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Abstract

Radiotherapy is the most common treatment for cancer, delivering 3D, personalised radi-
ation dose to the tumour. Radiotherapy planning requires considering a high-dimensional 
continuous optimisation space to achieve tumour control while limiting the probability of 
treatment complications. However, estimating the Average Treatment Effect (ATE) of radi-
ation dose on complications across the anatomy is difficult; mainly because of confounding 
in observational data. Under certain assumptions, developing a causal framework provides 
methods to adjust for confounding.

The aim of this work is to use simulated data to investigate if unbiased and consistent voxel-
based causal inference is possible, how, under what circumstances, and with what accu-
racy. I simulate radiotherapy treatment plans from a simplified, yet realistic, data generat-
ing process. Patients have a single tumour (random location) where dose is maximal and 
a single Organ At Risk (OAR) (fixed location) where dose is minimal. Variables control 
fall-off of dose around the tumour, fall-off and magnitude of dose at the organ, and a co-
variate that confounds the treatment plan. I simulate realistic treatment uncertainties: ran-
dom shifts in x- and y-directions of the entire planned dose distribution, spatially correlated 
noise sampled from a Gaussian process prior, and independent noise at each pixel. A con-
tinuous complication is generated via a linear function of the delivered dose to a spatially 
inhomogeneous set of pixels (ATE estimand), a covariate that also affects the delivered 
dose distribution, and a spatially inhomogeneous interaction between delivered dose and 
the covariate. Three methods based in causal inference are used to estimate the ATE at each 
pixel: 1) pixel-wise sparse causal regression, 2) sparse causal regression and 3) a causal re-
gression. The sparse estimator used is the Adaptive Lasso. These are compared to methods 
currently used in radiotherapy.

I found that all methods based in causal inference performed with lower total Mean Squared 
Error (MSE), MSE𝑡𝑜𝑡, across all parameterisations tested in the simulation compared to the 
currently used voxel-based statistical methods in radiotherapy. Exploiting the oracle prop-
erty of the Adaptive Lasso to simultaneously identify important pixels with dose-response 
and estimate ATE, was in general a successful technique over all parameterisations of the 
simulation tested. The only method capable of unbiased estimation was the causal regres-
sion, however, multicollinearity hinders accurate ATE estimation at specific regions of pa-
rameter space and at a high resolution. The estimation method that scored a consistently 
low MSE𝑡𝑜𝑡 over all parameterisations was the sparse causal regression. This method was 
able to assign a near zero effect to unimportant pixels, and whilst estimates elsewhere were 
biased, they were accurate and efficient; especially at lower resolutions.
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Lay Abstract

Radiotherapy is the most common treatment for cancer, delivering high-energy radiation in 
3D to destroy tumour cells. Key research questions now focus on reducing treatment com-
plications and improving the quality of life for patients living with and beyond cancer. It 
is believed that complications of radiotherapy treatment are caused by radiation dose to 
healthy tissue. Whilst there exists strong evidence linking certain treatment complications 
to radiation dose to specific organs, it remains uncertain how other treatment complications 
are caused.

Analytical methods have been developed to identify, from past radiotherapy patients, re-
gions of the anatomy where dose could be generating the treatment complications. How-
ever, between studies of the same treatment complication, there exists uncertainty in the 
exact regions identified and how sensitive the complication is to increasing dose in the re-
gion, i.e. the effect of dose. I hypothesise this is due to confounding present in the analysis 
of past data, i.e. the presence of factors that influence the treatment plan and the compli-
cation, such as the patients’ diagnosis. Establishing the causal effect of dose on complica-
tion, i.e. the measured effect when confounding and other biases are removed, across the 
anatomy, could reduce current uncertainty and lead to new and impactful insights on the 
causes of treatment complications. To do this, the field of mathematics, known as causal 
inference, needs to be used.

The aim of this work is to use simulated data to investigate if unbiased and consistent voxel-
based causal inference is possible, how, under what circumstances, and with what accuracy. 
I simulated simplified, yet realistic, radiotherapy treatment-outcome data and sought to es-
tablish methodologies that, for the first time, can estimate the causal effect of dose on com-
plication across the anatomy. I found that all methods based in causal inference performed 
better in the simulation compared to current voxel-based statistical methods in radiother-
apy. In particular, one method I tested, the sparse causal regression, was able to accurately 
identify and ignore regions with zero causal effect. By ignoring the values of dose in these 
unimportant regions, accurate causal effect estimates were possible in the important re-
gions; where it was needed most. This method showed potential to work for lower sample 
sizes and also at higher resolutions. Whilst our work makes the first steps, further work is 
needed to scale up our methodologies for the analysis of clinical data.
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Chapter 1

Introduction

Radiotherapy is the most affordable and accessible form of cancer treatment [1]. It is, there-
fore, the most common form of cancer treatment, with approximately 50% of cancer pa-
tients receiving it during their course of treatment [2]. Advancements in imaging, e.g. 3D 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission 
Tomography (PET), alongside advancements in treatment delivery and technology, e.g. 
image-guided radiotherapy, mean that uncertainties in radiotherapy treatment are reduc-
ing. As a result of technological developments in imaging and treatment delivery allowing 
for a more conformed dose to the tumour, 5-year survival rates have been increasing over 
the past 25 years for most tumour sites [3]. Therefore, key research questions now focus on 
reducing treatment complications and improving the quality of life for patients living with 
and beyond cancer.

In order to maximise the quality of life for patients, the probability of treatment complica-
tions must be minimised. Many complications of radiotherapy are currently believed to be 
caused by radiation dose to Organs At Risk (OARs). Therefore, current radiotherapy treat-
ment plans are constructed based on this evidence, recommended OAR dose constraints, 
and complication predictions from Normal Tissue Complication Probability (NTCP) mod-
els [4]. NTCP models are a method to predict treatment complications from the proposed 
treatment plan. Ultimately, NTCP models could be used in clinical practice to select the op-
timal treatment plan or treatment modality (e.g. photons or protons) that minimises the risk 
of complications for an individual.

NTCP models that are currently used in clinical practice are built from dose statistics ex-
tracted from the Dose-Volume Histogram (DVH) of the whole OAR considered. However, 
following the introduction of the ‘voxel-based analysis’ of radiotherapy treatment-outcome 
studies, there has been growing evidence to support the existence of sub-regions of OARs 
that are particularly radiosensitive for a given complication; as shown for the bladder [5], 
the parotid glands [6], white-matter structures [7], the lung [8] and the heart [9]. The voxel-
based analysis is able to overcome the assumption of DVH methods that the whole organ 
equally drives complications; which is known to be false [10, 11]. Therefore, modelling 
NTCP using dose to these sub-regions, rather than the entire OAR, is suggested to be bet-
ter predictive of complications.

Building better NTCP models is not the only goal of voxel-based methods. They could re-
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duce complications by allowing for the identification of new and better interventions that 
the clinician and treatment planning staff can make on the radiotherapy treatment plan. For 
example, to avoid a newly identified highly sensitive region completely rather than the whole 
OAR. In addition, the voxel-based method is also being used to create 3D maps of the spa-
tial effect of radiotherapy dose, and other clinical variables, on complications [12, 13]. This 
is highly desirable as it gives an insight into the mechanism that is potentially generating 
the complications, and could allow us to formulate new spatial dose-constraints for compli-
cations. In summary, the aims of the voxel-based analysis in radiotherapy are (1) to identify 
sub-regions of organs with a given dose-response and (2) estimate the effect of radiotherapy 
voxel dose on outcome.

In radiotherapy treatment-outcome studies, the main source of bias is confounding. A con-
founder is a variable that influences the treatment plan and also influences the likelihood 
of complication. However, current voxel-based methods do not adequately adjust for con-
founding. This could explain the variability in the location of radiosensitive sub-regions 
identified for OARs, for example, McWilliam et al. [9] and Bogaard et al. [14] identified 
unique sub-regions of the heart that are particularly radiosensitive. It also could explain 
why models of the same complication differ in their identified significant variables and 
their effect, and hence, why the external validation of current NTCP models is so impor-
tant [15, 16]. Under certain assumptions, developing a causal framework provides methods 
to adjust for confounding.

The gold standard causal framework is typically the Randomised Controlled Trial (RCT). 
In an RCT, treatment and control groups are formed by random assignment. As a result, 
the two groups are seen as balanced in terms of patients’ characteristics. In an RCT, one 
can infer the Average Treatment Effect (ATE) of treatment 𝐴 versus treatment 𝐵 on an out-
come of interest with respect to the RCT population, where treatment 𝐴 and 𝐵 could be ex-
posure versus no exposure, two competing treatments, or the same treatment modality but 
at different doses. However, using an RCT to identify the effect of radiotherapy treatment 
at different anatomical regions is not ethical. The planned dose distribution should always 
be tailored to the patient characteristics in order to give the best chances of curative treat-
ment whilst reducing probability of complications. Therefore, under this ethical constraint, 
a causal framework must be developed using observational data.

The aim of this work is to use simulated data to investigate if unbiased and consistent voxel-
based causal inference is possible, how, under what circumstances, and with what accuracy. 
To do this, I simulate data from a simplified, yet realistic, data generating process for radio-
therapy treatment-outcome data.
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Chapter 2

Radiotherapy

2.1 Radiotherapy physics

2.1.1 X-ray therapy

The X-ray was discovered in 1895 by Rontgen. Just 3 months after their discovery, X-rays 
were used for diagnostics, and within 1 year X-rays were used to treat the first cancer pa-
tient [17]. Due to the properties of X-rays, X-ray therapy remains a key treatment modality 
in cancer treatment today. X-rays are high-energy photons: massless and neutrally charged 
force carrying particles of the electromagnetic force. X-rays interact only with the electro-
magnetic force, hence they can interact with charged particles. Most commonly, photons 
interact with electrons when passing through a medium such as the human body. Photons 
can interact with a medium of charged particles via the photoelectric effect, Compton scat-
tering or pair production. X-ray radiotherapy typically uses photons of energy 6-20 MeV; at 
this energy Compton scattering is the most common form of interaction [17].

For an X-ray beam of initial intensity 𝐼0, incident on a medium with linear attenuation coef-
ficient 𝜇, the intensity as a function of depth in the medium 𝑥 can be written as 

𝐼(𝑥) = 𝐼0 exp(−𝜇𝑥), (2.1)

which is plotted in figure 2.1 [18]. It should be noted that the X-ray depth-dose curve is 
greatest upon entry into the medium, and then decays exponentially as a function of depth. 
It should be noted that 𝐼(𝑥) → 0 as 𝑥 → ∞, i.e. X-rays do not stop unless involved in 
an interaction. In cutting-edge X-ray radiotherapy today, X-ray beams are delivered via a 
gantry that can accumulate a conformal dose to the tumour from multiple beam directions. 
Therefore, despite the high entry dose of X-rays, and low exit dose, using multiple beam di-
rections allows for the prescribed dose to be accumulated at and conformed to the target, 
whilst minimising the dose to normal tissue.

2.1.2 Proton therapy

Protons, unlike photons, have both charge and mass. A proton has a charge of -1e (positive) 
and mass 911 MeV/c2. When a proton is passing through a medium at speed, it will interact 
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Figure 2.1. A depth-dose curve for photons and protons as they transit tissue. Adapted from [18].

with other charged particles through the Coulomb force, for a given transit time (attracted 
to oppositely charged electrons, and repelled by like charged atomic nuclei). With each in-
teraction, momentum is transferred from the proton to the medium, in an amount propor-
tional to the time of transit. As energy is proportional to the square of momentum trans-
ferred, the energy transferred in each interaction is proportional to the square of the transit 
time. As a result, the proton transfers most of its energy as it is about to stop. The depth-
dose curve for protons is illustrated in figure 2.1, where the properties described above for 
protons are observed as a Bragg peak on the plot [18].

The Bethe-Bloch equation accurately describes the stopping power of ionising particles, i.e. 
the energy transferred from an ionising particle per unit distance of a medium. For a proton 
at clinical energies (3-300 MeV), the stopping power can be written as 

−𝑑𝐸
𝑑𝑥

= 0.3072𝑍
𝐴

𝜌
𝛽2 [ln

𝑊𝑚
𝐼

− 𝛽2] MeV
g/cm2 , (2.2)

where 𝑊𝑚 = 2𝑚𝑒𝑐2𝛽2

1−𝛽2 is the largest energy a proton can transfer in a collision with a free 
electron, 𝑍 is the atomic number of the medium, 𝐴 is the mass number of the medium, 𝜌
is the density of the medium, 𝛽 = 𝑣/𝑐, where 𝑣 is the speed of the proton and 𝑐 is the 
speed of light, 𝐼 is the mean excitation energy of the medium, and 𝑚𝑒 is the mass of an 
electron [19]. The Bethe-Bloch equation describes the underlying physics that gives rise 
to the Bragg peak phenomenon illustrated in figure 2.1 [18]. Proton beam therapy was first 
proposed by Wilson [20] in 1946 after theorising the depth-dose properties of protons could 
be exploited to accurately treat cancers. In the 1950’s the first patients received proton beam 
therapy [21].

2.2 The high-level radiotherapy workflow

The key to the success of radiotherapy is the clinician and treatment planning staff. In cur-
rent radiotherapy clinical practice, the dose and the number of fractions are set depend-
ing on the best evidence from past clinical trials. The clinician will segment the Gross Tu-
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mour Volume (GTV) or Clinical Target Volume (CTV) (depending on cancer site), and the 
treatment planning staff will segment the OARs of radiation damage on a 3D CT/MRI/PET
scan of the patient, depending on what is useful and available. With segmentations com-
plete, a dose distribution (dose accumulated over a set of beam directions) is then found by 
minimising the dose to the OARs whilst delivering the planned dose conformed to the tu-
mour. Today, the dose to the structures is quantified using a DVH, where each OAR has a 
guideline for absorbed dose limits and the expected risk of complications, as stated in the 
QUANTEC guidelines [4]. However, the clinician could preferentially adapt these OAR
dose guidelines, based on their clinical experience, clinical trial data, etc., of what may be 
beneficial for the patient given their diagnosis, demographic or co-morbidities. Even in this 
scenario, the priority of treatment is tumour control, and therefore it may be inevitable that 
dose to specific OARs must be increased in order to maintain tumour coverage. 
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Chapter 3

Dose-Response Modelling

3.1 Fundamentals of dose-response modelling

As discussed in section 2.2, the clinician and treatment planning staff are key to success in 
radiotherapy. It is their job to maximise dose to the tumour, i.e. maximising Tumour Con-
trol Probability (TCP), whilst minimising the dose to the surrounding normal tissue, i.e. 
minimising NTCP. This trade-off is highlighted in figure 3.1, where the optimal dose for 
the patient is found in the therapeutic window, at the position of maximum TCP for mini-
mum NTCP [22].

With radiotherapy advancement, a key focus for specific tumour sites is to reduce treatment 
complications. NTCP modelling is a method to relate dose to normal tissue with compli-
cation outcomes. According to the Encyclopedia of Radiation Oncology [23], NTCP is de-
fined as:

The probability that a given dose of radiation will cause an organ or structure to ex-
perience complications considering the specific biological cells of the organ or struc-
ture.

However, how can one determine the dose-response relationship of NTCP? Many different 
NTCP models exist, developed from a range of sources: in vitro/in vivo measurements for 
different tissue types, bio-statistical models, and data-driven models (considering observed 

Figure 3.1. The dose-response curve for Tumour Control Probability (TCP) and Normal Tissue Complication 
Probability (NTCP). Adapted from [22].
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Figure 3.2. An example Dose-Volume Histogram (DVH) evaluating a treatment plan for a fictional patient 
with two different Organ At Risk (OARs). Note that a large proportion of the Clinical Target Volume (CTV) 

receives the high prescribed dose, 𝐷𝑝, whilst a large proportion of the OAR volumes receives a low dose.

probability rates from the clinic). However, regardless of model choice, NTCP modelling 
is not deterministic given the unknowns in the complex system describing the patient, the 
biology and the radiation response. Therefore, NTCP is better described probabilistically. 
In the next section, I discuss the history of NTCP and critique current methodologies.

3.2 Early work on NTCP

3.2.1 Volume-based models

Early evidence originating in the 1940’s highlighted that radiation response of normal tis-
sue depends on the volume of tissue irradiated, a result since confirmed in animal exper-
iments [24, 25, 26]. Therefore, a graphical tool, namely the DVH, has been developed to 
summarise the dose distribution and assess the dose-volume dependency of segmented vol-
umes [27]. As an example, figure 3.2 shows a DVH for a CTV and two different OARs, and 
from this you can see that the OAR volumes typically receive a lower (yet non-zero) dose 
compared to the CTV.

Lyman-Kutcher-Burman model

In 1985, Lyman [28] proposed a 4-parameter model of NTCP that is based on the DVH. In 
this model, the probability of complication, 𝑐, given the mean dose to volume, 𝐷, volume 
irradiated uniformly, 𝑉, and parameter vector, 𝐰, is defined as

𝑃(𝑐|𝐷, 𝑉 , 𝐰) = 1√
2𝜋

∫
𝑡

−∞
𝑒− 𝑥2

2 𝑑𝑥, (3.1)

where 
𝑡 = 1

𝑚
( 𝐷

𝐷50(𝜈)
− 1) , (3.2)
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𝐷50(𝜈) = 𝐷50(1)𝜈−𝑛, (3.3)

and 
𝜈 = 𝑉

𝑉𝑟𝑒𝑓
. (3.4)

The parameters of the model are 𝐰 = {𝐷50(1), 𝑉𝑟𝑒𝑓, 𝑚, 𝑛}, where 𝐷50(1) is the toler-
ance dose for a whole volume that gives rise to a 50% complication rate, 𝑉𝑟𝑒𝑓 is a reference 
volume, 𝑛 relates partial and whole volume effects, and 𝑚 parameterises the dose-response 
curve [28, 22]. It should be noted that Lyman’s model assumes the following:

1. The volume, 𝑉, is radiated uniformly with dose, 𝐷.

2. The radiosensitivity within the volume, 𝑉, is homogeneous.

3. The dose, 𝐷, to volume, 𝑉, uniquely drives complications.

The parameters of the Lyman model are determined by fitting data, and can be determined 
for different tissue types, and different biological and clinical endpoints [28]. However, in 
1985, the parameter estimates were highly uncertain, given the fact that the best available 
data at the time was from observations, often incomplete, of patients treated before the days 
of sophisticated treatment planning (there were significant errors in position of OAR irradi-
ated and uniformity of irradiation) [29, 30].

The uncertainty in model parameters, and hence NTCP, limited the utility of the Lyman 
model. But in 1991, Emami et al. [31] summarised the existing literature on normal tis-
sue response, and added expert clinical insight to the problem. For each OAR, Emami et
al. [31] established the most clinically severe complication, and highlighted what doses to 
different sub-volumes (1

3 , 2
3 and whole) of these organs will give rise to 𝐷5 and 𝐷50, the 

tolerance doses that give rise to a 5% and 50% complication rate, respectively.

In the same year, Burman et al. [32] took Lyman [28]’s model for NTCP, and interpolated 
Emami et al. [31]’s guidance to estimate NTCP for any combination of dose and irradi-
ated volume. Kutcher et al. [33] then tackled the assumptions posed by the Lyman model, 
specifically the uniform irradiation assumption, to provide a method of calculating NTCP
under non-uniform irradiation of organs. This method involves fitting the Lyman model to 
Emami et al. [31]’s data and estimating the four parameters, and then transforming a non-
uniform DVH into biologically iso-effective uniform DVH using a DVH-reduction algo-
rithm. The Lyman-Kutcher-Burman (LKB) model was formed by taking the original Ly-
man model and fusing Kutcher’s and Burman’s improvements, to calculate 𝜈 using Kutcher 
et al. [33]’s DVH-reduction algorithm and to use Emami et al. [31]’s and Burman et al. 
[32]’s parameter values, respectively. The LKB model soon became the most popular method 
to estimate NTCP in radiotherapy. However, some limitations remain:

1. The radiosensitivity within the volume, 𝑉, is assumed to be homogeneous. Yet, evi-
dence exists to prove otherwise [11].
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2. The parameters 𝐷5 and 𝐷50 at partial and whole volumes, have been estimated by 
Emami et al. [31] by-eye from noisy, old, data.

3. Assumes that radiation dose single-handedly drives complications. In reality, NTCP is 
a complex interplay of radiation, interaction with variables such as concurrent chemother-
apy, and confounded by variables such as patient genetics, demographics, medical his-
tory, etc.

3.2.2 Biophysical models

Early work by Schultheiss et al. [34] and Withers et al. [35] introduced the concepts of se-
rial and parallel organs, and the Functional Subunit (FSU), alongside their probabilistic 
description. Serial and parallel organs are assumed to be composed of FSUs; a sub-volume 
of the organ that contributes to its function [35]. For serial organs, disabling one FSU can 
cause complications, for example, this is thought to describe organs such as the spinal cord, 
brain and bowel [35, 22]. For parallel organs, many/all FSUs must be disabled to cause 
complications, for example, this is thought to describe organs such as the kidneys, liver and 
lungs [35, 22]. In FSU models, the conditional probability for complication of the subunit, 
𝑐, can be written as,

𝑃(𝑐|𝐷, 𝐷50, 𝑘) = 1

1 + (𝐷50
𝐷 )

𝑘 , (3.5)

where 𝐷 is the dose to the subunit, 𝐷50 is the subunit’s tolerance dose for an observed 50% 
complication probability, and 𝑘 parameterises the subunit’s dose-response curve [34, 35]. 
Therefore, FSU models assume that each subunit has a specific dose-response; alleviating 
the assumption of homogeneous dose-response in the LKB model.

Critical element model

The critical element model was introduced by Niemierko and Goitein [36] in 1991. The 
model assumes that each OAR consists of numerous identical FSUs [35], and that a com-
plication will occur if a single FSU is disabled. Therefore, the critical element model is 
thought to describe how complications arise in serial organs.

For an OAR composed of 𝑁 identical FSUs under non-uniform irradiation of dose 𝐷, the 
probability of whole organ complication can be written as 

𝑃(𝑐|𝐷, 1) =
𝑁

∏
𝑖

𝑃(𝑐|𝐷𝑖, 𝜈), (3.6)

where 𝑃(𝑐|𝐷𝑖, 𝜈) is the probability of complication in each FSU, 𝜈 = 1
𝑁 is the volume of 

each FSU and 𝐷𝑖 is the dose to each FSU [34]. Therefore, the magnitude of the product is 
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driven by the FSUs that receive the highest doses. As a result, in NTCP models for serial 
organs, the maximum dose to the volume is often considered as a predictor [35, 36].

Critical volume model

The critical volume model was introduced by Jackson et al. [37] and Niemierko and Goitein 
[38] in 1993. The model assumes that each OAR is composed of numerous identical FSUs, 
and that a complication occurs when a critical number, 𝐿, FSUs are disabled. Therefore, 
the critical volume model describes how complications arise in parallel organs.

In this case, the probability of whole organ complication can be written as

𝑃(𝑐|𝐷, 1) =
𝑁

∑
𝑖=𝐿

𝑃(𝑖|𝐷), (3.7)

where 𝑃(𝑖|𝐷) is the conditional probability that exactly 𝑖 subunits are destroyed given dose 
𝐷 [37, 38]. As a result, in NTCP models for parallel organs, the volume that receives a spe-
cific dose, and the mean dose in the volume, are often considered as a predictors [37, 38].

3.3 What is the current state-of-the-art in NTCP?

3.3.1 DVH-based NTCP models

DVH-based NTCP models are the first category of models that will be critiqued here. Here, 
the hypothesis is that dose to a specific OARs drives specific complications. For each pa-
tient, the OARs are segmented during treatment planning by the clinician and treatment 
planning staff. For analysis, the dose distribution enclosed by each OAR is summarised us-
ing a DVH, then multiple summary statistics are extracted from each DVH. For example, 
minimum dose, maximum dose, mean dose, and the volume that receives 𝑋 Gy [39]. From 
the list of statistics summarising the dose to each region, and alongside clinical variables, 
features are selected to model a given complication. This process is illustrated by figure 
3.3.

The advantage of DVH-based NTCP models is in their simplicity. They compress a com-
plex dose distribution into a few numbers, and the parameters of the statistical model can be 
interpreted. In addition, the data-driven approach overcomes one of the assumptions of the 
LKB model, that dose uniquely drives complications, as additional clinical variables can 
easily feature here. However, this process involves some critical assumptions:

1. Assumes that one specific complication is driven only by a single segmented organ. 
However, there is growing evidence to support that the onset of complications can be 
driven by dose to multiple regions [10]. On top of this, the definition of the organ is 
dependent on segmentation by the clinician and treatment planning staff, a process 
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Figure 3.3. The typical process used in literature to create a multivariate Normal Tissue Complication 
Probability (NTCP) model from the planned dose distributions (left) and the Dose-Volume Histogram (DVH) 

of an organ relevant to the complication outcome.

known to be highly subjective and a large source of error in radiotherapy treatment 
planning [40]. This segmentation uncertainty will manifest as uncertainty in the statis-
tics drawn from the DVH.

2. Assumes the whole organ equally drives complication. This is known to be an over-
simplification of the radiobiology within the organ [10]. Whilst a volume effect on 
complication is often acknowledged in literature [24, 25, 26], radiosensitivity within 
organs is known to be inhomogeneous [11]. In addition, there is growing evidence to 
support the existence of radiosensitive sub-regions of organs that may drive complica-
tions [5, 6, 7, 8, 9].

3. Ignores the spatial dose distribution within the volume, i.e. many different spatial dose 
distributions can give rise to the same DVH. Although histogram reduction techniques 
can be applied to describe inhomogeneous dose-volume radiation, as discussed in sec-
tion 3.2, the spatial dose information remains lost in the simplification of the dose dis-
tribution to a histogram.

The literature on DVH-based statistical NTCP models is extensive, as it dates back to the 
1990’s and is easily adapted to a range of clinical outcomes. To highlight the variety of 
DVH-based models, a review of the literature regarding a range of clinical endpoints rele-
vant in head and neck cancer are summarised in table 3.2. In summary of table 3.2, 11/16 
of the studies model NTCP at a single organ using a simple linear/logistic regression. The 
advantage of these models is that they are interpretable, yet despite this, only 25% of the 
studies in the table have been externally validated. As a result, studies of the same compli-
cation often identify alternate significant predictors. See the review of Sharabiani et al. [41] 
for an extensive literature search on this subject.

3.3.2 Voxel-based NTCP models

Voxel-based methods seek to identify regions of an image which are significantly associ-
ated with an outcome of interest. Where a voxel is a point / tiny volume in 3D space. Voxel-
based methods are not new, the method has been well established in the field of neuroimag-
ing since the 1990’s [62]. For example, Whitwell [63] used the methodology to find regions 
of MRI images associated with Alzheimer’s disease. The potential of the methodology was 
fast to adapt to the field of radiation oncology, with the first voxel-based analysis emerging 
in 2010 by Witte et al. [64], where the authors related regions of the dose distribution to re-
currence of prostate cancer.

In voxel-based NTCP models, there is no reliance on the DVH of segmented OARs. In com-
parison to DVH-based methods, the freedom from the DVH allows for the following as-
sumptions (which in section 3.3.1 I deemed to be oversimplifying the problem) to be allevi-
ated: one specific complication is driven only by a single segmented organ, the whole organ 
equally drives complication, and the spatial dose distribution is ignored [65]. In addition, 
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Date Authors Patients Outcomes Model Significant predictors Variable selection External validation

Xerostomia

1999 Eisbruch et
al. [42]

88 (HN) Xerostomia at each 
parotid (25% reduc-
tion in salivary flow at 
12 months)

Logistic regres-
sion

Mean dose, baseline saliva out-
put, high/low dose indicator 
variable

Stepwise model selection. 
Spearman’s rank correlation 
coefficient for performance

NA

2006 Naqa et al. 
[43]

55 (HN) Xerostomia (25% flow 
reduction at 6 months)

Logistic regres-
sion

mean dose to both parotids, 
gender

Bootstrapping and Bayesian 
information criterion. Spear-
man’s rank correlation coeffi-
cient for performance

NA

2012 Beetz et al. 
[44]

165 (xerosto-
mia) and 167 
(sticky saliva)

4-point scale graded by 
patients at 6 months

logistic regres-
sion

Mean dose to parotid, age, 
baseline score (xerostomia); 
mean dose to submandibular 
and sublingual glands, age, 
baseline score

Bootstrapping and forward 
variable selection Likelihood 
measures

NA

2014 Lee et al. [45] 206 (HN) Xerostomia graded by 
patients (grade 3+ at 3 
and 12 months)

Logistic regres-
sion with Lasso

Mean dose to contralateral 
(𝐷𝑚𝑒𝑎𝑛−𝑐) and ipsilateral 
(𝐷𝑚𝑒𝑎𝑛−𝑖) parotids, age (3 
months); 𝐷𝑚𝑒𝑎𝑛−𝑐, 𝐷𝑚𝑒𝑎𝑛−𝑖, 
education and financial sta-
tus, smoking and T-stage (12 
months)

Forward model selection with 
bootstrapping. Performance 
Brier score, AUC, chi-squared, 
omnibus, hosmer-lemeshow 
test

NA

Hearing loss

2015 Lee et al. [46] 422 (HN) Tinnitus (grade 2+ at 
any point during follow-
up)

Logistic regres-
sion

Mean dose to cochlea >32 Gy Performance measured by Brier 
score and AUC

NA

2017 Cheraghi et
al. [47]

35 (HN) Pure tone audiometry 
assessment each ear at 
12 months

Logistic regres-
sion

Cochlea volume Model selection using Akaike’s 
information criterion

NA

Swallowing dysfunction, feeding tube and dysphagia

2012 Christianen 
et al. [48]

354 (HN) Grade 2+ swallowing 
dysfunction by clinician 
at 6 months

Logistic regres-
sion

Mean dose to PCM and mean 
dose to supraglottic larynx

Bootstrapping and forward 
variable selection. Likelihood 
measures and AUC

Externally validated by Chris-
tianen et al. [49] (same coun-
try). NTCP overestimated by 
5% on average, but good fit

2014 Wopken et al. 
[50]

335 (HN) Feeding tube depen-
dence at 6 months

Logistic regres-
sion with Lasso

Baseline weight loss, treatment 
modality (CCT, accelerated 
RT or RT + cetuximab), T-
stage, PCM superior and in-
ferior mean dose, contralateral 
parotid dose, cricopharyngeal 
muscle mean dose (Gy)

Bayesian information crite-
rion for selection of Lasso hy-
perparameter. 10-fold cross-
validation for performance, 
measured using AUC

External validation of this 
model by Kanayama et al. [51], 
predicted twice as many as ob-
served feeding tube dependen-
cies. Adjusting only intercept 
(baseline risk) was needed for 
good fit

2014 Wopken et al. 
[52]

427 (HN, 
prospective)

Feeding tube depen-
dence at 6 months

Logistic regres-
sion with Lasso

T and N-stage, weight loss and 
treatment modality (bilateral, 
accelerated RT and CCT)

Bayesian information criterion 
for selection of Lasso hyperpa-
rameter

Not externally validated. Test 
set used (183 patients) with 
good performance via AUC

2015 Otter et al. 
[53]

253 (HN) Grade 3+ pharyngeal 
dysphagia by clinician at 
2 months

Logistic regres-
sion

Inferior PCM mean dose, CCT, 
gender

Model fitted using bootstrap. 
Performance measured using 
AUC

NA

Neurological performance

2013 Redmond et
al. [54]

19 paediatric 
cases (Brain). 
Prospective

Neuropsychological 
performance (Memory, 
vocabulary, visual per-
ception, motor speed)

Linear mixed 
effects regression

Mean dose to hippocampus and 
temporal lobes

Intuition NA

2018 Zureick et al. 
[55]

70 paediatric 
cases (Brain)

Memory (visual and 
verbal)

Linear regression 𝑉20 for the left hoppocampal 
region, gender

Bayesian information criterion NA

Hypothyroidism

2012 Cella et al. 
[56]

53 (HL) Thresholded Thyroid 
Stimulating Hormone

Logistic regres-
sion

𝑉30 to thyroid, gender, volume 
of thyroid

Bootstrapping and forward 
variable selection. AUC

NA

2013 Rønjom et al. 
[57]

203 (HN) Thresholded Thyroid 
Stimulating Hormone

Logistic regres-
sion, mixture 
model (for cen-
sored data)

Mean dose to thyroid, volume 
of thyroid, latency

Model selection using Akaike’s 
information criterion

Externally validated by Rønjom 
et al. [58] (same findings)

Esophagitis

2012 Huang et al. 
[59]

374 (Lung) Grade 2+ acute 
esophagitis

logistic regres-
sion

Mean dose and 𝑉30 to oesopha-
gus

Bootstrapping and forward 
variable selection. AUC

NA

2015 Wijsman et
al. [60]

53 (Lung) Grade 2+ acute 
esophagitis

Logistic regres-
sion

Mean dose to oesophagus, 
stage, grade, CCT

Bootstrapping and forward 
variable selection. AUC

Externally validated by 
Dankers et al. [61] (same find-
ings)

Table 3.2. A review of the existing literature for head and neck based Normal Tissue Complication Probability
(NTCP) models built from Dose-Volume Histogram (DVH) statistics and patient covariates. Acronyms: Head 

and Neck (HN), Pharyngeal Constrictor Muscle (PCM), Area Under Curve (AUC), Radiotherapy (RT), 
Concurrent Chemotherapy (CCT), volume of organ that receives dose 𝑋 (𝑉𝑋).

freedom from the DVH of the segmented organ eliminates the uncertainty with respect to 
segmentations.

Typically, the voxel-based NTCP model follows this methodology:

1. Spatial normalisation of patient images. In this step, one patient is chosen from the 
population to be the common frame of reference, and all other patients are registered
to this coordinate frame. Registration is the process of normalising/overlapping patient 
images/structures, and typically this is done using elastic Deformable Image Registra-
tion (DIR). The transformation required for each patient is saved.

2. The dose distributions for each patient are then transformed to the common frame of 
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reference. This is done by applying the transformation found using DIR, to the dose 
distribution of each patient.

3. Statistical analysis at each voxel. There are two main categories of voxel-based statisti-
cal analysis: two-sample hypothesis testing and regression analysis.

- In hypothesis testing, the first step is to group each patients’ voxel-dose data by 
their binary outcome label, then define a null hypothesis. The hypothesis is tested 
using a statistical hypothesis test, e.g. a two-sample t-test (parametric) or a two-
sample Mann-Whitney U test (non-parametric), choosing the former if the data is 
normally distributed [65]. The result is a test statistic at each voxel, e.g. t-statistic 
if t-test was used. This is a univariate analysis, where only dose and outcome are 
investigated.

- In a regression analysis, the voxel-dose data and other features are correlated 
with ordinal or continuous outcome labels, and voxel regression coefficients are 
calculated. The outcome labels can be defined at a specific time point, or even a 
Cox Proportional Hazards Model (CPHM) [12] can be fitted per-voxel if time-
to-event data is available. The result is a set of regression coefficients and their 
standard errors at each voxel. This is a multivariate analysis, and the regression 
coefficients are adjusted for the other included features.

4. Infer a region where the dose is significantly correlated with outcome. However, to do 
this, one cannot interpret the significance of the test statistic/regression coefficient at 
each voxel due to the ‘multiple comparisons problem’. That is, the more inferences 
that are made, the more likely erroneous inferences are to occur. To account for this, 
one can control for the family-wise error rate or by controlling for the false discovery 
rate [65, 66].

5. Having identified the significant region, the region is commonly propagated back to 
each patients’ dose distribution, and dose summary statistics from a DVH such as the 
mean or maximum dose are computed. NTCP is then typically modelled using a logis-
tic regression, using the dose summary dose statistics and other patient features. How-
ever, each regression performed at each voxel could also be combined in a statistically 
and biologically intuitive way, to model overall NTCP [67].

[65]. This procedure is illustrated in figure 3.4.

The limitations of this procedure are as follows:

• The normalisation of patients to a common frame of reference is a source of uncer-
tainty. As a result of applying the uncertain transformation to each patients dose distri-
bution, the transformed dose will be uncertain. Methods exist in literature to address 
this uncertainty, for example, McWilliam et al. [68] smoothed each transformed dose 
distribution using a 3D Gaussian kernel with a constant standard deviation, set to the 
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Figure 3.4. The typical process used in literature to create a multivariate Normal Tissue Complication 
Probability (NTCP) model from a voxel-based analysis of the dose distributions. Once the dose distributions 
for each patient are normalised to a common frame of reference, the dose distributions are typically grouped 
by their outcome. Next, the (defined) null hypothesis is tested at each voxel. A permutation test is typically 
conducted to control for multiple testing (controlling for the family wise error rate), to identify a significant 

region if present. This region is then propagated back to the normalised dose distributions, and dose statistics 
can be extracted for each patient.

standard deviation of the distance between centre of mass coordinates of a select struc-
ture of interest in the patient and in the common frame of reference.

• As for any multivariate model, care must be taken when defining the ‘adjustment set’, 
i.e. the features to include. Depending on what variables are included, or missing, 
could lead to meaningless and misleading adjusted coefficient estimates. This limi-
tation is known as the ‘Table 2 Fallacy’ [69], and is a problem for inference and not 
prediction. For instance, if a multivariate regression is performed at each voxel, then 
our estimates of each adjusted regression coefficient and standard error is dependent 
on our choice of model, and if this choice is unrealistic, then the model can mislead 
our interpretation. To alleviate this, the data generating process can be modelled using 
a Structural Causal Model (SCM), and reliable and interpretable causal inferences can 
be made by defining an appropriate adjustment set [69, 70]. However, to the best of 
my knowledge, these techniques have not been adapted to NTCP modelling. To rein-
state, voxel-based NTCP models are deemed to extract a high amount of interpretable 
information from the dose distributions, however one must take appropriate care when 
defining the adjustment set if they take a multivariate approach, else the method is ar-
guably no more interpretable than black-box models.

• As each voxel is modelled independently, a voxel-based analysis is limited to identify-
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ing highly localised linear group differences [71]. The technique generally struggles 
when the outcome of interest is spatially complex, multivariate and subtle. As a re-
sult, whilst the method may perform well on a population, it may struggle to perform 
well at the patient-level [72]. In addition, the region of interest identified in a voxel-
based analysis has potential to overfit to the training data, and therefore it is crucial 
that studies are validated. To alleviate the above limitations, one model could be used 
to map the dose distribution to a prediction. For example, in neuroimaging, Carroll et
al. [73] used each voxel in functional-MRI images as features, and used a linear Elas-
tic Net (combination of Ridge and Lasso regularisation) to predict the mental state 
of patients. This regularisation method controls for the number of voxels in the re-
sulting model, and the extent to which each voxel is included. As a result, the model 
proved highly predictive and able to detect complex spatial patterns driving prediction 
[73]. This method has since been applied to NTCP modelling by Jiang et al. [74], who 
found regions of the parotid glands correlated with xerostomia.

Table 3.4 highlights the existing literature for voxel-based NTCP models. The literature on 
this topic is becoming more common in recent years. In summary of table 3.4, 8/10 stud-
ies used univariate hypothesis testing to compare differences in dose at each voxel between 
each group, and of these 8, 7 corrected for the family-wise error-rate to control for multi-
ple testing. The aim of 6/10 of the studies was to identify a region linked to the outcome, 
the remaining 4 studies modelled NTCP by extracting dose statistics from the significant re-
gion. Of these 4 studies, 2 identified significant dosimetric variables using a CPHM, whilst, 
Guo et al. [75] and Palma et al. [67] sought to leverage and combine the dose from each 
voxel into one NTCP model. Unfortunately, none of the studies were found to be externally 
validated yet.
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Date Authors Patients Outcomes Registration Method Results

Head and neck

2017 Monti et al. 
[76]

42 Dysphagia Log-
diffeomorphic 
demons [77]

TFCE of dose differences be-
tween groups

Regions identified. Cricopha-
ryngeus muscle and cervical 
esophagus

2018 Beasley et al. 
[78]

86 Trismus (incisor-to-
incisor opening distance 
at 6 months)

RIR followed by 
DIR (B-splines) 
[79]

PT of Spearman rank correla-
tion coefficient per-voxel

Region identified. Ipsilateral 
masseter

2020 Guo et al. 
[75]

146 Xerostomia (grade 2+ at 
18 months)

Coherent Point 
Drift [80]

PT of dose differences between 
groups. LR with Ridge per-
voxel in region for NTCP

Good AUC. Mapped radiosen-
sitivity in region. Contralateral 
sides of parotid

Prostate

2010 Witte et al. 
[64]

352 Recurrence at 48 
months

NA. Mapped 
points as distance 
and direction 
from prostate

PT of t-test per-voxel. Cox-
regression of dose statistics in 
region and covariates

Regions identified. Obturatorial 
and presacral of prostate

2013 Acosta et al. 
[81]

105 Rectal bleeding (grade 
1+ at 24 months)

Demons [82] T-test per-voxel. No correction 
for multiple testing

Regions identified. Anterior 
rectal wall

2019 Mylona et al. 
[83]

272 Urinary complication 
(before and after 3 
months)

Laplacian-based 
DIR [84]

PT of Mann-Whitney U test 
statistic per voxel

Regions identified. Bladder and 
the urethra

Lung

2016 Palma et al. 
[85]

98 RILD Log-
diffeomorphic 
demons [77]

TFCE of dose differences be-
tween groups

Regions identified. Peripheral 
medial-basal lung

2017 McWilliam 
et al. [9]

1101 Survival DIR (B-splines) 
[79]

PT of t-test per-voxel. Cox-
regression of dose statistics in 
region and covariates

Mean dose to base of the heart 
was significant

2019 Palma et al. 
[67]

98 Lung fibrosis Log-
diffeomorphic 
demons [77]

Logistic regression per voxel. 
Combine models with similar 
method to LKB for NTCP

Good AUC scores

2019 Palma et al. 
[86]

178 Radiation pneumonitis DIR (B-splines) 
[79]

PT of t-test per-voxel Regions identified. Lower 
lungs and in heart

Table 3.4. A review of the existing literature for voxel-based Normal Tissue Complication Probability (NTCP) 
models and data mining results. Acronyms: Threshold Free Cluster Enhancement (TFCE), Rigid Image 

Registration (RIR), Deformable Image Registration (DIR), Permutation Test (PT), Area Under Curve (AUC), 
Logistic Regression (LR), Radiation-Induced Lung Disease (RILD), Lyman-Kutcher-Burman (LKB).
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Chapter 4

Causal Inference and Sparsity

Sparsity is useful tool for efficient estimation in the presence of noise. Sparsity is an as-
sumption applied to systems with a greater number of features, 𝑝, than observations, 𝑛, 
where many of the input features have no important effect on the outcome of interest. The 
assumption of sparsity is that the true model has 𝑘 important features, where 𝑘 < 𝑛. Sparse 
statistical models aim to identify the correct sub-set of 𝑘 important features from 𝑝, during 
optimisation of the model for predictive performance. If I attempt to model a high-dimensional 
system (𝑝 >> 𝑛) using a regular dense model, where each feature has an influence on the 
outcome variable, then the number of observations is too small to accurately estimate each 
parameter in the model. Therefore, sparsity, if a valid assumption, enables efficient and ac-
curate parameter estimation in the presence of noise.

One of the main assumptions in causal inference is conditional ignorability, i.e. no hidden 
confounders [70]. However, for causal inference in high-dimensional systems the underly-
ing mechanism is often complex, and can sometimes be unknown. Therefore, identification 
of confounders could be prevented. In this setting, sparse models and their variable selec-
tion properties could be put to use. In theory, and under specific conditions, it may be pos-
sible for sparse models to identify the correct sparse representation of variables and satisfy 
conditional ignorability. By reducing the dimensionality and satisfying conditional ignor-
ability, sparse methods could enable efficient causal effect estimation in high-dimensional 
systems. However, it should be noted that for observational studies one can never be certain 
that conditional ignorability is satisfied; in this case, one can check for the presence and ex-
tent of hidden confounding using a sensitivity analysis.

4.1 Introduction to causal inference

A treatment, 𝐴, has a causal effect on an outcome, 𝑌, if interventions on the treatment vari-
able change the value of 𝑌. The ultimate aim of causal inference is to estimate the unbiased 
effect of an intervention for an individual. To do this, the potential outcomes theory is com-
monly used [87]. There are many different potential outcomes that depend on the finite val-
ues of the treatment. I write this as 𝑌 𝐴=𝑎, which reads as ‘the outcome when I intervene 
to set 𝐴 = 𝑎’. For example, in the case of a binary treatment, 𝐴 = 1 for treatment and 
𝐴 = 0 for no treatment, with potential outcomes 𝑌 𝐴=1 and 𝑌 𝐴=0, respectively. The Indi-
vidualised Treatment Effect (ITE) is formally defined as: the treatment 𝐴 has a causal effect 
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on an individual’s outcome 𝑌 if 𝑌 𝐴=𝑎0 ≠ 𝑌 𝐴=𝑎1 , i.e. the potential outcomes of competing 
treatments differ [87].

There exists a fundamental problem in ITE estimation: we only ever observe a single poten-
tial outcome for an individual, that is, for the treatment they were assigned. Therefore, in-
stead of ITE estimation, the ATE is typically estimated, i.e. the average effect of a treatment 
on a population. A treatment 𝐴 is said to have a finite ATE on 𝑌 if 𝔼[𝑌 𝐴=𝑎0 ] ≠ 𝔼[𝑌 𝐴=𝑎1 ], 
where expectation is over the specific population under consideration. If the effect to be es-
timated is heterogeneous with respect to what we are conditioning on, then the Conditional 
Average Treatment Effect (CATE) estimator is used.

Whilst the potential outcomes framework holds for finite treatments, e.g. binary treatments, 
the theory gets complicated when the treatment is continuous valued, e.g. a dosage; as in 
this situation there are infinite potential outcomes. To estimate CATE for continuous treat-
ments, outcome regressions and SCMs are typically used. Whilst Direct Acyclic Graphs 
(DAGs) represent the conditional independence properties between variables, SCMs are the 
equations that relate the variables. In contrast to potential outcomes theory, ATE estima-
tion is possible using SCMs by leveraging specific adjustment criterions and do-calculus, as 
invented by Pearl [88].

4.1.1 Structural Causal Models

To show how SCMs can be adapted to continuous treatments, consider the following ex-
ample as illustrated in the DAG in figure 4.1. Here, 𝐴 represents the treatment variable, 𝐶
represents a confounding variable, 𝑀 represents a mediating variable and 𝑌 represents the 
outcome variable. In an SCM of the DAG in figure 4.1, the data is assumed to be described 
using the following set of non-parametric functions,

𝐶 = 𝑓𝐶(𝑈𝐶),

𝐴 = 𝑓𝐴(𝐶, 𝑈𝐴),

𝑀 = 𝑓𝑀(𝐴, 𝑈𝑀),

𝑌 = 𝑓𝑌(𝑀, 𝐶, 𝑈𝑌),

(4.1)

where each function is written as a function of its parents (variables that influence the cur-
rent variable, symbolised by an arrow pointing into the current variable) in the DAG and 
independent random noise. 𝑈𝐶, 𝑈𝐴, 𝑈𝑀 and 𝑈𝑌 are random variables that affect the covari-
ate, treatment, mediator and outcome, respectively; and are assumed to be jointly indepen-
dent but arbitrarily distributed [89]. The system represented by these functions is known 
as structural if each function is invariant to changes in the form of the other functions [89]. 
Pearl’s do-calculus represents interventions, e.g. if I want to intervene on the system by set-
ting 𝐴 = 𝑎0, which is represented by the do operator, 𝑑𝑜(𝐴 = 𝑎0). In this example, the 
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𝐴 𝑀 𝑌

𝐶

Figure 4.1. A Direct Acyclic Graph (DAG) illustrating the directed relationships between variables 𝐴, 
representing a treatment variable, 𝐶 representing a confounding variable, 𝑀 representing a mediating variable 

and 𝑌 representing an outcome variable.

expected outcome under this intervention can be written as 𝔼[𝑌 |𝑑𝑜(𝐴 = 𝑎0)]. This inter-
vention would change the equations in 4.1 to the following,

𝐶 = 𝑓𝐶(𝑈𝐶),

𝐴 = 𝑎0,

𝑀 = 𝑓𝑀(𝐴, 𝑈𝑀),

𝑌 = 𝑓𝑌(𝑀, 𝐶, 𝑈𝑌).

(4.2)

Note that making this intervention changes the joint distribution of the data to what is known 
as the interventional distribution.

To illustrate how the ATE can be inferred using a SCM, let us look again at the functions 
in equation 4.1 and the DAG in figure 4.1. But now, let us assume the outcomes can be de-
scribed using a simple linear model, 

𝑌 = 𝑓𝑌(𝑀, 𝐶, 𝑈𝑌) = 𝛼𝑀 + 𝛽𝐶 + 𝑈𝑌. (4.3)

Assuming I am interested in determining the ATE of 𝑀 on 𝑌, I can write the CATE as 

CATE(𝐶) ∶ = 𝔼[𝑌 |𝑑𝑜(𝑀 = 𝑚0), 𝐶] − 𝔼[𝑌 |𝑑𝑜(𝑀 = 𝑚1), 𝐶]

= 𝔼[(𝛼𝑚0 + 𝛽𝐶 + 𝑈0) − (𝛼𝑚1 + 𝛽𝐶 + 𝑈1)]

= 𝔼[𝛼(𝑚0 − 𝑚1) + 𝑈0 + 𝑈1]

= 𝛼(𝑚0 − 𝑚1).

(4.4)

From this, I can then calculate the ATE by taking the expectation over 𝐶, 

ATE ∶ = 𝔼ℂ[CATE(𝐶)]

= 𝔼ℂ[𝛼(𝑚0 − 𝑚1)]

= 𝛼(𝑚0 − 𝑚1).

(4.5)

In the case that 𝑀 is binary (𝑚0 = 1 and 𝑚1 = 0), 𝐴𝑇 𝐸 = 𝛼. If 𝑀 is continuous, and 
𝑚0 = 𝑚1 + 1, then 𝐴𝑇 𝐸 = 𝛼; where 𝛼 represents the average effect of increasing 𝑀 by 1 
unit. Therefore, in the special case that the outcome function in the SCM can be described 
using a simple linear model, the regression coefficients can be interpreted causally. If I de-
scribe a system which is non-linear using linearity assumptions, then this can significantly 
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impact our estimate of the ATE. For example, if I use equation 4.3 in our SCM, but in fact, 
the outcomes are generated via the function 

𝑌 = 𝑓𝑌(𝑀, 𝐶, 𝑈𝑌) = 𝛼𝑀 + 𝛽𝐶 + 𝛾𝐶2 + 𝑈𝑌, (4.6)

where the outcome is now a non-linear function of 𝐶. Then, our estimate of the ATE of 𝑀
on 𝑌, ̂𝛼, under our hypothesis of equation 4.3, is given by 

̂𝛼 = 𝛼 + 𝛾𝔼[𝐶𝑀]𝔼[𝐶2] − 𝔼[𝑀2]𝔼[𝐶2𝑀]
𝔼[𝐶𝑀]2 − 𝔼[𝐶2]𝔼[𝑀2]

. (4.7)

That is, our estimate of the true ATE, 𝛼, can be made arbitrarily larger or smaller depend-
ing on 𝛾 [90]. Therefore, the parametric form of the models used is of great importance. To 
extend causal inference to the non-linear regime, a plethora of non-parametric methods ex-
ist, including: Hill [91] introduced Bayesian Additive Regression Trees (BART) which can 
be used for ATE inference from discrete and continuous treatment variables; Athey and Im-
bens [92] and Wager and Athey [93] use random forests; Hoyer et al. [94] and Zigler et al. 
[95] use Gaussian Processes; and Johansson et al. [96], Shalit et al. [97], and Lopez-Paz et
al. [98] use neural networks.

4.2 Criterions for identifiability

A causal relationship is said to be identifiable if it can be estimated consistently from obser-
vational data with an arbitrarily large sample size. In the previous section, 4.1.1, I discussed 
how CATE and ATE can be estimated from data using SCMs, with parametric, semi-parametric 
and non-parametric methods. However, in order for the estimation methods detailed in the 
previous section to work correctly when confounding is present, I must define a set of vari-
ables to include in the model and adjust for, i.e. an adjustment set. Pearl [99] and Sewall 
Wright [100] introduced three different criterions to identify the adjustment set from a DAG: 
the Back-Door criterion, the Front-Door criterion, and instrumental variables.

4.2.1 The Back-Door criterion

Pearl [99] defines a Back-Door path as any path from 𝑋 to 𝑌 that starts with an arrow point-
ing into 𝑋. 𝑋 and 𝑌 are said to be de-confounded if we block every Back-Door path be-
tween them. To illustrate this criterion, I look again at our example DAG in figure 4.1. If 
I am interested in the effect of 𝐴 on 𝑌, I notice from the DAG in figure 4.1 that the path 
𝐴 ← 𝐶 → 𝑌 is a Back-Door path. Information can flow from 𝐴 to 𝑌 through this Back-
Door path, and this is responsible for the spurious component of the relationship between 𝐴
and 𝑌. Therefore, I can adjust for 𝐶 in order to de-confound 𝐴 and 𝑌.

In general, an adjustment set 𝑍 is said to satisfy the Back-Door criterion when:

1. 𝑍 blocks every Back-Door path between 𝑋 and 𝑌;
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2. No variable in 𝑍 is a descendant of 𝑋.

The latter condition is important because adjusting for a descendant of 𝑋 could partially 
or completely remove the effect we are trying to measure. Mathematically, the Back-Door 
criterion is expressed as 

𝑃(𝑌 |𝑑𝑜(𝑋)) = ∑
𝑧

𝑃(𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧), (4.8)

where I confirm the causal effect is identifiable due to our ability to express the causal es-
timand (left-hand side) in terms of observational distributions (right-hand side) [99]. If the 
Back-Door criterion is satisfied, conditional ignorability in causal inference is also satisfied; 
they are mirrors of each other [70].

Before continuing, it is important to define collider bias. Consider the scenario where I am 
interested in the causal effect of 𝑋 on 𝑌, but the following non-causal path exists 𝑋 →
𝐶 ← 𝑌. Notice the directionality of the connecting arrows, 𝐶 is caused by both 𝑋 and 𝑌. 
Therefore, 𝐶 contains information from 𝑋 and 𝑌, but if a causal path between 𝑋 and 𝑌 does 
not exist and this is the only non-causal path, then 𝑋 and 𝑌 are actually independent. This 
path is known as a collider, and if I conditioned on 𝐶 I would induce a spurious correlation 
between 𝑋 and 𝑌. This type of spurious correlation is known as collider bias [101]. Now 
consider the scenario where I remain interested in the causal effect of 𝑋 on 𝑌, but a new 
non-causal path exists, 𝑋 ← 𝑄 → 𝑊 ← 𝐸 → 𝑌. Following our definition above, this 
non-causal path is a Back-Door path between 𝑋 and 𝑌, but how do I block it? The variables 
𝑄, 𝑊 and 𝐸 lay on this Back-Door path, but which should I include in the adjustment set? 
From our definition above, 𝑊 is a collider. However, if I added 𝑊 to the adjustment set, I 
induce collider bias; as by adjusting for 𝑊 I allow information to flow between 𝑋 and 𝑌. 
To effectively block the Back-Door path in this example, I could either (1) do nothing, (2) 
add 𝑄, 𝐸 or both to the adjustment set, or (3) add 𝑊 and either 𝑄 or 𝐸 (or both) to the ad-
justment set. Visualising the assumed true causal structure using a DAG can help identify 
Back-Door paths, confounders and colliders; which can be leveraged to define the correct 
adjustment set.

4.2.2 The Front-Door criterion

The front-door criterion can be used when the effect of the treatment, 𝑋, on the outcome, 
𝑌, is mediated by another observed variable, 𝑀, and possible confounders of treatment and 
outcome are latent/unobserved. Because the confounders are latent, I cannot control for 
them using the Back-Door criterion as described above. Despite this seemingly tricky sit-
uation, the front-door criterion makes the causal estimand identifiable.

In general, an adjustment set 𝑍 is said to satisfy the front-door criterion when:

1. 𝑍 intercepts all directed paths from 𝑋 to 𝑌;
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2. There is no Back-Door path from 𝑋 to 𝑍;

3. All Back-Door paths from 𝑍 to 𝑌 are blocked by 𝑋.

[99]. Mathematically, I express the front-door criterion as 

𝑃(𝑌 |𝑑𝑜(𝑋)) = ∑
𝑧

𝑃(𝑍 = 𝑧|𝑋 = 𝑥) ∑
𝑥′

𝑃(𝑌 |𝑋 = 𝑥′, 𝑍 = 𝑧)𝑃(𝑋 = 𝑥′), (4.9)

where the causal effect of 𝑋 on 𝑌 is identifiable using the adjustment set 𝑍 that satisfies the 
front-door criterion [99]. In the example above, the adjustment set would consist of only the 
variable 𝑀.

4.2.3 Instrumental variables

A variable 𝐼 is said to be an instrumental variable relative to a pair of variables (𝑋, 𝑌) if 𝑋
and 𝑌 are generated from the DAG shown in figure 4.2, where 𝑈 is a latent common cause 
of both 𝑋 and 𝑌 [102]. In this scenario, the influence of 𝐼 on 𝑌 is completely mediated by 
𝑋. Therefore, if 𝑋 is held constant, 𝐼 and 𝑌 are independent. Instrumental variables are 
useful because by making Back-Door adjustments for 𝑈, 𝑃(𝑌 |𝑑𝑜(𝐼)) and 𝑃(𝑋|𝑑𝑜(𝐼))
become identifiable. In turn, 𝑃(𝑌 |𝑑𝑜(𝑋)) is identifiable when the following equation is 
solved, 

𝑃(𝑌 |𝑑𝑜(𝐼)) = ∑
𝑥

𝑃(𝑌 |𝑑𝑜(𝑋 = 𝑥))𝑃(𝑋 = 𝑥|𝑑𝑜(𝐼)). (4.10)

Essentially, when this equation is solved, the instrumental variable is used to account for 
the effect of the latent variable 𝑈 on 𝑋 and 𝑌 [102]. Therefore, instrumental variables, if 
present, can act as a powerful method for causal inference with latent variables.

4.3 Sparse statistical models

So far, I have discussed causal inference for discrete and continuous treatments, however, 
the treatment could be high-dimensional. For example, radiotherapy treatment is defined as 
a 3D array of continuous dose values, 𝐃, which has of order 106 features (voxels). In this 
example, 𝑝 = 𝒪(106), which is magnitudes greater than the typical number of samples in 
voxel-based studies, 𝑛 = 𝒪(102) (calculated from table 3.4); a high-dimensional system 
(𝑝 >> 𝑛). However, I discussed in section 3.3 that there is growing evidence to support the 
existence of radiosensitive sub-regions of organs that may drive outcomes [5, 6, 7, 8, 9], i.e. 

𝐼 𝑋

𝑈

𝑌

Figure 4.2. A Direct Acyclic Graph (DAG) illustrating the process that defines 𝐼 as an instrumental variable. 
𝑋 is the treatment variable, 𝑌 is the outcome variable, and 𝑈 is a latent common cause of 𝑋 and 𝑌.
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only a subset of 𝐃 is important. Therefore, radiotherapy treatment can be considered to be 
sparse with respect to specific outcomes.

Sparsity is a powerful tool for efficient causal inference in high-dimensional systems, en-
abling us to reduce the problem to a sub-set of the high-dimensional system that has an 
important influence on variables. So far, I have emphasised the importance of defining the 
correct adjustment set and form of the estimating equations for ATE inference using SCMs. 
However, for high-dimensional systems, it might not be possible to draw a DAG and pre-
cisely define the adjustment set. To illustrate this difficulty, consider the DAG in figure 4.3a, 
where I have a high-dimensional treatment, 𝐀, a confounding variable, 𝐶, and an outcome 
𝑌. It is straight forward to define this high-level DAG. However, if 𝐀 = {𝐴0, 𝐴1, 𝐴2}, I 
could re-draw the DAG in figure 4.3a as that shown in figure 4.3b, where the dashed arrows 
represent possible causal relationships between the variables. However, for particular sys-
tems, we may not have the knowledge required to define with certainty which arrows exist. 
For example, in radiotherapy, I have the high-level knowledge that treatment affects out-
come, but I am unsure what parts of the treatment are responsible. In this case, one could 
use a non-parametric approach by assuming that all possible connections exist, and then use 
the DAG and the criterions for identifiability as discussed in section 4.2 to define an initial 
adjustment set. A sparse model could then be used as the estimating equation for ATE in-
ference in the SCM, which would perform simultaneous variable selection and estimation.

However, for a sparse model to be successful for causal inference it must be consistent in 
both variable selection and parameter estimation. This is known as the oracle property; 
an important property for unbiased estimation using sparse models. Mathematically, these 
conditions are written as follows:

1. Consistency in variable selection: {𝑗 ∶ ̂𝛽𝑗 ≠ 0} = 𝒜;

2. Consistency in parameter estimation: 
√

𝑛( ̂𝜷𝒜 − 𝜷𝒜) →𝑑 𝑁(𝟎, 𝚺∗).

Condition (1) states that the set of estimated non-zero parameters, {𝑗 ∶ ̂𝛽𝑗 ≠ 0}, is equal 
to the true set of non-zero parameters, 𝒜; and condition (2), otherwise known as asymp-
totic normality, states that the difference in estimated and true parameters tends to a mean-
zero normal distribution as 𝑛 → ∞, where 𝚺∗ is the covariance matrix under the true 
model [103]. Note that, if the true model is linear, the true non-zero parameters, 𝒜, can 

𝐀 𝑌

𝐶

(a)

𝐶 𝐴1

𝐴0

𝐴2

𝑌

(b)

Figure 4.3. (a) A high-level Direct Acyclic Graph (DAG) consisting of a confounding variable, 𝐶, 
high-dimensional treatment, 𝐀, and outcome variable, 𝑌. (b) A low-level DAG of the same process as (a) 

where 𝐀 = {𝐴0, 𝐴1, 𝐴2}. The dashed arrows represent possible causal relationships between the variables 
𝐶, 𝑌 and the features of 𝐀.
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correspond to the identified causal effects. However, if the true model is non-linear, I could 
identify 𝒜, but I would need a non-parametric method to identify the causal effects; as ex-
plained in section 4.1.1.

4.3.1 The Lasso

A simple example of a sparse model is the Lasso regression. The Lasso, otherwise known 
as 𝑙1 regularisation, is an additional term in the loss function that constrains the magnitude 
of the parameter estimates [104]. In contrast, the Ridge, otherwise known as 𝑙2 regularisa-
tion, is an additional term in the loss function which differs from the Lasso by penalising 
the square of the estimated parameters [105]. In both cases parameter estimation is a con-
vex problem and depends on both the data and the regularisation, in fact, the estimates with 
lowest loss occur at equilibrium between the two. However, because the Lasso penalises pa-
rameter magnitudes, rather than penalising square magnitudes like the Ridge, the shape of 
the loss function allows shrinkage of parameter estimates to exactly zero. As a result, the 
Lasso is a popular technique for simultaneous variable selection and estimation [104]. In 
the simple case of a linear model, the parameters of a Lasso regression can be estimated 
from the following loss function,

̂𝜷 = arg min
𝜷

(
𝑛

∑
𝑖=1

(𝑦𝑖 −
𝑝

∑
𝑗=1

𝑋𝑖𝑗𝛽𝑗)2 + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|) , (4.11)

where ̂𝜷 ∈ ℝ𝑝 is a vector of estimated model parameters, 𝐲 ∈ ℝ𝑛 is the outcome vector, 
𝐗 ∈ ℝ𝑛×𝑝 is the feature matrix, and the additional term 𝜆 ∑𝑝

𝑗=1 |𝛽𝑗| corresponds to the 
Lasso penalty, where 𝜆 is a tuneable hyper-parameter [104, 106].

The Lasso regression encourages sparsity, however, Zou [103] showed that the Lasso has 
the oracle property only under very specific conditions. In addition, Meinshausen and Bühlmann 
[107] showed that the Lasso is inconsistent in variable selection when the hyper-parameter, 
𝜆, is optimised for predictive performance; and Fan and Li [108] showed that the Lasso is 
inconsistent in parameter estimation, as it leads to biased estimation of large parameters. 
Therefore, the Lasso is generally considered to not have the oracle property.

4.3.2 The Adaptive Lasso

The Adaptive Lasso was developed by Zou [103] to give the Lasso the oracle property. The 
difference between the Adaptive Lasso and the original Lasso, is the idea to penalise each 
parameter differently. The parameters of the Adaptive Lasso can be estimated from the fol-
lowing loss function,

̂𝜷 = arg min
𝜷

(
𝑛

∑
𝑖=1

(𝑦𝑖 −
𝑝

∑
𝑗=1

𝑋𝑖𝑗𝛽𝑗)2 + 𝜆
𝑝

∑
𝑗=1

𝑤𝑗|𝛽𝑗|) , (4.12)

39



where in comparison to equation 4.11, the adaptive weight vector 𝐰 ∈ ℝ𝑝 has been added 
to the Lasso penalty term. The adaptive weights are estimated from data as, 

�̂� = 1
| ̂𝜷∗|𝛾

, (4.13)

where 𝛾 > 0 is an additional hyper-parameter, and ̂𝜷∗ are the parameter estimates from 
an additional regression that is consistent in parameter estimation. Under these conditions, 
Zou [103] showed that the Adaptive Lasso has the oracle property.

In general, any consistent estimator can be used to calculate ̂𝜷∗, however, Zou [103] recom-
mend using an ordinary sum of squares regression, or the best performing Ridge regression 
if multicollinearity between features is present. The Ridge regression differs from the Lasso 
by penalising the square of the parameter estimates. This will heavily penalise exploding 
parameter estimates, which multicollinearity is known to cause. Whilst the Ridge regres-
sion is inconsistent in parameter estimation, i.e. it is a biased estimator, it does reduce the 
variance of the model [105]. 
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Chapter 5

Average Treatment Effect Estimation for 

High-Dimensional Spatial Treatments: 

Radiotherapy Simulation Study

This chapter is the bases of a publication and it is structured as such.

Authors

Mr Alexander L. Jenkins1, Dr Eliana Vásquez Osorio1 2, Dr Michael Merchant1 2, Dr An-
drew Green1 2, Professor Marcel van Herk1 2, Dr Matthew Sperrin13, Dr Alan McWilliam123.

5.1 Abstract

Radiotherapy is the most common treatment for cancer, delivering 3D, personalised radi-
ation dose to the tumour. Radiotherapy planning requires considering a high-dimensional 
continuous optimisation space to achieve tumour control while limiting the probability of 
treatment complications. However, estimating the Average Treatment Effect (ATE) of radi-
ation dose on complications across the anatomy is difficult; mainly because of confounding 
in observational data. Under certain assumptions, developing a causal framework provides 
methods to adjust for confounding.

The aim of this work is to use simulated data to investigate if unbiased and consistent voxel-
based causal inference is possible, how, under what circumstances, and with what accu-
racy. I simulate radiotherapy treatment plans from a simplified, yet realistic, data generat-
ing process. Patients have a single tumour (random location) where dose is maximal and 
a single Organ At Risk (OAR) (fixed location) where dose is minimal. Variables control 
fall-off of dose around the tumour, fall-off and magnitude of dose at the organ, and a co-
variate that confounds the treatment plan. I simulate realistic treatment uncertainties: ran-
dom shifts in x- and y-directions of the entire planned dose distribution, spatially correlated 

1The University of Manchester, United Kingdom.
2The Christie NHS Foundation Trust, United Kingdom.
3Joint senior authors.
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noise sampled from a Gaussian process prior, and independent noise at each pixel. A con-
tinuous complication is generated via a linear function of the delivered dose to a spatially 
inhomogeneous set of pixels (ATE estimand), a covariate that also affects the delivered 
dose distribution, and a spatially inhomogeneous interaction between delivered dose and 
the covariate. Three methods based in causal inference are used to estimate the ATE at each 
pixel: 1) pixel-wise sparse causal regression, 2) sparse causal regression and 3) a causal re-
gression. The sparse estimator used is the Adaptive Lasso. These are compared to methods 
currently used in radiotherapy.

I found that all methods based in causal inference performed with lower total Mean Squared 
Error (MSE), MSE𝑡𝑜𝑡, across all parameterisations tested in the simulation compared to the 
currently used voxel-based statistical methods in radiotherapy. Exploiting the oracle prop-
erty of the Adaptive Lasso to simultaneously identify important pixels with dose-response 
and estimate ATE, was in general a successful technique over all parameterisations of the 
simulation tested. The only method capable of unbiased estimation was the causal regres-
sion, however, multicollinearity hinders accurate ATE estimation at specific regions of pa-
rameter space and at a high resolution. The estimation method that scored a consistently 
low MSE𝑡𝑜𝑡 over all parameterisations was the sparse causal regression. This method was 
able to assign a near zero effect to unimportant pixels, and whilst estimates elsewhere were 
biased, they were accurate and efficient; especially at lower resolutions.

5.2 Introduction

Radiotherapy is the most affordable and accessible form of cancer treatment [1]. It is, there-
fore, the most common form of cancer treatment, with approximately 50% of cancer pa-
tients receiving it during their course of treatment [2]. Advancements in imaging, e.g. 3D 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission 
Tomography (PET), alongside advancements in treatment delivery and technology, e.g. 
image-guided radiotherapy, mean that uncertainties in radiotherapy treatment are reduc-
ing. As a result of technological developments in imaging and treatment delivery allowing 
for a more conformed dose to the tumour, 5-year survival rates have been increasing over 
the past 25 years for most tumour sites [3]. Therefore, key research questions now focus on 
reducing treatment complications and improving the quality of life for patients living with 
and beyond cancer.

Many complications of radiotherapy treatment are considered to be caused by the dose to 
OARs. In current clinical practice, dose to OARs is typically quantified using a Dose-Volume 
Histogram (DVH), where each OAR has a guideline for absorbed dose limits and the ex-
pected risk of complications, as stated in the QUANTEC guidelines [4]. However, because 
the QUANTEC guidelines leverage the DVH, the following assumptions apply:

1. A single treatment complication is driven only by a single organ. Yet, there is growing 
evidence to support that the onset of complications can be driven by dose to multiple 
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regions [10].

2. The whole organ equally drives the complication. Yet, this is known to be an oversim-
plification of the radiobiology within the organ [10].

3. The spatial dose distribution within the organ volume is ignored. Yet, many different 
spatial dose distributions can give rise to the same DVH.

Voxel-based methods seek to identify regions of an image which are significantly associ-
ated with a continuous / binary label of interest. Where a voxel is a point / tiny volume in 
3D space. Voxel-based methods have been well established in the field of neuroimaging 
since the 1990’s [62]. For example, Whitwell [63] used the methodology to find regions 
of MRI images associated with Alzheimer’s disease. The potential of the methodology was 
fast to adapt to the field of radiation oncology, with the first voxel-based analysis emerging 
in 2010 by Witte et al. [64], where the authors related regions of the dose distribution to 
recurrence of prostate cancer. Since then, voxel-based methods have been applied to mul-
tiple treatment sites, and there is growing evidence to support the existence of sub-regions 
of organs that radiation dose is linked to complications, as shown for the bladder [5], the 
parotid glands [6], white-matter structures [7], the lung [8] and the heart [9]. Recently, a 
‘cook book’ for voxel-based methods in radiotherapy has been published [65], which illus-
trates the importance of this technique to radiation oncology.

However, as each voxel is modelled independently, a voxel-based analysis is limited to iden-
tifying highly localised linear group differences [71]. The technique generally struggles 
when the outcome of interest is spatially complex, multivariate and subtle. To overcome 
this, a single model could be used to map the dose distribution to a prediction. For exam-
ple, in neuroimaging, Carroll et al. [73] used each voxel in functional-MRI images as fea-
tures, and used a linear Elastic Net (combination of Ridge and Lasso regularisation) to pre-
dict the mental state of patients. This regularisation method controls for the number of vox-
els in the resulting model, and the extent to which each voxel is included. As a result, the 
model proved highly predictive and able to detect complex spatial patterns driving pre-
diction [73]. This method has since been applied to radiotherapy by Jiang et al. [74], who 
found regions of the parotid glands linked with xerostomia.

Alongside using the voxel-based methods for identifying sub-regions of organs, the regres-
sion coefficients at each voxel are often interpreted [12, 13]. This is because a 3D map of 
the regression coefficients is highly desirable, as it gives an insight into the spatial effect 
of radiotherapy treatment on a given outcome; which could be used in the future to opti-
mise the treatment plan for reduction of complications. Despite the success of voxel-based 
methods, and even Carroll et al. [73]’s Elastic Net, the predictions nor the parameters of al-
gorithms optimised for predictive performance have a causal interpretation. In fact, many 
sources of bias can exist in observational data, for example, confounding bias, collider bias 
and selection bias [109]. A predictive algorithm is unable to adjust for these biases outside 
of a causal framework, in fact, it could even leverage them for prediction. Therefore, in or-
der to use prediction algorithms for unbiased estimation of the causal effect of radiotherapy 
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treatment on the outcome of interest at each voxel or at the identified region of the dose dis-
tribution, a causal framework must be developed. In radiotherapy, the main source of bias is 
confounding, i.e. variables that affect the treatment and also affect the treatment response. 
Current voxel-based methods based on statistical inference do not adequately adjust for 
confounding. This could explain the variability in the location of radiosensitive sub-regions 
identified for OARs, for example, McWilliam et al. [9] and Bogaard et al. [14] identified 
unique sub-regions of the heart that is particularly radiosensitive. It also could explain why 
models of the same outcome differ in their identified significant variables and their effect, 
and hence, why the external validation of current NTCP models is so important [15, 16]. 
Therefore, it is of great importance to try to estimate the spatial causal effect of radiother-
apy treatment on a given outcome.

The gold standard causal framework is typically the Randomised Controlled Trial (RCT). 
In an RCT, treatment and control groups are formed by random assignment. As a result, the 
two groups are seen as balanced in terms of potential outcomes. In an RCT, one can infer 
the ATE of treatment 𝐴 versus treatment 𝐵 on an outcome of interest with respect to the 
RCT population, where treatment 𝐴 and 𝐵 could be exposure versus no exposure, two com-
peting treatments, or the same treatment modality but at different doses. However, using an 
RCT to identify the effect of radiotherapy treatment at different anatomical regions is not 
ethical. The planned dose distribution should always be tailored to the patient characteris-
tics, in order to give the best chances of curative treatment whilst reducing probability of 
complications. Therefore, under this ethical constraint, a causal framework must be devel-
oped using observational data.

5.3 Simulation study

5.3.1 Aims

The aim of this work is to use simulated data to investigate if unbiased and consistent voxel-
based causal inference is possible, how, under what circumstances, and with what accuracy. 
To do this, I simulate data from a simplified, yet realistic, data generating process for ra-
diotherapy treatment-outcome data. However, assumptions must be made that reduce the 
complexity of the data, whilst retaining its defining properties.

From an analytical perspective, the defining properties of the radiotherapy dose distribu-
tion is that there are multiple voxels, that dose at each voxel is continuous valued, and that 
dose at adjacent voxels is correlated [110]. It is crucial that the simulated dose distributions 
retain these properties. The major challenge from the causal inference perspective is con-
structing an estimation method to work under the properties of this complicated data.

From a clinical perspective, the properties to consider are firstly that the dose distribution 
has high and low dose regions. The tumour volume/s have the highest prescribed dose, and 
the OARs have the lowest prescribed dose. However, because dose is accumulated to achieve 
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the prescription: if I reduce dose in one region, it must increase in another. Therefore, this 
conservation property of the dose distribution must also be represented in the simulated 
data.

It is also important to consider the difference between the planned dose distribution and 
the delivered dose distribution. The planned dose distribution is designed by the clinician 
and treatment planning staff, and it defines the pre-treatment prescription. The delivered 
dose distribution is the dose that the patient actually received at the end of their course of 
treatment. The delivered dose distribution differs to the planned dose distribution through 
numerous dosimetric and geometric uncertainties. Whilst the planned dose distribution is 
designed to limit the effect these uncertainties have on changing the prescription for a popu-
lation [111], the delivered dose distribution is known to be a better predictor of outcomes 
[112]. In fact, the delivered dose is the cause of radiation-induced outcomes, as it is the 
dose that the patient actually receives. In addition, radiation-induced outcomes are not just 
generated by the delivered dose, they could be generated by a complex function of covari-
ates and corresponding interaction terms with the delivered dose [110].

It is also important to consider the mechanism for how clinical variables affect the dose dis-
tribution. Planned dose distributions are created by the clinician and treatment planning 
staff, and therefore, the individual acts as a mediator between the clinical variables and the 
resultant planned dose distribution. These individuals can intervene and affect the dose dis-
tribution in the following ways:

• Segmentations of tumour and OARs. Segmented regions could be extended based on 
the patients diagnosis, for example, the volume of the neck irradiated for head and 
neck cancer patients depends on the stage of the patients’ cancer [113]. It is also known 
that segmentations differ between individuals and even between the same individual 
on two different occasions, this is known as inter- and intra-observer variation, and it 
has been hypothesised that this can depend on factors such as the imaging modality 
[114], a variable knowledge / interpretation of volume definitions [115], and segmen-
tation protocol [116].

• Planned dose distribution parameters. For example, the individual can adjust the DVH
statistics of each OAR to find the plan that gives the best tumour coverage and low-
est dose to the organs whilst following the QUANTEC guidelines and considering the 
clinical knowledge of the patient, e.g. frailty, comorbidities, etc. However, the dose 
prescribed to the tumour, and the fractionation schedule, are typically set through lat-
est RCT evidence.

5.3.2 Data generating process

To create a realistic, yet simplified, data generating process for radiotherapy treatment-outcome 
data that retains the defining properties discussed in the previous section, I make the follow-
ing assumptions:
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1. I will work with 2D, rather than 3D dose distributions. By working with pixels rather 
than voxels, the number of features in the dose distribution is reduced exponentially. 
This allows for faster simulation and estimation times, whilst being able to incorporate 
the defining complexities of the problem discussed in section 5.3.1.

2. Each pixel will represent the same region of the anatomy for all patients. This is the 
same assumption that is used in current voxel-based methods, where patients are placed 
into a common reference frame using techniques in image registration [65].

3. Each patient will have one tumour centred at a random pixel in the image (sampled 
independently with uniform probability).

4. All patients will have one organ at risk centred at a common pixel in the image. If the 
tumour satisfies the same location as the organ for a patient, the tumour has priority 
and the organ will be ignored.

5. Tumour and organ are of constant size and shape: a single pixel. For simplicity, I ig-
nore differences in the shapes and sizes of the tumour and organ for all patients, along-
side segmentation uncertainty.

6. The prescribed dose to the tumour is constant across the simulated population, with 
value 𝑇𝐷 = 4 [arb. units]. In addition, I will assume this dose is delivered in a single 
fraction.

7. The planned dose distribution is created in the style of Volumetric Modulated Arc 
Therapy (VMAT) treatment, where radiation is accumulated at the tumour by vary-
ing dose in a continual arc around the patient. With this in mind, the planned dose at 
each pixel will be decided as a smooth function of the distance from the tumour and 
the distance from the organ ray. An illustration and mathematical definition will fol-
low in section 5.3.4.

8. The outcome variable will be continuous random variable.

9. The outcome variable will be generated by the delivered dose to sensitive regions of 
the anatomy (constant in both location and effect during the simulation), an interaction 
between delivered dose and a covariate, alongside the covariate. Therefore, the system 
will be described as sparse, i.e. only a sub-set of the features (each pixel in the deliv-
ered dose distribution) have an important effect on the outcome.

10. The delivered dose distribution causes the outcome. Delivered dose distributions are 
simulated with realistic treatment uncertainties operating at three different scales: in-
dependent noise at each pixel (dosimetric uncertainty), correlated noise sampled from 
a Gaussian Process prior (anatomical motion), and random shifts in x and y of the en-
tire dose distribution (setup uncertainty).

The remaining assumptions are on the cause-effect relationships between variables. These 
are encapsulated by the DAG shown in figure 5.1, which will be the assumed causal struc-
ture for this simulation. It is drawn for only three pixels in this figure, but extends over all 

46



𝐶 𝑀𝑂

𝑉𝑇

𝑉𝑂

𝐍

𝐷𝑖𝑗

𝐷(𝑖−1,𝑗)

𝐷(𝑖+1,𝑗)

𝑌

Figure 5.1. The causal structure assumed in this simulation, represented using a Direct Acyclic Graph (DAG). 
The estimand of interest is the Average Treatment Effect (ATE) of the delivered dose, 𝐷𝑖𝑗, on the outcome, 𝑌, 

at each pixel 𝑖 ∈ [1, 𝑁𝑥] and 𝑗 ∈ [1, 𝑁𝑦], where 𝑁𝑥 and 𝑁𝑦 is the number of pixels in 𝑥 and 𝑦. 𝐶 is a 
measured confounder, 𝑉𝑂 is a parameter that controls the fall-off of dose around the organ ray, 𝑀𝑂 is a 

parameter that controls for the magnitude of dose on the organ ray, 𝑉𝑇 is a parameter that controls that fall-off 
of dose around the tumour, 𝐷𝑖𝑗 is the value of the delivered dose distribution at pixel location 𝑥 = 𝑖, 𝑦 = 𝑗, 
and 𝐍 is a latent variable representing the parameters generating the treatment uncertainties. The DAG is 

drawn only for three pixels in this figure, but extends over all pixels in this work.

pixels in this work. The variables in figure 5.1 are defined as follows: 𝑌 is the continuous 
outcome variable of interest, 𝐶 is a covariate acting as a measured confounder, 𝑉𝑂 is a pa-
rameter that controls the fall-off of dose around the organ ray, 𝑀𝑂 is a parameter that con-
trols for the magnitude of dose on the organ ray, 𝑉𝑇 is a parameter that controls that fall-off 
of dose around the tumour, 𝐷𝑖𝑗 is the value of the delivered dose distribution at pixel loca-
tion 𝑥 = 𝑖, 𝑦 = 𝑗, and 𝐍 is a latent variable representing the parameters generating the 
treatment uncertainties. 𝐍 is assumed latent because whilst 𝐃 can be estimated in reality, 
it is difficult to quantify the exact values to adjust for at each pixel. 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇 repre-
sent three possible variables the clinician and treatment planning staff could intervene on in 
practice during dose planning; each is affected by 𝐶. 𝐶 could represent a clinical variable 
such as age, and 𝑌 could represent a continuous outcome such as weight loss after treat-
ment. The effect of 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇 on 𝑌 is assumed to be mediated entirely by the deliv-
ered dose distribution. The high-dimensional delivered dose distribution, 𝐃, has been ex-
pressed non-parametrically in figure 5.1 by assuming that all possible connections exist be-
tween 𝑌, 𝐷𝑖𝑗, 𝑉𝑂, 𝑀𝑂, 𝑉𝑇 and 𝐍.

5.3.3 Estimands

The estimands are the quantities to be estimated in the simulation. In this work, the esti-
mands are defined as the ATE of the delivered dose, 𝐷𝑖𝑗, on the outcome, 𝑌, at each pixel 
𝑖 ∈ [1, 𝑁𝑥] and 𝑗 ∈ [1, 𝑁𝑦], where 𝑁𝑥, 𝑁𝑦 are the number of pixels in 𝑥 and 𝑦. Mathemati-
cally, the estimands are expressed as array 𝜽 ∈ ℝ𝑁𝑥×𝑁𝑦 . As mentioned in section 5.3.1, the 
clinician and treatment planning staff typically intervene on variables like 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇, 
so why am I interested in the ATE of 𝐷𝑖𝑗 (a variable of indirect control)? I am interested in 
the ATE of 𝐷𝑖𝑗 on 𝑌 because ultimately I am interested in the mechanism that causes the 
outcome, i.e. I am not just interested in determining, for example, the ATE of 𝑀𝑂 on 𝑌, but 
I want to know how 𝑀𝑂 causes 𝑌. The current possible interventions, such as a set simi-
lar to 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇, could be sub-optimal, and knowledge of the mechanism can help us 
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Figure 5.2. (a) The estimand array produced using the function 𝑓(𝑥, 𝑦) defined in equation 5.1, where the 
number of pixels in the x- and y-directions is equal to 𝑁𝑥 = 10, 𝑁𝑦 = 10, respectively. (b) The interaction 

strength array produced using the function ℎ(𝑥, 𝑦) defined in equation 5.5, where the number of pixels in the 
x- and y-directions is equal to 𝑁𝑥 = 10, 𝑁𝑦 = 10, respectively.

realise new interventions, for example, new dose interventions on previously unknown re-
gions with given dose-response. Answers for this mechanistic question using observational 
data are not reliable outside of a causal framework.

The estimands are defined by the following function, 𝑓(𝑥, 𝑦), which is evaluated at the x- 
and y-coordinates of each pixel to define the estimand array, 𝜽, in any required resolution, 

𝑔(𝑥, 𝑦) = 3 sin (10𝑥
𝑁𝑥

+ 3
2

sin (10𝑦
𝑁𝑦

) − 0.5) ,

𝑓(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑔(𝑥, 𝑦), if 𝑔(𝑥, 𝑦) > 0

0, otherwise.

(5.1)

The function, 𝑓(𝑥, 𝑦), produces values in the range [0, 3]. Figure 5.2a shows the estimand 
array, 𝜽 = {𝜃𝑖𝑗}, calculated using equation 5.1, i.e. 𝜃𝑖𝑗 = 𝑓(𝑖, 𝑗), for 𝑁𝑥, 𝑁𝑦 = 10. The 
estimand array will be constant for all patients generated in the simulation, and represents 
the spatial dose-response. The exact form of the estimand array, i.e. 𝑓(𝑥, 𝑦) in equation 5.1, 
is chosen such that the dose-response is spatially complex, inhomogeneous, positive (dose 
always increases the outcome value / odds), and sparse (zero effect in many pixels). In this 
work, 𝜽 will be estimated using different methods in causal inference, and compared to the 
current voxel-based analysis methods in radiotherapy.

5.3.4 Simulation method

Generating equations

Each of the variables in the DAG assumed for this simulation, as shown in figure 5.1, are 
generated as a function of their parents and independent noise, i.e. using a Structural Causal 
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Model (SCM). The functions that will be used to generate each variable are defined as,

𝐶 = 3 + 𝑈𝐶, (5.2a)

𝑉𝑇 = 6𝐶2

5
+ 3 + 𝑈𝑉𝑇

, (5.2b)

𝑉𝑂 = (1 +
𝑈𝑉𝑂

𝐶
15

) × 𝑠(𝑂𝑥,𝑦, 𝑇𝑥,𝑦)2, (5.2c)

𝑀𝑂 = ( 𝐶
15

𝑓𝐷𝑇
(𝑂𝑥, 𝑂𝑦) + 𝑈𝑀𝑂

) × (1
2

+ 𝑠(𝑂𝑥,𝑦, 𝑇𝑥,𝑦)), (5.2d)

𝐷𝑖𝑗 = 𝑃(𝑖 + 𝐿𝑥, 𝑗 + 𝐿𝑦) + 𝑀𝑖𝑗 + 𝑈𝐷𝑖𝑗
, (5.2e)

𝑌 = 5𝐶 + 𝑈𝑌 +
𝑁𝑥

∑
𝑖=1

𝑁𝑦

∑
𝑗=1

(𝐷𝑖𝑗𝜃𝑖𝑗 + 𝐶
2

(𝐷𝑖𝑗𝜉𝑖𝑗)) . (5.2f)

Unless otherwise stated, the independent random noise for the 𝑖𝑡ℎ variable, 𝑈𝑖, is sampled 
from a mean-zero Gaussian distribution with unit variance, 𝑈𝑖 ∼ 𝑁(0, 1). The form of 
these equations are designed such that they are mostly complex non-linear functions, as 
they may well be in reality, except for equation 5.2f which is chosen to be linear. As shown, 
the covariate 𝐶 influences the magnitude of the variables 𝑉𝑇, 𝑉𝑂 and 𝑀𝑂. In equations 

5.2c and 5.2d, 𝑠(𝑂𝑥,𝑦, 𝑇𝑥,𝑦) =
√(𝑇𝑥−𝑂𝑥)2+(𝑇𝑦−𝑂𝑦)2

√(𝑇𝑥+𝑂𝑥)2+(𝑇𝑦+𝑂𝑦)2
is a non-linear function that scales 𝑉𝑂

and 𝑀𝑂 depending on the relative x- and y-coordinates of the organ, 𝑂𝑥,𝑦, and the tumour, 
𝑇𝑥,𝑦. This scaling is used in equations 5.2c and 5.2d such that if the tumour is closer to the 
organ, the amount of dose I can spare to the organ is reduced and the dose fall-off is sharp. 
In addition, 𝑓𝐷𝑇

(𝑥, 𝑦) = 𝑇𝐷 exp( (𝑥−𝑇𝑥)2+(𝑦−𝑇𝑦)2

𝑉𝑇
) is a Gaussian function describing the dose 

at and around the tumour.

The delivered dose distribution, 𝐃 = {𝐷𝑖𝑗}, will be composed using equation 5.2e. The 
first term in equation 5.2e, 𝑃(𝑖 + 𝐿𝑥, 𝑗 + 𝐿𝑦), is the shifted planned dose distribution eval-
uated at pixel 𝑥 = 𝑖 and 𝑦 = 𝑗, where 𝐿𝑥 and 𝐿𝑦 are the shifts in the x- and y-directions 
respectively. This shift represents set-up uncertainty, where 𝐿𝑥 and 𝐿𝑦 are sampled inde-
pendently from 𝐿𝑥, 𝐿𝑦 ∼ 𝑁(0, 𝜎2

𝐿); where 𝜎2
𝐿 is a parameter that will be varied in the sim-

ulation. The planned dose distribution function is written as, 

𝑃(𝑥, 𝑦) = 2 + 𝑓𝐷𝑇
(𝑥, 𝑦) − 𝑓𝐷𝑂

(𝑥, 𝑦), (5.3)

where 𝑓𝐷𝑂
(𝑥, 𝑦) = 𝑀𝑂 exp(𝑑𝑟𝑎𝑦(𝑥,𝑦)2

𝑉𝑂
) is a Gaussian function describing the dose on and 

around the organ ray, where 𝑑𝑟𝑎𝑦(𝑥, 𝑦) is the distance of point 𝑥, 𝑦 from the organ ray as 
computed using Meijster et al. [117]’s distance transform algorithm. This creates a planned 
dose distribution similar to a VMAT plan, and ensures neighbouring voxels are correlated. 
For the conservation property of the planned dose distribution to hold (if I decrease dose 
in one region, I must increase it in another region), I take the total planned dose subtracted 
by the organ function, ∑𝑁𝑥

𝑖 ∑𝑁𝑦
𝑗 𝑓𝐷𝑂

(𝑖, 𝑗), and add it homogeneously across the dose dis-
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Figure 5.3. An example of a simulated planned dose distribution, a delivered dose distribution, and its 
components, for a patient. Simulated for 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫, 𝜎2
𝐿 = 3e−1. The tumour and organ locations are 

shown. The ray of low dose prior to the organ location is defined as the organ ray, as referred to in text. The 
organ ray is always directed towards the tumour. The equations correspond to their definitions in equation 5.2

and equation 5.3.

tribution by increasing 𝑉𝑇. By increasing 𝑉𝑇, the prescribed dose to the tumour location, 
𝑇𝐷 = 4, will remain unchanged. The second term in equation 5.2e, 𝑀𝑖𝑗, represents cor-
related noise, 𝐌 ∈ ℝ𝑁𝑥×𝑁𝑦 , evaluated at the pixel location. The correlated noise, 𝐌, is 
sampled from a 2D mean-zero Gaussian process prior, 

𝐌 = 𝑀𝒢𝒫 × 𝒢𝒫(0, 𝐾(𝐱, 𝐱′)), (5.4)

where 𝑀𝒢𝒫 is a parameter that will vary in the simulation, and 𝐾(𝐱, 𝐱′) is a 2D radial ba-
sis function kernel parameterised by 𝜎2

𝒢𝒫; a parameter that controls for the amount of cor-
relation between two adjacent pixels, which will be varied in the simulation. The final term 
in equation 5.2e, 𝑈𝐷𝑖𝑗

, represents the independent Gaussian noise at each pixel (dosimet-
ric uncertainty), which is sampled from 𝑈𝐷𝑖𝑗

∼ 𝑁(0, 𝜎2
𝐷𝑖𝑗

) where 𝜎2
𝐷𝑖𝑗

is a parameter that 
will vary in the simulation. Figure 5.3 illustrates the planned dose distribution, the deliv-
ered dose distribution and each of its components.

The continuous outcome, 𝑌, for each patient will be generated using equation 5.2f. The 
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most important fact to state regarding this equation is that the affect of 𝐷𝑖𝑗 on 𝑌 is linear 
and parameterised by 𝜃𝑖𝑗; the ATE estimand at that pixel. The affect of the interaction be-
tween 𝐷𝑖𝑗 and the covariate 𝐶, on 𝑌, is also linear, and is parameterised by 𝐶

2 𝜉𝑖𝑗; as shown 
in equation 5.2f. 𝝃 = {𝜉𝑖𝑗} represents the interaction strength array, where 𝝃 ∈ ℝ𝑁𝑥×𝑁𝑦 . 
The interaction strengths will be defined by the following function, 𝑧(𝑥, 𝑦), which is eval-
uated at the x- and y-coordinates of each pixel to define the interaction strength array, 𝝃, in 
any required resolution, 

ℎ(𝑥, 𝑦) = 3 sin ( 𝑥𝑦
20𝑁𝑦

) ,

𝑧(𝑥, 𝑦) =
⎧{
⎨{⎩

ℎ(𝑥, 𝑦), if ℎ(𝑥, 𝑦) > 0 and 𝑔(𝑥, 𝑦) > 0

0, otherwise,

(5.5)

where 𝑔(𝑥, 𝑦) is the estimand function defined in equation 5.1. The function, 𝑧(𝑥, 𝑦), pro-
duces values in the range [0, 3]. Figure 5.2b shows the interaction strength array, 𝝃 = {𝜉𝑖𝑗}, 
calculated using 𝑧(𝑥, 𝑦) in equation 5.5, i.e. 𝜉𝑖𝑗 = 𝑧(𝑖, 𝑗), for 𝑁𝑥, 𝑁𝑦 = 10. The interaction 
strength array will be constant for all patients generated in the simulation. The exact form 
of the interaction strength array, i.e. 𝑧(𝑥, 𝑦) equation 5.5, is chosen such that the interaction 
is spatially complex, inhomogeneous, positive, and is non-zero only in regions where the 
estimand array, 𝜽, is non-zero.

Estimation methods

The estimands of interest are the ATE of 𝐷𝑖𝑗 on 𝑌, as specified by equation 5.1 and exem-
plified by figure 5.2a. In this work, estimation methods based in causal inference will be 
tested and compared to current voxel-based estimation methods in radiotherapy.

Three estimation methods based in causal inference will be tested: a pixel-wise sparse causal 
regression, a sparse causal regression, and a causal regression. Each estimation method re-
quires the following assumptions:

1. The causal structure is known, i.e. the DAG in figure 5.1;

2. The data generating process can be modelled using a SCM;

3. The affect of the delivered dose on outcome at each pixel is linear;

4. Ignorability, causal consistency and positivity hold.

In regards to the first assumption, the DAG in figure 5.1 assumes that the delivered dose to 
each pixel causes the outcome, despite the fact that the delivered dose to many pixels will 
have no effect on outcome, as shown in equation 5.1 and figure 5.2a. In this case, the esti-
mation methods should correctly estimate an ATE of zero at these pixels. The second as-
sumption holds because of the form of the generating functions in equations 5.2, i.e. they 
each are written as a function of their parents in figure 5.1 and independent random noise. 
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The third assumption is satisfied from the form of equation 5.2f. The third assumption is 
quite strong, so it is worth noting that it is very easily relaxed, and just made here for sim-
plicity. To explain the fourth assumption, ignorability, i.e. no hidden confounders, is sat-
isfied given I know the causal structure and can identify an adjustment set not including 
latent variable 𝐍; causal consistency, i.e. the outcome observed is actually the potential 
outcome under the observed treatment, is satisfied as I generate potential outcomes from 
equation 5.2f; and positivity, i.e. the conditional density for the treatment is non-negative 
for the covariate values, is satisfied due to the form of the generating functions in equation 
5.2 [118].

The correct adjustment set must be identified in order to make unbiased estimates of the 
ATE of delivered dose at each pixel, 𝐷𝑖𝑗, on the outcome 𝑌. As the data generating process 
is assumed to be the same for all the estimation methods, the identified adjustment sets will 
be identical. The adjustment set can only be composed of observed variables. Recall that 
𝐍 in figure 5.1 is a latent variable representing the parameters generating the treatment un-
certainties. Therefore, the adjustment set cannot contain 𝐍. Leveraging the Back-Door cri-
terion, the Front-Door criterion, and instrumental variables [99, 100], I find that no adjust-
ment sets can be defined using the Front-Door criterion or instrumental variables. However, 
the following adjustment sets are identified as satisfying the Back-Door criterion:

𝐙 = {{𝐷𝑖𝑗}𝑖,𝑗∈𝑁𝑥,𝑁𝑦
, {𝐷𝑖𝑗 × 𝐶}𝑖,𝑗∈𝑁𝑥,𝑁𝑦

, 𝐶}; (5.6a)

𝐙 = {{𝐷𝑖𝑗}𝑖,𝑗∈𝑁𝑥,𝑁𝑦
, {𝐷𝑖𝑗 × 𝐶}𝑖,𝑗∈𝑁𝑥,𝑁𝑦

, 𝑉𝑂, 𝑀𝑂, 𝑉𝑇}. (5.6b)

Note that in equation 5.6, because I consider 𝐍 to be latent, the adjustment sets contain 
the entire delivered dose distribution and all possible interactions between delivered dose 
and covariate. Therefore, the adjustment sets in equations 5.6a and 5.6b contain a total of 
𝑝 = 2𝑁𝑥𝑁𝑦 + 1 and 𝑝 = 2𝑁𝑥𝑁𝑦 + 3 features, respectively. In addition, to simplify the 
adjustment sets, they have been composed parametrically, i.e. with the knowledge that the 
included interaction terms should be between the delivered dose and covariate. Both ad-
justment sets are sufficient, but the adjustment set in equation 5.6b will be used in the sim-
ulation. This is because in reality one could argue that 𝑀𝑂, 𝑉𝑂 and 𝑉𝑇 could have a direct 
effect on 𝑌 (despite us assuming otherwise), and therefore equation 5.6b is more robust to 
mis-specification of the causal structure.

The causal regression is defined as a linear regression with the identified adjustment set 
as features. The sparse causal regression is defined as a linear Adaptive Lasso, using the 
identified adjustment set as features. The Adaptive Lasso is chosen because of its oracle 
property (consistency in variable selection and parameter estimation) and because 𝐃 can 
be considered sparse with respect to 𝑌 [103]. The parameters of the Adaptive Lasso can be 
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estimated from the following loss function, 

̂𝜷 = arg min
𝜷

(
𝑛

∑
𝑖=1

(𝑦𝑖 −
𝑝

∑
𝑗=1

𝑋𝑖𝑗𝛽𝑗)2 + 𝜆
𝑝

∑
𝑗=1

𝑤𝑗|𝛽𝑗|) , (5.7)

where the adaptive weight vector 𝐰 ∈ ℝ𝑝 has been added to the Lasso penalty term [104]. 
The adaptive weights are estimated from data as, 

�̂� = 1
| ̂𝜷∗|𝛾

, (5.8)

where 𝛾 > 0 is an additional hyper-parameter, and ̂𝜷∗ are the parameter estimates from 
an additional regression that is consistent in parameter estimation. In this work, I will es-
timate the adaptive weights using a Ridge regression with the same identified adjustment 
set as features. A Ridge regression is chosen to control for the effects of multicollinear-
ity between pixels in 𝐃 [105]. However, the adaptive weight for variables 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇

are set to zero. This is done because 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇 should be in the true adjustment set. 
The hyper-parameters for the Ridge and Adaptive Lasso, 𝜆𝑅𝑖𝑑𝑔𝑒 and 𝜆, respectively, will 
be selected through 10-fold cross-validation using the glmnet library [119] in the R pro-
gramming language [120]. I choose the values of 𝜆𝑅𝑖𝑑𝑔𝑒 and 𝜆 that minimise MSE. The 
additional hyper-parameter, 𝛾, is set to unit value to reduce total simulation time; however, 
performing cross-validation to select the value of 𝛾 will likely improve the estimation meth-
ods further. The pixel-wise sparse causal regression is setup exactly the same as the sparse 
causal regression, except two key differences: it is applied at each pixel (a total of 𝑁𝑥𝑁𝑦

regressions), and the adaptive weight for the delivered dose at present pixel, 𝐷𝑖𝑗, is set to 
zero. This method is introduced under the hypothesis that removing the adaptive weight 
from the present pixel 𝐷𝑖𝑗, could reduce bias in estimation.

As mentioned, the causal inference methods will be compared to the statistical voxel-based 
method currently used in radiotherapy: the pixel-wise univariate linear regression. Specifi-
cally, the following two models will be applied to each pixel: 

𝑌 = 𝛽0 + ̂𝜃𝑃𝑃
𝑖𝑗 𝑃(𝑖, 𝑗); (5.9a)

𝑌 = 𝛽0 + ̂𝜃𝑃𝐷
𝑖𝑗 𝐷𝑖𝑗. (5.9b)

Equation 5.9a is an estimation method which uses the planned dose at the pixel, 𝑃(𝑖, 𝑗), 
as calculated from equation 5.3. The fitted gradient, ̂𝜃𝑃𝑃

𝑖𝑗 , is interpreted as the estimate of 
the ATE of delivered dose at that pixel. The estimation method in equation 5.9a will be 
referred to as pixel-wise planned, hence the 𝑃𝑃 notation. Equation 5.9b is an estimation 
method which uses the delivered dose at the pixel, 𝐷𝑖𝑗, as calculated from equation 5.2e. 
The fitted gradient, ̂𝜃𝑃𝐷

𝑖𝑗 , is interpreted as the estimate of the ATE of delivered dose at that 
pixel. The estimation method in equation 5.9b will be referred to as pixel-wise delivered, 
hence the 𝑃𝐷 notation. In both equations 5.9a and 5.9b, 𝛽0 is the intercept of the model.
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Parameters Values to test

𝑛𝑜𝑏𝑠 50, 100, 500
𝑁𝑥, 𝑁𝑦 10, 25
𝜎2

𝑈𝐷𝑖𝑗
3e−12, 3e−2, 3e−1, 3

𝑀𝒢𝒫 3e−12, 3e−2, 3e−1, 3
𝜎2

𝒢𝒫 3e−12, 3e−2, 3e−1, 3
𝜎2

𝐿 3e−12, 3e−2, 3e−1, 3

Table 5.1. The table of parameter values to be tested in this simulation. Each possible combination of these 
parameters will be tested for all estimations methods. 𝑛𝑜𝑏𝑠 refers to the number of patients simulated, 𝑁𝑥, 𝑁𝑦
is the number of pixels in the x- and y-directions, respectively, 𝜎2

𝑈𝐷𝑖𝑗
is the variance of the independent noise 

at each pixel (held constant across all pixels), 𝑀𝒢𝒫 is the magnitude of the Gaussian process, 𝜎2
𝒢𝒫 is the 

variance of the radial basis function kernel used in the Gaussian process, and 𝜎2
𝐿 is the variance used to 

generate 𝐿𝑥 and 𝐿𝑦; set-up uncertainty shifts in x- and y-directions.

Simulation set-up

Patient data are simulated according to the functions defined in equation 5.2 (correspond-
ing to the DAG in figure 5.1). For 150 different combinations of the parameters defined and 
presented in table 5.1, the simulation will be run for a total of 100 repetitions, 𝑛𝑠𝑖𝑚 = 100. 
The 150 different combinations correspond to testing each value of 𝑛𝑜𝑏𝑠, cases where 𝑁𝑥

and 𝑁𝑦 are equivalent, each value of 𝜎2
𝑈𝐷𝑖𝑗

, and jointly varying 𝑀𝒢𝒫, 𝜎2
𝒢𝒫 and 𝜎2

𝐿. For the 

𝑘𝑡ℎ repetition, the ATE estimate at each pixel is given by ̂𝜃𝑖𝑗𝑘. Monte Carlo estimates of the 
ATE at each pixel are then calculated as ̂𝜃𝑖𝑗 = 1

𝑛𝑠𝑖𝑚
∑𝑛𝑠𝑖𝑚

𝑘=1
̂𝜃𝑖𝑗𝑘. This is used to form the 

Monte Carlo estimate array, ̂𝜽 = { ̂𝜃𝑖𝑗}.

As the interest is in whether the estimation method can make unbiased estimates of 𝜽, I will 
use bias as a performance measure. Specifically, I will calculate the bias at each pixel and 
visualise the results. I define the bias array as 𝐁 = {𝐵𝑖𝑗} where, 

𝐵𝑖𝑗 = 𝔼[ ̂𝜃𝑖𝑗] − 𝜃𝑖𝑗 ≈ 1
𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚

∑
𝑘=1

̂𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗. (5.10)

As a global metric to compare different simulation setups, the sum of MSE across all pix-
els, MSE𝑡𝑜𝑡, will be used. This is defined as 

MSE𝑡𝑜𝑡 =
𝑁𝑥

∑
𝑖=1

𝑁𝑦

∑
𝑗=1

MSE𝑖𝑗, (5.11)

where, 

MSE𝑖𝑗 = 𝔼[( ̂𝜃𝑖𝑗 − 𝜃𝑖𝑗)2] ≈ 1
𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚

∑
𝑘=1

( ̂𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗)
2

. (5.12)

The average (mean) MSE across all pixels will also be calculated to compare setups with 
different 𝑁𝑥, 𝑁𝑦. This is defined as

MSE𝑎𝑣𝑔 = MSE𝑡𝑜𝑡
𝑁𝑥𝑁𝑦

. (5.13)
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(a)

(b)

Figure 5.4. Monte Carlo estimates of the Average Treatment Effect (ATE) of the delivered dose, 𝐷𝑖𝑗, on the 
outcome, 𝑌, at each pixel for the best performing parameterisations of each estimation method. Estimands are 
shown too. (a) Uses constant values of 𝑁𝑥, 𝑁𝑦 = 10, and (b) uses constant values of 𝑁𝑥, 𝑁𝑦 = 25. Methods 
1-5 correspond to the pixel-wise planned dose, pixel-wise delivered dose, pixel-wise sparse causal regression, 

sparse causal regression and the causal regression, respectively. Method 5, i.e. the causal regression, is 
removed from (b) due to failure to converge. For both (a) and (b), the best performing parameterisations are 

shown above each sub-figure as {𝜎2
𝑈𝐷𝑖𝑗

, 𝑀𝒢𝒫, 𝜎2
𝒢𝒫, 𝜎2

𝐿, 𝑛𝑜𝑏𝑠}.

5.4 Results

Figures 5.4a and 5.4b show the Monte Carlo estimate arrays for the best performing, i.e. 
lowest MSE𝑡𝑜𝑡, parameterisations for each estimation method at 𝑁𝑥, 𝑁𝑦 = 10 and 𝑁𝑥, 𝑁𝑦 =
25, respectively. From figure 5.4a at 𝑁𝑥, 𝑁𝑦 = 10, it is observed quickly that the best per-
forming causal inference methodologies are able to approximate the estimands more accu-
rately compared to the best performing, currently used, pixel-wise planned and pixel-wise 
delivered estimation methods. In fact, the causal regression in figure 5.4a, is able to make 
unbiased estimates of the ATE of the delivered dose, 𝐷𝑖𝑗, on the outcome, 𝑌, at each pixel, 
at this specific parameterisation. The sparse causal regression and the pixel-wise sparse 
causal regression are biased, albeit accurate, with the sparse causal regression being more 
accurate; achieving a MSE𝑡𝑜𝑡 = 12.0 compared to MSE𝑡𝑜𝑡 = 21.2 of the pixel-wise 
sparse causal regression. From figure 5.4b at 𝑁𝑥, 𝑁𝑦 = 25, the first thing to note is that 
the causal regression failed to converge. This is due to a larger number of collinear fea-
tures, and the method failing to combat the effects of multicollinearity. Also from figure 
5.4b, the best performing pixel-wise sparse causal regression and the sparse causal regres-
sion methods both perform with a lower accuracy compared to 𝑁𝑥, 𝑁𝑦 = 10, however, 
the sparse causal regression is again more accurate; achieving a MSE𝑡𝑜𝑡 = 2329.7 com-
pared to MSE𝑡𝑜𝑡 = 7367.3 of the pixel-wise sparse causal regression. The best performing 
sparse causal regression for 𝑁𝑥, 𝑁𝑦 = 10 and 𝑁𝑥, 𝑁𝑦 = 25, had MSE𝑎𝑣𝑔 of 0.12 and 3.73, 
respectively; showing that increasing the number of pixels has had an affect on pixel-wise 
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ATE inference. In figures 5.4a and 5.4b, at this specific best performing parametrisation, 
the pixel-wise delivered dose method in comparison to the pixel-wise planned dose method 
is able to estimate the underlying dose-response pattern.

Figure 5.5 shows visualisations of the bias array, 𝐁, of each estimation method for the sim-
ulation run with different parameterisations of 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫, 𝜎2
𝐿 and constant values 

of 𝑛𝑜𝑏𝑠 = 500, and 𝑁𝑥, 𝑁𝑦 = 10. Firstly, it is observed that the the pixel-wise deliv-
ered dose is able to estimate the underlying ATE with lower bias as 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫 and 
𝜎2

𝐿 increase. The bias at each pixel from the causal regression reduces as 𝜎2
𝑈𝐷𝑖𝑗

, 𝑀𝒢𝒫, 𝜎2
𝒢𝒫

and 𝜎2
𝐿 increase. The sparse causal regression performs well over all parameterisations, 

unlike the causal regression and pixel-wise sparse causal regression, which show stronger 
dependencies on 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫 and 𝜎2
𝐿. In addition, when the parameters 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 

𝜎2
𝒢𝒫 and 𝜎2

𝐿 are all set to 3e−12, i.e. when the delivered dose distribution is approximately 
equal to the planned dose distribution, the sparse causal regression handles the high degree 
of multicollinearity between adjacent pixels well. This indicates that using the Ridge re-
gression to estimate the adaptive weights was successful, as the effects of multicollinear-
ity have been reduced by adding the Ridge penalty; unlike for the causal regression, where 
the bias array contains much larger values. Interestingly, the sparse causal regression has 
a very low bias in the regions where the estimand is zero, and has a larger bias in the re-
gions where the estimand is non-zero. This reflects the Adaptive Lassos oracle property of 
consistency in variable selection, however, utilisation of the Ridge regression does bias pa-
rameter estimates where parameters are deemed important. The same observations hold for 
the bias arrays produced by the estimation methods for 𝑛𝑜𝑏𝑠 = 500, and 𝑁𝑥, 𝑁𝑦 = 25, as 
shown in figure 5.6.

Figures 5.4a and 5.4b showed many of the best performing estimation methods having value 
of 𝜎2

𝑈𝐷𝑖𝑗
= 3 and 𝑛𝑜𝑏𝑠 = 500. To visualise the dependency of MSE𝑡𝑜𝑡 on 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 

𝜎2
𝒢𝒫, 𝜎2

𝐿 and 𝑛𝑜𝑏𝑠, figure 5.7a was produced for 𝑁𝑥, 𝑁𝑦 = 10. From figure 5.7a, it is first 
observed that all estimation methods achieve lower MSE𝑡𝑜𝑡 across all parameterisations 
compared to the pixel-wise planned dose method. MSE𝑡𝑜𝑡 for the pixel-wise delivered dose 
method generally decreases as 𝑀𝒢𝒫, 𝜎2

𝒢𝒫 and 𝜎2
𝐿 increase. However, the pixel-wise deliv-

ered dose method performs best (lowest MSE𝑡𝑜𝑡) for 𝜎2
𝑈𝐷𝑖𝑗

= 3. Of the causal inference 
methods, the causal regression at 𝑛𝑜𝑏𝑠 = 500 performs the best. However, the causal re-
gression displays the strongest dependency on 𝑛𝑜𝑏𝑠. As there are a total of 𝑝 = 2𝑁𝑥𝑁𝑦 +
3 = 203 features in the adjustment set, accurate estimation of parameters is not possible 
until 𝑛𝑜𝑏𝑠 > 𝑝 using the causal regression. The pixel-wise sparse causal regression and 
the sparse causal regression, due to the sparsity assumption holding true, display a weaker 
dependence of MSE𝑡𝑜𝑡 on 𝑛𝑜𝑏𝑠 compared to the causal regression. Of the causal inference 
methods, the sparse causal regression displays the weakest dependence of MSE𝑡𝑜𝑡 on 𝑛𝑜𝑏𝑠. 
For all causal inference methods, MSE𝑡𝑜𝑡 decreases as 𝜎2

𝑈𝐷𝑖𝑗
increases. The same obser-

vations hold for figure 5.7b, which shows the dependency of MSE𝑡𝑜𝑡 against 𝜎2
𝑈𝐷𝑖𝑗

, 𝑀𝒢𝒫, 
𝜎2

𝒢𝒫, 𝜎2
𝐿 and 𝑛𝑜𝑏𝑠 for 𝑁𝑥, 𝑁𝑦 = 25 (𝑝 = 1253 features). However, the best performing 

method across all parameterisations is the sparse causal regression.
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Figure 5.5. Visualisations of the Monte Carlo estimates of the bias array, 𝐁, of each estimation method for the 
simulation run with different parameterisations of 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫 and 𝜎2
𝐿, with values shown above each 

sub-figure as {𝜎2
𝑈𝐷𝑖𝑗

, 𝑀𝒢𝒫, 𝜎2
𝒢𝒫, 𝜎2

𝐿}. Results are for constant values of 𝑛𝑜𝑏𝑠 = 500, and 𝑁𝑥, 𝑁𝑦 = 10. The 
columns represent the results of estimation methods 1-5, which correspond to the pixel-wise planned dose, 

pixel-wise delivered dose, pixel-wise sparse causal regression, sparse causal regression and the causal 
regression, respectively.
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Figure 5.6. Visualisations of the Monte Carlo estimates of the bias array, 𝐁, of each estimation method for the 
simulation run with different parameterisations of 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫 and 𝜎2
𝐿, with values shown above each 

sub-figure as {𝜎2
𝑈𝐷𝑖𝑗

, 𝑀𝒢𝒫, 𝜎2
𝒢𝒫, 𝜎2

𝐿}. Results are for constant values of 𝑛𝑜𝑏𝑠 = 500, and 𝑁𝑥, 𝑁𝑦 = 25. The 
columns represent the results of estimation methods 1-4, which correspond to the pixel-wise planned dose, 

pixel-wise delivered dose, pixel-wise sparse causal regression and the sparse causal regression, respectively.

5.5 Discussion

In this novel work, I fused ideas in causal inference, such as SCMs, with ideas in statistics, 
such as sparse statistical modelling, to propose and evaluate estimation methods for pixel-
wise ATE inference of a high-dimensional 2D continuous treatment on an outcome vari-
able. I simulated radiotherapy treatment-outcome data from a simplified, yet realistic, data 
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generating process; ensuring many of the defining complexities of radiotherapy treatment-
outcome data are preserved. Planned dose distributions were fit to an assumed randomly 
placed tumour and a fixed OAR, to create a treatment plan similar to VMAT. Delivered 
dose distributions were simulated with realistic geometric and dosimetric uncertainties: 
random shifts in x- and y-directions of the entire planned dose distribution, spatially cor-
related noise sampled from a Gaussian process prior, and independent noise at each pixel. 
Whilst delivered dose was assumed to be observed, parameters quantifying the geometric 
and dosimetric uncertainties were assumed to be latent. The outcome variable was gener-
ated by the delivered dose to a spatially complex set of pixels with inhomogeneous dose-
response (ATE estimand), a covariate that also affects the delivered dose distribution, and a 
spatially inhomogeneous interaction between delivered dose and the covariate.

I tested 2 statistical estimation methods based on the current voxel-based analysis in radio-
therapy (pixel-wise planned and pixel-wise delivered), and 3 estimation methods based in 
causal inference (pixel-wise sparse causal regression, sparse causal regression and a causal 
regression). I found that all methods based in causal inference performed with lower MSE𝑡𝑜𝑡

across all parameterisations tested in the simulation. The sparse causal regression fully ex-
ploited the oracle property of the Adaptive Lasso to simultaneously identify important pix-
els with dose-response and estimate ATE, and it was successful at both resolutions tested; 
although MSE𝑎𝑣𝑔 did increase when 𝑁𝑥, 𝑁𝑦 = 25. As the sparsity assumption holds true, 
I found that the sparse estimation methods can obtain lower MSE𝑡𝑜𝑡 at a lower 𝑛𝑜𝑏𝑠 across 
all parameterisations of the simulation compared to the causal regression. I hypothesised 
in section 5.3.4 that the pixel-wise sparse causal regression could reduce bias in ATE esti-
mates at each pixel, however, I have observed the opposite. It is thought that by setting the 
adaptive weight to zero for 𝐷𝑖𝑗 at the current pixel, as I loop through them, falsely identifies 
as 𝐷𝑖𝑗 as being in the true adjustment set; and this biases the estimate. I found that using a 
Ridge regression to estimate the values of the adaptive weights did indeed bias ATE esti-
mates, however, its use in the sparse causal regression did indeed reduce the effects of mul-
ticollinearity, as the method performed well in the domain of 𝜎2

𝑈𝐷𝑖𝑗
, 𝑀𝒢𝒫, 𝜎2

𝒢𝒫, 𝜎2
𝐿 = 3e−12

(where multicollinearity between adjacent pixels is strongest) compared to the other estima-
tion methods.

Before being adapted to radiotherapy treatment-outcome data, voxel-based methods first 
originated in neuroimaging [63]. Furthermore, the use of sparse statistical models in the 
voxel-based method also first appeared in neuroimaging [73], before its application to ra-
diotherapy data [74]. The benefits of sparse statistical models to the analysis of high-dimensional 
imaging / treatment data (variable selection, efficient estimation and interpretability) have 
been known for a while, however, it has yet to be fused with SCMs and used for causal in-
ference for data of this type in neuroimaging or in radiotherapy. For the first time, sparsity 
and causal inference methodologies have been adapted to tackle the aims of the voxel-based 
analysis in radiotherapy treatment-outcome studies: (1) to identify sub-regions of organs 
with a given dose-response and (2) estimate the effect of radiotherapy voxel dose on out-
come. In fact, leveraging the Adaptive Lasso and its oracle properties in the sparse causal 
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regression allowed us to tackle both these aims simultaneously. Given the sparsity assump-
tion held in the simulated data, I showed that the sparse causal regression could perform 
well in the domain where 𝑝 >> 𝑛𝑜𝑏𝑠.

Although not applicable to the paradigm of the voxel-based analysis, where 𝑝 >> 𝑛𝑜𝑏𝑠, 
Nabi et al. [121] developed the technique ‘Semi-Parametric Causal Sufficient Dimension 
Reduction’ to analyse high-dimensional treatments. The authors tested this technique to 
estimate the causal effect of the combination of 5 continuous parotid DVH parameters on 
radiation-induced weight loss. One of the main ideas of Nabi et al. [121]’s work was that 
the high-dimensional treatment could be represented by a lower dimensional representa-
tion which preserves the cause-effect relationships. To utilise this idea to solve the aims of 
the voxel-based analysis in radiotherapy, one must be able to interpretably link the lower 
dimensional representation back to the original features. This could be challenging in gen-
eral, yet especially challenging for high-dimensional causal inference methods that leverage 
the subject of representation learning in Artificial Intelligence (AI); where interpretability 
is a major challenge [122]. Whilst not interpretable, the current advances in causal repre-
sentation learning include the work of Pryzant et al. [123], who tackled challenging social 
science questions in Natural Language Processing (NLP). The authors considered the case 
with text as a high-dimensional treatment and was able to adjust for confounding using ad-
versarial learning, i.e. adjusting the loss function to learn a representation of the text that is 
not related to the confounders. An additional advantage of using representation learning is 
that a Convolutional Neural Network (CNN) could be used to construct the representation, 
which could potentially eliminate the role of image registration in the current voxel-based 
method [65]; a source of uncertainty. CNNs perform excellently on imaging data [124] and 
are known to be invariant under translations, with variants of the CNN also shown to be in-
variant under rotations [125] and scaling [126]; transformations that image registration in 
the voxel-based method seeks to account for.

In this work, the data generating process was setup to represent many of the defining com-
plexities in radiotherapy treatment-outcome data: multiple correlated voxels, continuous 
dose values, presence of tumour and OAR, etc. However, in reality the data generating pro-
cess could be much more complicated. There could be additional confounders, additional 
interactions, and additional clinical intervention variables that would affect the delivered 
dose distribution other than 𝑉𝑂, 𝑀𝑂 and 𝑉𝑇, for example, DVH parameters for many differ-
ent organs. Whilst many of these additional variables may be observed, some may be latent 
in practice. In addition, different mechanisms could be present. For example, I assumed 
the tumour location was random, however, there is data to suggest that geographical loca-
tion could influence tumour location in head and neck cancer [127]. In addition, tumour 
location has been shown to be linked with survival outcome for different tumour sites [128, 
129]. Despite the possibly more complicated data generating process, drawing the process 
as a DAG and identification of an adjustment set could still be possible. To check the as-
sumed DAG is reasonable, one could check for the presence and extent of hidden bias using 
a sensitivity analysis.
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One of the main assumptions in our choice of DAG in figure 5.1 is that the effect of 𝑉𝑂, 
𝑀𝑂 and 𝑉𝑇 on 𝑌 is entirely indirect; it is mediated by the delivered dose distribution 𝐃. 
𝑉𝑂, 𝑀𝑂 and 𝑉𝑇 appear in our choice of adjustment set, however, if they do have a direct af-
fect on 𝑌 then they must certainly be included. I also assume there is no interaction present 
between values of the delivered dose distribution, i.e. the effect of delivered dose on out-
come at each voxel does not depend on the value of the dose elsewhere. This assumption is 
consistent with the early work by Schultheiss et al. [34] and Withers et al. [35] who intro-
duced the concepts of serial and parallel organs and the Functional Subunit (FSU); a sub-
volume of the organ that contributes to its function via an independent dose-response func-
tion. However, evidence such as links between integral dose and fatigue [130], the possible 
immunogenic effect of radiotherapy on distant metastases [131, 132], and inflammatory cy-
tokines induced by radiation that may induce a response larger than the specific radiation 
target [133], could all support the existence of interaction effects between values of the dose 
distribution. Regardless, if believed to be important the interaction terms between values of 
the delivered dose distribution can be included, and a sparse model consistent in variable 
selection can be used to identify the important variables to include.

In the simulation, I also assumed that the tumour and organ were of constant shape and 
size. Essentially, ignoring the effect of segmentations. As mentioned in section 5.3.1, seg-
mentations will affect the planned dose distribution and may introduce confounding as they 
can mediate the effect of clinical factors. If these clinical factors are observed, they could 
be included in the adjustment set to make unbiased causal effect estimates. However, de-
pending on the DAG, the segmentations may need to be included as a variable to control for 
confounding. In their raw form, segmentations can be represented using a high-dimensional 
3D segmentation mask. In this case, advances in causal representation learning could again 
prove useful. For example, Veitch et al. [134] tackled challenging causal inference ques-
tions in NLP such as ‘What is the causal effect of adding a theorem to a paper on the chance 
of conference acceptance?’. In this example, the paper’s content is a high dimensional con-
founder, and to answer the question the confounder needs to be adjusted for. Veitch et al. 
[134] developed ‘Causally Sufficient Embeddings’, a low-dimensional representation that 
retains only the ‘readable’ parts of the confounder that are predictive of both the treatment 
and outcome, and is proven to be sufficient and efficient for causal inference. This method-
ology could be adapted to produce an embedding for the segmentation masks, which can 
then be adjusted for if necessary. However, if the outcome of interest is known to generate 
only from a specific OAR, then one could assume that only this organ segmentation affects 
the dose within it. In this case, the effect of the segmentations could be ignored if the dose 
within the organ is used instead of the full dose distribution, and normalised to a common 
frame of reference.

The sparsity assumption is valid in radiotherapy treatment-outcome studies for many out-
comes where there is evidence to suggest a localised radiosensitive region of anatomy; ren-
dering the remainder of the dose distribution to have no important effect for a given out-
come. For example, radiation dose to the salivary glands (parotid, submandibular and sub-
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lingual glands) is a known cause of xerostomia [135, 136]. On the other hand, there are 
some outcomes that are believed to be sparse, yet remain largely unknown. For example, 
whilst there is evidence to suggest that radiation dose to the posterior fossa, cerebellum and 
brainstem is linked with fatigue [137], a definite answer remains uncertain. A causal in-
ference methodology that utilises sparsity, such as ours, could help shed light on outcomes 
such as radiation-induced fatigue. However, there are some technical challenges with the 
utilisation of sparse estimation methods for causal inference. For instance, if the sparse es-
timation method did not select the true set of non-zero parameters for the adjustment set, 
then the estimated causal effect could be biased. Whilst the Adaptive Lasso has the oracle 
property, it does so asymptotically. Therefore, whilst it is consistent in variable selection 
asymptotically, it could select the wrong adjustment set with finite data [138, 103]. In addi-
tion, I found that for the sparse causal regression, MSE𝑎𝑣𝑔 increased as I increased 𝑁𝑥 and 
𝑁𝑦. This is likely due to the total number of features growing as 𝑝 = 2𝑁𝑥𝑁𝑦 + 3, and num-
ber of important features growing proportionally. As 𝑁𝑋, 𝑁𝑦 are increased further, and as 
the number of features in the true adjustment set exceeds the sample size, estimates will be-
come noisier. Therefore, depending on the outcome studied and the sample size available, it 
is likely that the resolution of the delivered dose distribution will need to be carefully con-
sidered for efficient voxel-based causal inference.

In this work, I assumed that outcomes were generated via a linear function of the deliv-
ered dose distribution, the interactions, and the covariate in the SCM used. In the simu-
lated data this assumption was true. However, in clinical data the relationships are likely 
to be non-linear. In this case, it is important to utilise non-parametric sparse estimation 
methods for the ATE. In addition, it is likely that the effect of dose at each voxel, whilst 
assumed to be constant across the population in this work, will be heterogeneous in clini-
cal data. Therefore, non-parametric sparse estimation methods for heterogeneous treatment 
effects are likely needed. Innovations on this front include the work of Caron et al. [139], 
who developed the ‘Sparse Bayesian Causal Forest’, a non-parametric causal regression that 
leverages random forests to model heterogeneous non-linear relationships and includes a 
sparsity-inducing prior distribution for the splitting probabilities of each feature in the ran-
dom forest; where non-important features are given a splitting probability close to zero. 
This method could be adapted for voxel-based causal inference with clinical data.

To model the system using a SCM, each variable must be a function of its parents in the 
DAG and some independent random noise. Whilst an appropriate model for the covariates 
and outcomes in clinical data, the planned dose at each voxel, which is traditionally used 
in voxel-based methods, is a deterministic function of its parents. To enable use of a SCM
for voxel-based causal inference, I introduced the delivered dose distribution. The planned 
dose distribution is the expectation of the delivered dose distribution, where the expectation 
is over the number of treatment fractions [111]. The delivered dose distribution is known 
to be a better predictor of radiation-induced outcomes than the planned dose distribution 
[112]. The independent random noise at each pixel, 𝑈𝐷𝑖𝑗

, is ultimately the component of 
the delivered dose distribution that satisfies the SCM requirements for voxel-based causal 
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inference. Estimating the delivered dose distribution is possible, for example, Shelley et al. 
[112] estimated the delivered dose distribution using Cone Beam Computed Tomography, 
segmentations and a ray-tracing algorithm.

The primary goal of this work was to investigate if unbiased and consistent voxel-based 
causal inference is possible. Whilst simplifications were made when simulating data, many 
of the defining complexities of radiotherapy data were conserved. I found that unbiased 
and consistent voxel-based causal inference is possible under the discussed assumptions. 
I also found that the current estimation methods used in the voxel-based analysis, the per-
pixel planned and pixel-wise delivered methods, resulted in biased estimates. Furthermore, 
all estimation methods that leveraged a causal framework performed with lower MSE𝑡𝑜𝑡. 
I found that the sparse causal regression, which leveraged the Adaptive Lasso and its ora-
cle properties, allowed us to tackle both aims of the voxel-based analysis simultaneously. 
The sparse causal regression performed well over all parameter space, and controlled for 
the effects of collinear features in the dose distribution. Whilst not a first introduction of 
causal inference to radiotherapy, this work is to the best of our knowledge a first introduc-
tion of causal inference to the voxel-based method. Therefore, the framework I proposed, 
from DAG setup, to the fusion of SCMs with sparse statistical models, can be built upon by 
future methods and scaled to the analysis of clinical radiotherapy data.

Causal inference in radiotherapy treatment-outcome data involves many of the most chal-
lenging topics in causal inference today: high-dimensional data, continuous treatments and 
heterogeneous treatment effects. It is an exciting and challenging direction for future re-
search. In this work I was interested in ATE inference, however, in future research it would 
be extremely interesting to explore the highest level of Pearl’s ladder of causation [140]: 
association, intervention and counterfactuals. Currently, I am at the intervention level, but 
being able to generate counterfactual outcomes for individuals, i.e. outcome predictions un-
der hypothetical interventions, could be used in the future to find the optimal radiotherapy 
treatment for individuals.

5.6 Conclusion

The aim of this work was to use simulated data to investigate if unbiased and consistent 
voxel-based causal inference is possible, how, under what circumstances, and with what ac-
curacy. I simulated simplified, yet realistic, radiotherapy treatment-outcome data. Despite 
our simplifications made for the simulated data, it captures many of the defining complex-
ities of radiotherapy data: multiple correlated voxels, continuous dose values, presence of 
tumour and OAR, etc. I sought to establish methodologies that, for the first time, can es-
timate the causal effect of dose on outcome across the anatomy. I found that all methods 
based in causal inference performed better in the simulation compared to current voxel-
based statistical methods in radiotherapy. In particular, one method I tested, the sparse causal 
regression, was able to accurately identify and ignore regions with zero causal effect. By 
ignoring the values of dose in these unimportant regions, accurate causal effect estimates 
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were possible in the important regions; where it was needed most. This method showed 
potential to work for lower sample sizes and also at higher resolutions. Whilst our work 
makes the first steps, further work is needed to scale up our methodologies for the analysis 
of clinical data.

This work has shown that leveraging sparse causal inference methods can benefit both the 
identification of regions of given dose-response and the estimation of treatment effects. 
Causal inference methodologies provide a powerful approach to tackling the aims of the 
voxel-based analysis and furthering our understanding of the mechanisms behind how com-
plications arise. Therefore, adapting causal inference methodologies to the analysis of clin-
ical radiotherapy treatment-outcome data could lead to new and impactful insights on the 
causes of treatment complications, and in turn, to improved optimisation of complication 
risk in radiotherapy treatment planning.
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Chapter 6

Conclusions

The aim of current voxel-based approaches is to (1) identify sub-regions of organs with 
a given dose-response and (2) estimate the effect of radiotherapy voxel dose on outcome. 
However, this must be done from observational data, as using an RCT environment to iden-
tify the effect of radiotherapy treatment at different anatomical regions is not ethical; dose 
will never be randomised within a patient. I hypothesise that due to confounding present in 
observational data and no methodology yet to reliably adjust for it, I observe studies con-
flicting in location of radiosensitive sub-regions of organs and the effect of radiation dose 
on outcomes. Under certain assumptions, developing a causal framework provides methods 
to adjust for confounding. The aim of this thesis was to use simulated data to investigate if 
unbiased and consistent voxel-based causal inference is possible, how, under what circum-
stances, and with what accuracy.

Causal inference for each feature of a high-dimensional treatment is challenging for a num-
ber of reasons. Firstly, constructing a DAG for the relationships between covariates, the 
high-dimensional variable and the outcome, could be extremely challenging, and on occa-
sion, it could be a completely unknown process. Secondly, analysing a high-dimensional 
variable with a number of features, 𝑝, that greatly exceeds the sample size, 𝑛, would lead 
to inefficient effect estimation. For many complications in radiotherapy treatment, it is be-
lieved that only a sub-set of the features of the high-dimensional treatment have an impor-
tant effect on them, i.e. the treatment is sparse. Thereby, sparse estimation methods that 
leverage a causal framework, and hold the oracle property, could be a useful tool that (1) 
selects only the parts of the high-dimensional variable that are important and (2) enables 
efficient causal effect estimation.

In this novel work, I fused ideas in causal inference, such as SCMs, with ideas in statistics, 
such as sparse statistical modelling, to propose and evaluate estimation methods for pixel-
wise ATE inference of a high-dimensional continuous treatment (radiotherapy) on an out-
come variable. I simulated radiotherapy treatment-outcome data from a simplified, yet re-
alistic, data generating process; ensuring many of the defining complexities of radiotherapy 
treatment-outcome data were preserved. Planned dose distributions were fit to an assumed 
randomly placed tumour and a fixed OAR, to create a treatment plan similar to VMAT. De-
livered dose distributions were simulated with realistic geometric and dosimetric uncertain-
ties: random shifts in x- and y-directions of the entire planned dose distribution, spatially 
correlated noise sampled from a Gaussian process prior, and independent noise at each 
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pixel. Whilst delivered dose was assumed to be observed, parameters quantifying the ge-
ometric and dosimetric uncertainties were assumed to be latent. The outcome variable was 
generated by the delivered dose to a spatially complex set of pixels with inhomogeneous 
dose-response (ATE estimand), a covariate that also affects the delivered dose distribution, 
and a spatially inhomogeneous interaction between delivered dose and the covariate.

I tested 2 statistical estimation methods based on the current voxel-based analysis method 
in radiotherapy (pixel-wise planned and pixel-wise delivered), and 3 estimation methods 
based in causal inference (pixel-wise sparse causal regression, sparse causal regression and 
a causal regression). I found that all methods based in causal inference performed better 
across all parameterisations tested in the simulation compared to current voxel-based sta-
tistical methods in radiotherapy. Exploiting the oracle property of the Adaptive Lasso to 
simultaneously identify important pixels with given dose-response and estimate ATE, was 
in general a successful technique over all parameterisations of the simulation tested. In fact, 
as the sparsity assumption generally holds true in radiotherapy treatment-outcome studies, 
I found that the sparse estimation methods achieve better performance at a lower 𝑛 across 
all parameterisations compared to other estimation methods. The best estimation method 
over all parameterisations was the sparse causal regression. This method was able to assign 
a near zero effect to unimportant pixels, and whilst estimates elsewhere were biased, they 
were accurate; especially at lower resolutions.

In this work, the data generating process was setup to represent many of the defining com-
plexities in radiotherapy treatment-outcome data: multiple correlated voxels, continuous 
dose values, presence of tumour and OAR, etc. However, in reality the data generating pro-
cess could be much more complicated. Outcomes could be generated by complicated non-
linear functions of dose, covariates and interactions; treatment effects are likely heteroge-
neous, rather than constant, in a patient population; and segmentations will affect the treat-
ment plan. All factors we, and all current voxel-based methods, assume to be false. How-
ever, it may be possible to take account of these factors using non-parametric estimators for 
heterogeneous treatment effects and with current advances in representation learning for 
causal inference, as discussed in section 5.5. Regardless, the novel framework I proposed 
in this work, from DAG setup, to the fusion of SCMs with sparse statistical models, can be 
built upon by future methods and scaled to the analysis of clinical radiotherapy data.

This work has shown that leveraging sparse causal inference methods can benefit both the 
identification of regions of given dose-response and the estimation of treatment effects. 
Causal inference methodologies provide a powerful approach to tackling the aims of the 
voxel-based analysis and furthering our understanding of the mechanisms behind how com-
plications arise. Therefore, adapting causal inference methodologies to the analysis of clin-
ical radiotherapy treatment-outcome data could lead to new and impactful insights on the 
causes of treatment complications, and in turn, to improved optimisation of complication 
risk in radiotherapy treatment planning. 
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