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Abstract

Neuromodulation is the intentional interference of brain-wave activity through the use of
external stimuli such as lights and sounds. It has found various use-cases such as sleep en-
gineering to enhance memory consolidation and chronic pain to enhance analgesic effects.
Despite these, one of the major limitations here is the variability in outcomes that comes
with the open-loop nature of sitmulation. To address this, we provide a smartphone based
closed-loop stimulation platform where the stimuli is modified based on a user’s current
brain-state: a smartphone platform was used to increase ease of use and enable out-of-the-
clinic experiments.

We present two different systems, each of which uses the Phase Locked Loop (PLL) to ex-
tract the feedback measure. The first is for phase-locked auditory stimulation for the sleep
engineering application, where auditory tones are provided at the peak of a slow oscilla-
tion. The second platform is for continuous frequency-matched audio-visual stimulation,
for the chronic pain application driver. Both these run on a smart-phone to enable ‘out-of-
the-clinic’ experiments. The technology was validated using a test-phantom based setup to
simulate a live human recording, allowing faster technology validation without any need for
on-person tests.

For the sleep engineering platform, we obtained a phase error of 12±60 degrees and a loop
latency of 70±24 ms. For the chronic pain platform, we report a frequency matching error
of -0.17±1.29 Hz and 0.20±1.30 Hz for the visual and auditory modes, respectively. In ad-
dition to this, we showed that the PLL performs about 14% better in phase-tracking than the
state-of-the art for all bands, confirming its wider applicability. Moreover, low inter-channel
(<6% for 72 channels) and inter-subject (<4% for n = 7) variance was reported due to the
adaptive nature of the PLL, negating any need for channel or subject specific tuning.

All these combined then provides a multi-purpose closed-loop platform running on a smart-
phone app, to enable in-the-wild research. Despite the target application drivers being chronic
pain and sleep engineering, the system could be easily modified for other use-cases with
different band bio-markers.
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Chapter 1

Introduction

1.1 Overview

The human brain is one of the most complex organs in the body. It consists of billions of
neurons and their activity produces electrical fluctuations which are measurable on the scalp
[1]. This is known as the electroencephalogram or EEG. The EEG is a complex multi-component
signal and can be categorized into various frequency bands: Delta (<4 Hz), Theta (4–8 Hz),
Alpha (8–13 Hz), Beta (13–30 Hz) and Gamma (>30 Hz), which in turn can be mapped
broadly into different physiological states. These frequency bands can be used as biomark-
ers for different applications such as in sleep (delta band) and in chronic pain (alpha band)[2]–
[8].

Brain activity can not only be monitored using modalities like the EEG, but it can also be
influenced via neuromodulation, which is the intentional interference of brain activity via
external stimulus such as light, sound and current [9]. Although most applications focus
on using electrical modalities for neuromodulation, alternative modalities such as light and
sound based neuromodulation exist [6], [8], [10]. Two application examples using light
and sound neuromodulation are sleep engineering and chronic pain [2], [6], [7], [11]–[13].
Sleep engineering involves using sounds during sleep to enhance memory consolidation;
this is done via delivering auditory tones at specific stages of sleep to enhance certain brain-
waves known as slow oscillations, which are linked to memory consolidation (further de-
tails are given in Section 2.6.2). On the other hand, for chronic pain, recent work has used
light and sounds to reduce the perception of pain [6], [7], [10], [11], [14]. It has been shown
that increasing EEG activity in the alpha band (8–13 Hz) maps to reduced pain perception.
Hence, groups are using lights and sounds tuned at the alpha frequency to enhance alpha
power via brain wave entrainment, which in turn results in reduced pain perception [6]–[8],
[10], [11]. Using lights and sounds for neuromodulation offers new possibilities for out-of-
the-lab neuromodulation, as light and sound stimulation can be built into portable smart-
phone based platforms, which many people already have access to.

Despite such promising applications of neuromodulation, the technology is still at an early
stage of development, and mainly restricted to laboratory based tests in controlled envi-
ronments [2]–[8], [11], [15]. While suitable for fundamental discovery science studies, the
potential for translation into real-world use is not yet built into the technological platforms
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avaiable for neuromodulation. In addition, most neuromodulation is performed open-loop,
where the stimulation parameters are pre-set and fixed. However, each individual is differ-
ent and would respond differently to the stimulation applied, and a ‘one-size-fits-all’ is not
the ideal solutions. For example, for the chronic pain application driver, applying stimu-
lation at the Individual Alpha frequency (IAF) as opposed to a pre-set value within the al-
pha band (e.g. 10 Hz), is hypothesized to result in a greater enhancement of alpha power,
which in turn may lead to better therapeutic outcomes [8], [16], [17]. However, no such
technology exists to provide IAF matched audio-visual stimulation which would help val-
idate such hypotheses, as evidenced in Section 2.6.3. The inability to provide personalised,
time-varying, brain state dependent, closed-loop neuromodulation is hypothesised as being
one of the main causes of the large variability in results observed from neuromodulation
experiments [8], [10], [18], [19].

Moreover, having a closed-loop neuromodulation technology running on a smart-phone
would enable ‘out-of-the-clinic’ experiments, which not only would be easier for partici-
pants to part-take in, in the comfort of their own homes, but would also enable larger scale
studies at reduced costs. For the sleep engineering application, various groups have ex-
plored technical platforms for closing the loop using EEG phase [2]–[5], [12], [13], [20].
Here, most platforms are lab-based and of the ones that are portable, run on custom embed-
ded hardware [12], [13]. These limit use-cases and do not enable truly in-the-wild exper-
iments; a better approach would be a platform that runs on an ubiquitous device such as a
mobile phone.

With these in mind, this thesis focuses on creating a multi-purpose light and sound based
closed-loop brain stimulation platform, that runs on a phone. It is capable of delivering
phase-locked auditory stimulation, and frequency-matched audio-visual stimulation, for ap-
plications in sleep and in chronic pain. This thesis provides the first on-phone implemen-
tation of such approaches for ‘out-of-the-clinic’ experiments on a ubiquitous device such
as the smart-phone. It provides the first of its kind platform to allow future clinical work
to answer basic science research questions such as whether IAF matched stimulation does
improve therapeutic outcomes compared to open-loop stimulation.

1.2 Thesis structure and contributions

This thesis begins with a literature review, which is then followed by three technical Chap-
ters which detail in series the making of the mobile closed-loop neuromodulation platform;
we first start with the open-loop stimulation platform in Chapter 3; we then conduct an of-
fline analysis for the pre-requisites required for closed-loop operation in Chapter 4; and fi-
nally, we characterize the complete system on a phone in Chapter 5.
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Chapter 2 - Closed-loop neuromodulation: What, Why and How?

This Chapter reviews the literature and gives an overall background and overview for the
design of the mobile closed-loop system. The closed-loop system consists of a brain sens-
ing component, and an actuating component, along with the use of appropriate feedback
measures extracted from the EEG to close the loop. Hence, the Chapter starts with a dis-
cussion on various sensing modalities available covering invasive, semi-invasive and non-
invasive and motivates our choice of non-invasive sensing, in particular the EEG. Then, it
moves on to brain actuation modalities covering visual, auditory and electromagnetic stim-
uli, after which a broad discussion on closed-loop neuromodulation platforms available to-
day is presented. Here, the major motivations of closing the loop is also presented, such
as reducing variability in results observed using open-loop stimulation. Moreover, chal-
lenges and constraints to closing the loop are discussed such as: the limited amount of data
to work with; the limited processing power on a phone and the need for low latency signal
processing algorithms that adapt to non-stationary signals like the EEG. Following this, we
discuss briefly the need for mobile platforms, which is then followed by the how of clos-
ing the loop, focusing on using EEG phase and frequency feedback measure, both of which
were chosen from our target application drivers (chronic pain and sleep engineering). Then,
for real-time extraction of these features, a review of the state-of-the-art algorithms is laid
out, motivating our proposed algorithm, the Phase Locked Loop (PLL). Finally an outline
of the clinical application drivers is laid out, alongside the state-of-the art closed-loop plat-
forms available for these, which then eventually contextualizes our technology contribu-
tions, in light of the gaps present.

Chapter 3 - Open-loop light and sound. based neuromodulation on a phone

This Chapter details the implementation of an open-loop audio-visual stimulation app run-
ning on a phone, which as the first step in designing the closed-loop platform. We start the
chapter exploring three visual stimulation methods on a phone, to overcome the limited 60
Hz phone refresh rate constraint found on the majority of current smart-phones; these are
the square interpolation method, the square-sine method and the sine method. From the
analysis, we show why the square-interpolation method is well suited for open-loop appli-
cations, but not for closed-loop use-cases, where frequency is expected to change. For the
latter, we show why the sine method (a simple sinusoidal waveform) is best, as it ensures
signal continuity at frequency changes via the use of a phase accumulator. We also discuss
here why the square-sine method would be the best choice for future phones with higher re-
fresh rates of 90 Hz and 120 Hz. Next, we detail the implementation of audio stimulation
on a phone, using binaural beats, and how the addition of a phase accumulator ensures sig-
nal continuity at frequency changes, for it to be usable in the closed-loop platform later on
in Chapter 5. We then end the Chapter briefly highlighting how this open-loop app is cur-
rently being used by our clinical collaborators as the first on-phone neuromodulation plat-
form.
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Chapter 4 - Pre-requisites to closing the loop: phase-frequency extraction

Following the characterization of the open-loop audio-visual stimulation in Chapter 3, we
present a new investigation into the pre-requisites required before the complete on-phone
closed-loop can be created. This mainly consists of understanding the dynamics of the EEG
signal in the alpha and delta bands allowing tuning and characterizing the accuracy of the
PLL in extracting the feedback measures (phase and frequency) required, to close the loop
between sensing and actuation. For this, we first start with characterizing the EEG signal
for its amplitude, frequency and frequency rate of change; the first two of which feeds into
the PLL tuning methodology and the last to motivate closing the loop on a sample-by-sample
basis. Here, we show for the first time that the frequency varies on a sample by sample ba-
sis at a rate of 9.75±2.67 Hz/s. This is followed by detailing the PLL tuning methodol-
ogy. The phase-frequency extraction accuracy is characterized via three separate analyses
based on the operation mode: Continuous phase locked stimulation (general use), Discrete
phase-locked stimulation (sleep engineering) and continuous frequency matched stimu-
lation (chronic pain). For the continuous phase-locked stimulation mode, the accuracy is
characterized across all EEG bands for use in a wider range of applications and shows ap-
proximately 14% better performance than the previous state-of-the-art. Further-more, is
shown that the inter-channel and inter-subject variance is low, negating any need for chan-
nel or subject specific tuning. We then characterize the discrete phase-locked stimulation
mode for the sleep engineering application driver, obtaining a phase error of 11.2±11.2 de-
grees comparable to other lab-based systems, but now on a smart-phone platfomr. Finally,
we characterize accuracy for the continuous frequency matched stimulation mode in Sec-
tion 4.6; here, a frequency matching error of 0.004±0.15 Hz was obtained.

Chapter 5 - Closed-loop light and sound based neuromodulation on a phone

With the stimulation platform in Chapter 3 and the offline analyses in Chapter 4, we then
finally combine all these together in this Chapter, for the complete on-phone implementa-
tion of the closed loop platform. Hence, this Chapter details the on-phone implementation
of the complete system for the two application drivers: sleep engineering and chronic pain.
To characterize performance, we first detail a test phantom based setup, which allows for
more controlled and faster technology validation, without any on-person tests. With this,
we first detail the performance of the platform for the sleep engineering application driver,
which delivered phase-locked auditory stimulation. Here, an overall phase targeting error
of 12±60 degrees was reported, alongside an over-all loop-latency of 70±24 ms, both of
which were comparable to other lab-based and portable platforms available. Here, our con-
tribution was providing the first on-phone implementation of the sleep engineering plat-
form, enabling out-of-lab research on a more ubiquitous mobile platform such as the smart-
phone. We then moved on to demonstrate the performance for the chronic pain platform,
which provided frequency matched audio-visual stimulation. For this, a frequency match-
ing error of -0.17±1.29 Hz and 0.20±1.3 Hz error for the visual and auditory modes, re-
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spectively, was obtained. Here, the contribution is in providing the first of its kind platform
for a sample-by-sample frequency-matched audio-visual stimulation. This will enable fu-
ture clinical studies on personalised, time-varying, brain state dependent, closed-loop neu-
romodulation which have not previously been possible.

1.3 Writing style

In this thesis, the pronoun ‘we’ is used throughout to write in first person, in the style of a
journal paper; hence, unless otherwise explicitly stated, ‘we’ refers to work I have done my-
self.
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Chapter 2

Closed-loop neuromodulation: What,

Why, and How?

2.1 Introduction

In this Chapter, the overall background and motivation for building a portable closed-loop
neuromodulation platform is outlined. Any such platform will consists of a brain sensing
and actuating component, along with the use of feedback measures to close the loop with.
Hence, the Chapter begins with a discussion on various sensing modalities available today
in Section 2.2. This is then followed by a discussion on brain stimulation technologies cov-
ering visual, auditory and electromagnetic stimuli, in Section 2.3. This is then followed by
a broad discussion on closed-loop neuromodulation and the challenges of building such a
platform in Section 2.4, with a particular emphasis on building a portable platform to en-
able ‘out-of-the-clinic’ applications. This is then followed by a discussion on the ‘how’
of closing the loop in Section 2.5, focusing on the phase and frequency as feedback mea-
sures, both chosen from our application drivers. Then, state-of-the-art algorithms for ex-
tracting these in real-time are reviewed and after summarizing its limitations, we propose
the Phase Locked Loop as the chosen algorithm. This then leads on to the clinical drivers
for this research: sleep engineering and chronic pain in Section 2.6, where we discuss the
clinical need and the state-of-the-art platforms available for these. This then contextualizes
our technology contribution, in light of the gaps present.

2.2 Sensing the brain

2.2.1 Introduction

The human brain is one of the most complex organs in the human body and is made up of
billions of neurons which dictates its various activity. A single neuron, when it receives
sufficient input from other neurons, fires and produces action potentials or spikes; this is a
result of an increase and decrease in membrane potentials, due to an influx and outflux of
sodium and potasium ions, respectively [1]. These fluctuations in electrical activity can
be measured on a populational level both invasively and non-invasively, and is the basis
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of sensing brain activity. In this Section, we discuss various electrical sensing modalities
for brain activity measurements, categorizing them as: invasive (Section 2.2.2) and non-
invasive (Section 2.2.3) sensing.

2.2.2 Invasive sensing

Invasive measurements often include surgical procedures to place the electrodes inside the
brain. One can either take single neuronal measurements using intra-cellular or extra-cellular
recordings. The former measures action potentials by measuring voltage across the cell-
membrane, while the latter takes the measurements in close-proximity to the cell-body,
without penetrating the cell[1]. Both these are limited to tracking activity of single neurons
to provide high temporal resolution but at the expense of missing the bigger picture; single
neuronal activity do not give much insight into brain functions which are a result of com-
plex interactions neuronal networks. On the other hand, recordings from multiple neurons
could be taken using technologies like tetrodes and multi-electrode arrays. The former usu-
ally involves four wires tightly bound together that can track up to 20 neurons [1]. The lat-
ter involves arrays of electrodes placed over a brain region and is capable of tracking larger
number of neurons [1]. In contrast to implants inside the brain, there are also semi-invasive
modalities like Electrocorticography (ECoG), which uses electrodes placed on the surface
of the brain, for sensing electrical activity [1]. This is used in applications like intractable
epilepsy, where it is used to localize diseased regions of the brain before removing them.
The ECoG still requires an invasive procedure to place the electrodes but it is capable of
measuring a broader region of the brain, in contrast to the more localized implants [1].

The main advantage of invasive recordings are that it provides high temporal resolution and
higher Signal to Noise Ratio (SNR), when compared with its non-invasive counterparts
[1]. This however comes at the cost of an expensive and risky surgical procedure, with ad-
ditional bio-compatibility issues between the electrode and brain tissue interface [1]. For
example, when multi-electrode arrays are left in the brain for long, tissue scars could form
around it which would cause a loss in SNR over time [1].

2.2.3 Non-invasive sensing

One of the older and most widely used non-invasive technologies is the Electroencephalo-
gram (EEG). These are electrical activity measured via electrodes placed at the scalp; a
consumer grade set-up is depicted in Fig. 2.1. The electrodes are usually placed on the
scalp as per the international 10-20 system (Figure 2.2), which is a standardised system
recognized internationally with an equal inter-electrode spacing. EEGs are a result of the
summation of post-synaptic potentials from a large group of neurons oriented radially to the
scalp. They predominantly capture electrical activity from the cerebral cortex and not deep
brain regions [1].

EEGs are usually detected using electrodes placed on the scalp. The weak signals detected
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Figure 2.1. A consumer grade EEG unit: Emotiv Epoch.

(in the 10’s of microvolts range) are amplified 1000-100,000 times, after which various
forms of filtering are done to remove corruptions due to noise; noise sources included the
50 Hz power-line interference, electrical activity due to eye-blinks and muscle movements,
all of which mix with the signals originating from the brain [1].

Moreover, the synchronous firing of large populations of neurons produce oscillatory EEG
which can be categorized based on their frequency content as: Delta (< 4Hz), Theta (4–8
Hz), Alpha(8–13 Hz), Beta(13–30 Hz) and Gamma (>30 Hz) bands, which in turn can be
broadly mapped to different physiological states [21]. For example, high alpha power is of-
ten associated to a wakeful relaxed state and high beta power is often associated to a alert
state [1].

The EEG has a very good temporal resolution in the millisecond range but a poor spatial
resolution (6–8 cm) [22]. One reason for this is the volume conduction related distortion
of the signals as it travels from the brain, through the skull and all the way to the scalp [1].
Moreover, the mixing in with artefacts such as those arising from eye-blinks and muscle
movements, worsens this. Despite these, EEGs are relatively cheap (£5–£10k for research
grade units), portable and hence, is an attractive choice for mobile applications.

Other non-invasive sensing technologies include the Magnetoencephalogram (MEG). Here,
unlike the EEG, the MEG measures the magnetic fields induced due to the currents origi-
nating in the brain, dictated by Maxwell’s equations. These are measured using Supercon-
ducting Quantum Interference Devices (SQUIDS) which are bulky expensive machines [1].
However, MEGs do provide better spatial resolution (few mm) than the EEG (few cm) as
the magnetic fields are not distorted by the skull or scalp, as is done for the electric fields
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Figure 2.2. Electrode locations as per the international 10-20 system. Obtain from [23], Public Domain.

generated by the EEG [1]. Moreover, like the EEG, it has high temporal resolution too, in
the millisecond range. Other than MEG, indirect measurements of brain activity could be
taken using technologies like the functional Magnetic Resonance Imaging (fMRI) which
detects brain activity by measuring changes in blood-flow. These have low temporal reso-
lutions (1–4 seconds), but a high spatial resolution (few mm) [1]. However, like the MEG,
they require bulky and expensive equipment for operation. A close cousin of fMRI would
be functional near-infrared spectroscopy (fNIRS), which also tracks brain activity indirectly
via monitoring changes in blood flow. However, unlike fMRI, it is portable and fit for mo-
bile platforms with a higher temporal resolution (10 ms), despite a lower spatial resolution
( 3 cm) [1].

2.2.4 Modality of choice

Invasive sensing is risky, expensive and involves bio-compatibility issues between the tissue-
electrode interface and hence is less suitable for out of the lab settings [1]. On the other
hand, non-invasive techniques like the MEG and fMRI are bulky and expensive machines,
and hence, is again ill-suited for mobile applications [1]. fNIRS is fit for portable use, and
has a slightly lower temporal resolution and higher spatial resolution than the EEG; how-
ever, they are indirect measurements of the brain’s electrical activity and are relatively newer
than the EEG. Given these and the need for a modality which can be used for out-of-the

22



clinic applications, the choice then boils down to the EEG: it is portable, offers high tem-
poral resolution, all of which are important in the design of a high-fidelity mobile closed-
loop system. More importantly, both our application drivers use EEG as the bio-marker as
detailed in Section 2.6.3 and 2.6.2; hence, we used EEG for our work.

2.2.5 Summary

In this Section, we discussed technologies to sense brain activity, categorizing them as in-
vasive and non-invasive. After discussing the various limitations of invasive modalities
and non-invasive ones like fMRI and MEG, we then narrowed down our choice to the EEG.
These are most suitable for out-of-the lab use due to its form factor and affordability.

2.3 Actuating the brain

2.3.1 Introduction

Having discussed sensing modalities available, the next step is to discuss technologies to
actuate the brain, also known as neuromodulation. Neuromodulation is the intentional in-
terference of brain activity via external stimulus such as lights, sound and current [9]. Ev-
idence of its usage can be traced all the way back to the ancient Greeks, an example being
the use of electrically charged torpedo fishes in clinical foot-baths to treat headache [24].
From using uncontrollable torpedo fishes as agents for electrical stimulation, the field has
advanced significantly with a wider range of modalities to actuate the brain. For exam-
ple, rhythmic lights and sound stimuli have been used to entrain brain activity with use-
cases such as pain-relief [10]. It must be noted here that, for the purpose of this thesis, the
term neuromodulation and entrainment is used inter-changeably. Entrainment is a phenom-
ena wherein the EEG dominant frequency synchronizes to that of the stimulus, via the fre-
quency following effect. For example, in the chronic pain application driver, the rhythmic
lights and sounds themselves are neuromodulatory signals intended to affect neural activity
for pain-relief, via alpha entrainment [6], [8]. With this in mind, brain actuation modalities
are outlined in this section, and they are categorized as: electromagnetic (Section 2.3.2),
visual (Section 2.3.3) and auditory (Section 2.3.4).

2.3.2 Electromagnetic stimulation

Electromagnetic stimulation of the brain is the most direct form of neuromodulation and
can directly influence neural activity, which are in itself electromagnetic in nature. This can
be done via invasive or non-invasive technologies.

Invasive stimulation covers the likes of Deep Brain Stimulation (DBS) where electrodes
are implanted deep inside the brain through complex surgical procedures, which then sends
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Figure 2.3. A typical DBS setup. Obtained from [37], CC BY 3.0 license.

electrical pulses to specific brain targets [19] [25] [26]. This can be thought of as a brain
equivalent of a cardiac pacemaker, as shown in Fig. 2.3. DBS has been used widely for var-
ious therapeutic applications such as for Parkinson’s and managing symptoms like tremor
[27]–[30]. Other applications include Obsessive Compulsive Disorder (OCD), Chronic
Pain and Treatment Resistant Depression [19], [25], [26], [31]–[36]. As obvious, the main
advantages of this technology include focused and targeted stimulation of deep brain re-
gions, which also translates to reduced side-effects due to less focal stimulation [9]. How-
ever, this does come at the cost of complex surgical procedures and higher risk, lending
itself as an expensive technology [19]. A typical Deep Brain Stimulation (DBS) setup is
shown in Fig. 2.3, where the electrodes are surgically implanted and the pacemaker pro-
vides the electrical pulses.

On the other side of the spectrum are non-invasive technologies, which involves stimulating
from the scalp, as opposed to deep brain regions. Examples of this include magnetic based
ones like Transcranial Magnetic Stimulation (TMS) and electrical based ones such as Tran-
scranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation
(tACS), and Transcranial Random-Noise Stimulation (tRNS). The electrical based stimula-
tion modalities all come under the umbrella of Transcranial Electrical Stimulation (TES).

Firstly TMS, the more established technology, involves the use of strong time-varying elec-
tromagnetic fields that are applied using coils connected to a magnetic stimulator, that is
placed over the scalp [38]–[40]. Placed over the head-region where stimulation is desired,
the magnetic field then passes through the skull and all the way to the brain, and induces
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Figure 2.4. Typical tACS, tDCS and tRNS waveforms. Obtained from [41], CC BY 3.0 license.

electrical potentials [38], [39]. TMS can come in various forms such as repetitive TMS
(rTMS) which as its name implies uses multiple pulses repeated at a specific frequency or
it can also be delivered via single pulses. Advantages of TMS include the ability to quickly
change stimulation sites since electrode placements are not necessary, while drawbacks in-
clude its bulkiness and higher cost, compared to counterparts like tDCS and tACS. [38].

Secondly, TES involve the use of current delivered via electrodes placed on the scalp. tDCS
passes constant current from the skull to brain, with intensities typically in the range 0.5–2mA
[42]. It is capable of affecting different brain functions such as motor, sensory and cogni-
tive functions [39]. tACS on the other hand, uses time-varying alternating current to stim-
ulate the brain, with typical intensities ranging from 0.25–1mA [39]. Compared to tDCS
for which only the intensity of stimulation can be tuned, tACS enables the control of fre-
quency and phase of stimulation, which is more suited for exploratory work, as brain waves
are themselves oscillatory in nature [43], [44]. These stimulation parameters have influ-
ence on both the direction and duration of stimulation induced effects [43]. tACS is often
applied at frequencies ranging from DC to 5kHZ, and enables controlled interference with
ongoing brain rhythms when applied at frequencies in the EEG range (0.1-80 Hz) [43]. Ex-
ample applications include: tACS at 0.75 Hz to enhance declarative memory consolidation
and phase-locked tACS in the theta band to improve cognitive performance[43]. Moreover,
side effects are also frequency dependent such as the induction of phosphenes which is the
phenomena of seeing light without light actually entering the eye; for example, the varied
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geometrical shapes one sees after having rubbed their eyes while it is closed. These could
also be induced by tACS with frequencies anywhere up to 80 Hz [43]. Other less common
forms of TES include tRNS, which applies a random noise like current, with a broad fre-
quency band ranging from 0.1–640 Hz. These are not ideal for closed-loop applications due
to their broadband natures; there is no room to control parameters such as phase and fre-
quency to close the loop with tRNS. Typical tACS, tDCS and tRNS waveforms are depicted
in Fig. 2.4

2.3.3 Visual stimulation

Visual stimuli can also be used as a neuromodulatory signal. One is bombarded by visual
stimulus all through their waking hours and these everyday stimuli can also be tuned and
presented in a rhythmic fashion, to modulate neural activity via entrainment.

The purpose of entrainment is to synchronize brain activity to the frequency of an external
stimulus, in this case visual. This is built upon a well observed phenomena known as the
frequency following effect, which basically states that brain-wave frequencies synchronize
to the frequency of a repetitive external stimulus, such as flickering light [45]. This occurs
when the stimuli is strong enough to excite the thalamus and is then passed to the relevant
processing areas in the brain, such as the visual cortex, where entrainment is observed [46].
At any one point in time, a user’s brainwaves will be comprised of different frequency con-
tent and entrainment drives the dominant brain wave frequency to that of the stimulus fre-
quency, in addition to phase-locking it to the stimulus frequency[21].

For the case of visual or photic entrainment, the resulting synchronized brainwaves are also
known as Steady State Visual Evoked Potentials (SSVEP) [47]. SSVEPs can be obtained by
even weak stimulation intensities such as those from monitor refresh-rates of up to 75 Hz
[47]. Irritation due to the constant flickering of light is often reported when people use the
lower frequency SSVEPs; this has fed interest in high frequency SSVEPs where the flicker
is not perceivable anymore, with a trade-off of weaker SSVEP’s compared to the lower fre-
quency bands [47]. Moreover, recent research has shown SSVEPs to be obtainable from
‘non-hair’ regions such as the ear and forehead, which is useful as this provides superior
electrode contact quality and requires less set-up time [48]. It has also been suggested that
entrainment personalized to a user is more effective: for example, alpha entrainment at the
Individual Alpha Frequency(IAF) has shown to result in stronger entrainment, than a one-
size-fits all approach [16], [17], [49].

Apart from being widely used in SSVEP based Brain Computer Interfaces, photic entrain-
ment have also found therapeutic use-cases, such as that of reducing pain-perception for
chronic pain [6]–[8], [10]. Here, it has been shown that increased alpha power via photic al-
pha entrainment, to be capable of reducing pain perception [6]–[8], [10]. This is discussed
in more detail in Section 2.6.2 [10].
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2.3.4 Auditory stimulation

Apart from visual neuromodulatory signals, auditory ones could be used as well. For ex-
ample, for brain-wave entrainment, one can do this via binaural beats, which are sinusoidal
waves of 2 different frequencies, presented separately to each ear [46]. As a result, the dom-
inant frequency of the EEG synchronizes to the frequency difference between the two tones,
also known as the beat frequency [46], [50]–[53]. For example, if a 114 Hz tone is pre-
sented to the right ear and 124 Hz to the left, the beat frequency will be 10 Hz which is in
the alpha range, as depicted in Fig. 2.5. The beat frequency must be less than 30 Hz for ef-
fect to take place and the carrier frequencies in the 200-900Hz range, with maximal proba-
bility of detecting binaural beats at 500 Hz [46].

Binaural beats has found a variety of use-cases; anxiety reduction, inducing sleep quicker,
improving attention spans, memory, pain relief and creativity [10], [50]–[57]. Pain relief
has been one of the late interesting use-cases, where they showed binaural beats at the al-
pha frequency caused significant reduction in pain perception, though not as strong an ef-
fect as visual entrainment [10]. Other applications include; [51] where on-the-spot 14 Hz
beats were used to reduce mind-wandering amongst university students; [57] where beat
frequencies that ramped down from 8-1 Hz over time was used to induce sleep quicker;
[58] who showed 20 Hz beats to improve long term memory; [56] where 40 Hz beats was
used to improve short term memory and studies using stimulation at the lower bands like
alpha for anxiety and stress [53], [55]. It must also be noted here that although most appli-
cations use pure binaural beats, there have been cases where these tones were mixed with
external stimuli such as music or Autonomous sensory meridian response (ASMR) sounds,
to improve user-experience and reduce psychological irritation caused by these repetetive
buzzing sound. ASMR is a perceptual experience, often in the form of a tingling sensa-
tion that starts from the scalp and moves down the back of the neck, in response to sensory
stimuli [50]. For example, [50] masked binaural beats with ASMR sounds, to induce sleep
quicker.

Despite all these promising applications, binaural beats are not without its critics; its ef-
ficacy in entraining the brain has been much debated and the variance in results, has not
helped in reaching a common concensus [46], [60]. For example, Gao et al. found no sig-
nificant entrainment for the delta, theta, alpha and beta frequency bands but instead found
that entraining one band had an effect on the other [46]. For example, theta band binaural
beats decreased relative power in the beta band and vice versa [46]. However, they also ob-
served entrainment induced brain connectivity changes. More specifically, they showed that
under delta, alpha and theta beats, theta band functional connectivity changes between pos-
terior and anterior areas [46]. Similarly, [52] showed that binaural beats at both the alpha
and gamma frequencies improve creativity and divergent thinking, but only for individuals
with lower dopamine levels, measured indirectly by eye-blink rates (EBR). For individuals
with high dopamine levels, divergent thinking was either unaffected or imparied in some
cases as well [52].
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Figure 2.5. Auditory entrainment using binaural beats [59].

Such variability in results is not just common to binaural beats, but is observed in general
with open-loop stimulation paradigms. This is one of the major motivators for brain-state
dependent stimulation, which is hypothesized to reduce such variability in outcomes; these
are discussed in detail in Section 2.4.3.

2.3.5 Modality of choice

For actuating the brain, the modality of choice is primarily driven by the application drivers:
audio for sleep engineering and audio-visual for chronic pain. For both these applications,
there are collaborators who have expressed interest in using the technology being developed
for clinical work and these applications are discussed in more detail in Section 2.6. For this
reason, we do not consider electromagnetic modalities.

2.3.6 Summary

In this Section, we discussed various modalities available to actuate the brain, categorizing
them as: electromagnetic, visual and auditory. We outlined applications of each and noted
that despite most research focusing on electromagnetic modalities, light and sound based
are gaining popularity and have found various use-cases such as our application drivers:
sleep engineering and chronic pain. Hence, the actuation modality of choice was audio
and visual, both driven by our application drivers. Next, we move on to closing the loop
between sensing and actuating the brain.
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2.4 Closing the loop between sensing and actuating

2.4.1 Introduction

In the previous sections, both brain sensing and brain actuating (neuromodulation) modali-
ties available have been presented, and the modality of choice was narrowed down to EEG
for sensing and audio-visual for actuating, both driven primarily by our application drivers.
The next step is to close the loop between brain sensing and actuating. To do this, we first
lay out a definition of a closed-loop system in Section 2.4.2, after which we lay out the ra-
tionale for closed-loop stimulation in Section 2.4.3 and its general challenges in Section 2.4.4.
We then end the Section discussing the need for mobile platforms, and the challenges of
building one in Section 2.4.5. Note that this section is a broad and general overview of closed-
loop platforms; a more specific discussion of the state-of-the art for non-invasive light and
sound based platforms, in light of our application drivers, is discussed in Section 2.6; this is
where our technology contribution lies.

2.4.2 What is closed-loop neuromodulation?

Closed-loop neuromodulation is a data driven approach to stimulating the brain, where
stimulation is adjusted based on ongoing brain activity from one or more brain regions of
the user [21], [61], [62]. An analogy could be made with the popular cardiac pacemakers
where ongoing heart rhythms are continuously monitored and used to deliver pulses of cur-
rent to restore abnormal heart rhythms. Replacing EEG sensors with the ECG sensors to
measure brain rhythms instead of heart rhythms then gives us a cardiac pacemaker for the
brain, where the goal is to modulate the brain state to a desired one [21]. However, one key
difference is that unlike signals from the heart, ones from the brain are statistically more
complex and non-stationary and how these brainwaves translates to meaningful physiologi-
cal states are not that clear [21].

In its simplest form, a closed-loop system can be defined as a system that senses a brain-
state of interest and then applies stimulation based on that. This is conceptualized in Fig.
2.6, where the acquired EEG data is processed using low latency signal processing tech-
niques to extract biomarkers such as EEG phase and frequency, which represents an indi-
cator of a brain-state. Once these features are extracted, stimulation is then applied accord-
ingly; for example, phase-locked auditory stimulation has shown to improve memory con-
solidation [5], [12], [63], which is explained in more detail in Section 2.6.2. Next, the ratio-
nale for a closed-loop system is discussed in more detail.

2.4.3 Why close the loop?

Here, the rationale for building closed-loop neuromodulation platforms is discussed. To
do so, the drawbacks of open-loop platforms are discussed first, followed by the benefits
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Figure 2.6. Components of a closed-loop neuromodulation platform.

of closed-loop systems, along with the challenges and constraints of doing so.

Drawbacks of open-loop stimulation

Traditionally, neuromodulation has been applied in an open-loop manner, where the stimu-
lation parameters are preset. This has been used for a variety of applications involving both
invasive neuromodulation such as chronic pain , treatment resistant depression, Obsessive
Compulsive Disorder (OCD) [19], [25], [26], [31]–[36], [64] and non-invasive applications
like depression and stroke, amongst others [18], [65]–[67].

Despite the various applications, drawbacks of this approach are many. Firstly, the stimu-
lation parameters are usually set in stone and adjusted manually by the operator based on
observed brain signals; this human in the loop approach can introduces many related errors,
especially when the parameters are set by less experienced operators [64], [68]. Moreover,
these are re-adjusted very infrequently, often months apart [61], [68]. Moreover, various
side-effects of open-loop stimulation include impaired cognition, gait, speech, verbal flu-
ency, decision making ability and build up of stimulation induced effects in non-target brain
areas [69], [70]. All these drawbacks then drives the need for a more intelligent and adap-
tive stimulation protocol that adjusts to the user’s need and stimulates only when necessary;
this we hypothesise may potentially reduce these side-effects, due to more focal stimulation
at only the brain region of interest.

Benefits of closed-loop stimulation

There are many hypothesized benefits to a closed-loop system. It could improve the scien-
tific understanding of brain network dynamics through enabling more flexible experimental
paradigms, improve therapeutical efficacies of current open-loop platforms and most im-
portantly, reduce variability of results [61], [64], [71], [72]. Current studies are mostly hy-
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pothesis driven due to lack of available platforms; hence, the aim here is to develop these to
start answering such questions.

On the experimental side of things, closed-loop platforms could accelerate the finding of
relevant biomarkers [61], [64]. One example of this would be improving declarative mem-
ory consolidation via enhanced slow oscillations through auditory clicks played during spe-
cific phases of the slow oscillations during sleep [2]. For such applications, the optimal
phase for maximal Slow Oscillation (SO) enhancement can only be found using a closed-
loop platform capable of delivering phase-locked stimulation to the EEG. This would then
empower such hypothesis driven experiments. A more detailed discussion for this is given
in Section 2.6.1.

Therapeutical application also benefit from closed-loop platforms. For example, spinal chord
electrical stimulation based on a subjects body position has improved pain relief; in treating
epilepsy, more than 40 percent reduction in seizures was observed when electrical stimula-
tion was applied in a closed-loop manner; for Parkinsons closed-loop stimulation yielded
better therapeutical results than open-loop cases in both primates and humans and finally,
modalities such as audio-visual stimulation has been investigated for the treatment of Atten-
tion Deficit Hyperactivity Disorder (ADHD) [68], [71]–[74]. With regards to the invasive
side, more work has been done here, with use-cases such as: reducing seizure occurrences
in epilepsy, reduced tremor for Parkinsons patients and to manage pain better for chronic
pain patients [27]–[30], [75]–[79].

Moreover, it must be re-iterated here that most of the work, like the ones outlined previ-
ously, are electrical based and are invasive. These are discussed to show that closed-loop
stimulation has shown improved therapeutic effect for these modalities, in the wider re-
search area. This thesis does not aim to advance the state-of-the-art in electrical or invasive
modalities; instead the focus is on portable light and sound based closed-loop neuromod-
ulation platforms, and more specifically, portable platforms designed for the chronic pain
and sleep engineering application drivers. The specific technology gaps and state-of-the-
art closed-loop platforms for these two are discussed in more detail in Section 2.6, in the
context of the clinical drivers. Moreover, once developed, these platforms would be used
by collaborators working in this field as they have expressed interest, further confirming the
clinical need. For these reasons, both electrical and invasive modalities are considered out
of scope and they are just included here to cover the wider literature.

The Variability theme

Finally, one could argue that the most important benefit that closed-loop platforms could
bring is an explanation or even better, a solution to the inter-intra subject variability in ther-
apeutical outcomes, which is so often found in open-loop trials; not taking into account the
brain-state of the user when stimulating is hypothesized to be one of the causes[18], [19],
[40], [62], [68], [74], [80], [81]. Inconsistencies may be explained by three different factors;
neuroanatomical, neurochemical and neurophysiological changes [40].

31



Firstly, variations in neuroanatomy exist both within and across subjects. These include dif-
ferent skull and cortical thicknesses across different subjects, in addition to variations in
gyral shape and white matter structure [40]. Within individuals, these may change in a time
scale of days to years and there exists some work which uses software solutions to take into
account variations in head geometry [40]. Secondly, neurochemical changes may explain
variability of results and examples of this include neurotransmitter availability and present
hormone levels, which may vary on a time scale of minutes to years[40], [82]. Finally, neu-
rophysiological changes such as endogenous oscillatory patterns and spectral fluctuations
in these may also be used and this may be the most relevant, as these change on a shorter
time-scale of seconds and hence is most relevant for designing individualized stimulation
routines [40]. Example applications of this include: measuring ongoing phase changes in
EEG and phase-locking TMS to the up-state (positive peak) to evoke larger motor poten-
tials, and locking TMS pulses to to beta band power during task related de-synchronization
(decrease in EEG power, in this case the beta band) for stroke rehabilitation [40], [62], [64],
[74], [80]. Moreover, instead of adjusting stimulation timing, other parameters such as the
intensity could be altered too.

The focus of this thesis would be on neurophysiology changes and not neuro-anatomical or
neuro-chemical ones as the latter occurs in too long a time-scale and the more pressing con-
cern would be adapting stimulation routines to neuro-physiological changes to see the var-
ious effects this could induce. Moreover, as discussed in Section 2.6, both our application
drivers are based on closing the loop on the neurophysiological scale.

Next, the various challenges faced in designing a closed-loop neuromodulation platform are
discussed.

2.4.4 Challenges to closing the loop

Firstly, a non-engineering challenge which is crucial is the identification of relevant EEG
bio-markers that are clearly representative of a desired brain state state or are predictive
of the intended therapeutical after-effects [21], [40], [64], [68], [74]. What is less clear in
the wider literature is how these brain signals translate to a meaningful physiological or
clinical state, which a solid biomarker should be able to do [21], [79]. These are not easy
as the same EEG biomarkers could be observed by different pathological brain states; for
example, alpha band as a biomarker is used in various applications like chronic pain and
schizophrenia, whilst also being observed with high power, in normal adults when in a re-
laxed or eyes-closed state [10], [68], [83]. Hence, robust biomarkers should be able to clearly
identify a brain-state relevant to the application [81]. It is also important that these are eas-
ily extractable from neuronal recordings, which is more of an engineering challenge [74].
For biomarker extraction, the need would be for efficient algorithms that could extract fea-
tures like the phase and frequency in real-time. Note that phase and frequency are used as
example biomarkers in the following text, as these are the relevant ones for our application
drivers, which is discussed in more detail in Section 2.6.
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Seondly, low latency algorithms are a necessity for most EEG based platforms, due to the
fast time varying nature of the EEG [2], [44], [62], [84], [85]. Fast access to and process-
ing of EEG data is required to provide stimulation at the desired brain-state on time and
accurately; for example, a loop latency and jitter in the order of milliseconds is required
for phase locked stimulation [86]. EEG phase changes much more rapidly compared to its
spectral fluctuations and hence, the time-resolution requirements are much higher, espe-
cially for higher EEG bands [80]. To give an example, consider the delta band and within
it, a 1 Hz oscillation; here, to get a phase resolution of 5 degrees i.e. 13.8 ms in time, an
over-all latency lower than 13.8 ms is required. Similarly, for a 12 Hz alpha and 25 Hz beta
oscillation, a 5 degrees resolution would require latencies lower than 1.2 ms and 0.5 ms, re-
spectively. In light of this, there will be delays within the system. Firstly, delays could be
introduced by the data-acquisition system: these could come from the electrodes, front-
end amplifier filters, Analogue to Digital Converters (ADC) and the operating system of
the data-acquisition system. Then, there would be the communications delay and then an-
other operating system delay from that of the phone. For the communications delay, ideally
a bio-signal recording device that gives non-buffered data in a few ms with a fixed delay,
would be preferred [80], [87]. Finally, there would also be the delay due to signal process-
ing such as phase shifts due to filtering; in a real-time scenario, no future data is available,
hence, forward-backward or zero-phase filtering would not be possible, to compensate for
these. When using IIR filters, the phase-shift is frequency dependent and is non-linear [87],
[88], but the advantage is the filter order could be lower. For FIR filters, the phase-shift can
be linear and hence, is easier to account for but requires very large order filters for good fil-
tering [88], [89]. After signal processing, there would also be delays for the stimulation;
for example, the delay for activating the sound card for auditory stimulation. Moreover, it
must also be noted that the phone’s operating system are not designed for time-critical ap-
plications since it is consumer oriented; neither Android nor IoS are Real Time Operating
Systems (RTOS), where the execution of tasks can be guaranteed to be completed within a
certain time-frame. Instead, the delays are task-dependent, and may vary over time. With
these in mind, the need for computationally simple and low latency algorithms are clear,
which when combined with the more unpredictable delays like those of the task-based op-
erating systems on which the platform is running, would give the required phase resolutions
needed, for the application at hand.

Thirdly, for real-time application, only data from the current time point and the past is avail-
able. Extracting features from a small window of data before the current time-point is chal-
lenging and typical off-line routines such as averaging over trials to enhance Event Related
Potentials (ERPs) could not be done in this case [80]. Moreover, any window based meth-
ods, such as the use of band-pass filtering and Hilbert transform, would incur edge arte-
facts, which would require the most recent samples to be discarded,which in result would
effect accuracy [89]–[93]. Hence, edge effects and minimal data loss is another challenge to
be solved.

Moreover, EEG data is non-stationary and its properties like amplitude and dominant fre-
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quency changes both within subjects over time, and across subjects [44], [89], [90], [93].
Hence, algorithms that are sensitive and adapts to such variations over time will be required
to account for the non-stationary nature of EEG signals.

Finally, artefact removal is another issue in the design of closed-loop platform; these arte-
facts may either be physiological such as those incurred due to eye-movements, blinks and
motion or they could be ones due to the stimulus signal itself [74]. For the latter, it is more
so common when using electromagnetic modalities: here, the stimulus signal’s spectral
content overlaps with that of the EEG signal and hence, the neural data becomes buried
within the much stronger stimulus [74], [81]. To extract these features, real-time artefact
removal algorithms need to be applied. This may involve classical filtering techniques such
as filtering using band-pass, low-pass or Moving Average Filters. It may also be done us-
ing more effective but complex blind-source separation based algorithms like Independent
Component Analysis(ICA) and Canonical Correlation Analysis (CCA), which are often
used in off-line analysis to separate artefactual sources from neural ones. Real-time mod-
ification to these techniques exist such as the Online Recursive ICA (ORICA), which are
available to use with the REST toolbox [94].

2.4.5 Mobile platforms

Why mobile platforms?

Building a platform that is mobile and portable is key to this thesis: almost everyone has a
mobile phone in their pockets these days, and having a solution in the form of a mobile app
like the one we create (see Figure 2.7) would allow the technology to scale, due to the ubiq-
uitous nature of smartphones today. This would also be more suitable for ‘out-of-the-clinic’
applications, which would not be possible with the current lab-based platforms available
today [2], [4], [5], [15], [63]. Hence, the rationale for developing mobile platforms comes
mainly from the need to conduct experiments in-the-wild and to translate lab-based closed-
loop therapies to real-world home-based therapies [85]. Moreover, these would also help
improve the often reported problem of discomfort experienced by participants for long EEG
based experiments, often conducted in tight controlled labs with limited movement [85].
This would be more so a concern for our chronic pain application driver, as chronic pain
patients can get tired quickly, find it tiresome travelling for experiments and being out for
too long [95]. A mobile platform may be a solution to this, as this enables the experiment
to be conducted in the comforts of a user’s home[85]. Also, mobile platforms will enable
a wider range of experiments to be done which would not be possible in a lab based situa-
tion; an example of this would social neuroscience experiments where the complex inter-
actions between multiple users need to be observed, at the same time [85]. Finally, with
wait times for sleep labs being over a year, applications such as the sleep engineering one
would highly benefit from home-based portable solutions [96]. This would enable larger
scale studies to be conducted much faster and potentially for lower costs.
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Figure 2.7. App based neurotherapy for out-of-the lab applications.

Challenges of building a mobile platform

The challenges of building a mobile closed-loop platform can be broadly categorized as:
hardware, signal processing and stimulation related.

Firstly, challenges in the hardware domain need to be addressed. Typical EEG setups are
wired and used for static experiments, where the subject is sat on a chair, in a tightly con-
trolled lab environment [97]. For portability, a wireless device is preferred. For this, var-
ious consumer grade mobile EEG units exists, with different limitations. For example, a
popular one is the Emotiv Epoch, but one of the issues here is that it uses wet electrodes,
which do not give long lasting recordings, as it requires regular soaking in saline solution to
maintain good quality recordings. Such limitations could be overcome using technologies
such as dry-electrodes and in-ear, forehead or behind-ear EEG, where EEG signals could
be acquired from non-hair regions [48] [98]. We do not choose to tackle problems in this
domain, and instead use a commercially available EEG device: the smarting EEG amplifier
provided via Mbraintrain to be specific, as detailed in Section 5.2 [99]. This is a wireless
EEG amplifier which transmits EEG data directly to an Android phone via Bluetooth tech-
nology, making it a perfect fit for our smart-phone based platform.

Aside from hardware, the next challenge is in real-time extraction of the EEG features on
a phone. One major constraint here is the latency and limited computational power avail-
able on a phone, compared to a PC. There will also be the wireless communications la-
tency for signal transmission which would not be present in wired lab-based setups avail-
able today such as that of [12] and [13], both of which run on custom embedded hardware.
With this in mind, it is then more so crucial to use algorithms that have minimal computa-
tional complexity like the Phase Locked Loop (see Section 2.5.4), which allows for operat-
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ing on a sample-by-sample basis. Sample-by-sample signal processing would also help re-
duce latency down by avoiding any buffering induced delays, which otherwise would have
been necessary with epoch-based methods like the Fast Fourier Transform based and Auto-
regressive modelling based techniques discussed in Section 2.5.4 [44].

Finally, regarding stimulation, providing audio and visual stimuli is also challenging on a
phone. The low refresh rate of a smartphone (typically 60 Hz) limits the achievable fre-
quency for visual stimulation and for auditory stimulation, one has to ensure audio is gen-
erated in real-time with no discontinuities at frequency changes. We detail our methods for
tackling both these problems in Chapter 3.

2.4.6 Summary

In this Section, we first discussed the general definition of a closed-loop neuromodulation
platform, after which we laid out the rationale for closing the loop. Here, we first explored
the limitations of open-loop stimulation such as its ‘hit-and-miss’ approach, after which we
highlighted the potential of closing the loop; the major one here would be addressing the
variability in outcomes observed, with open-loop paradigms. We then discussed the gen-
eral challenges of closing the loop such as the need for: low-latency algorithms, robust bio-
markers and accurately extracting features from a limited amount of data. The section then
ended with a discussion on the need for mobile platforms, and the challenges of developing
on a mobile device. Having laid out a general overview of a closed-loop system, we next
move onto the how of closing the loop.

2.5 How to close the loop?

2.5.1 Introduction

In this Section, we discuss the how of closing the loop and we focus on two different bio-
markers: phase and frequency. We start first discussing the various applications and use-
cases for these two biomarkers, in Sections 2.5.3 and 2.5.2. We then move onto discussing
state-of-the-art algorithms in Section 2.5.4 for phase and frequency extraction, in real-time.
We then conclude detailing our proposed algorithm the Phase Locked Loop (PLL), in Sec-
tion 2.5.5.

2.5.2 Phase

One way to close the loop would be to use the phase of the brain oscillations as a poten-
tial bio-marker. Various studies have explored this: for example, Long Term Potentiation
(strengthening of synaptic connections) and Long Term Depression (weakening of synaptic
connections) could be induced by stimulating at the peaks and troughs of the hippocampal
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theta oscillation, respectively; and information about various memory processes in the brain
could be extracted from EEG phase [21], [62], [91]. Phase also serves as a useful measure
for other markers such as Phase-to-Amplitude Cross-Frequency Coupling (PA-CFC), where
phase of slower EEG bands (theta, alpha) modulates the amplitude of the faster bands (beta,
gamma) [100], [101]. This has found relevance as biomarkers for different cognitive and
motor related impairments; for example, the PA-CFC has been shown to be higher in peo-
ple with Parkinsons [102].

Many of the closed-loop studies using phase as a biomarker, have been done in the context
of electromagnetic stimulation [103]–[105]. For example, TMS applied to the prefrontal
cortex that is phase locked to the negative theta phase (negative peak) was shown to im-
prove induced neuro-plasticity [104]. Alternatively, applying TMS at the motor cortex and
measuring the resulting Motor Evoked Potentials is a very common clinical and diagnostic
tool to measure cortico-spinal excitability [103], [105]. In this context, TMS phase-locked
to the negative peak of the sensorimotor mu rhythm (7–11 Hz) has shown to evoke larger
MEPs and hence, increased corticospinal excitability, when compared to open-loop stim-
ulation [105]. Similarly, entraining beta oscillations via tACS and applying TMS pulses at
various phases of the tACS signal has shown phase-dependent modulation of cortico-spinal
excitability, as measured by the MEPs [103].

With regards to audio-visual stimulation, closed-loop studies using phase has been explored
in fewer application areas. One example application is the use of EEG phase in optimizing
temporal attention [106]–[109]. Visual stimulus presented to us in the real world are not
always perceived; one explanation of this, as proposed by recent studies is that temporal at-
tention and the ability to perceive a visual stimuli successfully, fluctuates with the EEG and
is phase-dependent [108], [109]. For example many studies have shown perception to peak
at the positive phase of alpha oscillations [107], [110], [111]. Consequently, visual targets
presented in-phase with these rhythms are more likely to be perceived. One could then en-
vision a closed-loop platform capable of measuring alpha-phase in real-time and presenting
visual targets aligned with the positive phase of the alpha rhythm to maximize the likeli-
hood of the target being perceived. Another approach would be to simply entrain the brain
via an periodic stimuli like tACS or visual flicker to phase-lock EEG activity, and then pro-
vide visual stimuli at the desired phases to optimize perception [108]. Another emerging
field for phase-locked stimulation is that of sleep engineering, where phase-locked auditory
stimulation in the theta band has shown to improve memory consolidation [2], [63]. This is
described in more detail in Section 2.6.1.

2.5.3 Frequency

Another potential biomarker is the EEG frequency. For example, due to the oscillatory na-
ture of EEG, tACS has been hypothesized to be a better candidate than tDCS for closed-
loop stimulation, since the former allows you to control the frequency, amplitude and phase
of stimulation, while the latter is just a constant current applied [44]. Moreover, the dom-
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inant frequency in each band may vary across and within individuals over time and tak-
ing this into account in closed-loop system may help explain some of the variabilities ob-
served [112]–[114]. For example, the Individual Alpha Frequency (IAF) varies both across
and within subjects over time, with peaks anywhere from 7-13 Hz and the mean for young
adults being 10 Hz, which is the frequency at the which rTMS and tACS is usually applied
at [113], [114].

Hence, applying stimulus matched to the underlying brainwave frequency has been hypoth-
esized to give stronger entrainment, and in some cases better behavioural outcomes [114]–
[117]. For example, Widge et al. demonstrated a more pronounced entrainment when us-
ing frequency matched tACS in the alpha band, as opposed to when using open-loop stim-
ulation [117]. Similarly, various behavioural studies have been done in this respect for ap-
plications such as schizophrenia, cognitive enhancement, anxiety and working memory,
with significant improvements observed when frequency was matched to underlying brain
rhythms [83], [113], [115], [116]. It must be noted firstly that most of these use electro-
magnetic modalities (e.g. tACS), and not lights and sounds: one exception would be work
done by Pino et al. on anxiety reduction [115]. Here, they used audio-visual entrainment
matched to the EEG frequency and found significant decrease in symptoms, when using
frequency matched brain stimulation [115].

Moreover, it must also be noted that most frequency matched closed-loop systems are not
really closed-loop but rather ‘semi closed-loop’, meaning they extract the individual al-
pha frequency (IAF) during a separate recording first and then apply stimulation at the IAF
throughout the stimulation period [16], [17], [49]. Given that the IAF can change over time
within a single subject, a ‘semi closed-loop’ approach is not ideal [118]–[120]. A better
approach would be to change stimulation frequency over-time based on the dominant IAF
at the time. For example, Pino et al. in their work on anxiety reduction, updated the fre-
quency of the visual stimulus on a second by second basis [115]. However, they were using
the frequency output from the Mindwave device’s SDK, which is a consumer grade EEG
hardware, which means the software is proprietary and cannot be modified [115]. No work
exists which matches frequency on a sample-by-sample basis, which is the theoretical limit
and more importantly, that runs on a phone for audio-visual stimulation. Having make it
work on a sample-by-sample basis which is the natural limit of what can be done, means
it can also be mapped to any application regardless of the rate actually needed. Hence, for
this thesis, the aim is to present a system for sample-by-sample frequency update, to ensure
the stimulation adapts to the underlying brain rhythms, with a better time resolution [114],
[115]. This would be useful for our chronic pain clinical driver, where stimulation matched
to the IAF is hypothesized to improve therapeutic outcomes, as detailed in Section 2.6.3.

Having discussed the general use-cases of phase and frequency as feedback measures, we
next explore real-time algorithms for phase-frequency extraction.
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2.5.4 State-of-the-art: Real-time feature extraction algorithms

To date, only a handful of techniques are used for real-time phase and frequency estimation
of EEG, in the context of closed-loop neuromodulation. These include time domain tech-
niques (Autoregressive Modelling and the Phase Locked Loop), frequency domain based
techniques (Fast Fourier Transform) and machine learning based ones [2], [44], [87], [89]–
[91], [93].

Here, we will explore the state of the art, along with their limitations and advantages, all of
which would motivate our algorithm of choice, which is the Phase Locked Loop.

Auto-regressive modelling

Auto-regressive (AR) modelling based techniques, which are a time-series prediction method,
have often been used for real time phase extraction [90]–[93]. For example, in its imple-
mentation by Chen et al., they first take a small window of past data, and perform AR spec-
tral estimation to optimize the band-pass cut-off frequencies within the delta band, to ac-
count for the time varying nature of the EEG dominant frequency. Then, they forecast the
band-pass filtered signal into the future using AR time series prediction [91]. The Hilbert
transform is then used to get the instantaneous phase and frequency of the forecast-ed sig-
nal [91].Note that since the window length (1 second) used is such that the current time
point is halfway between end and start of the window, the edge artefacts could be discarded
without data loss. Moreover, this method performs better with high signal power and am-
plitude [90]–[93]. It must also be highlighted here that the whole point of using AR mod-
elling time-series prediction, is to improve the accuracy of the Hilbert based instantaneous
phase measure, since the edge effects could be discarded from the edge of the predicted sig-
nal, which leaves the current time-point uncorrected. If edge effects were not there, then
they could simply have used the Hilbert transform without any future prediction, to get the
phase.

The advantages here is that it solves the edge effect problem through forward time series
prediction, and is suited to cope with time varying changes in EEG frequency via the adap-
tive band-pass filtering [91]. Moreover, the forecasted signal is more representative of an
EEG signal, as opposed to a simple sinusoid as used in FFT based methods, which are dis-
cussed below [44], [87] .However, all these gains in accuracy comes at the cost of added
computational cost through expensive operations like the AR time-series prediction and
its coefficient calculation, becoming more so acute with increasing model order [90], [91],
[93]. For example, Chen et al. used a 50 order AR model, and the computational cost was
72 ms to calculate over a 400 ms window size (500 Hz sampling frequency), on a Mac Book
Air 1.8 GHz Intel Core i5 laptop. Finally, another drawback is that there are many parame-
ters that need to be tuned for optimal results, which is done offline via tools like the genetic
algorithm [91].
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Fast Fourier Transform

In contrast to the AR Modelling method which works in the time-domain, another approach
is to work in the frequency domain, for example using the Fast Fourier Transform (FFT)
based methods [44], [87], [93]. Here, EEG is assumed to be stationary over short time win-
dows, and the FFT is taken over the window to get the dominant frequency of the band-pass
filtered signal. A sine wave is then generated at this frequency to forecast the signal to the
current time-point, and hence extract the phase in real-time [44], [87], [93].

In contrast to the AR based method, these are relatively non-parametric, and requires lit-
tle tuning, except for the optimal past window sizes, which was found to vary with the fre-
quency band under consideration [44], [93]. It is also computationally less demanding and
hence optimal for low latency application [44]. For instance, in the study by Mansouri et
al., whilst the AR modelling method makes use of a 50 order AR model along-side the Hilbert
transform, the FFT based method just uses a order 10 IIR filter along with the Fast Fourier
Transform [44], [91]. This is evident in the execution time difference when tested on a Mac
Book Air 1.8 GHz Intel Core i5, where the FFT based method was found to be 2 orders of
magnitude faster than the AR method: while the former took 0.68 ms of computation time
to process 400 ms of past data, the latter took 72 ms to do the same [44]. Increasing the
past window size to optimize for different EEG bands, only made slight differences, giving
an execution time of less than 1ms for all cases [44].

Despite lower computational cost, one of the limitations with this method is that is assumes
EEG to be stationary over short time windows and the forecast-ed signal is just a simple si-
nusoid which does not capture the true morphology and non-stationarity inherent in EEG
signals [44]. Moreover the algorithm works effectively only when the dominant frequency
in a band was stable over time, as it does not have an adaptive band-pass filter to account
for dominant frequency variations over time, as done in the AR based method [44], [91].
Also, as with the AR method, performance improves with higher signal amplitudes [44],
[93].

Regarding accuracy, the FFT based algorithms does not give any major improvements: in
general, both algorithms showed a Phase Locking Value (PLV) of more than 0.5 for differ-
ent bands in the comparison study by Mansouri et al., where a value of 1 indicates perfect
phase-lock [44]. It was also found that performance was best with the alpha band, which is
expected due to the dominant EEG oscillations here [44].

Machine learning based methods

Finally, there exists machine learning based approaches to phase extraction [89], [93]. The
approach here is to train the model by learning the mapping between minimally pre-processed
EEG data and its non-causally derived phase (using Hilbert transform) offline; this model is
then deployed online for real-time EEG phase extraction [89]. This was shown to give bet-
ter phase targeting accuracy, when compared against standard signal processing methods
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using the Hilbert transform [89]. However, it must be noted that the study was done on just
the alpha band, where signal power and SNR is high and may not generalize well across
different bands, where signal power is lower [89], [92].

We do not choose to go this route for our application because these would require a train-
ing period, and hence not ideal for in-the-wild use, where the ideal solution is a ‘fit-and-go’
one. Such requirements for a training period may also compromise user-comfort and makes
it non-ideal for ambulatory use-cases as ours [89]. For these reasons, we choose to primar-
ily focus on signal processing based methods.

2.5.5 Proposed algorithm: Phase Locked Loop

As seen from the previous Section, the current state-of-the art suffers from various limita-
tions: high computational burden (AR modeling); assuming signal stationarity and inability
to adapt to the time-varying frequency of the EEG (FFT based methods); and the need for
training data every session (machine learning based methods) [44], [87], [89]–[93]. More-
over, since these methods operate on a window of data, drawbacks include: edge artefacts,
delay, and the inability to operate on one sample at a time to drive latency down [90], [91].

To tackle these issues, we propose to use the Phase Locked Loop (PLL)instead. The PLL is
a well established technique in the communication field and often used for high frequency
applications such as clock synchronization and clock recovery [121]. Unlike other methods
which operate on a window of data, a PLL can be used on a sample-by-sample basis which
results in no edge artefacts and reduces signal processing latency [121]–[123]. Moreover,
PLLs are usually low order (order 2 or 3) and also adapt to EEG dominant frequency vari-
ations, making any adaptive band-pass filtering unnecessary to account for frequency vari-
ations over time and other signal non-stationarity, as is done in the AR based method [91],
[123]. All these makes this method an excellent candidate for real-time phase estimation as
it could drive loop latency down with its sample-by-sample operations, adapt to signal vari-
ations with no edge effects, all of which are important for closed-loop applications.

PLLs have already been used in the context of closed-loop EEG applications for sleep engi-
neering (see Section 2.6.2), with the focus being on the Slow Oscillation band (0.5–3 Hz);
however, to the best of the author’s knowledge, no work exists investigating its applicabil-
ity in other EEG bands [2]. Moreover, most PLL based platforms are lab based and none
on phones [2], [4], [5], [13]; a more detailed review of these platforms are given in Sec-
tion 2.6.2. Taking one such example, Santostasi et al. have designed and validated such a
system on a PC, achieving phase errors of 12.51±28.85 degrees and 13.63 ± 9.88 degrees
over the entire N3 sleep epochs (stage 3 of non-rapid eye-movement sleep, see Section 2.6.2
for more details) and parts with just slow waves, respectively [2]. Moreover, when just tar-
geting the peak of a slow oscillation, the phase error was reported to be 0.37 ± 25.61 de-
grees. The total loop delay including data acquisition, processing and stimulation was 70 ±
5 ms [2]. We aim to improve upon this work by investigating phase targeting accuracy for
all the EEG bands and not just the delta band, to open door for applications outside sleep
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engineering, and more importantly provide an phone based implementation for in-the-wild
use-cases. These contributions are detailed in Section 4.4.3 and 5.3, respectively.

A note on Frequency

It must be noted that although most of the aforementioned algorithms have been used for
phase extraction, little work exists exploring real time dominant EEG frequency extrac-
tion, in the context of a closed-loop system. One such example includes the work done by
Pino et al.: however, here, no details were given on the algorithm used, since the frequency
was extracted using the mindwave EEG device SDK [115]. Moreover, we also would like to
highlight that we use the PLL to extract instantaneous frequency by taking the derivative of
the instantaneous phase; in other words, we are closing the loop on a sample-by-sample to
achieve the finest time-resolution. In contrast to work done by [115] where their time reso-
lution is 1s, we aim to provide a system that adapts to the smallest change in frequency i.e.
sample by sample. As to whether the frequency changes at such small time-scales to make
closing the loop meaningful, no literature exists documenting the EEG frequency rate of
change, as evidenced in Section 4.2.3 and 2.6.3. Hence, we did our own analysis in Sec-
tion 4.2.3 and showed that it does, confirming the potential need for and relevance of our
sample-by-sample approach.

2.5.6 Summary

In this Section, we discussed the how of closing the loop, using phase and frequency as
feedback markers. We started with an exploration of various applications that use phase
and frequency, as biomarkers. This was then followed by a discussion of the state-of-the-art
real-time algorithms for extracting phase and frequency. Here, we noted that any suitable
real-time algorithm should have: low computational complexity to drive down loop latency,
be able to work with a limited amount of data to extract features accurately, and be able to
adapt to the non-stationary nature of EEG signals. With these in mind, we then explored
three state-of-the-art algorithms whilst highlighting their limitations: AR modelling based
methods (high computional complexity), FFT based methods (non-adaptive), and machine
learning based methods (requires training data-set per session). We then concluded the Sec-
tion highlighting that the PLL is a well suited algorithm for real-time application that com-
bat these constraints: they can operate on a sample-by-sample basis without any edge ef-
fects, is computationally simple and can adapt to the time-varying frequency changes of the
EEG.
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2.6 Clinical application drivers and technology contribution

2.6.1 Introduction

In this Section, we discuss our application drivers: sleep engineering and chronic-pain in
Sections 2.6.2 and 2.6.3, respectively. The former uses phase as a bio-marker and the lat-
ter frequency. We also highlight in this section the state-of-the-art platforms for both these
applications, which then contextualises our technology contribution.

2.6.2 Sleep engineering

Sleep plays a vital role in a variety of cognitive processes such as memory formation. Con-
trary to popular notion, the brain is highly active during sleep. The field of sleep engineer-
ing then tries to use technology to make use of time spent sleeping, to enhance our cogni-
tive functioning such as memory formation. To understand how, the first step is to be aware
of the different stages of sleep.

There are two kinds of sleep; the Non-Rapid Eye Movement (NREM) which makes up about
75% of the sleep duration while the remaining 25% is Rapid Eye Movement (REM) sleep
[124]. One cycles through these stages starting from NREM and progressing through to
REM sleep, and this repeats itself roughly 4-5 times of roughly 90 minute cycles per night
[124].

NREM sleep is further divided into four stages, as per the American Academy of Sleep
Medicine (AASM) standard. Stage 1, occurring at sleep onset, consists of relatively higher
frequency EEG in the alpha range and this is the lighter stage of sleep where one is half
awake [124], [125]. One then progresses to the deeper Stage 2 and 3 of sleep. The latter
is often known as Slow Wave Sleep (SWS), as it is characterized by slow oscillations which
has a relatively low average frequency of 0.8 Hz and large amplitudes of at least -75 µV,
and is mostly generated in the frontal areas of the brain [124]. Sample SOs are shown in
Fig. 2.8. Finally, NREM sleep usually decreases in intensity and duration throughout the
night, unlike REM sleep which is characterized by rapid eye movements, and increases in
duration and intensity through time.

From the different stages of sleep, SWS has in particular been a field of investigation to en-
hance memory consolidation. Recent research has shown that declarative memory consoli-
dation can be enhanced through playing auditory tones during slow wave sleep to enhance
slow oscillation (SO) amplitude, which has shown to be important for the stabilization of
long-term memory [3]–[5], [12], [15], [20]. The same has also been reported using modali-
ties such as Transcranical Electrical Stimulation but practical concerns remain such as diffi-
culty of reading the stimulation distorted EEG waveforms and usability during sleep [126].
Hence, using auditory stimulation is an attractive option, due to both ease of use and fewer
artefacts. Moreover, recent work has also shown that the timing of the auditory stimulus
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Figure 2.8. Sample slow oscillations.

relative to ongoing EEG phase matter for optimal SO enhancement [3]–[5], [12], [15], [20],
[63], [127]. This then demands the need for algorithms that could synchronize the stimula-
tion protocol to ongoing EEG accurately.

One of the earliest work done was by Ngo et al. [63], which involved delivering stimuli af-
ter a fixed time-delay following the first detected slow oscillation (SO) negative peak. Once
it detected the negative peak, it then used a fixed time-delay to target the positive peak of
the slow oscillation; this time-delay was determined on a subject-to-subject basis offline,
by measuring the distance between the negative detected peak using the SO detection algo-
rithm, and the positive peak that followed [63]. This pre-set nature of the algorithm is not
very adaptive and moreover, there is the burden of tuning the algorithm on a subject-by-
subject basis. Although they don’t report phase targeting accuracies, Santostasi et al. repli-
cated this algorithm and reports phase errors of 11.3±65.6 degrees (N=5) [2]. Leminen et
al., used a similar threshold based algorithm, and reported high variance as well with phase
error of -18±67 degrees (N=15) [20]. Other groups have tried using sine-fitting algorithms:
for example, Cox et al. used the FFT over a 10s epoch of data to obtain the dominant peak
frequency, and fits a sine-wave onto the EEG signal based upon this dominant frequency
[15]. The phase was then determined on the sinus itself. Similarly, Debellementaire et al.
uses the same approach, but this time using real-time linear regression (via recursive least
square method) to determine the best fit on a 5 s window of data [12]. Based on these, Cox
et al. reported 11.3±65.6 and 33.2±75.8 degrees (N=12) error, for the positive and nega-
tive peak, respectively and Debellememaniere et al. with 0±52 degrees (N=20) phase error
reported on an embedded device [12], [15].
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Study Platform type Method Target phase (°) Phase error (°)
Santostasi et al. PC based PLL 60 0±25.6

Ong et al. PC based PLL 60 10.28±26.69
Palambros et al. PC based PLL 340 11.5±73.4

Ngo et al. PC based Adaptive threshold 90 11.3±65.6
Leminen et al. Portable Adaptive threshold 0 -18±67

Cox et al. PC based Sinus fitting 90
270

11.3±65.6
33.2±75.8

Ferster et al. Portable PLL 45 0.4±46.8
Debellemaniere et al. Portable Sinus fitting 45 0±52

Table 2.1. Summary of state-of-the-art platforms for sleep engineering [2], [4], [5], [12], [13], [15], [20], [63].
Target phase assumes a sine wave; so 90 degrees target phase would be the peak.

In contrast to these, other groups have used Phase Locked Loop (PLL) based techniques
with slightly better performance compared to the algorithms, the results summarized in Ta-
ble 2.1, along with the aforementioned algorithms. Firstly, Santostasi et al. used a classical
PLL and achieved a phase error of 0±25.6 degrees (N=5) [2]. Similarly, Palambros et al.
and Ong et al. conducted clinical studies using the same platform and reported phase er-
rors of 10.28±26.69 (N=16) degrees and 11.5±73.4 (N=13) degrees respectively [4], [5]. It
must be noted here that Palambros et al. reported a much higher variance (±73.4 degrees)
using the same PLL; this is expected since Palambros et al. used older volunteers for their
study, as their aim was to show that the same slow oscillation enhancement could be ob-
served in an older population too. Given that older people have lower amplitude EEG’s, the
higher error is then expected, as the performance of the PLL has shown to be amplitude de-
pendent, with poorer tracking for lower amplitudes [2], [4], [5]. This amplitude dependent
performance is also something we demonstrate in Section 4.4.4.

It must also be noted here that all these platforms, both PLL based and others, used frontal
channels for the phase-targeting algorithms, with the majority using the FpZ channel [2],
[4], [5], [12], [13], [15], [20], [63]. This is expected since SO’s are most prominent in frontal
areas of the brain [124].

It must also be noted that most of these are lab based platforms and only three of them af-
ford portability. Of these, Debellemeniere et al. used a commercial grade sleep EEG device
which runs on an embedded system with on-board signal processing locked down, that oth-
ers can’t access or modify. On the contrary, Ferster et al. provides a more research oriented
embedded device, with options to modify protocols and settings [12], [13]. In contrast to
these embedded paltforms, Leminen et al. used a Surface Pro laptop-tablet hybrid in con-
junction with the Enobio wireless EEG headset to provide an ambulatory system. However,
they used external speakers to deliver the sounds and the surface pro laptop-tablet hybrid
is not ideal for ambulatory purposes, as it is not as ubiqutous as say a smart-phone. More
importantly, they use the same algorithm as Ngo et al., which stimulates based on a fixed
time-delay once the negative peak of the SO is detected, to reach the peak (the time-delay
being tuned on a subject-by-subject basis offline). This non-adaptive nature of the algo-
rithm again explains the higher error they reported.
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Technology contribution

To date, no platform exists on a ubiquitous platform such as a mobile phone, which is not
just lighter and smaller, but also more familiar to operate for the wider population. More
importantly, we hypothesize that using an adaptive algorithm like the PLL as opposed to
the ‘fixed’ types like the one used by Leminen et al., would result in lower phase targeting
error. Moreover, since the smartphone would have less dedicated computational resources
than a laptop-tablet hybrid or an embedded device, using a computationally simple low la-
tency algorithm algorithm like the PLL, would be advantageous. With these in mind, our
contribution here would then be to provide the first smart-phone based platform for closed-
loop auditory stimulation using the PLL (see Section 5.3). This would run on an Android
app, making it easily accessible for the wider population and would allow larger-scale stud-
ies to be conducted at the volunteer’s home, avoiding the high costs and waiting times of
sleep labs. More importantly, this would also help generalize findings from the lab to the
real-world.

2.6.3 Chronic pain

Next, we discuss the second application driver; treating chronic pain using rhythmic lights
and sounds. Pain when experienced, is partly physiological (what is sensed through the
body) and partly psychological (what is perceived). The perception of pain can exaggerate
and in effect, inhibit one’s capability to cope with it and this is more so the case for people
suffering from chronic pain. Due to these different factors that contribute to the total ‘level’
of pain experienced, one can expect a variety of brain regions to be involved here. This is
exactly what researchers have found to be the case; different brain regions interact and con-
tribute to the experience of pain and this network is commonly called as the ‘pain matrix’
[128], [129].

Pharmaceuticals have been the go-to method for treating pain. Medicines such as paraceta-
mol and anti-depressant drugs often help reduce the perception of pain and offer pain relief
[14]. However, these come with various side effects and the effectiveness varies from indi-
vidual to individual [14]. Other methods include psychological therapies and bio-feedback
based techniques such as neuro-feedback, which involves reading the user’s EEG and feed-
ing back information on the user’s current brain-state via modulated sounds or other means
[130]. This helps the user train their brains to reach a particular state, through sheer ef-
fort and can be used to modulate the power of a certain EEG band [130]. In the case of
chronic pain, an inverse relationship between the perception of pain and alpha power has
been observed [10], [11]. Hence, by training the brain to increase its alpha power via neuro-
feedback, it is possible to reduce the perception of pain, thereby providing an analgesic ef-
fect [131]. However, such techniques involve effort, time and depend on the user’s motiva-
tion and willingness to stick with the protocol.

This is where neuromodulation comes in, more particularly brain wave entrainment. As,
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detailed in Section 2.3.4 and 2.3.3, this is a quick and effective way to synchronize the dom-
inant brain wave frequency to one of choice, in this case, alpha power. Whereas techniques
like neuro-feedback involves the patient doing the work, entrainment involves the stimuli
doing work, and hence, would be an easier experience for the user. Various groups have
explored this to increase alpha power, and in turn, reduce pain perception [6]–[8], [10],
[11]. For example, Ecsy et al. showed in healthy volunteers (N=32), that a brief 10 min-
utes of audio-visual stimulation in the alpha range reduced experimentally induced pain sig-
nificantly, as measured by pain ratings; they used LED goggles for visual stimulation and
binaural beats for the auditory stimulation [10]. Here, the visual stimulation resulted in a
larger reduction in pain perception and in a follow-up study, they replicated the findings but
this time correlating the reduction in pain-perception to an increase in EEG alpha power as
well, and that too on a larger sample size (N=64) [6]. Taking this outside of experimental
pain, Laura et al. used a brief 4 minutes of alpha visual stimuli (delivered via LED gog-
gles), on participants with chronic musculoskeletal pain (N=22) [8]. They were not able to
find any significant pain reduction, arguing that the 4 minutes of stimulation duration is not
enough and longer durations may be needed, as done with other studies [6], [10]. Neverthe-
less, they still showed visual alpha stimulation was able to increase alpha power in chronic
pain patients, and not just healthy volunteers [8]. Apart from visual stimuli, tACS has also
been used: for example, Laura et al. in a different study, applied 20 minutes of alpha tACS
over the somatosensory region on healthy volunteers (N=20), and showed a decrease in
experimental pain, which was inversely correlated with alpha power [7]. Ahn et al. then
replicated this finding on patients with chronic lower back pain, this time applying 40 min-
utes of alpha tACS, again over the somatosensory region [11]. All these studies then show
the potential of alpha as a potential biomarker for chronic pain, with alpha power being in-
versely related to pain perception. Consequently, by increasing alpha power via entraining
stimuli such as tACS, visual or auditory, one could reduce pain perception.

It must be noted here that all the aforementioned studies have been open-loop studies, where
the alpha frequency stimulus was pre-set at 10 Hz [6]–[8], [10], [11]. As a result, variabil-
ities in results were observed, as is common with open-loop neuromodulatory techniques
[8], [10]. For example, for the visual alpha stimulation study by Laura et al. on chronic pain
patients, some patients showed several points decrease in pain ratings, whilst others showed
no improvements and some even reporting increased pain after stimulation [8]. Similar
variabilities were observed by the study by Ahn et al., applying alpha tACS for chronic pain
patients [11]. Both hypothesized that not taking inter-subject differences in Alpha frequency,
i.e. the Individual Alpha Frequency (IAF), as a potential reason for this variability [8], [11].
This is a plausible hypothesis, as other studies have shown entrainment is more effective
and pronounced, when the stimulation frequency is closer to the Individual Alpha Frequency
(IAF) [16], [17], [49], [117], [132]. For example, Notbohlm et al., used photic entrainment
in the alpha range delivered via LED goggles, and showed entrainment to be most effective
when the flicker frequency was closer to the IAF [16]. Similarly, Widge et al. showed fre-
quency matched alpha tACS stimulation to show pronounced entrainment and increase in
alpha power, compared to the open-loop case [117]. Given these, it would be then reason-
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Author Sensing Actuation Invasive/Non-invasive Application

Widge et al. Implants in
frontal cortex. tACS Invasive General

Pino et al. EEG (Mindwave
device) Visual Non-invasive Anxiety

Table 2.2. Closed-loop stimulation platforms using frequency as feedback measure.

able to hypothesize that an alpha power increase and associated pain relief, would be more
pronounced and likelier, if stimulated at the IAF to take into account inter-subject variabil-
ity; this may explain the variability in results observed with the open-loop paradigm.

That said, most studies in literature assume the IAF to be a static trait amongst individu-
als that does not vary over time within a subject but only across subjects; hence, the usual
approach is to calculate the IAF during a base-line recording period on a per subject basis,
and then use that as the stimulation frequency for the remained of the experiment [16], [17],
[49]. However, recent evidence shows that the IAF does vary over time within a subject:
for example, Haegens et al. showed that the IAF within a subject increases with increas-
ing cognitive load; they calculated the IAF on a second by second basis, and showed that
it varied by 10.3±0.9 Hz within subjects, over a 12 min recording. Similarly, Gutmann et
al. showed a significant increase in IAF (n=10, p-value=0.012) after 30 minutes of intense
exercise [120]. Finally, on a much longer time-scale, Weber et al. showed a significant in-
crease in IAF (n=6, p-value=0.001) during 120 days of isolation [119].

Hence, given that the IAF could change over time, then the ideal platform for the chronic
pain application driver should be able to measure these changes in IAF over-time and adapt
the audio-visual stimulation frequency accordingly. No such platforms exist currently, most
likely due to this being a very recent field of work, with the first results by Ecsy et al. pub-
lished in 2017 [10]. Hence, naturally, open-loop stimulation was the first step, as no. closed-
loop system existed to validate the IAF matching hypothesis. Outside of this, we checked to
see if there are other closed-loop platforms, where the frequency feedback measure is used
to control stimulation frequency. To the best of our knowledge, there exists two platforms,
as summarized in Table 2.2.

The first one by Widge et al. provides tACS stimulation where the frequency of the tACS
is matched to that of the on-going neural activity measured from an implant in the frontal
cortex [117]. Here, they used analog circuitry to extract the feedback frequency measure,
to minimize delay [117]. With this system, they conducted an in-vivo study on monkeys,
and showed that 10s of alpha frequency matched tACS increased alpha power at the frontal
cortex, whilst the control open-loop alpha stimulation decreased alpha power [117]. Even
though the alpha power increase in closed-loop condition was promising, the open-loop
case decreasing alpha power was counter-intuitive; they intuited this may have been due to
the fact that they only applied 10s of tACS, whilst normal tACS experiments apply usually
20 minutes or more of tACS i.e. the dosage was too small [117]. Regardless of the results,
this platform would not be suitable for our chronic pain application driver as it is based on
invasive sensing and using tACS as the stimulation modality, both of which does not suit
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our requirement of a non-invasive light and sound based mobile platform.

Secondly, Pino et al., provided a non-invasive platform for frequency matched visual stim-
ulation to reduce anxiety [115]. Here, the dominant frequency for each EEG band was ob-
tained from the Mindwave EEG device, and its Software Development Kit (SDK), which
outputs the frequency values every second [115]. This frequency was then used to tune
the frequency of the visual flicker provided via a set of lamps, one per EEG band [115].
This platform, though its non-invasive and provides visual flicker, lacks various features
we need. For example, this system is based on the consumer grade Neurosky EEG device
by Mindwave, which is not suitable for research purposes, as these tend to be lower qual-
ity with only 1 channel to record from [115]. The system is also locked to tracking EEG
dominant frequency changes every second, which is obtained from the proprietary SDK;
we aim to track changes every sample, to get to the theoretical limit with more details in
Section 4.6 and 5.4. Finally, this system also does not provide the option for audio binaural
beats based stimulation, which we need.

Technology contribution

Given these, it is clear that both these systems are not fit for purpose, as these were not de-
signed for the chronic pain application driver specifically. The one by Widge et al. is for
frequency matched tACS with invasive sensing and the one by Pino et al. is a based on a
consumer grade EEG device with just one channel, locked proprietary software, and con-
nected to external lamps for visual flicker [115], [117]. Both these do not fit the require-
ment for frequency matched audio-visual stimulation on a portable device; no such plat-
form exists today that is fit for purpose for the chronic pain application drivers, as this is a
recent field and all work has been done using open-loop platforms.

Hence, our contribution here would be to provide the first in kind of a smart-phone based
closed-loop platform designed solely for the chronic pain application driver; this would
track the IAF on a sample by sample basis (theoretical limit for resolution) and tune the fre-
quency of audio-visual stimulation accordingly. The audio stimulation would be provided
in the form of binaural beats delivered from the phone and the visual stimulation as screen
flicker from a phone. Most importantly, this would be a smart-phone based platform run-
ning on an Android app, which would enable large-scale at-home experiments on patients,
with multiple sessions. This would be harder to do on lab-based platforms, as chronic pain
patients are often fatigued quickly and find it tiresome travelling to and fro, making mul-
tiple session experiments harder. This would be easier with an ambulatory platform, es-
pecially one as ubiquitous as a smart-phone, as the patients could take part in the sessions
from the comforts of their own homes. This platform contribution is detailed in Section 5.4
of Chapter 5.

Finally, it must also be noted here that we have active collaborators working in this field at
the Royal Salford Hospital, who have authored lots of the publications in this field [6]–[8],
[10]. They will be using the platforms developed here to move past open-loop stimulation;
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in other words, figuring out if alpha frequency matched stimulation could result in stronger
entrainment and drive down variability in results observed [8], [10].

2.6.4 Summary

In this Section, we detailed the two application drivers that our system is designed for: sleep
engineering and chronic pain. For sleep engineering, the aim is to provide phase-locked au-
ditory stimulation targeting the Slow Wave oscillation, to enhance memory consolidation.
For this, we detailed various technology advancement work done to improve both speed
and accuracy; of these, we highlighted that only two portable platforms exists, with both
running on embedded hardware. None exists that run on a ubiquitous platform such as the
smartphone to enable truly in-the-wild research, and this is where our contribution lies for
this field. For the chronic pain driver, the aim is to provide frequency-matched audio-visual
stimulation in the alpha band, to enhance entrainment and in-turn the associated analgesic
effects. For this, ours would be the first-in kind of a platform and no state-of-the-art exists
to compare to, making the novelty the contribution.

2.7 Conclusions

In this Chapter, we started our literature review describing the individual components of
a closed-loop platform in isolation, starting with brain sensing and actuation. The EEG
was chosen to sense brain activity due to its low cost, portability and good temporal reso-
lution. For actuating the brain, the modality was application dependent: for example, audi-
tory stimulation for sleep engineering and audio-visual stimulation for chronic pain. This
was followed by a discussion on the various challenges of building a closed-loop platform
and we highlighted its potential advantages over open-loop platforms. Advantages include
addressing the variability in therapeutic outcomes and reducing negative side-effects due to
over-stimulation. Moroever, we also highlighted here the need for mobile paltforms, to en-
able ‘out-of-the-clinic’ research. Next, a detailed discussion was given on the various feed-
back measures available to close the loop between sensing and actuating. Here, the feed-
back measures we focused on was EEG phase and frequency, both of which come from
our application drivers. With this, we then discussed the challenges of real-time phase-
frequency extraction and highlighted the need for low latency algorithms, after which state-
of-the art algorithms were discussed. After showing the limitations of window-based meth-
ods like the FFT and AR modelling, we then showed that the use of a PLL was ideal. Un-
like the other methods, the PLL could operate on a sample-by-sample basis to drive latency
down, is computationally simple and can adapt to dominant frequency changes of the EEG
over-time, all of which are important factors for a real-time system. The Chapter then con-
cluded with a detailed discussion on our application drivers chronic pain and sleep engi-
neering, alongside the state-of-the-art platforms available. This then contextualized our
technology contribution, in light of the gaps present.
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Chapter 3

Open-loop light and sound based

neuromodulation on a phone

3.1 Introduction

The first step to a closed-loop platform is to design an open-loop stimulation one; i.e. one
which can present visual and audio stimulation at the wanted frequencies, but with the set-
tings fixed in advanced via a user interface rather than adjusted automatically in real-time
based upon sensed user data. This would not only help characterize and validate the stimu-
lation accuracies, but any closed-loop system should also have an open-loop mode within it,
for use as a base-line. Moreover, the open-loop app in itself is being used by our collabora-
tors in chronic pain, the details of which are presented in Section 3.4.2. With these in mind,
the technical work in this chapter focuses on accurate stimulation for both auditory and vi-
sual modes. The GUI for this open-loop app can be seen in Figure 3.17 in Section 3.4.2.

The chapter then is then laid out as follows: the design, implementation and accuracy char-
acterization for the visual stimulus is detailed in Section 3.2; then the one for auditory stim-
ulus is presented in Section 3.3 and finally, the Chapter concludes with a brief discussion of
the user experience related feedback, obtained from chronic pain patients and areas where
the app is currently being used for.

3.2 Visual entrainment

3.2.1 Introduction

Here, we discuss the delivery of visual stimuli, via a smartphone. It must be noted here that
although we are designing the app as a standalone open-loop app, we still need to ensure
that the stimuli generation methods are fit for closed-loop stimulation for use in Chapter 5.
This means that we not only want accurate stimuli delivered for the frequencies of inter-
est in our study, but also we need to ensure that at frequency changes (expected in closed-
loop), there would be no signal discontinuity. Visual stimulation is common place in SSVEP
based brain computer interfaces, where the stimulus is a flickering light at a specific fre-
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quency, which also results in entrainment, as detailed in Section 2.3.3. Hence, we contextu-
alize our contribution in light of the state-of-the-art in SSVEP literature.

Most SSVEP studies are conducted on lab-based systems, where the flicker is delivered
either via a computer monitor or from a dedicated hardware (e.g. LED devices) [133]–
[137]. While dedicated LED hardware cannot be reconfigured and adapted for different
purposes, it can present a much wider range of frequencies. In contrast to this, computer
monitor based SSVEP’s has the advantage of being re-configurable and flexible, whilst be-
ing limited by the refresh rate of the screen; the frequencies presentable are limited to those
that are integer divisors of the screen refresh rate [133]. For example, assuming a 60 Hz re-
fresh rate, to deliver a 30 Hz flicker, the frame rendering scheme would be one frame-on
(white color) and one frame-off (black color). On the other hand, a 11 Hz flicker is not di-
rectly possible since it would require 2.725 frames on and 2.725 frames off.

To address this issue, groups have used either approximations of a square wave or a sine
wave, for the stimulus waveform [133]–[136]. For example, Andersen et al. used a method
where certain frames are provided intermediate intensity values to get over the refresh rate
limits (more details in Section 3.2.4) [133]. They tested this algorithm on a computer screen
with refresh rate of 85 Hz and 120 Hz, and for just 4 frequencies in the 10–15 Hz range
[133]. Apart from square wave approximation, other groups have used a sine wave as the
stimulus waveform, the reasoning being that it could generate any frequencies up-to half the
refresh rate of the screen [135], [136]. For example, Chen et al. used this method to gener-
ate signal in the 6–40 Hz range elicited on a 120 Hz refresh rate computer monitor screen
[135].

It must also be noted here that all these methods have been so far implemented on lab-based
system’s (computer screen) and not on phones, which are expected to have lower refresh
rates; for example 60 Hz for the Sony Xperia Z3 phone we used [91], [134], [136], [137].
To the best of our knowledge, only one study by Wang et al. explored the use of a mobile
phone to deliver SSVEP on a 55 Hz refresh rate phone; however, they only investigated
performance for a 11 Hz signal, which is easy as it is an integer divisor of the refresh rate
[138].

Aside from portability, one other limitation of all these methods is that they were designed
for SSVEP based Brain Computer Interfaces (BCI) and hence, are by default for open-loop
applications where the frequency is preset and fixed i.e. not changing over time [48], [134]–
[136], [138]. However, for closed-loop applications, the frequency is expected to change
over time and hence, signal continuity needs to be ensured at these frequency changes; with-
out this, there would be jumps and discontinuities in the generated signal. Although this
chapter is about the open-loop stimulus implementation, the same stimulus method will be
used for the closed-loop system later in Chapter 5, which makes signal continuity at fre-
quency changes an important features. None of the aforementioned methods takes this into
account, as they were designed for open-loop applications.

With these in mind, we aimed to improve upon these methods via two contributions: first
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by providing an on-phone implementation for the stimulus waveform, and second by ensur-
ing the stimulus method ensures signal continuity, for it to be usable in closed-loop appli-
cations. In light of this, we first start the Chapter with the requirements and specifications
in Section 3.2.2. Then, we detail the test setup and methods used to characterize the stimu-
lation implementations, in Section 3.2.3. This is then followed by a discussion of the three
different stimulus methods we investigated for giving different levels of frequency accuracy
and performance: the square interpolation, square sine and sine, in Sections 3.2.4, 3.2.5 and
3.2.6, respectively. We then contextualize our method of choice, after comparing and con-
trasting these in Section 3.12.

3.2.2 Requirements and specifications

Firstly, we set the requirements and specification for the visual stimulus. These would be
derived from our chronic pain application driver, where the target bio-marker is the alpha
band (8–13 Hz), as detailed in Section 2.6.3. With this in mind, the specifications are:

• Frequency range: 8–13 Hz For the chronic pain application driver, the analgesic effects
were seen via visual stimuli provided in the alpha band (8–13 Hz), as detailed in Sec-
tion 2.6.3 [6], [8], [10]. Hence, we aim to deliver stimuli in these frequencies accu-
rately.

• Signal continuity at frequency changes We highlight again although this chapter is
about the open-loop app, we eventually aim to embed these stimuli generation meth-
ods into the closed-loop app later on in Chapter 5. Here, the Individual Alpha Fre-
quency (IAF) is expected to change over time, which we also showed in Section 4.2.3
[118]–[120]. Hence, we need to ensure that there would be no discontinuity in stimu-
lus waveform when frequency changes in the alpha band, to be fit for closed-loop ap-
plication later on in Chapter 5.

3.2.3 Test methods

To test the accuracy of the visual stimuli provided, a Sony Xperia Z3 (quad-core 2.5 GHz
Snapdragon 801 processor with 3GB RAM), with a 60 Hz screen refresh rate was used;
this phone was used as this was the one that came with the wireless EEG amplifier we used
for our closed-loop system, as detailed in Chapter 5. We tried also using a different phone
model (Samsung Galaxy S3) for the closed-loop system but it resulted in a much higher
bluetooth transmission latency; hence, we just stuck with the phone that came with the sys-
tem i.e. the Sony Xperia Z3 phone. Measurements of screen brightness were taken using a
PDA10CS-InGaAs photo-detector. This integrated chip contains a photo-diode, operational
amplifier, and associated circuitry to provide accurate light intensity measurements. Tests
were conducted by placing the phone and the sensor inside a sealed box to avoid noise from
other light sources. This setup is depicted in Fig. 3.1.
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Smartphone Light sensor DAQ

Figure 3.1. Test setup for visual stimulus.

Out of the three stimulation methods detailed in the following sections, two of them involve
generating a square wave, as detailed in Section 3.2.4 and 3.2.5. For these, the brightness
of the flickering screen mainly takes the shape of a square wave; we say mainly, because
with square interpolation method in Section 3.2.4, interpolation is used to set the brightness
at intermediate intensities at particular points in time. For these, measuring the instante-
nous frequency present is not straight-forwards as say measuring that of a pure sinusoid,
where the Hilbert transform could be used to obtain the instantaneous frequency. Since the
square-wave is not a mono-component signal like the sinusoid, we then needed to use a dif-
ferent approach to calculate instantaneous frequency. To address this, the signal was first
band-pass filtered with a zero-phase order 10 Infinite Impulse Response(IIR) butterworth
filter with a 8–13 Hz passband. Then, the Hilbert transform was used to calculate the in-
stantaneous frequency of this filtered waveform, as an approximate to the square-wave fre-
quency. The rationale here is that since the filtered waveform would not contain any har-
monics of the original square waveform for the 8–13 Hz band, we could use this narrow-
band sinusoid then as a good approximate for the square wave frequency. Moreover, to get
instantaneous frequency, we take the derivative of the instantaneous phase. Consequently,
since the derivative is a noise-sensitive operation, a smoothing filter is needed, especially
for the flicker waveform obtained from on-phone testing in Section 3.2.4 and 3.2.6, which
may contain residual noise from external light sources. Hence, even with prior band-pass
filtering, we needed to smooth the output instantaneous frequency. For this, we used an Or-
der 2 IIR Butterworth low-pass filter with a 0.3 Hz cut-off frequency. We chose this, since
we are interested in DC trend as the frequency is expected to be a staircase) and any high
frequency noise can safely be assumed to be derivative induced.

With these, for each of the stimulation methods, we first conduct an offline analysis to ex-
plore which of the three methods work best, under our constraints of a 60 Hz refresh rate.
Moreover, with the simulations, we were also able to analyse the effect of varying the re-
fresh rate on the waveform quality for each of the methods, which helps explore how the
results may vary for phones with higher refresh rate: this is not possible otherwise in hard-
ware, as we have only access to the Sony Xperia Z3 phone with a 60 Hz refresh rate. More
importantly, this is the only phone supported for real-time EEG data streaming used in Chap-
ter 5.
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3.2.4 Stimulation method 1: Square interpolation

Square-waves are one of the common waveforms used for SSVEP studies in EEG literature
[133], [134], [137]–[139]. As discussed in Section 3.2.1, it is also more likely to elicit en-
trainment in the brain, when compared to sine-waves [139].

Implementation

The main challenge for on-phone square-wave generation here is that the stimulus will be
synchronized to the screen’s refresh rate and hence, a limit exists to the number of frequen-
cies presentable; the visual stimulation frequencies directly realisable on the smartphone
screen are limited to integer divisors of the screen refresh rate of 60 Hz. To address this is-
sue, we used an interpolation algorithm proposed by [133], where intermediate intensity
values for the screen brightness are used at specific frames for frequencies that are not inte-
ger divisors of the screen refresh rate. An example waveform using this method is shown in
Figure 3.2a. The intensity value (w) at each frame (i) is given as,

w[i] =



1 if 1 ≤ i mod λ ≤ ronλ

ronλ+ 1− i mod λ if ronλ < i mod λ < ronλ+ 1

0 if ronλ ≤ i mod λ

i mod λ if i mod λ < 1

(3.1)

where λ = R/f . Here R is the screen refresh rate, f is the desired stimulus frequency,
and ron is the fraction of the stimulus cycle in which the stimulus is on[133]. Also note that
the first line corresponds to fully-on state i.e. full intensity; the second line the transition
from on-to-off; the third line the fully-off state and the fourth line, the off-on transition. In
code, the control flow is executed from top to bottom in order, with a break statement for
each condition: for example, if the full-on state condition is met, then the remaining lines
are skipped.

This algorithm was used to generate flicker frequencies in the range 8–13 Hz, i.e. the al-
pha band, according to our specs. This was realised via the OpenGL graphics library which
uses separate threads for frame rendering and screen updates, leaving processor resources
available for other activities on the phone (data collection and real-time data analysis).

Results: Offline simulation

Before porting the algorithm onto a phone, an offline simulation was conducted first in Mat-
Lab, to investigate the effects of varying refresh rates, as mentioned previously in Section 3.2.3.
This was done to investigate the effects of varying refresh rates and to check if the algo-
rithm satisfies the requirement of signal continuity at frequency changes. Moreover, this
also allowed us to investigate the effect of different refresh rates on waveform quality.
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Figure 3.2. Raw waveform (a) and its instantaneous frequency Fi (b) using the square interpolation method.
Shaded area corresponds to the time period displayed in (a).

To test this, we ran a simulation in Matlab where this method was used to generate a wave-
form that changed its frequency from 8–13 Hz, in 0.2 Hz steps (changing every 2s). The
change in frequency of this waveform would allow verification of any signal continuity, at
these step changes. Then, we repeated this for a 90 Hz and 120 Hz refresh rates, to see the
effect different refresh rates would have on the waveform quality.

Firstly, a portion of waveform produced by the interpolation algorithm are shown in Fig.
3.2a. As observed, when there is a step change in frequency (t=13s), there is signal discon-
tinuity present. This is also evident from the instantaneous frequency measurement and the
sharp spikes observed, in Fig. 3.2b. Here, the spikes represent step changes of 0.2 Hz in the
signal and they are amplified more so due to the noise sensitivity of the derivative opera-
tion. Apart from that, the raw waveform look square like, and the intermediate interpolated
intensities are clearly visible i.e. the parts where the amplitude is neither 0 or 1. Overall,
the trend is for the flicker frequency present to match the one asked for to a high level of ac-
curacy, as long as no frequency transitions are present.

Fig. 3.3 shows the results of varying the sampling frequency (refresh rate on phone) of the
waveform, and as observed, with increasing refresh rates, the waveform starts to look more
square like. This suggests that phones with higher refresh rates (90 Hz and 120 Hz), would
give higher quality square like flickers, due to increased sampling frequency. However, the
issue of signal continuity still persists, as expected.
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Figure 3.3. Varying sampling frequency (simulated refresh rate) for the square interpolation method. (a) Raw
waveforms for Fs=60 Hz. (b) Instantaneous frequency for Fs=60 Hz. (c) Raw waveforms for Fs=90 Hz. (d)
Instantaneous frequency for Fs=90 Hz. e) Raw waveforms for Fs=120 Hz. (f) Instantaneous frequency for
Fs=120 Hz. Shaded area in red for all right column plots correspond to the time period displayed in the left

hand plots.

Results: On-phone testing

After investigating the waveform dynamics from the offline simulations, we learned that
this method, due to its signal discontinuity at frequency changes, is not suitable to be em-
bedded into the closed-loop platform later on in Chapter 5, where frequency is expected to
change. However, it may still be advantageous to use this technique for open-loop applica-
tions; for example, as detailed in Section 3.2.6, square waves were more likely to elicit an
SSVEP response [139]. Hence, we did not conduct on-phone testing for the closed-loop
mode where we program frequency changes into the app, to test for continuity; instead we
simply tested it with fixed frequency in the alpha range.

To do this, we measured 3 minutes of stimulation for each frequency in the range 8–13 Hz
(in 1 Hz steps). Three trials were taken for each of the 3 minute measurements. The fre-
quency for each trial (epoch) was measured via obtaining the power spectrum of the signal,
and measuring the dominant frequency of the signal (frequency with the highest power).
To do this, we used the welch transform (hamming window of 1.3s length and a 50% over-
lap); with a sampling frequency of 250 Hz, a 1.3s window length gives us a 0.8 Hz fre-
quency resolution, which would be enough to distinguish between the frequencies in the
alpha range (8–13 Hz).

As observed from Figure 3.5, the app accurately delivers the square wave stimulation for
the entire alpha band here, as evidenced by the R squared error value of 1 between the fit-
ted line and the measured one. Moreover, there was no difference between trials, i.e. an
inter-trial standard deviation of 0 Hz, which is why the error bars are not visible on Fig-
ure 3.5. Also, observing Fig. 3.4, we see the raw flicker waveform is square-like but noisy;
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Figure 3.4. On phone testing: Square interpolation method raw waveform.
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Figure 3.5. On phone testing: Square interpolation method frequency plot. Each marker represents the pre-set
frequencies tested, with an error bar indicating the inter-trial standard deviation, which in this case is 0 Hz.

these are noise picked up from external sources (from the test setup) and they may have
been picked up due to the high sensitivity of the photo diode sensor used. We confirmed
this by measuring the waveform without any stimulus i.e. measuring the noise floor of the
test-setup; the peak-to-peak amplitude of this waveform was around 5 mV, which is roughly
the same as that of the ripples observed in the flicker waveform in Fig. 3.4. However, these
are not an issue, since they are high frequency noise and is removed by the band-pass fil-
tering done in the offline analysis of the waveform, as detailed in Section 3.2.3. Moreover,
it must be noted here that the original authors of this method implemented this algorithm
on a computer screen with refresh rates of 85 Hz and 120 Hz, and did not test it on a phone
[133]. We filled this gap by implementing the algorithm on a phone and showing that for a
60 Hz refresh rate phone, the method could accurately deliver stimulus in the alpha range
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(8–13 Hz). Most importantly, they did not test for signal continuity when the frequency
changes, as their aim was for it be used in SSVEP based BCI’s, which are open-loop by
nature [133]. Hence, the method won’t be fit for use in closed-loop applications like ours.
Groups that have used sine-based waveforms, as discussed in Section 3.2.6, also do not
take signal continuity at frequency changes into account, again due to their target appli-
cations being open-loop [135], [136]. Hence, these would not be suitable for closed-loop
applications but would be relevant for open-loop applications, where signal continuity is
not required. To make this work for closed-loop system, we next move onto methods which
would ensure signal continuity at frequency changes.

3.2.5 Stimulation method 2: Square sine

A problem with the square interpolation method discussed previously was signal discon-
tinuity when the frequency changes. Both the square-based method and sine-based meth-
ods in literature do not attempt to solve this issue, as their target applications are open-loop
(SSVEP-based BCI’s) [133]–[136], [138]. This then motivates the ‘Square sine’ method
we propose and detail in this Section, which essentially generates a square waveform, while
satisfying the signal continuity requirement.

Implementation

This technique stems from the knowledge that a square wave can be approximated by a sum
of sinusoids, using fourier expansion. We then add the desired frequency sinusoid, along
with its first harmonic, to get an approximation of the square wave. Note that only the first
harmonic was used and not the rest, to keep computation cost minimal and to avoid exceed-
ing the nyquist limit, given the screen refresh rates we deal with are pretty low. Since this
technique uses a sum of sinusoids to approximate the square wave, we can then satisfy the
signal continuity requirement by embedding a phase accumulator into each of the sinu-
soids, which ensures continuity when the frequency changes. The equation for the gener-
ated waveform then is given as,

y[i] = sin(φ[i]) +
1

3
sin(3φ[i]) (3.2)

Where, y[i] is the waveform amplitude at each sample i and φ[i] is defined as,

φ[i] = φ[i− 1] + ∆φ, and ∆φ = 2π
f

fs
(3.3)

Here, f and fs are the stimulation frequency and sampling frequency (refresh rate) respec-
tively and by using a phase accumulator (3.3), phase memory is embedded in the waveform,
to ensure signal continuity at frequency changes.
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Figure 3.6. (a) Simulated waveform for the square sine method. Frequency changes at t=15 s (0.2 Hz step) (b)
Instantaneous frequency Fi of simulated waveform for the square sine method. Shaded area corresponds to

the time period displayed in (a).

Results: Offline simulation

As with the square-interpolation method, we first conduct an offline simulation in MatLab,
to investigate the effects of varying refresh rates. Just as in Section 3.2.4, we generate a
waveform that changed its frequency from 8–13 Hz, in 0.2 Hz steps for a 60 Hz refresh rate,
and then repeated the same for a 90 Hz and 120 Hz refresh rates, to see the effect different
refresh rates would have on the waveform quality.

As observed from the waveform plot in Fig. 3.6a, we note that for a 60 Hz refresh rate, the
waveforms do not look very square like and this is reflected in the instantaneous frequency
plots as well, shown in Fig. 3.6b. This is because with a 60 Hz refresh rate, the highest fre-
quency i.e. first harmonic in the generated waveform exceeds the nyquist limit in our band
of interest. For example, for the alpha band (8–13 Hz), the first harmonics would range
from 24-36 Hz, with the nyquist limit here being 30 Hz (half the sampling frequency). Hence,
for the square waves at and above 10 Hz, it does violate this limit and causes aliasing, and
for frequencies between 8 and 10 Hz, it is very close to this limit.

Note that the refresh rate also limits the number of harmonics that could be used to obtain a
square wave-form. Choosing a higher number of harmonics to approximate a better square
wave is only possible when the refresh rate is high enough to accommodate this, and will
also incur additional computational complexity. For these reasons, we limited it to just the
first harmonic.

Hence, the square-sine method, despite giving signal continuity for a square wave, still fails
with a 60 Hz refresh rate due to aliasing and exceeding the nyquist limit. We then hypoth-
esized that this problem is solved with a higher refresh rate, and hence we conducted the
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Figure 3.7. Varying sampling frequency Fs (simulated refresh rate) for the square sine method. (a) Raw
waveforms for Fs=60 Hz. (b) Instantaneous frequency for Fs=60 Hz. (c) Raw waveforms for Fs=90 Hz. (d)
Instantaneous frequency for Fs=90 Hz. (e) Raw waveforms for Fs=120 Hz. (f) Instantaneous frequency for
Fs=120 Hz. Shaded area in red for all right column plots correspond to the time period displayed in the left

hand plots.

same analysis with a 90 Hz and 120 Hz refresh rates, which may be more common amongst
phones of the future. The results for these are shown in Fig. 3.7.

As observed, we see from Fig. 3.7 that for both 90 Hz and 120 Hz refresh rates, the wave-
forms generated are square like, with the expected instantaneous frequency measurements
and sans aliasing effects. This is because for 90 Hz and 120 Hz refresh rates, the nyquist
limit is at 45 Hz and 60 Hz, respectively, which is well below the highest frequency con-
tained in our generated waveform. This was not the case for the 60 Hz refresh rate, which is
why we observed aliasing there.

In summary then, we note that using the square sine method, we can generate a square wave-
form with signal continuity at frequency changes. However, this only works when the re-
fresh rate of the phone is high enough (e.g. 90 and 120 Hz) and not for 60 Hz refresh rate
ones like the one we use for this thesis, due to the nyquist limit and aliasing. Hence, this
method would be suitable for closed-loop applications done with phones of the future with
a 90 Hz and 120 Hz refresh rate.

Results: On-phone testing

From the offline simulations, we noted that it is not feasible to generate a square sine wave-
form for a 60 Hz refresh rate phone, due to the nyquist limit. However, for phones with a
90 Hz or 120 Hz refresh rate, it is possible. Since, we only had access to 60 Hz refresh rate
phones for this study, it then made no sense to do an on-phone test, which is the reason why
we did not conduct any. However, we do note that this would be possible with phones that
have higher refresh rates.
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3.2.6 Stimulation method 3: Sine waveform

The previous two methods were used to generate a square waveform, which are known to
produce stronger entrainment [139]. However, they were both not optimal, as they either
did not satisfy the signal continuity requirement needed for closed-loop applications (square
interpolation method) or they did not produce the square-like waveform for a 60 Hz refresh
rate phone (square-sine method). Hence, next we explored a third option, which is the use
of a sine wave. Sine-waves have been used to generate SSVEP’s in literature [135], [136].
For example, Chen et al, used a sine-wave for generating SSVEP’s in the range 6–40 Hz,
in steps of 2 Hz [135]. They did this on a computer monitor with a refresh rate of 120 Hz,
which meant sine waves of up-to 60 Hz in frequency could be generated reliably without
exceeding the nyquist limit [135]. However, as with the square-interpolation methods, the
target application is open-loop, and not for closed-loop applications, where the frequency is
expected to change over time [135].

To overcome this limit, we build upon this method and overcome this limitation via the use
of a phase-accumulator. This would have the advantage of satisfying signal continuity via
phase memory, whilst also producing a quality waveform. Moreover, unlike the methods in
literature, we implement this on a phone, and not computer monitors; more specifically, a
phone with a 60 Hz refresh rate, which is much lower than the 120 Hz refresh rate screen
monitor used by Chen et al [135], [136]. For a sine wave, at 60 Hz refresh rate, the nyquist
limit of 30 Hz is well above the highest frequency component in the alpha band (13 Hz) and
hence, we can expect quality signals with no aliasing, generated on a phone.

Implementation

Implementation of a sine wave is straight forward, and we also embedded a phase accumu-
lator for phase memory, which ensures signal continuity at frequency changes. The equa-
tion of the waveform is given as,

y[i] =
1

2
{sin(φ[i]) + 1} (3.4)

Where, y[i] is the waveform amplitude at each sample i and φ[i] is defined as,

φ[i] = φ[i− 1] + ∆φ, and ∆φ = 2π
f

fs
(3.5)

Here, f and fs are the stimulation frequency and sampling frequency (refresh rate) respec-
tively. By using a phase accumulator (3.5), phase memory is embedded in the waveform, to
ensure signal continuity at frequency changes. Also, note that the amplitude values of y[i]
varies between 0 and 1, which is the range accepted by display framework (OpenGL).
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Figure 3.8. (a) Simulated waveform for the sine method. (b) Instantaneous frequency of simulated
waveform.Shaded area corresponds to the time period displayed in (a).

Results: Offline simulation

As with the previous two methods, we first conduct an offline simulation in MatLab, to in-
vestigate the effects of varying refresh rates. This is done via generating a waveform that
changed its frequency from 8–13 Hz, in 0.2 Hz steps for a 60 Hz refresh rate, and then re-
peating the same for a 90 Hz and 120 Hz refresh rates.

As observed from the raw and instantaneous frequency plots in Fig. 3.8a and 3.8b, respec-
tively, we find that this method produces a waveform that satisfies both requirements: it
provides a sinusoidal waveform in the alpha band for a 60 Hz refresh rate, and ensures sig-
nal continuity when the frequency changes. The former is possible because the highest fre-
quency components in the alpha band (13 Hz) is well below the nyquist limit of 30 Hz, for a
60 Hz refresh rate. Hence, a quality waveform is generated for the alpha band. Similarly,
the signal continuity requirement is satisfied as well, as there is a phase accumulator for
phase memory. Hence, implementation wise, the sine method functions the best.

Finally, for completion sake, we also show the effects of varying refresh rates for the sinu-
soidal method in Fig. 3.9. Here, as expected, no real difference could be observed with in-
creasing refresh rates, as it works well across all. This is because, even for a 60 Hz refresh
rate, we know that the highest frequency in the alpha band is still below the nyquist limit,
which avoids any degradation of signal quality due to aliasing.

Results: On-phone testing

From the offline analysis, we found that a sine waveform could be generated reliably in the
alpha band on a 60 Hz refresh rate phone, whilst ensuring signal continuity. Hence, unlike
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Figure 3.9. Varying sampling frequency (simulated refresh rate) for the sine method. (a) Raw waveforms for
Fs=60 Hz. (b) Instantaneous frequency for Fs=60 Hz. (c) Raw waveforms for Fs=90 Hz. (d) Instantaneous
frequency for Fs=90 Hz. (e) Raw waveforms for Fs=120 Hz. (f) Instantaneous frequency for Fs=120 Hz.

Shaded area in red for all right column plots correspond to the time period displayed in the left hand plots.

for the square interpolation method in Section 3.2.4 where we test using pre-set frequen-
cies on the phone, here we use the stair-case signal (8–13 Hz in 0.2 Hz steps) to test for sig-
nal continuity. The stair-case signal would allow us to test for both signal continuity and
accuracy. We did not do this for the on-phone implementation of the square interpolation
method, as we knew it would not track frequency changes from the offline analysis.

With this, we then ported the sine-method onto the Sony XPeria Z3 phone, and measured
the generated waveform and its instantaneous frequency, as detailed in the test methods in
Section 3.2.3. The resulting raw waveforms and its instantaneous frequency are shown in
Fig. 3.10 and 3.11, respectively.

As observed from both the raw plots and its instantaneous frequency, we note that the app
delivers stimulation accurately over the alpha band, as expected. There are no discontinu-
ities when the frequency changes. Here, we also note that the transition jump for the 0.2
Hz step changes in frequencies are not seen in Figure 3.11; instead, they are smoothed out.
This is because we used a low pass filter (0.3 Hz cut-off) to smooth out the derivative in-
duced noise in the instantaneous frequency, as detailed in the test methods in Section 3.2.3.
On the contrary, for the offline simulations the signals were cleaner without any test-setup
induced noise; hence, there was no need to use the smoothing filter, which is the reason
why we observe the 0.2 Hz step changes there.

Even though the sine-wave works best for delivering stimulation in the alpha-range on a 60
Hz refresh rate phone, the trade-off made here would be in efficacy; sine-waves has been
shown to produce weaker entrainment than square waves [139]. Teng et al. conducted a
study where they provided both a square-wave and sine-wave visual stimulus from an LED
for frequencies in the range 11-22 Hz [139]. Here, they measured the accuracy of both wave-
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Figure 3.10. On phone testing: sine method raw waveform.

Figure 3.11. On phone testing: sine method instantaneous frequency plot. The shaded area is the inter-trial
variance.

forms, with the accuracy being defined as the ratio between the number of trials where the
1f component of the SSVEP was detected and the total number of trials. For each trial,
8s of stimulation was provided, followed by a resting period. With this, they reported the
square-wave to be better at eliciting SSVEPs (90.8% accuracy), compared to the sine-wave
(75% accursacy) [139]. In other words, they showed that the square waveform is more likely
to entrain the brain and would be a better modality for entrainment purposes, even though
the sine-wave could elicit them too. Hence, this trade-off should be kept in mind.

So, in summary, here we showed that the sine stimulation delivered accurate waveform over
the alpha band, whilst preserving signal continuity at frequency changes, on a 60 Hz re-
fresh rate phone. This then makes it a suitable waveform to be used in a closed-loop sys-
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tem, where signal continuity is required.

3.2.7 Discussion

In this Section, we investigated three different waveform generation methods for the visual
stimuli: square interpolation, square sine and sine method. The first two produces a square
waveform, while the last a sinusoidal one. Here, we compare these methods and inform
our choice of method, for use in both the open-loop and closed-loop mode. For open-loop
mode, the method should provide accurate waveform over the alpha band, for a 60 Hz re-
fresh rate phone. In addition to this, the closed-loop mode has one additional requirement,
which is ensuring signal continuity, at frequency changes, so that the stimulation waveform
could be adapted over-time to the on-going EEG. With these requirements in mind, we then
compare the three methods.

Comparison of methods

Fig. 3.12 summarizes the performance of the three methods using the stair-case signal, to
aid comparison. Out of the first two methods, which are used to generate a square wave-
form, the square interpolation methods produces a better square waveform, but lacks phase
continuity, making it unsuitable for closed-loop applications. These are evident from the
spikes observed, when the frequency changes, as seen in Figure 3.12b. On the other hand,
the second method (square-sine), overcomes this challenge by generating a square wave
via summation of two sine waves (the fundamental frequency and its first harmonic). This
however does not work for a 60 Hz refresh rate, since the first harmonics in the alpha band
exceeds the nyquist limit, causing aliasing and a poor quality square waveform. This is ev-
ident from the noisy instantaneous frequency in the plots. However, we did observe from
our offline simulations in Section 3.2.5, that this would not be the case for higher refresh
rate phones (90 Hz and 120 Hz), and for these, the square sine method would perform well
producing a neat square wave, whilst also satisfying the signal continuity requirement. How-
ever, for this project, we are targeting 60 Hz refresh rate phones, as this was the phone that
came coupled with the wireless amplifier we used in Chapter 5. In contrast, 90 Hz and 120
Hz refresh rate phones might take a while to be more wide-spread, due to power consump-
tion problems that remain to be solved; even when more readily available, it would still be
beneficial turn the refresh rate down as this could reduce power consumption and prolong
battery life. Moreover, it must also be noted that for these higher refresh rate, more harmon-
ics may be added to produce a more square like waveform, but this again is limited by the
nyquist limit and also may add more computational complexity.

With all these in mind, we then proposed using the square interpolation method for the open-
loop mode, as signal continuity is not required for open-loop modes, and this method gen-
erates a square waveform accurately over the alpha band on a 60 Hz refresh rate phone,
as summarized in the plots in Fig. 3.5, from Section 3.2.4. The authors of the algorithm
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Figure 3.12. Comparison of the 3 methods: Simulated waveforms. (a), (c), and (e) are a small trace of the raw
waveform using the square-sine method for sampling frequency Fs of 60Hz, 90Hz and 120Hz. (b), (d) and (f)
are the instantaneous frequency Fi for sampling frequency 60Hz, 90Hz and 120Hz, respectively.Shaded area

in red for all right column plots correspond to the time period displayed in the left hand plots.

used this method on a 85 Hz and 120 Hz computer monitor to elicit SSVEP’s, and we took
this further by showing that it works on a 60 Hz refresh rate phone too [133]. Moreover, as
square waves have shown to be more likely to elicit entrainment, we then chose this method
for the open-loop mode [139].

The third method was a simple sinusoid, which also have been used by other groups, as de-
tailed in Section 3.2.6 [135], [136]. However, unlike other groups where the target appli-
cation was open-loop SSVEP based BCI’s, we advanced this method to be usable for both
closed-loop applications and for an on-phone implementation [135], [136]. Here, the high-
est frequency component in the alpha band (13 Hz) is far below the nyquist limit of 30 Hz,
for a 60 Hz refresh rate phone, making it suitable for the on-phone implementation. More-
over, to make it usable in closed-loop applications, we used a phase-accumulator, to ensure
signal continuity at frequency changes (see Fig. 3.11). Hence, out of the three methods, this
was the one we deemed most fit for the closed-loop mode, as it ensures both signal continu-
ity and a quality waveform, for a 60 Hz refresh rate phone.

It must also be highlighted here that, to the best of our knowledge, only one study exists
that used a phone, and not a computer monitor to generate the SSVEP signal [138]. This
was a study by Wang et al, where they used a Samsung Galaxy S phone (refresh rate of 55
Hz), to generate a square wave for a 11 Hz signal [138]. They only tested it for a 11 Hz sig-
nal, which was an integer divisor of the refresh rate, negating any need for approximation
methods [138]. Aside from not covering the entire alpha range, they are also not suited for
closed-loop applications, as the target application was opne-loop (SSVEP based BCI).

Hence, in light of these, our contribution here are two folds: firstly, we demonstrated that
the square interpolation method works reliably to generate flicker in the alpha range (8–13
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Hz) on a 60 Hz refresh rate phone and secondly, we showed that with the use of a phase-
accumulator, we can use the sine-method to ensure signal continuity at frequency changes,
which makes it fit closed-loop systems.

3.2.8 Summary

In this Section, we investigated three stimulation methods for the visual stimulation, to be
used under the constraints of a 60 Hz refresh rate phone. We noted that the square interpo-
lation method is ideal for open-loop applications since its accurate over the alpha band, and
provides stronger entrainment than a sine waveform [139]. For the closed-loop method, we
chose the sine method, as it is able to satisfy the signal continuity requirement as well, de-
spite providing weaker entrainment. We also note that in the future, if 90 Hz and 120 Hz re-
fresh rate phones that are compatible with real-time streaming EEG hardware will become
more common-place, then the square sine method would be the ideal choice for the closed-
loop mode, as it will satisfy the signal continuity requirement, whilst avoiding the trade-
off in efficacy one would have to make using a sinusoidal waveform. Most importantly, for
both modes, we provide a smart-phone based implementation, unlike the many lab-based
ones available today [133]–[136].

3.3 Auditory entrainment

3.3.1 Introduction

Auditory stimulation is provided in the form of binaural beats, as detailed in Section 2.3.4.
Most binaural beats studies use PC-based softwares to generate the stimuli and are used for
open-loop applications. Examples include: Lee et al. who used Gnaural, an open-source
binaural beats generator software, to generate 6 Hz binaural beats for inducing sleep; Ross
et al. and Lopez et al. both of whom used Matlab for generating 40 Hz binaural beats for
their studies in enhancing learning and investigating the efficacy of binaural beats in in-
creasing EEG power (all EEG bands), respectively; and Reedijk et al. who used Audacity
to generate 10 Hz and 40 Hz beats for their study on improving creativity via binaural beats
[50], [52], [54], [60]. Note that all these are open-loop applications using pre-set beats with
fixed frequency and no study exists to the best our knowledge, which uses binaural beats in
the context of a closed-loop system, where the frequency is expected to change.

Although most studies use PC-based software to generate the beats and none exists using a
phone, there are various apps available in the market for binaural beats. Two such examples
are ‘Brain waves - Binaural Beats’ (1m+ downloads) by MynioTech Apps, and ‘Binaural
Beats Generator’ (50k+ downloads) by TMSOFT [140], [141]. Both can generate beats in
the whole EEG band range (1–50 Hz) but they are all unsuitable for closed-loop applica-
tions, as the frequncies are fixed and pre-set.
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With these in mind, we then developed our own on-phone implementation of the binau-
ral beats, where the contribution would be usability in closed-loop mode, where the fre-
quency is expected to change. As in Section 3.2, we used a phase-accumulator to achieve
this. This then allows us integrate these stimuli into the closed-loop platform in Chapter 5.
This would not be possible with the apps available in the market today, as these have pre-set
beat frequencies that does not change over-time, in addition to being not modifiable. Hence,
in this Section, we discuss our implementation of the binaural beats stimulus and character-
ize its on-phone accuracy.

3.3.2 Requirements and specifications

With regards to specs, we aimed to stimulate over the alpha band (8–13 Hz) for both the
open-loop and closed-loop modes. It must be noted here that frequencies above the alpha
band could be implemented unlike the visual case where limits existed due to refresh rate.
Regardless, we still narrowed down our focus to just the alpha band, since that’s what the
chronic pain application driver requires, as detailed in Section 2.6.3. With that in mind, the
specs are then summarised as follows:

• Frequency range: 8–13 Hz The analgesic effects for chronic pain were observed in the
alpha band (8–13 Hz), as detailed in Section 2.6.3 [6], [8], [10]. Hence, the alpha range
frequency spec.

• Signal continuity at frequency changes Despite this chapter focusing on the open-loop
app, the aim is to eventually embed this waveform generation method into the closed-
loop app later on in Chapter 5. Here, the Individual Alpha Frequency (IAF) is ex-
pected to change over time, which we also showed in Section 4.2.3 [118]–[120]. Hence,
we need to ensure that there would be no discontinuity in stimulus waveform when
frequency changes in the alpha band, to be fit for closed-loop application later on in
Chapter 5.

3.3.3 Test methods

Tone frequency measurements were taken using a National Instruments USB-6212 data ac-
quisition system connected to the phone headphone port via a 3.5 mm stereo audio cable.
This setup is shown in Fig. 3.13. The frequency of channel 1 (left channel) was kept con-
stant at 400 Hz, to be the carrier frequency. The frequency of channel 2 (right channel) was
then varied from 408-413 Hz, to provide a 8–13 Hz beat range. Note that here the carrier
frequency of 400 Hz was chosen, as binaural beats are known to be best percieved when the
carrier frequency is between 400 and 500Hz. With this setup, we characterized accuracy for
two modes: open-loop and closed-loop.

For the open-loop mode, the beat frequency was pre-set in the range 8–13 Hz, in steps of 1
Hz. 3 trials of 3 minute recordings were then taken for each frequency. To analyse the dom-
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Figure 3.13. Test setup for continuous auditory stimulus.

inant frequency of each 3 minute recordings, we used the welch transform (1.3s hamming
window with a 50% overlap) to obtain the power spectrum of the signal from each chan-
nel, per recording. The dominant frequency for each channel’s waveform was then the fre-
quency with the highest power. With these, the dominant beat frequency could be obtained,
which is the difference between the dominant frequencies between the two channels.

For the closed-loop mode, we used a stair-case signal for a 3 trial run, where the frequency
varied from 8–13 Hz in 0.2 Hz steps; this allowed us to test for any signal discontinuity, at
frequency changes. Here, just like in the visual case, we calculated the instantaneous fre-
quency of each channel via using the hilbert transform to get the instantaneous phase first,
after which its derivative is taken to get the instantaneous frequency. We then used a low
pass filter (IIR butterworth order 2 with 0.3 Hz cut-off) to filter out the derivative induced
noise. With these, we then calculated the beat frequency fb as:

fb = f1 − f2 (3.6)

Where f1 and f2 are the instantaneous frequencies of channels 1 and channel 2, respec-
tively.

3.3.4 Stimulation method: Binaural beats

Unlike the visual stimulation, where we tested multiple waveform generation methods, bin-
aural beats are by nature sinusoidal; hence, we did not explore various waveform options
here. Moreover, no offline simulations were necessary, as we do not operate under the re-
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fresh rate constraint here, as was the case for the visual stimuli. Hence, we tested for accu-
racy starting straight from the phone.

Implementation

To implement binueral beats on a phone, different carrier tones are played to each ear, with
the tone of these being adjustable and the difference between the carrier frequencies being
the stimulation (beat) frequency. As a repetitive tone it would be possible to pre-save binau-
ral beats for different settings and to simply re-play these. However this introduces disconti-
nuities when looping the pre-saved tones, when used in closed-loop mode, where frequency
is expected to change. Instead our tones are generated in real-time using the AudioTrack
class in Android Studio. After generating the samples for one cycle for the frequency of in-
terest, they are written to an audio buffer, through which the sound data is streamed. This
process is set to loop infinitely, until the user stops the stimulus via the app GUI. Finally,
the sampling frequency used to generate the tones were 44100 Hz which is typical in audio
applications. Moroever, to ensure signal continuity when the frequency changes, a phase
accumulator was embedded into each of the sinusoids generated. The waveforms x1 and x2

for channels 1 and 2, respectively, is then given as:

x1[i] = sin(φ1[i]), x2[i] = sin(φ2[i]) (3.7)

Where, x1[i] and x2[i] is the waveform amplitude at each sample i for channels 1 and 2, re-
spectively. Moreover, φ1[i] and φ2[i] are defined as,

φ1[i] = φ1[i− 1] + ∆φ1, and ∆φ1 = 2π
fc
fs

(3.8)

φ2[i] = φ2[i− 1] + ∆φ2, and ∆φ2 = 2π
fc + fb

fs
(3.9)

Here, fc, fb and fs are the carrier frequency, beat frequency and sampling frequency, re-
spectively, By using a phase accumulator (3.8 and 3.9), phase memory is embedded in the
waveform, to ensure signal continuity at frequency changes.

On phone testing

For the on-phone tests, firstly the open-loop mode tests were conducted. This is essentially
sweeping the frequency as pre-sets in the range 8–13 Hz, in 1 Hz steps. Results are shown
for the measured stimulation frequencies in Fig. 3.14 and a sample trace of the binaural
waveform in Figure 3.15.

As observed, for the open-loop case in Fig. 3.14, the app functions accurately, with an R
squared fit of 1 between the fitted line and the data points. Moreover, there was no differ-
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Figure 3.14. Audio stimulation open-loop mode. Each marker represents the pre-set frequencies tested, with
an error bar indicating the inter-trial standard deviation, which in this case is 0 Hz.
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Figure 3.15. Sample binaural waveform trace.

ence in performance between trials, hence the inter-trial standard deviation of 0 Hz. This
then confirms accurate functionality over the alpha band.

For the closed-loop mode, we tested for signal continuity at frequency changes using the
stair-case signal. The results are presented in Fig. 3.16.

As observed, for the closed-loop mode, the app is able to deliver stimulation accurately,
without any discontinuities when the frequency changes. This is achieve via the use of a
phase accumulator for phase memory. Hence, we then have confidence that the app can de-
liver stimulation accurately, for use in the closed-loop mode later on. We also note that we
do not observe the 0.2 Hz transition jumps in Figure 3.16 and this is expected since we use
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Figure 3.16. Audio stimulation continuous mode. Frequency of signal changing in 0.2 Hz steps from 8–13
Hz. The shaded blue area is the inter-trial standard deviation.

a low pass filter for filtering out the derivative induced noise, which would also then smooth
out these 0.2 Hz transition jumps.

As discussed previously, other studies using binaural beats use mostly PC-based software
to generate the stimulus and are targeted for open-loop applications: for example, Gnaural
(Lee et al.), Matlab (Ross et al. and Lopez et al.) and Audacity (Reedijk et al.) [50], [52],
[54], [60]. All these were open-loop applications using pre-set frequencies and to the best
of our knowledge, no study exists using binaural beats in the context of a closed-loop sys-
tem, where the frequency is expected to change. Moreover, smart-phone apps for binau-
ral beats available on the app stores, are un-modifiable and again designed for open-loop
stimulus only [140], [141]. In contrast to these, we provide an app-based implementation
of binaural beats, which is usable for closed-loop applications, where frequency is expected
to change. We achieved this via the use of a phase-accumulator to ensure signal continuity
when frequency changes. This then makes the stimulus fit for use in our closed-loop plat-
form, later on in Chapter 5.

3.3.5 Summary

In this Section, we showed that the app can deliver auditory stimulation over the alpha band
accurately both for the open-loop and closed-loop modes; for the closed-loop mode, the re-
quirement of signal continuity at frequency changes was achieved, via the use of a phase
accumulator.
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Figure 3.17. Screenshot of the open-loop stimulation app.

3.4 Overall open-loop platform

In this Section, we describe the Graphical User Interface (GUI) for the open-loop app, in
addition to briefly highlighting clinical work where our app is being currently used for, by
our collaborators.

3.4.1 Graphical User Interface (GUI)

Firstly, screenshots of the app designed is shown in Fig. 3.17. The home page at the cen-
tre in Fig. 3.17 contains the options for the different forms of entrainment available with
this app and upon clicking on the relevant one, it takes you to the appropriate stimulation
mode. For each of the modes, pre-set frequencies for the alpha band range (8–13 Hz) are
available for the user to choose. For the audio mode, the user simply has to press the but-
ton to start playing the sound, and then can press again to stop. For the visual mode, when
the user presses a button, the button layouts will become invisible, after which the phone
flicker at the specified frequency will be presented in full screen. To bring back the button
view to choose another frequency, the user simply has to tap on the screen again. The user
interface design process also involved getting feedback from chronic pain patients via work-
shops conducted at the Royal Salford Hospital by our collaborators, where the patients were
given the opportunity to use the app; features such as big buttons and large texts for the pre-
set binaural beats are examples of features added after such feedback.

3.4.2 Current use-cases

In this Chapter, we presented our on-phone audio-visual stimulation methods. In addition
to it being usable in our closed-loop platform in Chapter 5, we also highlight here that the
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open-loop app itself is a contribution. It has been designed to meet technology needs for
our collaborators in chronic pain and as such, are being used by them currently for their
clinical work [95].

Illustrative Quotes

”Yeah it was so easy to use, you know, you just

had to tap the screen . . . it was just brilliant,

brilliant”

”1 Right now they don’t have many options for you.

They just say we can put you on medication and

that’s it really. And that’s quite upsetting”

”It was miraculous. I reckon I’ve gone from,

probably from reliant on anti-inflammatories

to 80% less . . . Yeah, I’m really keen to know

about the science a bit more and how it works,

but at the moment I’m just happy feeling

confident that it works”

”You could just go off into your own little world

with it . . . It was comfortable, you could just

relax into it and let time pass by quite happily”

”I did them both [visual and auditory

stimulation] lying on a sofa, with my head on a

pillow on one arm and spread out across the

sofa. So that was fine. In fact, once or twice I

fell asleep it was that peaceful”

Table 3.1. Illustrative quotes from patient feedback on the app.

An example of this is a qualitative study done on our app. As all work in the chronic pain
application driver has been done using lab-based setups, the first step towards home-based
use is to conduct a qualitative study, to see if the app-based approach is appealing to chronic
pain patients [6]–[8], [10], [11], [14]. As such, Helen et al. conducted a qualitative study
on the acceptability and usability of this app, with results published [95]. To do this, they
tested the app on 15 chronic pain patients and asked them to use the app for 10 minutes ev-
ery day, in their homes for a total of 4 weeks. Telephone interviews were then conducted
at the end to discuss feedback; more details on the methodology and frameworks used for
analysing and structuring the feedback received, are described in their paper [95]. A sam-
ple set of quotes from their feedback, is given in Table 3.1. In general, the patients seemed
interested in trying alternative therapies like these, due to their negative attitudes towards
pharmacological based solutions [95]. Moreover, they found the user-interface of the app
simple and easy to use. Regarding modalities, there were no clear preference for one over
the other; both auditory and visual stimulation modes were met with equal reception [95].
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We do not go into more detail here, as the intention here is to simply highlight that this app
is currently being used for clinical work and is not just a means to an end, for the closed-
loop platform.

3.5 Conclusion

In this Chapter, we first detailed the stimulation methods for both the visual and auditory
modes. For each of the modes, we aimed to deliver accurate stimulation in the alpha band
(8–13 Hz), whilst ensuring signal continuity at frequency changes, for it be used in closed-
loop mode, later on.

For the visual mode, we explored three methods: square interpolation, square-sine and sine.
With the 60 Hz refresh rate constraint in mind, we then concluded that the square interpo-
lation technique is ideal for open-loop application, as it delivers a clean square wave at a
60 Hz refresh rate. However, for closed-loop applications, we concluded the sine method
would be best, as it ensures signal continuity via the use of a phase accumulator. The ad-
dition of a phase accumulator here is a new contribution, as other work in literature did
not do this, since they were targeting open-loop applications, and not closed-loop ones like
ours. However, the use of a sine wave would come at a slight trade-off in efficacy, as square
waveforms are more likelier to elicit entrainment, than its sine counterpart [139]. Finally,
the square sine method may overcome this trade-off via providing a square wave whilst also
ensuring signal continuity but it requires phones with a refresh rate of 90 or 120 Hz, due to
the nyquist limit. Hence, it may be a better choice for use in the future, when higher refresh
rate phones may become the norm.

For the auditory stimulation, we implemented binaural beats via two separate sinusoidal
waveforms provided to each ear. For each of the sinusoids, a phase accumulator was used to
ensure signal continuity, which again provided us with accurate stimulation over the alpha
band, for both closed-loop and open-loop modes. As with the visual case, the addition of
a phase accumulator here is a new contribution, to enable closed-loop applications where
frequency is expected to change over time.

With the stimulation functionality complete, these could be now used to build the closed-
loop platform. However, before doing so, we next detail the feature extraction algorithms
and characterize its accuracy in Chapter 4.
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Chapter 4

Pre-requisites to closing the loop:

phase-frequency extraction

4.1 Introduction

In this Chapter, we conduct various offline experiments to validate and characterize the fea-
ture extraction part of the closed-loop system. Firstly, we characterize the EEG signal for
its various properties such as amplitude, frequency and frequency rate-of-change in Sec-
tion 4.2, after which we feed this data into the tuning methodology of a Phase Locked Loop
(PLL) in Section 4.3. After laying out the PLL tuning methodology, we then character-
ize its performance in tracking EEG phase for all bands in continuous mode (general pur-
pose), for the SO band in discrete mode (sleep engineering application) and for frequency
matching in continuous mode (chronic pain application), in Sections 4.4, 4.5 and 4.6, re-
spectively. This then provides a solid foundation to build upon, for the real-time on-phone
implementation of the closed-loop platform later on in Chapter 5.

4.1.1 Specifications for closed-loop platform

Here, we define our specifications for three different modes, each of which are application
dependent. These are:

• EEG phase for closed-loop continuous applications (General use-cases) Here, we
aim to show that the PLL can track EEG phase across all bands accurately and bet-
ter than the state-of-the-art. The state-of-the-art here would be a study by Mansouri et
al., where they showed offline that their FFT based algorithm can track phase across
all EEG bands, with the specific accuracy values detailed in Table 4.11. Details of
this algorithm is given in Section 2.5.4 [44]. We aim to exceed the accuracy values
obtained here, via the use of a PLL. This would then pave way for a variety of appli-
cations outside the ones we focus on for this thesis: sleep engineering (SO band) and
chronic pain (alpha band).

• EEG phase for closed-loop discrete stimulation (Sleep engineering) Here, we need
to ensure accurate phase tracking functionality over the SO band (0.5–3 Hz), in par-
ticular for tracking slow oscillation phase, at discrete points for the sleep engineering
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application, as detailed in Section 2.6.2. Other groups have used PLL on lab-based
systems for the sleep engineering application; for example, Santostasi et al. achieved a
phase error of 0±25.6◦, in tracking slow oscillations [2]. We aim to achieve compara-
ble accuracy tuning our PLL offline on a PC. However, it must be highlighted that the
contribution is not in the offline analysis (to tune the PLL) in this chapter, but later on
in Chapter 5, where we port this PLL onto a phone, to provide the first mobile phone
based platform, for the sleep engineering application. More details of the state-of-the
art are given in Table 2.1 and the on-phone implementation in Section 5.3 of Chap-
ter 5.

• EEG frequency for closed-loop continuous stimulation (Chronic pain) Here, we need
to ensure EEG frequency is accurately extracted over the alpha band in a continuous
fashion. This would be for use in the chronic pain application, where frequency matched
alpha stimulation is hypothesized to improve efficacy, as detailed in Section 2.6.3.
Also, as detailed in Section 2.6.3, there are no state-of-the-art to compare the accu-
racy to. Hence, the results we obtain here would be the first-in kind, which could be
used as a bench-mark for future platforms.

4.1.2 Data-sets used

In this Chapter, we make use of two different data-sets to characterize PLL performance:
EEG eyes-closed resting state data-set and sleep recordings.

Firstly, the eyes-closed data-set is a public data-set made available by Trujillo et al. in their
paper: this was used not for any clinical study but for extraction of information theory based
brain connectivity measures [142]. 72 channel EEG data was collected using active Ag/AgCl
electrodes and amplified by a BioSemi Active II amplifier system in 24-bit DC mode [142].
The data was collected initially at a sampling rate of 2,048 Hz but then was down-sampled
online to 250 Hz. The data was collected from 22 participants (11 female and 11 male),
with an age range of 18–26. For the experiment, they had to sit in a comfortable padded
chair in a dark room and 4 minutes of eyes open and 4 minutes of eyes closed data were ob-
tained [142]. Of these, we just used the eyes-closed portion of the data-set to aid fair com-
parison with the state-of-the-art, where they also used the same [44]. In total, this gave 88
minutes of eyes-closed data across all subjects.

Moreover, we use just the frontal channel for analysis: Channel Fp1 was used and this is
an arbitrary choice since this is located in the forehead area where alpha power is known to
be decent and moreover, this would be a suitable location when translating this technology
for at-home use, since a better quality recording could be obtained due to lack of hair. Even
though we used channel Fp1 for analysis involving this data-set, it must also be noted that
we also investigated performance across all channels to investigate inter-channel variance
(Section 4.4.2).

With this, we then used this data-set first to demonstrate the PLL tuning procedure and its
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Data-set Description Channel Fs (Hz) Number of subjects
1 Eyes-closed resting state recording. Fp1 250 22
2 Slow Oscillations from sleep EEG recording. Fpz 500 13

Table 4.1. Data-sets used for PLL offline characterisation.

applicability in phase tracking across all EEG bands in Sections 4.4 and 4.3; for this, the
experimental paradigm is irrelevant as we are characterizing performance across all bands,
and this data-set will not only have strong oscillations in the lower EEG bands, but will also
contain oscillations in the higher band, despite being weaker. Moreover, the state-of-the-art
study we compare our results to (Mansouri et al.) for performance across all bands, also use
eyes-closed resting state data-set, which would facilitate a fair comparison [44]. Secondly,
this data-set is also used to characterize frequency matching accuracy for the chronic pain
application driver. Here, since the data would contain strong oscillations in the alpha band,
it closely mimics a visual entrainment experimental paradigm where strong alpha oscilla-
tions are also expected. This then makes it suitable for the chronic pain application driver,
where frequency matched alpha stimuli is to be provided and strong alpha oscillations are
expected, as detailed in Section 2.6.3.

For the sleep engineering application, we used a sleep recording data-set collected by our
collaborators at Cardiff university (Research Ethics approval EC.17.12.12.5187). Clinical
outcomes from this data-set is yet to be extracted, as results are not published yet. How-
ever, the experiment was designed for the sleep engineering application, which is the same
application driver we target: auditory tones were provided during sleep to increase slow os-
cillations, and in result improve memory consolidation. For this, 2 night recordings (1 night
for sham and 1 night for stimulation) from 13 subjects were collected; the participants were
healthy young individuals (age range 18–30), with no history of smoking or sleep distur-
bances. For our analysis, we just used the sham night, to mimic the real-world implementa-
tion.

For the experiment, the participants slept for 8–9 hours on a bed at a sleep lab with elec-
trodes wired on to their scalp: the room was temperature controlled and lights were turned
off, except for a bed lamp. Before sleeping, they were asked to take a word-pair recall test,
which was then again repeated the morning after, as a behavioural test for any improvement
in memory consolidation over-night. This, however, is not relevant for our technology vali-
dation work, so further details are omitted.

The sleep data was collected using a BrainAmp DC amplifier (Brain Products, Germany),
at a sampling rate of 500 Hz: the data was filtered in the slow oscillation (SO) band (0.5–3
Hz) and channel Fpz was used to extract the SO, which were obtained by our collabora-
tors using the algorithm in [127]. A total of 37,440 SO epochs were extracted, each of 5 s
length. We then used these epochs to characterize phase tracking performance, as it is on
these that phase-locked auditory stimulation is to be provided, for the sleep engineering ap-
plication. The data-sets used are summarized in Table 4.1.

79



Delta Theta Alpha Low beta High beta Low Gamma High Gamma
0.5-4 Hz 4-8 Hz 8-13 Hz 13-20 Hz 20-30 Hz 30-40 Hz 40-50 Hz

Table 4.2. EEG frequency band ranges.

4.2 EEG signal characterization

4.2.1 Introduction

In this Section, we characterize the EEG signal for its various properties: the dominant
frequency range (Section 4.2.2), frequency rate of change (Section 4.2.3), and the ampli-
tude (Section 4.2.4). All of these would then be fed into the PLL tuning methodology in
Section 4.3. As seen in the following sections, these analyses are not available in existing
literature to the best of our knowledge, especially for all the EEG bands. Hence, we then
found it useful to do our own characterization, for use in the PLL tuning methodology in
Section 4.3.

4.2.2 Frequency range

Introduction

Firstly, as we will see in Section 4.3, part of the PLL tuning methodology is to define a
lock-range specification and the centre frequency for the PLL i.e. the range over which the
PLL should gain lock quickly, as detailed in Section 4.3. For example, if the PLL centre
frequency is 10 Hz and the lock-range is ±2Hz, then the PLL is expected to keep good lock
over the 8–12 Hz range. To define both these specs, one option would be to use the standard
EEG band range. The definition of these bands vary among different studies; for example,
Newson et al. reviewed 184 EEG eyes-closed and eyes-open studies and found that the typ-
ical definition for these bands are: delta (1.3–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz),
beta (12.5–30 Hz) and gamma (30–40 Hz) [143]. However, they also observed that there
were variances in these and some groups would use ranges outside these. They reported
minimum to maximum ranges (minimum start value (Hz)–maximum end value (Hz)) and
showed they were: delta (0–6Hz), theta (2.5–8 Hz), alpha (6–14 Hz), beta (12–50 Hz) and
gamma (30–40 Hz) [143]. As another example, zooming in on the alpha band, groups have
defined a different range for the alpha band for their studies on how the Individual Alpha
Frequency (IAF) varies over time: Haegens et al. (7–14 Hz), Weber et al. (8–12 Hz), and
Gutmann et al. (7–13 Hz) [118]–[120]. Keeping these variations in definitions used in mind,
we chose to use the ones defined by Mansouri et al., as it is the state-of-the-art for phase
tracking across all bands, which we benchmark our results against, as seen in Section 4.4.3.
Hence, for our study, the frequency bands are defined the same, and is outlined in Table 4.2.

From these band definitions, the centre values could be taken as the centre frequency and
then the range as the lock range; for example, for the alpha band, the centre frequency could
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be 10 Hz and then the lock range ±2 Hz. Although, this may yield good results as the PLL
is adaptive and the gain could be modified to achieve best results, as we see in Section 4.3,
the whole point of our PLL tuning methodology was to get a good starting point for the
PLL parameters, before optimizing to get best results. Hence, a better approach would be to
use the dominant frequency (peak frequency) within each band as the centre frequency, and
a measure of its variance for the lock range spec. We do however note that due to our small
sample size, our estimate of the dominant frequency here would be biased and for a more
general use-case, the standard band-definition maybe more helpful. Regardless, we chose
the former route here, to get a good starting point for the tuning parameters, before optimi-
sation. Moreover, even within our small sample size (n=22 for pain and n=13 for sleep), we
divided the data-set in a 70–30 tuning-test split, to avoid any in-sample optimisation.

Such a measure for the dominant frequency range is not available in literature for all EEG
bands, to the best of our knowledge and of the ones available, they usually focus on changes
over a longer time-scale: for example, Weber et al. investigated IAF variations after 30 min-
utes of exercise and Gutmann et al. after 120 days of isolation [119], [120]. A close one
would be a study by Haegens et al., where they calculated the IAF (alpha peak frequency)
on 1s epochs, and showed that it varied by 10.3±0.9 Hz within subjects. However, they
focused on just the alpha band and with a window size of 1 second, and not sample-by-
sample (the theoretical limit), which is the mode of operation for our closed-loop system
in Chapter 5.

With such an analysis lacking, we then decided to characterize the EEG instantaneous fre-
quency on a sample-by-sample time frame, for all EEG bands. A sample-by-sample char-
acterization of instantaneous frequency and its range is useful, as this would be the mode
of operation for a real-time closed-loop system implemented in Chapter 5. We also have
validated in Section 4.6 that the sample-by-sample characterization of the EEG frequency
is a good approximation to the window/epoch based one. This metric would then be used
for the PLL tuning methodology in Section 4.3, to define the lock range and the centre fre-
quency of the PLL.

Methods

We used the data-set 1 from Table 4.1 to do the frequency characterization; this data-set is
chosen, as this is the one used for characterizing phase accuracy in all bands, as detailed in
Section 4.1.2. With this, we first appended data from all subjects (n=22) into a single sig-
nal which was then band-pass filtered (Order 2 IIR butterworth filter) for each of the EEG
bands, with the pass-band frequencies defined in Table 4.2. Then, it was passed through a
Hilbert transform to obtain the instantaneous phase values, after which the derivative of the
instantaneous phase was taken to obtain the instantaneous frequency values, for each sam-
ple of the entire recording. This then gave the dominant instantaneous frequency (mean)
and its variation (3×standard deviation). Note that we used 3 times the standard deviation,
as we wanted to most of the frequency ranges (99.7%) expected, when tuning the PLL.
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Delta Theta Alpha Low beta High beta Low gamma High gamma
Frequency

range
2.18
±1.44

6.67
±2.78

10.24
±2.00

14.90
±4.03

23.34
±3.82

33.66
±3.59

43.99
±3.13

Table 4.3. Sample-by-sample instantaneous frequency range characterization for all EEG bands.
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Figure 4.1. Sample trace of instantaneous frequency for the high gamma band.

With these, the mean of the instantaneous frequency and the 3×standard deviation, would
be used as the centre frequency and lock-range, respectively, in Section 4.3.

Results and Discussion

For the instantaneous frequency range analysis, the results are depicted in Fig. 4.2 and sum-
marized in Table 4.3. Moreover, a sample trace for the instantaneous frequency of an EEG
band (high gamma), is shown in Fig. 4.1.

As observed from Fig. 4.2 and Table 4.3, the mean instantaneous frequency and the 3×stan-
dard deviation, falls within the EEG bands defined in Table 4.2. Our aim was to find the
instantaneous frequency variations within these band definition, and hence this is what we
expect, since we bandpass filtered within these bands defined in Table 4.2. However, it must
be noted here that the range is smaller for some bands: for example, according the defini-
tions by Mansouri et al. in Table 4.2, for the high gamma band (40–50 Hz), the instanta-
neous frequency range within this band is 43.99±3.13, which is smaller than the band defi-
nition. This knowledge is then useful in getting specs for the lock ranges required for PLL,
as part of the tuning methodology: for the PLL tuning, we can then use the mean as the
centre frequency, and the 3×standard deviation as the lock-range.

Moreover, comparing this to the study by Haegens et al., where they showed 10.3±0.9 Hz
within subject IAF variation, we see our alpha range (10.24±2.00 Hz) also falls within a
similar range, but with a higher variation [118]. The higher variation could be due to a va-
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Figure 4.2. Dominant frequency range for all EEG bands, using the instantaneous frequency measure. The
error bars represent 3σ.

riety of factors such as: difference in window size (1 sample for ours vs 1s for Haegens et
al.) and difference in experimental tasks (eyes-closed for ours vs visual stimuli and working
memory task for Haegens et al.). Regardless, we see the values broadly match.

Conclusion

In conclusion, in this Section, we characterized EEG dominant frequency range on a sample-
by-sample basis, for all EEG bands, with results summarized in Table 4.3. From these, we
could define the centre frequency and the lock-range for the PLL tuning in Section 4.3.

4.2.3 Frequency rate of change

Introduction

For the chronic pain application driver, as detailed in Section 2.6.3, the technology contri-
bution is to match the frequency on a sample-by-sample basis, i.e. as fast as is technologi-
cally possible. This can then be easily scaled to any closed loop bandwidth desired. In this
section, we aim to find out whether it makes sense to update on a sample-by-sample basis
via characterization of the instantaneous frequency rate of change i.e. to find out if the fre-
quency does change at such a small time-scale. This would help judge whether it would be
of any benefit to change stimulation at such small time-scales; for example, if the frequency
does not change over a sample-by-sample basis, then there would be less benefit in closing
the loop here at such small time-scales and perhaps a longer time-scale may be more mean-
ingful, but if it does, then it would be a path worth exploring. Moreover, since this analy-
sis is primarily to motivate the chronic pain application driver, we only analyse the rate-of-
change for the alpha band, which is the bio-marker of interest [14].
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To date, no characterization of the alpha instantaneous frequency rate of change exists in
literature, to the best of our knowledge. This may be because traditionally, the IAF has been
considered to be a static trait amongst individuals that does not vary over time, hence the
reason why most studies use a fixed IAF determined beforehand, on a per-subject basis
[16], [17], [49]. For example, as detailed in Section 2.6.3, for the studies that showed that
alpha entrainment is more likely when stimulation frequency is close to the IAF, they all
determined the IAF during a base-line EEG recording period, and used that as a fixed pre-
set for the remainder of the experiment [16], [17], [49]. However, recent evidence shows
that the IAF does vary over time within a subject over time-scales as long as 120 days and
30 minutes, as well as on a second by second basis, as detailed in Section 4.2.2 [118]–[120].
However, these studies do not involve IAF monitoring on a small a time-scale as we need
and with no characterization for the rate-of-change, as the nature of their work was an open-
loop study, investigating IAF before and after, a certain task [118]–[120].

With such an analysis lacking, we then decided to characterize the IAF rate of change on
a sample-by-sample basis (theoretical limit), which will help motivate closing the loop at
such small time-scales.

Methods

For the data-set, we used the eyes-closed resting state data-set 1 from Table 4.1 for this anal-
ysis, which has a total of 22 subjects, each with 4 minutes of eyes-closed resting state EEG
data-set.

To calculate the rate of change, the signal processing pipeline starts with an order 2 IIR but-
terworth band-pass filter with a passband of 8–13 Hz for alpha band filtering. The Hilbert
transform is then taken over the filtered signal for each subject to obtain the instantaneous
phase, after which its derivative is taken to obtain the instantaneous frequency. The deriva-
tive operation is noise sensitive and amplifies the high frequency components. Hence, we
also used an order 2 IIR butterworth low pass filter with a 2.5 Hz cut-off frequency, to re-
move the high frequency spikes (see example in Fig. 4.3) and smooth out the frequency
output. The filter cut-off was chosen through experimentation and was empirically deter-
mined to ensure that most of the derivative induced spikes are removed whilst retaining the
low frequency trend. Also to clarify, by spikes, we mean those values that far exceed that
of the band range (e.g. 8–13 Hz for alpha band), examples of which could be seen in Fig.
4.3. After smoothing the output, the derivative of the filtered instantaneous frequency is
taken to get the rate of change. Finally, the Root Mean Square (RMS) of the rate was used
as an ‘average’ rate-of-change metric, as it is more or less an AC like waveform with mean
at 0. Having calculated the rate of change for each subject, we then report the mean and the
standard deviation across the 22 subjects, to characterize the average rate of change and its
inter-subject spread.

84



40 41 42 43 44 45 46 47 48 49 50

Time (s)

-30

-20

-10

0

10

20

30

In
s
ta

n
ta

n
e
o
u
s
 F

re
q
u
e
n
c
y
 (

H
z
)

Filtered

Raw

Figure 4.3. A trace of the instantaneous frequency before and after low-pass filtering to remove the derivative
induced spikes.

Results and Discussion

As seen from Fig. 4.3, the raw instantaneous frequency plot coming out of the derivative
operation is spiky; the spikes are derivative induced, as discussed earlier. Consequently, the
filtered waveform successfully removed the spikes, whilst retaining the general trend. How-
ever, we do notice that at a few portions e.g. t = 41s to 42s, there is an unusual down spike
deviating from the frequency trend. This would be a filtering induced artefact due to the
two neighboring up spikes. Such occurrences are rare and this could have been improved
using more sophisticated filters such as a median filter, which are more suitable for remov-
ing spikes. However, this would result in a trade-off in computational cost, as median filters
are computationally more costly due to the sorting operation required to find the median in
a window of data. Hence, we avoided these, as our goal is a smart-phone based closed-loop
system, where computational burden must be kept low.

Moreover, we also see from Fig. 4.4 that the frequency varies over time, even for short time
spans. More specifically, the RMS value for the rate-of-change was found to be 9.75±2.67
Hz/s, as seen from Fig. 4.4. Note that at first glance, this may seem counter-intuitive i.e. the
EEG does not change say by 10 Hz increments every second. Instead, this has to do with
the fact that we used the RMS value of the rate-of-change waveform as a measure of the
average, which captures mostly the upper-range values of the rate-of-change. It does not
capture the fact that the rate varies over-time and a lot of the times is close to zero too, as
seen from Fig. 4.4. In other words, bursts of rapid change are present, but not for very long
which means that absolute change in frequency is in-line with the results in Section 4.2.2,
where we showed the alpha frequency range is 10.24±2.00 Hz. Hence, due to the imperfec-
tion of the metric, the 9.75±2.67 Hz/s must be seen as the upper-range value for the rate.

Moreover, it must be highlighted here that no such analysis exists in literature, for us to
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Figure 4.4. Sample trace of the instantaneous frequency and its rate of change.

benchmark our results against. The closest work are those that measure change of IAF over
time and that too on a longer time-scale, without a rate-of-change characterization: e.g. the
IAF calculation over 1s windows in the study by Haegens et al [118]. The reason for a lack
of such an analysis could be that such studies operate either on open-loop paradigmns (in-
vestigating changes in IAF before and after certain tasks) or they used a ‘semi-closed loop’
paradigm where the IAF is calculated over a base-line period before experiment starts on a
per-subject basis, and then remains fixed [16], [17], [49], [118]–[120]. For such studies, a
rate-of-change characterization is not necessary, since it is not closed loop.

With this in mind, we can then conclude that closing the loop for such short time scales
(sample-by-sample) does make sense, as the frequency does vary, as observed both from
Fig. 4.4 and the 9.75±2.67 Hz/s RMS value for the rate-of-change waveform. For example,
for a sampling frequency of 250 Hz (sampling frequency of our wireless EEG acquisition
system in Chapter 5), that’s 4 ms between samples received. Then, with a maximum rate of
10 Hz/s, the maximum change we can then capture is 40 mHz, in the closed-loop system.
Moreover, as observed from Table 4.3, the values for the frequency range are reported to 2
decimal places, ie. a change of 10 mHz. So, we can see (at least on average) changes in the
brain that are this small and a sample-by-sample approach would be needed to potentially
follow these small changes in frequency.

Hence, for the chronic pain application driver, we could then develop technology that pro-
vides frequency matched stimulation on a sample-by-sample basis, which is the theoretical
limit.

Conclusion

In conclusion, in this Section, we characterized the EEG instantaneous frequency rate-of-
change and found it to have an RMS value of 9.75±2.67 Hz/s, which we then showed is
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high enough for us to justify closing the loop on a sample-by-sample basis, for our closed-
loop system in Chapter 5.

4.2.4 Amplitude

Introduction

In this Section, we characterize EEG amplitude. More specifically, we need to find a vir-
tual maximum or upper-range value for the EEG signal. This is needed since the EEG am-
plitude is variable and the PLL performance is amplitude dependant, as detailed in Sec-
tion 4.4.4. This amplitude dependent performance was also reported by Santostasi et al. in
their lab-based PLL platform, and they did not take this into account when tuning the PLL
but rather relied on a trial and error approach, to achieve best possible accuracy [2]. More-
over, none of the PLL based platforms do any amplitude normalization procedures such as
the use of an automatic gain control, as it may have added additional computational com-
plexity and its own tuning related issues, without adding much benefit i.e. the performance
was already good enough without any amplitude normalization [2], [4], [5], [13]. Hence,
we follow a similar approach and do not add any amplitude normalization components to
our PLL. Regardless, we aimed to tune the PLL taking into account the incoming amplitude
of the EEG, as detailed in Section 4.3. Hence, here we aim to approximate the expected
EEG amplitude with a constant upper-range value, to take into account the time-varying
nature of the EEG amplitude. This procedure is detailed in Section 4.3.

Such an analysis of the amplitude ranges of the EEG within each frequency band, is not
available in literature, to the best of our knowledge. The most common approach in EEG
literature is to work in the frequency domain and use the band-power as bio-markers for
different diseases; Newson et al. reviewed 184 EEG studies where band-power was used
as bio-markers for the different psychiatric diseases [143]. For example, they showed that
studies involving Attention Deficit Hyperactivity Disorder (ADHD), Obsessive Compul-
sive Disorder (OCD) and Schizophrenia, typically involved higher power in the lower bands
(delta and theta) for the patients, when compared to healthy humans. Such studies focus on
just one band and not all bands. Moreover, what we are interested in is the amplitude ranges
for all EEG bands in the time-domain after band-pass filtering; this is the input signal ex-
pected into the PLL, the amplitude of which we are trying to take into account when tuning
the PLL, as detailed in Section 4.3.

Methods

To characterize the amplitude range, we used data-set 1 from Table 4.1; this data-set is cho-
sen as this is the one used for characterizing phase accuracy in all bands, as detailed in Sec-
tion 4.1.2 and that is what we are tuning the PLL here for. The aim then is to find an am-
plitude value A, a upper range value for each band which we define as the 75th percentile
value. This then approximates the expected input (EEG) amplitude, to the PLL.
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Delta Theta Alpha Low beta High beta Low gamma High gamma
Frequency
range (Hz) 0.5–4 4–8 8–13 13–20 20–30 30–40 40–50

Order 2
Type Butterworth IIR

Table 4.4. Band-pass filter settings for all bands.

To achieve this, we first appended data from all subjects and then band-pass filtered for each
band, with the filter settings detailed in Table 4.4. We then use this band-pass filtered sig-
nal and its box and whisker statistics to obtain the 75th percentile value, which we use as
the value for A, as it would be a good measure of the upper-range of the incoming EEG sig-
nal. Using this value of A, we can then ensure that the gain value K for the PLL (see equa-
tion 4.11 from Section 4.3) is not too high to cause instability. This is because with the A
value, we could ensure the gain is scaled down by the appropriate factor and take into ac-
count an approximate for the upper-range value of the incoming EEG signal. Moreover, we
choose the 75th percentile and not the lower quartiles, to design for worst case scenarios.
For example, if we used the lower range, then the PLL would have been tuned so that gain
K would be higher than necessary to meet the desired lock range specifications, and as a
result, it could break down at points where the EEG amplitude is higher than designed for.

Results and Discussion

The results for the amplitude characterization are summarized with the box and whisker
plot in Fig. 4.5 and the virtual ‘upper-range’ amplitude A used for PLL tuning purposes are
summarized in Table 4.5.

Delta Theta Alpha Low beta High beta Low gamma High gamma

A= 75th percentile 4.72 3.16 4.60 2.20 1.60 0.99 0.74

Table 4.5. Amplitude characterisation for all EEG bands.

As observed from Fig. 4.5, while there are outliers in all of the bands, the core is quite sim-
ilar, with the amplitudes being relatively small. Despite this, it is clear that in general, am-
plitude decreases for higher EEG bands: for example, the amplitude A from Table 4.5 is
highest for lower bands (e.g. delta and alpha), and lower for higher bands. We expect these
results; for example, when a user’s eyes are closed and in a resting state, lower bands are ex-
pected to have higher power, especially the alpha band [144]. This explains the high alpha
and delta amplitudes, as this was from a eyes-closed resting state experiment.

These amplitude values will then be used later in the PLL tuning procedure to take into ac-
count the amplitude dependent lock range of PLLs; we do this by equating the EEG signal
as a virtual signal with a constant amplitude A (values from Table 4.5).
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Figure 4.5. Amplitude distribution box plot for all EEG bands. Ends of the whisker plots correspond to: 1.9σ
for Delta, Alpha and High Gamma bands; 2.1σ for Theta and Low Gamma bands; and 2.2σ for Low Beta and

High Beta bands.

Conclusion

In conclusion, we characterized EEG amplitudes for all EEG bands by using the 75th per-
centile values of the box and whisker statistics as a proxy for the amplitude A, which will
be used to approximate an incoming EEG signal, for the PLL tuning procedure in Section 4.3.
The trends we observed were similar to that found in literature: high power in the lower
bands (alpha/theta) for an eyes-closed resting state data-set.

4.2.5 Summary

In this Section, we characterized the EEG signal for its frequency range, frequency rate of
change and amplitude. For the frequency range, we will use these values for defining the
centre frequency (mean) and lock range (3×standard deviation), when tuning the PLL in
Section 4.3. For the amplitude, we noticed a general decrease in amplitude for higher EEG
bands, alongside high alpha/theta amplitudes and this again would feed into the PLL tun-
ing methodology, to take into account the time-varying nature of EEG amplitude. Finally,
we also confirmed that the EEG frequency changes over very short time spans (sample-by-
sample), and we reported an RMS of 9.75±2.67 Hz/s for the rate of change; this then con-
firms the need for closing the loop at such short time-scales on a sample-by-sample basis,
in order to follow these changes in frequency, which happen at such short time-scales.
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4.3 Phase Locked Loop: tuning procedure

4.3.1 Introduction

A Phase Locked Loop (PLL) was used for real-time feature extraction of both phase and
frequency, which we discussed in the literature review in Section 2.5.5. PLLs are attrac-
tive due to its adaptive nature, low computational complexity and its ability to operate on
a sample-by-sample basis. This last factor could drive down loop latency and provide im-
munity against edge artefacts that is common with epoch-based methods like the Hilbert
transform and FFT based methods [121]. PLLs have previously been used on PC based
platforms for the sleep engineering application [2], [4], [5] but not for frequency matched
stimulation in pain. For sleep, we provide the first smartphone based implementation to en-
able out-of-the-lab research, as detailed in Section 2.6.2.

Background

The field of Phase Locked Loops is a well matured field and has been a topic of research
for more than 80 years. The first PLL was introduced at around 1932 by French engineer
de Bellescize, also known as the inventor of coherent communication [121]. It later found
various applications in industry and has since been used for mostly high frequency appli-
cations such as clock synchronization, clock recovery, frequency synthesis and phase and
frequency demodulation [145]. It is also a building block of many modern day technologies
such as television, motor control, disk-drive control and wireless communication systems
[145].

The different classes of PLL can be broadly categorized into 4: Linear PLLs, Digital PLLs,
All-Digital PLLs (ADPLL) and Software PLL (SPLL). Linear PLLs were the first kinds
available as IC chips; introduced at around 1965, these were made up of purely analogue
parts with a 4-quadrant multiplier as the phase detector, active/passive RC filters as the low
pass filters, and a voltage controlled oscillator [121]. Later, in the 1970s, DPLLs came into
the market, which unlike its name is not made up of all digital components; rather, a digi-
tal XOR phase detector is used, while the remaining components remained analogue [121].
It is only later that pure digital PLLs were made available, also known as All Digital Phase
Locked Loops (ADPLL) [121]. Finally, with the advent of fast micro-processors and Digi-
tal Signal Processors (DSPs), PLLs crossed over into the software domain, where all elec-
tronic components were replaced by lines of code [121]. The obvious benefits of these are
the easy re-reconfigurability and on-the-fly modifications that could be made, which is not
possible with its hardware counter parts. Moreover, these were the most generalizable type
of PLL, as all the other 3 kinds of PLLs (ADPLL, DPLL, LPLL) are realizable in software.
Despite these, the one factor that limits the use of SPLLs in many applications is that the al-
gorithm must run at a frequency at least twice that of the reference signal; this is to satisfy
the Nyquist theorem and only becomes an issue for high frequency applications where the
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Figure 4.6. A block diagram of the PLL. The phase detector coupled with the low pass filter outputs the phase
difference between the two signals, which is then used as the control signal for the voltage controller oscillator

(VCO). The VCO then increases or decreases its running oscillator frequency till phase lock is achieved.

signal frequencies exceed the micro-processor’s sampling frequency capabilities [121]. For
EEG signals, which have a frequency range of 1-100 Hz, this would not be an issue since
modern day micro-processors sample signals at much higher frequencies.

For this project, the focus is the SPLL, as the ultimate goal is to provide Smart-Phone based
closed-loop therapies; hence, an SPLL would provide the benefit of quick reconfigurability
and more options of trying different settings and parameters out, with the entire loop run-
ning on the phone. Main benefit here is that no extra hardware will be added to the phone
to run the PLL.

A basic PLL and how it functions

The PLL mathematics are well documented in literature and here, we provide a digital im-
plementation of an analogue PLL with a first order low pass filter (active lead lag), similar
to [2]. A block diagram of the PLL is shown in Figure 4.6.

We use a classical PLL with a simple multiplier as the phase detector, as this has shown to
work well in previous studies [2], [4], [5]. We could have used a digital XOR phase-detector
based PLL to account for amplitude variations, but we did not go this route, as the conver-
sion of the EEG to a constant amplitude signal would add additional complexities, due to
signal info lost during the conversion. Moreover, since previous work has proved the clas-
sical PLL to be effective, we deemed this the most suitable choice for the constraints of the
situation.
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Let x1(t) be the input and x2(t) the output from the PLL i.e. the voltage controlled oscillator
(VCO) output. The ultimate goal then is to reduce the phase error between x1(t) and x2(t),
which leads to a locked state. Let,

x1(t) = A1 sin[w1t+ θ1(t)] (4.1)

x2(t) = A2 sin[w2t+ θ2(t)] (4.2)

Firstly, the phase detector which in our case is an analogue multiplier takes the product of
signals x1(t) and x2(t), which gives us the phase detector output pd(t),

pd(t) = KdA1A2 sin[w1t+ θ1(t)] sin[w2t+ θ2(t)] (4.3)

Where, Kd is the phase detector gain. Next, assuming the PLL is in lock, the two frequen-
cies w1 and w2 are identical. Then, using trigonometric identities, (4.3) is rearranged as,

pd(t) =
KdA1A2

2
sin[θ2(t)− θ1(t)] +

KdA1A2

2
sin[2wt+ θ2(t) + θ1(t)]. (4.4)

We notice here that the output of the phase detector contains both a DC term containing in-
formation about the phase difference between the 2 signals and a high frequency term. This
high frequency term needs to be removed and this is done by the low pass filter in the PLL.
The filtered output then is a representation of the phase error between the input and output.
It is a sinusoid of the error and hence, the phase detector here is non-linear. To linearize
this, we assume that the signal is tracking and that the phase difference between the two is
small, which gives us the linearized phase detector equation [121],

pd(t) =
KdA1A2

2
[θ2(t)− θ1(t)] +

KdA1A2

2
sin[2wt+ θ2(t) + θ1(t)]. (4.5)

From here, the output is filtered using a low pass filter, and assuming perfect filtering, we
get the filter output as,

uf (t) =
KdKaA1A2

2
[θ2(t)− θ1(t)] (4.6)

Where Ka is the filter gain. This filtered output is then used as the control input to the Volt-
age Controlled Oscillator, which increases or decreases its running oscillator frequency,
based on the input presented to it. Hence, first when the phase error is large, the larger con-
trol voltage will cause the VCO to compensate by increasing its oscillator frequency, which
will cause the error to decrease in the next iteration and this process is repeated until both
the input and output signals are locked.
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There are various parameters of the PLL that needs tuning such as the low pass filter coef-
ficients, loop gain and the VCO centre frequency. To tune these, other PLL-based platforms
reported in Table 2.1 have done this through trial and error [2], [4], [5], as opposed to us-
ing a more systematic approach which is what we aim to do. For this, one option would be
to use a top-down approach using optimization algorithms; for example, finding a global
minimum for a given cost function which minimizes phase error. The other option is to use
a bottom-up approach; using control systems theory. Since, the PLL is a closed-loop feed-
back system, we could characterize it via its closed-loop transfer function and then tune and
optimize its parameters for best performance.

In our study, we use the bottom-up approach to get a good first estimate, and then hand-
tuned the values to optimize performance. This way, we get more control over the tuning
procedure.

4.3.2 Methods

The PLL tuning process starts with defining an approximate specification for the lock range
∆fl. The lock-range is one of many metrics used to define the operating range of a PLL; it
defines the frequency range over which the PLL would quickly lock on to an incoming sig-
nal [121]. Other ranges include the pull range and hold range, which defines the slow lock-
in range and the absolute range over which the PLL would lose lock, respectively [121]. For
our work, we choose the lock-range as the metric of choice, as we want to design for quick
lock-in whenever the PLL loses lock. The lock-range ∆fl is then defined as,

∆fl ≈
ζωn

π
[121] (4.7)

Where, ζ is the damping factor and ωn is the natural frequency, of the closed-loop system.

With this at hand, we can then design the closed-loop system and tune it to achieve the ωn

and ζ values, for the desired approximate lock-range. To do this, we first need the transfer
function of the PLL, which could be obtained from the transfer function of the individual
components of the PLL. For this, the transfer functions of the lead-lag controller (in this
case a low pass filter) F (s) and that of the VCO G(s) are,

F (s) = Ka
sτ2 + 1

sτ1 + 1
, G(s) =

Ko

s
(4.8)

Where, K0 and Ka are the VCO and filter gains, respectively and τ1, τ2 the filter coeffi-
cients. From this, the phase transfer function for the entire PLL H(s) is derived as,

H(s) =
θ2
θ1

=
KF (s)G(s)

s+KF (s)G(s)
(4.9)
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And in terms of the loop gain K1 and filter coefficients, it is:

H(s) =
Θ2

Θ1

=
K 1+sτ2

τ1

s2 + s1+Kτ2
τ1

+ K
τ1

, K = K0KdKa (4.10)

where Θ2 and Θ1 are the output and input phase, respectively; K0, Kd and Ka are the VCO,
phase detector and low pass filter gains, respectively; and τ1 and τ2 are the filter coefficients.

It must be noted here that for the tuning process, we replace the phase detector gain as Kd =

A, where A is the amplitude of incoming EEG and it is used only for offline tuning (trans-
fer function gain) because the gain of the phase detector could be conceptualized as having
A; this is because the output of the phase detector will be amplified by EEG’s varying am-
plitude since it is a multiplier detector. Hence, we need to take this into account when tun-
ing the PLL to account for amplitude variations. However, after tuning, when ported on to
the phone, there won’t be any A in the code for the PLL, since for the real system, the EEG
will already be incoming and we just used A as an approximate amplitude for this incoming
EEG, for tuning purposes only. With this, the gain for tuning purposes then becomes,

K = AK0Ka (4.11)

where, A is the assumed maximum EEG amplitude discarding the outliers, as estimated in
Section 4.2.4.

Comparing the denominator of (4.10) to that of the normalized form of a second order trans-
fer function, we can then obtain the ωn and ζ values in terms of the PLL components i.e.
the filter coefficients and loop gain. They are then given as:

ωn =
K

τ1
, ζ =

ωn

2
(τ2 +

1

K
) (4.12)

From (4.12), we observe that tuning a PLL to get a desired lock range is not straight-forward.
Both ωn and ζ which define the lock-range are inter-dependent, with the loop gain K and
filter coefficients effecting both at the same time. For example, to increase lock-range, both
ωn and ζ could be increased but we want to limit ζ close to 0.707 i.e. critically damped:
this is done to avoid an over-damped (ζ < 1) or an under-damped system (ζ > 1), which
are characterized by heavy oscillations and a sluggish response, respectively; both these
would not be ideal in a PLL. Hence, while tuning we need to ensure ζ is close to 0.707 and
ωn high enough to meet the desired lock range spec.

Now, to increase ωn, first option is to increase gain K. However, as seen from (4.12), in-
creasing gain not only increases ωn but also both increases ζ due to increased ωn but also
reduces ζ at the same time, due to the 1/K term.

The other parameters that could be tuned are the filter coefficients. Here, it must be noted
that lowering τ1 i.e. increasing poles of the filter F (s) in (4.8) (also increases cut-off fre-
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quency and band-width of filter) would increase ωn and ζ , which would result in an in-
creased lock range, since the lock range is proportional to ωn and ζ (see (4.7)). Hence, care
must be taken not to increase τ1 too much, such that ζ gets too high, which would result in
an under-damped system. It maybe tempting to think then that one could combat the in-
creased ζ by reducing τ2, which would in theory reduce ζ , while also increasing high fre-
quency attenuation, as τ2 controls the zero. However, this should be done with caution as
there is a limit to how much τ2 could be reduced before the ratio between τ1 and τ2 would
exceed or violate the low pass filter conditions (τ1 > τ2), and would in turn result in a high
pass filter because of τ1, τ2 ratios. Hence, a limit exists to how much τ2 could be reduced.

For these reasons, we note then that tuning a PLL is not straightforward due to the inter-
dependence between parameters: changing gain K effects both ζ and ωn at the same time,
and tuning the filter coefficients has its limits due to the pole zero ratio constraints to satisfy
conditions for a low pass filter. Hence, both ζ and ωn cannot be tuned independently.

With these complexities in mind, we then approached the tuning problem with the follow-
ing procedure: first we define the operating range specification which would be the lock
range fl; second, we derive the required ωn and ζ values, based on the lock range; third, we
design the loop gain K and the filter coefficients τ1 and τ2, based on the required ζ and ωn

values; finally, with this as the starting point, we then fine tune and optimize the filter coef-
ficients and the loop gain, to achieve maximum accuracy. The data-set used to demonstrate
this is data-set 1 from Table 4.1; this data-set is chosen, as this is the one used for character-
izing phase accuracy in all bands, as detailed in Section 4.1.2 and that is what we are tuning
the PLL here for. It must also be noted that we used a 70–30 training-test split to avoid in-
sample optimization; hence, the first 15 subjects data was used to tune the PLL here and the
remaining 7 for testing the accuracy in Section 4.4. . The steps are summarized below:

1. Defining the operating range fl: Here, we use the lock range fl defined as the ±stan-
dard deviation of the EEG dominant frequency for each band, which was obtained in Sec-
tion 4.2.2 and summarized in Table 4.3.

2. Derive ωn and ζ: Here, firstly we set ζ = 0.707 to aim for a critically damped system.
With ζ and fl defined, we can then find ωn as (rearranging 4.7),

ωn ≈ ∆flπ

ζ
(4.13)

3. Design loop gain K and filter: Here, first we design the loop filter coefficients by arbi-
trarily choosing the cut-off frequency to be 0.46 Hz, with τ1 = 0.4s and τ2 = 0.1408s,
through trial and error. We chose this frequency, so that the cut-off is low enough to reduce
jitter by attenuating the high frequency component of the phase detector output, whilst not
being too low as to limit the lock-range. For example, designing for the worst case, assum-
ing the both inputs to the phase detector is a 0.74 Hz signal (lower delta band range from
Table 4.2), then the phase detector output would have a high frequency component twice
that i.e. 1.48 Hz which needs to be filtered out, which a low pass filter with 0.46 Hz cut-off
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would be able to do.

With this, we then manually varied gain K while keeping the filter coefficients constant till
the resulting ωn and ζ values were close enough to those defined in Step 2. This will then
give our initial starting point for our PLL parameters.

4. Fine tune and optimize: Following this, we then varied gain K from the initial starting
point in Step 3 till the best accuracy was achieved. For evaluating the phase tracking accu-
racy, we used the Phase Locking Value (PLV) as the metric of choice, to measure how well
the PLL tracks the incoming EEG. Moreover, this would also facilitate comparison to state-
of-the-art work by [44], where they used the same metric for characterizing accuracy over
all bands, with their FFT-based algorithm. The PLV is defined as:

PLV =

∥∥∥∥∥ 1

N

N∑
i=1

ei(φEEG−φPLL)

∥∥∥∥∥ (4.14)

where, φEEG and φPLL are the EEG and PLL instantaneous phase at sample i and N is the
number of samples over which we are calculating the PLV over. In our case, N is the entire
data for a single subject, which gives us a single PLV value for each subject. We then use
the mean and standard deviation over all subjects, to characterize PLL accuracy.

With this, we kept optimizing performance by varying only the gain K and not the filter co-
efficients, because it was more straight forward to do the former, whilst the latter had more
constraints to it. For example, the τ1, τ2 ratios needed to be maintained for low pass filter
conditions to be satisfied, in addition to the inter-dependence detailed earlier. For these rea-
sons, it was more straightforward to optimize by varying gain K.

Finally, it must also be noted here that when coding this PLL, we converted the analogue
low pass filter designed here to a digital low pass filter using the bilinear transform, as the
PLL is run in the digital domain.

4.3.3 Results and Discussion

Here, we present the results for the final PLL tuning parameters, for all bands both pre and
post optimization. The results are summarized in Table 4.7 and 4.8. It must be noted here
that fc is the PLL centre frequency, for which we use the mean value for the dominant fre-
quency range from Section 4.2.2, and the standard deviation being the lock range fl. More-
over, the combined gain K = AK0Ka (see (4.11)) is the gain after taking into account the
amplitude variation in EEG through replacing it with a virtual signal with constant ampli-
tude A for tuning purposes, as discussed in Section 4.3. We also summarized and recap the
essential pre-requisites in Table 4.6; these are the values we obtained from our EEG charac-
terization analyses in Section 4.2.

As observed from Table 4.7 and 4.8, optimization did give us better performance in PLV.
More specifically, it reduced the PLV variance for all bands.
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Delta Theta Alpha Low
beta

High
beta

Low
gamma

High
gamma

A 4.72 3.16 4.60 2.20 1.60 0.99 0.74

fi (Hz) 2.18
±1.44

6.67
±2.78

10.24
±2.00

14.90
±4.03

23.34
±3.82

33.66
±3.59

43.99
±3.13

Table 4.6. Summary of pre-requisites used for tuning puproses: 75th percentile amplitude A and the
frequency range fi for the lock range.

One thing we observe from these, is that in general, there is a trend towards higher loop
gains required for higher EEG bands. The lock ranges is also higher for higher bands. These
could be explained by the fact that higher bands have lower power or amplitude with less
dominant oscillations, and hence, a higher gain would be needed for satisfactory lock. At
the same time, it must also be noted that despite the higher gains for the higher bands, the
PLV is slightly lower. This is because the gain cannot be increased indefinitely before the
system becomes unstable; hence, there is always a limit. Due to these reasons, we see that
the gain K is in general higher for the higher bands, and lower for the lower bands, where
dominant oscillations are already present.

Regarding the final ζ and ωn values achieved in Table 4.8, we see that the final values are
slightly different to that of the original specs. For example, for the delta band, the specifi-
cation is ωn = 6.22 and ζ = 0.707, while the final values are ωn = 9.15 and ζ = 0.780.
The impact of this would be negligible because at the end of the day, the important thing
is achieving the lock range specification as close as possible and not the individual ωn and
ζ values. Initially, the ζ = 0.707 was chosen for all bands as the spec to start with, and
as a good starting point. As we had seen earlier, the tuning parameters are inter-dependent
and cannot be tuned independently and hence, an exact match to the specification is not ex-
pected. Instead, what we aimed for was a close enough match, with importance given to
achieving the desired lock-range and more so the post-optimized accuracy, as measured by
the PLV. Hence, these discrepancies are not surprising.
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Delta Theta Alpha Low
beta

High
beta

Low
gamma

High
gamma

fl spec (Hz) ±1.44 ±2.78 ±2.00 +/4.03 ±3.82 ±3.59 ±3.13
fl achieved (Hz) ±2.27 ±2.73 ±3.10 ±3.38 ±3.50 ±3.28 ±3.10

Error (Hz) +0.83 −0.05 +1.1 −0.65 −0.32 −0.31 −0.03

Table 4.9. PLL operating ranges specifications compared to the ones achieved post optimization, along with
the error between both.

Finally, Table 4.9 summarizes the lock range spec and the achieved lock range, alongside
the error. As observed, for the alpha and delta band, the lock range specs were exceeded by
±0.87 Hz and ±1.20 Hz respectively. This could be explained by the fact that these bands
had the most dominant EEG power, and strongest oscillations as evidenced by the higher A
for these bands, which makes locking easier for the PLL. This is also expected since it is an
eyes-closed resting state data-set where these EEG bands are known to have higher power.

For the remaining bands the achieved lock range was lower than that of the specs, with the
error increasing for higher EEG bands. This again is because for the higher EEG bands the
amplitudes are lower with less dominant oscillations, and hence locking becomes harder
here, as there is a limit to how much the gain could be increased before the PLL breaks
down. This may explain the poorer performance for these bands, both with regards to the
lock range achieved and its locking accuracy, as measured by the PLV.

4.3.4 Summary

In this Section we detailed our PLL tuning methodology: we use a bottom up tuning ap-
proach, where we first get a good initial starting point for the PLL parameters using PLL
maths and control theory, after which we fine tuned and optimized, to achieve the best accu-
racy. We demonstrated this procedure for all EEG bands using the eyes-closed resting state
EEG data-set, with results summarized in Table 4.8. These would be then used in the fol-
lowing Section, to characterizing PLL accuracy.

4.4 Phase Locked Loop for continuous stimulation: EEG phase

4.4.1 Introduction

In this Section, we aim to demonstrate EEG phase tracking performance across all bands,
using the tuning parameters obtained in Section 4.3.

For this, we conduct three different experiments: inter-channel accuracy (Section 4.4.2),
inter-subject accuracy (Section 4.4.3) and amplitude dependent performance (Section 4.4.4).
The first two characterizes the PLV and its variance between channels and subjects, respec-
tively, to ensure it works consistently without any need for channel specific or subject spe-
cific tuning. The third demonstrates how the PLL accuracy is amplitude dependent.
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Most importantly, in this Section, we conduct these analysis for all EEG bands, for a wider
range of potential applications. Our aim is to show that the PLL is superior to the state-of-
the art over all bands, and hence, could be easily adapted to other applications, where their
bands of interest may be different from ours.

4.4.2 Inter-channel analysis

Introduction

In this Section, we characterize the inter-channel accuracy of the PLL, to see if the PLL
performs well consistently across all channels. This is important as the channel choice is
application-dependent and more so since this Section is about the wider applicability of the
PLL across all bands for a wider variety of applications. We do not want to tune individu-
ally for each channel.

Methods

To assess phase tracking accuracy and inter-channel spread, we used data-set 1 from Ta-
ble 4.1; this data-set was used as this is an eyes-closed resting state data-set that would con-
tain not only strong delta, theta and alpha waves, but as with any other EEG data, would
also contain power in the higher bands. Moreover, we use the same tuning parameters ob-
tained for this data-set in Section 4.3; the parameters are summarized in Table 4.8 from
Section 4.3, where we had demonstrated the tuning procedure for this data-set, with values
obtained for all EEG bands. Note that here the tuning parameters were obtained for channel
Fp1; although it is possible to individually tune for each channel to optimize, this would
be cumbersome and impractical for various applications, especially those involving lots
of channels (e.g. 72 channels used in our data-set). Hence, we aim to assess if the perfor-
mance obtained over the entire head would be good enough, despite using the parameters
obtained from tuning channel Fp1. Finally, we use a 70–30 training-test split, to avoid any
in-sample optimisation; this results in data from 7 subjects used for testing.

For evaluating the phase tracking accuracy, we used the PLV (see 4.14) as the metric of
choice to facilitate comparison to state-of-the-art work by [44], where they used the same
metric for characterizing accuracy over all bands. With this, for each channel, we append
data from all subjects into one single signal, and then calculate the PLV over the signal for
each channel. The accuracy is then defined as:

Accuracy = PLV Channelmean ± PLV Channelstd (4.15)

where, PLV Channelmean is the mean of the PLV values obtained across all channels (1
PLV value per channel) and the PLV Channelstd is the standard deviation of the PLV val-
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Delta Theta Alpha Low
beta

High
beta

Low
gamma

High
gamma

PLV 0.87
±0.01

0.83
±0.06

0.90
±0.04

0.81
±0.06

0.78
±0.06

0.73
±0.06

0.70
±0.06

PLV
State-of-the-art [44]

0.71
±0.03

0.66
±0.03

0.77
±0.08

0.63
±0.04

0.63
±0.04

0.62
±0.04

0.62
±0.05

Improvement 16% 17% 13% 18% 15% 11% 8%

Table 4.10. PLL inter-channel accuracy compared to the state-of-the-art.

Figure 4.7. PLL inter-channel variance plots.

ues for all channels, which shows the inter-channel PLV spread. With this, we can then char-
acterize the PLLs inter-channel variability, along with its phase-tracking performance.

Results and Discussion

For the results, firstly, we see from Fig. 4.7 and Table 4.10 that the inter-channel variance
is smallest for the alpha band and the delta band. This would be because these bands have
the most dominant oscillations, as evidenced earlier in Section 4.2.4 and hence, the vari-
ance in error would be smaller for these. We also depict this in the head-plots in Fig. 4.9
where we plot the 75th percentile amplitude from the EEG characterization done in Sec-
tion 4.2.4; the topo-plot here gives the amplitude distribution for the different EEG chan-
nels. Here, we see that the EEG amplitude for the alpha and delta band are much higher
compared to the others (in the range 2 and 4) across all channels. This then confirms the
lower variance observed, as the PLL is better able to track signals which have higher am-
plitudes. Section 4.4.4 details this amplitude dependent performance of the PLL, in more
detail.

We also observe from the topo-plot in Fig. 4.8 is that there appears to be a localized re-
gion of lower PLV, which is consistent across all bands, around the parietal and occipital
areas. This we found is again due to the amplitude dependent performance of the PLL. The
lower amplitude regions in Fig. 4.9 coincides with the low PLV areas in Fig. 4.8. Similarly,
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Figure 4.8. Topoplot of PLV values across all channels.

Figure 4.9. Topoplot of 75th percentile amplitude A for all channels.
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Figure 4.10. EEG Amplitude distribution for all channels. P1, POz and Oz highlighted in red to show
examples of channels that have lower amplitudes.

the amplitude box-whisker plot in Fig. 4.10 for the alpha band, shows that the parietal and
occipital channels such as P1, POz and Oz (highlighted in red), all have lower amplitude,
compared to the other head regions. Both these pieces of evidences then suggest that the lo-
calized region of lower PLV in the back of the head, is caused by weaker oscillations in the
region.

Finally, comparing our results to the state-of-the-art in Table 4.10, we see that the PLL per-
forms on average 14% better (average of improvements made across all bands) than the
state-of-the-art, where they also characterized the inter-channel variance using the PLV
metric (see Table 4.10) [44]. For their work, they characterized inter-channel accuracy on
5 subjects (5 minutes of EEG per subject) for a 64 channel setup; this equates to a total of
1,600 minutes of eyes-closed data. Ours is also an eyes-closed data-set and we use data
from 7 subjects (4 minutes of EEG per subject), for a 74 channel setup; this then equates
to a total of 2,072 minutes of data [142]. Hence, the data-set, type and amount used in our
case is similar to the state-of-the-art, with ours being slightly higher [44]. Moreover, we
calculated inter-channel spread over 74 channels, while they did over 64 channels [44], [142].
This may explain the slightly higher inter-channel variance in our case for the theta, low-
high beta and low-high gamma bands. However, for the alpha and delta bands, the inter-
channel variance was lower in our case, compared to the state-of-the-art, and this may again
be due to the dominant oscillations present here, which improves PLL performance, as de-
tailed in Section 4.4.4. Moreover, this is what we want, as the alpha and delta bands are our
primary application drivers. Regardless, for all bands, we note that the PLL is superior to
the state-of-the-art, with a mean PLV value that is on average 14% better than the state-of-
the-art [44].
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Conclusion

In summary, for the inter-channel analysis, we found that the PLL performs consistently
across all channels, with low inter-channel variance. The alpha and delta band inter-channel
variance was the lowest, which is expected due to the stronger oscillations present in these
bands. On the contrary, channels with lower amplitudes were shown to have higher vari-
ance, again due to the amplitude-dependent performance of the PLL. Regardless, over-all,
the low inter-channel variance suggests that the PLL does not have to be tuned separately
for each channel, making it application agnostic. More importantly, we also show that the
PLL performs on average 14% better than the state-of-the-art, in tracking EEG phase.

4.4.3 Inter-subject analysis

Introduction

For the inter-subject analysis, we aim to find out the variance in PLL phase tracking perfor-
mance over different subjects, for a single channel. The inter-subject variance would then
help us understand how well the PLL adapts to EEG from different subjects, without need-
ing to be tuned on a subject-by-subject basis. In contrast to these, other phase targeting al-
gorithms like the one by Ngo et al. involves tuning on a subject-by-subject basis, as detailed
in Section 2.6.2 [63]. This would be not ideal, as the aim is to have a ‘fit-and-forget’ solu-
tion.

Methods

For characterizing performance, we used data-set 1 from Table 4.1, to keep it similar to the
inter-channel analysis done in Section 4.4.2. Hence, the tuning parameters and the number
of subjects used (n=7) after the 70–30 train-test split, all remain the same.

Similarly, we used the PLV (see 4.14) as the metric of choice; the PLV is calculated over
each subject’s recording i.e. 4 minutes of data. The accuracy is then defined as:

Accuracy = PLVmean ± PLVstd (4.16)

where, PLVmean is the mean of the PLV values of all subjects and the PLVstd is the stan-
dard deviation of the PLV for all subjects, which shows the inter-subject PLV spread. With
this, the higher the PLVmean and the lower the PLVstd, the better the phase tracking perfor-
mance would be across subjects.
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Figure 4.11. EEG Phase tracking accuracy for all bands using the PLV metric.
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Figure 4.12. Sample trace of PLL output vs the band-pass filtered EEG.

Results and Discussion

Here, we present the results for the inter-subject phase tracking performance. As observed
from Fig. 4.11 and Table 4.11, the PLV performance is best for the alpha and delta band,
and in general worsens for higher bands, which we also observed in the inter-channel analy-
sis done in Section 4.4.2.

This is further evident from the raw plots in Fig. 4.12, where we see that the PLL output is
less oscillatory for the higher bands. As mentioned earlier in Section 4.4.2, better perfor-
mance in the lower bands are expected since we used a resting-state EEG data-set, where
these bands are known to have stronger oscillations, which we also saw from our amplitude
characterization analysis in Section 4.2.4 and is evident from the raw EEG plot in Fig. 4.12.
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Delta Theta Alpha Low
beta

High
beta

Low
gamma

High
gamma

PLV 0.88
±0.01

0.88
±0.01

0.91
±0.04

0.85
±0.03

0.83
±0.03

0.80
±0.01

0.78
±0.01

Table 4.11. PLL phase tracking performance across subjects.

Most importantly, higher accuracy for the alpha and delta bands, as observed here, is what
we want, as these are the bands of focus for our application drivers.

Finally, we note that the inter-subject spread is low (<4% in most bands), which is even
lower than the inter-channel spread (<6% in most bands). We also note here that the inter-
subject spread was not reported in the work by Masnsouri et al. and hence, we cannot make
a fair comparison here.

Conclusion

In conclusion, in this Section, we characterized the inter-subject spread of the PLL phase-
tracking performance; we showed that the inter-subject spread is low (<4% for most bands),
which suggests that subject-specific tuning may not be necessary.

4.4.4 EEG amplitude dependant performance

Introduction

In this Section, we explore in more detail how the PLL performance is amplitude depen-
dent, an observation we found consistently in earlier analyses. Traditionally, PLLs are used
in applications where the input signal to be tracked has constant amplitude such as in clock-
synchronization [145]. However, in our case, the non-stationary EEG has amplitude that
varies both over-time and across subjects, which makes it more difficult to tune the PLL in a
deterministic way, since the amplitude would have an effect on the effective gain of the PLL
(see equation 4.11 from Section 4.3). Hence, it would be useful to conduct an analysis on
how amplitude variations affect PLL performance.

Methods

To demonstrate the amplitude dependent performance, we run the PLL both on a synthetic
signal and the EEG. The former will help augment our confidence for observations made on
the latter.

For the synthetic signal, we simply vary amplitude of a sinusoid and observe the resulting
change in performance. For this, we used 5 different sinusoids with amplitudes 1V , 4V ,
7V , 10V and 13V . For each amplitude, we then conducted a frequency sweep from 0–25
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Hz and then measured the lock range for a PLL designed to track a 10 Hz signal; we de-
fine the lock range as the frequencies for which the PLV is close to 1 i.e. perfect phase lock,
which is expected around the 10 Hz mark. For frequencies outside the lock-range, the PLV
is expected to be low.

The PLL here was tuned to track a 10 Hz signal perfectly well (PLV=1) i.e. the alpha band;
we are just using this frequency as an example, as the purpose here is to demonstrate am-
plitude dependence, which would be the same regardless of the frequency band of choice.
For this, we used the same PLL for the alpha band from Table 4.8 but with a gain of 1 to ac-
count for the different amplitudes here for the synthetic signals. The gain was optimized so
that the PLL would perfectly track the 10 Hz signal within the lock range, with a PLV of 1.
Using these, we can then compare the lock ranges for each of the different signals with its
different amplitude, and observe any amplitude dependent variations in accuracy.

After demonstrating the behaviour on synthetic signals, we then do the same with EEG
data, this time using data-set 1 from Table 4.1 and we use the training set (n=15). Fp1 chan-
nel was used and we appended data from all subjects into one signal before processing it.
Then, as with the synthetic signal, we use the alpha band and hence, filter the raw EEG
with a band-pass filter (IIR butterworth order 2 with pass band of 8–13 Hz). Then we passed
the filtered signal into the PLL to get the PLL based sample-by-sample instantaneous phase
measures ΘPLL and compare this phase to the same obtained using the gold standard Hilbert
based method ΘHilbert. Also note that 1s of data was discarded from the end and beginning,
to remove edge artefacts associated with the Hilbert based method. Moreover, for the PLL
based measure, the PLL parameters used for the alpha band are summarized in Table 4.8
of Section 4.3. With this, to demonstrate the amplitude dependent performance, we plot-
ted the phase error against the amplitude for each sample. The phase error at each sample is
defined as:

error = ΘHilbert −ΘPLL (4.17)

where, ΘHilbert is the instantaneous phase obtained using the gold standard Hilbert trans-
form and ΘPLL is the phase obtained using the PLL.

Results and Discussion

Firstly, for the synthetic analysis, the lock ranges for varying amplitudes is shown in Fig.
4.13. We observe that as the amplitude increases, so does the lock range of the PLL. In
essence, this then means that when amplitude is higher (lock range higher), the PLL track-
ing performance improves, which translates to lower phase error. This is what we observed
in previous Sections; for example, in the inter-channel analysis, we saw that for channels
with higher amplitude, the phase tracking accuracy was higher and vice-versa for channels
with lower amplitudes.
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Figure 4.13. PLL amplitude dependent performance using synthetic signals.

Figure 4.14. PLL amplitude dependent performance using EEG signals. Phase error per sample plotted
against its amplitude at that sample. Marginal histogram of the amplitude values plotted along y axis.

For the EEG signal, when plotting the phase error at each point against its amplitude, we
observe the same phenomena as seen in Fig. 4.14. Here, we see that when the phase er-
ror is smaller, the EEG amplitude tends to be highest and vice-versa for large phase errors,
which again confirms observations made in previous Sections. Moreover, we note that there
are some outliers; sometimes, for higher amplitudes the phase error is large but these are
not the majority and is most likely due to periods when the PLL is out of lock. In other
words, at points when the PLL is out of lock, even if the amplitude is large, it would take
longer than a sample to get back in lock, which may be the cause of these outliers.

Overall, this amplitude dependence then means that deterministic tuning of the PLL is not
very straightforward, due to the time-varying nature of EEG amplitude. This is exactly why
we did EEG amplitude characterization in Section 4.2.4, and used the virtual constant am-
plitude A (75th percentile EEG amplitude) for PLL tuning purposes in Section 4.3. This
allowed us to capture and take into account at least some of this amplitude variability, into
the PLL tuning process.
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Moreover, it must be noted here that in theory, one could add in some sort of amplitude
normalization such as an automatic gain control, or an XOR-based phase detector. How-
ever, both these would add its own complications; the automatic gain control would incur
additional computational complexity, in addition to its own tuning parameters. Similarly,
the XOR based phase detector would again dilute the signal information of the EEG, as
there would be a signal conversion stage from EEG to square-waves, which is then fed to
the XOR phase detector. This conversion, say using a Schmidt trigger, would involve set-
ting upper and lower thresholds, and hence, adds again additional tuning parameters. These
additional complexities are unnecessary, as other groups using a PLL have reported clini-
cal effects, without any of these [2], [4], [5]. For example, for the sleep engineering appli-
cation, Santostasi et al., Ong et al. and Palambros et al., all used a classical PLL without
any amplitude normalization, with which they reported clinical effects i.e. enhancement of
slow oscillations, as detailed in Section 2.6.2 [2], [4], [5]. Thus, given our aim is to have a
real-time implementation of the closed-loop system on a power-resource constrained device
such as the phone, we considered the added computational and tuning complexities associ-
ated with amplitude normalisation procedures not to be beneficial as this point. Moreover,
we also highlight here that even without any amplitude normalization, our phase-tracking
performance is on average 14% better than the state-of-the-art, for all EEG bands. Hence,
for these reasons, we chose to use the classical PLL by itself without any amplitude normal-
isation.

Conclusion

In conclusion, we have shown in this Section that the PLL performance is amplitude de-
pendent, confirming observations made in previous Sections. We have shown through our
synthetic analysis that the PLL lock range increases with increasing amplitude and vice
versa. This in turn means that higher amplitude would equate to better PLL tracking accu-
racy, which is exactly what we found in the EEG analysis, where regions of high amplitude
were characterized by low phase error.

4.4.5 Summary

In this Section, we aimed to demonstrate the PLLs ability to track EEG phase well across
all bands, for wider applicability beyond our application drivers. Here, we showed that the
PLL tracks well across all bands and performs on average 14% better than the state-of-the-
art, for all bands. We also showed that the inter-channel and inter-subject spread is low,
which negates any need for channel or subject specific tuning. Moreover, we also showed
that the PLL performance is amplitude dependent, where performance improves for higher
amplitudes, which also explained the improved performance for the lower EEG bands in the
inter-channel and inter-subject variance experiments.
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4.5 Phase Locked Loop for discrete stimulation: EEG phase

4.5.1 Introduction

In the previous Sections, we detailed the PLLs performance across all EEG bands, for gen-
eral applicability. In this Section, we are going to zoom in on just the delta band, and more
specifically, the SO band (0.5–3 Hz) within it, which contains the slow oscillations. This is
for the sleep engineering application driver, as detailed in Section 2.6.2. There, we noted
that the optimal target phase for highest efficacy is being explored by various groups as part
of the clinical work being done in this field. In addition to this, people are also looking at
the technology side of things, developing new platforms that are faster and more accurate.
We are aiming for a technology contribution via providing a smart-phone based mobile
platform that could be used for in-the-wild experiments. All these are discussed in more
depth in Section 2.6.2.

Here, in this Section, we then characterize the PLLs accuracy in tracking slow oscillation
phase on a PC, before moving onto the real-time on-phone implementation in Chapter 5.
It must be noted that for this application, we are targeting discrete phase points for one-off
stimulation, and not continuous matching, as done in Section 4.4 and 4.6. This reflects the
two modes of stimulation: one continuous where we react to every change in the EEG on
a sample by sample basis, and one discrete where we want to detect a particular event and
react to that, which in the sleep-engineering application is the phase of a SO, as detailed in
Section 2.6.2

4.5.2 Methods

For this analysis, since we are focusing on the sleep engineering application driver, we used
the sleep data-set which is data-set 2 from Table 4.1. As detailed in Section 4.1.2, the raw
EEG data was filtered in the SO band (0.5-3 Hz) and 5 s slow oscillations epochs were ex-
tracted by our collaborators using the algorithm in [127], which resulted in a total of 37,440
5 s SO epochs over the entire 13 subjects. Moreover, just like in Section 4.4, we used a 70–30
training-test split, to avoid in-sample optimisation. With this, we then used these epochs to
characterize phase tracking performance, aiming to target the peak of the slow oscillation.

For the PLL, it must be noted here that the same PLL settings from Section 4.4 was not
used, as these were tuned for the delta band (0.5–4 Hz) and not the SO band (0.5–3 Hz)
specifically, which is defined differently from the delta band. Slow oscillations typically
have higher amplitude and hence, the settings used in Section 4.4 for the delta band would
be sub-optimal here, especially considering the amplitude dependence of PLL performance.
For these reasons, we chose to tune the PLL separately, despite using the same methodol-
ogy. First, we characterized the EEG data via its virtual amplitude A and the frequency
range to take into account the amplitude dependent performance and lock-range settings,
respectively. Using these, we tuned the PLL using the same procedure as in Section 4.3:
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defining the operating range (lock range), deriving the needed ωn and ζ from the specs, de-
signing the gain K and filtering coefficients τ1 and τ2 to meet the ωn and ζ spec as close as
possible, and finally optimizing these initial parameters to get best possible phase-targeting
accuracy.

Moreover, in previous Sections, we used the PLV as the metric for accuracy, which is rele-
vant for continuous stimulation. In contrast, here, since we are interested in discrete stim-
ulation, we need to find phase error at a discrete time-point, and not over the entire epoch.
For this reason, the metric we used was the phase error, which is also the metric used by
other sleep engineering platforms [2], [4], [5], [12], [13], [20]. More specifically, we use
phase error at the peak, where the error is,

error = θHilbert − θPLL (4.18)

where, θHilbert is the instantaneous phase extracted using the gold standard Hilbert trans-
form and θPLL is the instantaneous phase extracted by the PLL. This metric would give an
error value for each sample point, and we then measure the error at the peak. This is con-
sistent with the characterization done by other work in this field, despite different target
phases; some target the peak and other’s the negative peak to test various hypothesis. Re-
gardless of the target phase, this error metric would help compare our work against other’s
in the field.

4.5.3 Results and Discussion

Here, we present the results for the phase tracking accuracy. We first start with the pre-
requisites, which is used to obtain the tuning parameters, after which we present the phase
accuracy results. This is in line with the tuning methodology in Section 4.3, but this time
done for the SO band for a sleep data-set, to target the sleep engineering application driver.

Pre-requisites

For the pre-requisites, the virtual amplitude A, alongside the dominant frequency range
were obtained first (see Section 4.3 for recap). The results are shown in Fig. 4.16, 4.17 and
summarized in Table 4.12.

Firstly, Fig. 4.15 shows a sample SO trace, to give an idea of slow oscillation morphology.
As expected, we see larger than usual EEG amplitudes (> 40 − 70µV ), which is character-
istic of SO oscillations during sleep [124].

With the box and whisker plot in Fig. 4.16 for the amplitude distribution, we get the vir-
tual amplitude A = 40µV as the 75th percentile value; note that these are much higher
than the ones obtained from the data-set used in Section 4.2.4, for the delta band waveform
(A = 4.72µV ). This is because the current one is slow oscillation from sleep data, which
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Figure 4.15. Raw trace of a sample slow oscillation. The figure shows 2 slow epochs concatenated, each of 5 s
length.
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Figure 4.16. Amplitude distribution of the slow oscillations.

is known to have larger oscillation, while the data-set used in the previous sessions were
taken when awake (eyes-closed resting state), which explains the lower delta-band ampli-
tude. This further confirms the need to tune the PLL separately for the sleep engineering
application, primarily due to the amplitude dependent performance of the PLL.

Finally, we also obtained the dominant frequency range, which is used to define the specs
for the lock range for tuning purposes. For this, we used the same procedure as in Section 4.2.2:
band-pass filtering the raw data in the SO band; using the Hilbert transform to get instanta-
neous phase and subsequently the instantaneous frequency from its derivative; and finally
smoothing the raw instantaneous frequency (low pass order 2 IIR butterworth filter with
a 2.5 Hz cut-off) to remove the derivative induced noise. The resulting lock-range spec is
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Figure 4.17. Instantaneous frequency for the slow oscillations.

Pre-requisites Specifications Derived
Parameters

Resulting
performance

A
Frequency

range
(Hz)

fc
(Hz)

fl
(Hz) ωn ζ

τ1
(s)

τ2
(s)

fcut
(Hz) K A

Ktot

(K ×A) ωn ζ
fl

(Hz)

40 1.17
±1.99 1.17 1.99 8.84 0.707 0.4 0.1408 0.46 0.65 40 26 8.06 0.722 1.85

Table 4.12. Tuning parameters for the sleep engineering application.

summarized in Table 4.12. Moreover, Fig. 4.17 shows the raw instantaneous frequency
plotted against the filtered one; note again that here, the spikes in the raw waveform are the
derivative induced noise, hence the need for the smoothing filter.

Tuning parameters obtained

The final tuning parameters obtained using the procedure in Section 4.3 are summarized in
Table 4.12. As noted, the filter coefficients are same but the gain K = 0.65 is much lower
than the one obtained for the data-set in Section 4.3, where the gain for the delta band was
K = 7.5. This is expected since we saw that the virtual amplitude A = 40µV for the slow
oscillations here are much higher than the one for the data-set in Section 4.2.4, where A =

4.72µV . Hence, to compensate for the larger amplitudes, we get a much lower gain value
for the sleep data-set.

Phase accuracy

Next, we present the phase accuracy obtained with these tuning parameters. When tracking
the slow oscillations, we get a phase error of 19.7±25.2 degrees over the entire 5 s epoch
and 11.2±11.2 degrees for the phase error at the peak. This is further depicted in Fig. 4.18a
and 4.18b.
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Figure 4.18. Phase error rose plot: Error over epoch in the left, and error at peak on the right.

Comparing this to the state-of-the art platforms for sleep engineering: Santostasi at el. ob-
tained 12.5±29 and 13.6±9.88 degrees phase error over the entire epoch and the peak, re-
spectively for their offline analysis using a PLL [2]. They used data from 5 subjects (2 night
recordings per subject), while we used single night recordings from 4 subjects for testing.
Moreover, both ours and their studies used the Fpz channel for the analysis. Hence, the re-
sults are comparable and our performance is similar and does not deviate too far off; how-
ever, we highlight here that our differentiation here is not in the offline results but in the on-
phone implementation in Chapter 5. The current PLL based platforms are lab based and not
suitable for out-of-the-lab use [2], [4], [5]. Moreover, it must be noted here that other sleep
engineering platforms do not conduct an offline analysis before porting it for real-time im-
plementation, and hence a comparison could not be made at this point [4], [5], [12], [13].
However, we do compare accuracy of our on-phone implementation against all these plat-
forms, in Section 5.3 of Chapter 5.

4.5.4 Summary

In this Section, we tuned a new PLL for the sleep engineering application where discrete
phase-locked auditory stimulation is the requirement, and target phase was the peak of the
slow oscillations. We showed that using the PLL resulted in a phase error of 11.2±11.2 de-
grees when targeting the peak, which is comparable to state-of-the art platform in this field.
This then lays the foundation for the on-phone implementation in Chapter 5, which is where
the technology contribution lies.
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4.6 Phase Locked Loop for continuous stimulation: EEG frequency

4.6.1 Introduction

So far, we have looked at the phase feedback measure in both continuous mode (general ap-
plications) and discrete (sleep engineering) mode. In this Section, we explore EEG instan-
taneous frequency, as the feedback measure. As discussed in Section 2.6.3, the aim is to
provide frequency-matched continuous stimulation for the chronic pain application driver
and provide an ambulatory platform, to enable ‘out-of-the-clinic’ research.

Since we are focusing on just the chronic pain application driver for frequency, we only
consider the alpha band and not the others, as done for the continuous phase in Section 4.4.
For the latter, there were state-of-the art algorithms to compare to, whilst the same does not
exist for frequency-matched stimulation. Hence, for these two reasons, we chose to focus
just on the alpha band and limit scope.

Other studies doing frequency matched stimulation are detailed in Section 2.6.3; for exam-
ple, the work by Pino et al. where they used frequency matched visual stimulation to reduce
anxiety [115]. However, as detailed in Section 2.6.3: they do not do any technology vali-
dation characterizing its accuracy, as a consumer grade EEG device (Neurosky) was used
with the frequency values obtained directly from the headset SDK, on a second-by-second
basis [115]. Moreover, they did not have an option for binaural beats, but just visual stim-
uli. In contrast, we aim to track frequency on a sample-by-sample basis (theoretical limit)
and match both audio and visual stimuli to these frequency changes, all on a smartphone.
In this section, we characterize the accuracy of our frequency matching algorithm offline,
before porting it onto a phone in Section 5.4.

When it comes to EEG alpha frequency, most literature refer to it as the Individual Alpha
Frequency (IAF), which is the dominant frequency calculated over a time-period: typically,
the IAF is calculated for a single subject [16], [49], [119], [120] and at times over an epoch
length [115], [118]. The IAF is usually calculated by taking the power spectrum over an
epoch and choosing the peak frequency as the IAF over that epoch [16], [49], [118]–[120].
However, we are not interested in such epoch based calculations. Instead, we focus on get-
ting the instantaneous frequency on a sample-by-sample basis, as this would be ideal case
for a closed-loop platform, where latency needs to be driven down. Also, it must be noted
that it is possible to get sample-by-sample measures using epoch-based calculations; for
example, calculating over a window starting from the current time-point and a set of past
values. However, this would increase computation time and hence increase latency, in addi-
tion to the edge effects that would be incurred at window end (current-time point) and start,
which would have to be discarded. Hence, a sample-by-sample measure, calculated on a
sample-by-sample basis would be ideal to drive latency down. Moreover, it is also worth
noting that once we have a sample-by-sample measure of instantaneous frequency honed,
then by default this could be used later on for epoch based measures, as needed.
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This then raises the question as to whether the IAF and the sample-by-sample approach we
are using, are equivalent. To answer this, we first conduct an analysis to see how similar the
results are for an epoch based measure, using both the sample-by-sample and the traditional
IAF approach. Then, we characterize the sample-by-sample instantaneous frequency ex-
traction accuracy using the PLL.

It must also be noted here that we use the PLL as opposed to the Hilbert transform for real-
time implementation, as the later has various disadvantages such as: increased computa-
tional complexity; it requires an epoch of data to be accurate, making it sub-optimal for
driving latency down; and also incurs edge effects which would either have to be discarded
(increased latency) or compensated for by mirroring data at the edges (increased run-time).
In contrast, the PLL is optimal for driving latency down as we could operate on one sample
at a time whilst avoiding any edge effects.

4.6.2 Methods

For the frequency characterisation, we use the eyes-closed resting state data-set 1 from Ta-
ble 4.1. From this, we use channel Fp1; as detailed in Section 4.1.2, this would be a good
channel for the chronic pain application driver as it contains decent alpha power. Moreover,
this being a non-hair region makes it more usable for at-home use.

Sample-by-sample instantaneous frequency vs epoch based

Firstly, we aim to show here that the sample-by-sample instantaneous frequency is equiv-
alent to the traditional epoch based measure. To do this we divide the alpha band pass fil-
tered EEG signal for each subject into 12 s epochs, which is mostly an arbitrary choice but
also one taken keeping in mind that 12 s would ensure that enough windows are present for
the welch’s transform to average over. We used a welch transform (1.3s hamming window
with 50% overlap). Hence, with a window size of 1.3s, and the total epoch being of 12 s
length, there will be around 18 windows for the welch transform to average the power spec-
trum over; this will allow us to get a smoother power spectrum for each 12 s epoch, which
would not be the case if we had used an FFT over the whole epoch. With this, the dominant
frequency in each epoch (the IAF), is calculated as the frequency with the highest power in
the epoch.

After this, we obtain an IAF measure over an epoch again, but this time using a PLL. Here,
we use the PLL to first get a sample-by-sample instantaneous frequency measure over the
12 s epoch (using the same methodology as in 4.2.2), after which we take the mean of the
instantaneous frequency over the 12 s epoch to get the equivalent ‘epoch based’ measure
fPLLEpoch. From this we can then calculate the error ferror as:

ferror = fEpoch − fPLLEpoch (4.19)
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With this, we can then judge whether the epoch averaged sample-by-sample instantaneous
frequency calculations obtain with the PLL, is equivalent to the traditional epoch based IAF
measures.

Instantaneous frequency accuracy using a PLL

Next, once this equivalence is established, we then characterize accuracy for the PLL-based
instantaneous frequency measure, on a sample-by-sample basis. For this, we first band-pass
filtered in the Alpha range using an order 2 IIR butterworth filter with 8–13 Hz pass band
frequencies. Then, we compared the instantaneous frequency measured by the PLL fPLL

with that obtained by the gold standard Hilbert transform fHilbert.

For the fPLL measure, we used the same PLL settings as in Section 4.3, where it was al-
ready tuned for this data-set. The instantaneous frequency is obtained by taking the deriva-
tive of the instantaneous phase and then smoothing the output using the same low pass filter
as in Section 4.2.2, to remove the derivative induced spikes. This then results in the PLL-
based instantaneous frequency measure fPLL, which is then compared against the Hilbert-
based one fHilbert. The error between both ferror is defined as:

ferror = fPLL − fHilbert (4.20)

4.6.3 Results and Discussion

Sample-by-sample instantaneous frequency vs epoch based

First, we present the equivalence between the sample-by-sample (using a PLL) and the tra-
ditional epoch-based calculations, to see how close the former is to the latter. Fig. 4.19
gives a raw trace of the frequency calculated over each epoch using both methods and as
observed, the sample-by-sample version gives a close approximate to the traditional epoch
based measure; the error between both was -0.10±0.28 Hz, as observed from the histogram
in Fig. 4.20. Note that with the welch settings (1.3s window size and sampling frequency
of 250 Hz), the FFT resolution is 0.8 Hz (sampling frequency/number of samples). In other
words, our error is lower than the frequency resolution of the welch transform. Hence, we
can conclude that the sample-by-sample approach gives a close approximate to the tradi-
tional epoch based calculations and hence, can use it for the closed-loop platform. Com-
pared to epoch-based methods, a sample-by-sample approach is more desirable as it drives
down latency, in addition to allowing finer time-resolutions for closing the loop at.

Instantaneous frequency accuracy using a PLL

Next, we present results for the PLL-based instantaneous frequency measure. As observed
from the raw plots in Fig. 4.21, the PLL-based implementation closely follows the Hilbert-
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Figure 4.19. Sample-by-sample method vs epoch-based equivalence validation.

Figure 4.20. Hisogram of error (outliers removed) between the epoch based and sample-by-sample based
method of calculating frequency.

based one. However there exists few areas, where the Hilbert-based measure deviates from
the PLL based ones, for example time=56s and time=79s in Figure 4.21. This may be due
to the noise-sensitive nature of the Hilbert method as it expects a narrow band signal and
not a multi-component one, as is the case for EEG. In contrast, the PLL essentially ‘fly-
wheels’ over such noise due to its implicit low pass filter and does not respond as instan-
taneously as the Hilbert, which makes it less affected by these.

Moreover, it must be noted that these areas then affects the error values obtained, since it
is the Hilbert-based method that we use as the benchmark. Any outlier in the benchmark
would spill over to the overall error measure and to account for this, we then removed the
outliers using Matlab’s ‘rmoutliers’ function which classes as outlier’s values that are more
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Figure 4.21. Instantaneous frequency obtained using the PLL and the Hilbert method.

Figure 4.22. Error histogram for PLL based instantaneous frequency calculation (with outliers removed).

than three scaled median absolute deviations away. With this, the frequency matching er-
rors are then 0.08 ±0.79 Hz with outliers and -0.004 ±0.15 Hz sans outliers. These results
with outliers removed are shown in 4.22.

With this, we can then conclude that the PLL tracks the instantaneous EEG frequency well,
giving a close approximate to the gold-standard Hilbert based method. The key advantage
of using the PLL, as opposed to epoch-based methods like the Hilbert transform is that the
former allows for sample-by-sample operation without any edge-effects, which makes it
ideal for driving latency down. Moreover, if one needs to calculate over an epoch for a dif-
ferent application, we have demonstrated functionality at the finest time-scale (sample-by-
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sample), and hence, by definition, the same could be extended for an epoch based measure.

4.6.4 Summary

In this Section, we aimed to show accurate extraction of the instantaneous EEG frequency,
using a PLL. We first showed that a sample-by-sample measure is equivalent to that of an
epoch-based one, when extrapolated over an epoch, which confirmed its validity. Following
this, we then characterized the PLLs frequency matching accuracy on a sample-by-sample
basis, resulting in a 0.004 ±0.15 Hz error, when compared to the gold-standard. This then
confirmed that the PLL could be used to get a good estimate of the instantaneous EEG fre-
quency on a sample-by-sample basis, making it an excellent choice for low-latency closed-
loop systems.

4.7 Conclusion

In this Chapter, we conducted offline analyses to characterize the accuracy of the feature
extraction part of the closed-loop system, namely frequency and phase extraction using the
PLL.

To do this, we first characterized the EEG in Section 4.2 according to its amplitude, fre-
quency and frequency rate of change; the first two feeds into the PLL tuning methodology
and the last motivates closing the loop on a sample-by-sample basis. Then, in Section 4.3,
we detailed the PLL tuning methodology taking a bottom up approach: first, we used PLL
maths and control theory to get a initial starting point for the tuning parameters, and then
we fine-tuned this to get optimal accuracy values. Once optimized, we then divided the
remaining accuracy characterization into three separate analyses, based on the operation
mode: Continuous phase locked stimulation (general use), Discrete phase-locked stimula-
tion (sleep engineering) and continuous frequency matched stimulation (chronic pain).

Firstly, for the continuous phase-locked stimulation in Section 4.4, we characterized phase
targeting accuracy across all EEG bands, to show its relevance for a wider range of appli-
cations. Here, using the PLL resulted in around 14% percent improvement in accuracy,
when compared to the state-of-the-art. Furthermore, we also showed that the inter-channel
and inter-subject variance was low, negating any need for channel or subject specific tun-
ing. Here, the contribution in showing that the PLL performs better than the state-of-the-art
across all bands.

Secondly, for the discrete phase-locked stimulation mode in Section 4.5), we obtained com-
parable accuracy to other lab-based platforms, with a phase error of 11.2±11.2 degrees,
when targeting the peak of the slow oscillation. Here, the contribution is not in the use of a
PLL, but rather in its on-phone implementation, which will be detailed later in Chapter 5.

Finally, for the continuous frequency matched stimulation mode in Section 4.6, we obtained
a frequency matching error of 0.004±0.15 Hz using the PLL. Here, there were no state-of-
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the art platforms to compare to, as ours is the first to provide sample-by-sample frequency
matched stimulation for the chronic pain application driver. This was so because we are re-
sponding to a clinical need and building technologies that have been requested but not pre-
viously available. Hence, here our contribution is in providing this novel platform, with the
on-phone implementation in Chapter 5.

With the accuracy characterized for the feedback measures, we can then move onto the next
Chapter, where we tie all of these different components together, to characterize the on-
phone implementation.
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Chapter 5

Closed-loop light and sound based

neuromodulation on a phone

5.1 Introduction

In the previous Chapter, we tuned the PLL for phase-frequency extraction. In this Chapter,
we port these algorithms onto a phone, which when combined with the stimulation compo-
nent in Chapter 3 would then gear us towards the complete on-phone implementation. Most
closed-loop platforms available today are lab-based ones, and not suited for in-the-wild re-
search. Here, we then provide a mobile app based platform for closed-loop audio-visual
stimulation. For the chronic pain application driver, we provide the first on-phone platform
for continuous frequency matched audio-visual stimulation. On the other hand, for the sleep
engineering application, only three portable platforms exist to our knowledge here: two of
them run on embedded hardware [12], [13] and the third on a laptop-tablet hybrid [20]. In
contrast, we provide the first smartphone-based platform, with the advantage here being the
ubiquitous nature of smartphones.

The app operates in either continuous or discrete mode, depending on the application driver,
as shown in Figure 5.1. For chronic pain, the app operates in continuous mode, where the
audio and visual stimulus waveforms are provided in a continuous fashion, whilst adapting
to the frequency of the on-going EEG. On the other hand, for the sleep engineering applica-
tion, the app operates in discrete mode: here, phase-locked auditory stimulation is provided
in a one-off manner, when the target phase is reached.

We first start the Chapter discussing the system design and implementation in Section 5.2,
where we characterize the latency and accuracy for the individual components of the sys-
tem i.e. the sensing and signal processing components. It must be noted here that we do not
characterize the stimulation component, as we have done that already in Chapter 3. With
individual components designed, we then tie the pieces together and we also introduce a
test phantom based setup for validating the technology in a controlled environment using
pre-recorded EEG data; this negates the need for on-person tests for technology valida-
tion. With this, we then characterize the accuracy and latency of the complete system, start-
ing with the frequency-matched continuous audio-visual stimulation (continuous mode) in
Section 5.4 and then the phase-locked auditory stimulation (discrete mode) in Section 5.3.
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Figure 5.1. Closed loop app overview showing different modes of operation.

These would be designed for the chronic pain and sleep engineering application drivers, re-
spectively.

5.2 System design and implementation

5.2.1 Introduction

The closed-loop platform consists of three parts: EEG wireless sensing, signal processing
for phase-frequency extraction, and the audio-visual stimulation, all of which runs on an
Android app. In this Section, we start by characterizing these individual components sepa-
rately, before combining them to form the whole. For sensing, we characterize the wireless
communication latency and transmission accuracy to ensure low latency transmission with
minimal data loss. For signal processing, we port the PLL tuned in Chapter 4 onto a smart-
phone and compare the on-phone accuracy and latency, to that of the PC. For the stimula-
tion, we do not need to characterize separately here, as this was already done in Chapter 3.

5.2.2 Methods

Sensing

First, we characterized the wireless transmission accuracy and latency, of the EEG sig-
nal. To do this, we used the smarting amplifier by mbraintrain. At the time of doing the
work, this was the only medical grade wireless EEG device, that was designed to stream
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to a phone. As the focus of this PhD was software, this was the most suitable for use rather
than making a new system from scratch. An API is available for programming in Android,
and we use this to stream EEG data to our phone.

The smarting amplifier is a wireless 24 channel EEG amplifier, which transmits using Blue-
tooth v2.1 Enhanced Data-Rate (EDR), which is a class 2 bluetooth device (range 10m),
optimised for short-range wireless transmission. The signal could be sampled at either 250 Hz
or 500 Hz, and each channel has its own 15k samples sized buffer, where the signal is added
sample-by-sample as they arrive. The received signal could then by accessed from this buffer
one sample at a time without needing the buffer to be full, which is ideal since we would
want to operate on a sample, as soon as it arrives to minimize latency.

To characterize the accuracy and latency, we first needed a test setup to stream an EEG
signal onto the phone, as shown in Fig. 5.2. To do this, we used pre-recorded EEG data,
a NI DAQ data-acquisition system (NI-USB6212) and a Digitimer D171 100 dB attenua-
tor. Here, pre-recorded EEG signals (from data-set 2 in Section 4.1) was streamed from a
PC via the DAQ, where the output of the DAQ is the EEG signal represented as an analog
voltage (range from 0 to 10V). This signal was then attenuated using the 100 dB attenuator,
with an output in the micro-volts range, which mimics EEG voltages, as measured directly
from the head. The data is then streamed from the smarting amplifier to a Sony Xperia Z3
smartphone running on Android 6.0.1, using wireless communication. With this, we could
simulate an on-person EEG data-collection setup, without having to conduct an on-person
test. It must also be noted here that the airplane-mode was turned on, with wifi and loca-
tion services turned off. Not doing so resulted in a higher transmission latency, which can
be anywhere in the range of 100-500 ms.

With this setup, we first measure the transmission accuracy by calculating the root mean
squared error (RMSE) between the received and streamed signal. 30 minutes of pre-recorded
EEG data (subject 1 of data-set 2 in Table 4.1) was used, taking only the Fpz channel. 3
trials of these 30 minute runs were taken. The similarity i.e. the RMSE error between the
streamed and received signal would then help us judge signal transmission quality, and any
signs of transmission induced signal attenuation or distortion.

For the latency characterization, the smarting amplifier SDK comes with a time-stamp for
each sample; these time-stamps are estimates (made on the phone) that the SDK makes for
when the data was acquired by the amplifier. Details of this algorithm were proprietary to
the company, so were not shared. Once the sample is received on our app, it was then time-
stamped using the ‘SystemClock.elapsedRealtimeNanos()’ method which returns the time
since the system was booted, including deep sleep. It uses the on-board real-time clock
(not the internet clock) and hence gives more precise time-stamps. It must be noted that
the timestamps used by the smarting SDK is synced to this same clock and hence, both
are accurate to the nanoseconds and uses the on-board real-time clock in the processor of
the phone. The latency was then calculated for each sample of the 30 minute EEG signal
recording, for a 3 trial run. The mean of the latency for all samples and its standard devia-
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Figure 5.2. Test setup for characterizing transmission accuracy and latency.

tion were then calculated for each of the 3 trials.

Signal processing

For the signal processing component, we validate the on-phone signal processing via port-
ing the PLL designed in Chapter 4 onto a phone. We then compare the on-phone phase-
frequency accuracy and run-time latency, to that of the PC. The accuracy is expected to be
the same, all else being equal and the latency is expected to be higher for the phone, due to
limited computational power. Characterizing this per sample run-time latency is important,
as it would help us judge whether a sample-by-sample operation is feasible: for example,
a sample is received every 4 ms for the 250 Hz sampling rate and if the signal processing
run-time is higher than this, then a sample-by-sample approach would not make sense.

To validate the phase targeting accuracy, we used the sleep data-set (data-set 2 from Ta-
ble 4.1) and to validate frequency accuracy, we used the eyes-closed resting state data-set
1 from Table 4.1. We used the frontal channels Fp1 and Fpz for the eyes-closed and sleep
data-set, respectively. These settings were kept consistent to those used in the offline anal-
ysis in Chapter 4, as the purpose of this Section is to validate accuracy of the same system,
when ported to a phone.

The signal processing on the phone is coded in Java, and the pipeline remains the same, as
those in Chapter 4; more specifically, the alpha PLL in Section 4.3 (chronic pain) and the
SO band PLL in Section 4.5 (sleep engineering). The only difference here would be the use
of non-causal filtering for all filters in Chapter 4, which is not possible for real-time imple-
mentation. Here, the filtering is causal. As expected, this would yield a slightly different
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error value on the phone and this was done intentionally, to aid comparison and see the ef-
fects of non-causal vs causal filtering i.e. we could check if the lack of non-casual filtering
would cause a significantly higher error on a phone. Hence, to aid comparison, we present
results using both non-causal and causal filtering.

The error metrics remain the same as those used in Chapter 4. For phase, we measure both
the error over the entire 5 s epoch and the error at peak, where the error is defined as:

φerror = φHilbert − φPLL. (5.1)

Here, φHilbert is the instantaneous phase extracted using the gold standard Hilbert transform
and φPLL is the instantaneous phase extracted by the PLL. This metric would then give a
per sample error values, which we can use for the on-phone vs PC comparison.

Similarly, the frequency error ferror is the error between the instantaneous frequency ob-
tained using the PLL fPLL and the one obtained using the gold standard Hilbert transform
fHilbert:

ferror = fPLL − fHilbert. (5.2)

Finally, the per sample computation time is measured both on a PC and the phone, to com-
pare computational cost. The PC used had a Intel Core i7-6700 CPU running at 3.4 GHz,
with 16 GB of RAM and the Sony Xperia Z3 phone used has a Qualcomm Snapdragon
801 processor running at 2.6 GHZ, with 3GB RAM. We present these latency for both fre-
quency and phase extraction, and this would help judge whether the run-time latency is
good enough i.e. lower than 4ms (250 Hz sampling rate), to enable sample-by-sample op-
eration.

5.2.3 Results and Discussion

Sensing

Firstly, for the transmission accuracy, we observe from the raw plots in Fig. 5.3 that the
received and streamed signal match perfectly well. Here, we also see that the spread over
three trials is minimal. We also show this quantitatively with a Root Mean Squared Error
(RMSE) of 3.24±0.13 µV between the streamed and received signals, for the 3 trial run.
These then gives us confidence that the signal is being transmitted accurately, with minimal
data-loss or distortion.

Next, we move onto the wireless latency characterization. The latency for the 3 trials are
depicted in the raw traces and histogram in Fig. 5.4 and 5.5, respectively. From the raw
trace, we see that the latency fluctuates over time and from the histograms, we observe out-
liers. Both these are expected since the smartphone Operating System is not a real-time

127



Figure 5.3. Received signal on phone (3 trials) vs streamed signal.For received signal in blue, the solid line is
the mean of 3 trials and the shaded line represents the spread over three trials, as measured by the standard

deviation.

Trial 1 Trial 2 Trial 3
Latency (ms) 53.8 ±23.7 54.8±24.9 61.7±24.1

Table 5.1. Per sample latency for the three trials.

operating system, due to its non-deterministic nature. In other words, the per sample de-
lay could be influenced by factors outside of our control such as various phone background
processes. This would then make the latency unpredictable and outside our control.

With this in mind, the measured latency for each trial is summarized in Table 5.1. Firstly,
we see that the mean and standard deviation varies across trial, which as we mentioned pre-
viously is due to the non-deterministic nature of the phone operating system. Other than
that, we observe in general that the latency is in the 50–60ms range. This is a limitation
that we would have to work with and future hardware improvements could improve the la-
tency here. To recall, the current amplifier uses a class 2 Bluetooth device (Bluetooth v2.1
EDR), which is an older class introduced in 2007. However, the latest model of the ampli-
fier Smarting Pro uses Bluetooth 5, and claims to have brought down transmission latency
by a factor of 5 [99]. Assuming this to be the case, using the Smarting Pro, we could then
expect the latency to lower down in 10–12 ms range. However, at the time of this study, the
Smarting Pro was not available yet both in the market, and in our lab, and hence, we had to
use the older version.

Finally, it must also be noted here that one of the limitations of this study is that we did not
characterize performance in a dynamic environment; for example, investigating the effects
of incoming calls and notifications. The performance were not characterized under these
settings, instead we assumed a static setup. Such a study may be helpful for future work, es-
pecially if mapping this technology to other clinical applications where the user is encour-
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Figure 5.4. Raw plot of communications latency. 3 trials marked (a), (b) and (c).

Figure 5.5. Histogram of communications latency. 3 trials marked (a), (b) and (c).

aged to browse the phone during stimulation. However, for chronic pain and sleep engineer-
ing, it will be reasonable to ask the users to use the app under silent mode, with minimal
background processes and services running. For example, for chronic pain, the user will be
experiencing the visual stimuli with a VR headset and the auditory binaural beats without
engaging in other activities, as it may interfere with alpha entrainment. Hence, since the
user won’t be browsing the phone or engaging in other activities during the session, it will
be reasonable to ask them to turn notifications off. Similarly, the user will be sleeping for
the sleep engineering application, and hence, the same argument applies. For these reasons,
we did not find it necessary to characterize performance under load.
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Figure 5.6. VCO output vs band-pass filtered EEG, for the on-phone implementation.

PC: non-causal filtering PC: causal filtering Phone
Frequency error (Hz) 0.004±0.15 0.006 ±0.38 0.006 ±0.38
Phase error peak (degrees) 11.2±112 13.69 ±13.31 13.69 ±13.31
Phase error epoch (degrees) 19.7±25.2 20.48 ±30.25 20.48 ±30.25

Table 5.2. Summary of accuracy metrics for both phase and frequency, done both on PC and phone.
Moreover, a comparison is given to the same results obtained using non-causal filtering.

Signal processing

For the signal processing component, we first present results for the frequency tracking ac-
curacy. A sample trace of the PLL output plotted against the input EEG is shown in Fig.
5.6, when implemented on a phone. As expected, the PLL tracks the EEG well and adapts
to its time-varying nature. Moreover, the raw frequency output is shown in Fig. 5.7 for both
the PC and on-phone implementation. As observed, the difference between the two is indis-
tinguishable, suggesting that the on-phone frequency extraction matches the PC based one.
To quantify these, a summary of the error values are shown in Fig. 5.8 and Table 5.2. As
evident, the errors are the same (0.006±0.38 Hz) for both the PC and the on-phone imple-
mentation, further confirming accurate implementation. Moreover, the effects of non-causal
vs causal filtering is evident from the discrepancies in the on-PC error: for non-causal fil-
tering, the error is lower by a factor of 1.5 and this is expected since the zero-phase filtering
distorts the signal less, in contrast to the causal filters used in real-time applications. Other
than that, we confirm that the on-phone signal processing module is working as expected,
matching the PC-based results.

Next, we present results for the phase extraction. The on-phone phase error over the epoch
and the peak is summarized in Fig. 5.9 and 5.10, respectively. Moreover, Table 5.2 com-
pares the on-phone errors to the PC based results, again showing exact match. As with the
frequency, we also note that non-causal filtering decreased the phase error values whilst the
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Figure 5.7. Instantaneous frequency raw plot: Phone vs PC.

Figure 5.8. Instantaneous frequency error with outliers removed: Phone (a) vs PC (b). The abrupt clipping off
towards the end is due to outliers removed.

real-time implementation increased errors. Overall, we can then confirm that the on-phone
phase extraction is accurate and working as expected.

Having characterized on-phone phase-frequency accuracy, we now move on to character-
izing computation time for both. The results are summarized in Table 5.3. As expected,
the PC outperforms the phone for both phase and frequency, with a smaller variance. Nev-
ertheless, the smartphone still offers real-time processing capability: with a 250 Hz sam-
pling rate, a new sample is collected every 4 ms. Consequently, since the run-time latency
is in the sub-millisecond range, we can then rest assured that a sample is processed quick
enough before the next one arrives. This then allows for sample-by-sample operation, which
will aid in driving loop latency down.
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Figure 5.9. Phase error over epoch: Phone (a) vs PC (b).

Figure 5.10. Phase error at peak: Phone (a) vs PC (b).

Phone latency (ms) PC latency (ms)

Phase 0.041 ±0.334 0.001 ±0.165

Frequency 0.037 ±0.220 0.001 ±0.019

Table 5.3. Summary of signal processing latency for both phase and frequency extraction, when done on both
a PC and phone.

5.2.4 Summary

In summary, in this section, we characterised the individual components in isolation i.e. the
sensing and signal processing components, before combining them to form the complete
loop. For this, we first characterized the sensing component: here, we reported accurate
transmission, as evidenced by a RMSE of 3.24±0.13µV between the received and trans-
mitted signal and a per sample latency of 62±24 ms. Similarly, for the signal processing
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component, we showed that the phase-frequency targeting accuracy were exactly the same
both on a PC and phone, in addition to a per-sample processing run-time obtained in the
sub-millisecond range.

5.3 Test phantom based validation: Discrete mode

5.3.1 Introduction

In this Section, we characterize the performance of the closed-loop system in discrete mode,
as depicted in Figure 5.1. This would be a system which can deliver discrete phase-locked
auditory stimulation, in the form of short auditory tones, which has applications in the field
of sleep engineering. As discussed in Section 2.6.2, lot of recent work has been going into
optimizing the accuracy of sleep engineering platforms, mostly done on a PC and restricted
to lab-based settings. Here, we provide a smart-phone based platform using the PLL, which
would enable ‘out-of-the-lab’ experiments to be conducted.

5.3.2 Methods

Firstly, to characterize the complete loop in discrete mode (see Fig. 5.1), we used a test-
setup akin to that of in Section 5.2, where we simulate a system to represent an on-person
testing scenario, but in a more controlled manner. The test-setup remains the same, with the
difference here being that the audio stimulation from the phone was also captured by the
DAQ to complete the loop; the DAQ was used to record the audio output from the phone, as
if it were a pair of headphones. This was done using a 3.5 mm stereo audio to BNC cable.
Using this setup, we were then able to simulate the complete loop from sensing to stimula-
tion, as if the data was being collected from the head, using just the pre-recorded EEG data.
Data-set 2 from Table 4.1 was used for streaming and the test setup is depicted in Fig. 5.11.

Characterizing latency

With this, firstly, we characterize the complete loop latency using a synthetic signal and
then we use real EEG signals to characterize the accuracy.

Firstly, for the loop latency, we streamed a simple 1 Hz (within the 0.5–3 Hz SO band) sine-
wave of 1 hour duration, to the phone, where the app was running the PLL in discrete mode
and programmed to stimulate at the peak of the sine-wave. The auditory stimulation is a
short 10 ms audio pulse (480 Hz sine pulse similar to [2], [5]) and this was then received
at the DAQ. Note that the PLL parameters on the phone remained same as in Section 4.12,
where we tuned the PLL for the sleep engineering data-set, as this would be the application
driver for the discrete mode. It is for this reason also that we chose a 1 Hz synthetic sine
wave, since it is close to the dominant frequency in the SO band (0.5–3 Hz). Also, the rea-
son for choosing a synthetic single frequency sinewave and not the EEG for characterizing
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DAQ

Laptop Attenuator

AmplifierSmartphone

Figure 5.11. Test setup for the audio mode. EEG data streamed from the laptop is converted to an analog
voltage, which is then attenuated via the attenuator before passing onto the amplifier. Note that the audio
output from the phone is collected at the DAQ’s input channel for recording, and is not passed onto the

attenuator.

loop latency is that, once both the streamed signal and the auditory stimulation is collected
on the DAQ, and the phase error between the peak and the phase at the stimulated point is
calculated, we would need the frequency of the signal to calculate latency. Since the EEG is
a multi-component signal this is harder to do but on the other hand, with a single frequency
sinusoid, we know the frequency and hence, can calculate latency. It is for this reason, that
we chose a mono-component synthetic sinusoid with frequency close to the dominant one
in the SO band for the latency characterization; moreover, for latency, the waveform used
does not have any effect but it does so only for the accuracy.

With the streamed signal and the auditory stimulation waveform then collected at the DAQ,
we then analyse latency offline by first getting the phase error between the peak of the sinu-
soid (target phase) and the stimulaton points (stimulation delivered). With this, we can then
get the complete loop latency tloop as:

tloop =
φe

360× f
(5.3)

where, φe is the phase error and f is the frequency of the sinusoid, which in our case is
1 Hz.
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Characterizing accuracy

To characterize characterize accuracy, we use the same setup as described in Fig. 5.11 but
this time instead of streaming a synthetic signal, we stream actual pre-recorded EEG data.
We use the sleep data-set here i.e. Data-set 2 from Table 4.1. Just like in the previous Sec-
tion, we then collect the streamed signal and the auditory stimulation signal at the DAQ,
which we then analyse offline, to obtain the phase error.

To calculate the phase error, we band-pass filter the EEG data in the SO band using an IIR
butterworth filter with a passband of 0.5–3 Hz, after which we apply the Hilbert transform
on the band-pass filtered signal to obtain instantaneous phase measures for the entire record-
ing. We then calculate the phase error φe as:

φe = φtarget − φstim (5.4)

where, φstim is the EEG phase at the stimulation point, where actual stimulation was de-
livered and φtarget the target phase, which in our case is the peak i.e. 0 degrees, as we are
using a cosine to generate the stimulation from the PLL.

5.3.3 Results and Discussion

Latency

For the latency characterization using the synthetic signal, we present the raw plots of the
sinusoidal waveform, and the auditory stimulation, where the target was to provide stimu-
lation at the peak of the waveform, in Fig. 5.12. As observed, the stimulation is working as
expected, as it is observed to be just after the peak, obviously due to inherent delays.

The delays were then measured to be 70±24 ms, as shown in Fig. 5.13. As a comparison,
the lab-based platform by Santaostasi et al. running on a PC was shown to give a delay of
70±5 ms [2]. As evident, the mean delays are exactly same and is dominated by the wire-
less communication in our case (62±24 ms from Table 5.1) which you can’t do anything
further about while staying on a smartphone platform. In contrast, Santostasi et al. used a
wired setup, where a Matlab API communicated with the EEG amplifier via a TCP/IP port.
The transmission latency for them was then limited by the data packet delivery of the API
(sent every 20 ms). Hence, their communications latency was much lower (20 ms) than
ours (62 ms) due to the wired setup.

Moreover, the variance in our case (±24 ms) is higher than the one by Santostasi et al. (±5
ms) and this is again dominated by the wireless communications in our system, which is
about ±24 ms (see Table 5.1). Again not so much could be done here as at the time of this
study, the amplifier represented the state of the art for wireless transmission onto a smart-
phone. However, recently, a newer version of the same amplifier (Smarting Pro) has been

135



994 994.5 995 995.5 996 996.5 997 997.5 998 998.5 999

Time (s)

-1

-0.5

0

0.5

1

1.5

A
m

p
lit

u
d

e
 (

V
)

Input signal

Peak of sinusoid

Sound stimulation

Audio raw waveform

Figure 5.12. Raw waveforms of the streamed signal and the output sound stimulation.

Figure 5.13. Histogram of overall loop latency.

made available, which uses Bluetooth 5 for wireless transmission; they claim it to have re-
duced the transmission latency by a factor of 5 [99]. Hence, for future work, using this am-
plifier may reduce the wireless communications latency significantly.

With this delay, one may then ask if it is possible to compensate for it, say by stimulating
70 ms earlier, to compensate for the mean. Since we know the frequency of the sinusoid
(1 Hz), we then known that 70 ms for a 1 Hz signal is equivalent 25.2 degrees delay, and
then we could change the stimulation control to stimulate at −25.2 degrees (0 degrees tar-
get), to compensate for this delay. For a sinusoid with a known frequency, this is possible.
However, for EEG, its trickier, as its not a mono-component signal, and hence, we would
need to assume a frequency, to make this kind of delay compensation. Although we could
assume the frequency to be the dominant frequency in the SO band, and use that to do the

136



Figure 5.14. Band-pass filtered slow oscillations and the delivered sound stimulation.

delay compensation, we did not take this approach as it still dilutes the result, and may mis-
represent the actual peak. Instead, we have provided the delay measurements as it is, and
other groups could compensate for it using these assumptions if they wish to, and results
are presented here, to bench mark against.

Accuracy

For the accuracy characterization, we first show the recorded EEG signal and the discrete
stimulation waveform in Fig. 5.14. As observed, the stimulation is being delivered on target
mostly, which is the peak, and the PLL adapts to the time-varying EEG signal. With this,
we obtained an overall phase error of 12±60 degrees, as observed from Fig. 5.15.

Our performance is good and is similar to the performance of most other sleep engineer-
ing systems currently available, which was previously summarized in Table 2.1 of Sec-
tion 2.6.2.

Firstly, there are lab-based systems which don’t use a PLL. For example, Ngo et al. used a
non-adaptive method, where you first detect the start of SO negative wave based on a pre-
determined threshold and then apply stimulation after a set time-interval to hit the peak
[63]. With these, they reported an error of 11±66 degrees when targeting the peak [63].
Similarly, Cox et al. used an FFT based algorithm, resulting in an error of 11±66 degrees
and 33±76 degrees in targeting the positive and negative peaks, respectively [15]. In com-
parison to these, our system which is a mobile based platform achieved an 12±60 degrees
error which is better than these lab-based platforms based on non-PLL methods. Our per-
formance is better here, despite running on a phone primarily because of the PLL we used,
which we have shown earlier to be superior to the FFT based methods, which assume signal
stationarity and does not take into account the time-varying nature of the EEG frequency.

Secondly, there are lab-based platforms which use a PLL and in result have much lower er-
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Figure 5.15. Phase error at peak.

ror variance: for example, 0±26 degrees and 6±47 degrees reported by Santostasi et al.,
and Ong et al., respectively [2], [5]. In contrast, Palambros et al., reported a higher vari-
ance of 12±73 degrees, and this is most likely due to their data, where they used older sub-
jects: it is known from literature [2], [4], [5] and from our own analysis we conducted in
Section 4.4.4, that the PLLs performance is amplitude dependent, where the performance
improves with increasing amplitudes. Hence, since older subjects are known to have lower
Slow Oscillation amplitudes, a relatively higher variance in error, is then expected. Then, in
general, we note that the PLL is a superior algorithm and in comparison to these lab-based
PLL implementations, our mobile based system has a slightly lower performance, and this
would be due to the wireless communications latency (62±24 ms) which dominated our to-
tal loop latency (70±24 ms), as seen previously. Hence, we are trading off performance for
‘out-of-the-lab’ use, portability and flexibility.

Finally, we need to compare against other portable mobile sleep engineering platforms. Of
these, Debellemeniere et al. used an FFT based algorithm and reported an error of 0±52
degrees, using a commercial grade sleep EEG device which runs on an embedded system
with on-board signal processing locked down, that others can’t access or modify [12]. This
makes it inflexible and unfitting for research purposes. On the contrary, Ferster et al. used
a PLL and provides a more research oriented device as an embedded system, with options
to modify protocols and settings, and reported an error of 0.4±47 degrees [13]. Compar-
ing the performance of our system against these two, we note that our error of 12±60 de-
grees is not too far off from these, despite running on a phone. It must be recalled here that
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both the platforms by [13] and [12] run on custom embedded chips, meaning the delays
and latencies could be controlled in a deterministic manner. Moreover, there would not
be any wireless communications latency for these embedded systems. This is not the case
with our smart-phone based implementation, where the communications latency (62±24
ms) dominated the over-all loop latency of 70±24 ms. The trade-off though is worth it as
our platform runs on a ubiquitous mobile platform such as a smart-phone. Finally, in con-
trast to these embedded paltforms, Leminen et al. used a Surface Pro laptop-tablet hybrid
in conjunction with the Enobio wireless EEG headset to provide an ambulatory system.
However, they used external speakers placed above the user’s head to deliver the sounds
and the surface pro laptop-tablet hybrid is not ideal for ambulatory purposes, as it is not as
ubiquitous as say a smart-phone. More importantly, they use the same algorithm as Ngo et
al., which stimulates based on a fixed time-delay once the negative peak of the SO is de-
tected, to reach the peak (the time-delay being tuned on a subject-by-subject basis offline).
This non-adaptive nature of the algorithm again explains the higher error they reported of
–18±67 degrees. In contrast to this, we achieved a lower phase error of 12±60 degrees and
this would be due to the adaptive nature of the PLL. Moreover, ours is a smart-phone based
implementation, which is more ubiquitous than laptop-tablet hybrids, which not all people
would have.

It must also be noted that we may be able to compensate for the mean phase delay in a pre-
determined fashion, by stimulating say 12 degrees earlier but here we would have to make
the assumption that the EEG is a mono-component signal, whereas in reality, it is multi-
component, and even in the SO band, the frequency may vary anywhere between 0.5 and 3
Hz. Hence, we did not compensate for this mean delay but leave it open to anyone who may
wish to do so, as they could use the dominant frequency value to predict the signal forward.

Finally, we also note here that despite not having done any clinical tests to see if our system
enhances slow oscillations, we could reasonably assume that it is fit for purpose. This is be-
cause our phase-targeting performance is similar to portable platforms like [12] and better
than ones like [20] and [3]; all these conducted clinical studies in addition to technology
development, and showed that their platforms were able to enhance slow oscillations, and
achieve the intended clinical effect. Hence, we asusme our system would also be able to do
the same, given the similar performance.

With these, overall, our contribution here then is in a Phase Locked Loop based platform
for phase locked auditory stimulation, and we differentiate by providing the first on-phone
implementation, through a dedicated Android App, making it more accessible for the wider
population.

5.3.4 Summary

In this Section, for the discrete mode, we have provided a closed-loop system which pro-
vides phase-locked auditory stimulation, targeting the sleep engineering application driver.
We characterized the platform by measuring both the over-all loop latency using a synthetic
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mono-component signal, and then the phase-targeting accuracy on actual EEG signals. As
a result, we obtained an over-all loop latency of 70±24 ms and a phase error 12±60 de-
grees, both of which are comparable to existing platforms available in literature [2], [4], [5],
[12], [13], [15], [20], [63]. Our contribution here is in providing the first PLL-based on-
phone implementation in the form of an Android app, which achieves similar performance
to the state-of-the-art portable platforms. This then would be more suitable for out-of-lab
use-cases, with the ubiquitous nature of smart-phones.

5.4 Test phantom based validation: Continuous mode

5.4.1 Introduction

In this Section, we focus on the continuous mode of operation: frequency matched audio-
visual stimulation for the chronic pain application driver, as shown in Figure 5.1. The phone
screen flicker and binaural beats would be used for the visual and auditory stimuli respec-
tively, and both these would be matched to the alpha frequency.

It must also be noted that here we only characterize loop accuracy and not latency. For the
chronic pain application driver, there is only one metric of interest which is accuracy. This
is the difference between the current IAF and the current stimulation frequency. Increased
latency might mean the IAF is correctly followed, but with the lag. For the purposes here,
this is still an error in the wanted stimulation frequency and so is accounted for in the accu-
racy metric.

5.4.2 Methods

For characterizing this mode, we used data-set 1 from Table 4.1 since it is an eyes-closed
resting state data-set, with high alpha power. Hence, for both audio and visual modes, we
use the alpha band PLL in Table 4.8.

Visual stimulation

For the visual stimulation, we match the frequency of the stimulus (sine-method from Sec-
tion 3.2.6) to that of the on-going EEG. The stimulus implementation details are explained
in depth in Chapter 3, and there we had concluded that a sinusoidal waveform would be op-
timal for the closed-loop mode, keeping in mind the 60 Hz phone refresh rate constraint.

The test-setup used is same as that of Section 5.3 but this time the visual stimulus was mea-
sured using a PDA10CS-InGaAs photo-detector, which is an integrated chip containing a
photo-diode, operational amplifier, and associated circuitry to provide accurate light inten-
sity measurements. The complete test-setup is depicted in Fig. 5.16.
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Figure 5.16. Test setup for visual stimulus. Note that the phone flicker output measured via the photodiode, is
collected at the input channel of the DAQ. It is not passed onto the attenuator.

We then collect the flicker waveform, alongside the streamed EEG signal at the DAQ. From
this, we then obtain instantaneous frequency for both using same methods as in Section 3.2
and 4.6: this involves first band-pass filtering the signals (Order 2 IIR bandpass filter with
8–13 Hz pass-band for the EEG); then we used the Hilbert transform to get instantaneous
phase and the frequency as its derivative; finally, we used a low pass filter (Order 2 IIR But-
terworth low pass filter with a 2.5 Hz cut-off frequency) to smooth out the derivative in-
duced spikes. It must be noted here that for the band-pass filtering of the visual flicker, we
used an order 8 instead of order 2 filter; the reason for this is noise reduction in the flicker
waveforms obtained via the photo-diode, which could affect the instantaneous frequency
measures of the flicker, due to the derivative function which is noise sensitive. Higher or-
der filters will attenuate out-of-band components more, at the cost of time-domain distor-
tions. Such higher order filters were then not used for the on-phone implementation pre-
cisely because of the delays they would incur. These could be compensated offline using
forward-backward filtering but not online where no future data is available. With these, the
frequency matching errorfe is then defined as:

fe = feeg − fstim (5.5)

where, feeg and fstim is the instantaneous frequencies of the EEG and stimulation wave-
forms, respectively.
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Figure 5.17. Test setup for auditory mode. Note that the phone audio output is measured at the input channel
of the DAQ. It is not passed onto the attenuator.

Auditory stimulation

Next, for the auditory mode, binaural beats was used (see Section 3.3). The test-setup re-
mains the same but this time we replace the photo-diode with an audio jack, to measure the
beats. This setup is shown in Fig. 5.17.

We then analyse these offline, by first calculating the beat frequency fb as:

fb = fch1 − fch2 (5.6)

where, fch1 and fch2 are the instantaneous frequencies of the audio waveforms from chan-
nel 1 (left) and 2 (right), respectively. The instantaneous frequency was calculated just like
in the visual case for both EEG and the stimulus waveform. For the latter, the only differ-
ence here is that we did not band-pass filter the binaural beats, since the measurement was
already clean and mono-component, as expected of a measurement using an audio jack ca-
ble.

We then characterize the accuracy via the frequency error ferr:

ferr = fb − feeg (5.7)

where, fb and feeg, are the instantaneous frequencies of the binaural beat and EEG, respec-
tively.
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Figure 5.18. Flicker waveform plotted against the band-pass filtered EEG.

5.4.3 Results and Discussion

Visual

Firstly, for the visual mode, we see the flicker waveform and bandpass filtered EEG in Fig.
5.18. It is evident here that the stimulus waveform is not phase-locked to the on-going EEG
and this is expected, since the application driver requires frequency matching and not phase-
locking.

With this, we obtained a frequency matching error of –0.17±1.29 Hz, with an error his-
togram shown in Fig. 5.20. We also see this match visually in Fig. 5.19 where we see the
flicker frequency matching the EEG frequency, despite being slightly delayed. This delay is
expected, as the system has an overall loop latency. Aside from this, the two filters used in
the signal processing pipeline (both order 2 filters) would inherently shift the signal. With
all these combined, a shift and delay in the flicker frequency is expected and we argue these
to be the main cause of the error obtained, and not necessarily the PLLs tracking capability.
To demonstrate this, in the offline analysis in Section 4.6, there were no communications
latency or delays due to filtering (zero-phase filtering used) and there, we obtained much
lower error of 0.004 ±0.15 Hz. This then shows again that the major contributor to the er-
ror is not the PLL, but the system induced latency and lack of zero-phase filtering, all of
which are constraints of a real-time system.

The question then remains, as to whether this error could be lowered and if this accuracy is
good enough. Firstly, regarding improvements, we have done our best to reduce delays: for
example, we used the lowest order filters (order 2) to ensure minimal filter induced delay;
the PLL was tuned offline to achieve best possible accuracy (0.004 ±0.15 Hz error); and we
process each sample as soon as it arrives without any buffer, avoiding any buffering induced
delay. All in all, apart from optimizing even more on the tuning parameters, there is noth-
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Figure 5.19. Instantaneous frequency of the flicker and the EEG.

Figure 5.20. Instantaneous frequency error. Clips towards the end because outliers removed.

ing that could be done to improve performance, whilst maintaining a wireless Bluetooth
link for compatibility with a smartphone. As observed in Section 5.2 and 5.3, the wireless
communications latency ( 62 ms) dominated the overall loop latency ( 70 ms). It must be
noted here then that using the latest Smarting Pro amplifier which uses Bluetooth 5, is ex-
pected to drive down latency by a factor of 5 [99]. This may help improve the frequency
matching error obtained here.

We note here that this is now the state of the art for others to compare against, as no similar
work exists (details in Section 2.6.3). Hence, we also cannot judge as to whether the per-
formance is good enough to achieve clinical efficacy, as no similar works exist. However,
with regards to our -0.17±1.29 Hz error, we do note that this is lower than the resolution
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Figure 5.21. Raw binaural waveforms plotted for each channel audio. EEG not overlayed as its frequency too
low compared to binaural (400+ Hz), making it hard to visualize both together.

of classical frequency measuring tools. For example, the FFT based methods which most
neuroscientists use has a frequency resolution fres defined as:

fres =
fs
N

(5.8)

where, fs is the sampling frequency and N the window size. This means that the smaller
the window size, the poorer the frequency resolution would be. For example, in our case of
a 250 Hz sample rate and taking the worse case in our error i.e. a 1.5 Hz error, this corre-
sponds to a window size of 167 samples or 0.67s. Any smaller window size would result in
a frequency resolution higher than the error we obtained. Moreover, in our case, we update
on a sample by sample basis and each update takes around 70 ms (see Section 5.3); for such
small time windows, the frequency resolution would be much higher than the error we ob-
tained. More importantly, in the absence of any state-of-the-art to compare to, we consider
our results here the state-of-the-art for future work to compare to.

Audio

For the auditory mode, we see the raw audio waveforms in Fig. 5.21 and its instantaneous
frequency in Fig. 5.23. As observed from Figure 5.23, channel 1 frequency is constant at
400 Hz, while channel 2 frequency tracks the frequency of the on-going EEG, oscillating
from a centre frequency of 410 Hz. The difference in both is then the beat frequency, which
tracks the alpha rhythm of the on-going EEG, as shown in Fig. 5.22. Note here the slight
delay in the beat frequency is again due to the on-phone filtering and loop latency, which
we would expect as explained in the previous Section.

The performance of the auditory mode is similar to that of the visual mode, with an error of
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Figure 5.22. Instantaneous frequency of the binaural beat and the EEG.
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Figure 5.23. Instantaneous frequency of each of the audio channels.

0.20±1.30 Hz, as depicted in Fig. 5.24. Again, no state-of-the-art platforms exists to com-
pare to and we provide the first-in kind, for future platforms to compare against. Also, as is
the case for the visual mode, the error could potentially be reduced even further using the
latest Smarting Pro amplifier, which is advertised to have 5 times lower latency [99]. Given
that the wireless communications latency dominated the overall loop latency, this could po-
tentially reduce the frequency matching error even further.

5.4.4 Summary

In this Section, we characterized performance for the frequency matched mode, for both au-
dio and visual stimulation. A frequency matching error of -0.17±1.29 Hz and 0.20 ±1.3
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Figure 5.24. Instantaneous frequency error. Clips towards the end because outliers removed.

Hz error were obtained for the visual and auditory modes, respectively, confirming accu-
rate functionality. Moreover, to our knowledge, this is the first-in kind of a platform and we
provide results for future platforms to compare to. Such platforms then enable the currently
hypothesis driven experiments in chronic pain; namely to investigate whether IAF matched
stimulation could result in a more pronounced entrainment in chronic pain patients, and in
result increased analgesic effects [6]–[8], [10].

5.5 Conclusion

In summary, this Chapter focused on the on-phone implementation and characterization of
the closed-loop platform. These come in two different flavors: one which provides discrete
phase-locked auditory stimulation for the sleep engineering application driver and the other
for continuous frequency-matched audio-visual stimulation, for the chronic pain application
driver. Both these used the PLL we tuned in Chapter 4 for feature extraction.

To characterize performance, we provided a test-setup, which allows for controlled experi-
ments without the need for on-person tests to do technology validation. This involved stream-
ing pre-recorded EEG via a DAQ and attenuating it to mimic an actual EEG signal, which
then is picked up by an amplifier and streamed to the phone. The phone then processes
the signal and provides stimulation, which is then measured back at the DAQ, alongside
the streamed signal. This complete loop setup then enabled quicker technology validation
within a controlled environment.

To characterize the system performance, we first validated the individual components of
the platform in isolation i.e. the sensing and signal processing components in Section 5.2.
Note that the stimulation component was already validated in Chapter 3 and hence is not
included here. For the sensing component, we demonstrated good transmission accuracy
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with an RMSE of 3.24±0.13µV between the streamed and received signal, in addition to
a per sample transmission latency of 62±24 ms. For the signal processing component, we
achieved a phase error of 14±13 degrees when targeting the peak and a frequency match-
ing error of 0.006±0.38 Hz, both of which matched the PC based results, under the same
causal filter settings. In contrast, the latency was different for both platforms: for the phone,
it was 0.04±0.33 ms and 0.04±0.22 ms for the phase and frequency, respectively. On the
PC, the variance was slightly smaller with 0.001±0.165 ms and 0.001±0.019 ms, for the
phase and frequency, respectively. This was expected due to the relatively lower computa-
tional power of the phone. Either way, the phone latency is in the sub-millisecond range,
which is more than good enough. Given the per sample communications latency of 62 ms,
a sub-millisecond signal processing latency then ensures that each sample is processed fast
enough before the next sample is acquired, ensuring feasibility of a sample-by-sample ap-
proach.

After we had validated the individual components in isolation, we then proceeded to char-
acterizing the complete platforms as a whole in Sections 5.3 and 5.4. For the discrete mode
(sleep engineering) in Section 5.3, a phase targeting error of 12±60 degrees was reported,
alongside an over-all loop-latency of 70±24 ms, both of which were comparable to other
platforms available. Here, our contribution was providing the first on-phone implementa-
tion of the sleep engineering platform, enabling out-of-lab research on a more ubiquitous
mobile platform such as the smartphone.

We then concluded the Chapter characterizing the second platform in Section 5.4, i.e. the
one for continuous frequency matched audio-visual stimulation (chronic pain). For this, we
reported a frequency matching error of -0.17±1.29 Hz and 0.20±1.3 Hz error for the visual
and auditory modes, respectively. Here, our contribution is in providing the first-in kind of
a platform, for a sample-by-sample frequency-matched audio-visual stimulation. The re-
sults presented here then could be used as a benchmark for future platforms to compare to.
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Chapter 6

Conclusions

6.1 Contributions

In this thesis, we provide a multi-purpose light and sound based closed-loop neuromodula-
tion platform. More importantly, unlike most other systems available today, ours is a smart-
phone based platform that runs on an Android app, making it fit for ambulatory use-cases
and in-the-wild experiments. Even though this technology is aimed at the sleep engineer-
ing (phase-locked auditory stimulation) and chronic pain application drivers (frequency-
matched audio-visual stimulation), it could be easily adapted for other applications. To cre-
ate this platform, we first started with the open-loop stimulation in Chapter 3, after which
we validated the feature extraction algorithms offline in Chapter 4. Both these then paved
the way for the complete on-phone implementation in Chapter 5.

We started the thesis with the design of the open-loop stimulation app in Chapter 3. Here,
our aim was to provide light and sound stimulation in the alpha-band (8–13 Hz), whilst en-
suring signal continuity at frequency changes, to make it fit for closed-loop applications.
We then explored three waveform generation methods for the visual stimuli: square inter-
polation, square-sine and sine. With the 60 Hz refresh rate constraint in mind, we then con-
cluded that the square interpolation technique is best for open-loop application which don’t
require signal continuity. In contrast, for the closed-loop mode, the sine-method with a phase-
accumulator was proposed to ensure signal continuity. For both, we showed the app deliv-
ered stimulation accurately over the alpha band, as evidenced by the R-squared error of 1
between the fitted line and the measured values. Finally, we also noted that the square sine
method may overcome the trade-off between efficacy (square-wave) and signal continuity
(sine-wave) via providing a square wave whilst also ensuring signal continuity but it re-
quires phones with a refresh rate of 90 or 120 Hz, due to the nyquist limit. This makes it
a better choice for use in the future, where smart-phones with higher refresh rate may be-
come more ubiquitous. Next, for the auditory stimulation, we implemented binaural beats
with a phase accumulator for signal continuity. Here, since refresh rates were not an issue,
we just used a simple sinusoid and did not explore other methods. The stimulus was again
delivered accurately, as evidenced by an R-squared error of 1 between the fitted line and
measured values. For both auditory and visual stimulus, our key contribution is in provid-
ing stimulus generation that is usable in closed-loop applications, where the frequency is
expected to change. To do this, we used a phase-accumulator to ensure signal continuity at
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frequency changes, and this was not something considered by current stimulus generation
methods, which are mostly for open-loop applications, for example SSVEP-based BCI’s.
Moreover, we implemented both these stimulus methods on a phone and the app developed
is currently being used in clinical work, by our collaborators. Hence, the open-loop app in
itself is a contribution, and not just a means to an end for the closed-loop platform. After
having characterized the stimulation platform, we then moved on-to closing the loop.

For closing the loop, we first start in Chapter 4, where we characterize the PLL performance
offline before implementing it on the phone. To do this, we first started with characterizing
the EEG amplitude, frequency and frequency rate-of-change in Section 4.2: the first two
feeds into the PLL tuning methodology and the latter motivates frequency matched closed-
loop stimulation on a sample-by-sample basis i.e. if the EEG frequency does not vary, there
is no point closing the loop. Parts of this analysis such as the frequency rate-of-change have
never been done before and we show that for the alpha band, it is 9.75±2.67 Hz/s. Then, in
Section 4.3, we detailed the PLL tuning methodology, where we took a bottom up approach
using PLL maths and control theory to get a initial starting point, after which the parame-
ters were fine-tuned for optimal accuracy.

With the PLL tuned, we then moved onto characterizing accuracy for three different use-
cases: Continuous phase locked stimulation (general applications), Discrete phase locked
stimulation (Sleep engineering) and continuous frequency matched stimulation (chronic
pain). Firstly, we characterized phase-locking performance across all bands in Section 4.4,
to show that the PLL could work across all bands, and hence, be applicable for a wide vari-
ety of application drivers. Here, for all EEG bands, we showed that the PLL performed on
average 14% better than the state-of-the-art FFT based methods, confirming its superiority
in tracking phase-across all bands [44]. Compared to epoch-based methods like the FFT,
the PLL does not assume signal stationarity over short periods of time and is able to adapt
to the time-varying EEG, making it more accurate across all bands. In addition to this, we
also showed that the inter-channel variance is low, negating the need for channel-specific
tuning. After showing general applicability to all bands, we then narrowed down to our spe-
cific application drivers. Firstly, for the phase-locked auditory stimulation mode (sleep en-
gineering application) in Section 4.5, we showed that the PLL can track slow oscillation
phase accurately, as evidenced by a 11.2±11.2 degrees phase error, a result that was com-
parable to similar works [2]. Then, for the continuous frequency-matched alpha stimulation
(chronic pain), we showed in Section 4.6 that the PLL tracks the instantaneous frequency
in the alpha band well on a sample-by-sample basis, as evidenced by its 0.004±0.15 Hz
error. Hence, having characterized the phase-frequency extraction for all these modes, we
then moved onto the on-phone implementation in Chapter 5, which ties in the audio-visual
stimulation in Chapter 3 and the signal processing in 4 all into one, to form the complete
system.

For the on-phone implementation in Chapter 5, We provided two separate platforms: one
which provides discrete phase-locked auditory stimulation for the sleep engineering appli-
cation driver and the other that provides continuous frequency-matched audio-visual stimu-
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lation, for the chronic pain application driver. Both these used the PLL we tuned in Chapter
4, for extracting their respective features. To characterize performance, we provided a ‘in-
the-loop’ testing platform, which streamed pre-recorded EEG data to an amplifier from a
DAQ, whilst collecting the resulting stimulation waveforms emitted from the phone. This
allowed us to validate the technology in a controlled environment, without having to do
on-person tests. Using this test-setup, we first validated the individual components of the
platform in isolation i.e. the sensing and signal processing components in Section 5.2, with
the stimulation component already validated in Chapter 3. For sensing, we demonstrated
good transmission accuracy with an RMSE of 3.24±0.13 µV between the streamed and
received signal and a per sample latency of 62±24 ms. Similarly, for the signal process-
ing component, we achieved a 14±13 degrees and a 0.006±0.38 Hz phase and frequency
matching error, respectively, both of which matched the PC-based results. In contrast, the
on-phone signal-processing run-time was 0.04±0.33 ms and 0.04±0.22 ms for the phase
and frequency, respectively, whilst on the PC, the variance was lower with 0.001±0.165ms
and 0.001±0.019 ms for the phase and frequency, respectively. Either way, the on-phone
signal processing latency is in the sub-millisecond range and with our 250 Hz sensing sam-
pling rate on the phone, the system could process each sample quick enough before the next
one is acquired, which is ideal for driving down the loop latency. After validating the in-
dividual components in isolation, we then tied them together to form the whole. First, we
started with the frequency matched stimulation for the chronic pain application driver in
Section 5.4, where we reported a frequency matching error of -0.17±1.29 Hz and 0.20±1.30
Hz, for the visual and auditory modes, respectively. This is first-in-kind of a platform for
the chronic pain application driver and we provide these values as a bench-mark for fu-
ture platforms to compare to. Similarly, for the phase-locked auditory stimulation platform
(sleep engineering) in Section 5.3, a phase targeting error of 12±60 degrees was reported,
alongside an over-all loop-latency of 70±24 ms, both of which were comparable to other
platforms available [2], [4], [5], [12], [13], [20]. Here, our contribution was providing the
first on-phone implementation of the sleep engineering platform. Both these platforms would
then enable in-the-wild research to be conducted on a ubiquitous mobile platform such as
the smart-phone. Moreover, using our results from Section 4.4.3, these could easily be mod-
ified for other applications which require phase-frequency matched stimulation.

6.2 Limitations

Firstly, one of the limitations of this work is that we tested the platform on only one phone
model: the Sony Xperia Z3, as this was the phone that came bundled with the smarting
EEG amplifier. Moreover, for the on-phone stimulation, we showed in Chapter 3 that the
sine-square algorithm would be preferable due to it being a square wave and at the same
time satisfying signal continuity; however, we showed in Section 3.2.5 that the square sine-
method can accurately deliver stimuli with continuity, when the refresh rate is at 90 Hz
and 120 Hz, but not for 60 Hz, as is the case with the phone we used. Hence, due to lack of
phone hardware with 90 Hz and 120 Hz refresh rates, we could not confirm the simulations

151



on actual phones. Hence, an ananlysis on multiple phone models would be useful, both for
the visual stimulation methods and the complete system.

Secondly, with regards to the PLL used, we have highlighted at various points the ampli-
tude dependent performance of the PLL, with higher amplitudes producing lower errors,
as detailed in Section 4.4.4. However, we have not considered any amplitude normalisation
procedures in the real-time platform. It would be worth examining amplitude normalization
procedures and whether it improves performance significantly. To tackle this, one could add
in an automatic gain control component, or use an XOR phase detector instead of the sim-
ple multiplier detector. Both these would come with their own trade-offs such as increased
complexity and adding more parameters to tune. This combined with the already good re-
sults obtained with the classical PLL then led us to stick with it and focus more on the on-
phone implementation and the complete platform. Regardless, it would be useful to know
if adding in an amplitude normalisation component before the PLL, would significantly im-
prove performance.

Thirdly, another limitation of our work is that we did not include any artefact removal pro-
cedures in our signal processing pipeline. Our assumption was that the PLL is robust to
noise and this can be intuitively understood by noting that the input signal buried in noise,
will cause the signal to be delayed or advanced in a random manner, which in turn causes
the phase detector output before the low pass filtering, to jitter around an average value.
This jitter would then be smoothed out by the low pass filter in the PLL, which in turn trans-
lates to the VCO responding to error differences in the signal of interest and not the noise.
Regardless, it would be useful to do an artefact robustness analysis, to check if the PLL
performs as well in the presence of artefacts. That said, our current application drivers are
not motion heavy i.e. the user is expected to be sitting still in a relaxed pose for the chronic
pain application driver and sleeping for the sleep engineering application. However, for mo-
tion heavy applications with say lots of movements and walking, then this would serve as a
useful reference to judge how robust the PLL is to noise, and if extra artefact removal steps
are necessary.

Finally, it must also be noted that we have not bench-marked our PLL-based phase extrac-
tion method against Quantativave EEEG (qEEG), though we have done so for our PLL based
frequency extraction method. According to the American Academy of Neurology, qEEG is
the mathematical processing of EEG which results in the transformation of the raw EEG
signals into domains that reveal more information; these are a set of quantitative metrics
typically used in clinical routines alongside the raw EEG data [146]–[149]. Examples in-
clude source analysis, frequency analysis, topographic analysis, and higher order measures
such as the Phase Lag Index (PLI), which measures the extent of synchronisation between
different brain regions [147]. It is then useful to benchmark our PLL based phase-frequency
extraction algorithm, against some of these qEEG metrics used in clinical routines. For
this, two obvious qEEG metrics of relevance would be frequency based metrics such as the
FFT power-spectrum and phase-based metrics such as thee Phase Lag Index (PLI) [147],
[150]. With regards to the frequency domain, algorithms such as the Fourier transform and
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the Welch method is typically used in qEEG routines, to get the power spectrum of the EEG
data [147], [150]. Here, we have showed in Section 4.6.2 that our PLL based frequency
measures are good approximates of FFT based ones, in determining the dominant alpha fre-
quency. However, for the phase based qEEG measures like the PLI, we have not conducted
any similar bench-marking, at least explicitly. The PLI is defined as,

PLI = | < sign[sin(∆Φ(tk))))]] > |[147] (6.1)

Here, ∆Φ, which is the phase difference between two different time-series, is used as a mea-
sure of synchronisation between 2 distinct brain regions and the signum function discards
phase differences of 0, to avoid any spurious results due to volume conduction [147]. We
have not bench-marked our PLL based phase-extraction method against this, say via ob-
taining PLI measures where the instantaneous phase is calculated using the PLL. Typical
qEEG routines use the Hilbert transform to obtain the instantaneous phase measures for
the PLI metric and we have already bench-marked our PLL-based phase measures, against
the Hilbert based ones in Chapter 4 [147]. Hence, we did not see any further benefit of do-
ing any PLL-based PLI measures, as this would be a whole different higher order analy-
sis, looking into the brain connectivity measures between two different brain regions and
does not sit well with our first-order measures such as single channel phase, which is what
is needed for the application driver at hand i.e. sleep engineering. This maybe also the rea-
son why all state-of-the-art platforms for sleep engineering did not benchmark their results
against such qEEG metrics such as the PLI, and still achieved the desired clinical outcome
whilst using the Hilbert transform as the benchmark for their phase-measures [2], [4], [5],
[13]. this, we have also done.

6.3 Future work

For future work, firstly, one thing we did not do due to time-limitations and COVID, is to
conduct on-person tests. It would be useful especially for the chronic pain application driver,
where no target bio-marker exists. Hence, an important piece of future work would be to
determine through on-person tests as to whether the closed-loop frequency matched stimu-
lation we provide would result in stronger entrainment, and in turn increased analgesic ef-
fects. This would be a big study in itself and we chose to not do the clinical work here, but
instead focused on creating technology to enable such work.

Another useful piece of future work would be to investigate the effects of using different
EEG amplifiers on the system performance. We observed from Chapter 5 that the major
contributor to the loop latency is the communications latency and hence it would be useful
to know how different the latency is for other amplifiers, both research-grade and consumer-
grade, and judge the effects on the system performance. For example, the recently announced
Smarting Pro, which is advertised to have 5 times lower latency than the current system,
which may mean that our system latency could be reduced by a factor of 5 with this.
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Finally, the focus of this thesis has been on first order uni-variate features such as the phase
and frequency, primarily due to the application drivers at hand. However, this does not give
any information on the interaction between different brain regions, and their relation to
brain-functions and behaviours. Recent evidence suggests that brain functions are not local-
ized to separate regions, but a result of interactions between different brain regions, which
is what brain connectivity analysis is all about [91], [151]–[155]. Out of the various con-
nectivity measures available, it would be interesting to use the ones based on instantaneous
phase measures such as the Phase Locked Value (PLV) and the Phase Lag Index (PLI) ti see
if the PLL could be applied here to any benefit for real-time applications; perhaps it could
be used to stimulate at finer time resolutions i.e. on a sample-by-sample basis [155]. This
would be a natural extension to the current work we are doing.
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