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Project Motivation
The primary motivation for this project is to investigate the application of a high-precision laser

measurement system and its use in vibration measurement and active vibration control.

Research Objectives:

• Design and fabricate a smart structure that utilizes laser interferometry for measurement feedback.

• Develop an analytical model that encapsulates the dynamics of the smart structure.

• Design an LQG regulator using a model-based design approach.

• Design a PD controller to act as a reference for the performance of the LQG regulator.

• Validate the performance of the LQG controller through simulation and experimentation.



Accelerometers

➢ Pros: low cost per unit, easy to integrate, relatively durable

➢ Cons: requires contact, sensitive to noise/cable flex, only measures velocity

Capacitive/Inductive Sensors

➢ Pros: contactless, position measurement, good resolution

➢ Cons: sensitive to environmental factors (heat/humidity), fragile

Laser Doppler Vibrometers (LDV)

➢ Pros: contactless, great resolution, can be used in extreme heat/cold

➢ Cons: relatively expensive, requires direct line-of-sight, sensitive to light

Typical Vibration Measurement Devices
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Introduction

Laser doppler vibrometer (LDV)

Cross-section schematic of accelerometer



• Smart structures are capable of sensing and reacting to external 
stimuli.

• Lead zirconate titanate (PZT) is a piezoceramic material that is 
used in most smart structures.

• Piezoceramics are electromechanical transducers which convert 
electrical engineer to mechanical force and vice versa.

Common in: Igniters, speakers, microphones, printers

• Smart structures have applications in active vibration control and 
structural health monitoring.

• Active vibration control requires significantly more time and 
money than passive control, but typically provides better results

Introduction
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What is a smart structure?

Animation of a piezoceramic smart structure moving

Animation of the piezoelectricity



• Laser interferometry is a measurement technique that utilizes the 

interference pattern created from light waves

• Laser interferometers are commonly used in photolithography for 

semiconductor manufacturing.

• Laser interferometers provide nanometer-scale resolution for 

position control.

• Laser interferometers  are typically not used in vibration 

measurement because they require contact with the target 

surface, which in turn influences its dynamics.

Introduction
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What is laser interferometry?
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Steel beam

• Assumed to have fixed-free boundary conditions

• Assumed to be homogeneous and isotropic

• Simple geometry allowed the use of well-known modeling techniques

Piezoceramic Patches

• Two located pairs of piezoceramic patches used for actuators

• Stiffness and inertia were considered in the model

• Nonlinear hysteresis effects were not considered in the model

Retroreflector

• Used to measure transverse deflection of the structure

• Modeled as a point mass (stiffness and inertia were not considered)

Physical System

Components
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Photograph of the experimental smart structure installed 
on an optical table

Retroreflector

Piezoceramic
Patches

Actuation 
Leads

Vise

Steel Beam



Euler-Bernoulli Beam Model
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Geometric Mechanical

𝑤 0, 𝑡 = 0
𝜕

𝜕𝑥
𝑤 0, 𝑡 = 0

𝜕2

𝜕𝑥2
𝑤 𝐿, 𝑡 = 0

𝜕3

𝜕𝑥3
𝑤 𝐿, 𝑡 = 0

Euler-Bernoulli beam theory provides the basis for the 
dynamics and boundary conditions of the structure

Assumptions:

• The beam is long (10:1)

• Stresses are caused by transverse bending moments

• Stress from shear force is negligible

• 2 Degrees of freedom (transverse deflection, rotation)

• Planar sections remain perpendicular to the neutral axis

Governing Dynamic Equation of Euler-Bernoulli Beam

𝜕2

𝜕𝑥2
𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴

𝜕2𝑤 𝑥, 𝑡

𝜕𝑡2
= 𝑞(𝑥, 𝑡)

General diagram of a fixed-free Euler-Bernoulli beam with 
planar sections perpendicular to the neutral axis

Boundary conditions for fixed-free Euler-Bernoulli beam



Lagrangian Equations of Motion

The system is described by the energy-based 
modeling technique: extended Hamilton’s principle

න
𝑡1

𝑡2

𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝑛𝑐 𝑑𝑡 = 0

The Euler-Lagrange equation of motion (EOM)

𝜕

𝜕𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
+

𝜕𝑈

𝜕𝑞𝑗
= 𝐹𝑗

➢ Potential Energy

𝑈 =
1

2
න

0

𝐿

𝐺 𝑥
𝜕2𝑤 𝑥, 𝑡

𝜕𝑥2

2

𝑑𝑥

➢ Kinetic Energy

𝑇 =
1

2
න

0

𝐿

𝑃 𝑥
𝜕𝑤 𝑥, 𝑡

𝜕𝑥

2

𝑑𝑥
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The local rigidity*

𝐺 𝑥 = 𝐸𝑏𝐼𝑏 + 𝐸𝑝𝐼𝑝 ෍

𝑚=1

2

𝑢 𝑥 − 𝑥𝑚 − 𝑢 𝑥 − 𝑥𝑚 − 𝑙𝑝

The local linear density*

𝑃 𝑥 = 𝜌𝑏𝐴𝑏 + 𝜌𝑝𝐴𝑝 ෍

𝑚=1

2

𝑢 𝑥 − 𝑥𝑚 − 𝑢 𝑥 − 𝑥𝑚 − 𝑙𝑝 + 𝑚𝑟𝛿 𝑥 − 𝑥𝑟

Diagram of the fixed-free smart structure composed of the steel 
beam, two pairs of piezoceramic actuators, and a retroreflector.



Assumed-Modes Method
Assumed-Modes uses the method of eigenfunction 
expansion to express the displacement profile as a 
superposition of mode shapes

𝑤 𝑥, 𝑡 = ෍

𝑗=1

𝑛

𝜓𝑗 𝑥 𝑞𝑗 𝑡

The mode shape function stems from the solution to the 
Euler-Bernoulli beam equation

𝜓𝑗 𝑥 = sin 𝛽𝑗𝑥 − sinh 𝛽𝑗𝑥 + 𝜎𝑗 cos 𝛽𝑗 𝑥 − cosh 𝛽𝑗𝑥

𝜎𝑗 =
sinh 𝛽𝑗𝐿 + sin 𝛽𝑗𝐿

cosh 𝛽𝑗𝐿 + cos 𝛽𝑗 𝐿

The coefficients of the shape function are derived from the 
Euler-Bernoulli boundary conditions and nontrivial solution

𝑐𝑜𝑠ℎ 𝛽𝑗 𝐿 𝑐𝑜𝑠 𝛽𝑗 𝐿 = −1
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Used to defined the system of ordinary differential 
equations (ODEs)

𝑴 ሷ𝒒 + 𝑪𝑹 ሶ𝒒 + 𝑲𝒒 = ෍

𝒎=𝟏

𝟐

𝑭𝒎

The mass and stiffness matrices are represented as

𝑲𝒊,𝒋 = න
0

𝐿

𝐺 𝑥 𝜓𝑖
′′ 𝑥 𝜓𝑗

′′ 𝑥 𝑑𝑥, 𝑴𝒊,𝒋 = න
0

𝐿

𝐺 𝑥 𝜓𝑖 𝑥 𝜓𝑗 𝑥 𝑑𝑥

Plots of the normalized hyperbolic  shape functions for the first 
five modes of a fixed-free Euler-Bernoulli beam



Rayleigh Damping

Damping is extremely difficult to model analytically

𝑴 ሷ𝒒 + 𝑪𝑹 ሶ𝒒 + 𝑲𝒒 = ෍

𝒎=𝟏

𝟐

𝑭𝒎

Rayleigh damping is used to approximate the system 
damping as being proportional to the mass and stiffness of 
the system

𝑪𝑹 = 𝛈𝟏𝑴 + 𝛈𝟐𝑲

Choose the damping coefficients at two observable modes 
within frequency range

𝜂1

𝜂2
=

1

𝜔1
𝜔1

1

𝜔𝑛
𝜔𝑛

𝜁1

𝜁𝑛

The damping coefficients were chosen by using the 
logarithmic decrement method on the first and third
modes of the structure.
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Diagram of damping coefficients versus frequency for 
different proportional damping methods



Piezoelectric Actuation

The piezoceramics apply a force to the system

𝑴 ሷ𝒒 + 𝑪𝑹 ሶ𝒒 + 𝑲𝒒 = ෍

𝒎=𝟏

𝟐

𝑭𝒎

The subscript m denotes each pair of piezos

The force of each pair of piezoceramics is proportional to the 
moment it induces

𝑭𝑚,𝑗 𝑡 = න
0

𝐿 𝜕2𝑀𝑚 𝑥, 𝑡

𝜕𝑥2
𝜓𝑗 𝑥 𝑑𝑥

The moment  of each piezo assumed to be linearly 
proportional to its voltage

𝑀𝑚 𝑥, 𝑡 = 𝑘𝑉𝑚 𝑡 𝑢 𝑥 − 𝑥𝑚 − 𝑢 𝑥 − 𝑥𝑚 − 𝑙𝑝

k is an electrocoupling constant for the transduction 
properties of the piezo patches

The moment generated by the piezos can be considered as 
a unit step, or two opposing impulse forces
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Diagram of the equivalent moment (left) and coupled forces (right) 
dynamics for the mechanical actuation of the piezoceramic patches



State-Space Formulation

From the Assumed-Modes method, the equation of motion is

𝑀 ሷ𝑞 + 𝐶𝑅 ሶ𝑞 + 𝐾𝑞 = ෪𝐹1𝑉1 + ෪𝐹2𝑉2

The coordinate is transformed from generalized coordinates 
to modal coordinates using the modal matrix containing the 
eigenvectors of the mass-stiffness matrix

𝒒 = 𝜱𝒈

The new, modal equation of motion is

𝜱𝑻𝑴𝚽 ሷ𝒈 + 𝜱𝑻𝑪𝑹𝚽 ሶ𝒈 + 𝜱𝑻𝑲𝜱𝒈 = 𝜱𝑻 ෪𝑭𝟏𝑽𝟏 + 𝜱𝑻 ෪𝑭𝟏𝑽𝟐

The system is assembled into state-space form as a system 
of ordinary differential equations (ODEs)

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡
𝒚 𝑡 = 𝑪𝒙 𝑡

The effects of a low-pass filter and power amplifier are also 
incorporated into the state-space model by augmentation

ሶ𝒈
ሷ𝒈
ሶ𝑉1

ሶ𝑉2

=

0𝒏𝒙𝒏 𝑰𝒏𝒙𝒏 0𝒏𝒙1 0𝒏𝒙1

− ഥ𝑴−1 ഥ𝑲 − ഥ𝑴−1 ഥ𝑪 ഥ𝑴−1𝜱𝑻𝑭1
ഥ𝑴−1𝜱𝑻𝑭2

01𝒙𝒏 01𝒙𝒏 𝐾𝑙𝑝𝑓𝜔𝑐 0

01𝒙𝒏 01𝒙𝒏 0 𝐾𝑙𝑝𝑓𝜔𝑐

𝒈
ሶ𝒈

𝑉1

𝑉2

+

0𝒏𝒙1 0𝒏𝒙1

0𝒏𝒙1 0𝒏𝒙1

𝐾𝑎𝑚𝑝𝜔𝑐 0

0 𝐾𝑎𝑚𝑝𝜔𝑐

𝑆1

𝑆2

𝑤 𝑥𝑟 , 𝑡 = 𝝍 𝒙𝒓 𝜱 𝟎𝟏𝒙𝒏 0 0

𝒈
ሶ𝒈

𝑉1

𝑉2

The low-pass filter limits the slew rate of the control signal 
to protect the power amplifier. It also adds to the order of 
the system.
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Model Validation

I. Objective

II. Simulation Results

III. Experimentation Results

Subjects



Why is model validation important?

• It is dangerous to implement closed-loop control without verifying system stability

• Controller design requires an accurate model in order to reflect the physical system

• LQG control requires a model in order to be designed

• The model can be used for controller tuning by performing closed-loop simulations

• Simulation is significantly cheaper and faster than experimental testing

• The model is limited by the quantity of dynamics which are modeled, assumptions, computational 

power, and the quality of the system measurements (application of system identification)

Objective
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Simulation 
Results

➢ The analytical model was validated by comparing the 

response with two well-known modeling programs: 

Abaqus and Simscape Multibody

➢ Abaqus:

➢ full-integrated brick elements used for body

➢ shell elements used for piezoceramic patches

➢ lumped mass used for retroreflector

➢ Simscape Multibody

➢ Model was created using blocks (like Simulink)

➢ Modal analysis validated that the analytical model 

agrees with Abaqus and Simscape results
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Rendering  of Simscape multibody mode

Table of the first five natural frequencies of simulated models

Rendering of meshed Abaqus model



➢ The frequency response was obtained by applying a 

sine-swept signal to the piezoceramic actuator pairs.

➢ A least-means-squares algorithm✝ was used to 

identify the magnitude and phase at each frequency

➢ The first five natural frequencies of the analytical 

and experimental systems agree with one another

➢ The low-pass filter of the system and capacitance of 

the piezos impacted the performance of the sine 

sweep at frequencies above 324 Hz
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Frequency response of smart structure using 
piezoceramics near the base of the structure as actuators

Table of first five natural frequencies of analytical model 
and physical system

Experimental 
Results

✝ Developed by research partner Jordan Kochavi



Controller 
Design

I. Controller Objectives

II. Experimental Control System

III. PD Controller

IV. LQG Controller

Subjects



Performance Criteria

Controller Objectives

For the active vibration control in this 
project, the performance of the controllers
are primarily judged on their ability to:

I. Provide disturbance rejection

II. Reduce the settling time of the structure

III. Frequency bandwidth

IV. attenuate higher-order modes

Control ler Comparison

PD Controller

➢ Pros: Easy to implement, computationally inexpensive

➢ Cons: Sensitivity to noise, relatively low order control

LQG Controller

➢ Pros: Optimal control, state observation, state estimation

➢ Cons: requires full model, computationally expensive, not 

robust
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Experimental 
Setup
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System Overview

• Control algorithm is compiled on Desktop PC and 
uploaded to Speedgoat Real-time target

• Speedgoat sends control signal through a low-pass 
filter and amplifier to piezoceramic actuators

• The displacement of the smart structure is measured
by the laser interferometry system

• Measurement data is processed and distributed
through FPGA using UDP and EtherCAT

Photo of experimental optical table

Block diagram of closed-loop controller hardware interface

Smart Structure

Interferometer

Optical 
Receivers

Laser 
Head

Fiber Optic 
Cable

Retroreflector



Classical control methods are used to design the PD 
controller using the plant transfer function

𝐺𝑝𝑙𝑎𝑛𝑡 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵

The model is discretized using the Zero-Order Hold (ZOH) 
because the effects of digital sampling significantly impact 
the performance of the PD controller 

𝐺𝑝 𝑧 = 1 − 𝑧−1 ෍
𝑓𝑜𝑟𝜆

𝑅𝑒𝑠
1

𝜆
𝐺𝑝𝑙𝑎𝑛𝑡 𝜆

1

1 − 𝑧−1𝑒𝑇𝑠𝜆

The PD controller has the transfer function

𝐷 𝑧 = 𝐾𝑝 + 𝐾𝑑

𝑁 𝑧 − 1

1 + 𝑁𝑇𝑠 𝑧 − 1

The closed-loop transfer function is

𝐺𝑐𝑙𝑜𝑠𝑒𝑑 𝑧 =
𝐷 𝑧 𝐺𝑜𝑝𝑒𝑛 𝑧

1 + 𝐷 𝑧 𝐺𝑜𝑝𝑒𝑛 𝑧
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Model Discretizat ion
PD Controller

B l o c k  d i a g r a m  o f  d i g i t a l   c l o s e d - l o o p  s y s t e m

M a p p i n g  o f  Z O H  f r o m  c o n t i n u o u s  ( l e f t )  t o  d i s c r e t e  ( r i g h t )  

i m a g i n a r y  p l a n e s  



The PD controller gains are calculated from the transfer 
function by using the Jury stability criterion 

𝐺𝑝 𝑧 =
𝑏2𝑛+1𝑧2𝑛+1 + 𝑏2𝑛𝑧2𝑛 + ⋯ + 𝑏0

𝑎2𝑛+2𝑧2𝑛+2 + 𝑏2𝑛+1𝑧2𝑛+1 + ⋯ + 𝑎0

The necessary conditions which ensure system stability are

−1 𝑛𝑓 −1 > 0, 𝑓 1 > 0

The sufficient conditions which ensure system stability are

True iff:

𝑎0 < 𝑎𝑛

𝑏0 < 𝑏𝑛−1

…
𝑝0 < 𝑝3

𝑞0 < 𝑞2

The controller gains are determined heuristically as a ratio of 
their maximum values
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Stabi l i ty  Analysis
PD Controller

The generalized Jury table for a discrete characteristic equation

Subsequent rows of the Jury table are calculated as follows

𝑏𝑘 =
𝑎0 𝑎𝑛−𝑘

𝑎𝑛 𝑎𝑘



Linear Quadratic Gaussian (LQG) Regulator is a 
form of optimal control

A combination of the Linear Quadratic Regulator 
(LQR) and the Kalman Filter.

LQR

I. A form of optimal controller which minimizes 
a cost function

Kalman Filter

I. Estimates the true measurement of a  
stochastic process in the presence of noise.

II. Observes the hidden states of the system.
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Overview
LQG Controller

Simplified block diagram of a digital LQG control system



The quadratic cost function is minimized to find the 
optimal control cost

𝐽 =
1

2
න

0

∞

ෝ𝒙𝑇𝑸𝒄ෝ𝒙 + 𝑢𝑇𝑅𝑐𝑢 𝑑𝑡

Weighting matrices are places which places weight on 
the states and controller inputs of the system

𝑸𝒄 =
𝑞1 0 0
0 ⋱ 0
0 0 𝑞𝑐

, 𝑹𝒄 =
𝑟1 0
0 𝑟2

The control law which minimizes the cost is defined as

𝑢 𝑡 = −𝐾𝑐 ො𝑥 𝑡

The optimal control gain is defined as

𝑲𝒄 = 𝑹𝒄
−𝟏𝑩𝑻𝑷

The value of P is the solution to the infinite-horizon 
Continuous-time Algebraic Riccati Equation (CARE)

𝟎 = 𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷𝑩𝑹𝒄
−𝟏𝑩𝑻𝑷

The solution is found by constructing the Hamiltonian Matrix

𝐻 =
𝐴 𝐵𝑅𝑐

−1𝐵𝑇

−𝑄𝑐 −𝐴𝑇

Then find the eigenvectors of the Hamiltonian Matrix

𝑇𝐻 =
𝑇11 𝑇12

𝑇21 𝑇22

The final solution to the CARE
𝑃 = 𝑇21𝑇11

−1
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Feedback Control  Law (LQR)
LQG Controller



The model for the Kalman filter is constructed by adding 
noise to the state-space model

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝑧 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 𝑣 𝑡

Since the experimental control system is implemented using 
digital hardware, the model is digitized

𝑥 𝑘 + 1 = 𝐴𝑑𝑥 𝑘 + 𝐵𝑑𝑢 𝑘 + 𝑧 𝑘
𝑦 𝑘 = 𝐶𝑑𝑥 𝑘 + 𝑣 𝑘

The state transition matrix and process noise covariance 
matrix is calculated using the Van Loan method

𝚲 = −𝑨 𝑩𝑾𝑩𝑻

𝟎 𝑨𝑻 Δ𝑡 , 𝑒 𝚲 =
… 𝑨𝒅

−𝟏𝑸𝒇

𝟎 𝑨𝒅
𝑻

The input matrix and output matrix are also digitized
𝑩𝒅 = 𝑨−1 𝑨𝒅 − 𝑰 𝑩
𝑪𝒅 = 𝑪

The Kalman filter is a recursive algorithm that is 
implemented in a series of five steps

Update state estimates and error covariance

I. ො𝑥 𝑘 = 𝒙̂− 𝑘 + 𝐾𝑓 𝑘 𝑧 𝑘 − 𝐶𝑑 𝑘 𝒙̂− 𝑘

II. 𝑃 𝑘 = 𝐼 − 𝐾𝑓 𝑘 𝐶𝑑 𝑘 𝑃− 𝑘

Project the a priori state estimates and error covariance

III. ො𝑥− 𝑘 + 1 = 𝐴𝑑 𝑘 ො𝑥 𝑘

IV. 𝑃− 𝑘 + 1 = 𝐴𝑑 𝑘 𝑃 𝑘 𝐴𝑑
𝑇 𝑘 + 𝑄𝑓 𝑘

Updated state estimates

V. ො𝑥 𝑘 = 𝐼 − 𝐾𝑓 𝑘 𝐶𝑑 𝑘 ෞ𝑥− 𝑘 + 𝐾𝑓 𝑘 𝐶𝑑 𝑘 𝑥 𝑘 + 𝑣 𝑘
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State Est imator (Kalman Fi lter)
LQG Controller



Simulated Closed-
Loop Control

I. Simulink Models

II. Pole-Zero Maps

III. Performance Comparison

IV. LQG Modal Control

Subjects



S imul ink  
B lock  

Diagram 
Models
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Simulink block diagram of uncontrolled model

Simulink block diagram of closed-loop PD-controller model

Simulink block diagram of closed-loop LQG-controller model



Pole-Zero Maps

➢ The pole-zero map gives insight on the stability of a 

system

➢ A stable system must have all its poles located within

the unit circle

➢ Controllers add poles and zeros to the system to shift 

the locations of the poles and zeros of the plant and 

produce more desirable system response

➢ The PD controller slightly moved the dominant poles

➢ The LQG controller significantly moved multiple poles

/   29

Root locus of PD-controlled model

PZ map of LQG-controlled model

PZ map of uncontrolled model

Overview



Bode diagram: a 5V swept-sine signal was applied to the 
tip piezos and the base piezos were used for control

Finite-impulse Response: A 10V signal over 30ms was 
used to step the structure using the base piezos

PD Controller

➢ Slightly attenuated the first mode

➢ Used relatively little voltage

➢ 26x faster settling time than uncontrolled

➢ Reduced maximum amplitude by 88%

LQG Controller:

➢ Significantly attenuated the first three modes

➢ Used significantly more voltage

➢ 454x faster settling time than uncontrolled

➢ Reduced maximum amplitude by 18%

Performance Comparison
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Simulated system Bode diagrams Simulated system finite-impulse responses

Simulated system finite-impulse response performance metrics



Control  Exc luding
1 st Mode

Closed-Loop Control:  Modal  Control
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Control  Exc luding
2 nd Mode

Control  Exc luding
3 rd Mode

Frequency Response

Transient Impulse Response

Frequency Response

Transient Impulse Response

Frequency Response

Transient Impulse Response



Experimental

Closed-Loop 
Control

I. Demonstration

II. Performance Comparison

Subjects





Bode diagram: a 5V swept-sine signal was applied to the 
tip piezos and the base piezos were used for control

Finite-impulse Response: A 5V signal over 150ms was 
used to step the structure using the base piezos

➢ Experimental performance of both controllers was slightly 
worse than that of simulation, but still satisfactory.

➢ The PD controller increased the overshoot of the system

➢ The LQG controller had less control over the third mode

➢ Performance discrepancies are likely a result of 
unmodeled system dynamics

➢Nonlinearities in the system

➢Discrepancies in geometric and material properties

➢Time Delay

Performance Comparison
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Experimental system Bode diagrams Experimental system finite-impulse responses

Experimental system finite-impulse response performance metrics



Conclusions
The primary motivation for this project is to investigate the application of a high-precision laser

measurement system and its use in vibration measurement and active vibration control.

Research Objectives:

➢ Design and fabricate a smart structure that utilizes laser interferometry for measurement feedback.

➢ Develop an analytical model that encapsulates the dynamics of the smart structure.

➢ Design an LQG regulator using a model-based design approach.

➢ Design a PD controller to act as a reference for the performance of the LQG regulator.

➢ Validate the performance of the LQG controller through simulation and experimentation.
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Discussion


