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ABSTRACT

In this letter, we investigate a set of n-type single crystals of monoclinic symmetry b-Ga2O3 with different free electron concentration values
by generalized far infrared and infrared spectroscopic ellipsometry. In excellent agreement with our previous model prediction, we find here
by experiment that longitudinal-phonon-plasmon coupled modes are polarized either within the monoclinic plane or perpendicular to the
monoclinic plane. As predicted, all modes change the amplitude and frequency with the free electron concentration. The most important
observation is that all longitudinal-phonon-plasmon coupled modes polarized within the monoclinic plane continuously change their
direction as a function of free electron concentration.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089145

The single crystalline form of gallium (III) oxide with a mono-
clinic crystal structure, b-Ga2O3, has gained substantial interest most
recently for its potential use in high voltage electronic applications.1,2

Its direct bandgap is very large, reported in a range of 4.8 eV to
5.04 eV.3–8 A breakdown electric field of more than double of the the-
oretical limits for SiC and GaN is predicted, which would result in
more than triple their power device performance.2 Applications as
transparent electrodes,9 smart windows,10,11 photovoltaic cells,10 and
gas sensors have been reported.12 It was shown recently that b-Ga2O3

has the highest lifetime optical damage performance of any conduc-
tive material measured to date, above 10 J/cm2 (1.4GW/cm2).13 Very
importantly, single crystalline high-quality b-Ga2O3 can be grown
with a wide range of n-type conductivities, from �1� 1015 cm�3 to
�1� 1020 cm�3 by unintentional or intentional donor doping in bulk
and epitaxial materials.2 Correct and accurate characterization of free
charge carrier properties in bulk and heteroepitaxial layer structures
is a crucial step in the successful design of semiconductor heterostruc-
ture devices. Long-wavelength (infrared and farinfrared) optical spec-
troscopy, in particular ellipsometry, is a traditional tool to investigate

the effect of free charge carriers on the optical response of semicon-
ductor materials, even if part of complex layer structures.14 At long
wavelengths, specifically in materials with polar lattice resonances,
collective free charge carrier excitations, plasmons, couple with the
lattice vibration modes.15–17 This effect and related phenomena
observable in optical spectroscopies are well known for materials with
crystal symmetries higher than or equal to orthorhombic, for exam-
ple, in the zincblende-structure (cubic) GaAs,18 InSb,19 InAs,19 or the
wurtzite-structure (hexagonal) CdS,20 ZnO,21 GaN,22,23 InN,24 or the
rutile-structure (tetragonal) SnO2.

25 In all such cases, coupling of lon-
gitudinal optical (LO) phonons with collective plasma oscillations
(plasmons) occurs along high-symmetry directions of the lattice. The
coupled modes, while changing their frequencies, with the increasing
free charge carrier density maintain the polarization direction of the
LO phonons at zero free charge carrier density. In semiconductors
with monoclinic symmetry, such as b-Ga2O3, plasmons also couple
with LO phonons. In our recent work, we have shown that LO pho-
nons within the monoclinic plane of b-Ga2O3 are not polarized paral-
lel to any of the low-index crystallographic directions.26 Instead, their
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directions, at first sight, appear to be randomly distributed. However,
upon closer inspection, it becomes clear that the LO mode directions
are tied to the specific values of all amplitude, direction, and frequency
parameters of all transverse optical (TO) lattice modes.27 We have fur-
ther identified that LO modes are affected by free charge carriers and
form longitudinal-phonon-plasmon (LPP) coupled modes. In Ref. 26,
we hypothesized about the behavior of the LPP modes as a function of
the free charge carrier density, and we predicted that all eigendielectric
displacement directions of the LPP modes would vary with free charge
carrier density. We also hypothesized that the order of the LPP modes
with respect to the TO modes would change. However, in our previous
work,26 only specimens with approximately the same free electron den-
sity were investigated, and the variation of LPP modes with free elec-
tron density remained experimentally unexplored. Verification of LPP
mode properties is important, for example, to reliably calculate effects
of electron-phonon interaction and high electric fields on electronic
transport properties.28–31 In this letter, we present the result of an
investigation of LPP modes in a set of samples with free electron den-
sity parameters varying from�5� 1017 cm�3 to�6� 1018 cm�3.

The derivations of the LPP mode parameters and the phonon
mode order in monoclinic crystals follow closely the original reports
in Refs. 26 and 27, respectively, which is due to the fact that space limi-
tations are kept minimal here. The long wavelength dependencies of
the dielectric function tensor, e(x), and the dielectric loss function ten-
sor, e�1(x), can be described by two sets of eigenmodes—the TO and
LO phonon modes—and wavelength independent polarizability con-
tributions (e1) due to electronic and excitonic excitations at photon
energies much higher than all lattice mode frequencies.16,17,32 TO
modes occur at frequencies at which dielectric resonance occurs for
electric fields along ê l with eigendielectric displacement unit vectors
then defined as ê l ¼êTO;l .33 Similarly, LO modes occur when the
dielectric loss approaches infinity for electric fields along ê l with eigen-
dielectric displacement unit vectors then defined as ê l ¼êLO;l .16 An
eigendielectric displacement vector summation (EDVS) approach was
introduced recently,26,27,34,35 where e is composed of sums of dyadics,
ðêTO;l � êTO;lÞ, scaled with frequency-dependent complex-valued
response functions, .TO,l

e ¼ e1 þ
XN

l¼1
.TO;lðêTO;l � êTO;lÞ; (1)

where the index l denotes all TO modes within the monoclinic lattice.
In the absence of doping, b-Ga2O3 possesses 8 Bu-symmetry TO
modes polarized within the monoclinic lattice plane and 4 Au-symme-
try TO modes polarized parallel to the lattice axis b. The inverse of e is
obtained by an eigendielectric displacement loss vector summation
(EDLVS) approach36

e�1 ¼ e�11 �
XN

l¼1
.LO;lðêLO;l � êLO;lÞ; (2)

where the index l denotes all LO modes within the monoclinic lattice.
Anharmonically broadened Lorentzian oscillator functions can be
used to describe functions . in Eqs. (1) and (2)

.k;l xð Þ ¼
A2
k;l � iCk;lx

x2
k;l � x2 � ixck;l

: (3)

Here, Ak,l, xk,l, ck,l, and Ck,l denote the amplitude, resonance fre-
quency, harmonic broadening, and anharmonic broadening parame-
ters for TO (k ¼ “TO”) or LO (k ¼ “LO”) mode l, respectively, and x
is the frequency of the driving electromagnetic field. We note a mis-
print in Eq. (10) of Ref. 26 where the square on the amplitude parame-
ter was erroneously omitted.

The contributions of free charge carriers to e are augmented
using the Drude model for free charge carriers.14 In order to account
for the three dimensional nature of the motion of free charge carriers
and their directional anisotropy for transport properties (optical
mobility parameters), free charge carrier contributions are augmented
by 3 additional terms to Eq. (1)

eLPP ¼ eþ
X3

l¼1
.TO¼0;lðêTO¼0;l � êTO¼0;lÞ: (4)

We select directions êTO¼0;l to coincide with Cartesian coordinate axes
(x, y, z). The definition of the Cartesian axes with respect to the crystal
unit cell of b-Ga2O3 is described in the supplementary material.
Briefly, crystal axes a and c are within the monoclinic plane, and axis b
is perpendicular to the monoclinic plane. a is parallel to x, b is antipar-
allel to z, and c is within the (x, y) plane. .TO¼0,l can be expressed as
follows:

.TO¼0;ðx;y;zÞ ¼ �
e2N

~e0m?
ðx;y;zÞmexðxþ icp;ðx;y;zÞÞ

; (5)

where N is the free charge carrier volume density parameter, e is the
electronic charge, me is the free electron mass, m?

ðx;y;zÞ are the three
directional effective mass parameters, and the directional plasma
broadening parameters cp,(x,y,z) are connected with the directional
optical mobility parameters

lðx;y;zÞ ¼
e

~e0m?
ðx;y;zÞmecp;ðx;y;zÞ

: (6)

The plasma frequency parameter is then also dependent on the polari-
zation direction

x2
p;ðx;y;zÞ ¼

e2N
m?
ðx;y;zÞme

; (7)

and can be considered as an isotropic value when the effective mass
parameters are isotropic. For b-Ga2O3, it was found in recent optical
Hall effect measurements that the bottom conduction band effective
mass parameter is isotropic andm?

x ¼ m?
y ¼ m?

z ¼ 0:28.37

Analogously, three terms are added for e�1

e�1LPP ¼ e�1 �
XNþ3

l¼1
.LPP;lðêLPP;l � êLPP;lÞ: (8)

We note that while the addition of 3 Drude terms to Eq. (1) does not
change the TO mode parameters, all LO mode parameters change in
Eq. (2) upon the addition of the three terms in Eq. (8) reflecting the
LPP mode coupling. For polarization within the monoclinic plane, i.e.,
modes with Bu-symmetry, and for a single species free charge carrier
density (such as single band holes, or single band electrons) two TO
modes with zero frequency xTO ¼ 0 must be added to Eq. (4), hence,
10 TO modes exist, and 10 associated LPP modes must occur in Eq.
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(8), oriented (polarized) within the monoclinic a–c plane. For
polarization perpendicular to the monoclinic plane, i.e., modes with
Au-symmetry, one TO mode with zero frequency xTO is added to
Eq. (4), and hence, the displacement directions of 5 TO modes and 5
associated LPP modes (Au symmetry) are oriented perpendicular to

the monoclinic plane. Thus, all eigenvectors are aligned with axis b.
Hence, for Bu- and Au-symmetry LPP modes, êLPP;l ¼ cos aLPP;l x̂
þ sin aLPP;l ŷ and êLPP;l ¼ �ẑ, respectively. Thereby, we have intro-
duced the parameters aLPP,l representing the directions of the LPP
modes. The directions can be determined as a function of the electron
density or, equivalently, xp. After setting all broadening parameters in
Eqs. (3) and (5) to zero, the LPP mode parameters xLPP,l, aLPP,l, and
ALPP,l follow from the following relations, respectively (also see supple-
mentary material),26,34

detfeLPPðx ¼ xLPP;lÞg ! 0; (9)

eLPPðx ¼ xLPP;lÞêLPP;l ¼ 0; (10)

eLPPð Þ�1 ¼ e�1LPP: (11)

We have performed a series of long-wavelength ellipsometry
measurements on a set of different bulk single crystals with various

FIG. 1. Bu-symmetry LPP mode parameters as a function of xp, (a) frequency, (b)
amplitude, and (c) angular direction relative to axis a within the a–c plane. The hori-
zontal lines and roman numerals indicate the corresponding parameters of the TO
modes. The symbols (diamonds) indicate the results from the experiment obtained
in this work. Numerical data are given in the supplementary material.

FIG. 2. Au-symmetry LPP mode parameters as a function of xp, (a) frequency and
(b) amplitude. Note that all angular parameters are parallel to axis b. The horizontal
lines indicate the corresponding parameters of the TO modes. The symbols (dia-
monds) indicate the results from the experiment obtained in this work. Numerical
data are given in the supplementary material.
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surface orientations and different free electron density parameters.
The details of the experimental procedures and sample descriptions
are given in Ref. 26 and the supplementary material, respectively. The
selected experimental and best-model calculated ellipsometry data are
shown in the supplementary material and omitted here for brevity.
We have analyzed all ellipsometry data by using the model dielectric
function tensor approach discussed in Ref. 26. We have analyzed data
from every sample separately. As a result, we determined the best-
match model calculated plasma frequency parameter and the mobility
parameters for all three major axes directions, a, c?, and b. The results
for the mobility parameters are not further discussed here. The LPP
mode parameters are calculated from the best-match model calculated
dielectric function tensor after setting all the phonon mode and plasma
broadening parameters to zero. The results of the LPP mode parame-
ters are included in Figs. 1, 2, and 3, which are discussed below.

Figures 1(a)–1(c) depict the dependencies of the LPP mode
parameters as a function of xp. The solid lines in Figs. 1(a)–1(c) are
calculated with the phonon mode parameters determined in Ref. 26.
The symbols in Figs. 1(a)–1(c) indicate the parameters obtained from
set of samples investigated by ellipsometry in this work. An excellent
match between the hypothesized behavior (solid lines) and the experi-
mental observation (symbols) is noted. At small xp, 2 additional LPP
branches emerge from zero [labeled 9 and 10 in Figs. 1(a)–1(c)],
polarized within the monoclinic plane. With increasing xp, the LPP
frequencies [Fig. 1(a)] shift away from their originating LO modes at
xp ¼ 0. The phonon mode order changes gradually, whereby the fre-
quencies of Bu-LPP modes 5, 6, and 9 cross frequencies of TO modes
IV, V, and VIII [Fig. 1(a)], respectively. Such an occurrence is never
observed for semiconductors with symmetry higher than monoclinic.
The two highest Bu-LPP branches approach infinity for xp ! 1.
The amplitude parameters reflect the coupling behavior between LO
and plasmon modes. The two additional modes, labeled 9 and 10, rep-
resent the plasmon-like behavior for small xp. Also note the linear
increase for their frequencies. For intermediate carrier densities, all
amplitudes begin to diminish, except for the 2 modes with the largest

frequencies, labeled 1 and 2. These are the plasmon-like modes for
very large xp. Accordingly, while all amplitudes of all other modes
approach zero eventually, the amplitudes of modes labeled 1 and 2
approach infinity for xp ! 1. Figure 1(c) depicts the evolution of
the LPP angular orientation, which represents the displacement direc-
tion of the associated lattice motion.38 In contrast to the behavior of
LPP modes in semiconductors with symmetry higher than mono-
clinic, the LPP mode lattice displacement directions continuously
shift with increasing xp. For very large xp, all directions approach
eventually one of the TO mode displacement directions. This varia-
tion is not random and will be addressed further below.

Figures 2(a) and 2(b) depicts the same as Figs. 1(a)–1(c) for the Au-
LPP modes. An excellent match between the hypothesized behavior
(solid lines) and the experimental observation (symbols) is noted. The
behavior observed here is very similar to LPPmode coupling in semicon-
ductors with multiple phonon mode branches and symmetries higher
than monoclinic. At small xp, one additional branch emerges from zero.
With increasing xp, the LPP modes shift away from their associated LO
mode frequencies at xp¼ 0, but do not change the phonon mode order.
The highest frequency mode approaches infinity for xp!1. Likewise,
the amplitude of the highest LPP mode approaches infinity for a very
large plasma frequency, while all other amplitudes approach zero.

Within the Born and Huang approach,33 which permits the cal-
culation of the lattice dynamic properties in crystals with arbitrary
symmetry, solutions with E 6¼ 0 andD 6¼ 0 define the so-called limiting
frequencies x(a)l.

39 Here, a parameterizes the lattice displacement
direction of x(a)l within the monoclinic plane. We recently showed
that x(a)l can be determined from analysis of experimental ellipsome-
try data, and we provided an explanation for the order of all TO, LO,
and x(a)l modes in crystals with monoclinic symmetry without free
charge carriers.27 In the case of LPP mode coupling, modes x(a)l also
couple and may be termed x(a)LPP,l. Figure 3 depicts x(a)LPP,l for dif-
ferent values of xp. For xp ¼ 0, Fig. 3 is identical to Fig. 1(c) in Ref.
27, which is explained there in detail. Here, we demonstrate the effect
of plasmon coupling.

FIG. 3. Colored lines with different styles: Bu-symmetry directional limiting frequencies, x(a)LPP,l, for b-Ga2O3 as a function of displacement direction, a, relative to axis a within
the monoclinic plane, for selected plasma frequency parameters (see the inset for labels). The black solid lines indicate the evolution of LPP modes as a continuous function
of xp. The square symbols indicate the Bu-symmetry LPP modes. Left panel: modes x(a)LPP,8-x(a)LPP,10, middle panel: modes x(a)LPP,3-x(a)LPP,7, and right panel: modes
x(a)LPP,1 and x(a)LPP,2. Note the different y axis scales. The full red circles and numerals indicate Bu-symmetry TO modes. The open red circles indicate the TO frequencies
at orientations perpendicular to the lattice TO mode polarization. The green diamonds indicate the experimental data observed in this work for LPP modes.
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Modes x(a)LPP,l in Fig. 3 are bound between TO and LPP modes.
LPP modes shift with xp, and x(a)LPP,l changes accordingly. There
are 10 modes of x(a)LPP,l, bound within pairs of 10 TO and 10 LPP
modes, and the order remains to be discussed in detail. Briefly, we
note that the lowest-frequency mode, x(a)LPP,10, is bound between the
zero-frequency modes TO-IX and TO-X (the Drude contributions).
The highest-frequency mode, x(a)LPP,1, is bound between LPP-1 and
LPP-2, and all approach infinity when xp!1. Also shown here are
the experimental data obtained in this work. Included in Fig. 3 are the
LPP modes with xp (black solid lines). At xp ¼ 0, all LPP modes
emerge from an LO mode, recognizing that the Drude contributions
for xp¼ 0 originate from two LO modes with zero frequency. All LPP
modes are further bound by a TO mode, except for the two highest
frequency modes which approach infinity. It is an interesting thought
to consider the frequency at infinity as the virtual TO modes for the
Drude contributions, which appear in reality at zero frequency. We
further observe again that LPP modes 5, 6, and 9 cross frequencies of
TO modes IV, V, and VIII, respectively. In Fig. 3, it can now be seen
clearly that the crossings appear with a polarization direction of the
respective LPP mode, and the polarization direction of the respective
LPP at the crossing is perpendicular to the polarization direction of
the TOmode being crossed.

The free charge carrier density parameters obtained from our
ellipsometry analysis and the nominal free electron density parame-
ters, Nd � Na, provided by the crystal growers are given in the supple-
mentary material. We note very good to excellent agreement. Note
that all electrical Hall measurements were performed on different
pieces from those investigated here but cut from the same bulk crys-
tals. Due to gradients in defect and dopant densities across the
Czochralski grown crystals, occasional deviations seen between our
optical results and those reported from electrical investigations are
therefore not unexpected.

See supplementary material for the details of the samples investi-
gated, the experimental procedures, and the numerical values of all the
parameters determined in this work.
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