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(Received 22 July 2018; published 3 January 2019)

In this Rapid Communication, we present the order of the phonon modes and the appearance of the reststrahlen
bands for monoclinic symmetry materials with polar lattice vibrations. Phonon modes occur in associated pairs
of transverse and longitudinal optical modes, and pairs either belong to inner or outer phonon modes. Inner
modes are nested within outer modes. Outer modes cause polarization-dependent reststrahlen bands. Inner modes
cause polarization-independent reststrahlen bands. The directional limiting frequencies within the Born-Huang
approach are bound to within outer mode frequency regions not occupied by inner mode pairs. Hence, an unusual
phonon mode order can occur where both lower-frequency as well as upper-frequency limits for the directional
modes can be both transverse and/or longitudinal modes. We exemplify our findings using experimental data for
the recently unraveled case of monoclinic symmetry β-Ga2O3 [Phys. Rev. B 93, 125209 (2016)] and demonstrate
excellent agreement with results from density functional theory calculations.

DOI: 10.1103/PhysRevB.99.041201

The order of phonon modes, their polarization depen-
dencies, and the corresponding structure of the reststrahlen
bands are well understood for materials with orthorhombic
and higher symmetries [1–4]. The reststrahlen bands (Rubens
and Nichols) [5,6] permit the accurate determination of
long-wavelength polar lattice modes and their polarization
dependencies [7,8]. However, thus far the structure and
properties of the reststrahlen bands, and the order of phonon
modes and their polarization dependencies in materials with
monoclinic crystal symmetry remain unexplained. Material
properties and the underlying physics for crystalline materials
with monoclinic symmetry are gaining interest, for example,
in electronic power devices, scintillators, high-power lasers,
frequency stable laser local oscillators, light slowing and
trapping devices, and optical quantum memory technologies
[9–14]. In this Rapid Communication, we explain the
structure of the reststrahlen bands in monoclinic symmetry
materials, and we identify the nature and physical origin
of inner and outer phonon mode pairs. The results reported
here may be useful for understanding the physical properties
associated with polar phonon mode coupling and propagation
such as free charge carrier and thermal transport properties,
and for correct identification of phonon modes by theory and
experiment.

Born and Huang [15], in principle, laid out a formalism to
derive the lattice dynamic properties in crystals with arbitrary
symmetry. Solutions are categorized under different electric
field E and dielectric displacement D conditions [1]. E = 0
and D = 0 defines the transverse optical (TO) modes ωTO,l

associated with the dipole moment. E �= 0 but D = 0 defines
the longitudinal optical (LO) modes ωLO,l . E �= 0 and D �= 0

*schubert@engr.unl.edu; http://ellipsometry.unl.edu

defines the so-called limiting frequencies ω(α)l . While the
application of the Born-Huang approach is straightforward to
the calculation of the lattice dynamics in low-symmetry ma-
terials, the underlying physics, hidden in high-symmetry ma-
terials due to degeneracies, remains to be discussed. For ex-
ample, a generalization of the Lyddane-Sachs-Teller relation,
a fundamental statement in solid state physics, was recently
described for monoclinic and triclinic symmetry materials
[16]. It was also observed that the so-called “TO-LO rule” for
phonon modes in monoclinic β-Ga2O3 and Y2SiO5 is violated
[17,18]. For orthorhombic and higher-symmetry materials, all
phonon mode displacements are polarized (directed) along
three major linear Cartesian axes. For each axis, the sequence
(order) of all phonon modes is such that a TO frequency
is always followed exactly by one LO frequency with an
ascending wavelength (TO-LO rule). The thereby identified
TO-LO pairs always possess the same displacement direction.
For the previously investigated monoclinic materials β-Ga2O3

and Y2SiO5, for which complete sets of TO and LO modes
determined from experiment are now available, the question
remained unanswered as to which of the observed TO and
LO modes form associated pairs, and whether such a pair
assignment can even be made for low-symmetry materials
where all TO and LO modes differ in their directions within
the monoclinic plane. The answer to this question is provided
in this Rapid Communication.

The eigendielectric displacement vector summation ap-
proach describes the effect of polar vibrations onto the long-
wavelength dependence of the dielectric function tensor ε re-
gardless of symmetry [16–18,20]. The approach is equivalent
to the microscopic Born-Huang description of N polar lattice
vibrations in the harmonic approximation [1,15]

ε = ε∞ + χ = ε∞ +
N∑

l=1

A2
TO,l

ω2
TO,l − ω2

(êTO,l ⊗ êTO,l ), (1)
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where ATO,l , ωTO,l , and êTO,l are the amplitude, TO mode
frequency, and unit eigendielectric displacement vector of the
polar lattice mode l, respectively, ε∞ is the dielectric tensor
contribution due to the combined vacuum permittivity and due
to higher-frequency electronic dielectric polarization, ⊗ is the
dyadic product, and ω is the time-harmonic frequency. The
same statement can be formulated for ε−1 with parameters
for all LO modes exchanging all labels “TO” with “LO”
accordingly [18]. See Supplemental Material [19] for a de-
tailed introduction to the eigendielectric displacement vector
summation approach. The eigenvectors of all TO and LO
modes are oriented within the monoclinic plane.

Kuz’menko, Tishchenko, and Orlov [21] performed an
eigenpolarization reflectance analysis for the monoclinic
plane of α-Bi2O3 introducing eigenpolarizations E± and cor-
responding wave propagation constants n± (indices of re-
fraction). Both E± and n± derive from the time-harmonic
photon-polariton dispersion relation k(h̄ω), where the elec-
tromagnetic field wave vector is k = k0(kx, ky, kz),

[εij − n2(δij − kikj )]Ej = 0, (2)

where δij is the Kronecker symbol, k0 = ω
c

, and c is the speed
of light. For light at normal incidence to the a-c plane (kx =
ky = 0),

n± = √
p ± q, (3)

where

p = εxx + εyy, q =
√

(εxx − εyy )2 + 4ε2
xy. (4)

When n± → 0, it follows that det(εij ) → 0, and hence ω →
ωLO,l . Consequently, two types of modes exist, one for p −
q = 0, and one for p + q = 0. We refer to those as LO− and
LO+, respectively, and provide an explanation for their origins
below. As will be shown further below, each mode LO− and
each mode LO+ is associated with exactly one and only one
TO− and exactly one and only one TO+, respectively, and
which will be identified from conditions p − q → −∞ and
p + q → −∞, respectively. See Supplemental Material for
a detailed discussion of the parameters p and q [19]. The
normal incidence eigenpolarization (E±) reflectance Fresnel
coefficients (r±) can be expressed immediately, where E±
correspond to n±, and are eigenvector solutions to Eq. (2)
[21],

r± = n± − 1

n± + 1
. (5)

Schubert, Tiwald, and Herzinger [22] identified the conditions
for bands of total reflection for high-symmetry orientations
of surfaces cut from materials with orthorhombic and higher
symmetry. Putting forward the same considerations as in
Ref. [22], Eq. (5) results in

√
r±r�± = 1 ⇔ Re{n±} � 0, (6)

where � denotes the complex conjugate. The eigendielectric
displacement vector summation approach can be used to iden-
tify the physics of the phonon modes within the monoclinic
plane. We introduce q as a generalized displacement vector

within the a-c plane (see Supplemental Material [19]),

q =
N+2∑
l=1

ql , (7)

where we included the combined vacuum and higher elec-
tronic polarizability contributions εxx,∞ and εyy,∞ as dyadic
terms for l = N + 1 and l = N + 2, respectively. Displace-
ment terms due to individual polar vibrations can be identified
as follows,

ql = A2
TO,l

ω2
TO,l − ω2

[sin(2αTO,l )êx + cos(2αTO,l )êy], (8)

where êTO,l = sin αTO,l x̂ + cos αTO,l ŷ. Then, it follows that
the formal vector magnitude of q, q = |q|, and the sum p over
all coordinate functions ql of the vector functions ql = ql q̂l ,

p =
N+2∑
l=1

ql =
N+2∑
l=1

A2
TO,l

ω2
TO,l − ω2

, (9)

are identical with terms q and p in Eq. (5). Term p can be
interpreted as the total sum over all possible displacements
produced by each individual lattice mode at a given wave-
length including the quasistatic high-frequency contributions.
Term q takes the directional character of every mode within
the monoclinic plane into account, and can be interpreted as
a measure of the net magnitude of displacement at a given
frequency.

If phonon mode broadening is ignored, which for the
purpose of identifying the properties of phonon modes can
be justified here, p and q are real valued. It is important to
recognize that p can be both positive and negative, while q is
always positive. Two cases emerge from Eq. (6),

√
r−r�− = 1 ⇔ p − q < 0, (10)

or √
r+r�+ = 1 ⇔ p + q < 0. (11)

In the first case, the net magnitude of displacement at a
given frequency is larger than the sum over all possible
displacements. This is the case for the onset of a phonon mode
when no other resonance mode with negative displacement
is occurring. At normal incidence, for ascending frequency,
total reflection in r− occurs and forms a band, which stretches
from a TO− to a LO−. We refer to these modes as “outer”
modes, which form pairs [TOj,−, LOj ′,−], where j and j ′
index the occurrence of TO and LO modes. In the second
case, the net magnitude of displacement at a given frequency
is smaller than the sum over all possible displacements. This
is the case when a given phonon mode resonance produces
negative displacement while a different polar resonance with
negative displacement is already occurring. At normal inci-
dence, bands of total reflection in r+ stretch between pairs
of frequencies of TO+ and LO+ modes, for ascending fre-
quencies. We refer to these modes as “inner” modes, which
form pairs [TOj ′,+, LOj ′,+]. Pairs [TO+, LO+] fall within
pairs of [TO−, LO−] because an inner mode occurs in a
frequency region where another (outer) mode pair produces
negative displacement. Hence, for example, with increasing
frequency, phonon modes may appear with sequences . . . ,
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TO(−), TO(+), . . . and . . . , LO(+), LO(−), . . . , for example,
as reported recently from experiment by generalized ellip-
sometry for Y2SiO5 [18], and β-Ga2O3 [17]. Multiple pairs
[TOj,+, LOj ′,+] can fall within one pair [TO−, LO−], forming
a structured phonon band. For example, the order and struc-
ture TO8,−, TO7,+, LO8,+, TO6,+, LO7,+, LO6,− is observed
within the respective three lowest-frequency Bu-symmetry TO
and LO modes of β-Ga2O3 [17]. Note that sequences with
triple or more subsequent TO or LO modes, e.g., TO, TO, TO,
. . . , or LO, LO, LO, . . . , cannot occur.

The reststrahlen bands in the monoclinic plane are polar-
ization dependent. For linearly polarized incident light, the
reststrahlen bands are characterized by unpolarized bands
of total reflection, polarized bands of total reflection, and
intermediate bands with no total reflection. See Supplemental
Material for a detailed derivation of the restrahlen bands [19].
The latter occur outside bands of outer modes. Within inner
mode pairs [TO+, LO+], bands of unpolarized total reflection
occur, since r+ = r− = 1. Hence, at normal incidence, the a-c
plane of a monoclinic crystal is totally reflective within all
inner bands, regardless of light polarization. Within spectral
regions inside outer mode pairs not overlaid by inner mode
pairs, [TO−, LO−] ∩ [TO+, LO+], total reflection occurs only
for one linear polarization state. The angle depends on the
wavelength, hence, we refer to these bands as polarization-
(or angular-) dependent bands. Narrow lines of total reflection
form, which begin and end at frequencies and directions of the
modes in [TO−, LO−] ∩ [TO+, LO+].

The angles at which the polarization-dependent bands be-
gin and end can be directly read from the directions of the
eigenvectors, ϕ± = tan−1(E±,y/E±,x ). For the polarization-
dependent bands, r− = 1, hence, one must inspect the func-
tion ϕ−(ω). Note that eigenvectors E± are always perpendic-
ular to each other. See Supplemental Material [19] where it is
shown in detail that

ϕ−
(
ωLOj,−

) = αLOj,− , (12)

ϕ−
(
ωLOj,+

) = αLOj,+ ± π

2
, (13)

ϕ−
(
ωTOj,−

) = αTOj,− , (14)

ϕ−(ωTOj,+ ) = αTOj,+ ± π

2
. (15)

Hence, bands begin and end at the outer mode frequencies,
and mark the direction of the phonon modes. Bands connect-
ing to inner mode frequencies identify directions perpendic-
ular to the phonon mode directions. This is indicated within
the two figures in our Rapid Communication by solid or
open symbols, which locate the angular positions of a given
phonon mode (TO: circles; LO: squares) or the orientation
perpendicular to this given phonon mode, respectively.

The limiting frequencies ω(α)l depend on the direction
of a unit vector within the a-c plane, α = cos αx̂ + sin αŷ.
The limiting frequencies are found from the dynamical matrix
for vanishing wave vector as a function of the angle of
the wave-vector direction [1]. In crystals with orthorhombic
and higher symmetry, frequencies ω(α)l are bound within
associated TO-LO pairs, ωTO,l � ω(α)l � ωLO,l . Hence, TO
and LO frequencies, and their band association l, for example,

in density functional theory (DFT) calculation results, can be
identified from minima and maxima, and the band index l

of calculated ω(α)l , respectively. However, this assignment
can be incorrect for crystals with monoclinic symmetry as
a direct consequence of the phonon order and structure dis-
cussed above. Because no solution for ω(α)l exists within
bands of total reflection, the allowed frequency regions are
confined to frequency regions [TO−, LO−] ∩ [TO+, LO+].
Hence, minimum-maximum bounds for ω(α)l can be (i)
ωTOj,− -ωTOj ′ ,+ , (ii) ωLOj,+ -ωTOj ′ ,+ , (iii) ωLOj,+ -ωLOj ′,− , and (iv)
ωTOj,− -ωLOj ′ ,− .

Figure 1 depicts frequencies ω(α)l for the β-Ga2O3 a-c
plane as a function of α obtained, independently, by DFT
[Fig. 1(a)] and from ellipsometry [Fig. 1(b)]. DFT results were
computed at the � point of the Brillouin zone as described
in Ref. [17] for the fully relaxed unit cell of β-Ga2O3, and
using the same method including the general gradient approxi-
mation (GGA) density functional of Perdew-Burke-Ernzerhof
[23] as in Ref. [24]. See Supplemental Material for a detailed
discussion of the DFT procedures [19]. TO mode frequencies
were taken directly from the �-point calculations. Frequencies
ω(α)l with Bu symmetry were obtained by setting a small
displacement from the � point, so that the entire a-c plane
was probed with a step of 0.1◦. The extrema of the dispersion
curves were marked as LO modes if they did not coincide
with previously identified TO modes. Mode frequencies ω(α)l
in Fig. 1(b) are obtained from the observed zero crossings
in the real part of εαα , calculated using the eigendielectric
displacement vector summation approach and parameters as
described and reported in Ref. [17]. Note that εαα obtained
from our previous ellipsometry analysis in Ref. [17] is offset
by approximately −20◦ due to the lack of sensitivity to the
orientations of the crystallographic axes within the mono-
clinic plane from the ellipsometry data analysis. An excellent
agreement between theory and experiment is noted when
considering the offset as a trivial rotation. Eight bands of
ω(α)l occur, as expected from the observed eight TO and eight
LO modes. However, the maxima of frequencies ω(α)l are
not always identical with LO modes. Likewise, the minima
are not always identical with TO modes. Specifically, when
an outer mode TO-LO pair is not disrupted by inner mode
pairs, minima and maxima for ω(α)l are identical to the TO
and LO modes. However, when inner mode pairs exist, ω(α)l
reveal gaps with anticrossing behavior. A similar behavior
was noted from the results of DFT calculations for phonon
modes in monoclinic symmetry CsSnCl3 [30]. When inner
mode pairs exist, ω(α)l can be limited by two TO modes, or
two LO modes, or the upper limit can be a TO mode while
the lower limit can be a LO mode. This result is important
for the correct identification and proper assignment of TO and
LO mode characters and their correct eigenvectors from DFT
calculations.

Figure 2 depicts the linearly polarized reststrahlen (Rα� )
bands of β-Ga2O3 in the monoclinic plane [Fig. 2(a)], and a
schematic of the associated phonon bands [Fig. 2(b)]. Rα� is
calculated using the eigendielectric displacement vector sum-
mation approach and parameters as described and reported in
Ref. [17]. The influence of broadening is ignored here for
clarity, and all broadening parameters are set to zero. The
diagrams show the frequencies and directions of all TO and

041201-3



SCHUBERT, MOCK, KORLACKI, AND DARAKCHIEVA PHYSICAL REVIEW B 99, 041201(R) (2019)

FIG. 1. Limiting long-wavelength mode frequencies ω(α)l (solid lines) of monoclinic symmetry β-Ga2O3 as a function of unit direction
α = cos αx̂ + sin αŷ in the a-c plane obtained from (a) density functional theory calculations, and (c) generalized ellipsometry investigations.
α = 0 : α‖a, α = π/2 : α‖c�; c� is perpendicular to a within the a-c plane, indicated by the vertical dashed line. The angular parameter α was
offset by approximately −20◦ during experiment, α� = α − 20◦. Indicated are frequencies and eigenvectors (solid symbols) and their normal
directions (open symbols) of TO (red circles), and LO modes (purple squares). Horizontal dashed-dotted and dotted lines indicate frequencies
of TO and LO modes, respectively. (b) Three pairs of outer modes, and five pairs of inner modes occur in β-Ga2O3, forming three phonon
bands with phonon mode order matching the previously observed order of Bu-symmetry TO and LO frequencies in Ref. [17]. Parameters in
(a) are calculated in this work, and parameters in (c) are taken from experiment described in Ref. [17].

LO modes (solid symbols). TO and LO mode frequencies are
indicated by horizontal lines. Indicated further are the direc-
tions normal to all TO and LO modes within the monoclinic

FIG. 2. (a) Reflectance color-density plot (ten equally spaced
density scales between dark olive for Rα� = 1 and white for Rα = 0)
rendering the linearly polarized reststrahlen bands for the β-Ga2O3

a-c plane as a function of α� and symbols as defined in Fig. 1. The
incident polarization is parallel to α�. (b) Same as in Fig. 1.

plane (open symbols). A total of eight TO and eight LO modes
is observed from experiment. The modes form five spectral
regions of polarization-independent total reflection and eight
regions of polarization-dependent total reflection. The rest-
strahlen bands separate into three structured frequency regions
within which a frequency can be found and at least one linear
polarization can be found where Rα = 1. These regions are
bound by a thereby associated outer mode TO-LO pair. The
frequency regions of polarization-independent total reflection
are bound by associated inner mode TO-LO pairs. Note that
in regions of polarization-dependent total reflection, total
reflectance begins and ends at directions which are normal to
the eigendirections of the TO and/or LO modes involved in the
band. When the polarization-dependent total reflection begins
and/or ends at an outer mode, it begins and/or ends at the outer
mode eigenvector direction. The resulting order of outer and
inner phonon mode pairs is depicted in Fig. 2(b). Note that
a structured band (an outer mode pair with embedded inner
mode pairs) always begins and ends with sequences of double
LO and double TO occurrences, respectively.

An eigendielectric displacement vector summation ap-
proach was used to reveal the existence of inner and outer
polar phonon mode pairs in materials with monoclinic sym-
metry. We thereby explained the unusual frequency order
and the polarization-dependent structure of the reststrahlen
bands, and demonstrated our findings for the case of mon-
oclinic β-Ga2O3. The directional limiting modes within the
Born-Huang approach are bound to within outer mode fre-
quency regions not occupied by inner mode pairs. Hence,
an unusual phonon mode order can occur where both lower-
frequency as well as upper-frequency limits for the directional
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modes can be both transverse and/or longitudinal modes.
An excellent agreement was found for all statements made
for β-Ga2O3 with results from density functional theory
calculations.
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