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Most of Earth’s volcanic eruptions occur underwater, and these submarine eruptions can
significantly impact large-scale Earth systems (e.g., enhancing local primary production by
phytoplankton). However, detecting submarine eruptions is challenging due to their
remote locations, short eruption durations, lack of sea surface signature (if eruptions
do not breach the surface), and the transient nature of the surface manifestations of an
eruption (e.g., floating pumice clasts, hydrothermal fluids). We can utilize global satellite
imagery of 10–30m resolution (e.g., Landsat 8, Sentinel-2) to detect new eruptions;
however, the large data volumes make it challenging to systematically analyze satellite
imagery globally. In this study, we address these challenges by developing a new semi-
automated analysis framework to detect submarine eruptions through supervised
classification of satellite images on Google Earth Engine. We train our algorithm using
images from rafts produced by the August 2019 eruption of Volcano F in the Tofua Arc and
present a case study using our methodology on satellite imagery from the Rabaul caldera
region in Papua NewGuinea. We potentially find a large number of new unreported pumice
rafts (in ~16% of images from 2017–present). After analysis of the spatial pattern of raft
sightings and ancillary geophysical and visual observations, we interpret that these rafts
are not the result of a new eruption. Instead, we posit that the observed rafts represent
remobilization of pumice clasts from previous historical eruptions. This novel process of raft
remobilization may be common at near-shore/partially submarine caldera systems (e.g.,
Rabaul, Krakatau) and may have significant implications for new submarine eruption
detection and volcanic stratigraphy.

Keywords: submarine volcano monitoring, pumice raft dispersal, machine learning (ML), sentinel-2, Google Earth
engine (GEE)

1 INTRODUCTION

Submarine volcanism is an important driver for Earth’s climate and geochemical cycles on global
scales (mid-ocean ridge volcanic system and submarine large igneous provinces) as well as on
regional scales (Embley et al., 2004; Santana-Casiano et al., 2013; Tilstone et al., 2014; Kelley, 2017;
Mittal and Delbridge, 2019). For instance, submarine eruptions inject ash, pumice, and magmatic
volatiles (with nutrients such as Fe) into the water column and the atmosphere (White et al., 2015).
Pumice rafts, one of the key signatures of some submarine eruptions, can transport volcanic products
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FIGURE 1 | (A) Fraction of all detected submarine eruptions out of total eruptions and fraction of detected shallow submarine eruptions (less than 100 m water
depth) out of all detected submarine eruptions (Global Volcanism Program, 2013). Only a small fraction of submarine eruptions are pumice-forming. (B) Mean spectral
response curves generated for a Sentinel-2 raft image in the Tonga region (11 August 2019). Error bars are generated from the standard deviation measured for each
wavelength. Spectral response curves for pumice from the Rabaul region (20 April 2020) and a lake near Puyehue-Cordón Caulle are also provided for comparison.
For Puyehue-Cordón Caulle, Sentinel-2 imagery was not available, so Landsat 8 imagery was used instead, and mean reflectance values were averaged between two
dates (19 June 2013 and 5 October 2013). (C) Schematic of workflow used in this study.
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andmarine organisms across thousands of kilometers, potentially
dispersing nutrients and increasing microbial biomass and
biodiversity in areas geographically distant from the site of the
eruption (DeVantier, 1992; Risso et al., 2002; Bryan et al., 2012).
Pumice rafts can also be a significant hazard for human maritime
activities, especially by clogging harbors and affecting near shore
sea life and fisheries, disrupting local economies (Bryan et al.,
2012; Jutzeler et al., 2020), as observed in the recent raft dispersal
from the 2021 eruption of Fukutoku-Okanoba volcano, a
submarine volcano in the Bonin Arc (24.285° N, 141.481° E)
(Fauria et al., 2022; Yoshida et al., 2022).

Modern day submarine volcanism includes bothmid-ocean ridge
and ocean-island volcanism as well as fully/partially submarine
subduction zone volcanism (e.g., Kermadec-Tonga Arc, Izu-
Bonin Arc, Papua New Guinea Arc) (White et al., 2006; Global
Volcanism Program, 2013). Overall, submarine volcanism
potentially represents the majority (> 70%) of Earth’s present-
day volcanism (White et al., 2006; White et al., 2015; ERUPT,
2017; Rubin et al., 2012). However, we have historically detected only
a very small fraction of expected underwater eruptions. In fact, only
~10% of all eruptions in the SmithsonianGlobal Volcanism database
(Global Volcanism Program, 2013) over the past 100 years are
submarine (Figure 1A, (White et al., 2006)) and the majority of
detected eruptions are shallow (< 100m water depth; Figure 1A).

One of the key reasons for this strong bias in our submarine
eruption detection ability is the remote location of submarine
volcanoes, as well as the difficulty in detecting eruptions that may
or may not breach the sea surface. In addition, unlike subaerial
volcanoes, precursory gas emissions or thermal anomalies are
muchmore difficult to detect beneath the water surface. Although
multiple new approaches have been proposed to improve
submarine volcanism detection, including hydro-acoustics
[e.g., (Heaney et al., 2013; Tepp et al., 2019)], seismic and
ground deformation with ocean bottom seismometers
(Wilcock et al., 2016; Matsumoto et al., 2019; Cesca et al.,
2020; Tepp and Dziak, 2021), and ocean thermal anomalies
(Baker et al., 1989; Mittal and Delbridge, 2019), challenges
remain due to limited global instrumental coverage. In this
study, we describe another dataset—satellite imagery—that can
be used to efficiently detect and characterize products of
submarine volcanism.

Automated satellite image analysis has already proven to be
very useful for global subaerial eruption detections based on
thermal anomalies, ash-rich subaerial plumes, and sulfur dioxide
emissions (Wright et al., 2004; Brenot et al., 2014; Furtney et al.,
2018; Poland et al., 2020; Engwell et al., 2021). However these
methods are not adapted for submarine eruptions where the
presence of water obscures/reduces these signatures. Satellite
imagery has been used to map the eruptive products (e.g.,
pumice, ash, hydrothermal fluids) from submarine eruptions
(Bryan et al., 2004; Jutzeler et al., 2014; O’Malley et al., 2014;
Jutzeler et al., 2020; Sakuno, 2021; Whiteside et al., 2021) on an
event-by-event basis. For example, a pumice raft from the 7
August 2019 Tonga eruption of an unnamed submarine volcano
(sometimes referred to as Volcano F, 18.325°S, 174.365°W) in the
Tofua Arc was tracked in near-real-time by Sentinel-2 (~10 m/
pixel) and Landsat 8 (~30 m/pixel) satellite imagery (Jutzeler

et al., 2020). However, this was done by manual hand-tracing and
visual tracking through various satellite images. Although this
process is fairly accurate for large rafts, it introduces subjectivity
in tracing, especially for smaller rafts. Consequently, it is difficult
to quantify uncertainties and biases across different studies. An
ancillary challenge with using satellite imagery is the large data
volume associated with satellite collections. For example, a single
day in the Tonga region is composed of about forty individual
100 × 100 km image granules, each containing about 600 MB of
data. Thus, analyzing entire global collections over extended time
periods, and for multiple different satellites, would require
handling enormous amounts of data and requisite computing
resources.

Our study aims to address these challenges of submarine eruption
detection by developing a semi-automated Machine-Learning (ML)
based methodology using global, publicly available, high resolution
(~ <30m/pixel) satellite data products (Figure 1C). This method
utilizes Google Earth Engine (Gorelick et al., 2017), in order to
remove the large data storage need that is typical for analyzing
satellite collections. Our primary focus is on detecting rafts formed
from floating pumice (or pumiceous material, Supplementary Text
S16) emitted by intermediate to silicic volcanism, but our approach
can be applied to other signatures of submarine eruptions (e.g.,
discolored water from hydrothermal fluids). Our analysis is
complementary to recent work on detection of large submarine
eruptions using specific global, low resolution (> 250m/pixel)
satellite products (O’Malley et al., 2014; Qi et al., 2020; Whiteside
et al., 2021).

As a complementary question, we also seek to examine
whether individual pumice raft detections necessarily indicate
a new eruption. Previous work has examined the remobilization
of pumice clasts, which may have been deposited in the area
immediately surrounding the vent, or stranded a distance away
after traveling as a raft, following large eruptions (Mandeville
et al., 1996; Shane et al., 1998; Manville et al., 2002; Jutzeler et al.,
2020). Using our automated detection algorithms, we can
improve raft detection (of scales of at least a few pixel scale,
e.g., a few 100 m2 for Sentinel-2 imagery and even smaller with
commercial sub-m pixel scale imagery). These observational
constraints on pumice raft occurrence, along with field studies
of the detected rafts and textural analysis, can help understand
the re-rafting mobility and floatation ability of pumice of
different sizes on timescales ranging from days to hundreds
of years after the original eruption (Brasier et al., 2011; Bryan
et al., 2012).

In Section 2, we describe our detection algorithm and its
implementation in Google Earth Engine. In Section 3, we
illustrate our method’s accuracy using satellite imagery from
the 2019 Tonga submarine eruption (Jutzeler et al., 2020) and
then use our method to analyze pumice rafts in a region close to
the Rabaul volcano in Papua New Guinea (partially submerged
caldera). In Section 4, we discuss what our new pumice raft
detections from Rabaul suggest in regards to suspension of
pumice material, potentially from pumice clasts or rafts
previously washed up on shores or eroded on riverbanks or
coastal cliffs. Finally, we briefly discuss areas for future
algorithmic improvements.
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2 MATERIALS AND METHODS

2.1 Google Earth Engine
We developed and implemented our Machine Learning (ML)
detection algorithm for pumice raft detection on the Google Earth
Engine (GEE) platform (Gorelick et al., 2017). GEE is a web-
based, publicly available platform that enables access to a vast
catalog of satellite images and the resources to run global-scale
analyses without the need to download or export large amounts of
data. There are various satellite collections offered through GEE,
such as low resolution (MODIS) and medium-high resolution
imagery (Landsat, Sentinel-2). Although some other super-high-
resolution image collections are available outside of GEE (e.g.,
Planet labs—3 m/pixel, Digital Globe—50 cm/pixel), they are
typically not publicly available without commercial licenses.
Thus, for this study, we have primarily focused on using GEE
resources for the ML algorithm.

Specifically, we use GEE collections from the Sentinel-2 Multi-
Spectral Instrument (MSI) as our baseline satellite product.
Sentinel-2 (a pair of two satellites, each with MSI
instrumentation) offers both high-resolution imagery
(10–60 m/pixel), good coverage in regions of interest, and a
relatively frequent repeat time (~global 5-day revisits;
Supplementary Text S6). Sentinel-2 data products are also
freely available through the European Space Agency’s
Copernicus Open Access Hub as well as other cloud
environments. For our study, we chose to use Sentinel-2 as its
high resolution imagery could be used to detect much smaller
rafts than a lower resolution satellite (e.g., MODIS). In addition,
Sentinel-2’s MSI collects data across 13 different spectral bands,
with finer spectral coverage than other high resolution satellite
image collections (e.g., Landsat 7 and 8) (See spectral response
curve for Landsat 8 image of Puyehue-Cordón Caulle pumice in
Figure 1B). An initial method using thresholds on only the visual
bands to detect pumice rafts was insufficient, so the additional
spectral bands are necessary in our ML algorithm
(Supplementary Text S1). As illustrated by the variable
importance in the Random Forest classifier (RF,
Supplementary Figure S11), the multi-wavelength
information is critical for accurate classification with a
dominant role of the visible bands. In particular, the
reflectance of pumice in the near-infrared (NIR) bands
(700–900 nm) is much higher than the reflectance at those
bands of most biological phenomena that are near the surface
but still underwater (i.e., algal blooms, coral spawn, seaweed)
(Biermann et al., 2020; Qi et al., 2020), so the NIR bands are
critical for distinguishing between pumice and other visually
similar-looking biological blooms. Our overall methodology is
general and can be applied to other satellite collections in the
future (Supplementary Text S10).

2.2 Machine-Learning Algorithm
To identify spectral characteristics that can be used to classify
Sentinel-2 image pixels as pumice rafts, we generated spectral
response curves for pumice and other categories of interest in
Figure 1B. Spectral response curves record the mean reflectance
or brightness of an image pixel for a range of wavelengths. We

used the Tonga pumice raft from 11 August 2019 to generate the
spectral response curves (Figure 1B), as the particular eruption
and the associated raft has been extensively analyzed by previous
work (Brandl et al., 2020; Jutzeler et al., 2020). We also show the
variance around the mean spectral response curve calculated for
all of the pixels for each class (pumice, water, light clouds).

A key result from this analysis is that there is a significant
difference between the spectral response curves of pumice, water,
and light clouds (Figure 1B). Additionally, we find relatively
minor (compared to differences with other classes) variation in
the reflectance from pumice pixels within a single geo-temporal
area, such as a specific day in Tonga (Figure 1B) or comparing
across multiple days for the same raft (Supplementary Figure
S16). Although there is some variation in pumice spectral
response curves when comparing rafts from different chemical
compositions, sources, and times (Figure 1B, comparison with
Rabaul raft and Puyehue-Cordón Caulle raft), the general shape
of the reflectance curve remains very similar. This characteristic
shape of the spectral response curve for pumice pixels allows for
an algorithm to identify pumice and differentiate from other
classes (e.g., water, clouds) across a broad range of regions and
time periods. Details for the Puyehue-Cordón Caulle raft are
provided in Supplementary Text S13.

Our machine-learning algorithm uses a Random Forest
classifier to read in an RGB Sentinel-2 image and return a
classified image, where each pixel is colored according to the
assigned class. The algorithm specifics are detailed in
Supplementary Text S4. Since RF is a supervised learning
algorithm, we need to train it on a set of manually
demarcated and classified pixels. Our primary training data for
pumice, ocean water, light cloud cover, and heavy cloud cover was
sampled from the Tonga raft on 11 August 2019 (Figure 2A, only
a small part of the raft pixels were used for training). We also
included additional data from a Sentinel-2 scene of Rabaul, Papua
New Guinea, on 20 April 2020 (Figure 2B, spectrally this is
representative of the potential rafts from other days also). This
image includes a large, distinct pumice raft as well as ocean water,
light cloud cover, pumice mixture classes, and two different
discolored water classes (additional information for the
discolored water classes are included in Supplementary Text
S9). Since the discolored water classes are not the primary focus
of this study, our primary optimization for the RF algorithm was
to ensure accurate detection of pumice rafts. We provide all the
scripts, with step-by-step instructions for usage, used in our
analysis in a publicly available repository (Supplementary
Material—GEE Script Links).

3 RESULTS

3.1 Single Image Analysis Results
We applied our classification algorithm to Sentinel-2 images from
different geo-temporal regions to test model accuracy (Figure 2).
In the Tonga area on 11 August 2019 (Figure 2A), the classifier
displays pumice pixels in red, water in blue, light cloud cover in
orange, and heavy cloud cover in white. The shape of the large raft
is distinctly visible in the classified image. In the Rabaul region, on
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20 April 2020 (Figure 2A), the classifier also includes additional
classes: mixed/faint pumice—a mixture of water and
pumice—shown in light blue, and two different classes of
discolored water shown in turquoise and magenta. Overall,
our algorithm is efficient at identifying pumice from other
backgrounds though the accuracy of discolored water
detection (mixing with corals) and shallow cloud is not great
at present. Algorithm validationmethods and results are included
in Supplementary Text S5.

3.2 Regional Results
To assess the utility of our algorithm for new submarine eruption
detection, we applied the classifier over a single region for an
extended period of time. We focused on Rabaul, a partially
submarine volcano located on the Gazelle Peninsula’s tip at
the northeast end of New Britain in Papua New Guinea
(Figure 3A). The Rabaul caldera (~8 × 14 km size) was
formed as a consequence of multiple large explosive eruptions
in the past few hundred thousand years, with the present day
shape due to an eruption ~1,400 years ago (GVP and
wunderman, 1994). The caldera is mostly shallow submarine

(< 200 m water depth) and is connected to the sea on the east
through a wide opening (Blanche Bay). The main raft-forming
eruptions for this volcano occurred in 1878, 1937, and 1994, and
no raft formation has been recorded since 1994 (GVP and
Wunderman, 1994; GVP and Wunderman, 2006). No activity
has been recorded at either of the main vents (Vulcan and
Tavurvur) since 2014 (Bernard and Bouvet de Maisonneuve,
2020). More detailed eruption history is provided in
Supplementary Text S8.

In the Rabaul area, we applied our algorithm from November
2015 (start of the Sentinel-2 coverage for the Rabaul region) to
August 2020—a total of 239 distinct days with images. More
details on our algorithm application method are included in
Supplementary Text S7.

Of these 239 days, we found that 74 days were too cloudy for
the classifier to detect any pumice meaningfully. Cloudy days
were filtered out by manually examining classified images and
removing images in which every pixel was labeled as heavy or
light cloud cover. In the future, this step can be automated by
explicitly filtering the images based on the classified heavy cloud
fraction. We detected potential rafts in 28 (red lines, Figure 3B)

FIGURE 2 | (A) Land-masked RGB image of Tonga region on 08/11/2019 (B) Classified image of Tonga region on 08/11/2019 (C) Land-masked RGB image of
Rabaul on 04/20/2020 (D) Land-masked classified image of Rabaul on 04/20/2020.
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FIGURE 3 | (A)Map of pumice raft detection locations in Rabaul area. Main vent locations are marked with red triangles. Groupings of raft detections (by proximity
in time and location) are indicated by the different colored icons (B) Non-cloudy days during Sentinel-2 coverage period, with raft detections in red (height indicating raft
area).
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of the remaining 165 days (gray lines, Figure 3B), leading to a
detection rate of 16.97%. As illustrated in Figure 3B, most of our
raft detections were after January 2018 (Figure 3B). This is likely
a consequence of increased revisit frequency (~5-day) after the
second Sentinel-2 satellite launch. Before 2018, when only one
Sentinel-2 satellite was in operation, there are significantly fewer
images available. It is noteworthy that none of the rafts detected
in our analysis had been previously reported in the scientific
literature (to the best of our knowledge) or the Smithsonian
Global Volcanism Catalog (Global Volcanism Program, 2013).
The sizes of our detected rafts varied greatly, with raft areas as
small as 20 km2 to as great as 10,000 km2. At present, we do not
have any direct ground truthing of our detections. However,
considering the distinctive spectral features of pumice compared
to other biological sources, especially in the Near Infrared
(Biermann et al., 2020; Qi et al., 2020), we interpret the
classified features as rafts of pumiceous material - pumice rafts
(Supplementary Text S16 for discussion regarding difference
between “true” pumice and more general pumiceous material).

3.2.1 Source of New Rafts in Rabaul
Given our new raft detections, there is a natural follow-up
question—do these rafts represent previously unreported
submarine eruptions, or are they suspended pumiceous material
remobilized from known previous eruption deposits from Rabaul or
pumice produced by eruptions from other volcanoes in the region
that subsequently drifted into the Rabaul harbor? These are the three
primary end-member models, with the remobilization of pumice (or
pumiceous material) from previous eruptions being a process that
has been documented following the dispersal of large pumice rafts.
For example, the Tonga 2019 pumice raft was stranded in near
coastal regions inmultiple islands in Fiji (in particular Lakeba island)
in early-mid September 2019. However, some of this raft material in
Lakeba island was not remobilized till late October-early November
2019 (Jutzeler et al., 2020, observations from Sentinel-2 Imagery).
Redeposition and remobilization of volcanic products such as ash fall
(Etyemezian et al., 2019; Del Bello et al., 2021) as well as subaerial
[e.g., from Pinatubo 1991 eruption, Torres et al. (1996)] and
subaqueous pyroclastic material has been recorded after initial
deposition (Mandeville et al., 1996; Manville et al., 2002; Park
and Schmincke, 2020). However, the majority of this work has
focused on a short time frame—on the order of days to months after
the eruption though there are some exceptions—e.g., secondary
pumice rafts from Socorro Island in January 2009 (Ochoa, 2009,
Personal Comm. from Scott Bryan) and secondary pumice rafts in
Brasier et al. (2011). Here, if our hypothesis is correct, the pumiceous
material we are seeing is remobilized tens or even hundreds of years
after the original eruption since the last major raft forming eruption
in Rabaul was in 1994.

We assess the likelihood of new submarine eruptions by
analyzing the reported volcanic activity for Rabaul in the
Smithsonian Volcano Catalog (Global Volcanism Program,
2013). The Rabaul Volcano Observatory has recorded no large
eruptions since 2014 (Global Volcanism Program, 2013) and/or
any significant submarine activity besides hydrothermal discharge
near the Tavurvur vent. Because rafts initiating from point sources
can indicate new eruptions, we test this further by recording each of

our raft detections’ spatial location and considering the spread of
each sighting.We have tried tomanually aggregate three sets of raft
locations together (Figure 3A). These sets are of sequential images,
in which the raft detections were somewhat close, not only in time,
but in location as well. Conclusively tracking the rafts as they are
advected around by local ocean currents is challenging due to
repeat frequency (5-day gap between images), cloud cover, and
complex shallow-water ocean currents in the regions. In aggregate,
the detections are scattered over a broad area in the caldera and
surrounding sea, rather than primarily located near any known
vents (Figure 3A).

We also used Sentinel-2 imagery as well as ancillary datasets [e.g.,
higher spatial and temporal resolution Planet Labs imagery (Planet
Team, 2021)] to check if the rafts are associated with any other
eruptive signatures expected for shallow submarine eruptions (e.g.,
aerial plumes, discolored water). We did not find any aerial plumes
and, while there was some discolored water around the Tavurvur
vent location, we did not find any relationship between the days with
raft detections and days with discolored water around the vent
(Supplementary Text S14). Thus, we interpret that the detected rafts
are not actually products from a new submarine eruption.

Instead, we propose that they are secondary rafts [like the rafts
in Socorro Island in January 2009 (Ochoa (2009), Personal
Comm. from Scott Bryan); also see Richards (1958), Lee
(1979), Kent and Frick (1984), Thiel and Gutow (2004) for
related discussion] that have been suspended after being
deposited on surrounding shores and riverbanks following
their initial eruptions tens to hundreds of years ago (Section 4
for the potential processes). This is a new, novel physical process
that has not been fully documented before, especially in the
modern/satellite era. Our analysis is the first study, to the best
of our knowledge, to carefully document the secondary raft
process on timescales of years or longer using satellite
imagery, further validating the importance of this process as
suggested by previous studies (Pullar et al., 1977; Osborne et al.,
1991; Shane et al., 1998; Bryan et al., 2012; Jutzeler et al., 2014).
This secondary raft process is likely relevant for the dispersal of
eruptive products from many volcanic systems in coastal regions
(e.g., Krakatau in Indonesia, Tonga-Fiji region). Although the
secondary rafts are much smaller scale individually compared to
large pumice rafts associated with new eruptions such as the
Havre 2012 and the Krakatau 1883 eruption, they can be much
more frequent. Thus, they may potentially still be important for
material transport and local/regional scale biology. We
acknowledge that a systematic analysis of secondary rafts on
regional/global scales is needed to quantify this effect (if any).
Without any specimens of the pumice that we detected, we are
presently unable to ascertain a specific source eruption of the
rafts. In addition, even with samples, it may still be difficult to
determine the original source eruption or eruptions, as pumice
material from the 1878 eruption and subsequent eruptions have
very similar overall composition and texture (Bernard and Bouvet
de Maisonneuve, 2020). However, the morphology of the pumice
samples (angular vs. rounded, presence of biological material) can
at least provide some constraints on whether the pumice
represents a new eruption or remobilized material (from
Rabaul or other farther eruptions, based on composition).
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FIGURE 4 | (A) Probability density function for the daily precipitation in the Rabaul region (5 days rolling window) (B) Time series of daily wind directionality in the
Rabaul region—U wind velocity is the eastward component of wind while the V wind velocity is the northward component (C) Probability density function for daily wind
magnitude in the Rabaul region (5 days rolling window).
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Furthermore, field work in the Rabaul region can ground truth
our conclusions and help test whether there is enough erodible
material in the coastal areas to form rafts.

4 DISCUSSION

4.1 Source of Pumice Remobilization:
Influence of Weather Factors
Considering our interpretation that the detected rafts in Rabaul are
secondary rafts, an important question to consider is what potential
physical mechanisms are responsible for the mobilization of
pumiceous material. One possibility is that resuspension is a
consequence of local climatological conditions, e.g., high rainfall
events, high wind conditions that dislodge pumice along coastlines
and riverbanks back into the water. Local weather can lead to
landslides and dislodgement of small pumice rafts [e.g., local
pumice raft from rockslide in the Askja caldera, Iceland on 21
July 2014 (Icelandic Meteorological, 2014)]. Using ERA5 Daily
Aggregate Reanalysis Product (Hersbach et al., 2020) (directly
accessible through GEE), we generated time series of various
atmospheric properties—daily mean air temperature, wind
magnitude, wind direction, and precipitation. These time series
were all sampled from the same location, directly on top of one
of Rabaul’s vents, and the time series spanned the entire Sentinel-2
coverage period in the area. We did not observe any significant
correlation between the daily mean air temperature and the
detection of pumice rafts in the area (Supplementary Figure S3).
We also explored potential correlations with weather parameters up
to 10 days before raft detection to allow for some unknown
advection time (Supplementary Data). Overall, we did not find
significantly different results across these windows. The main
statistically robust relationships in our dataset are between raft
detection and wind and precipitation.

4.1.1 Precipitation
To compare the impact of wind, precipitation, and other weather
parameters on raft detection, we construct and compare
probability density distributions (PDF). A PDF is a function
that provides the relative likelihood of an event (raft detection)
given another parameter (e.g. wind speed, recorded rainfall). We
find that the PDF for the days with sighted pumice rafts (red
curve, Figure 4A) were slightly different from the curves for the
total days in the coverage period (blue curve, Figure 4A) and the
days where no rafts were detected (gray curve, Figure 4A) (using
5 day rolling window, other windows have similar results).
However, this difference is not statistically significant when
using either the Anderson-Darling (AD) test statistic (Scholz
and Stephens, 1987) or the Epps-Singleton (ES) test statistic
(Epps and Singleton, 1986). The medians of the raft vs. non-
raft precipitation PDFs are potentially different, as shown by the
lower p-value for the Kruskal-Wallis test (Kruskal and Wallis,
1952). We also do not find any clear correlation between
precipitation values and raft area.

We analyzed the long-term precipitation history in the
Rabaul area to help elucidate the remobilization process. We
used ERA5 data to consider 3-day rolling sums of precipitation

values in Rabaul since 1990. From the long-term history, we
observe the peak precipitation occurred in February 2018. All of
our detected rafts in Sentinel-2 imagery are post 2018 (further
analysis using Landsat imagery is included in Supplementary
Text S15). This may be a consequence of increased frequency of
sampling in the Rabaul area after the second Sentinel-2 satellite
launch in March of 2017. Alternatively, the detection of rafts
after the precipitation peak in early 2018 suggests that a large
storm or significant weather event made rafts easier to
remobilize post-2017. More detailed work, especially in the
field in Rabaul, is needed to test these hypothesis and
ascertain which coastal areas have significant amounts of
pumice ready to mobilize.

Overall, we find that there is only a weak correlation between
precipitation and raft detection. We posit that the slightly higher
values for precipitation before raft detection compared to non-
raft days suggest a role for higher precipitation to increase erosion
and consequently encourage raft remobilization. However, it is
clear that precipitation is not a unique factor since days of high
precipitation are not always followed by raft detections
(Figure 4A, Supplementary Figure S2).

4.1.2 Wind
In addition to precipitation, we also considered the role of wind in
raft formation. Figure 4B shows the daily wind direction [U
(eastward), V (northward) components] in Rabaul along with red
vertical lines highlighting days with raft detections. We find that
the general wind direction in Rabaul has a strong seasonal cycle
which is relatively stable over the past 5 years. Interestingly, most
of our pumice raft sightings were around the March–May
window despite having a number of non-cloudy images for
other months. This suggests that there is some seasonality to
the raft remobilization process.

In order to assess the role of overall wind magnitude, we show
the probability distribution curves for wind velocity for all days in
the Sentinel-2 coverage period (blue curve, Figure 4C), days
without raft sightings (gray curve, Figure 4C), and days with raft
sightings (red curve, Figure 4C) (using 5 day rolling window,
other windows have similar results). We find that days where rafts
were detected produced a significantly different probability
distribution curve (Figure 4C). There is also a high correlation
between wind amplitude and raft area (Supplementary Figure
S3). However, since there are not many high raft area data points,
the correlation may be biased by outliers. Overall, we see most of
our raft sightings are in the distinct range of wind velocities (1 to
4 m/s) compared to the overall distribution. Even when
accounting for different sample sizes, this difference is
statically significant [Anderson-Darling (AD) test statistic
(Scholz and Stephens, 1987); the Epps-Singleton (ES) test
statistic (Epps and Singleton, 1986); Kolmogorov-Smirnov
(KS) test (Hodges, 1958)]. We conclude that the high wind
velocities likely break up and disperse the secondary rafts too
rapidly for Sentinel-2 to capture. We would note that there are
number of non-cloudy days with low wind velocity and no raft
detection (Figure 4C, grey curve). Thus, wind condition is not the
only parameter that controls the temporal pattern of raft
detection with an additional role of seasonality.
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4.2 Open Challenges for Global Pumice
Detection Algorithm
Although our ML algorithm is reasonably successful for pumice raft
detection, it is not fully automated. The classification process
requires manual checks to filter out incorrect classifications of
pumice and cloud cover. In particular, the light cloud cover with
a flat spectral response curve can at times be misclassified as pumice
(and vice versa). Also, the satellite’s viewing geometry may create a
“Sun glint” in certain images, where all of the pixels in the RGB
rendering are affected and off-colored. The classifier subsequently
has difficulty correctly identifying the correct class of each pixel.
There are some ways these issues can be addressed. Better
atmospheric corrected products, specifically for oceanic regions,
would help improve detection. For instance, in some cases, using
the atmosphere corrected Surface Reflectance (Level-2A) product
can allow us to detect pumice rafts on images discolored due to
atmospheric effects (Supplementary Figure S10). Alternatively,
more stringent data filtering for satellite viewing angle and
cloudiness bounds can help reduce potential false positives.
Finally, incorporating additional satellite imagery data e.g.,
geostationary imagery with high temporal frequency (more
detailed raft tracking as well as better cloud detection based on
motion) and radar imagery (sensitive to surface roughness and
reduced sensitivity to atmospheric effects) could help improve
detection accuracy. Additional potential options for algorithmic
improvement are described in Supplementary Text S11.

5 CONCLUSION

In this study, we show that GEE and RF classifiers can be
successfully used to detect pumice rafts. This can be useful to
efficiently track pumice rafts, which can pose as hazards and
disruptions to boats and harbors (Jutzeler et al., 2014; Jutzeler
et al., 2020) and thus help with hazard mitigation and
coordination services along populated shorelines (e.g., ongoing
raft arrival on mainland Japan from the August 2021 eruption of
Fukutoku-Okanoba volcano). Our methodology can help address
our current strong bias in eruption detection and improve the
detection of submarine eruptions globally. Using GEE removes
the large data storage requirement and allows for a semi-
automated, easily scalable classification with minimal
subjective biases. Using the Rabaul caldera regions in Papua
New Guinea as a case study, we show that not all detected
pumice rafts necessarily correlate with a new eruption. Indeed,
in some coastal regions, remobilization is likely to be a
widespread phenomenon and can affect the spatial pattern of
how products from an eruption are deposited as well as pumice
remobilization after large storms/coastal tsunamis (e.g., Anak
Krakatau 2018; Hunga Tonga Hunga Ha’apai 2022 eruption).

Since these spatial patterns serve as the basis for estimating
volcanic eruptive volumes, as well as long-distance (on tens to
hundreds of kilometers scale) stratigraphic correlations (Shane
et al., 1998; Mouginis-Mark and Zimbelman, 2020; Freundt et al.,
2021), the raft remobilization process needs to be further
analyzed. Finally, if drifting, remobilized pumice is common,
its presence can impact the detection of future submarine
eruptions, especially small eruptions in near coastal regions.
Thus understanding the morphology, abrasion, and lifetime of
the remobilized rafts (i.e., how they fragment over time and any
differences from newly erupted rafts) is critical to remove this
false positive for new eruption detection.
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1 SUPPLEMENTARY DATA
Text S1. - Other Raft Detection Algorithms In addition to ML algorithms, we tried other spectral index
or simple rule-based algorithms for raft detection. For instance, we set bounded ranges for the measured
brightness Sentinel-2 spectral bands, based on our calculated spectral response curves. We found that
this algorithm could differentiate between pumice and non-pumice pixels in a single image for a chosen
day and time. However, when applied to different geo-temporal areas, this method required significant
adjustment each time for good accuracy. Similarly, we found that an algorithm just using spectral indices
to emphasize specific characteristics of the spectra was not as robust as our final ML algorithm.

Text S2. - Raft Morphology In order to assess whether there is any clear visual morphological difference
between new vs. older, remobilized pumice rafts, we analyzed the raft morphology compared to rafts from
the new 2019 eruption in the Tonga area (Supplement Figure S5, Planet Labs Imagery). The Tonga raft
image from September 6, 2019, was taken about a month after the eruption, and shows that the raft has
significantly dispersed from its initial shape (Jutzeler et al., 2020, See Figure 2A). Nevertheless, the Tonga
rafts are morphologically distinct from the Rabaul rafts (Some images from March-April 2020, Supplement
Figure S5). Although both the rafts interact with the ocean eddies and surface wind stresses, only the
pumice concentration pattern for only the Tonga rafts have a distinctive sharp trailing edge and a diaper-tail
shaped concentrated region. Instead, the Rabaul rafts trend toward longer, more diffusive-type formations
with several smaller, disconnected strands. Since the interaction of pumice rafts with ocean and surface
wind dynamics is not well-understood (Jutzeler et al., 2020), we do not have a clear physical understanding
of why these differences occur. We hypothesize that the morphological differences may due to the rounding
of pumice particles in re-suspended rafts due to more prolonged exposure to wave motion and/or surface
erosion. Additionally, the pumice particle sizes in the re-suspended rafts may differ from the Tonga raft
due to either different eruptive dynamics or preferential selection of a certain pumice size class during the
re-suspension process. Based on related work on the interaction of buoyant particles (e.g., Marine litter,
Sargassum) with the ocean eddies and wind-driven Langmuir circulation (Thorpe, 2004; Van Sebille et al.,
2020; Chang et al., 2019; Miron et al., 2020; Beron-Vera, 2020), we expect the differences in shape and
size of pumice to have a significant impact on the raft morphology. It is also surprising that the re-rafted
pumice remains buoyant for extended periods at the ocean’s surface, despite the weathering and erosion.
The two potential mechanisms for explaining the long flotation times for pumice rafts, in general, are
gas trapping by water within the pumice and gas-filled isolated porosity (Fauria et al., 2017). Since these
processes’ efficiency is directly related to the pumice micro-structure, a detailed analysis of the re-rafted
Rabaul pumice can test if these mechanisms can explain the frequent raft re-suspension in this region.

Text S3. - Detection of Discolored Water While our study focuses primarily on detecting pumice rafts, we
included classes for discolored water as another signature for submarine volcanic eruptions. Our algorithm
is moderately successful at detecting discolored water, as illustrated by a classified image from the Kavachi
submarine volcano (Supplement Fig S1, we do not fully match the true extents of the hydrothermal plume
). However, we found that the detection of these classes is more challenging than pumice rafts. Since
discolored water physically represents a mixture of hydrothermal fluids/suspended material with seawater,
there is less distinction between the spectral characteristics of the discolored and normal water. Additional
work potentially using more input features for ML algorithms is required to improve detection accuracy
and robustness. For instance, some two/three-band spectral indices can be included as input features (Qi
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et al., 2020). Although we found that using spectral index alone did not result in a robust classifier, a
thorough examination combining spectral indexes and full reflectance data would likely help improve the
detection. Additional datasets outside of Sentinel-2 (e.g., chlorophyll ocean color and fluorescence line
heights) can potentially be included to improve the accuracy of the ML algorithm (Whiteside et al., 2021)
and distinguish between discolored water and plankton blooms in response to an influx of nutrients (Wilson
et al., 2019; Black et al., 2020; Qi et al., 2020; Kritten et al., 2020).

Text S4. - Algorithm Details Since we are interested in developing an algorithm that can be applied
to different geo-temporal areas without significant user adjustment, we used Machine Learning (ML)
algorithms due to their significant success in image classification (Abburu and Golla, 2015). ML algorithms
can be automated, non-linear, iteratively improved, and easily scaled to extensive data collections. This
makes them reasonable candidates for our scientific goal of detecting pumice rafts globally. Specifically, we
used the GEE-provided Random Forest (RF) classifier to classify the image pixels (Fig 1C). RF classifiers
build multiple decision trees, each based on a randomly selected subset of possible input parameters
(here spectral bands). Each tree then classifies a pixel based upon its unique set of branches, and finally,
a majority vote is passed to decide the final classification for the pixel (Belgiu and Drăguţ, 2016). Our
algorithm used an RF classifier with 32 trees since it empirically provided a good, stable classification
algorithm and robustness against overfitting. Since the RF algorithm is already implemented in the GEE
platform, it is easy to query any Sentinel-2 image and return a classified image. Each class is highlighted in
a specified color (See GEE Scripts provided with the manuscript for specific examples).

Text S5. - Algorithm Validation To evaluate method accuracy, we can construct a confusion matrix
using a set of validation data. Confusion matrices compare predicted values against the validation or
known values and thus are used to calculate performance metrics for classification algorithms, such as
misclassification rate and accuracy. The validation set was constructed by manually demarcating areas
of pixels that were not used to train the classifier and labelling each area as the appropriate class. Then,
corresponding pixels from the originally classified are sampled and compared to the validation set of pixels.
A confusion matrix is constructed based on how many of the classified pixels match the validation pixels.
For our main training area in Rabaul on April 20, 2020 (Fig 2B), the confusion matrix returns an accuracy
of 0.9164 (Supplementary Figure S7). This indicates that around 91% of the pixels were classified into
the same category as our validation set. The high accuracy is a good indicator that our algorithm can
automatedly detect and trace rafts.

Text S6. - Sentinel-2 Product The Multi-Spectral Instrument (MSI) onboard Sentinel-2 collects data from
13 different spectral bands at varying resolutions, and GEE offers two different data products for Sentinel-2
— Top-of-Atmosphere and Surface Reflectance. Since the Surface Reflectance collection typically processes
the MSI data assuming land reflectance values rather than ocean values, we used the Level-1C Top-of-
Atmosphere Reflectance product. We note that Sentinel-2’s spectral bands are similar to several other Earth
observing satellites, particularly Landsat-8 and Landsat-7. Thus, we anticipate that the methodology and
algorithm developed in this study can be transferred to Landsat data products.

Text S7. - Algorithm Application Details Before applying the algorithm, we applied a land mask. As we
are focusing only on signatures of underwater eruptions that are found in water, we could disregard every
images’ land pixels. Thus, we masked the land pixels in the images using data from the Global Surface
Water dataset, a high-resolution dataset that shows the location and spread of surface water from 1984-2015
(Pekel et al., 2016). Using this land mask effectively removed the land pixels from consideration by the
algorithm. The land mask could be used in most areas, but it could sometimes not be employed in the
Tonga region due to small islands and atolls. We manually filtered the classified image to remove any land
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pixels misidentified as pumice rafts in these cases. Due to inherent computational limits for GEE accounts,
the algorithm was applied to month or half-a-month long intervals of time with sufficient resolution to see
where the classifier marked out pumice (see the scripts for examples). After image classification, pumice
rafts were identified through manual review of the classified images.

Text S8. - Rabaul Eruption History Since the last caldera forming eruption, the volcanic activity has built
up multiple vents encircling the bay, including the historically very active Vulcan and Tavurvur vents (See
Figure 3A, large compositional range from basalt to dacite). The low-lying Rabaul caldera’s outer flanks are
composed of thick tuff from pyroclastic-flows deposited during the caldera-forming Plinian eruptions (GVP,
2006). Since the town of Rabaul is located nearby, volcanic activity in the area is nominally well-recorded.
In 1878, twin eruptions of both the Tavurvur and Vulcan vents generated a large pumice raft that was
large enough to form an island and cover the neighboring bay (Bernard and Bouvet de Maisonneuve,
2020). In 1937, the early stage of an eruption at Vulcan killed 507 people and built up a cone such that
Vulcan island was connected to the mainland (Bernard and Bouvet de Maisonneuve, 2020). Shortly after,
Tavurvur also erupted, albeit in a series of smaller events (Bernard and Bouvet de Maisonneuve, 2020).
Both vents produced pumices, and the samples from this 1937 twin eruption are extremely similar to
those collected from the 1878 eruption (Bernard and Bouvet de Maisonneuve, 2020). Rabaul also has
a history of more recent pumice raft formation. While the eruption in 2006 (Tavurvur vent) produced a
small raft and the eruption in 2014 (Tavurvur vent) deposited pumices in the area (Bernard and Bouvet de
Maisonneuve, 2020), the last major raft-forming eruption was in 1994 (VEI 4 eruption; GVP, 1994b,a,
2006, a simultaneous eruption from Vulcan and Tavurvur vents). The 1994 large raft from the Vulcan
vent covered the bay in front of town of Rabaul, with a maximum thickness of up to ∼ 1.5 m (GVP,
1994b). Since the 1994 twin eruption, there has been intermittent semi-continuous activity at the Vulcan
and Tavurvur vents, but no activity has been recorded since the 2014 eruption (Tavurvur vent) (Bernard
and Bouvet de Maisonneuve, 2020).

Text S9. - Discolored Water Classes Training samples for Discolored Water Type I (shown in turquoise
in the classified images) were drawn from the discolored water emanating from around the Tavurvur vent
of the Rabaul caldera, likely due to the interaction of hydrothermal fluids with ocean water (Baker et al.,
2002). Training samples for Discolored Water Type II (shown in magenta in the classified images) was
drawn from a river’s mouth to the south of the pumice raft. Consequently, the magenta discolored water
class is likely to be more sediment-rich, while the turquoise discolored water class is more likely to indicate
the presence of hydrothermal fluids.

Text S10. - Further Opportunities in Other Satellite Products In our study, we have focused on Sentinel-
2 due to its high resolution and revisit frequency. Sentinel-2 offers coverage that includes all coastal water
extending up to 20 km from the shoreline, all islands with an area greater than 100 square kilometers, and
all closed seas (Drusch et al., 2012). Thus, using our algorithm, pumice rafts can be detected globally
within Sentinel-2’s coverage areas. With some minor modifications, our new algorithm can be extended to
include other satellites, such as Landsat-7/8, ASTER, MODIS, and some of the geostationary satellites
(e.g., Himawari, GEOS). Including these other satellites will allow for greater spatial coverage area, faster
revisits, and a longer total duration of available historical imagery. Using GEE as a tool makes this task
numerically feasible and more viable for a global-scale analysis.

Text S11. - Further Potential Algorithm Improvements Including additional input features (e.g., spectral
ratios, multi-band spectral indices) may help improve the accuracy of the algorithm and make it fully
automated. Furthermore, more feature engineering is necessary for robust discolored water detection. This
could potentially also include co-located (and close in time) data products from other satellite imagery such
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as Chl concentration and SST from Sentinel-2 (∼ 300 m/pixel) (e.g., Whiteside et al. (2021)). Another
potential improvement involves normalizing the affected images based on expected ”ocean water” pixels
before being passed to the classifier. In addition, GEE offers image metadata, including the satellite’s
viewing geometry and the area’s cloudy percentage data at the time of the image collection. Applying
viewing angle and cloudiness bounds outside of which the algorithm fails can filter out un-classifiable
images.

In addition, our present ML algorithm only uses pixel scale information for classification and does not use
any information from neighboring pixels or physical expectations for the rafts’ shapes. This information
can be particularly useful when distinguishing between cloud cover and pumice rafts, where our present
semi-automated algorithm has the most difficulty. Generally, the shapes of clouds and pumice rafts are
significantly distinct from each other. In addition, clouds often occur as repetition of similar shapes, so
clouds may be better distinguished with pattern recognition ML algorithms. This could provide a possible
solution to differentiate between these cloud and pumice pixels by adding additional spatial features to the
RF algorithms.

Text S12 - Planet Imagery Planet Labs offers very high resolution imagery (∼3m/pixel) of the entire
Earth with a very frequent revisit time (daily). While we use this high resolution imagery to more closely
examine images of the rafts that our algorithm detects, we primarily focus on using GEE resources for
our study, as very high resolution imagery (e.g., Planet Labs) is typically not publicly available without
commercial licenses.

Text S13 - Puyehue-Cordón Caulle Rafts We compared the spectral response curves to those of pumice
rafts floating in lakes near the Puyehue-Cordón Caulle volcano complex, located in Chile (Elser et al.,
2015). These lake rafts were formed from a higher silica eruption than the ones likely to have produced the
rafts in the Tonga and Rabaul regions. Sentinel-2 images were not available for the Puyehue-Cordón Caulle
lake rafts, so Landsat 8 images were used instead. Landsat 8 does not have as fine coverage as Sentinel-2,
so not all of the same wavelengths were available. We find that the spectra for the lake pumice is broadly
consistent with the shape of the other rafts.

Text S14 - Use of Landsat and Planet Imagery: Other Eruption Signatures We manually checked
each day our algorithm detected a raft, as well as surrounding days with lower resolution (Landsat 7,
Landsat 8) as well as higher resolution imagery (Planet Labs), to check if the rafts are associated with
any other eruptive signatures expected for shallow submarine eruptions (e.g., aerial plumes, discolored
water). We did not find signatures of eruptions such as aerial plumes or ash fall. Although there was
some discolored water (indicator of hydrothermal fluid mixing) around the volcano vent, we did not find a
significant relationship between the raft’s spatial location and discolored water, or between the spatial area
of discolored water (as a proxy for hydrothermal activity intensity) and the size of the raft (Supplement Fig
S9). In addition, we did not find any significant shallow seismic activity near the Rabaul area co-incident
with raft detection (Bondár and Storchak, 2011). Thus, we interpret that the detected rafts are not actually
products from a new submarine eruption.

Text S15 - Use of Landsat Imagery: Rabaul Raft Detections Outside of Sentinel II Coverage Period
To examine whether the more sparse raft detections in the Rabaul area prior to 2018 was due to the
precipitation history or the lower satellite coverage prior to the launch of the second Sentinel II, we used
Landsat 7 and Landsat 8 imagery to assess images before 2018 (Hartpence, 2021; Goward et al., 2001; Roy
et al., 2014). Landsat 7 and Landsat 8 offer lower resolution (30 m/pixel) and longer daily revisit frequency
(> 16 days). However, Landsat 7 and Landsat 8 have been active since 1999. From manually analyzing
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series of Landsat images from the pre-Sentinel period, we found only a few raft images. Thus, we cannot
say definitively whether the spike in raft detections using our algorithm starting in 2018 is more likely due
to the increase in coverage after the second Sentinel-2 satellite launch rather than long-term precipitation
patterns.

Text S16 - Pumiceous Material In this study, we do not have ground truth observations to confirm that the
imaged rafts in Rabaul are actually of pumice, nor that there are readily available stores of “true” pumice
along the coast - that is vesicular volcanic glass fragments with vesicularity >50-80% (e.g., Thomas et al.
(1994)). Moderately vesicular (e.g., 30-50%) juvenile clasts can have temporary buoyancy and all produce
short-lived rafts. For example small rafts have been associated with eruptions from Metis Shoal/Late’iki
but these were short-lived because they made up of vesicular lava fragments with 30-40% vesicularity
(e.g., Melson et al. (1970)) rather than being of true pumice. As we have not ground truth observations to
confirm the composition of the imaged rafts in Rabaul, we will refer to these rafts as made up of pumiceous
material. Also, in the text, we will use the term pumice in a broad sense to represent pumiceous material
rather than just “true” pumice.

GEE Script Links Script Links with step by step instructions (also provided with Figshare as a static
copy) :

• Spectral Curves– plots the mean and standard deviation of spectral response curves, https://code.
earthengine.google.com/878027cf43a77bae30bbacaf072e5451

• Classifier– runs classification on either single images or filmstrips of multiple days, https://code.
earthengine.google.com/e63e4ea41701db7ea9d26cf6f54b5ecd

• Climate Time Series– collects climate data (precipitation, wind, temp., etc.) over
extended time period and generates plots https://code.earthengine.google.com/
e5fe72a393e61a0bd56e286751a64a59

Figshare Link Static copy of the script links:

• https://figshare.com/projects/Pumice_Raft_Detection_Using_Machine-Learning_
on_Multispectral_Satellite_Imagery/126466
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Supplementary Material

Figure S1. (A) RGB and classified images of Kavachi on 04/24/2020 (B) RGB and classified images of
the river delta near Rabaul for 04/20/2020 (C) RGB and classified images for Tonga on 08/16/19
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Figure S2. (A) Daily precipitation in Rabaul against Sentinel-2 raft detections (B) Daily wind velocity in
Rabaul against Sentinel-2 raft detections (C) Daily mean air temperature in Rabaul against Sentinel-2 raft
detections
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Figure S3. (A) Daily precipitation pdf in Rabaul (5 day rolling window) (B) Daily wind pdf in Rabaul (5
day rolling window) (C) Daily mean air temperature pdf in Rabaul (5 day rolling window)
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Figure S4. Comparison of pumice spectral response curves in both Rabaul and Tonga for various dates
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Figure S5. Comparison of high resolution Planet Labs imagery for Tonga 2019 rafts and newly detected
Rabaul rafts - These images provide examples of different raft morphologies.

Figure S6. (A) RGB image of Anak Krakatau on 04/15/2019 (B) Classified image of Anak Krakatau on
04/15/2019
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Figure S7. Classification algorithm confusion matrix
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Figure S8. Comparison of pumice raft detection (Yes/No) and hydrothermal activity (discolored water
category, larger values for more activity in the Tavurvur vent region) for Planet Labs detection. Note the
lack of relation between the hydrothermal activity and likelihood of detecting a raft in a non-cloudy image
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Figure S9. Examples of high hydrothermal activity in the Tavurvur vent region (Planet Labs Imagery) (A)
03/09/2011 (B) 09/19/16 (C) 01/07/18

Figure S10. Comparison of using the Top-of-Atmosphere (Level-1C) vs. the atmospherically corrected
Surface Reflectance (Level-2A) Sentinel-2 data products with our algorithm to detect a raft in the Tonga
region on 09/29/2019
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Figure S11. Importance of each Sentinel-2 band in the Random Forest algorithm. This is derived from
the summed decrease in Gini impurity index for each individual over all of the trees in the RF classifier.
The Gini impurity index is a measure of the probability of an observation being misclassified if it was
randomly assigned to a class. The Gini index based estimate of variable importance typically provides a
similar importance score for a variable’s importance in classification compared to the more numerically
intensive approach of permutation importance measure.
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