronyms in the Appendix, Section I). 
Some are research centres dependent on public funding (MAD and MAS), 
universities (AIUC and CMM), international partnerships (UMI-FCA), private 
research centres of astronomy (HARLINGTEN and INEWTON), national 
universities (PUC, UA, UAUTONOMA, UCH, UCN, UDA, UdeC, UDP, ULS, 
UNAB, USACH, UTFSM, UV), and international observatories (CTIO, GEMINI, 
JAO, LCO, NAOJ, NOAO, NRAO, and SOAR). In some cases, the organisations 
are sub-units of broader institutions. For example, JAO is the Atacama Large 
Millimeter/Submillimeter Array (ALMA) scientific team, currently one of the 
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largest radio astronomical observatories, which is also part of the partnership 
between ESO, NAOJ and NRAO. The authors’ institutional affiliation on the 
papers was stated and checked according to each author's official web page to 
disambiguate their institutional affiliation and to identify, for example, if they 
were part of the same department or scientific group.  

The citation network was analysed for the first level, in which two citing 
works, p and q, have a relationship in which p Ci q ≡ work p cites work q. From the 
works, the citation measure was extracted from the authors’ perspective, where 

,!" is an incident matrix in which an actor ! participated in a work #, and -"# 

corresponds to the work # that was authored by ". With this information, the 

author citation network could be derived as .! = ,!"-"#, as the aggregation of 

oeuvres (White & Griffith, 1981), and the diagonal was set to zero. From matrix .!, 
only the authors cited in 2017 were analysed (creating a square matrix of 

dimension .! = % × %). Further investigation was carried out for authors cited 
before 2017 in the Appendix (Section K).  

Differentiating between both networks enabled the comparison of actors 
simultaneously publishing in the same year37 as an intercitation network (White, 
2011), which can potentially reciprocate a tie in the aggregated network compared 
with authors38 that were not present in the considered year. The study also 

distinguished between strong (> 123!%4(.!!#)) and weak ties (< 123!%4(.!!#)) for 
the network of 2017 in which strong ties represent the direct relationships between 
the actors and weak ties as a controlling dyadic covariate in the model (Cimenler 
et al., 2015). The citations are considered an approximate measure of social debts 
that are social and intellectual at the same time (Crane, 1972: 20; Chubin, 1976: 451–
452), but citations are difficult to understand (Gilbert, 1977; Nicolaisen, 2008) when 
the interpersonal intercitations are not considered. The interdependency with a 
second level entity is represented through the institutional affiliation network 

expressed as an incident matrix 8!$, in which researcher ! is affiliated to an 

organisation 9 situated in Chile.  

 
37 On average, each author published 10.48 papers with &'()*+ = 5 and .. (. = 14.20 in 2017. 
38 The researchers in 2017 cite other authors on average from 1.88 years ago, &'()*+ = 1 year and 
.. (. = 	2.25. 
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4.3.2 Stochastic Actor-Oriented Model 
 
There is increasing interest in analysing multilevel networks (Lazega & Snijders, 
2016), often distinguished as the analysis of a network with nodes and ties of 
several types (analysis of multilevel networks) or a multilevel strategy in which a 
sample of social networks (multilevel network analysis) are combined (Snijders, 
2016). For the first perspective, the focus is often the interdependency between 
actors and different entities in specific settings. The variation within and between 
cohesive subgroups in a community can be identified by comparing different case 
studies.  

The stochastic actor-oriented model ([SAOMs] Snijders, 2001; 2017; 
Snijders, Van de Bunt & Steglich, 2010) is a versatile approach convenient for 
understanding multilevel networks (Snijders et al., 2013; Snijders, 2016). One 
feature is the emergent properties that allow researchers to identify the 
connections between micro-macro levels (Snijders & Steglich, 2015; Stadtfeld, 
2018). They explore the micro-mechanisms responsible for the features that arise 
from actors to understand the emergence and stability of cohesive subgroups (i.e., 
structural groups) in social networks (Stadtfeld et al., 2020). Other studies have 
explored the interdependency of different entities (Snijders et al., 2013), the 
identification of similar meso-level social forces in a community and their 
variation within and between groups using a two-steps approach (Snijders & 
Baerveldt, 2003; An, 2015) and more recently a one-step approach (Snijders et al., 
2020).  

For the analysis, SAOMs were used, which is estimated through RSiena 
software (Ripley et al., 2021) and analysed as cross-sectional data (Snijders & 
Stiglich, 2015; Block et al., 2019). SAOMs for cross-sectional data are an actor-based 
alternative (Block et al., 2019). Another option is the exponential random graph 
model, which is a tie-based approach, and currently the statistical model most 
used to analyse social networks (ERGM; Lusher et al., 2012; Schweinberger et al., 
2020). For each cohesive subgroup, 10,000 iterations were specified in phase 3 to 
calculate standard errors, and the estimation was made using the Method of 
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Moments39. A meta-analysis of different social networks and iterated weighted 
least squares estimator was used without assuming a normal distribution (Snijders 
& Baerveldt, 2003). 

To compare different organisations, the social environment or personal 
network was considered for each organisation, treating the organisation as an ego-
network (Crossley et al., 2015). The personal network is a specific type of cohesive 
subgroup of an actor (organisation in this case) considered as role-relationships 
(Bott, 1968: 3), quasi-groups (Meyer, 1966: 115–116), or stars and zones 
relationships (Barnes, 1969: 60–61) – and further referred to as personal networks 
(Boissevain, 1974: 26–27). From a different perspective, Collins (1974: 177–178) 
suggested in his ethnographical study about a gas laser (known as TEA) that a way 
to shape a network could start from contact with a laboratory, in his case, the 
Canadian defence research laboratory as an ego-network (the core set), and then 
trace other actors involved in the diffusion of knowledge40 

In this case, the cohesive subgroup would be based on the institutional 
affiliations of the scholars as an extended opportunity structure (Lazega et al., 
2013) of the organisation. It is considered that the actors that belong to these 
organisations are the core set of this institution, in which they are co-workers and 
where there is informal communication and colleagueship (Mullins, 1972, 1973; 
Chubin, 1976). Furthermore, the actors are citing or have been cited by external 
researchers that are 'outsiders' or ‘marginal’ (Crane, 1969; Chubin, 1976) and 
affiliated to other institutions in a circuit of broader communication, referred to as 
an invisible college (Crane, 1973; Lievrouw et al., 1987; Zuccala, 2006). Similar 
strategies from a methodological approach select seeds of actors (ego) and a subset 
of the nodes that are at a distance of two (or more) to estimate the size of the hidden 
population (Frank & Snijders, 1994). Others identify hard-to-reach or hidden 
populations (Giles & Handcock, 2010) and reduce the size of big networks merging 
the resulting personal networks to estimate the common micro-mechanisms of the 

 
39 The rate functions (Snijders, 2001) were fixed to 1 = 100 for the citation network and 1 = 30 for 
the institutional affiliation since in the first case there are often more opportunities to create ties in 
comparison with the second network.  
40 In the following years, Collins (1981, 1988) identify the core set through controversies and the 
social contingencies of those involved in experimentations and observations, but in which it is not 
possible to know who is inside or outside the core set. 
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network (Stivala et al., 2016). From the proposed strategy, multilevel networks 
were included in the creation of the seeds. 
 

 
Figure 27 Personal Network of an Organisation (ego) 

 
In Figure 27, a cohesive subgroup is represented from the perspective of an 

organisation (ego) and its members as the core set, considering its social 
environment or personal network. In Figure 27, squares represent organisations 
and circles researchers. The black nodes represent members of the focal institution 
(white dash square that is further extracted for the analysis) while grey nodes 
represent researchers outside the focal institution cited or citing the organisation's 
members. The methodological strategy used here is a second-zone multilevel 
sampling from a second-mode focal actor. After identifying the core set, other 
actors (researchers and organisations) at a distance of two from the organisation 
are included. The underlying aggregated strong citation network and the 
institutional affiliation are used together as a multilevel network. The exploration 
is restricted to a distance of two; otherwise, the sample of networks increase their 
size (Feld, 1991) significantly. A further examination should explore the 
consequences of using this strategy for larger distances in SAOMs. Following this 
approach, the interdependency of institutional affiliations and actors can be 
explored to identify cross-level effects as the presence of meso-level social 
forces and the variation of the effects between cohesive subgroups (i.e., personal 
networks of a sample of organisations) within a local scientific community.  
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4.3.3 Explanatory Variables 
 
Different mechanisms of group formation were controlled for the citation and 
organisational network. Density was considered a similar measure to the 
intercepts in standard linear regression models, and reciprocity was considered as 
the tendency to create intercitation (White, 2011) for the citation network. For peer 
recognition processes or assortativity-based mechanisms, control was for indegree 
and outdegree. In some of these measures, the square root version was used when 
there were reasonable differences between low and high degrees.  

Actors that received more citations from other researchers in the personal 
network will be more attractive to be cited on average (indegree popularity). 
According to their outdegree, actors that cite more would be attracted to send even 
more citations (square outdegree activity), and actors at a distance of two would be 
more attractive to be cited (square outdegree popularity). It was also controlled for 
whether citing more often than another researcher leads to more reciprocity 
(reciprocity degree activity). For the affiliation network, the effect of the assortativity-
based mechanisms will be similar, but the interpretation, in this case, is different. 
For the indegree, it was assumed that if more actors are affiliated with the 
organisation, it will be more attractive for affiliation (square indegree popularity). 
Actors in more institutions will have even more affiliations (outdegree activity), as 
organisations tend to have direct multi-connectivity and a preference for 
exploration at specific moments (Powell et al., 2005).  

Different transitivity measures were considered to explore triadic closures 
within scholars in the citation network. These transitivities were differentiated 
between direct and indirect transitivity. For bipartite networks, triadic closure was 
not possible. The differences between these effects are that transitive triples assume 
that if an actor sends a tie to another actor and the second actor sends a tie to a 
third researcher, the first actor would be attracted to send a tie to the third 
actor. Transitive ties generalise transitive triplets because they consider the direct 
path between any pair of actors and count the indirect paths between them. 
Variations of triadic closure are often used to analyse citation networks. A dyadic 
covariate effect was also added using the weak weighted ties citation network to 
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control for co-citation of authors (co-citation from weak ties), in which authors are 
perceived as cognitively similar by a third party (White, 2003). Co-citation tends 
to represent authors that are close intellectually or reflect conflict or oppositions 
between them (White, 2011).  

The cross-level effects closure by affiliation and closure by association were 
used to understand the meso-level social forces hypothesis. The first case 
distinguishes between an endogamic dyadic covariate effect (closure by affiliation 
(ego)) to identify whether being affiliated to the core set organisation creates a 
tendency to be attracted to cite researchers from the same institution. Closure by 
affiliation identifies if a researcher will cite another author if they are affiliated to 
the same external organisations. Closure by association identifies whether the 
attractiveness to an institution is because the researchers were citing others 
already affiliated. 
 
4.4 Results 
 

4.4.1 Descriptive and Explorative Analysis 
 
The 29 personal networks within organisations (described in the Appendix, 
Section I) range from 2 to 132 actors in the first level. These organisations have 
between 0 and 18 ties with external organisations. The range of the median degree 
is 0 to 10.94 in the citation network and 0 to 13.27 in the institutional affiliation 
network. Removing the personal networks smaller than ten actors, the group 
mean is 3.89, median 3.36, and the standard deviation is 2.91 for the citation 
network. The average degree of the number of institutional affiliations is 5.75, with 
a median of 5.25 and a standard deviation of 3.10. In most personal networks, there 
are fewer inside members than external actors. The organisations where there are 
more inside members than external are, for example, the European Southern 
Observatory (ESO), the University of Chile (UCH), and the Pontifical Catholic 
University of Chile (PUC). The last two organisations are two of the most 
prestigious universities in this country. 

From the sample of organisations, 11 cases achieve convergence with 

overall maximum convergence < 	0.25	and with > values smaller than 0.1 in 
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absolute value. These cases have reasonable goodness of fit in key features not 
explicitly included in the model specification (Lospinoso & Snijders, 2019) (p-
values of each case that achieve convergence in the Appendix, Section J). The 
converge models are some of the core personal networks of organisations that 
have a well-established astronomical department (PUC, UCH, UdeC, UDP, ULS, 
UV), two research centres (MAS, CMM) and certain observatories (CTIO, ESO, 
LCO). Most of the universities with a consolidated astronomy department 
(CONICYT, 2012) are in the analysed group, except UA, UAUTONOMA, UCN, 
UDA, UNAB, UTFSM, and USACH that have small personal networks for SAOMs 
(< ten researchers). In contrast, most of the personal networks of the international 
observatories did not achieve convergence (GEMINI, JAO, NAOJ, NOAO, NRAO, 
SOAR), which might require further scrutiny. 

Some context is provided by describing personal networks that achieves 
convergence. ESO contributes and operates some of the most important astronomy 
observation sites in this country (e.g., La Silla, Paranal and Chajnantor). LCO was 
established in 1969 in the Atacama Desert of Chile and is owned by the American 
private research centre Carnegie Institution of Science. This observatory holds 
various telescopes (i.e., the Magellan telescopes) operated in collaboration with the 
University of Michigan, the University of Arizona, Harvard University, and the 
Massachusetts Institute of Technology. In the case of CTIO, this observatory 
contributes to gathering data for the discovery of the Universe’s accelerating 
expansion, leading to the presentation of the Nobel Prize in Physics in 2011 to Saul 
Perlmutter, Brian Schmidt, and Adam Riess. This observatory was vital to the local 
history of this community due to the contribution of the Chilean team, Mario 
Hamuy, Mark Phillips, Nicholas Suntzeff and Jose Maza, working on these 
telescopes in the discovery and achievement of the scientific contribution and the 
further recognition of the laureate Nobel prize. There was some controversy due 
to the allocation of scientific recognition in the discovery (Heidler, 2017). 

Some of the astronomical observatories are also small (NOAO, NRAO and 

SAOR ≤ 	10 nodes) or (almost) exclusively cite researchers from their own 
observatories in the considered year (GEMINI and NAOJ). The exception is JAO 
which has inside/outside citations of its network sufficient for SAOM but did not 
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achieve convergence with the suggested specification. These organisations have 
scientific teams who settle in this country, working for international observatories. 
Some of these organisations are more or less embedded in the local community.  

The Millennium Institute of Astrophysics (MAS) is a Millenium Institute, a 
program funded by the National Agency of Research and Development (ANID) 
of the Chilean Ministry of Science, Technology, Knowledge and Innovation. These 
research centres are funded through public competitions considering their 
scientific merits since 1999 and are created to study specific areas of knowledge 
that contribute to this country. MAS is currently a research centre collaboration 
created by researchers from PUC, UCH, UNAB, UdeC, UV, and UAI to develop 
and prepare the new generation of researchers in big data as a niche in astronomy. 
One of the central scientific policies of this country is to become a worldwide 
leader in the subfield of astro-informatics during the next decade (Espinosa-Rada 
et al., 2019). 

Universities and professional institutions create organisations that become 
similar through professionalisation where central organisations act as models for 
other organisations driving status competition (DiMaggio & Powell, 1983). The 
organisations involved tend to hire individuals from the same field, establishing a 
cognitive base occupation that rests on formal educational institutions and a 
professional network. Following Scott’s definition, a field is 'a community of 
organisations that partakes of a common meaning system and whose participants 
interact more frequently and fatefully with one another than with actors outside 
the field’ (1995: 56). 
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Figure 28 Discrete Core-periphery Structure of the Chilean Astronomical and 

Astrophysical Inter-organisational Network in 2017 
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Figure 29 Continuous Core-periphery Structure of the Chilean Astronomical and 
Astrophysical Inter-organisational Network in 2017 

 

 
The representation uses stress majorisation layout (Gansner et al., 2004). Blue 
nodes are research centres, red nodes are universities and grey nodes are 
astronomical observatories. The size of the nodes is according to the Freeman 
degree (1978), and the ties are the shared number of actors affiliated in both 
institutions. 
 

Exploring the context through the inter-organisational network, most 
organisations that achieve convergence in SAOMs models are also on the core side 
of the national core-periphery structure (Borgatti & Everett, 2000) in the discrete 
(Figure 28) and continuous (Figure 29) version. Alternative approaches can be 
used, such as multilevel block modelling (Žiberna, 2014) or dual projections 
(Everett & Borgatti, 2013). Citations can be considered as a non-stable relationship 
in comparison with institutional affiliation. Hence, the exploration is restricted to 
institutional affiliations as a proxy of social relationships, but further analyses 
should explore potential limitations. From the exploratory analysis, a first 
representation of the inter-organisational allowed representation of the 
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connectedness of organisations (Laumann et al., 1978) between their co-members 
and consideration of their relational equivalence (White et al., 1976; Borgatti et al., 
2018) using the core-periphery approach for organisations, as a structure 
previously identified by researchers in scientific networks (e.g., Breiger, 1976; 
Mullins et al., 1977).  
 

4.4.2 Stationary Stochastic Actor-oriented Model 
 
Table 15 presents the results to identify how stable micro-mechanisms and meso-
level social forces operate cross-level mechanisms between actors and institutional 
affiliations. Additional model specifications are in the Appendix (Section K) that 
explores further specification that considers retrospective time and the usage of 
similarity measures in one of the effects controlled in the model. The stability of 
the patterns is considered as the overall tendencies towards stabilisations in this 
inter-organisational field. 
 

The results show that different relational mechanisms simultaneously 
operate in the stationary and aggregated strong citation network. For instance, the 

density effect is negative (@ = −5.307, s. e. = 0.246), in which authors tend to cite 
fewer researchers than the available scholars in their personal networks. The 

researchers also reciprocated citations in the estimated year (@ = 2.353, s. e. =

0.170), which is interpreted as a tendency towards interpersonal intercitation 
(White et al., 2004). For peer recognition based on degree mechanisms, there is, on 
average, a more significant tendency between the personal networks against 

indegree effect (@ = −0.007, s. e. = 0.016) in the national bounded astronomical and 
astrophysical community. This tendency is often interpreted as the Matthew effect 
(Merton, 1968a), as researchers tend to be attracted to actors with more peer 
recognition. However, in this particular case, the personal networks lead to the 
inverse tendency when intercitation between local actors is considered. A different 

process is the outdegree popularity (@ = −0.616, s. e. = 0.063) as researchers tend 
to feel less attracted to cite researchers at a distance of two.   
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Table 15 Meta-analysis Results from Stationary Multilevel Models for Citation 
within Researchers and their Institutional Affiliation Networks. 

 
 Est SE Σ I 

Citation Network  
 

 
  

Outdegree (density)   -5.307** 0.246 0.000 7.680 
 

     
Reciprocity  2.353** 0.170 0.000 7.519  

     
Transitive triplets  0.187** 0.019 0.000 9.953 
 

     
Transitive ties  3.414** 0.286 0.668 23.995*  

     
Indegree popularity   -0.007 0.063 0.007 8.239  

     
√Outdegree popularity  -0.616** 0.078 0.001 10.987 
 

     
√Outdegree activity  0.199** 0.045 0.000 9.416  

     
Reciprocity degree 
activity 

 
-0.110 ** 0.018 0.000 7.036  

     
Closure by affiliation (ego)  -0.009 0.046 0.001 10.446 
 

     
Closure by affiliation   0.019* 0.007 0.000 4.509  

     
Co-citation from weak 
ties 

 
0.009** 0.003 0.003 20.986  

     
Accumulative citations 
(alter)  

 
0.108** 0.019 0.036 15.631  

     
Accumulative citations 
(ego) 

 
-0.045* 0.015 0.000 4.314  

     
Absolute difference of 
the accumulated number 
of citations 

 

-0.120** 0.015 0.002 10.233  
     

Note: For the figures representing the effects specified in the model, the 
circles are researchers, square are organisations, black ties are the 
dependent relations, and grey ties are the controlled ties. 
Σ standard deviation, Q chi-squared test statistic. *K < .05; **K < .001; 
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Continuation      
Institutional Affiliation      
Outdegree (density)   -1.184** 0.217 0.000 8.805 
 

     
√Indegree popularity  0.261** 0.037 0.083 18.801*  

     
Outdegree activity  -0.341** 0.055 0.000 3.167  

     
Observatory  
(ref. University) 

 
-0.069 0.043 0.000 

 
7.725  

     
Research Centre  
(ref. University) 

 
0.147* 0.048 0.000 

 
4.053  

     
Size  0.134** 0.029 0.067 20.214*  

     
Closure by association  0.310** 0.058 0.000 5.034 
      
Note: For the figures representing the effects specified in the model, 
the circles are researchers, square are organisations, black ties are 
the dependent relations, and grey ties are the controlled ties. 
Σ standard deviation, Q chi-squared test statistic. *K < .05; **K <
.001; 

 
A possible interpretation is that researchers might prefer to directly cite 

other researchers without referring to a potential intermediary author. The 

outdegree activity effect is positive (@ = 0.199, s. e. = 0.045). Authors tend to cite 
others that are likewise citing other researchers from the same personal networks. 

Contrary to expectation, the reciprocity degree activity is negative (@ = −0.110, s. e. =

0.018), as the tendency not to be attracted to reciprocating other researchers citing 
comparatively more than other researchers. 

The peer effect or degree-based relational mechanisms in the institutional 
affiliation network should be interpreted differently. The density is also negative 

(@ = −1.184, s. e. = 0.217), as authors tend to be less affiliated in the pool of 
organisations available. Institutions with more researchers are more attractive to 

researchers to participate (@ = 0.261, s. e. = 0.037), but actors are less attracted to 

more institutional affiliations (@ = −0.341, s. e. = 0.055).  
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A possible interpretation is that this might arise because of the 
connectedness with organisations representing different scientific niches in 

research centres (@ = 0.147, s. e. = 0.048), where researchers are selective in the 
tendency of multi-connectivity (Powell et al., 2005). Specifically, when the 
organisation is a research centre compared to universities, an author will have a 

15.8% (2%.'() − 1) chance to be affiliated with these organisations if all other 
variables remain fixed41. The astronomical observatories are less significant and 

attractive for creating a tie than universities (@ = −0.069, s. e. = 0.043). This 
tendency might be expected because research centres act as intermediary hybrid 
entities (Etzkowitz & Leydesdorff, 2000) between universities and private 
institutions. Similarly, the centres are predominantly directed by researchers from 
the universities, and scholars infrequently have many affiliations.  

Regarding accumulative advantage mechanisms in the citation network, there 
are differences in the tendency to cite other researchers from this community. 
From these results, the relative accumulative advantages (Rigney, 2010) in 
citations can be distinguished. From the perspective of the researchers, it is more 
attractive to cite other authors that have, on average, more accumulated citations 

(@ = 0.108, s. e. = 0.019) in the considered year. Recalling that the indegree effect in 
the personal network is negative, this tendency was interpreted as a predominance 
of external recognition instead of a local one. If the authors have comparatively 

more accumulated citations, on average, the tendency is the contrary (@ =

−0.045, s. e. = 0.015) with less attraction for citing other researchers in the local 
community. If the absolute difference of the average accumulative number of 
citations between the focal actor and the other researchers is large, the tendency is 

negative (@ = −0.120, s. e. = 0.015). This heterogeneity gives insights into the 
inequality of recognition within these personal networks in the considered year. 
The results should be considered with caution because only the average citation of 

 
41 The size of the coefficient should be read with caution as they are unstandardised and rarely 
independent because of the inherent interdependency of the networks. In the following, I am using 
the strategy suggested by Snijders, van de Bunt and Steglich (2010). A more suitable option is the 
relative importance of effects (Indlekofer & Brandes, 2013), which is currently not implemented for 
bipartite networks in RSiena. 
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the authors’ references from the analysed year and not the accumulated citations 
of the authors was considered in its academic trajectory. 

There are different closure processes between researchers regarding dyadic 
and triadic mechanisms as local structures for group formation. The positive 
tendency of different effects together can be considered to indicate the tendency 
of scholars to form schools of thoughts in the community. In this perspective, 
‘Members of a social circle come together on the basis of their interests more often 
than on the basis of propinquity or ascribed status’ (Crane, 1972: 14) in which 
indirect interactions are mediated through intervening parties. The influence of 
publications from authors they have never met is an important element to create 
the social closure that stabilises scientific communities. Consistent with previous 
research, if a researcher cites another author that is likewise citing a third author, 

the first researchers will cite the third author (@=0.187, s.e.=0.019), which is 
considered an interpersonal intercitation tendency. Considering the effect of 

transitive ties (@ = 3.414, s. e. = 0.286), when there are more direct and indirect ties 
between two researchers, there is a tendency to create a tie between these two 
researchers. The results should be interpreted cautiously because these parameters 

are more significantly different across personal networks (I = 23.995, Qp =

0.008). The dyadic covariate effect of co-citation from weak ties identifies a similar 

pattern. If two researchers are similarly and weakly co-cited more often (@ =

0.009, s. e. = 0.003), the researchers tend to cite the other author more often. 
Following the interpretation of White (2011), co-citation tends to characterise 
authors that are close ‘intellectually’ or reflect conflict or oppositions between 
them. 

There is mixed support for the hypothesis under consideration for the 
meso-level social forces as a cross-level effect. A tendency for closure by affiliation 
(ego) as a propinquity tendency within the own organisation, reinforcing their 
inside ties leading to a positive feedback loop to promote internal recognition was 
expected. Based on the estimated specification, the parameter is less significant 

and negative (@ = −0.009, O. 2. = 0.046and 2*%.%%+~0.99 keeping all other variables 
fixed). For closure by affiliation, when an author citing another author shares more 
institutional affiliation with a third author, the results indicate that the first author 
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tends to cite the third researcher (@ = 0.019, s. e. = 0.007) between the different 

personal networks. The significance of this effect diminishes (@ = 0.016, s. e. =

0.009) if a retrospective citation network is controlled as an additional rate 
function (Appendix, Section K). From the results, there is more support for closure 
by association in the tendency of actors citing other actors affiliated to an external 

organisation to be attracted to be affiliated to the same institution (@ = 0.310, 

O. 2. = 0.058). Shared cognitive interest as interpersonal intercitation ties 
corresponds to the researchers’ embeddedness in similar external organisations, 
allowing multi-connectivity motivated by proximity tendencies.  
 

Figure 30 Variations of the Personal Networks of the Organisations 
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a) Variation of closure by affiliation (ego). b) variation of closure by affiliation. c) 
variation of closure by association. Parameter estimated plotted against their 

standard errors, with line demarcating the region of significance (Q = 0.05).  
 

More variations were expected in the personal networks’ strategies from 
the funnel plots in Figure 30 in considering the second hypothesis. In these 
organisations, it was envisaged that the core will tend to be more endogamic and 
have more multi-connectivity among organisations than the actors on the 
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periphery. There is little support for the core organisation having more endogamic 

ties. The only group (Figure 30a) in which the effect is more significant (@ = 0.87, 

O. 2. = 0.38) (separate models presented in the Appendix Section L) is the Center 
for Mathematical Modeling (CMM) at the University of Chile, an interdisciplinary 
centre focusing on basic and applied mathematics research for sciences, industry, 
and public policies. Members of CMM are not exclusively astronomers and 
astrophysicists. This tendency might be more prevalent in CMM because of this 
distinction, which corresponds with the increasing interest in astro-informatics as 
the combination of astronomy with other disciplines, such as statistics and the 
computational sciences (Espinosa-Rada et al., 2019). 

Figure 30b on the funnel plot in the centre, shows UDP as the only 
organisation with a more significant tendency to closure by affiliation across 
different personal networks – an author that shares more institutional affiliation 

with a third author will be attracted to cite the third researcher (@ = 0.05, O. 2. =

0.02). The Astronomy Nucleus at Universidad Diego Portales (UDP) is a group of 
astronomers and astrophysics formed in 2013 focused on observational astronomy 
and observations at X-ray, optical, infrared, and submillimetre/radio 
wavelengths. UDP is not one of the organisations in the core of the core-periphery 
structure. However, it has connections with other organisations in the centre, 
according to Figure 29 (e.g., UCH, ESO, MAS, PUC, CTIO), and in this case, 
benefits from these connections. 

There are some cases of multi-connectivity tendency, operationalised 
as closure by association (Figure 30c). Most of the organisations that were in the core 
of the exploratory analysis have a more significant effect in multi-connectivity, 

except for UdeC (@ = 0.36, O. 2. = 0.41) and PUC (@ = 0.65, O. 2. = 0.59). Some of 
these organisations benefits from their own extended opportunity structure. The 

effect is more significant considering the personal networks of ESO (@ = 0.35, 

O. 2. = 0.14) and UCH42 (@ = 0.43, O. 2. = 0.18), and less significant in LCO (@ =

0.26, O. 2. = 0.16) and MAS (@ = 0.52, O. 2. = 0.27). Other cases from the periphery 

 
42 For the case of UCH, Guridi et al. mentioned that it ‘is the only university that can legally 
negotiate agreements with international observatories […] perpetuating Chile’s scientific hierarchy 
and generating inequalities within the local astronomy community’ (2020: 8) giving it a particular 
position that can be explored further. 
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in which the effect was prevalent were UDP (@ = 0.56, O. 2. = 0.25) and less 

significant, ULS (@ = 0.42, O. 2. = 0.22). The last two organisations have 
consolidated astronomical groups (CONICYT, 2012). ULS also held the La Serena 
Data Science Winter School, supported by the National Science Foundation and 
ANID for trained astronomers and data-driven sciences to prepare for the 
challenges of big data in astronomy due to the arrival of LSST. In other 
organisations on the periphery, the effect did not seem to be prevalent. In CMM 

(@ = 0.17, O. 2. = 0.15), members of this organisation do not exclusively work in 
astronomy and astrophysics because they are interdisciplinary communities 

focused on mathematics, engineering, and physics. The other cases are CTIO (@ =

0.18, O. 2. = 0.12), the Cerro Tololo Inter-American Observatory, and the UV (@ = 0.74, 

O. 2. = 0.94) university that is also on the periphery of the exploratory analysis. 
 

4.5 Discussion 
 

This research explores two mechanisms to identify the join patterns 
of intercitations among researchers in organisations – as meso level social forces – 
from a sample of personal networks from the organisations' perspective. These 
mechanisms enabled exploration of whether this community tended towards 
vertical endogamy or horizontal multi-connectivity of intercitation in this scientific 
community. The results indicate less evidence for endogamy in personal networks 
to reinforce their inside ties. Overall, there is more support in this community to 
share cognitive interest through intercitation when actors are connected to the 
same organisations. The connection through the same organisations allowed the 
study of multi-connectivity with these external organisations that are often 
research centres (i.e., social niches). 

The diversity between organisations was the second focus of the analysis, 
considering the differences between incumbents in the core of the inter-
organisational field and the peripheral actors. While endogamy was identified in 
an interdisciplinary organisation, the tendency for diversity and multi-
connectivity among core actors, in comparison to peripheral actors, was more 
prevalent in the scientific community. This creates an inter-organisational core 
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group that can be considered to push toward homogenisation through the 
mechanism of closure by association – the tendency of actors to cite other actors 
affiliated to an external organisation to be attracted to affiliation into the same 
institution. Some cases also in the core do not follow this pattern creating an 
internal differentiation. Other peripheral actors tend to have similar tendencies, 
which can be explored in further studies using longitudinal perspectives to 
identify whether the peripheral actors following these strategies converge with the 
core group of the inter-organisational structure or other actors in the core can 
create parallel core groups. This research focused the analysis on selection 
processes instead of influence (Steglich et al., 2010). Further research is needed to 
explore this possibility to identify, for example, if core or periphery organisations 
benefit from their own extended opportunity structure, and if so, under what 
conditions is detectable.  

Most studies of scientific networks use a case study to emphasise the 
homogenisation of the entire structure. This research argued that combining 
different micro-mechanisms gives a broader perspective to understand the 
different scientific network processes. There is a variation in the different types of 
mechanisms, classified in different tendencies toward group formations between 
researchers creating invisible colleges, maintaining the Matthew effect and 
accumulative advantages. Less explored is the relevance of the multilevel 
perspective, which emphasises the meso-level social forces – as cross-level effects 
– that make identifying scientists’ positions in the inter-organisational field 
possible. The multilevel perspective identified the dual position of researchers in 
organisations as a stable process within a scientific community, from a sample of 
cases to understand a specific population. Also, it enabled identification of the 
variation within these effects in different personal networks contrasting their 
disparity with the core-periphery inter-organisational context at the macro-level. 
This approach is suitable for identifying prominent incumbents or particularities 
that give a deeper comprehension of the environment of a scientific discipline in a 
local community that can be explored further and in more detail. 

Finally, a second-zone multilevel sampling was suggested from a second-mode 
focal actor (i.e., the organisation in this case) to identify how stable the meso-level 
social forces between actors and institutional affiliations are in the researchers’ 



 
 157 

tendency to create ties in a scientific community. This strategy proved suitable for 
this analysis, but more research should identify the consequence of potential 
effects at further distances. This strategy can orientate empirical research when 
more extensive networks are considered, facilitating statistical networks models 
that tend to have difficulties in their estimation, convergence, and reasonable 
goodness of fit when the network increases its size to more than a few hundred 
cases.  

Using the stochastic actor-oriented model to analyse cross-sectional data is 
rare, giving an alternative to other methodological strategies already available, 
allowing multilevel networks and a sample of networks to be explored. A further 
expansion of this study should point to potential changes in the community and 
understand the development of the scientific fields considering newcomers. 
Consequently, because the study is a stationary network, it will benefit from an 
expansion with longitudinal data to understand the changes in the scientific 
community.  
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Chapter 5. 
 

Conclusion 
 
In this chapter, I present some concluding remarks of the thesis. This thesis begins 
with the problem of exploring the ‘true’ underlying structure that was said to 
require a multigraph to describe the scientific networks (Chubin, 1976), and which 
often involves socio-cognitive networks (Merton, 2000; White et al., 2004; White, 
2011) that conflate social, cognitive, and situational dimension in science. In this 
chapter, I first present the summary of the empirical findings of the three articles. 
Then, I emphasise the overarching contributions and some limitations of the 
thesis. Finally, I will provide some outlooks for further research. 
 

5.1 Summary of the empirical findings 
 
In this section, I present the summary of the empirical findings of the articles of 
the thesis. These articles explore the usage of multigraphs to explore intercitations – 
as the analysis of citations among a fixed population of authors that share a similar 
context (White, 2011) – in the Chilean astronomy and astrophysics community. 
 

5.1.1 Study 1 
 
In Chapter 1, it was mentioned that citation is a theoretical and empirical puzzling 
endeavour which requires further scrutiny. In Chapter 2, a methodological 
perspective was adopted to disentangle the main citation components when used 
as a direct citation, bibliographic coupling, or co-citation. The assumption to explore 
their differences was to enquire whether the usages of citation itself can derive in 
a multigraph in which the ‘true’ underlying structure can be discovered (Holland 
& Leinhardt, 1974). From a methodological perspective and in concordance with 
the interpretation that citation can be interpreted as a cognitive and a social 
element (Crane, 1972; Small, 1977), it is suggested that depending on the type of 
citation-based and the similarity measures, different dimensions are highlighted. 
The similarity measures that combine the different alternatives have a relevant 
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role in the merged measure. When the merged measure used different similarities 
for the normalisation it will give more emphasis to the shared cognitive dimension 
according to the community's perception (i.e., bibliographic coupling or co-
citation when Jaccard or cosine are used) or the authors' communicational trace 
(i.e., direct citation when association strength is considered) as a social element. This 
distinction might allow recovering the socio or cognitive dimension of the citation 
measure that are conflated. 
 

5.1.2 Study 2  
 
Following the discussion of Chapter 1, the citation can be further investigated and 
analysed considering the co-evolution of other networks (i.e., co-authorship, 
institutional affiliation, and publishing in scientific journals). In this article, the 
period after the arrival of the ALMA observatory was analysed. In the analysis, I 
concentrate on one specific type of mechanism that involves two different levels 
for group formation – closure by affiliation and closure by association as proximity 
mechanisms – to understand how a group of academics create 
interpersonal intercitations studying the co-evolution of a multilevel network. I 
investigate how well the micro-level represents macro features in a three-mode 
multilevel and multiplex network using the goodness of fit used in statistical 
models for social network analysis. The results indicate that social relationships 
grounded on scientific collaboration and space proximity based on institutional 
affiliation are more accurately suited to understand the co-evolution of the 
networks and the intercitation among astronomers than cognitive-based networks 
such as the journal network. Also, from a methodological perspective, the 
diagnostic allows identifying misspecifications or potential unobserved effects. 
The unobserved effects might be confounding other macro-structures that 
otherwise would be indistinguishable and that we might believe that they are 
substantively relevant to representing multilevel networks. 
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5.1.3 Study 3 
 
Similar to the previous study, the third article (Chapter 4) continues the 
exploration of group processes (Chapter 1), identifying the patterns that are 
consistent in different personal networks (as a more ill-defined boundary) 
distinguishing between organisations that are in the core or periphery of the inter-
organisational field of Chilean astronomy. This study explores how the regular 
join patterns of intercitations among researchers in organisations – as meso level 
social forces - vary within scientific communities and explore if the core 
organisations tend to have similar patterns compared to other institutions in the 
periphery. The data analysed relates to the state of the astronomical and 
astrophysics community during the same year in which the government of Chile 
shows interest in the development of astronomy to spur economic activity (Guridi 
et al., 2020) because of the upcoming arrival of the Vera C. Rubin Observatory 
(a.k.a., the Large Synoptic Survey Telescope [LSST]) (Espinosa-Rada et al., 2019). 
From the analysis, the results indicate that researchers in this community are not 
preserving endogamic intercitation - the tendency of citing researchers from the 
same organisation. However, there is a tendency upon intercitation among 
researchers affiliated in the same external research centres creating closure in 
scientific niches (i.e., research centres) as a community's tendency towards 
diversity and multi-connectivity. The closure by association is the tendency of 
actors citing other researchers to be attracted to share institutional affiliation in 
similar research centres. I also suggested a second-zone multilevel sampling from a 
second-mode focal actor – or extended opportunity structure of the organisations - as 
a strategy that allows identifying how stable the meso-level social forces between 
actors and institutional affiliations are in the researchers' tendency to create ties 
scientific community. 
 

5.2 Overarching, contributions of the thesis and limitations 
 
This thesis offers several contributions advancing our knowledge in using 
multigraphs to understand intercitation (theoretical background presented in 
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Chapter 1). The multigraphs used are multiplex networks based on citations (i.e., 
direct citation, bibliographic coupling, and co-citation) and co-authorship. And the 
multigraphs are also studied through multilevel networks (i.e., researchers, 
institutional affiliations, and journals). These different networks are used jointly 
to identify intercitations as the tendency of citations between a fixed group of 
researchers that share a similar context (White et al., 2004; White, 2011). 

A first contribution is the exploration of the joint usage of these networks to 
understand intercitation through multiplex relationships of networks based only 
on citations, which combination was not sufficient to understand if the citation 
network is social or cognitive (Chapter 2). These networks based on citations are 
the co-citation and bibliographic coupling that rely on the perception of third 
authors and the direct citation that is considered as the author’s communicational 
trace. As a limitation, the combination of these three measures (i.e., direct citation, 
bibliographic coupling, and co-citation) is not sufficient to understand whether the 
citation network is social or cognitive. The analysis reveals that the normalisation 
selection will emphasise the perception of third authors (i.e., Jaccard or cosine) or 
the direct communicational trace between researchers (i.e., association strength). In 
the first paper, three different strategies to normalise the weighted network are 
presented, which are the dichotomisation of the network (Breiger, 1974; Neal, 
2014), other normalisation processes called the ‘fractional approach’ (Batagelj & 
Cerinšek, 2013; Perianes-Rodriguez et al., 2016; Leydesdorff & Park, 2016; Batagelj, 
2020), and the simultaneous usage of two projections (Everett & Borgatti, 2013, 
2018). The analysis only explores the most popular alternative often compared in 
scientometrics (Ahlgren et al., 2003; van Eck & Waltman, 2009; Egghe & 
Leydesdorff, 2009), which in practice can incorporate much more alternatives (e.g., 
Wasserman & Faust, 1994; Borgatti & Halgin, 2011a; Borgatti et al., 2018). Further 
work is needed to explore the merged measure with different databases, use other 
normalisations, and combine with other dimensions and/or methodologies. 

The contribution of the second article expands our knowledge 
of intercitation with the analysis of cross-level mechanisms using multilevel and 
multiplex networks (Chapter 3). The cross-level effect that combines citation with 
social networks (i.e., co-authorship and institutional affiliation) shows to be more 
relevant to understand citations than publishing in the same journals (as a 
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cognitive network). Two cross-level mechanisms explored are the closure by 
association and closure by affiliation as mechanisms that explain group 
formation from a multilevel perspective. Closure by association is the tendency of 
researchers citing another researcher who participates in an organisation or 
published journal to participate in the same organisation or journal. And the 
closure by affiliation is the tendency of a researcher that is participating in an 
organisation or publishing in a journal to cite other researchers that share the same 
organisation or publications. Combining the multigraphs (i.e., citation network 
with social networks) allows understanding the social dimension of citation when 
actors share a similar context or share similar ties. The astronomical community in 
this period was reasonably small (< 100 established scientists), in which the 
instances of evaluation of their works (through committees, funding available and 
access to the observational time), the newsletter or the ‘white list’ of SOCHIAS that 
give access to some of the most relevant telescopes worldwide allowed assuming 
that the actors are maintaining fluid communication. In smaller groups in science 
(~100), researchers are capable of absorbing technical information from a limited 
number of sources, when there is high specialisation, have similar problems, they 
tend to share costly component for their projects (Price, 1963: 83; Mullins & 
Mullins, 1973: 38; Mulkay et al., 1975: 188-189; Kuhn, 2012: 177) and were the 
stability and fluidity of information on time is often based on propinquity, this 
might be a plausible assumption, but that requires further analysis.   

The intercitation is also explored in the third article by analysing the relative 
position of the organisations and authors in the inter-organisational field as a 
multilevel network (Chapter 4). The results expand our understanding of scientific 
fields in revealing that authors in core organisations, in comparison with 
peripheral organisations, have different patterns of citations. The consideration of 
organisations gives some evidence of the relevance of social dimensions (i.e., 
institutional affiliation) on citing in the context of this community. Most of the 
organisations that are in the core tend to create a closure by association. The closure 
by association is considered as the tendency of authors citing other authors 
affiliated to an external organisation to be attracted to become part of the same 
external organisations. These external organisations are often research centres 
created with public funding that focus on specific areas of knowledge. The results 
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are consistent with the Chilean context because the local astronomical and 
astrophysical community, with the active interest of the Chilean government 
(Espinosa-Rada et al., 2019; Arancibia et al., 2020; Guridi et al., 2020), began the 
preparation for the arrival of a new class of telescopes (i.e., Vera C. Rubin 
Observatory) that will accumulate thousands of petabytes and will make available 
the astronomical information immediately. This Chilean astronomical community 
started the creation of different research centres to overcome the era of big data in 
astronomy (McCray, 2017; Hoeppe, 2014). One of the limitations of this analysis is 
that the data is cross-sectional. For further research, it is expected to trace the 
longitudinal aspect to reconstruct the history of the discipline due that the size of 
its members still allowed to have more detailed information. 

Methodologically, this thesis contributes to some specific developments. 
Chapter 3 uses goodness of fit often used in the context of the stochastic actor-
oriented model (Lospinoso & Snijders, 2019) for multiplex (i.e., overlapping 
multiplex triadic census and mixed layer triadic census) and three-mode 
multilevel networks (i.e., mixed degree distributions, mixed geodesic distance 
distribution and mixed quadrilateral census). The goodness of fit allows 
identifying miss specifications in complex networks, and further research should 
be done to expand these features. Some alternatives to expand the goodness of fit 
are multilevel networks with connections within and between two or more levels 
and incorporate two or more directed networks. Another contribution is presented 
in Chapter 4, using a methodological strategy named a second-zone multilevel 
sampling from a second-mode focal actor analysed through meta-analysis of stationary 
stochastic actor-oriented models. This strategy allows using simultaneously two 
levels to create samples. Similar strategies were used before considering one-level 
to estimate large networks (Stivala et al., 2016 for a review). In this regard, there is 
extended literature for samples of networks that should be explored further (e.g., 
Frank & Snijders, 1994; Giles & Handcock, 2010; Stivala et al., 2016). Hence, the 
specification of the second-zone multilevel sampling from a second-mode focal 
actor might help to identify the ‘hard-to-reach’ population, estimate the size of 
these networks, among others, as has been done in these areas of development.  

One of the limitations of this thesis is the estimation of weighted ties (i.e., 
citation and co-authorship) when the stochastic actor-oriented model is used. 
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Previous studies that use a stochastic actor-oriented model to analyse scientific 
networks do not consider the weighted dimension (Ferligoj et al., 2015; Kronegger, 
2012; Zinilli, 2016; Stark et al., 2020). A recent alternative is the network's 
dichotomisation analysed as a separate co-evolving network (Elmer et al., 2017) to 
overcome this limitation. As explored in the first study (Chapter 2), the decision to 
create the distinction requires a strong assumption for citation networks, and some 
sensitivity analysis explores this alternative in the second study adding the weak 
ties as a dyadic covariate in the model (Appendix, Section G of Chapter 3). In 
Chapter 4, the weighted networks are distinguished, separating weak and strong 
ties, in which only the strong ties are analysed. The incorporation of weights is a 
limitation of the model, and as far as I am aware, other available alternatives (e.g., 
Krivitsky, 2012; Krivitsky et al., 2020) do not implement the analysis of co-evolving 
multilevel networks yet. In this research, all the networks showed stability on time, 
but some models are worthy to explore further to disentangle the granularity of 
time (Butts, 2008; Stadtfeld & Block, 2017), which can be reasonable to capture the 
weight of the network but have the additional limitation of assuming that the ties 
are sequential. As far as I know, there is no ideal model to explore the multilevel 
co-evolutionary dimension of this network, and the stochastic actor-oriented model is 
one of the alternatives. Some of these issues should be explored further for 
modelling scientific networks. 
 

5.3 Outlooks for future research 
 
The studies presented in this thesis highlights some areas that might be worthy of 
exploring further in future research. In the previous section I concentrated on 
issues that appear in the empirical results that require further examination. In the 
following, some general directions are briefly presented. 
 

5.3.1 Multi-methods 
 
The first chapter presents some critics of the delimitations of boundaries 
investigated in scientific networks according to different methodological 
preferences. Previous work has combined different methodological strategies to 



 
 166 

explore scientific networks (e.g., Mullins et al., 1977; Lievrouw et al., 1987; Zuccala, 
2006; Lazega et al., 2008; Milard, 2014; Raimbault & Joly, 2021). Further research 
can point in this direction to gain knowledge of the phenomenon, in which as one 
of the alternatives, bibliometric information can be mixed with surveys, interviews 
or ethnographic work that can enrich the analysis. A mixed perspective might 
contribute to understanding questions such as, what is at stake in scientific 
research? What are the controversies and struggles between researchers in 
different invisible colleges? How do collegiality and relational management of 
cooperation dilemmas among rivals shape scientific growths? Among others. For 
example, the perception of belongingness to groups or research areas from third 
authors can be identified through co-citation analysis or interviews, and other 
types of relationships can be further explored through surveys or interviews. 

Specific scientific contexts and smaller networks are reasonable for a more 
detailed analysis of the evolution of scientific networks that have been less studied 
in recent years. Previous research mixed bibliometric indicators with questionaries 
to explore their connection in small groups, in which Breiger (1974) considered 
that at least within the core actors, they tend to be aware of each other and 
recognise their visibility. Mullins et al. (1977) also investigate the overlapping 
between co-citation associated with interpersonal networks. At least for the actors 
in the centre of the groups analysed, they were a reasonable level of awareness 
and social contact. Lievrouw et al. (1987), using a triangulation of data, also 
identifies that scientist working in the same research grant cluster appear as a part 
of relevant literature (co-citations). In their analysis, researchers exhibit a certain 
degree of colleagueship through their institutional affiliation and co-authorship 
patterns, enhanced through regular and more personal communication patterns 
that are different from the content of the work in which they engage (i.e., 
different specialities that are complimentary). Another interesting result from 
Lievrouw et al. is that even when researchers work are from different specialities, 
they ‘have to compete for financial, human, and clinical resources from a limited 
pool of funding sources, graduate programs, lipid clinics for patients, etc.’ (1987: 
245), which is often a relevant aspect for the delimitation and consideration of 
national boundaries. Lazega et al. (2006) also select a group of highly productive 
actors of cancer researchers in France that were further interviewed using a 
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‘linked-design’ approach, which is one of the few studies that allowed tracing the 
intra-organisation and inter-organisational relationships among researchers at the 
same time. The combination of multi-methods seems promising, capable of 
capturing the formal and informal communication between the researchers and 
the content of the relationships, gaining a deeper understanding of their social 
relationships. 
 

5.3.2 Multilevel and Multi-temporality 
 
Another area of development is the study of multilevel and the multi-temporality 
involved in scientific networks. This thesis uses second ‘level’ entities such as 
organisations and journals to explore the scientific networks that tend to be highly 
institutionalised, and their stability can be assumed and measured with some 
models that assumed this stability (e.g., Snijders, 2001; Lusher et al., 2012). For 
example, the department in universities might take some time to vanish. The 
granularity of time from other second ‘levels’ requires further research instead, in 
which even when two or more levels can be nested does not imply that their co-
evolution is symmetrical and in synchrony (Brailly et al., 2016). In certain 
circumstances, the social settings are less stable (e.g., conferences, attending 
meetings), and the iteration of interactions in this focus of activities can create 
stable relationships on time. For example, the activity itself can be restricted to 
short time-laps (e.g., one day workshop). Hence, the consideration of events in 
contraposition to stable relationships can be treated differently from a statistical 
perspective (e.g., Butts, 2008; Stadtfeld & Block, 2017). When the complexity of the 
entities involved in various social settings is considered, further exploration can 
address a sociological-theoretical framework that can be potentially developed 
and expressed into statistical models that can combine stable relationships and 
events. 

The exploration and understanding of the multilevel and multi-temporal 
dimensions underpinning scientific networks require a deeper understanding. 
The argument in this thesis followed the exploration of multigraphs as the 
juxtaposition of multilevel and multiplex ties to overcome the ‘structural 
confusion’ of scientific networks. This thesis gives some insights into the 



 
 168 

interdependency of cognitive, social, and situational dimensions to identify the 
processes that allowed the development of science. A further inquiry is to consider 
other types of relationships and identify those interactions and events, which in 
combination can give a more detailed appreciation of the phenomenon under 
study. Further research might examine if unscrambling the granularity of the 
temporal aspect of social ties – as signals of communications, fortuitous 
interactions, or accidental encounters – can give a more precise understanding of 
the strands that allowed the connections in science.  
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Appendix. 
 

0. Observatories in Chile 
 

Table 16 Observatories in Chile 

District Physical 

Location 

Telescope Type of 

Telescope 

Commissioning 

telescope  

Antofagasta Chajnantor 
Plateau 

 

Atacama Large 
Millimter/submillimeter Array 

(ALMA) 

Radio 
Telescope 

2011 

  Cosmic Background Imager 
(CBI) 

Radio 
Telescope 

1999 

  Atacama Pathfinder 
Experiment (APEX) 

Radio 
Telescope 

2005 

  miniTAO Telescope Optical / 
Infrared 

Telescopes 

2010 

  Cerro Chajnantor Atacama 
Telescope (CCAT) 

Radio 
Telescope 

2023 (Projection) 

 Cerro Toco 
 

Atacama Cosmology Telescope 
(ACT) 

Radio 
Telescope 

2007 

  The POLARBEAR experiment Radio 
Telescope 

2011 

 Pampa la 
Bola 

 

Atacama Submillimeter 
Telescope Experiment (ASTE) 

Radio 
Telescope 

2002 

  The NANTEN2 Submillimeter 
Observatory 

Radio 
Telescope 

2004 
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 Cerro Paranal 

 
Very Large Telescope (VLT) Optical / 

Infrared 
Telescopes 

2002 

  Visible and Infrared Survey 
Telescope for Astronomy 

(VISTA) 

Optical / 
Infrared 

Telescopes 

2009 

  The VLT Survey Telescope 
(VST) 

Optical / 
Infrared 

Telescopes 

2011 

  Extremely Large Telescope (E-

ELT) 

Optical / 
Infrared 

Telescopes 

2025 (Projection) 

Atacama Cerro Las 
Campanas 

Magellan Telescope Optical / 
Infrared 

Telescopes 

2000 

  Du Pont Telescope Optical / 
Infrared 

Telescopes 

1977 

  Swope Telescope Optical / 
Infrared 

Telescopes 

1971 

  Giant Magellan Telescope Optical / 
Infrared 

Telescopes 

2023 (Projection) 
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Coquimbo Cerro Tololo Blanco 4.0 m Telescope Optical / 

Infrared 
Telescopes 

1974 

  Small & Moderate Aperture 
Research Telescope System 

(SMARTS) 

 2003 

  Las Cumbres Observatory 
(LCOGT) 

Optical / 
Infrared 

Telescopes 

2007 

  PROMPT Telescope Optical / 
Infrared 

Telescopes 

2004 

 Cerro Pachón Gemini South Telescope Optical / 
Infrared 

Telescopes 

1983 

  Southern Astrophysical 
Research Telescope (SOAR) 

Optical / 
Infrared 

Telescopes 

2004 

  Large Synoptic Survey 

Telescope (LSST) 

Optical / 
Infrared 

Telescopes 

2023 (projection) 
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 Cerro La Silla The 3.6m telescope Optical / 

Infrared 
Telescopes 

1977 

  The New Technology Telescope 
(NTT) 

 1989 

  2.2-m Max-Planck Telescope Optical / 
Infrared 

Telescopes 

1984 

  1.2 Swiss Telescope Optical / 
Infrared 

Telescopes 

1998 

  1.54-m Danish Telescope Optical / 
Infrared 

Telescopes 

1979 

  1-m Schmidt Telescope Optical / 
Infrared 

Telescopes 

1971 
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B. Quadratic Assignment Procedure 
 

Table 17 Regression Based on Quadratic Assignment Procedure Without Log 
Transformation 
 

Dependent 
Network 

Predictor Weighted 
Jaccard 

 Cosine/ 
Ochiai 

 Association 
Strength 

 

  3 
(56	3) 

8 3 
(56	3) 

8 3 
(56	3) 

8 

 Intercept 0.031*** 
(0.000) 

0.000 0.549*** 
(0.000) 

0.000 0.011*** 
(0.000) 

0.000 

 Direct 
Citation 

1.366*** 
(0.009) 

0.395 1.718*** 
(0.015) 

0.533 1.160*** 
(0.002) 

0.938 

 Bibliographic 
Coupling 

1.015*** 
(0.007) 

0.425 0.847*** 
(0.024) 

0.500 1.227*** 
(0.010) 

0.208 

  9! =0.616 9! =0.566 9! =0.936 
 Intercept 0.031*** 

(0.000) 
0.000 0.549*** 

(0.000) 
0.000 0.010*** 

(0.000) 
0.000 

 Direct 
Citation 

2.238*** 
(0.005) 

0.648 1.184*** 
(0.017) 

0.367 1.006*** 
(0.002) 

0.815 

 Co-citation 0.995*** 
(0.002) 

0.629 0.878*** 
(0.026) 

0.616 1.077*** 
(0.006) 

0.318 

  9! =0.951 9! =0.659 9! =0.977 
 Intercept 0.031*** 

(0.000) 
0.000 0.549*** 

(0.000) 
0.000 0.011*** 

(0.000) 
0.000 

 Bibliographic 
Coupling 

1.593*** 
(0.004) 

0.667 1.056*** 
(0.017) 

0.623 0.946*** 
(0.015) 

0.160 

 Co-citation 1.017*** 
(0.003) 

0.643 1.148*** 
(0.021) 

0.804 2.144*** 
(0.009) 

0.634 

  9! =0.978 9! =0.917 9! =0.457 

Note: 3 for the unstandardised beta, (56	3) for the standard error of the unstandardised beta, 8 for 

standardised beta, and ∗∗∗ ; < 0.001. The numbers of draws to use for the quantile estimation are 
5,000.  
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C. Data Chilean Astronomers 2013-2015 
 
Between May and June 2014, data collection took place and corrected, updated, 
and expanded until October 2019 (summarised in table 1). A list of all relevant 
researchers in university departments was created to gather the data. The list was 
created including members from research institutes that host astronomer and 
astrophysics academics in Chile during 2014 that have access to 10 per cent of the 
observation time of the astronomical facilities in the country. This percentage is 
not trivial because the Chilean astronomical community held in its territory some 
of the most relevant astronomical infrastructures of the world (such as VLT, 
ALMA, and soon the E-ELT and GMA) and will have 10 per cent of the LSST 
computer cluster in 2021. That represents near 70 per cent of the entire 
infrastructure on the earth. 

Previous works have estimated the total size of the community (see Table 1). In 
this research, we identify the information of the cohort of 2013 corresponding to 
87 astronomers in 10 institutions that were also an intermediating period of 
consolidation of the discipline because of the construction of the largest radio 
observatory at that time (the Atacama Large Millimetre/submillimeter Array 
[ALMA]). Then, we compare the data with a list created by the European Southern 
Observatory (ESO) to cross-validate the information that was compared with the 
‘white list’ of the Chilean Astronomical Association (SOCHIAS) from 2016 to 
evaluate the consistency of the information. The ‘white list’ specifies who can 
apply for the observational time in the country. 

Previous literature indicates that astronomy and astrophysics are isolated from 
other disciplines (Leydesdorff and Rafols, 2009; Jansen et al., 2010) and confirmed 
in the case of Chile (Cárdenas et al., 2015). Astrophysics and astronomy have very 
few citations outside their network of collaborators considering the citation 
pattern (Wallace et al., 2011).  
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Year Estimation of the size of the 
community Source 

2000 21 Gibert, 2011 
2005 40 López et al., 2005 
2009 52 SOCHIAS* census 
2011 80 Gibert, 2011 
2012 75 SOCHIAS* census 
2013 87 Espinosa-Rada, 2015 
2016 114 SOCHIAS* census 
2017 131 SOCHIAS* census 

* SOCHIAS: Society of the Chilean Astronomical Association.  
 

Table 18 Estimation of the Total Size of the Community of Astronomers and 
Astrophysics from Chile (Academics) 

 
The websites of these institutes were reviewed, and all researchers, along with 

additional information about them, were entered into a database, using the 
available CV, the institutional site, their private homepages, among others. With 
this information, it was possible to track their academic trajectory (bachelor, 
master, PhD, post-doc, research visiting, academic position) and their institutional 
affiliation in each year of their academic path. According to the academic 
trajectory, the data has too much missing data corresponding to their specific 
academic position in each year (adjunct, associate, or full professor), and this data 
was not used in this analysis. Not all documents have information about the date 
of submission, revision, and correction of the papers. We ask a group of six 
astronomers of different universities for the time-lapse of this process. There was 
a consensus that each paper takes on average near two to six months to be 
published. 

Another methodological choice was how to extract the core bibliometric 
information of the community. There is some consensus that SAO/NASA ADS 
(NASA Astrophysics Data System Abstract), the Web of Science (called Institute 
for Scientific Information before), and SCOPUS-Elsevier are the central databases 
for the astronomical community. It is unclear which one is the best option (Gómez 
and Mérida, 2007; Marra, 2014). ADS is probably the database that has the highest 
coverage of documents. Nonetheless, HLWIKI- CADA mention that 'Scopus 
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covers mostly scientific fields; relatively weak in sociology, physics and 
astronomy', and ADS has not the same amount of information extraction than Web 
of Science and is tend to be recognised as a platform of 'minor products' (such as 
Google Scholar), even when some of their contributions might be highly 
recognised. The Web of Science was selected as the main database of the data 
gathering of the citations between the scientists. 

For each academic enlisted before, we delimited the query used to search in 
Web of Science with the initial of the first name and the surname. To cover all 
possible outcomes. We also use different combinations of the names, for example, 
‘M Hamuy’, ‘Mario Hamuy’, ‘Hamuy, M’, among others. Then, we export all the 
data for further analysis. Each paper collected was manually reviewed, contrasting 
the previous information collected for each author. We check the scientific 
discipline (we consider first the odds categories), the authors' full name, their 
institutional affiliation, the countries of the authors, and the co-author and citation 
references (looking for coherence in each case). 

After gathering the information from Web of Science, and extra information of 
the trajectory of each of the astronomers (i.e., full names, year of PhD, academic 
degrees, institutional affiliations, gender and nationality), we extract the entire 
record of the publications in the SAO/NASA Astrophysics Data System (ADS) for 
each of the astronomers and astrophysicist. To extract the information from ADS, 
we use the data of the trajectory of each astronomer and manually contrast to 
identify if the output was coherent. In some cases, the astronomers and 
astrophysics provide their own list of publications using ADS. Some of them only 
enlist the referee publication. In those cases, we expand their list, updating the 
information to add the non-refereed publication and all the information until 2018. 
To query the data in the cases in which there was no list already available, we used 
the list of institutions in which the astronomers were affiliated and the scientists' 
full name. 

With the information from WOS and ADS, we compare each of the paper in 
both databases and personal information from each of the astronomers to check 
for coherence. With the before mentioned information, we were able to create a list 
of the different types of combination of names of each scientist for disambiguation 
to re-run the query until saturation. In case of differences in the databases, each 
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paper was manually reviewed. The results in both databases are different. For 
example, the documents on ADS record arXiv files, and in WOS presentations in 
conferences and publications of books are added more often than ADS. They are 
often the same data in both databases for referee documents, but they have some 
differences within conferences and not peer-reviewed publications.  

Finally, for each paper, we manually gather and extract all the references that 
are indexed within the Web of Science for three years (from 2013 to 2015) and the 
complete information provided from the database. We do not have information on 
previous citations within the authors before 2013. We did an iterative process re-
running the analysis until we had saturation and not new papers in which authors 
of this cohort were involved. 

It was recorded 6,008 documents for the 87 astronomers in 10 Chilean 
Institutions from 1971 to 2017. WOS has a well-developed database actively used 
in scientometric studies and has relevant information about interdisciplinary 
fields comparable using the Journal Factor Impact (JIF). We also collected the 
disciplines of the journals if the journal is nationally based and the impact factor 
of the journals in the last five years. We gathered extra information about the 
institutions considering the type of organizations in which the astronomers were 
affiliated. 
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D. Descriptive and Change Statistics for Each Level 
 
 

Citation Network 
Observation time 1 2 3 
N of scientists 87 87 87 
Density 0.103 0.100 0.117 
Average degree 8.862 8.609 10.092 
Number of ties 771 749 878 
Collaboration Network 
Density 0.098 0.101 0.107 
Average degree 8.437 8.713 9.218 
Number of ties 367 379 401 
Institutional Affiliation 
N of Organizations 13 15 17 
Density 0.066 0.074 0.084 
Average degree 1.195 1.333 1.517 
Number of ties 104 116 132 
Journals in the Web of Science 
N of Journals 25 25 25 
Density 0.072 0.069 0.069 
Average degree 2.437 2.345 2.345 
Number of ties 212 204 204 

 
Table 19 Descriptive Analysis of Each Network (2013-2015) 
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Table 20 Descriptive of Covariates of the Three Actors (Scientists, Universities and 
Journals) 
 

Variable name Mean SD Min. Max. 
Scientists 
Foreigner 62% (Chileans) 0 1 
Citations accumulated (Wave 1) 2,848 3,364 9 18,171 
Citations accumulated (Wave 2) 2,961 3,456 15 18,321 
Citations accumulated (Wave 3) 3,045 3,521 15 18,667 
Papers accumulated (Wave 1) 64.954 58.463 3 351 
Papers accumulated (Wave 2) 70.931 62.680 5 378 
Papers accumulated (Wave 3) 77.253 66.821 5 402 
Age (First publication) 1995 9.660 1971 2009 
Alphabetic Papers (Wave 1) 8.575 9.659 0 46 
Alphabetic Papers (Wave 2) 8.839 9.814 0 46 
Alphabetic Papers (Wave 3) 9.022 9.929 0 46 
Nº First or Second Author (Wave 1) 13.724 11.267 0 53 
Nº First or Second Author (Wave 2) 14.149 11.462 0 54 
Nº First or Second Author (Wave 3) 14.586 11.662 0 54 
Last Author (Wave 1) 15.046 17.381 0 74 
Last Author (Wave 2) 16.276 18.373 0 85 
Last Author (Wave 3) 17.793 19.636 0 99 
Universities 
Type of Organization 66% (Universities) 0 1 
Journals 
Astronomical Journal 62% (Astronomy) 0 1 
Interdisciplinary Journal 9% (Interdisciplinary) 0 1 
National based Journal 12% (Regional) 0 1 
Impact factor (Wave 1) 3.681 6.566 0 40.783 
Impact factor (Wave 2) 3.742 6.754 0 41.296 
Impact factor (Wave 3) 3.782 6.594 0 41.458 

 
In Table 20 the covariates are presented without centring, logarithmic modification 
(first or second authors, papers, citations, alphabetic papers, last author, impact 
factor journals) or temporal adjustments (age). 
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Citations (Network Dynamics)  

Periods 
   

Distance Jaccard Proportion 
between ties  

0 → 0 
(remain absent) 

0 → 1 
(creation) 

1 → 0 
(expiration) 

1 → 1 
(maintained) 

  
 

1 → 2  6,435 276 298 473 574 0.452 0.613 
2 → 3  6,316 417 288 461 705 0.395 0.615 

Collaboration (Network Dynamics) 
1 → 2 

 3,339 35 23 344 116 0.856 0.937 

2 → 3 
 3,316 46 24 355 140 0.835 0.937 

Institutional Affiliation in Universities (Bipartite Network Dynamics) 
1 → 2 

 1,442 20 8 96 17 0.774 0.923 

2 → 3 
 1,353 97 81 35 164 0.164 0.302 

Journals in the Web of Science (Bipartite Network Dynamics) 
1 → 2 

 2,667 79 87 125 166 0.430 0.590 

2 → 3 
 2,676 78 78 126 156 0.447 0.618 

 
Table 21 Change Statistics for the Three Waves (2013-2015) of the Four Networks 

 
 

This network is under formation and growing (considering the number of ties 
for the institutional affiliation). As a complement of the Jaccard index as a measure 

of stability (> 	0.3), we also present the proportion between the ties presents at a 
given observation and the ties that remain in existence at the following observation 

( ,""
(,"#.,"")

) in which values between 0.3 and 0.6 are still low but may still be 

acceptable (Snijders et al., 2010). For this particular network, the changes are due 
to the turnover of astronomers and astrophysics into four research centres (i.e., 
Millennium Institute of Astrophysics [MAS], The Center for Astroengineering of 
the Catholic University [AIUC], EMBIGGEN Anillo, the Center for Scientific 
Studies [CECS]), and an astronomical observatory (i.e., NRAO). 
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E. Effects 
 
Table 22 Effects Incorporated in the Model Specifications 

 
Name Figure Equation 
Relational Mechanisms 
Density  
(Out-degree) 

 

O!'
0(R, S) =T R!#

#
 

O!'
1 (R, S) =T S!"

"
 

Reciprocity 

 
O!2
0(R, S) =T R!#R#!

#
 

Transitive triad  
 

 

O!3
0(R, S) =T R!#R!4R4#

#54
 

Transitive ties  
 
 
 
 
 
 

O!(
0(R, S) =T R!#max	(R!4R4#)

#
 

Transitive reciprocated 
triad 

 
 

 

 

O!6
0(R, S) =T R!#R#!R!4R4#

#54
 

4-cycle  
 
 
 
 
 
 
 
 
 

 

O!7
0(R, S) =

1
4
T R!8

89"9:
R!:R"8R": 

O!2
1 (R, S) =

1
4
T S!8

89"9:
S!:S"8S": 
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Degree  

 

 
 
 

O!)
0(R, S) =T R!#(XR#. + XR!.)

#
 

Indegree popularity 

 
 
 
 
 

O!;
0(R, S) =T R!#

#
T R4#

4
 

Outdegree popularity 

 
 
 

O!+
0(R, S) =T R!#

#
T R#4

4
 

Outdegree activity  
 
 

 
 

O!'%
0 (R, S) = R!.

2  

Outdegree at least one  
 
 
 
 

O!''
0 (R, S) = min(R!., 1) 

In which, 

min(R!., 1) = \
min(R!., 1) = 0	!]	R!. = 0
min(R!., 1) = 1	!]	R!. ≥ 1

 

Indegree popularity 
(square) 

 

 
 

O!3
1 (R, S) =T S!"

"
_T S8"

8
 

Outdegree activity  
 
 
 
 

O!(
1 (R, S) = S!.

2  
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Outdegree-indegree 
assortativity 

 

 
 
 
 

 

 
 
 
 
 

 
 

O!'2
< (R, S) =T R!#R!.

'/2R.#
'/2

#
 

 
O!7
1 (R, S) =T S!#S!.

'/2S.#
'/2

#
 

Dyadic similarity mechanisms 
Interaction of same 
covariate 

 O!'3
0 (R, S) = 9!T R!#9#

#
 

Covariate ego x alter  O!'(
0 (R, S) = 9!T R!#9#

#
 

 
Covariate alter at Z-
distance of two 

 
 

 
 

O!)
1 (R, S) =T S!"9̀"

>
"
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Similar covariate at Z-
distance of two 

 
 O!;

1 (R, S) =T S!"(O!1(9̀>)!" − Oa1$b)
"

 

Where	O!1(9̀?)!" are defined as O!1(9̀>)!" 	=
△*|$B$%*$B&%|

△  with △= 1%R!#|9! − 9"| being the 
range of the covariate 9 observed. 

 
Proximity mechanisms 
Closure by affiliation  

 
 

 
 

O!'
01(R, S) =T R!#e!4e#4

#94
 

Closure by association  
 

 
 

O!2
01(R, S) =T R!#e!4R8#

"98
 

Parallel networks 
Dyadic entrainment 
effect 

 

 
 

O!'6
0 (R, S) =T R!#e!#

"98
 

Out-degree in W on X 
activity  

 
 
 
 

 

O!'7
0 (R, S) =T R!.(Xe!. − √ef

#
) 

Closure of mixed X-W 
two paths 

 
 

 
 

O!')
0 (R, S) =T R!#R!4e4#

"98
 

 
  



 
 186 

 
Closure by affiliation  

 

 
 
 

O!';
0 (R, S) =T R!#e!4e#4

#94
 

Closure by association  
 

 
 

O!'+
0 (R, S) =T R!#e!4R8#

"98
 

Control 
Covariate  

 O!'%
1 (R, S) =T R!#(9! + 9#)

#
 

O!''
1 (R, S) =T R!#(9! + 9#)2

#
 

Ego covariate  
 
 
 

O!2%
0 (R, S) = 9!R!. 
O!'2
1 (R, S) = 9!S!. 

Alter covariate  
 
 
 
 

 

 
O!2'
0 (R, S) =T R!#9#

#
 

O!'3
1 (R, S) =T S!"9"

"
 

Note: Considering e as a tie to another network of actor ! in the 8 network, g is the distances 
between actors, and h are the attributes of the actors. Blue represents node of a different network, 
and square are nodes of a different mode. Arrow lines are for directed networks, and straight 
lines are for undirected networks. More details of these effects in Ripley et al. (2021). 
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F. Goodness of Fit 
 
 
Table 23 Goodness of Fit of the Models 

 
Goodness of fit Full Model Multiplex 

Model 
Multilevel 

Model 
Baseline Model 

Relational Mechanisms Citation Network 
   

Indegree distribution 0.006 0.001 0.192 0.095 
Outdegree distribution 0.132 0.105 0.029 0.012 
Triad census 0.810 0.641 0.062 0.029 
Geodesic distribution 0.102 0.096 0.123 0.102 
Clique distribution 0.656 0.593 0.636 0.535 
Eigenvalue distribution 0.476 0.454 0.259 0.209      

Relational Mechanisms Collaboration Network 
   

Degree distribution 0.300 0.309 0.320 0.401 
Triad census 0.997 1.000 0.992 0.998 
Geodesic distribution 0.330 0.260 0.474 0.431 
Clique distribution 0.144 0.142 0.094 0.105 
Eigenvalue distribution 0.666 0.649 0.715 0.710      

Similarity Based Mechanisms Citation Network 
   

E-I index 0.114 0.092 0.106 0.05 
Yule-Q 0.348 0.314 0.459 0.368 
Similarity Distribution 0.037 0.035 0.074 0.079 
Average Euclidian 0.387 0.518 0.476 0.636 
Constraint 0.829 0.807 0.934 0.908 
Effective size 0.241 0.199 0.231 0.227      

Similarity Based Mechanisms Collaboration Network 
  

E-I index 0.504 0.497 0.412 0.437 
Yule-Q 0.485 0.516 0.361 0.382 
Similarity Distribution 0.057 0.06 0.079 0.095 
Average Euclidian 0.015 0.016 0.024 0.021 
Constraint 0.126 0.169 0.116 0.166 
Effective size 0.633 0.532 0.616 0.533      
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Continuation 

Relational Based Mechanisms Institutional Affiliation Network 
  

Outdegree distribution 0.097 0.111 0.107 0.090 
Indegree distribution 0.425 0.407 0.393 0.394 
Triad census 1.000 1.000 1.000 1.000 
Clique 1.000 1.000 1.000 1.000      

Relational Based Mechanisms Journals of the Web of Science 
  

Outdegree distribution 0.237 0.223 0.234 0.236 
Indegree distribution 0.173 0.149 0.164 0.158 
Triad census 0.907 0.923 0.902 0.913 
Clique 0.030 0.025 0.030 0.037      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Mixed Indegree distribution 0.042 0.045 0.323 0.466 
Mixed outdegree distribution 0.128 0.17 0.136 0.212 
Mixed triad census 0.815 0.707 0.498 0.477 
Mixed geodesic distribution 0.058 0.052 0.047 0.053      

Relational Based Mechanisms for Multiplex Networks (Collaboration and Citation) 
Mixed triad census 0.756 0.67 0.981 0.951 
Mixed Indegree distribution 0.096 0.048 0.161 0.077 
Mixed outdegree distribution 0.022 0.006 0.100 0.088 
Mixed geodesic distribution 0.066 0.060 0.401 0.245      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Overlapping triadic census 0.027 0.013 0 0 
Overlapping triadic census (extended) 0.002 0.001 0 0      

Proximity Based Mechanisms for Multilevel Networks (Citation and Institutional Affiliation) 
Mixed Indegree distribution 0.009 0.002 0.181 0.100 
Mixed outdegree distribution 0.176 0.093 0.031 0.011 
Mixed triad census 0.412 0.203 0.302 0.078 
Mixed geodesic distribution 0.169 0.065 0.213 0.083      

 
 
  



 
 189 

Continuation 
Proximity Based Mechanisms for Multilevel Networks (Collaboration and Institutional Affiliation) 
Mixed Indegree distribution 0.474 0.713 0.584 0.819 
Mixed outdegree distribution 0.926 0.950 0.919 0.960 
Mixed triad census 0.977 0.974 0.931 0.972 
Mixed geodesic distribution 0.288 0.236 0.290 0.182      

Proximity Based Mechanisms for Multilevel Networks (Citation and Journals of the Web of Science) 
Mixed Indegree distribution 0.058 0.03 0.41 0.263 
Mixed outdegree distribution 0.951 0.853 0.914 0.721 
Mixed triad census 0.856 0.664 0.811 0.568 
Mixed geodesic distribution 0.166 0.121 0.173 0.143      

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Journals of the Web of Science) 
Mixed Indegree distribution 0.519 0.514 0.555 0.538 
Mixed outdegree distribution 0.881 0.777 0.892 0.734 
Mixed triad census 0.873 0.819 0.875 0.797 
Mixed geodesic distribution 0.002 0.003 0.003 0.001      

Proximity Based Mechanisms for Multilevel Networks (Citations, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed Indegree distribution 0.057 0.017 0.379 0.196 
Mixed outdegree distribution 0.655 0.475 0.510 0.314 
Mixed quadratic census 0.590 0.339 0.449 0.147 
Mixed geodesic distribution 0.282 0.272 0.300 0.308      

Proximity Based Mechanisms for Multilevel Networks (Collaboration, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed Indegree distribution 0.953 0.981 0.967 0.984 
Mixed outdegree distribution 0.740 0.697 0.775 0.703 
Mixed quadratic census 0.975 0.953 0.960 0.944 
Mixed geodesic distribution 0.298 0.312 0.305 0.297      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Mixed indegree distribution (without 
normalization) 

0.058 0.009 0.131 0.053 

Mixed outdegree distribution (without 
normalization) 

0.760 0.768 0.792 0.709 
     

 
  



 
 190 

Continuation 
Proximity Based Mechanisms for Multilevel Networks (Citation and Institutional Affiliation) 
Mixed indegree distribution (without 
normalization) 

0.030 0.008 0.298 0.186 

Mixed outdegree distribution (without 
normalization) 

0.724 0.653 0.393 0.205 
     

Proximity Based Mechanisms for Multilevel Networks (Citation and Journals of the Web of Science 
Mixed indegree distribution (without 
normalization) 

0.311 0.301 0.335 0.346 

Mixed outdegree distribution (without 
normalization) 

0.399 0.392 0.383 0.382 
     

Proximity Based Mechanisms for Multilevel Networks (Citations, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed indegree distribution (without 
normalization) 

0.217 0.222 0.247 0.260 
     

Relational Based Mechanisms for Multiplex Networks (Collaboration and Citation) 
Mixed indegree distribution (without 
normalization) 

0.025 0.014 0.074 0.065 

Mixed outdegree distribution (without 
normalization) 

0.276 0.230 0.753 0.768 
     

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Institutional Affiliation) 
Mixed indegree distribution (without 
normalization) 

0.279 0.298 0.341 0.366 

Mixed outdegree distribution (without 
normalization) 

0.680 0.678 0.714 0.769 
     

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Journals of the Web of Science) 
Mixed indegree distribution (without 
normalization) 

0.384 0.421 0.425 0.526 

Mixed outdegree distribution (without 
normalization) 

0.724 0.700 0.687 0.567 
     

Proximity Based Mechanisms for Multilevel Networks Collaboration, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed outdegree distribution (without 
normalization) 

0.753 0.696 0.707 0.612 
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G. Exploratory Analysis using Weighted Networks 
 
Some models are further estimated in this section (Table 24) to explore weighted 

networks using strong (> 123!%4(8)) and weak ties (< 123!%4(8)) incorporated 
into the model specification as a dyadic covariate. Each model is similar to the 
results presented in the main section, but the full model and the multiplex did not 
achieve convergence. In this section, Model 1 is similar to the Multilevel Model 
adding co-citation (weak ties), in which authors are perceived as cognitive similar 
by a third party (White, 2003). Co-citation tends to represent authors that are close 
‘intellectually’ or reflect conflict or oppositions between them (White, 
2011). Collaboration (weak ties) is the tendency to have from more collaboration 
to strong collaboration, and the transitivity from the weak collaboration is the 
tendency to create a strong collaboration with an author if they both share co-
authors. Model 2 adds the same dyadic covariates that Model 1 but does not 
consider the multilevel effects. Model 3 do not estimate the multilevel network but 
incorporate for the focal actor the relative position of the authors as a covariate 
such as the number of times the astronomers were first author, second author, and 
last author in their accumulated papers. This model also incorporates the number 
of times the astronomers published in papers that were alphabetically ordered. 
Model 4 also adds the authors' relative position and the alphabetical order, adding 
if other actors had these attributes and the homophily tendency for each covariate. 

Most of the parameters in Model 1, in comparison with the Multilevel 
Model presented in the main section, present some difference. Model 1 has less 
level of significance of some parameters, but overall, there are fewer changes in 
the direction of the coefficients. These differences can be associated with the 
inclusion of new and more parameters, adding some insights into the differences 
between weak and strong ties. The main changes are the citation accumulated 
similarity and age similarity, nationality, and homophily of the nationality for the 
collaboration network. For multilevel effects, the co-authorship to journal 
agreement for the journal network and the closure by affiliation in the 
collaboration (institution) network also change their direction. All the effects 
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before mentioned above change their directions when only strong ties are 
considered and are less significant. These models seem promising and allowed to 
use of weighted networks. Further analysed should be considered. 
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  Model 1  Model 2  Model 3  Model 4  
Citation Rate (period 1) 2.10  0.46  2.18  0.50  2.19  0.51  2.18  0.48  
Network Rate (period 2) 2.99  0.65  3.30  0.74  3.32  0.75  3.24  0.70  

 Rate indegree 0.12*** 0.04  0.12 ** 0.04  0.11 ** 0.04  0.11 ** 0.03  

 RM: Outdegree (density)  -4.66 *** 1.15  -3.78 *** 1.06  -4.80 *** 1.11  -5.08 *** 1.17  

 RM: Reciprocity  3.48 *** 0.59  2.99 *** 0.35  3.04 *** 0.35  3.03 *** 0.37  

 RM: Transitive triplets 0.32 † 0.19  0.40 * 0.18  0.37 * 0.17  0.38 * 0.18  

 RM: Transitivity reciprocated triplets -0.53 * 0.27  -0.61 * 0.24  -0.56 * 0.23  -0.57 * 0.24  

 RM: Transitive ties 1.57 *** 0.27  1.43 *** 0.26  1.54 *** 0.27  1.56 *** 0.27  

 RM: sqrt(indegree) (popularity) 0.06  0.65  0.06  0.59  0.23  0.60  0.36  0.61  

 RM: sqrt(outdegree) (popularity) -0.29  0.25  -0.23  0.22  -0.27  0.23  -0.29  0.25  

 RM: sqrt(outdegree) (activity) 0.52  0.61  0.52  0.55  0.85  0.57  0.99 † 0.59  

 RM: Outdegree at least one -0.92  0.57  -1.14 * 0.56  -0.45  0.65  -0.51  0.67  

 RM: Assortativity -0.40  0.31  -0.39  0.28  -0.50 † 0.29  -0.57 † 0.31  

 RM: 4-cycles 0.07 *** 0.02  0.06 *** 0.02  0.06 *** 0.02  0.07 *** 0.02  

 RM: Co-citation (weak ties)  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

 C: Nationality alter (1=Chilean) -0.22  0.22  -0.10  0.21  -0.02  0.21  0.03  0.24  

 C: Nationality ego (1=Chilean) -0.64*  0.25  -0.42 † 0.22  -0.08  0.26  -0.05  0.26  

 
DSM: Nationality ego x Nationality 
alter -0.61 †  0.35  -0.47  0.33  -0.35  0.34  -0.26  0.34  

 C: Citations alter 0.55 *** 0.13  0.55 *** 0.12  0.59 *** 0.12  0.56 *** 0.13  

 C: Citations ego 0.42 ** 0.15  0.44 ** 0.15  0.50 ** 0.17  0.49 ** 0.17  

 
DSM: Citations accumulated 
similarity  -0.06  0.10  -0.04  0.09  -0.03  0.10  0.01  0.11  

 DSM: Age similarity (year first paper) 0.05  0.07  0.05  0.07  0.06  0.07  0.01  0.09  

 DSM: Papers accumulated similarity  -0.05  0.18  -0.11  0.17  -0.14  0.18  -0.24  0.27  

 C: Time -0.95 *** 0.23  -0.91 *** 0.20  -1.00 *** 0.22  -0.99 *** 0.23  
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; PM: 
Proximity mechanisms. To control for time heterogeneity, we add a linear time variable (Snijders & Lospinoso, 2019). † p < 0.1; * p < 0.05; 
** p < 0.01; *** p < 0.001; 
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Continuation  Model 1 Model 2 Model 3 Model 4 
Citation 
Network C: Alphabetic order alter       -0.23  0.14  

 C: Alphabetic order ego     -0.48 * 0.21  -0.44 * 0.20  

 DSM: Alphabetic order ego x Alphabetic order alter     0.06  0.09  

 C: Last position alter       -0.01  0.18  

 C: Last position ego     -0.33  0.20  -0.39 † 0.21  

 C: Last position ego x Last position alter      0.16  0.11  

 C: First author alter       0.37  0.26  

 C: First author ego     0.63 * 0.30  0.77 * 0.32  

 DSM: First author ego x First author alter      -0.35  0.23  

 C: Second author alter       0.05  0.19  

 C: Second author ego     0.37 † 0.23  0.34  0.23  

 DSM: Second author ego x Second author alter     0.01  0.13  
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; PM: 
Proximity mechanisms. To control for time heterogeneity, we add a linear time variable (Snijders & Lospinoso, 2019). † p < 0.1; * p < 0.05; ** 
p < 0.01; *** p < 0.001; 
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Continuation  Model 1  Model 2  Model 3  Model 4  

 PM: Affiliation closure (Institutions) 1.56***  0.34        
 PM: Affiliation closure (Journals) 0.21  0.15        

 
PM: Reciprocity X Affiliation closure 
(Institutions) -0.83  0.62        

 PM: Reciprocity X Affiliation closure (Journals) -0.14  0.26        
Collaboration Rate (period 1) 9.41  4.18  9.46  4.60  9.55  4.44  9.55  4.38  

 Rate (period 2) 7.68  3.52  7.41  2.20  7.42  2.47  7.46  2.70  

 RM: Outdegree (density)  -5.11 *** 0.76  -5.10 *** 0.70  -5.10 *** 0.72  -5.12 *** 0.64  

 RM: Transitive triads 0.95 * 0.38  0.96 ** 0.34  0.95 ** 0.36  0.94 * 0.37  

 RM: Transitivity ties 0.96  0.68  0.93  0.64  0.93  0.71  0.99  0.71  

 RM: Degree 0.06  0.24  0.08  0.21  0.08  0.22  0.08  0.20  

 C: Collaboration (weak ties) -0.67 *** 0.16  -0.68 *** 0.16  -0.67 *** 0.16  -0.67 *** 0.17  

 C: Transitivity (weak collaboration) 0.04 *** 0.01  0.04 *** 0.01  0.04 *** 0.01  0.04 *** 0.01  

 C: Nationality (1=Chilean) 0.10  0.23  0.09  0.21  0.09  0.22  0.09  0.21  

 DSM: Nationality ego x Nationality alter 0.32  0.55  0.30  0.53  0.33  0.54  0.32  0.54  

 C: Citations 0.12  0.09  0.12  0.08  0.12  0.08  0.12  0.08  

 DSM: Citations accumulated similarity^2 -0.01  0.03  -0.01  0.03  -0.01  0.03  -0.01  0.03  

 PM: Affiliation closure (Institutions) -0.01  0.65        
 PM: Affiliation closure (Journals) 0.06  0.22        
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; PM: Proximity 
mechanisms. To control for time heterogeneity, we add a linear time variable (Snijders & Lospinoso, 2019). † p < 0.1; * p < 0.05; ** p < 0.01; *** p < 
0.001; 
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Table 24 SAOM Models (Weighted) for the Evolution of the Citation Network, Collaboration Network, Scientists Affiliated with Institutions and 

Scientists Publishing in Journals from the Web of Science 
 

Continuation  Model 1  Model 2  Model 3  Model 4  
Institutional 
Affiliation Rate (period 1) 0.24  0.06  0.24  0.06  0.24  0.06  0.24  0.06  

 Rate (period 2) 4.67  0.70  4.65  0.64  4.64  0.65  4.65  0.66  

 RM: Outdegree (density)  -0.99 * 0.46  -0.99 * 0.47  -0.99 * 0.46  -1.00 * 0.47  

 RM: Indegree (popularity) 0.11 ** 0.04  0.11 ** 0.04  0.11 ** 0.04  0.11 ** 0.04  

 RM: Outdegree (activity) 0.36 * 0.15  0.36 * 0.15  0.36 * 0.16  0.36 * 0.16  

 RM: Assortativity -0.36 * 0.18  -0.36 † 0.19  -0.36 † 0.19  -0.36 † 0.19  

 C: Type of Organisation (1=University) 0.04  0.18  0.04  0.18  0.04  0.19  0.04  0.18  

 DSM: Citations accumulated similarity  2.11 * 0.83  2.13 * 0.85  2.10 * 0.82  2.10 * 0.87  
Journals in the 
WOS Rate (period 1) 4.05  0.51  4.07  0.51  4.07  0.51  4.07  0.50  

 Rate (period 2) 3.89  0.51  3.87  0.52  3.86  0.50  3.87  0.51  

 RM: Outdegree (density)  -3.50 *** 0.22  -3.56 *** 0.22  -3.55 *** 0.22  -3.55 *** 0.22  

 RM: Cycle of fourth 0.01 * 0.01  0.01 ** 0.00  0.02 ** 0.00  0.02 ** 0.00  

 RM: sqrt(indegree) (popularity) 0.40 *** 0.05  0.43 *** 0.04  0.43 *** 0.05  0.42 *** 0.05  

 RM: Outdegree (activity) 0.08 ** 0.03  0.08 ** 0.03  0.08 ** 0.03  0.08 ** 0.03  

 
C: Interdisciplinary Journal 
(1=Interdisciplinary) 0.02  0.29  0.01  0.28  0.01  0.28  0.01  0.29  

 C: National-based journal (1=National)  -0.31  0.36  -0.31  0.36  -0.30  0.35  -0.31  0.36  

 C: Astronomical journal (1=Astronomy) 0.27 * 0.13  0.26 * 0.13  0.26 * 0.13  0.26 * 0.13  

 C: Impact Factor 0.01  0.10  0.02  0.09  0.02  0.09  0.02  0.09  

 DSM: Citations accumulated similarity  -0.19  0.48  -0.04  0.46  -0.03  0.45  -0.04  0.46  
 RMM: Citation to journal agreement 0.01  0.04       

 RMM: Collaboration to journal agreement 0.41  0.31        
Note: RM: Relational mechanisms; RMM: Relational multilevel mechanisms; DSM: Dyadic similarity mechanisms; C: Control; PM: Proximity 
mechanisms. To control for time heterogeneity, we add a linear time variable (Snijders & Lospinoso, 2019). † p < 0.1; * p < 0.05; ** p < 0.01; *** p < 
0.001; 
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H. Goodness of Fit 
 
 
Table 25 Goodness of Fit of the Models (Weighted) 
 

Goodness of fit Full Model Multiplex 
Model 

Multilevel 
Model 

Baseline Model 

Relational Mechanisms Citation Network 
   

Indegree distribution 0.720 0.638 0.709 0.709 
Outdegree distribution 0.404 0.383 0.487 0.49 
Triad census 0.002 0.001 0.001 0.002 
Geodesic distribution 0.898 0.800 0.807 0.804 
Clique distribution 0.427 0.333 0.388 0.433 
Eigenvalue distribution 0.097 0.076 0.106 0.107      

Relational Mechanisms Collaboration Network 
   

Degree distribution 0.129 0.129 0.126 0.145 
Triad census 0.999 0.999 0.999 0.998 
Geodesic distribution 0.006 0.008 0.008 0.010 
Clique distribution 0.737 0.728 0.703 0.720 
Eigenvalue distribution 0.979 0.976 0.975 0.974      

Similarity Based Mechanisms Citation Network 
   

E-I index 0.292 0.275 0.300 0.326 
Yule-Q 0.252 0.169 0.214 0.240 
Similarity Distribution 0.107 0.068 0.031 0.076 
Average Euclidian 0.428 0.276 0.15 0.305 
Constraint 0.019 0.009 0.014 0.017 
Effective size 0.582 0.616 0.601 0.616      

Similarity Based Mechanisms Collaboration Network 
  

E-I index 0.412 0.39 0.365 0.395 
Yule-Q 0.989 0.987 0.982 0.983 
Similarity Distribution 0.797 0.776 0.79 0.796 
Average Euclidian 0.613 0.616 0.636 0.633 
Constraint 0.021 0.019 0.019 0.022 
Effective size 0.356 0.39 0.376 0.391      
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Continuation 
Relational Based Mechanisms Institutional Affiliation Network 

  

Outdegree distribution 0.094 0.092 0.093 0.095 
Indegree distribution 0.408 0.417 0.399 0.416 
Triad census 1.000 1.000 1.000 1.000 
Clique 1.000 1.000 1.000 1.000      

Relational Based Mechanisms Journals of the Web of Science 
  

Outdegree distribution 0.268 0.24 0.232 0.235 
Indegree distribution 0.15 0.158 0.163 0.182 
Triad census 0.918 0.919 0.92 0.906 
Clique 0.027 0.03 0.03 0.039      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Mixed Indegree distribution 0.975 0.973 0.975 0.986 
Mixed outdegree distribution 0.652 0.632 0.612 0.703 
Mixed triad census 0.716 0.718 0.712 0.689 
Mixed geodesic distribution 0.022 0.018 0.017 0.016      

Relational Based Mechanisms for Multiplex Networks (Collaboration and Citation) 
Mixed triad census 0.984 0.992 0.988 0.988 
Mixed Indegree distribution 0.222 0.194 0.199 0.23 
Mixed outdegree distribution 0.973 0.985 0.959 0.958 
Mixed geodesic distribution 0.816 0.832 0.914 0.914      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Overlapping triadic census 0.072 0.052 0.058 0.063 
Overlapping triadic census (extended) 0.046 0.026 0.035 0.039      

Proximity Based Mechanisms for Multilevel Networks (Citation and Institutional Affiliation) 
Mixed Indegree distribution 0.732 0.757 0.756 0.752 
Mixed outdegree distribution 0.958 0.971 0.970 0.971 
Mixed triad census 0.152 0.615 0.545 0.529 
Mixed geodesic distribution 0.252 0.25 0.285 0.283      
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Continuation 
Proximity Based Mechanisms for Multilevel Networks (Collaboration and Institutional Affiliation) 
Mixed Indegree distribution 0.780 0.792 0.790 0.794 
Mixed outdegree distribution 0.628 0.641 0.601 0.619 
Mixed triad census 0.970 0.977 0.977 0.977 
Mixed geodesic distribution 0.171 0.17 0.166 0.182      

Proximity Based Mechanisms for Multilevel Networks (Citation and Journals of the Web of Science) 
Mixed Indegree distribution 0.733 0.677 0.707 0.687 
Mixed outdegree distribution 0.461 0.443 0.413 0.429 
Mixed triad census 0.97 0.883 0.864 0.879 
Mixed geodesic distribution 0.011 0.006 0.006 0.006      

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Journals of the Web of Science) 
Mixed Indegree distribution 0.714 0.648 0.672 0.649 
Mixed outdegree distribution 0.359 0.337 0.362 0.347 
Mixed triad census 0.487 0.381 0.405 0.384 
Mixed geodesic distribution 0.399 0.193 0.198 0.221      

Proximity Based Mechanisms for Multilevel Networks (Citations, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed Indegree distribution 0.682 0.686 0.705 0.663 
Mixed outdegree distribution 0.844 0.793 0.826 0.813 
Mixed quadratic census 0.687 0.819 0.752 0.835 
Mixed geodesic distribution 0.175 0.151 0.149 0.161      

Proximity Based Mechanisms for Multilevel Networks (Collaboration, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed Indegree distribution 0.642 0.635 0.65 0.625 
Mixed outdegree distribution 0.293 0.242 0.243 0.235 
Mixed quadratic census 0.946 0.946 0.953 0.95 
Mixed geodesic distribution 0.075 0.057 0.061 0.075      

Relational Based Mechanisms for Multiplex Networks (Citation and Collaboration) 
Mixed indegree distribution (without 
normalization) 0.951 0.935 0.935 0.931 
Mixed outdegree distribution (without 
normalization) 0.171 0.205 0.201 0.214      
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Continuation 
Proximity Based Mechanisms for Multilevel Networks (Citation and Institutional Affiliation) 
Mixed indegree distribution (without 
normalization) 0.447 0.420 0.448 0.472 
Mixed outdegree distribution (without 
normalization) 0.712 0.754 0.743 0.724      

Proximity Based Mechanisms for Multilevel Networks (Citation and Journals of the Web of Science 
Mixed indegree distribution (without 
normalization) 0.405 0.323 0.358 0.327 
Mixed outdegree distribution (without 
normalization) 0.336 0.249 0.211 0.227      

Proximity Based Mechanisms for Multilevel Networks (Citations, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed indegree distribution (without 
normalization) 0.339 0.279 0.315 0.287      

Relational Based Mechanisms for Multiplex Networks (Collaboration and Citation) 
Mixed indegree distribution (without 
normalization) 0.525 0.465 0.500 0.516 
Mixed outdegree distribution (without 
normalization) 0.139 0.167 0.167 0.183      

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Institutional Affiliation) 
Mixed indegree distribution (without 
normalization) 0.503 0.504 0.518 0.499 
Mixed outdegree distribution (without 
normalization) 0.644 0.667 0.666 0.659      

Proximity Based Mechanisms for Multilevel Networks (Collaboration and Journals of the Web of Science) 
Mixed indegree distribution (without 
normalization) 0.215 0.178 0.188 0.199 
Mixed outdegree distribution (without 
normalization) 0.157 0.136 0.139 0.134      

Proximity Based Mechanisms for Multilevel Networks Collaboration, Institutional Affiliation and Journals of the Web of 
Science) 
Mixed outdegree distribution (without 
normalization) 0.859 0.793 0.799 0.764 
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0. Descriptive Analysis 

 
Table 26 Descriptive of the Citation Network 

ID Organization Name of 
Organization 

Members Total Number 
of ties 

Density Average 
Degree 

1 AIUC Center for 
Astroengineering 

of the Catholic 
University 

3 9 21 0.29 4.66 

2 CMM Center for 
Mathematical 

Modeling of the 
University of Chile 

4 20 91 0.24 9.10 

3 CTIO The Cerro Tololo 
Inter-American 

Observatory 

13 25 82 0.14 6.56 

4 ESO European 
Southern 

Observatory 

90 132 206 0.01 3.12 

5 GEMINI Gemini 
Observatory 

13 13 0 0.00 0.00 

6 HARLINGTEN Caisey Harlingten 
Observatory 

2 2 0 0.00 0.00 

7 INEWTON The Isaac Newton 
Institute 

8 14 18 0.10 2.57 

8 JAO Joint ALMA 
Observatory 

24 31 13 0.01 0.84 

9 LCO Las Campanas 
Observatory 

30 45 128 0.06 5.69 

10 MAD Millennium 
Nucleus Center of 

Protoplanetary 
Disks in ALMA 

Early Science 

10 16 23 0.10 2.86 

11 MAS The Millennium 
Institute of 

Astrophysics 

56 115 277 0.02 4.82 

12 NAOJ The National 
Astronomical 

Observatory of 
Japan 

13 14 3 0.02 
 

0.43 

13 NOAO NSF's National 
Optical 

Astronomy 
Observatory 

10 10 0 0.00 0.00 

14 NRAO NSF's National 
Radio Astronomy 

Observatory 

1 5 8 0.40 3.20 

15 PUC The Pontifical 
Catholic 

University of Chile 

105 128 151 0.01 
 

2.36 
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Continuation 
16 SOAR The Southern 

Astrophysical 
Research 

2 2 0 0.00 0.00 

17 UA University of 
Antofagasta 

6 6 0 0.00 0.00 

18 UAUTONOMA Autonomous 
University of Chile 

2 4 4 0.33 2.00 

19 UCH The University of 
Chile 

92 131 235 0.01 
 

3.59 

20 UCN The Catholic 
University of the 

North 

8 9 1 0.01 
 

0.22 

21 UDA The University of 
Atacama 

4 4 0 0.00 0.00 

22 UdeC The University of 
Concepcion 

30 46 59 0.03 2.57 

23 UDP The University of 
Diego Portales 

11 36 112 0.09 6.22 

24 ULS The University of 
La Serena 

8 15 40 0.19 5.33 

25 UMI-FCA Unité Mixte 
Internationale 

Franco-Chilienne 
d'Astronomie 

8 23 53 0.10 4.61 

26 UNAB The University of 
Andres Bello 

9 25 56 0.09 4.48 

27 USACH The University of 
Santiago 

2 3 1 0.17 0.67 

28 UTFSM The Federico Santa 
Maria Technical 

University 

3 17 93 0.34 
 

10.94 

29 UV The University of 
Valparaiso 

38 47 39 0.02 1.66 
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Table 27 Descriptive of the Institutional Affiliation Network 

 
ID Organization Name of 

Organization 
Number of 

Organizations 
Number of 

ties 
Density Average degree 

1 AIUS Center for 
Astroengineering 

of the Catholic 
University 

3 21 0.41 4.00 

2 CMM Center for 
Mathematical 

Modeling of the 
University of 

Chile 

2 91 0.53 11.00 

3 CTIO The Cerro Tololo 
Inter-American 

Observatory 

6 82 0.13 3.17 

4 ESO European 
Southern 

Observatory 

13 206 0.07 8.85 

5 GEMINI Gemini 
Observatory 

2 0 0.08 1.00 

6 HARLINGTEN Caisey 
Harlingten 

Observatory 

0 0 0.00 0.00 

7 INEWTON The Isaac Newton 
Institute 

4 18 0.34 4.75 

8 JAO Joint ALMA 
Observatory 

6 13 0.13 4.00 

9 LCO Las Campanas 
Observatory 

7 128 0.11 5.00 

10 MAD Millennium 
Nucleus Center of 

Protoplanetary 
Disks in ALMA 

Early Science 

6 23 0.21 3.33 

11 MAS The Millennium 
Institute of 

Astrophysics 

11 277 0.11 13.27 

12 NAOJ The National 
Astronomical 

Observatory of 
Japan 

2 3 0.11 1.50 

13 NOAO NSF's National 
Optical 

Astronomy 
Observatory 

4 0 0.25 2.75 

14 NRAO NSF's National 
Radio Astronomy 

Observatory 

2 8 0.50 3.00 

15 PUC The Pontifical 
Catholic 

University of 
Chile 

18 151 0.05 6.44 
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Continuation 

16 SOAR The Southern 
Astrophysical 

Research 

2 0 0.25 1.00 

17 UA University of 
Antofagasta 

2 0 0.17 1.00 

18 UAUTONOMA Autonomous 
University of 

Chile 

2 4 0.38 2.00 

19 UCHASTRO The University of 
Chile, 

Department 
Astronomy 

12 235 0.07 8.58 

20 UCN The Catholic 
University of the 

North 

6 1 0.11 1.00 

21 UDA The University of 
Atacama 

1 0 0.00 0.00 

22 UdeC The University of 
Concepcion 

9 59 0.09 4.33 

23 UDP The University of 
Diego Portales 

6 112 0.18 6.67 

24 ULS The University of 
La Serena 

2 40 0.23 3.5 

25 UMI-FCA Unité Mixte 
Internationale 

Franco-Chilienne 
d'Astronomie 

3 53 0.29 7.00 

26 UNAB The University of 
Andres Bello 

6 56 0.27 7.17 

27 USACH The University of 
Santiago 

5 1 0.33 1.00 

28 UTFSM The Federico 
Santa Maria 

Technical 
University 

2 93 0.29 5.5 

29 UV The University of 
Valparaiso 

6 39 0.15 7.17 
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J. Goodness of Fit Stationary Stochastic Actor-oriented Models 
 
Table 28 Goodness of Fit of Each Group 

 
Group Indegree Outdegree Geodesic Triad Clique Bipartite 

Indegree 
Bipartite 
Outdegree 

Mixed 
Triad 

AIUS - - - - - - - - 
CMM 0.012 0.612 0.116 0.299 0.494 0.248 0.065 0.793 
CTIO 0.178 0.966 0.900 0.995 0.495 0.106 0.523 0.961 
ESO 0.124 0.107 0.512 0.516 0.106 0.533 0.002 0.033 
GEMINI - - - - - - - - 
HARLINGTEN - - - - - - - - 
INEWTON - - - - - - - - 
JAO - - - - - - - - 
LCO 0.003 0.915 0.077 0.335 0.452 0.495 0.020 0.447 
MAD - - - - - - - - 
MAS 0.013 0.512 0.055 0.186 0.679 0.173 0.042 0.559 
NAOJ - - - - - - - - 
NOAO - - - - - - - - 
NRAO - - - - - - - - 
PUC 0.274 0.209 0.113 0.055 0.520 0.233 0.015 0.055 
SOAR - - - - - - - - 
UA - - - - - - - - 
UAUTONOMA - - - - - - - - 
UCH 0.002 0.596 0.049 0.379 0.669 0.324 0.016 0.223 
UCN - - - - - - - - 
UDA - - - - - - - - 
UdeC 0.610 0.700 0.359 0.288 0.645 0.073 0.064 0.441 
UDP 0.946 0.339 0.181 0.444 0.468 0.033 0.898 0.941 
ULS 0.931 0.513 0.915 0.593 0.205 0.407 0.310 0.864 
UMI-FCA 0.821 0.937 0.289 0.492 0.364 0.383 0.199 0.567 
UNAB - - - - - - - - 
USACH - - - - - - - - 
UTFSM 0.008 0.698 0.638 0.631 0.598 0.044 0.961 0.149 
UV 0.143 0.163 0.452 0.090 0.140 0.798 0.130 0.016 
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K. Sensitive Analysis 
 
We present some sensitive analysis to identify potential specification and normalization of the 

co-citation from weak ties to compare no normalization, cosine similarity and weighted Jaccard 

similarity (table 4). From the analysis, the co-citation from weak ties without normalization have 

parameters that are more significantly different across the personal communities (! = 47.132,
Qp = 0.000) and the weighted Jaccard similarity also present more significant variations (! =
43.614, Qp = 0.000). In the analysis we present the results using the cosine similarity (! =
20.986, Qp = 0.021) which has less significant variations. 
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Table 29 Meta-analysis Considering Co-citation from Weak Ties with No 
Normalization and Jaccard Weighted Similarity 

 
  No normalization Jaccard weighted similarity 
 

 Est SE Σ . Est SE Σ . 
Citation Network  

 
 

  
    

Outdegree (density)   - 4.137** 0.450 1.237 43.057** -4.192** 0.460 1.232 44.712**  
         

Reciprocity  2.331** 0.190 0.093 8.382 2.312** 0.161 0.000 0.917  
         

Transitive triplets  0.175** 0.029 0.747 28.910* 0.184** 0.020 0.016 11.580  
         

Transitive ties  3.225** 0.294 0.376 13.170 3.351** 0.323 0.826 31.626  
         

Indegree popularity   -0.002 0.018 0.000 7.895 -0.010 0.017 0.018 10.857  
         

√Outdegree 
popularity 

 - 0.669** 0.074 0.054 11.710 -0.669** 0.071 0.000 7.785 
 

         
√Outdegree activity  0.237** 0.053 0.065 12.541 0.172** 0.046 0.000 8.853  

         
Reciprocity degree 
activity 

 -0.129** 0.024 0.055 20.152 -0.105** 0.017 0.000 8.945 
 

         
Closure by affiliation 
(ego) 

 -0.055 0.050 0.046 10.078 -0.036 0.048 0.040 7.450 
 

         
Closure by affiliation  0.007 0.007 0.000 4.325 0.015* 0.007 0.000 7.936  

         
Co-citation from 
weak ties 

 0.001** 0.000 0.000 0.000** 0.185* 0.083 0.203 43.614** 
 

         
Accumulative 
citations (alter) 

 0.104** 0.024 0.055 20.152 0.110** 0.021 0.045 18.777 
 

         
Accumulative 
citations (ego) 

 - 0.075** 0.017 0.000 7.131 -0.048** 0.015 0.000 6.170 
 

         
Absolute difference 
of the accumulated 
number of citations 

 
-0.117 ** 0.018 0.024 13.577 -0.124** 0.014 0.001 14.454 

 
                 

Σ standard deviation, Q chi-squared test statistic. Rates functions fixed 0 = 100 for the citation networks and 
0 = 30 for the institutional affiliation network. 
*1 < .05; **1 < .001;     
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Continuation 

  Est SE Σ . Est SE Σ . 
Institutional 
Affiliation 

         
Outdegree (density)  -1.335** 0.195 0.000 11.036 -1.116** 0.222 0.000 7.135  

         
√Indegree 
popularity 

 0.272** 0.040 0.096 26.570* 0.222** 0.017 0.000 11.853 
 

         
Outdegree activity  -0.294** 0.048 0.000 5.826 -0.354** 0.057 0.000 1.930  

         
Observatory (ref. 
University) 

 -0.094* 0.042 0.000 3.919 -0.073 0.044 0.000 8.410 
 

         
Research Centre (ref. 
University) 

 0.156* 0.045 0.000 4.149 0.147** 0.047 0.000 4.140 
 

         
Size  0.141** 0.030 0.069 19.989* 0.135** 0.027 0.061 19.245  

         
Closure by association  0.344** 0.052 0.000 2.672 0.312** 0.055 0.000 4.811  

                 
Σ standard deviation, Q chi-squared test statistic. Rates functions fixed 0 = 100 for the citation networks and 
0 = 30 for the institutional affiliation network. 
*1 < .05; **1 < .001;     

 
 
Convergence of the personal communities in the no normalization specification: CMM, ESO, LCO, MAS, 
PUC, UCH, UdeC, UDP, ULS, UNAB, and UV. For the personal communities in the Jaccard weighted 
similarity specification: CMM, CTIO, ESO, LCO, MAS, PUC, UCH, UdeC, UDP, ULS, UNAB, and UV 
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We also perform some extra analysis to control for the retrospective citation of the 
actors from 2017 treated as an additional rate function or as a closure by affiliation 
considering the retrospective network (table 5). From the two variations the model 
with retrospective citations as a rate function seems promising and more stable than 
the model that controls for the closure by affiliation in the retrospective citations. 
Nonetheless, in general the direction, significance and size effects of the parameters 
behave similarly in the different specifications.  
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Table 30 Meta-Analysis Including Retrospective Citations 
  Model with retrospective citations as a 

rate function 
Model with closure by affiliation 

considering the retrospective 
citations   

 Est SE Σ . Est SE Σ . 
Citation Network  

 
 

  
    

Outdegree (density)   -5.093** 0.254 0.000 6.934 - 3.838** 0.518 1.297 37.118**  
         

Reciprocity  2.225** 0.181 0.000 6.589 2.228** 0.167 0.000 10.217  
         

Transitive triplets  0.177** 0.022 0.000 7.949 0.128** 0.036 0.063 15.111  
         

Transitive ties  3.235** 0.251 0.439 14.029 3.230** 0.341 0.850 35.302**  
         

Indegree popularity   -0.016 0.020 0.000 6.001 0.016 0.014 0.000 5.531  
         

√Outdegree 
popularity 

 -0.640** 0.082 0.000 4.515 -0.751** 0.078 0.000 9.811 
 

         
√Outdegree activity  0.201** 0.057 0.000 8.623 0.090 0.075 0.114 12.877  

         
Reciprocity degree 
activity 

 -0.103** 0.020 0.000 5.339 -0.100** 0.018 0.022 9.259 
 

         
Closure by affiliation 
(ego) 

 -0.003 0.051 0.000 10.222 -0.057 0.061 0.089 12.400 
 

         
Closure by affiliation  0.016 0.009 0.000 4.029 0.012 0.007 0.000 3.434  

         
Co-citation from 
weak ties 

 0.010** 0.004 0.005 23.408* 0.001** 0.000 0.001 54.356** 
 

         
Accumulative 
citations (alter) 

 0.087** 0.015 0.013 13.243 0.104** 0.024 0.048 15.565 
 

         
Accumulative 
citations (ego) 

 -0.043** 0.016 0.000 4.246 -0.076** 0.017 0.000 6.813 
 

         
Absolute difference 
of the accumulated 
number of citations 

 
-0.117** 0.016 0.002 14.035 -0.139** 0.020 0.031 14.532 

          
Closure by affiliation in 
the retrospective 
citations 

 
    0.004** 0.000 0.000 5.134 

Σ standard deviation, Q chi-squared test statistic. Rates functions fixed 0 = 100 for the citation and the 
retrospective citation network, and 0 = 30 for the institutional affiliation network.  
*1 < .05; **1 < .001;     
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Continuation 

  Est SE Σ . Est SE Σ . 
Institutional 
Affiliation 

         
Outdegree (density)  -0.975** 0.254 0.000 7.823 -1.171** 0.264 0.485 14.668  

         
√Indegree 
popularity 

 0.269** 0.044 0.098 19.469* 0.229** 0.014 0.000 8.730 
 

         
Outdegree activity  -0.372** 0.064 0.000 2.342 -0.289** 0.045 0.000 6.843  

         
Observatory (ref. 
University) 

 -0.056 0.050 0.000 7.104 -0.097* 0.043 0.000 7.751 
 

         
Research Centre (ref. 
University) 

 0.136** 0.052 0.000 3.665 0.167** 0.047 0.000 3.537 
 

         
Size  0.115** 0.025 0.042 13.956 0.146** 0.030 0.067 18.896*  

         
Closure by association  0.309** 0.060 0.011 6.091 0.310** 0.044 0.000 5.227  

                 
Σ standard deviation, Q chi-squared test statistic. Rates functions fixed 0 = 100 for the citation and the 
retrospective citation network, and 0 = 30 for the institutional affiliation network.  
*1 < .05; **1 < .001;     

 
 
Convergence of the personal communities adding the retrospective citation as a rate function: CMM, 
CTIO, LCO, MAS, PUC, UCH, UdeC, UDP, ULS, UTFSM, and UV. For the personal communities adding 
the retrospective citation as a dyadic covariable specification: CMM, CTIO, ESO, MAS, PUC, UCH, 
UdeC, UDP, ULS, UNAB, and UTFSM 
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In the following and for further consideration, we follow the operationalization of 
Snijders and Steglich (2015) an perform different models that have “short-term 
dynamic equilibrium”. However, we will prefer for the interpretation of the main 
results a very high value to approximate a stationary distribution (Block et al., 2019). 
When the actors have different opportunities for changing its strong aggregated 
citations, we identify that most of the parameters behave similarly, nonetheless, there 
are some exceptions. In the three cases we can see differences in terms of the indegree 
tendency. For the shorter iteration process the effects seem more significant and 

positive (! = 0.048, s. e. = 0.017), then the model with rate functions fixed to , = 50 

for the citation network and , = 20 for the institutional affiliation the effects decrease 

its significance (! = 0.023, s. e. = 0.016), and the longest model become negative and 

less significant as well (! = −0.007, s. e. = 0.063). A similar issue appears in the 
closure by affiliation (ego), where the coefficient reverse direction and significance in 

the network with rate function fixed to , = 50 for the citation network, and , = 20 for 

the institutional affiliation (! = 0.002, s. e. = 0.049), in comparison with the models 

that allowed shorter and large opportunities to changes (! = −0.005, s. e. = 0.054 and 

! = −0.009, s. e. = 0.046, respectively).  
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Table 31 Robustness of Different Specification in Fixing the Rate Functions with 
Cosine Similarity 

 
  Rate function fixed to , = 30 for the 

citation network and , = 10 for the 
institutional affiliation 

Rate function fixed to , = 50 
for the citation network and 
, = 20 for the institutional 

affiliation   
 Est SE Σ . Est SE Σ . 

Citation Network  
 

 
  

    
Outdegree (density)   -5.430** 0.542 1.290 23.479* -5.041** 0.492 1.114 20.102*  

         
Reciprocity  2.208** 0.187 0.000 7.613 2.178** 0.181 0.000 6.363  

         
Transitive triplets  0.163** 0.038 0.071 14.675 0.171** 0.021 0.000 12.522  

         
Transitive ties  2.772** 0.220 0.376 13.170 2.917** 0.234 0.447 15.873  

         
Indegree popularity   0.048* 0.017 0.000 4.806 0.023 0.016 0.000 4.549  

         
√Outdegree 
popularity 

 -0.574** 0.078 0.001 10.987 -0.646** 0.077 0.000 8.305 
 

         
√Outdegree activity  0.301** 0.071 0.094 14.114 0.218** 0.052 0.000 10.538  

         
Reciprocity degree 
activity 

 -0.113** 0.019 0.000 5.386 -0.105** 0.018 0.000 5.593 
 

         
Closure by affiliation 
(ego) 

 -0.005 0.054 0.000 10.480 0.002* 0.049 0.001 10.114 
 

         
Closure by affiliation  0.028** 0.007 0.000 3.882 0.024* 0.007 0.000 4.723  

         
Co-citation from 
weak ties 

 0.016** 0.005 0.007 16.786 0.015* 0.005 0.007 20.951 
 

         
Accumulative 
citations (alter) 

 0.092** 0.016 0.001 12.781 0.091** 0.014 0.002 12.462 
 

         
Accumulative 
citations (ego) 

 -0.041* 0.016 0.000 5.355 -0.042* 0.015 0.000 5.335 
 

         
Absolute difference 
of the accumulated 
number of citations 

 
-0.128** 0.018 0.007 14.595 -0.121** 0.017 0.011 13.648 

Σ standard deviation, Q chi-squared test statistic.  
*1 < .05; **1 < .001;     
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Continuation 
  Est SE Σ . Est SE Σ . 
Institutional 
Affiliation 

         
Outdegree (density)  -1.339** 0.285 0.593 18.988 -1.306** 0.253 0.401 13.401  

         
√Indegree 
popularity 

 0.308** 0.043 0.101 25.728 0.302** 0.044 0.106 31.074* 
 

         
Outdegree activity  -0.249** 0.052 0.080 11.540 -0.276** 0.049 0.000 7.169  

         
Observatory (ref. 
University) 

 -0.076 0.056 0.000 7.470 -0.072 0.048 0.000 8.936 
 

         
Research Centre (ref. 
University) 

 0.146* 0.061 0.000 2.601 0.150* 0.050 0.000 3.607 
 

         
Size  0.132** 0.027 0.037 12.033 0.130** 0.028 0.060 17.439  

         
Closure by association  0.291** 0.041 0.000 7.447 0.279** 0.045 0.000 5.881  

         
Σ standard deviation, Q chi-squared test statistic.  
*1 < .05; **1 < .001;     

 
Convergence of the personal communities fixing the rate function 0 = 30 for the citation network and 0 =
10 for the institutional affiliation: CMM, CTIO, LCO, MAS, PUC, UCH, UdeC, UDP, ULS, UNAB, 
UTFSM, and UV. For the personal communities fixing the rate function 0 = 50 for the citation network 
and 0 = 20 for the institutional affiliation: CMM, CTIO, LCO, MAS, PUC, UCH, UdeC, UDP, ULS, 
UNAB, UTFSM, and UV. 
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L. Separate Stochastic Actor-oriented Models 
 
 
Table 32 Separate SAOM models 
 

 CMM  UDP  UdeC  PUC  

Citation Network         
Outdegree (density)  -7.46*  2.50  -4.03**  1.20  -6.27**  1.18  -5.91**  0.77  
Reciprocity  2.76*  0.96  2.25**  0.49  2.27*  0.89  3.41**  0.59  
Transitive triplets  0.14  0.10  0.41**  0.10  0.21  0.11  -0.06  0.22  
Transitive ties  3.49  1.99  2.19**  0.57  3.44**  0.69  2.81**  0.40  
Indegree popularity  -0.07  0.10  -0.09  0.06  0.01  0.08  0.03  0.05  
√Outdegree popularity -0.58*  0.29  -0.99**  0.28  -0.84*  0.32  -0.18  0.21  
√Outdegree activity 0.85*  0.29  0.04  0.14  0.08  0.29  0.46*  0.22  
Reciprocity degree activity -0.20*  0.09  -0.20*  0.07  -0.12  0.13  -0.20*  0.09  
Closure by affiliation (ego) 0.87*  0.38  -0.21  0.21  -0.08  0.19  -0.00  0.14  
Closure by affiliation -0.01  0.03  0.05*  0.02  0.04  0.05  0.02  0.03  
Co-citation from weak ties 0.27*  0.10  0.08*  0.04  0.09*  0.03  0.01  0.01  
Accumulative citations (alter) 0.01  0.06  0.22**  0.07  0.09  0.08  0.16**  0.05  
Accumulative citations (ego) -0.01  0.05  -0.07  0.06  -0.13  0.09  -0.05  0.05  
Absolute difference of the 
accumulated number of 
citations 

-0.05  0.07  -0.16*  0.07  -0.19*  0.08  -0.13*  0.04  

Institutional Affiliation         
Outdegree (density)  0.08  1.49  0.32  1.04  -1.09  0.78  -1.88*  0.92  
√Indegree popularity  0.35  0.23  0.14  0.14  0.40**  0.10  0.22**  0.05  
Outdegree activity -0.45  0.31  -0.53*  0.25  -0.38*  0.19  -0.23  0.25  
Observatory (ref. University) -0.00  0.17  -0.13  0.16  -0.13  0.14  -0.23  0.15  
Research Centre (ref. 
University) 0.23  0.20  0.03  0.18  0.09  0.17  0.12  0.18  

Size 0.09  0.07  0.07  0.05  0.13  0.07  0.28**  0.08  
Closure by association 0.17  0.15  0.56*  0.25  0.36  0.41  0.65  0.59  

*1 < .05; **1 < .001; 
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Continuation ESO  LCO  MAS  UCH  

Citation Network         
Outdegree (density)  -6.21**  0.66  -5.58**  0.76  -4.77**  0.56  -5.02**  0.45  
Reciprocity  2.88**  0.50  1.82*  0.61  2.11**  0.29  2.29**  0.41  
Transitive triplets  0.23**  0.04  0.13*  0.06  0.17**  0.04  0.17**  0.04  
Transitive ties  4.65**  0.41  4.36**  0.66  2.99**  0.33  3.78**  0.39  
Indegree popularity  -0.08  0.06  -0.02  0.04  0.02  0.02  -0.00  0.04  
√Outdegree popularity -0.64*  0.25  -0.43*  0.19  -0.69**  0.11  -0.63**  0.15  
√Outdegree activity 0.21  0.13  0.28  0.18  0.13  0.08  0.22*  0.09  
Reciprocity degree activity -0.16  0.05  -0.08  0.05  -0.07*  0.03  -0.09*  0.04  
Closure by affiliation (ego) -0.07  0.12  0.04  0.16  -0.09  0.09  0.10  0.10  
Closure by affiliation 0.03  0.02  0.00  0.02  0.02  0.01  0.01  0.02  
Co-citation from weak ties 0.01  0.01  0.02  0.01  0.01*  0.01  0.00  0.00  
Accumulative citations (alter) 0.23**  0.06  0.05  0.03  0.10**  0.02  0.10**  0.03  
Accumulative citations (ego) -0.11*  0.05  -0.02  0.03  -0.04  0.03  -0.04  0.04  
Absolute difference of the 
accumulated number of 
citations 

-0.14*  0.05  -0.06  0.04  -0.13**  0.03  -0.13**  0.03  

Institutional Affiliation         
Outdegree (density)  -1.51**  0.44  -1.16  0.71  -0.60  0.77  -1.31*  0.46  
√Indegree popularity 0.21**  0.03  0.38**  0.08  0.11  0.07  0.22**  0.03  
Outdegree activity -0.30*  0.11  -0.36  0.19  -0.43*  0.20  -0.37*  0.13  
Observatory (ref. University) -0.09  0.10  0.08  0.15  -0.21  0.15  -0.05  0.12  
Research Centre (ref. 
University) 0.20  0.12  0.10  0.16  0.31*  0.14  0.19  0.11  

Size 0.28**  0.08  0.08  0.05  0.30**  0.09  0.21**  0.05  
Closure by association 0.35*  0.14  0.26  0.16  0.52  0.27  0.43* 0.18 
*1 < .05; **1 < .001;         
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Continuation ULS  CTIO  UV  

Citation Network       
Outdegree (density)  -6.05*  2.92  -6.12*  2.18  -4.18**  1.13  
Reciprocity  0.32  1.79  2.95*  1.50  3.80  6.22  
Transitive triplets  0.10  0.35  0.27*  0.10  0.41  2.07  
Transitive ties  1.65  1.20  5.44*  1.97  3.51**  0.75  
Indegree popularity  0.28  0.26  -0.13  0.09  0.07  0.34  
√Outdegree popularity -0.64  0.70  -0.67*  0.27  -1.81  4.51  
√Outdegree activity 0.74  0.86  0.35  0.49  0.09  0.48  
Reciprocity degree activity -0.03  0.15  -0.25  0.17  -0.26  0.77  
Closure by affiliation (ego) 0.97  0.83  -0.03  0.37  0.03  0.32  
Closure by affiliation 0.03  0.10  0.05  0.07  0.04  0.06  
Co-citation from weak ties 0.36  0.21  0.03  0.06  0.02  0.04  
Accumulative citations (alter) 0.20  0.14  0.05  0.06  0.36  0.38  
Accumulative citations (ego) -0.04  0.18  -0.03  0.06  -0.24  0.25  
Absolute difference of the 
accumulated number of 
citations 

-0.51*  0.25  -0.05  0.06  -0.44  0.24  

Institutional Affiliation       
Outdegree (density)  0.30  1.39  -0.09  1.03  -2.20*  0.73  
√Indegree popularity 0.13  0.40  0.27  0.19  0.48**  0.08  
Outdegree activity -0.48  0.33  -0.38  0.21  -0.12  0.18  
Observatory (ref. University) -0.11  0.23  0.34  0.21  -0.03  0.15  
Research Centre (ref. 
University) -0.18  0.30  0.16  0.23  0.04  0.15  

Size 0.02  0.09  0.07  0.06  0.03  0.07  
Closure by association 0.42 0.22 0.18  0.12  0.74  0.94  

*1 < .05; **1 < .001; 
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