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Artificial Intelligence Techniques and Cloud
Computing for Wind Turbine Pitch Bearing Fault

Detection
Chao Zhang Fausto Pedro Garcia Marquez Long Zhang

Abstract—Blade bearings are critical rotating units for max-
imizing wind power yield. It is essential to detect the blade
bearing faults at an early stage and prevent their catastrophic
failure. One major challenge lies in the signal denoising under the
time-varying operating conditions. This time-varying condition is
often treated as a series of piece-wise time invariant conditions
when filtering the collected signal. The duration of the time-
invariant period, also referred to as the window length or
comprehensive period, is often determined by trial-and-error,
which could lead to improper separating the time varying signals
and poor fault detection performance. In this paper, to find a
suitable window length, a novel method called the Temporal
Convolutional Augmented Bayesian Search (TCABS) algorithm
is used to search for a ‘comprehensive period’ for the unknown
signal. After estimating the window length, the Split Bayesian
Augmented Lagrangian Algorithm (SBAL) was used based on
split window techniques to construct time-varying models. The
proposed TCABS and SBAL are validated by real signals
collected from an industrial-scale wind turbine in operation for
over 15 years.

Index Terms—search algorithm, neural networks, system iden-
tification, cloud computing, blade bearing fault diagnosis, se-
quence data, non-destructive test

I. INTRODUCTION

Wind power, as a major type of renewable energy, is a
crucial part of modern energy mix to allow the public to
construct a carbon emission-free society [1]. According to
global statistics data on wind energy [2], the global total
cumulative wind power capacity was only 94 GW in 2007,
rising to 486.8 GW in 2016 and over 800 GW in 2021.

Wind turbines that extract wind power from natural wind
flows, often work in an extreme environment that may be
awash with various corrosion factors. Long-term exposure
in harsh circumstances and mechanical wear damage wind
turbine components and deteriorate their performance and
shorten their lifespans.

The wind turbine blade bearing, a crucial but vulnerable
inner component of wind turbines, is one of the most likely
components to cause reliability problems. The small failures in
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blade bearings may result in poor pitching and aerodynamic
of a wind turbine, so that the energy conversion efficiency
may decrease, and they may also cause safety accidents when
blades entirely lose control [3].

Human inspection costs are high [4], and slight internal
damage may be difficult to detect, so it is necessary to design a
condition monitoring and fault diagnosis (CMFD) method for
wind turbine blade bearing to improve reliability and reduce
economic losses and safety risks.

Acoustic emission (AE) sensors are chosen to collect data in
this paper for their high sensitivity in the frequency range [5],
after multidimensional considerations and comparisons among
commonly-used sensors such as optical sensors and vibration
sensors.

After the signal is collected using AE sensors, the raw noisy
signal has to be filtered. There are very limited work of denois-
ing signals on wind turbine blade bearing fault detection. This
is because large-scale application of wind turbines happened
15 years ago, and damage in wind turbines often happens after
10 years. In general, it is a problem that was recently exposed
to the industry and had little prior research.

As there are limited work on blade bearing CMFD, some
typical work on CMFD used in other fields are briefly re-
viewed here. Self-adaptive noise cancellation method called
discrete/random separation (DRS) [6], [7] can reduce the linear
noise effects in raw signals by editing the cestrum of raw
signals. Auto-regressive model [8] with reinforcement learning
can well approximate the fault signal components by self-
learning and evolution. Artificial neural network LSTM [9]
can judge the healthy condition and predict the durability,
namely remaining useful life. However, the aforementioned
CMFD methods may not be able to be directly used for wind
turbine blade bearing CMFD. For blade bearing CMFD, we
need consider two challenges:

• The pitch bearing is operated under non-stationary con-
dition due to unbalance wind load and start-stop. This
time varying condition is often treated as a number of
piecewise time invariant conditions with different win-
dows lengths. In this case, the window lengths have to be
determined properly to make sure the accurate separation
of the signal.

• Two major denoising methods presently include linear fil-
ters and nonlinear filters. Linear filters often enjoy simple
forms and fast computations but may perform poor for
signal with strong nonlinear components. Nonlinear filters
can deal with nonliear signal but may have more complex
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models. Proper model parameter estimation methods may
be chosen to provide a good trade-off between model
complexity and filtering performance.

In terms of the time-varying problem, Antoni [10] utilized
fast kurtogram to lock corresponding frequency band so that
the time-varying problem can be evaded. Liu [11] utilized
a type of augmented lagrangian method for noise model
construction, simplifying it as approximately time-invarying
systems. These aforementioned methods may not solve the
problems of time-varying conditions well. Regarding window
length, Chen et al. [12] optimized the window size to predict
protein structure based on a probabilistic approach. Ding et
al. [13] used the optimal window length to detect anomalies
for streaming data, considering the concept drift phenomenon.
Shynkevich et al. [14] studied the impact of changing input
window lengths on forecasting varied horizons, looking at the
combination of a forecast horizon and input window length.
Although they all showed the importance of appropriate win-
dow length, their determination process still depends on trial-
and-error methods that are not universally applicable.

Most existing denoising methods can be classified as linear
or nonlinear filters. discrete/random separation (DRS)is one
typical linear filter. Liu et al. [15] used iterative nonlinear
filter (INF) to reduce nonlinear noise and extract weak fault
signals. Li et al. [16] applied the technique of bind vibration
component separation to extract nonlinear mechanical fault
features from various rotating components. In addition to
the linear and nonlinear filter models, the model parameter
optimization also effect the filtering performance. Huang et
al. [17] proposed a novel multi-source sparse representation
to realize fault diagnosis without prior knowledge. Liao et al.
[18] improved a generalized infimal convolution smoothing
(GICS) to enhance the estimation accuracy of sparse matrices.
Sparse representation techniques will also be applied into our
work.

Drawing on these concerns, this paper used the split window
techinique to treat the time-varying condition with piecewise
period. For the time-invarying system, the period is fixed, and
we analyze and deal with it according to the fixed period.
For a time-varying system, the period is changing, and we
need to break the signal up into segments according to the
period of change and then process it. It is difficult for us to
do that, but we can find an approximate period (comprehensive
period), which is a good representation of this little variable
period. Then, the optimal window length contributing to
excellent signal processing performance is always related to
the comprehensive period in all window-based methods. To
find appropriate piecewise time, referred to as winodw length,
a novel method called Temporal Convolutional Augmented
Bayesian Search (TCABS) was used. To provide a good trade-
off between model complexity and filtering performance, a
model parameter estimation methods named Split Bayesian
Augmented Lagrangian Algorithm (SBAL) was employed to
obtain sparse coefficients during the process of time-varying
model construction.

It is worth mentioning that this TCABS method considers
inner characteristics of an unknown signal for constructing
a fault diagnosis system. The determination of these hyper-

parameters may be related to inner characteristics of signals.
If not consider inner characteristics of dynamic systems, this
direct relationship of the black-box model between input and
output may miss the nature of targeted objects, so understand-
ing inner characteristics is crucial, especially for determining
hyper-parameters here. Based on this idea, we proposed the
parallel search algorithm TCABS, to obtain a ‘comprehensive
period’ related inner characteristics of a signal. This ‘compre-
hensive period’ can be significant reference of window length
so that a fault diagnosis system can be constructed without
many trials.

For this time-varying signals, the window-based solutions
are often applied to contrapose them in a segment-by-segment
format. However, different window length will severely influ-
ence the final performance of signal processing. Therefore, our
proposed TCABS, which can find a suitable window length,
is essential to better signal processing.

In essence, the major work of this paper can be concluded
as follows:

1) A search algorithm TCABS algorithm is proposed to de-
termine hyper-parameter window length. TCN network struc-
ture is used as feature extraction of TCABS to obtain signal
inner characteristics. Furthermore, a new acquisition function
augmented expected improvement (AEI) is used to accelerate
the convergence of the TCABS.

2) The Split Bayesian Augmented Lagrangian Algorithm
(SBAL) was employed to estimate sparse coefficients of the
nonlinear filter models. All proposed methods in this paper
are validated with an industrial-scale and naturally damaged
wind turbine which has been operated in a real wind farm for
over 15 years.

II. TEMPORAL CONVOLUTIONAL AUGMENTED BAYESIAN
SEARCH (TCABS)

A. Research Subject – Sequence Data

Before clarification of our algorithm, variables have to be
defined first. Regarding any unknown signal, it should be con-
tinuous and uninterrupted, but data acquired by sensors will be
transformed into a discrete form. A series of discrete sequence
pair from a sensor can be defined: (x0, y0), ...(xn−1, yn−1).
The x0, ..., xn−1 is the time sequence, and the y0, .., yn−1 is
the signal amplitude corresponding to the time sequence [19].

The purpose of our search algorithm is to calculate
the comrephensive period for unknown signals, which can
be referred to optimize subsequent sequence models. The
input of our search structure is discrete sequence pair
(x0, y0), ...(xn−1, yn−1), and the output is calculated com-
prehensive period. Formally, mapping relation of a search
structure is function s to output comprehensive period T :

T = s((x0, y0), ...(xn−1, yn−1)) (1)

Here discrete sequence pair (x0, y0), ...(xn−1, yn−1) is the
collected signal that is definite, merely slightly influenced by
sampling rate. The goal of our search algorithm is to calculate
the best comprehensive period Tb during multiple iterations,
where the discrete sequence pair should be related to some
distribution.
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B. Feature Extraction Module

The purpose of this search algorithm is to conveniently
calculate comprehensive period, so that the hyper-parameter
window length can be determined better to optimize sub-
sequent sequence models. The computing time is crucial to
a search algorithm. To save computing time, our feature
extraction module is realized by a type of parallel method
that refers to temporal convolutional networks (TCN) .

B1. Causal Convolutions

The causal convolution is a type of structure that refers
to the fully-convolutional network (FCN) [20] to extract fea-
ture information from sequence data. The thought of causal
convolutions is that compressed information obtained from
convolution operation in low layer can be delivered into high
layer, layer by layer. The content in higher layer is more
comprehensive and concrete until the predicted value is output
in top layer. The propagation process is shown in Fig. 1 where
PL is the window length needed to be adjusted.

𝑦(𝑛)𝑦(𝑛 − 𝑃𝐿) … input

output

Fig. 1. Causal Convolution Architecture.

B2. Dilated Convolutions

As mentioned above, the causal convolutions are utilized
to extract feature from sequence data that is delivered in
form of progressive layer, but it will result in a very deep
networks. Following the work [21], the dilated convolution
can be employed to reduce depth of neural networks by
enlarging receptive field. As can be seen in Fig. 2, the dilated
convolution can be carried out with way of interval operation
(here, convolution size k = 2 and interval d = 2). This dilated
convolution can refer to longer history than regular causal
convolution so that the number of convolution operations
is few when input data length is definite, and these few
operations indirectly reduce the required layers for a neural
network. It is worth noting that, When interval d = 1, a dilated
convolution reduces to a regular convolution.

B3. Residual Blocks

Although the dilated convolutions are applied, our neural
network is still deep, resulting in significant training loss. A
residual connection [22] proposed for image processing can
also be applied for sequence data processing in order to avoid

𝑦(𝑛)𝑦(𝑛 − 𝑃𝐿) … input

output

Fig. 2. Dilated Convolution Architecture.

performance degradation from deep networks. Compare with
the normal output y = F(x), the new output using a residual
connection is defined as follows:

y = x+ F(x) (2)

Here x and y are the input and output of current layer. Ob-
serving (2), the residual connection is a flexible and pluggable
type of connection block. When a deep layer is redundant,
the (2) in this layer will become y = x, namely, identity
mapping. This way has been repeatedly proved to benefit
very deep networks because it is easy to obtain this kind of
identity mapping when some layers are redundant. The Fig.
3 (convolution size k = 3, interval d = 1) describes this
type of residual connection, the middle layer will be skipped
when the networks find the identity mapping resulting in better
performance during training process.

residual 
connection

input

output

𝑦(𝑛)𝑦(𝑛 − 𝑃𝐿) …
Fig. 3. Residual Block.

C. Search Module

The search module here is divided into initialization and
exploration, referring to the Bayesian Optimization. Initial-
ization can accelerate the convergency of search algorithm.
Exploration can determine the search strategy of searching
process.

C1. Initialization

In order to obtain an efficient search algorithm, we take
a trick about the initial points to accelerate the searching
process. We focus on the initial points because our proposed
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search algorithm is a Bayesian-based structure that is severely
influenced by initialization.

Regarding a continunous system, the fourier transform [23],
[24] is defined:

F [y(t)] = Y (w) =

∫ ∞

−∞
y(t)e−iwtdt (3)

if we replace the w with 2πf :

F [y(t)] = Y (w) =

∫ ∞

−∞
y(t)e−i2πftdt (4)

Then, here we merely consider fixed sampling frequency,
not variant sampling frequency, so the first assumption
is that our collected signals possess the characteristics
of the equal time interval. With regard to N data pairs
((x0, y0), ...(xn−1, yn−1)), the discrete fourier transform
(DFT) is obtained:

F [y[n]] = Y (eiw) = Y [k] =

N−1∑
n=0

y[n]e−i 2π
N nk(k = 0, ..., N−1)

(5)
The specific DFT can be calculated by some fast fourier
transform algorithm (FFT), such as Cooley-Tuckey, which
has been repeatedly proved efficient in many studies. The
computational complexity in original DFT is O(N2), and that
in Cooley-Tuckey is just O(Nlog2N).

Subsequently, we could transform the signal from time
domain into frequency domain, using DFT methods. The
frequency-domain signal from DFT is with interval ∆f =

1
N∆t . We can obtain that frequency axis are the folloing
frequencies:

f =
ω

2π
=0,∆f, 2∆f, . . . , (N/2− 1)∆f

± (N/2)∆f,−(N/2− 1)∆f, . . . ,−∆f
(6)

It is noting that the front half is positive frequencies and the
back half is negative frequencies, and here we only consider
the positive frequencies.

After that, the m frequencies corresponding to top m large
amplitudes in frequency domain will be selected into a set A:

A = {a1, ..., am} (7)

Note that this m should be selected according to the total
number of valuable frequencies that have filtered the noisy
frequencies. The noisy frequencies with tiny amplitudes are
from noise that should be eliminated from our signals. Em-
pirically, those frequencies with amplitudes smaller than one-
tenth of median should be eliminated as noisy frequencies,
and one-tenth of the total number of valuable frequencies can
be determined as the m of A.

Afterward, We need to calculate the lowest common multi-
ple for the maximum and the minimum element in set A and
the reciprocal value P is the initial point, as shown in (8).

P =
1

[Amax, Amin]
(8)

C2. Exploration

Regarding the exploration, we refer to the Bayesian Op-
timization [25], which consists of two parts: probabilistic
surrogate model and acquisition function. The probabilistic
surrogate model here is selected as Gaussian Process (GP) due
to its universality for nonlinearity and linearity. The acquisition
function will use a trick to make exploration care more about
our initial points that are exquisitely prepared. Four principles
about exploration should be noticed:

• We should make the most of each exploration, including
the initial point.

• The value of acquisition function (utility function) is
small near the existing sample points because those points
have already been explored, and then calculating the value
of the function at those points is unhelpful to find the
globally optimal solution.

• The value of the acquisition function is large at points
with wide confidence intervals because these points are
uncertain and worth exploring.

• The value of the function is larger at points where the
mean of a surrogate model is larger because the mean
is an estimate of the value from the surrogate model at
that point, and these points are more likely to be near the
extreme point.

It is assumed that x is the window length that needs to be
searched and a GP is selected as surrogate model, as follows:

f(x) ∼ GP (m(x), k (x,x)) (9)

where we can find that a GP is completely determined by
mean function m and covariance function k. To be convenient,
we simplify here that the mean value function m is zero,
namely m(x) = 0. Some other selection of priors for the
mean can be referred to [26], [27]. The covariance function is
the squared exponential function:

k (xi,xj) = exp(−1

2
∥xi − xj∥2) (10)

According to those definite points explored, the new surro-
gate model (GP) can be updated.

we define the prior set D1:t = {x1:t, f1:t} that consists of
a series of exploration points(x1:t corresponds to x axis and
f1:t corresponds to y axis)

Each point at function f can be described by normal
distribution N (0,K)

K =

 k (x1,x1) . . . k (x1,xt)
...

. . .
...

k (xt,x1) . . . k (xt,xt)

 (11)

By utilizing the properties of GP, f1:t and ft+1 observe joint
Gaussian:

[
f1:t
ft+1

]
∼ N

(
0,

[
K k
kT k (xt+1,xt+1)

])
(12)

where

k = [k (xt+1,x1) k (xt+1,x2) · · · k (xt+1,xt)] (13)
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Subsequently, a predictive distribution could be obtained
through Sherman-Morrison-Woodbury formula [28]:

P (ft+1 | D1:t,xt+1) = N
(
µt (xt+1) , σ

2
t (xt+1)

)
(14)

µt (xt+1) = kTK−1f1:t

σ2
t (xt+1) = k (xt+1,xt+1)− kTK−1k

(15)

The update process for next point xt+1 in GP is presented
as from (11) to (15). However, we still need to make sense
how to select the next point that is decided by acquisition
function.

With regards to the exploration strategy, three types of
acquisition functions are proved useful in many researches.
They are upper confidence bound (UCB), probability of im-
provement (PI) and expected improvement (EI).
• UCB:

UCB(x) = µ(x) + κσ(x) (16)

where κ > 0, a weight parameter.
• PI:

PI(x) = Φ(
µ(x)− f(x+)− κ

σ(x)
) (17)

where x+ = argmaxf(xi). Φ is CDF of the standard
normal distribution.
• EI:

EI(x) ={
(µ(x)− f (x+)− κ) Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0
0 if σ(x) = 0

(18)
where Z = (µ(x)−f(x+))/σ(x). ϕ and Φ denote the PDF

and CDF of the standard normal distribution, respectively.
The three acquisition functions have have their own merit

and drawback:
• UCB: easy to find global search but convergance is slow.
• PI: easy to be trapped in locally optimal solution.
• EI: trade-off between global search and local optimiza-

tion.
At last, we give priority to the EI due to its excellent

comprehensive performance. In addition, to make full use of
the initial point, we proposed EI-variant acquisition function–
augmented expected improvement (AEI):

AEI(x) = (µ(x)− f (x+)− ξ) (Φ(Z) +G(x)D(i))
+σ(x)ϕ(Z) if σ(x) > 0
0 if σ(x) = 0

(19)
Where i is current iteration number and ξ is hyper-parameter
that is usually set at 0.01 [29]. G(x) and D(i) here are defined
as a prior function and a decay function, respectively.

The G(x) in (19) is shown below:

G(x) =
1

σ
√
2π

exp

(
− (x−P)2

2σ2

)
(20)

Where P is the initial point.
The D(i) in (19) is decay function, which could be the

following three types: gauss decay, exponential decay and

linear decay. To intuitively compare these three decay curves,
their formulas are represented as (21) and corresponding graph
can be seen as Fig. 4:

d1 =
1

k1
√
2π

e(−
x2

2k1
)

d2 = e(−k2x)

d3 = −k3 ∗ x+ 1

(21)

where k1, k2, k3 are coefficients that influence decay rate. By
experiments, we found the gaussian decay d1 may perform
relatively well in our most experiments.

0 5 10 15 20 25 30

Iteration

0
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0.6
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de

Gaussian Decay

Exponential Decay
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Fig. 4. Three Types of Decay Function.

D. Outline of TCABS

The general structure of TCABS is shown in Fig. 5. The
general layers include Hierarchy I and Hierarchy II. Hierarchy
I is aimed at feature extraction that refers to implementation
details of TCN networks. In addition, Encoder1 and Encoder2,
consisting of fully connected layers, process the forward and
backward sequences, respectively. In terms of Hierarchy II,
inspiration from Bayesian Optimization is integrated into it.
The Decoder utilizes the training loss of Hierarchy I to
calculate the goal so that the exploration function can know
the next exploring point. The surrogate model here can be GP.

E. Application of Cloud Computing

Cloud computing and associated techniques are also applied
in our researches. Cloud computing is a concept for providing
on-demand network access to a shared pool of customizable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that may be quickly supplied and released
with no administration effort or service provider contact [30].

High-performance computing (HPC) is a common con-
cept along with cloud computing, which tries to address
sophisticated (scientific) computation issues by utilising su-
percomputers and computer clusters [31]. HPC is still a little
different from cloud computing. Cluster computing capacity
is frequently fixed, but operating an HPC programme often
necessitates much human setting (e.g. tuning based on a par-
ticular cluster with a fixed number of homogenous computing
nodes). Although the design thought of cloud computing and
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Fig. 5. TCABS Structure.

HPC may be distinct, the cloud computing platforms often
realize HPC to accelerate computing processes.

In this paper, the AI studio developed by Baidu, Inc. was
selected to realize cloud computing. AI Studio is an open cloud
computing platform that can provide advanced HPC in the
cloud. By using AI Studio, our proposed TCABS algorithm
can be run efficiently. In addition, the data collected from
sensors can be injected into cloud clusters to obtain calculation
results directly. In traditional ways, the collected data may
need to be analyzed by a personal computer, and then it takes
a long calculation to get the processed results.

III. DISCUSSION FOR TCABS

1. Why select TCN architecture as feature extraction
module?

• TCN architecture could realize fine-grained control of
input length for each step prediction. The input length of
historical data could be manipulated according to demand
at liberty, so each step’s output could only utilize specific
length information for forwarding prediction. Many mod-
els, such as RNN (Recurrent Neural Network), require
all historical information during the whole prediction
process, which is unavailing to adjust the window length
in this case dynamically.

• Compared with other deep learning models, the training
speed, memory occupation, and computation complexity
all have advantages for the characteristics of parallel
computing for each prediction step. At the same time,
the TCN also possesses a strong capability of sequence
prediction and information extraction, based on its causal
convolutions, dilated convolutions, and residual block.

2. Why AEI acquisition function?
Even if we use the TCN structure, a type of neural network

structure that can do parallel computation, it is still not fast
enough and time-saving. In order to speed up the search speed
and accelerate the convergence of searching process, we did
a trick in the selection of initial points and modified the
acquisition function so that the search algorithm could search
carefully at points with high confidence.

IV. FAULT DIAGNOSIS

Our method for diagnosing wind turbine blade bearings
consists of three sections: preliminary calculation, signal filter,
and fault inference. Firstly, The preliminary calculation section
will use TCABS to generate a window length for signal
filter. Subsequently the signal filter section will utilized SBAL
to obtain denoised signals excellently filtered. Finally, fault
inference will resample the denoised signals in order domain
to dertermine final fault type. The detailed procedures is shown
in Fig. 6.

A. Order Domain Analysis

Frequency or order analysis is necessary to detect the fault
frequency and establish the defect type. The frequency or order
domain analysis is an important part of fault diagnosis because
it may convert the original time domain signal into an intuitive
signal in the frequency or order domain, allowing defects to
be identified quickly.

For reliable fault detection and diagnosis of the specific fault
type of a long-used and damaged bearing, the fault frequency
must be calculated [32]. But fluctuated speed during data
collection may generate a ‘smearing problem’ in the frequency
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Fig. 6. Complete flow chart of fault diagnosis.

domain, resulting in many fault frequency components. Order
analysis with resample techniques and Hilbert transform in the
order domain is used to handle this dense challenge [33], [34].
Specific derivation on the fault order calculation can refer to
[11].

Finally, Within a brand-new order domain, the denoising
processing signal can be rebuilt or resampled, and the order
domain is represented as follows:

Oouter =
Nb

2
· (1− db

dp
cosα)/Rr

Oinner =
Nb

2
· (1 + db

dp
cosα)/Rr

Oball =
dp
2db

· (1− (
db
dp

cosα)2)/Rr

(22)

Where Oouter, Oinner and Oball denote the fault character-
istic frequency (FCO) on inner race, outer race and balls
respectively; db and dp denote diameter of ball and pitch
respectively; α means bearing contact angle; Rr represents
gear ratio, proportional to the speed of bearing .

B. Model Construction

There are two types of signals in the raw acoustics emission
(AE) signal obtained from industrial wind turbine blade bear-
ings: deterministic signals and fault signals. [6], [7]. Determin-
istic signals, such as mechanical rotation motions and electric
impulses, are routinely unwelcome components that must be
discarded. Fault signals issued by damaged components are
useful for further analysis and must be isolated from raw AE
data. Generally, with the inclusion of two components, the raw
signal from a wind turbine blade bearing may be complete, as
shown in (23):

y(n) = d(n) + ξ(n), n = 1, ...,M +N (23)

y(n) here represents the raw bearing signal. d(n) and ξ(n)
denote deterministic signals and fault signals, respectively.
The notations M and N refer to the dimensional size of the
proposed dictionary matrix P , which will be clarified in the
context that follows. Thereinto, the deterministic component

can be built using historical recordings from a specific time
period [15], with terms of both linearity and non-linearity [35].

Consequently, the deterministic signal component can be
represented in matrix format to better express the linearity
and non-linearity terms:

D̂ = PΘ (24)

Here D̂ = [d(M + 1), d(M + 2), ..., d(M + N)]T and Θ =
[θ1, θ2, ..., θM , θ1,1, θ1,2, ..., θM,M , ..., θM , ...,M︸ ︷︷ ︸

γ

]T

The dictionary matrix P consistis of ρ elements. Only the
first element is the linear term, and the remaining are high
order nonlinear terms, as described below:

P =
[
ρ1 ρ2 ... ργ

]
(25)

All elements ρi in the matrix have a size of N ×M , hence
the size of P is N × γM . The complete expression of ργ is
shown as follows:

ργ =


y(M)γ y(M)γ−1y(M−1) ... y(1)γ

y(M+1)γ y(M+1)γ−1y(M) ... y(2)γ

...
...

...
...

y(M+N−1)γ y(M+N−1)γ−1y(M+N−2) ... y(N)γ

 (26)

Finally, for the consistency of expression, the formula (23)
here is also reconstructed as a matrix form as follows:

Y = PΘ+ Ξ (27)

Here Y = [y(M + 1), y(M + 2), ..., y(M + N)]T and Ξ =
[ξ(M + 1), ξ(M + 2), ..., ξ(M +N)]T

C. Split Bayesian Augmented Lagrangian Algorithm (SBAL)

The split window idea is introduced for raw AE signals
in order to achieve a more fine-grained control for the time-
varying conditions. If the window length is defined as Lw and
the raw AE signal length is represented as Lr, we can define
the window set W :

W = [w1, w2, ..., wi] (28)

Combined with the aforementioned window length and signal
length, the index of last element i = Lw/Ls.

Each window wi in window set W is an independent state,
approximate Hidden Markov Model (HMM). It is reasonable
to assumed that the current window is just a continuation of
the previous window. Then if the appropriate window length
Lw is chosen, each window wi will be relatively dependent
because collected raw signals always comply with a certain
period. Both of the aforementioned assumptions are valid
HMM conditions.

Then, following [36], [37], regarding each window wi, the
l1-norm minimization can be used to solve the equation fitting
problem Y = PΘ, represented as follows:

Θ̂k+1 = argmin
θ

1

2

{∥∥PΘ− Y
∥∥2
2
+ λ

∥∥GΘ
∥∥
1

}
(29)

Where Θ̂k+1 is the alterable parameter in the kth iteration. To
avoid over-fitting, λ ∈ (0, 1) is the adjustable hyper-parameter
related to penalty. G is a diagonal matrix that impacts each
iteration directly. Subsequently, the original BAL algorithm
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can be transferred into a window-based method SBAL. The
complete steps of SBAL algorithm are shown as follows.

Algorithm 1 SBAL Search

1: Initialization:
2: Determine split window length Lw of each window wi

3: k = l = 0, c ∈ (0, 1), λ0 = µ ∈ (0, 1)
4: v0 = d0 = 0, G0 = I
5: while l < Lw/Ls do
6: while sign(Θ̂k+1) = sign(Θ̂k); |Θ̂k+1| − |Θ̂k| → 0

do
7: Θ̂k+1 = (PTP + µGT

kGk)
−1(PTY + µGT

k (vk +
dk))

8: vk+1 = max(0, (GkΘ̂k+1 − dk)
−µ/λk)−max(0,−(GkΘ̂K+1 − dk)− µ/λk)

9: dk+1 = dk − (GkΘ̂k+1 − vk+1)
10: Gk+1 =

diag[PT (λkI+P (diag[|(Θ̂k+1)|./(Gk)])P
T )−1P ]

1
2

11: εk+1 =
∥∥P Θ̂k+1 − Y

∥∥2
2

12: λk+1 =

{
aλk, (a > 1) if | εk+1

εk
− 1| < c

bλk, (0 < b < 1) if | εk+1

εk
− 1| ≥ c

13: k = k + 1
14: end while
15: end while

Ultimately, if the optimal Θ is determined, the denoised
signal can also be acquired by the following formula:

Yd = sign(Y )|Y −∆Θ̂k| (30)

where ∆ is a constructed raw signal matrix, subset of matrix
(26). Complete formula derivation can refer to [36], [37].

To intuitively know the denoising process with SBAL, the
inner details for the proposed SBAL denoising process are
shown in Fig. 7.

V. SIMULATION

As can be seen in Fig. 8, the signal is from time-invarying
system with fixed period of one second. Fig. 8 (a) is pure fault
signal and Fig. 8 (b) is fault signal adding noise. We cannot
obtain the specific period from the simple observation on the
Fig. 8 (b). According to the proposed TCABS method, the
calculated period with largest score can be found at sequence
length 513 in Fig. 9, namely 1.026 s, because sampling
frequency here is 500.

From Fig. 9, We can observe that the blue shade area is not
so large, denoting the exploration process is relatively suc-
cessful. The blue shaded area around the GP curve represents
the mean value minus variance to mean value plus variance,
namely, µ(xt) − σ(xt) to µ(xt) + σ(xt). It can be viewed
as a type of uncertainty degree, and the larger it is, the more
unknown information is around the region. In other words, the
blue shade area can guide exploration and exploitation.

Fig. 10 shows a signal from time-varying system with a
increasing period. From Fig. 11, the sequence length with
highest score exists at 3070, namely 6.14 s. This must be not
the period for this time-invarying signal, but it can be regarded
as a comprehensive period to describe characteristics for this
piece of signal.

VI. EXPERIMENTS

As illustrated in Fig. 12 (a), the industrial-scale wind turbine
blade bearing for tests in this article is 261 kg with a pitch
diameter of 1.1 m, and it has been operating in a genuine
industrial wind power plant for more than 15 years. The
industrial wind turbine is with a 7.75 m and 139 kg loading
(blade) on the blade bearing, as illustrated in Fig. 12 (b),
to represent the real maintenance scenario with loadings. In
addition, unlike most research studies, the tests in this work
employ naturally developed damage throughout the service
term rather than purposely damaged or small-scale models of
wind turbines.

Test 1 to Test 5 are experimental sequence data that can
be used to further validate the performance of our proposed
TCABS to hyper-parameters. The primary hyper-parameters
in SBAL are delay M and window length N . To observe
the effectiveness of hyper-parameters, exhaustive search with
kurtosis indicator is executed in Test 1 when the search space
is restricted to a fixed range (window length: 1-1000; delay:
1-100). Following work [37], the kurtosis value is used to
measure denoising performance. The high kurtosis value often
indicates that small noise exists in signal. Note that here
only adopts one window without the split window technique
to reduce calculation complexity, but the time to get search
results of linear model Fig. 13 (a) and two order nonliear
model Fig. 13 (b) are still very long, 4795.556094s and
13011.244237s, respectively. We can observe that the kurtosis
will be significantly improved when delay reaches 30, no mat-
ter linear or nonliear models. It can be concluded that the delay
is not the primary factors to influence model performance
and delay 30 may be enough in almost all cases. In addition,
the long search time here also validates the necessity to use
TCABS for window length search because time consumption
for exhaustive search will be more prolonged when using the
SBAL algorithm and high model orders.

Subsequently, to better filter signal of Test 1, the nonlinear
orders are increased to four, and the SBAL algorithm is used.
Combined with TCABS algorithm, the final search length is
obtained at 1039 and the time domain results are shown in
Fig. 14. To emphasize the effectiveness of TCABS, four other
controlled experiments were conducted. The experimental
results are shown in Table I. In addition to kurtosis, three
AE hit parameters, energy, Root-Mean-Square (RMS), and
Average Signal Level (ASL), are utilized to compare these
five experiments. The energy is often used to measure the
fault signals that is extracted from raw AE signal. The RMS
and ASL can be utilized to measure the noise levels in a signal
[38]. From Table I, we can find that Test 1 with window length
1039 has the highest kurtosis and energy and lowest RMS
and ASL, compared with the other four experiments, denoting
that the model with window length 1039 possesses superior
performance in noise signal filtering and fault signal extracting
results.

Regarding analysis for filtered signals, Fault Characteristic
Frequency (FCF) and Fault Characteristic Order (FCO) are
useful tools for diagnosing the fault type of wind turbine blade
bearings. But, the ‘smearing problem’ [11] of FCF will make
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Fig. 7. SBAL denoising process.
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(a) (b)

Fig. 12. Test rig of wind turbine blade bearing: (a) side view (b) front view.
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Fig. 13. Search by exhaustion method. (a) search results of linear model
(b)search results of two order nonliear model

finding detect frequencies difficult when dealing with time-
varying conditions, so FCO is often utilized. According to
average bearing speed and inner parameters, the theoretical
fault characteristic frequencies can be calculated. Furthermore,
by computation of intrinsic parameters of blade bearings, the
theoretical fault characteristic order (FCO) of this bearing
can be calculated by (22), which is fixed for a specific
blade bearing, as shown in Table II. To better represent
fault diagnosis results, Fault Indicator (FI) is introduced as
(31). FI value that approaches 100% means matching fault
type. According to Fig. 15, the FI value for Oouter can be
calculated: |5.850 − 5.824|/5.824 × 100% = 99.6%, so fault
type in this bearing may be the inner race fault.

FI = 1− (|OI −OT |/OT )× 100% (31)

where OI is identified FCO, OT is theoretical FCO.
In order to further verify the accuracy of diagnostic results

and the effectiveness of our proposed TCABS and SBAL
algorithm, another two experiments (Test a and Test b) in time-
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TABLE I
FIVE CONTROLLED EXPERIMENTS.

Test ID Window Length Kurtosis Energy RMS ASL
Test 1 1039 5576.4 1923.1 0.0027 -160.3
Test 2 200 4317.6 1773.3 0.0037 -158.2
Test 3 500 3318.8 1752.8 0.0033 -155.6
Test 4 2000 3848.6 1659.7 0.0029 -158.9
Test 5 5000 3812.8 1890.1 0.0030 -157.5

TABLE II
THEORETICAL FCO OF THE WIND TURBINE BLADE BEARING.

Rr Oinner Oouter Oball

5.33 5.824 5.433 1.735
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varying conditions are executed. In addition, the DRS method
that has been repeatedly proved useful is used to contrast with
our proposed method. Time domain results for Test a and
Test b are shown as Fig. 16 and Fig. 17, respectively. Both
kurtosis value from DRS method are smaller than our proposed
method, denoting that our proposed method is superior to DRS
method. Fig. 18 represents the order domain results of Test a
and Test b that are obtained from resample signal, denoting
identified FCO 5.834 and 5.798, respectively. Subsequently,
the FI can be calculated as Table III shown. The inner race
fault has FI value 99.7%, denoting that some damage existing
in inner race.

TABLE III
FAULT INDICATOR CALCULATION.

Test Inner race fault Outer race fault Ball fault
Test a 99.8% 92.6% -136.3%
Test b 99.6% 93.3% -134.2%

Average 99.7% 93.0% -135.3%
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Fig. 16. Time domain results of Test a.
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VII. DAMAGE VALIDATION

An electronic endoscope is used to check the industrial-
scale wind turbine blade bearing in this work to confirm the
results of defect detection. Fig.19 from endoscope denotes
that the defect, measured size 9mm length and 5mm height,
exists at the bearing inner race. This detection result validates
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Fig. 18. Order domain results based on Hilbert envelope. (a) order domain
results for Test a (b) order domain results for Test b

the accuracy of the previous diagnostic results. Therefore, the
suggested TCABS and SBAL approaches in this work can be
effective for defect detection of wind turbine blade bearings,
indicating the wide application potential on a natural industrial
occasion.

Fig. 19. Inner race defects detected by electronic endoscope.

VIII. CONCLUSION

In this paper, Temporal Convolutional Augmented Bayesian
Search (TCABS) was proposed to determine the hyper-
parameter window length for sequence models. The charac-
teristic of TCABS is that it is a type of parallel searching
algorithm to find suitable hyper-parameters, which can be
executed in distributed systems to accelerate calculation. In ad-
dition, the SBAL used for nonlinear filter model construction
can determine suitable parameters automatically and swiftly.
The primary advantage of SBAL is that it can deal with the
time-varying system because of the split window technique
introduced to make batch processing for sequence data.

Both simulation and experiments of wind turbine blade
bearing were executed to validate the efficacy of our pro-
posed TCABS and SBAL methods. The experimental results
show that the TCABS method is also useful in determining
the hyper-parameter window length for the SBAL algorithm.
Therefore, it is also believed that the TCABS method can
be applied to similar window-based methods for automatic
determination of the window length. In addition, by comparing
kurtosis values, the SBAL method of parameter estimation for
model construction can perform better in noise signal filtering
and fault signal extraction than the traditional discrete/random
separation (DRS) method.
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