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ABSTRACT

A complete set of all optical phonon modes predicted by symmetry for bixbyite structure indium oxide is reported here from a combination of
far-infrared and infrared spectroscopic ellipsometry, as well as first principles calculations. Dielectric function spectra measured on high
quality, marginally electrically conductive melt grown single bulk crystals are obtained on a wavelength-by-wavelength (also known as point-
by-point) basis and by numerical reduction of a subtle free charge carrier Drude model contribution. A four-parameter semi-quantum model
is applied to determine all 16 pairs of infrared-active transverse and longitudinal optical phonon modes, including the high-frequency dielectric
constant, ε1 ¼ 4:05+ 0:05. The Lyddane–Sachs–Teller relation then gives access to the static dielectric constant, εDC ¼ 10:55+ 0:07. All
experimental results are in excellent agreement with our density functional theory calculations and with previously reported values, where
existent. We also perform optical Hall effect measurements and determine for the unintentionally doped n-type sample a free electron density
of n ¼ (2:81+ 0:01)� 1017 cm�3, a mobility of μ ¼ (112+ 3) cm2/(Vs), and an effective mass parameter of (0:208+ 0:006)me. Density
and mobility parameters compare very well with the results of electrical Hall effect measurements. Our effective mass parameter, which is
measured independently of any other experimental technique, represents the bottom curvature of the Γ point in In2O3 in agreement with
previous extrapolations. We use terahertz spectroscopic ellipsometry to measure the quasi-static response of In2O3, and our model validates the
static dielectric constant obtained from the Lyddane–Sachs–Teller relation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052848

I. INTRODUCTION

Indium oxide (In2O3) is a sesquioxide of continued interest as a

part of the broader transparent semiconducting oxide family. In2O3

crystallizes in a stable phase with a bixbyite structure and a cubic

crystal symmetry. Similarly to other transparent semiconducting

oxides, In2O3 is classified as a wide bandgap (2.9 eV) material.1

When doped with tin, In2O3 shows high electrical conductivity.2–4

These properties lend In2O3 to applications in transparent
electrodes,5–8 gas sensing,9–11 nanowire technology,12 high-voltage
transistors,13–15 Schottky diodes,16,17 and ultraviolet light emitting
devices,18–21 for example.
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In2O3 with high structural quality has been produced by thin
film and bulk growth methods. Most existing works study thin-film
samples, and as a result, most of the applications are designed
around thin-film samples as well.22 Bierwagen and Speck reported
high quality thin films grown by plasma-assisted molecular beam
epitaxy (PAMBE);4,23 Yang et al. reported similarly high quality
thin films grown by metalorganic vapor phase epitaxy;24 and
Karim et al. reported high quality thin films grown by low pressure
chemical vapor deposition,25 for example. Recently, Galazka et al.
developed a high quality single crystal bulk growth method and
thereby provided substrates with large surface areas for epitaxy.26

The structural quality of epitaxial layers grown, e.g., by PAMBE, is
typically higher than for polycrystalline films and lower than or
comparable to bulk crystals. With increasing availability of bulk
samples, the possibilities for homoepitaxial and heteroepitaxial
growth are becoming abundant.27,28

In2O3 is commonly n type and unintentionally doped (UID).
High quality thin films and bulk crystals, UID and doped with tin,
were investigated recently by Feneberg et al.29 The free electron
density varied from 3:7� 1017 to 1:2� 1021 cm�3 and can be well
controlled. Electrically insulating high quality single crystalline
In2O3 has not yet been reported.

The effective conduction band mass parameter in In2O3 has
been widely studied. Reported effective mass values range from
0.13 to 0.55 me (me is the free electron mass),29–33 with rather large
spread among results from experimental and theoretical investiga-
tions. Experimental results were reported from combined electrical
Hall effect and Seebeck effect measurements,30–32 combined electri-
cal Hall effect and infrared ellipsometry measurements,29 and angle
resolved photoemission measurements.33–35 Many reports of con-
duction band mass parameters exist, which were obtained from
first principles calculations in various approximations.36–40 Perhaps
the most accurate theory result was provided by Fuchs and
Bechstedt38 using first principles density functional theory (DFT)
calculations with nonlocal potential resulting from a HSE03 hybrid
functional and quasi-particle correction. For the bcc polymorph,
the effective electron mass at the Γ point is almost direction inde-
pendent and amounts to 0.22 me using the HSE03 functional.38

The conduction band is nonparabolic, with a smaller nonparabolic-
ity than in InN but remains non-negligible.41 Fuchs and Bechstedt
gave an approximation for the conduction band

EC kð Þ ¼ 1
2

Eg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
g þ 4

me

m*
� 1

� �
EkEg

r� �
, (1)

where Ek ¼ (�h2=2me)k
2 and the direct bandgap energy Eg is

obtained from kp calculations. The nonparabolicity of the effective
mass, i.e., its k dependence, can be determined by matching calcu-
lated band structure data against Eq. (1), which permits one to
obtain m*(k) when considering that the inverse of the second
derivative of the left side in Eq. (1) is related to the k-dependent
effective mass parameter

m*(k)
me

¼ 1þ me=m*� 1
1þ 4(me=m*� 1)EkEg

� ��1

, (2)

where m* denotes the effective mass at Γ.38 According to Fuchs and
Bechstedt,38 the effective mass raises to approximately 0.3 me for free
electron densities exceeding 1020 cm�3 in agreement with experi-
mental investigations. Feneberg et al. used a method combining
infrared ellipsometry and electrical Hall effect measurements, intro-
duced by Kasic et al.42 for GaN thin films and reported effective
mass parameters for n type In2O3 bulk samples and epitaxial thin
films with free electron densities ranging from 5� 1018 to
1� 1021 cm�3.29 A strong variation of the effective mass parameter
was observed with carrier density from 0.18 me for the lowest detect-
able carrier density to approximately 0.44 me at 1021 cm�3 and
explained by near Γ point conduction band nonparabolicity. A
similar conduction band nonparabolicity was observed previously for
wurtzite structure InN, where the effective mass varies from 0.05 me

for perpendicular polarization and 0.037 me for parallel polarization
at the band bottom to 0.15 me for both polarization directions when
approaching free electron densities of 1020 cm�3.41 A simplified
approximation for the free electron density n dependence of the
conduction band mass m* was reported by Feneberg et al.,

m*(n) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m*ð2Þ(0)þ 2C�h2m*(0)(3π2n)

2
3

q
, (3)

and matching experimental data resulted in the zero density effective
mass parameter m*(0) ¼ (0:18+ 0:02) me and nonparabolocity
parameter C ¼ 0:5+ 0:02 eV�1. The zero density effective mass
value extrapolated using Eq. (3) is in very good agreement with the
Γ point effective mass from HSE03 results in Fuchs and Bechstedt.

The electrical mobility decreases with increasing carrier con-
centration due to impurity scattering and electron–electron interac-
tions. In2O3 single crystals grown from melt have been studied
systematically using different heat treatments at temperatures from
200 to 1400 �C.43 Annealing under non-reducing conditions lead to
free electron densities in the 1017 cm�3 range. Typical electron
mobility parameters were reported between 140 and 180 cm2/(Vs).
Such annealed samples revealed transmittance spectra with a sharp
absorption edge at 440 nm wavelength with high transparency in the
visible range.43 A new crystal growth technique, “Levitation-Assisted
Self-Seeding Crystal Growth Method,” with subsequent annealing in
an O2-containing atmosphere resulted in an improved electron
mobility of 190 cm2/(Vs) in the low 1017 cm�3 free electron density
range.44 Comparison between the mobility obtained from electrical
Hall effect measurements and the broadening parameter showed a
very good agreement between the free electron mobility determined
by infrared ellipsometry and electrical Hall effect measurements. It is
noted that in this comparison performed by Feneberg et al.,29 electri-
cal mobility is obtained by the same measurement, which determines
the electron density and which in turn was used there to determine
the effective mass.

In2O3 is known to develop a surface charge accumulation sim-
ilarly to indium nitride.45–47 It has been posed that this is caused
by oxygen vacancies.48 Zhang et al. used angle-resolved spectro-
scopy to further study the two-dimensional electron accumulation
found in In2O3.

33 Additionally, Scherer et al. showed that bulk
In2O3 crystals cleaved in ultrahigh vacuum did not show any elec-
tron accumulation layer.49 While this effect is necessary for
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applications in gas sensing, it hinders performance of transistor
and diode technologies and must be controlled.

An early vibrational study by White and Keramidas of infra-
red and Raman spectra from powder In2O3 revealed limited sets of
mode parameters. Only 11 out of the 16 transverse optical (TO)
mode frequencies and none of the longitudinal optical (LO) mode
frequencies were reported.50 Hamberg and Granqvist, in a large
study of sets of indium oxide thin films obtained by evaporation,
reported on similar subsets of data.51 Analysis of reflectance mea-
sured on pellet samples by Sobatta et al. added the LO mode
parameters for the 11 TO mode parameters identified earlier.52

More recently, thin-film samples have been studied, and a complete
set of Raman modes have been described.53,54 Infrared ellipsometry
was used by Feneberg et al. on a large set of samples in the spectral
range above 300 cm�1. Highly accurate TO mode frequencies for a
subset of 8 modes from the 11 modes already characterized by
Sobatta et al. and White and Keramidas were reported. The LO
mode parameters were not determined, and the focus was directed
to determine Drude model parameters for the differently doped
samples in order to determine the density dependence of the effec-
tive mass parameters. Phonon mode parameters obtained from first
principles calculations are not available in the literature.

Hamberg and Granqvist determined the static dielectric cons-
tant (εDC � 8:9–9:5) and the high-frequency dielectric constant
(ε1 ¼ 4) from analysis of broadband reflection and transmission
data obtained from polycrystalline thin films deposited by e-beam
evaporation.51 No other experimental results for the static dielectric
constant appear to be available. Typical capacitance measurement
configurations for radio frequency determination of the static
dielectric constant require highly insulating material, which has not
been grown yet. Therefore, capacitance measurements, e.g., as
reported for insulating β-Ga2O3, are not available for In2O3.

55

Zhang et al. obtained εDC ¼ 9:05 from DFT calculations.35 Walsh
et al. determined εDC ¼ 9:0 using interatomic potential calcula-
tions.56 The high-frequency dielectric constant is mostly agreed
upon both by experiment (e.g., Feneberg et al.: 4:08+ 0:02)29

and theory (e.g., Fuchs and Bechstedt: 4.0).38 With the Lyddane–
Sachs–Teller relationship,57

εDC ¼ ε1
YN
l¼1

ω2
LO,l

ω2
TO,l

, (4)

and knowledge of all infrared active transverse (TO; ωTO) and
longitudinal optical (LO; ωTO) phonon modes and accurate value
of ε1, εDC can be determined. However, as discussed above, only
11 out of the N ¼ 16 phonon mode pairs, ωTO,l and ωLO,l , are
known so far, while for l ¼ 12, . . . , 16, neither experimental nor
theoretical results seem to exist.

In this work, we report a combined terahertz, far-infrared, and
infrared spectroscopic ellipsometry, optical Hall effect, and density
functional theory investigation. We perform and analyze measure-
ments on a high quality, unintentionally doped, marginally electri-
cally conductive single crystal of cubic In2O3. We obtain and report
the static dielectric constant, the optical phonons, and the free
charge carrier properties. We observe and determine all remaining
TO and LO phonon mode parameters from our ellipsometry

measurements. We also report the complete set of zone center
optical phonon modes from our theoretical investigation. We
report the static dielectric constant from the full set of optical
phonon modes and the Lyddane–Sachs–Teller relation. We further
demonstrate an excellent agreement with our LST extrapolation by
comparing model-calculated with measured THz ellipsometry mea-
surements. Our optical Hall effect measurements reveal density, n,
mobility, μ, and effective mass parameters, which determine an inde-
pendently measured experimental value closest to the zero density
effective mass parameter, m*(0). We compare our results where
available with previous reports, and we compare and discuss our
optical Hall effect with electrical Hall effect results.

II. THEORY

A. Crystal structure and symmetry

In2O3 crystallizes in the cubic bixbyite structure (space group
No. 206, Ia�3). The primitive cell (Fig. 1) contains 40 atoms, which
result in a total of 117 optical phonon modes, which at the
Brillouin-zone center belong to the irreducible representation,

Γopt ¼ 4Ag þ 5Au þ 4Eg þ 5Eu þ 14Tg þ 16Tu:

E and T modes are double- and triple-degenerate, respectively.
Modes Ag, Eg, and Tg (g—gerade) are Raman-active; modes Tu are
IR-active (and the focus of the present study); and modes Au and
Eu (u—ungerade) are silent. Infrared-active phonon mode displace-
ments are shown in Figs. 2–5.

FIG. 1. (a) Conventional unit cell of In2O3 and the corresponding (b) primitive
cell described in the text. Large (gray) spheres represent indium atoms, and the
smaller (red) spheres represent oxygen atoms.
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FIG. 2. Rendering of atomic displacement patterns (phonon eigenvectors) for IR-active TO phonon modes Tu-1 to Tu-4. Note that LO mode displacements, except for dif-
ferent magnitudes, are equivalent to their corresponding TO pair partner because of the cubic crystal symmetry.
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FIG. 3. Same as Fig. 2 for Tu-5 to Tu-8.
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FIG. 4. Same as Fig. 2 for Tu-9 to Tu-12.
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FIG. 5. Same as Fig. 2 for Tu-13 to Tu-16.
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B. Density functional theory

DFT calculations were performed by a plane wave DFT code
Quantum ESPRESSO (QE).58 We used the local density approxi-
mation exchange-correlation functional of Perdew and Wang
(PW)59,60 and optimized norm-conserving Vanderbilt (ONCV)
scalar-relativistic pseudopotentials.61 As the starting point, we used
structural parameters from the Materials Project.62,63 The initial
structure was first relaxed to force levels less than 10�6 Ry bohr�1.
A regular shifted 2� 2� 2 Monkhorst–Pack grid was used for
sampling of the Brillouin zone.64 A convergence threshold of
1� 10�12 Ry was used to reach self-consistency with the electronic
wavefunction cutoff of 120 Ry. The relaxed cell was used for subse-
quent phonon calculations. The phonon frequencies, Born effective
charges, and IR intensities were computed at the Γ-point of the
Brillouin zone using density functional perturbation theory,65 as
implemented in the Quantum ESPRESSO package, with the con-
vergence threshold for self-consistency of 1� 10�18 Ry. The
parameters of the TO modes were obtained from the dynamical
matrix computed at the Γ-point. The parameters of the LO modes
were obtained by setting a small displacement from the Γ-point in
order to include the long-range Coulomb interactions of Born
effective charges in the dynamical matrix (the so called non-
analytical terms). Mode displacement patterns were rendered using
XCrysDen66 running under Silicon Graphics Irix 6.5.

C. Spectroscopic ellipsometry

Spectroscopic ellipsometry is a non-invasive and non-
destructive measurement technique, which measures the change in
polarization of light (~ρ) caused by interaction with the sample. In
reflection ellipsometry, this change is described by

~ρ ¼ ~r p
~rs

¼ tan (Ψ) eiΔ, (5)

where ~r p and ~rs are the Fresnel reflection coefficients for the light
polarized parallel (p) to and perpendicular (s) to the plane of inci-
dence. The rotation of the light’s polarization state about the axis
of propagation is defined as Ψ, and the relative phase shift between
the parallel and perpendicular components is defined as Δ. Hence,
for each wavenumber, angle of incidence, and sample position, a
(Ψ, Δ) pair is measured. The coordinate system for ellipsometry
measurements is further defined by Schubert et al.67

D. Four-parameter semi-quantum model

To fit for the parameters describing each phonon mode found
in the dielectric function, the four-parameter semi-quantum
(FPSQ) model first described by Gervais and Periou can be
used.68,69 This model allows one to fit directly for TO and LO
mode frequencies, ωTO,l and ωLO,l , and the determination of their
independent broadening parameters, γTO,l and γLO,l , respectively,

ε ¼ ε1
YN
l¼1

ω2
LO,l � ω2 � iωγLO,l

ω2
TO,l � ω2 � iωγTO,l

, (6)

and ε1 is the high-frequency dielectric constant.69 The product
runs over all N ¼ 16 phonons (TO–LO pairs) with Tu symmetry.

The Lyddane–Sachs–Teller (LST) relation57 in Eq. (4) then permits
calculation of the static dielectric constant, using all other parame-
ters in Eq. (6) determined from analysis of the wavenumber-
by-wavenumber obtained ε.

E. Drude free charge carrier model

The FPSQ model is further modified to account for free
charge carrier contributions via the addition of a Drude term,69

εFC ¼ � ω2
p

ω(ωþ iγp)
, (7)

where ωp is the plasma frequency,

ω2
p ¼

e2n
ε1ε0m*

, (8)

and where n, m*, and γp describe the free charge carrier volume
density, the effective mass, and the plasma broadening parameter,
respectively. From the plasma broadening parameter, the optical
mobility parameter, μ, can be found via

γp ¼
e

m*μ
: (9)

F. Optical Hall effect

The optical Hall effect experiment and analysis procedure is
summarized by Schubert et al.67 Derived from the equation of
motion, the dielectric function component for free charge carriers
under the effect of an external magnetic field can be written as
follows:

ε(ω) ¼ ω2
p �ω2I � iωγ þ iω

0 b3 �b2
�b3 0 b1
b2 �b1 0

0
@

1
Aωc

2
4

3
5
�1

: (10)

Here, ωc is the cyclotron frequency,

ωc ¼ qB
m*

: (11)

Note that the signature of ωc depends on the type of the free
charge carriers, and hence, the signs of the optical Hall effect data
reveal n or p type conductivity.67 The external magnetic field is
given in the ellipsometer coordinate system (x,y,z) as
B ¼ B(b1, b2, b3), where B ¼ jBj. This coordinate system for
optical Hall effect experiments is explicitly shown in Schubert
et al.67 The optical Hall effect experiment gives access to the cyclo-
tron frequency; therefore, if plasma frequency and broadening
parameters are known from zero-field ellipsometry measurements,
Ns, m*, and μ can all be determined independently from each other
and without the use of an additional separate experiment, e.g., an
electrical Hall effect measurement. One further has the opportunity
to compare density and mobility parameters obtained from optical
and electrical techniques. It is noteworthy to point out the very
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different mechanisms of transport, which are tested in an optical
and an electrical measurement. For a traditional electrical Hall con-
figuration, for example, transport and scattering phenomena are
collected over macroscopic distances across the sample, while for
optical measurements, the lateral displacement of the free charge
carriers is on the order of nanometers. In an ideal crystal without
defects, both techniques will determine very similar if not the same
results.

In these optical Hall effect experiments, the ellipsometry data
are recorded using the Mueller matrix convention as opposed to
the Ψ and Δ convention for the zero magnetic field measurements.
The Mueller matrix formalism allows an accurate capture of the
small optical birefringence induced by the optical Hall effect, which
is then observable in the off-diagonal Mueller matrix elements. The
Mueller matrix is used to describe the sample interaction with an
incoming light described by a Stokes vector as follows:

S0
S1
S2
S3

0
BB@

1
CCA

output

¼
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

0
BB@

1
CCA

S0
S1
S2
S3

0
BB@

1
CCA

input

: (12)

Here, the elements of the Stokes vector are defined as S0 ¼ I p þ Is,
S1 ¼ I p � Is, S2 ¼ I45 � I�45, and S3 ¼ Iσþ � Iσ�. In this defini-
tion, I p, Is, I45, I�45, Iσþ, and Iσ� are the intensities for the p-, s-,
þ45�, �45�, right handed, and left handed circularly polarized
light components, respectively.70

III. EXPERIMENT

A. Crystal growth

The investigated crystal sample was prepared from a bulk
crystal grown from the melt by a novel technique “Levitation-
Assisted Self-Seeding Crystal Growth Method,” as described in
detail elsewhere.26 The free electron concentration was determined
from electrical Hall measurements to be 2:65� 10�17 cm�3 and the
Hall electrical mobility is 158 cm2/(Vs) (resistivity 0.15Ωcm). The
crystal with a surface area of 10� 10mm2 and a thickness of
500 μm with (111) surface orientation was annealed in air at a tem-
perature of 1000 �C for 40 h. The processes for annealing and
control of electron density have been reported previously.26 The
full width at half maximum (FWHM) of the rocking curves of
(222) reflexes was � 30 arc sec. The investigated crystal samples
were epi-ready polished. The sample was then investigated by
ellipsometry and optical Hall effect without further treatment.

B. Far-infrared and infrared ellipsometry

The spectra were measured at room temperature in ambient
conditions on two different ellipsometer instruments. The infrared
spectral range (650–3000 cm�1) was measured on a commercial
variable angle of incidence spectroscopic ellipsometer (IR-VASE
Mark-II; J.A. Woollam Co., Inc.). The far-infrared spectral range
(50–650 cm�1) was measured on an in-house built FIR-VASE
instrument.71 Measurements were performed at Φa ¼ 50�, 60�, and
70� angles of incidence. Multiple azimuthal rotations were not nec-
essary, though they were performed to ensure the isotropic

symmetry of the optical response. Only one azimuthal rotation is
included in this analysis since all rotational data are in excellent
agreement with each other. Measurements were taken in Ψ and Δ
convention as well as Mueller matrix convention. The resultant
data are shown in Fig. 6. Exemplary experimental data in the FIR
range are shown in Fig. 7.

FIG. 6. Experimental (green open symbols), wavenumber-by-wavenumber best-
match model (red solid line) calculated M12 and M33. Vertical blue solid lines
indicate TO modes, and blue dashed lines indicate LO modes identified in this
work. Note that the zero-valued off-diagonal elements of the Mueller matrix are
excluded as well as elements M21 and M22 as they show no additional
information.

FIG. 7. Same as Fig. 6 for M33 with the far-infrared spectral region expanded
emphasizing the spectral range of modes 10–16.
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C. Optical Hall effect experiment

The same sample was then mounted in our in-house optical
Hall effect setup as described by Kühne et al.71 Due to the window
setup of the superconducting magnet, the angle of incidence is
limited to only Φa ¼ 45�. The optical Hall effect was measured in
the far-infrared and in the infrared range. Measurements were
taken at zero field, at B ¼ þ7 T, and at B ¼ �7 T with the sample
maintained at room temperature throughout the measurements.
The magnetic field was oriented parallel to the incoming beam
with the magnetic field strength B? ¼ B=

ffiffiffi
2

p
perpendicular to the

sample surface for all measurements.

D. Terahertz ellipsometry

To further investigate the dielectric constants and free charge
carrier contributions at quasi-static conditions, ellipsometry was
measured in the THz spectrum from 670 to 900 GHz. The THz
ellipsometer is an in-house built instrument operating in the rotat-
ing analyzer configuration allowing the measurement of the upper
left 3� 3 Mueller matrix elements. Further information on the
instrument can be found in Kühne et al.71 Data from this instru-
ment are shown in Fig. 8.

IV. RESULTS

A. Density functional theory calculations

The parameters of the DFT-calculated TO and LO phonon
modes are listed in Table I and labeled by Tu � i, i ¼ 1, . . . , 16.

Renderings of the atomic displacement pattern for the TO modes
are shown in Fig. 2 (modes Tu-1–Tu-4), Fig. 3 (Tu-5–Tu-8), Fig. 4
(Tu-9–Tu-12), and Fig. 5 (Tu-13–Tu-16). Because every Tu mode is
triple degenerate, three eigenvectors with labels a, b, and c are
shown for every phonon mode. The corresponding transition
dipoles for each such triplet are mutually orthogonal. We note that
we observe 16 mode pairs as predicted by group theory. We also
note that the intensities of the TO and LO modes are very small for
modes 13–16, which may explain why these modes remain unde-
tected thus far.

B. Phonon mode analysis from ellipsometry data

To perform this analysis, WVASE32™ (J.A. Woollam Co.,
Inc.) software was utilized. We assume no finite nanometer-scale
surface roughness as such roughness does not contribute to the
ellipsometric data in the infrared and far-infrared spectral
regions.69 Typically, surface accumulation layers are pronounced in
infrared and optical Hall effect measurements.45,72 It is worth
noting here that if a surface accumulation layer had been present
on this sample, it was not observable in optical Hall effect measure-
ments nor in our zero field spectroscopic ellipsometry measure-
ments. Initial analysis is done using a wavenumber-by-wavenumber
approach where a model dielectric function is allowed to fit for
each wavenumber independently to find a best-match model of the
real and imaginary dielectric values. In a subtle modification to this
approach, we also added a free charge carrier contribution to the
model dielectric function, according to Eq. (7). This step is per-
formed to reduce the otherwise small increase in the imaginary

FIG. 8. Zero-magnetic-field THz Mueller matrix ellipsometry data Mij measured
at 50� angle of incidence (Symbols: experiment; solid lines: best-model calcu-
lated data). A very good agreement is observed. Noise at approximately 0.75
and 0.85 THz is due to atmospheric absorption. The best-match model calcu-
lated data are obtained using εDC ¼ 10:55 and the Drude model parameters
ωp and γp parameterized using the result from the optical Hall effect measure-
ment shown in Fig. 11. No further parameter variation was done to match the
THz data spectral range.

TABLE I. Parameters for infrared and far-infrared active phonon modes obtained
from DFT calculations in this work. Frequencies, ωTO and ωLO, and intensities, A2TO
and A2LO, respectively, of TO and LO modes are presented for all Tu modes. Values
for ε∞ and εDC are determined as 4.735 and 10.74, respectively, using the LST
relationship.

ωTO ωLO A2
TO A2

LO

Mode (cm−1) (cm−1)
(D=A

�
)
2

amu

� �
(D=A

�
)
2

amu

� �

Tu-1 588.61 611.35 6.284 94.215
Tu-2 553.45 569.28 5.686 33.028
Tu-3 527.83 540.15 6.272 17.549
Tu-4 460.07 503.84 0.075 46.718
Tu-5 409.12 460.01 48.867 0.060
Tu-6 386.87 394.19 6.593 1.829
Tu-7 363.37 383.47 75.398 0.888
Tu-8 330.41 339.21 37.789 0.919
Tu-9 310.89 312.26 6.310 0.141
Tu-10 260.02 260.09 0.139 0.011
Tu-11 214.71 216.00 1.816 0.217
Tu-12 171.00 171.29 0.297 0.042
Tu-13 152.81 152.85 0.038 0.006
Tu-14 148.44 148.48 0.038 0.006
Tu-15 123.27 123.32 0.031 0.005
Tu-16 100.86 100.86 <10−4 <10−4

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 225102 (2021); doi: 10.1063/5.0052848 129, 225102-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


part of ε toward the far-infrared spectral range, which is caused by
the absorption of the low density free electrons present in our
sample.This Drude term elimination is performed to help improve
the visibility of low-frequency modes with small amplitudes. The
resulting Drude model parameters will be discussed further below.
The resulting dielectric function with added free charge carrier
contributions lead to the therefrom calculated Mueller matrix data,
which excellently match with the experimental data in Fig. 6.
Selected experimental and best-model calculated data in the far-
infrared spectral region emphasizing small yet distinct signatures of
phonon modes unidentified previously in the long wavelength
range are shown in Fig. 7.

Figure 9 summarizes the wavenumber-by-wavenumber best-
model parameter ε(ω), and Fig. 10 emphasizes the far-infrared
spectral region. We were then able to best-model match the
dielectric function using the FPSQ model in Eq. (6). Implementing
16 TO–LO pair parameters and ε1, we were able to find excellent
agreement between the best-match model and the wavenumber-
by-wavenumber produced dielectric function, as shown in Fig. 9.
Note that we present the imaginary parts of ε and ε�1 since these
immediately reveal frequency and broadening of the TO and LO
mode parameters, as one can assess from Eq. (6). We note further
that small additional features in the far-infrared range, Fig. 10, are
most likely due to noise increasing rapidly for wavenumbers below
100 cm�1 toward the THz range, best seen in Fig. 7. This noise is
due to the loss of detected intensity in the far-infrared probe
beam. All best-match model parameters and uncertainties are
summarized in Table II. We identify all mode pairs predicted

FIG. 9. Wavenumber-by-wavenumber best-match model calculated (green solid
lines) and best-match model dielectric function calculated (red solid line)
showing the imaginary (a) and innverse imaginary (b) parts of the dielectric
function. Vertical blue solid lines indicate TO modes, and blue dotted lines indi-
cate LO modes identified in this work.

FIG. 10. Same as Fig. 9 with the far-infrared spectral region expanded empha-
sizing the spectral range of modes 11–16.
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by our DFT calculations and their broadening parameters.
Modes with a small amplitude compared to the data noise in a
wavelength-by-wavelength derived dielectric function such as mode
15 can only be unambiguously identified in comparison with theo-
retical results. Our constraints for identifying a mode are that a
feature with an amplitude comparable to the noise is present in both
real and imaginary epsilon data and that this feature is predicted by
DFT. If another sample with little to no doping were measured in
transmission, these modes would be more clearly seen. We note that
the generalized Lowndes condition is fulfilled, where the sum of all
LO broadening parameters is larger or equal to the sum of all TO
broadening parameters.42 While several modes are small in the lower
spectral range, they remain detectable and were able to be fit for
with limited interference. All modes are indicated in Fig. 9. Values
that were range limited are designated in Table II with an asterisk
and as a result have very large uncertainty. This can be attributed to
the small magnitude of the modes (seen in the DFT analysis as well)
and growing noise in the lower spectral range.

Also shown in Table II are previously reported TO phonon
frequencies as found by Feneberg et al.29 and TO and LO mode fre-
quencies as observed by Sobotta et al.52 Our values are in excellent
agreement with the eight TO modes determined by Feneberg et al.,
except for the small mode Tu�4, which was not observed there.
Also, Feneberg et al. did not determine any LO mode parameters,
and modes below 300 cm�1 remained inaccessible. The phonon
modes reported by Sobotta et al. are the most comprehensive data
set to date and is in reasonable agreement with our results except
for the lack of the far-infrared modes. We note that specifically, LO
modes are inherently difficult to obtain from reflectance data of
pellets and low quality samples, which may explain some of the dis-
crepancies between data of Sobotta et al. and our results. Modes
12–16 remained unobserved previously and can only be compared

against our own DFT calculations. We note the overall very good
agreement between our experimental and DFT results.

C. Free electron parameters

The free electron parameters were characterized via optical
Hall effect measurements and compared to electrical Hall effect
results. Data are shown in Fig. 11. We note that for analysis of the
optical Hall effect data, only one more parameter is needed, ωc.
The other two parameters, ωp and γp, are already determined
during the phonon mode analysis step by matching the zero-field
ellipsometry parameters to the best-model dielectric function. As
discussed previously,67 the optical Hall effect signatures are propor-
tional to ωc, and hence, combining zero-field measurements with
optical Hall effect measurements provides the third parameter from
experiment. This then leads to determination of n, μ, and m*. Here,
we find n ¼ (2:81+ 0:01)� 1017 cm�3 in excellent agreement with
the electrical Hall effect density of n ¼ 2:65� 1017 cm�3. These
values are also in agreement with those reported by Galazka on
similar samples in 2014.44 Due to this relatively low carrier density,
the optical Hall effect data signatures are markedly small.
Nonetheless, our best-match model provides a consistent fit. We also
obtain the effective mass m* ¼ (0:208+ 0:006) me, which is very
similar to the zero density value, m*(0) ¼ 0:18me reported by
Feneberg et al.29 This value was obtained from matching a nonpara-
bolic band approximation model for the effective mass parameter to
a set of samples from which effective mass and free electron density
parameters were determined. This data set and best-match function
m*(n) is reproduced in Fig. 12, where our result is included. The
effective mass measured in our work by optical Hall effect corre-
sponds to one order of magnitude lower electron density than
reached by Feneberg et al. and is thus closer to the zero density

TABLE II. FPSQ model parameters for TO and LO modes obtained from best-match model dielectric function analysis. ε∞ and εDC are determined as 4.05 ± 0.05 and
10.55 ± 0.07 using the LST relationship. Included are data obtained by Feneberg et al.29 and Sobottoa et al.52 observed by infrared ellipsometry and combined far-infrared and
infrared reflectance, respectively. All numerals in units of cm−1. Values that were range limited are denoted by an asterisk.

ωTO ωLO

Mode This work Reference 29 Reference 52 This work Reference 52 γTO γLO

Tu-1 594.9 ± 0.7 595.5 612 624 ± 0.3 625 8.83 ± 0.4 16 ± 0.5
Tu-2 561.0 ± 0.9 560.5 570 579.1 ± 0.3 578 8.59 ± 0.7 10.0 ± 0.8
Tu-3 534.0 ± 1.3 534.1 542 549.1 ± 5.9 548 11.0 ± 0.9 14.7 ± 0.9
Tu-4 470.0 ± 0.1 … 489 518.0 ± 0.6 513 21 ± 0.2 12*
Tu-5 408.2 ± 0.2 408.0 409 470.1 ± 0.2 … 8.0* 23.2 ± 0.1
Tu-6 384.7 ± 0.1 386.2 380 394.0 ± 0.1 391 5.4 ± 0.2 8.5 ± 0.1
Tu-7 362.2 ± 0.2 361.7 362 383.2 ± 0.1 381 5.6 ± 0.3 8.5 ± 0.2
Tu-8 327.3 ± 0.1 327.3 322 337.4 ± 0.1 352 5.3 ± 0.2 6.9 ± 0.1
Tu-9 309.7 ± 1.2 307.3 301 310.4 ± 1.1 318 6.5 ± 1.1 5.4 ± 0.1
Tu-10 260.2 ± 5.3 … 245 260.9 ± 4.7 245 16.7 ± 0.1 15.6 ± 0.1
Tu-11 216.3 ± 0.4 … 205 217.6 ± 0.2 224 3.0 ± 0.4 2.8 ± 0.4
Tu-12 172 ± 0.9 … … 172.4 ± 0.1 … 4.2 ± 0.9 4.1 ± 0.2
Tu-13 154.2 ± 1.1 … … 154.4 ± 1.1 … 3.5 ± 1.2 3.5 ± 0.4
Tu-14 150.5 ± 1.2 … … 150.6 ± 2.1 … 2.1 ± 0.9 2.0 ± 0.2
Tu-15 126.4 ± 1.7 … … 126.7 ± 0.3 … 6.9 ± 2.4 6.8 ± 2.4
Tu-16 99.0 ± 0.2 … … 99.1 ± 0.2 … 2.3 ± 0.8 2.3 ± 0.8
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value. Our value matches excellently with the zero density effective
mass extrapolated previously. We also find the free electron mobility,
μ ¼ (112+ 3) cm2/(Vs) from the optical Hall effect, which is
slightly lower than the value of 158 cm2/(Vs) obtained from the elec-
trical Hall effect, which is also within the range reported by Galazka
et al. on similar oxygen annealed samples [130–190 cm2/(Vs)].44

The cause of the difference between the electrical and optical Hall
mobility parameters observed here remains unknown and can only
be speculated about at this point. Electrical measurements involve
transport over large distances and potential formation of multiple
channels. Optical Hall effect measurements involve local small dis-
placements of charge carriers only. Hence, at first sight, one would
anticipate that optical Hall mobility is larger and less affected by
scattering, e.g., at grain boundaries. However, parasitic channels can
affect electrical measurements. Detailed studies on common sample
sets with varying structural and doping properties, for example, may
identify the underlying causes.

D. Static and high-frequency dielectric constants

In order to determine the high-frequency dielectric constant,
we extended the spectral range for our wavelength-by-wavelength
analysis far above the phonon mode range to 3000 cm�1. At fre-
quencies far above the phonon modes yet far enough below the
onset of excitonic and band-to-band transitions so that dispersion
introduced by the latter is negligible, a good approximation for ε1
can be found. Our analysis resulted in 4:05+ 0:05. This is in good
agreement with our DFT predicted value (4.128) as well as the
value previously reported by Feneberg et al. (4.08).29 Using the LST
relationship, the static dielectric constant, εDC, can then be calcu-
lated since we have determined the complete set of phonon modes.
With the values listed in Table II, we obtain here 10:55+ 0:07.
This value is in agreement with our DFT value of 10.74. We
further conducted ellipsometry measurements at THz frequencies
in order to directly evaluate the static dielectric permittivity param-
eters. While the free carrier concentration is small (the smallest for
which effective mass parameters have been reported so far), due to
the rather thick sample, our sample is opaque in the THz range.
Hence, THz measurements can only be made in reflection, and no
substrate interferences can be detected. Such Fabry–Perot interfer-
ence fringes increase sensitivity to the quasi-static DC permittivity,
as demonstrated recently for β�Ga2O3.

73 Figure 8 depicts mea-
sured and best-model calculated THz Mueller matrix data mea-
sured at 50� angle of incidence. The best-model calculated data
were obtained without further parameter variations only using the
static dielectric constant and the Drude model in Eq. (7) contribu-
tions with the parameters for n, μ, and m* from the optical Hall
effect as discussed above. The very good agreement between mea-
sured and model-calculated THz Mueller matrix data is indicative
of the correctness of the static DC permittivity for In2O3, which
has not been determined from the experiment at DC or quasi-static
frequencies previously.

V. CONCLUSIONS

By using a combined approach of spectroscopic ellipsometry,
DFT calculations, and optical Hall effect measurements, we are
able to provide a thorough investigation of the electrical and optical

FIG. 12. Data from Ref. 29 showing the evolution of effective mass against the
free charge density for different sample types with the addition of our sample.
Here, the nonparabolic band dependence model of the effective mass is shown
with the dashed line according to Feneberg et al. in Ref. 29.

FIG. 11. Experimental (symbols) and best-match model calculated (solid lines)
optical Hall effect data as difference data between þ7 T and �7 T at fa ¼ 45�
angle of incidence. The model calculated lines are obtained using
the wavelength-by-wavelength data for ε shown in Fig. 9 and the Drude
model parameters n ¼ 2:81� 1017 cm�3, m� ¼ (0:208+ 0:006) me, and
μ ¼ (112+ 3) cm2=(Vs). Black dashed vertical lines denote LO modes in this
region, each marked by their number. The onset of noise at high wavenumbers
is due to drop in sample reflectivity above the reststrahlen band of the In2O3
crystal.
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phonon mode properties of In2O3. All 16 TO–LO pairs have been
identified and their respective broadening parameters quantified.
These values find excellent agreement with the limited sets of
phonon mode information previously reported, and we introduce
phonons in the far-infrared spectrum not detected thus far. Also,
our measured phonon modes are in excellent agreement with the
results of our DFT calculations. Furthermore, by means of optical
Hall effect measurements, we determine the effective electron mass
at the lowest yet detected free electron density, which is in excellent
agreement with the zero density effective electron mass in In2O3

predicted previously from extrapolation.
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