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We show the derivation of equations used in our publication which lead to the identification of
inner and outer phonon modes with eigenpolarization directions within the monoclinic plane, and
the shape and polarization dependence of the reststrahlen bands for monoclinic symmetry materials
with polar vibrations. We provide additional details of our density functional theory calculations.
The case of monoclinic crystal structure gallium oxide is considered as an example.
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FIG. 1. (a) Definition of Cartesian laboratory coordinate sys-
tem (x, y, z), and as an example the unit cell of β-Ga2O3 with
monoclinic angle β, and crystal unit axes a, b, c. (b) Mon-
oclinic plane a - c viewed along axis b. (b points into the
plane.) Vector c? parallel to axis y is used for convenience.
Reprinted from Ref. [1] with copyright permission by Ameri-
can Physical Society.
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I. COORDINATE SYSTEMS

We select a (right-handed) system of Cartesian coordi-
nates, (x, y, z), and place within a (right-handed) lattice
axis system for a monoclinic crystal structure such that
axis a is parallel to x, axis b is parallel to z, and axis
c is within the (x, y) plane. Figure 1, reproduced from
Schubert et al.[1], reflects our selection for the example
of monoclinic gallium oxide.
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II. THE EIGENDIELECTRIC DISPLACEMENT
VECTOR SUMMATION APPROACH

The eigendielectric displacement vector summation
approach describes the effect of polar vibrations onto
the long-wavelength dependence of the dielectric func-
tion tensor, ε, regardless of symmetry.[1–4] The ap-
proach is equivalent to the microscopic Born-Huang de-
scription of N polar lattice vibrations in the harmonic
approximation[5, 6]

ε = ε∞ +

N∑
l=1

A2
TO,l

ω2
TO,l − ω2

(êTO,l ⊗ êTO,l), (1)

where ATO,l, ωTO,l, and êTO,l are amplitude, transverse
optical (TO) mode frequency, and unit eigen dielectric
displacement vector of polar lattice mode l, respectively,
ε∞ is the dielectric tensor contribution due to the com-
bined vacuum permittivity and due to higher-frequency
electronic dielectric polarization, ⊗ is the dyadic product,
and ω is the time-harmonic frequency. Note that broad-
ening is ignored. In this summation, all modes within
the monoclinic plane have a unit vector

êTO,l = (cosαTO,l, sinαTO,l, 0). (2)

The eigendielectric displacement unit vector for all TO
modes polarized perpendicular to the monoclinic plane
is

êTO,l = (0, 0, 1). (3)

The sum includes all N TO modes within the crystal.
For monoclinic gallium oxide, the sum contains 8 modes
polarized within the monoclinic plane, and 4 modes per-
pendicular to the monoclinic plane.

III. THE EIGENDIELECTRIC LOSS
DISPLACEMENT VECTOR SUMMATION

APPROACH

A statement for ε−1 can be formulated similar to ε,
then expressed with parameters for all longitudinal opti-
cal (LO) modes exchanging all labels “TO” with “LO”
accordingly.[4]

ε−1 = ε−1∞ −
N∑
l=1

A2
LO,l

ω2
LO,l − ω2

(êLO,l ⊗ êLO,l), (4)

where ALO,l, ωLO,l, and êLO,l are amplitude, LO mode
frequency, and unit eigen dielectric displacement vector
of polar lattice mode l, respectively. Note that broaden-
ing is ignored. In this summation, all modes within the
monoclinic plane have a unit vector

êLO,l = (cosαLO,l, sinαLO,l, 0). (5)

The eigendielectric displacement unit vector for all LO
modes polarized perpendicular to the monoclinic plane
is

êLO,l = (0, 0, 1). (6)

The sum includes all N LO modes within the crystal.
For monoclinic gallium oxide without free charge carri-
ers, the sum contains 8 modes polarized within the mono-
clinic plane, and 4 modes perpendicular to the monoclinic
plane.

IV. THE TO MODE PARAMETER SET AND
THE LO MODE PARAMETER SET

Two eigenmode sets are determined by the TO and
LO phonon mode properties, except for constant con-
tributions from higher energy electronic polarizations
(ε∞), and Eqs. 1 and 4 describe the same physical pro-
cesses. TO modes occur at frequencies at which di-
electric resonance occurs for electric fields along êl with
eigendielectric displacement unit vectors then defined as
êl = êTO,l. Similarly, LO modes occur when the dielec-
tric loss approaches infinity for electric fields along êl
with eigendielectric displacement unit vectors then de-
fined as êl = êLO,l. This can be written as:

|det{ε(ω = ωTO,l)}| → ∞, (7a)

|det{ε−1(ω = ωLO,l)}| → ∞, (7b)

ε−1(ω = ωTO,l)êTO,l = 0, (7c)

ε(ω = ωLO,l)êLO,l = 0, (7d)

where l is an index for multiple frequencies in the sets.[2]
We state here without further proof that the number of
TO modes must always equal the number of LO modes.

The two parameter sets are not independent from each
other, and for example, if the TO mode parameters are
known, the LO mode parameter set can be calculated
using Eqs. 7. The LO modes follow from obtaining the
roots of the determinant of Eq. 1. The LO orientation
parameters for the monoclinic plane follow from Eq. 7d:

tanαLO,l = −εxx (ωLO,l)

εxy (ωLO,l)
= −εxy (ωLO,l)

εyy (ωLO,l)
. (8)

The amplitude parameters for the LO mode set can be
obtained from Eq. 7c, with the following equation system

A = M−1C, (9)

with vector components for A and C

(Aj) =
(
A2

LO,j

)
, (10)

(Cj) =
(
ε−1xy,∞ + ε−1yy,∞ tanαTO,j

)
, (11)
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and matrix components for M

(Mjk) =

(
sinαLO,j cosαLO,j + sin2 αLO,j tanαTO,k

ω2
LO,j − ω2

TO,k

)
.

(12)
The indices j and k run from 1 to N .

V. EIGENMODES (EIGENPOLARIZATION)
AND PRINCIPLE INDICES OF REFRACTION

An eigenpolarization reflectance analysis can be used
to study the connection between polar phonon modes
in materials with monoclinic symmetry and their rest-
strahlen bands. Here we study the reflectance char-
acteristics versus orbital frequency ω and linear polar-
ization direction of an electromagnetic plane wave inci-
dent normal onto the monoclinic plane. The eigenpo-
larizations (electric field phasors), E±, and their corre-
sponding wave propagation constants, n± (principle in-
dices of refraction) can be found from the characteristic
wave equation. The electromagnetic field wave vector is
k = k0(kx, ky, kz). Hence,

[
εij − n2 (δij − kikj)

]
Ej = 0, (13)

where δij is the Kronecker symbol, k0 = ω
c , and c is the

speed of light. For light at normal incidence to the a− c
plane (kx = ky = 0), the principle indices of refraction
are

n± =
1

2

√
p± q, (14)

where

p = εxx + εyy, q =
√

(εxx − εyy)2 + 4ε2xy. (15)

The eigenpolarizations are

E± =

(
εxx − εyy ± q

2εxy
, 1, 0

)
. (16)

VI. TOTAL REFLECTION CONDITIONS

The reflectance coefficients, r±, for the normal inci-
dence eigenpolarization (E±) can be expressed through
the indices of refraction n±

r± =
n± − 1

n± + 1
. (17)

It is of interest for analysis of the structure of the rest-
strahlen band to identify conditions for total reflectance.
Schubert, Tiwald and Herzinger[7] identified conditions
for bands of total reflection for high-symmetry orienta-
tions of surfaces cut from materials with orthorhombic
and higher symmetry. The same considerations hold for
Eq. 17. Total reflection is defined by

√
r±r?± = 1. (18)

where ? denotes the complex conjugate. Hence,

r± =

√(
n± − 1

n± + 1

)(
n?± − 1

n?± + 1

)
, (19)

r± =

√
n±n?± − n± − n?± + 1

n±n?± + n± + n?± + 1
. (20)

r± =

√
Re{n±}2 + Im{n±}2 − 2Re{n±}+ 1

Re{n±}2 + Im{n±}2 + 2Re{n±}+ 1
, (21)

r± =

√
Im{n±}2 + (Re{n±} − 1)

2

Im{n±}2 + (Re{n±}+ 1)
2 . (22)

Hence, r± = 1 regardless of Im{n±} when Re{n±} = 0,
i.e., √

r±r?± = 1⇔ Re{n±} = 0, (23)

There are two boundaries of interest, one for which
Im{n±} → ∞ and one for which Im{n±} → 0. As will be
shown below, the former is associated with a TO mode,
and the latter is associated with an LO mode.

VII. THE p AND q PARAMETERS, AND n±

Coefficients p and q can be expressed by elements of
Eq. 1.

p = (ε∞,xx + ε∞,yy) +

N∑
l=1

A2
TO,l

ω2
TO,l − ω2

, (24)

q =

√√√√[ε∞,xx − ε∞,yy +

N∑
l=1

A2
TO,l cos (2αTO,l)

ω2
TO,l − ω2

]2
+

[
2ε∞,xy +

N∑
l=1

A2
TO,l sin (2αTO,l)

ω2
TO,l − ω2

]2
. (25)
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It is obvious from Eqs. 24 and 25 that, depending on ω,

• (i) q is real-valued, and can be positive, or zero, but
not negative.

• (ii) p is real-valued, and can be positive, zero, or
negative. Note that p does not depend on αTO,l.

Hence, from Eq. 14

• (iii) n± can only be either a purely real-valued num-
ber, zero, or a purely imaginary-valued number.

• (iv) n+ is purely real-valued when p + q > 0, and
n− is purely real-valued when p− q > 0.

• (v) n+ is purely imaginary-valued when p+ q < 0,
and n− is purely imaginary-valued when p− q < 0.

• (vi) n+ is zero when p+q = 0, and n− is zero when
p− q = 0.

• (vii) Eigenpolarizations, E±, are linearly polarized,
regardless of ω.

VIII. MODE DUALITY

While shown in more detail below, it can be already
stated here that 2 types (±) of TO and LO modes exist,
one type associated with r− = 1 and one associated with
r+ = 1. We refer to those as XO− and XO+, respectively,
where ‘X’ stands for ‘T’, or ‘L’.

IX. TO-MODE REFLECTANCE BAND
BOUNDARIES

When ω approaches ωTO,l it follows that det (εij) →
+∞, and hence Re{n±} → +∞ and Im{n±} = 0.
Thereby, r± → 1. When ω becomes slightly larger
than ωTO,l it follows that |det(εij)| → ∞, and hence
Im{n±} → +∞ and Re{n±} = 0. Then, r± = 1. This
change appears across an infinitesimally small frequency
range at ωTO,l, and thus marks the frequencies of TO
modes.

X. LO-MODE REFLECTANCE BAND
BOUNDARIES

When ω = ωLO,l it follows that det(εij) = 0, n± = 0,
and hence r± = 1. This is shown in the following:

n± =
1

2

√
εxx + εyy ±

√
(εxx − εyy)

2
+ 4ε2xy. (26)

For ω = ωLO,

0 = εxxεyy − ε2xy, (27)

hence,

n± =
1

2

√
εxx + εyy ±

√
(εxx + εxx)

2
. (28)

Because the term
√

(. . . )2 is always positive, there are
two cases for ωLO,l. When (εxx + εyy) < 0

n+ = 0↔ ω = ωLO,+, (29)

and when (εxx + εyy) > 0

n− = 0↔ ω = ωLO,−. (30)

Hence, the condition for reflectance approaching unity at
which both the real and the imaginary parts of the index
n± vanish coincides with frequencies of LO modes. Note
that inspecting (εxx + εyy) at a given LO mode permits
identification of its “+” or “-” character, and which we
further down define as inner or outer mode character,
respectively.

XI. GENERALIZED DISPLACEMENT VECTOR

We introduce a vector, q, and present it as a gener-
alized displacement vector, described within the a− c
plane. First, for convenience of writing, we include the
contributions to the dielectric function due to higher-
energy polarizabilites, the constant ε∞, as dyadic prod-
ucts. Tensor ε∞ is characterized by 3 real-valued quan-
tities, ε∞,xx, ε∞,xx, and ε∞,xy. We can write this tensor
as the sum of 2 independent dyadic forms

ε∞ =

N+2∑
l=N+1

ε∞,l(êTO,l ⊗ êTO,l). (31)

The number of free parameters (4) in Eq. 31 exceeds the
number of parameters (3) needed to render ε∞, and one
can chose, for example, the dyadic vector êTO,N+2 to be
parallel to y, i.e., êTO,N+2 = (0, 1, 0). Then we can write
the vector q as a sum of vector functions, ql

q =

N+2∑
l=1

ql, (32)

with vector functions, ql

ql = ql[sin(2αTO,l)êx + cos(2αTO,l)êy], (33)

and coordinate functions, ql

ql =
A2

TO,l

ω2
TO,l − ω2

, (34)

for l = 1, . . . , N , and
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qN+1 = qN+1[sin(2αTO,N+1)êx + cos(2αTO,N+1)êy],
(35)

qN+2 = qN+2[sin(2αTO,N+2)êx + cos(2αTO,N+2)êy],
(36)

and

qN+1 = ε∞,1, (37)

qN+2 = ε∞,2. (38)

We note now that the sum of all coordinate functions of
all thereby defined vector functions, ql, is identical with
p defined in Eq. 24

N+2∑
l=1

ql = p, (39)

where the individual components of the sum, vector func-
tions ql, can be positive, negative, or zero.

We further note that the formal vector magnitude of q
is then identical with q in Eq. 25√√√√N+2∑

l=1

q2l = q. (40)

Vector q is a virtual construct, and does not exist as
a physical quantity. However, its magnitude, q, can be
interpreted as the total sum over all dielectric displace-
ment produced by all lattice modes at a given frequency
ω, and the direction of a given displacement is disre-
garded. All displacements are added positively. Regard-
less of ω, there is always a positive total displacement.
On the other hand, the sum of the individual displace-
ments, p, can be interpreted as net displacement at a
given frequency ω. While some mode(s) may display
positive displacement (ω2 < ω2

TO,l), other mode(s) may

display negative displacement (ω2 > ω2
TO,l), and depend-

ing on ω, amplitude, and frequency parameters of all TO
modes, the net displacement is negative, zero, or pos-
itive. Thereby, q and p permit comparison between to-
tal displacement with net displacement, respectively, and
depending on which is larger or smaller, the signature
(real-valued or imaginary-valued) of the principle indices
of refraction, n± is obtained, and phonon mode character
and band assignments can be made accordingly. The fac-
tor 2 occurring in the angular unit vector arguments in
Eq. 32 has no physical meaning because the mathemati-
cal orientation of vector q within the monoclinic plane is
deemed here irrelevant.

XII. INNER AND OUTER PHONON MODES
AND PHONON MODE ORDER IN

MONOCLINIC PLANE

Two cases emerge from Eq. 23√
r−r?− = 1⇔ p− q ≤ 0, (41)

and √
r+r?+ = 1⇔ p+ q ≤ 0. (42)

A. Outer modes

Equation 41 constitutes bands of total reflection across
frequency regions of what we define “outer modes”.
The net displacement is smaller than the total displace-
ment. With increasing frequency the band in r− be-
gins at a TO− mode and extends to a thereby associ-
ated mode LO−. We arrange these modes into pairs:
[TOj,−,LOj′,−].

B. Inner modes

Equation 42 constitutes bands of total reflection across
frequency regions of what we define “inner modes”. The
net displacement (p) is negative and larger than the total
displacement q > 0. With increasing frequency the band
in r+ begins at a TO+ mode and extends to a thereby as-
sociated mode LO+. We arrange these modes into pairs:
[TOj,+,LOj′,+].

XIII. BANDS OF TOTAL REFLECTION

A. Unpolarized bands of total reflection

Total unpolarized reflection occurs when light is to-
tally reflected regardless of polarization. This is the case
when r− = r+ = 1. When p + q < 0 (condition for
inner mode spectral region), and because of q > 0 al-
ways, then also p−q < 0 (condition for outer mode) and,
hence, r+ = r− = 1. Thus, within frequencies of inner
mode pairs, [TOj,+,LOj′,+], one observes polarization in-
dependent total reflection. Such will form bands (parallel
streaks versus rotation), for example, when reflectance is
plotted as a function of wavelength and as a function of
the linear incident light polarization direction relative to
a direction within the monoclinic plane. This is shown
as example for β-Ga2O3 in Fig. 2 of our paper.

B. Polarized bands of total reflection

Within spectral regions inside outer mode pairs not
overlaid by inner mode pairs, [TO−,LO−]∩[TO+,LO+],



6

total reflection occurs only when r− = 1, hence, for polar-
ization E− only. We refer to these bands as polarization
(or angular) dependent bands. These bands consist of
narrow lines in a frequency versus linear polarization an-
gle diagram along which total reflectance occurs. There
are three types of these bands, characterizing those in
ascending order of frequency by

• (I) bands of type I between modes TO− ... LO−,
i.e., within an outer mode pair not interrupted by
an inner mode pair,

• (II) bands of type II between modes TO− ... TO+,
i.e., beginning at an outer mode and ending at and
inner mode,

• (III) bands of type III between modes LO+ ...
TO+, i.e., from the end of an inner mode pair to the
begin of the next inner mode pair residing within
the same outer mode pair, and

• (IV) bands of type IV between modes LO+ ... LO−,
i.e., from the end of an inner mode pair to the end
of an outer mode pair.

Occurrences of all such bands are shown in Fig. 2 in our
paper for the example of β-Ga2O3. Note that for β-
Ga2O3 we find 1, 2, 3, and 2 polarized bands of total
reflection of type I, II, III, and IV, respectively.

C. Polarization angle at boundaries of polarized
bands of total reflection

The lines of total reflection begin and end
at frequencies and directions of the modes in
[TO−,LO−]∩[TO+,LO+]. There are 4 cases

• ω = ωTOj,− : The begin of a polarized band where
r− = 1, and the polarized band can be of type
I (within an outer mode pair without inner mode
pairs), or of type II (beginning at an outer mode
TO and ending at an inner mode TO);

• ω = ωLOj,− : The end of a polarized band where
r− = 1 of type I, or of type IV (beginning at an
inner mode LO and ending at an outer mode LO).

• ω = ωTOj,+ : The end of a band where r− = 1 and
onset of unpolarized band of total reflections since
r+ = 1. Band ending is of type II, or of type III
(beginning at inner LO and ending at next inner
mode TO);

• ω = ωLOj,+
: The begin of a polarized band where

r− = 1 of type III, or the end of a polarized band
where r− = 1 of type IV.

The angular parameters, at which the polarized bands
of total reflection begin and end can be directly read

from the directions of the eigenvectors. For the polar-
ized bands, r− = 1, and the relevant vector whose po-
larization direction we follow here is E−. The relevant
information is the angular orientation of the linear po-
larization of the eigenvector within the monoclinic plane,
evaluated at the frequencies ωTOj,− , ωTOj,+ , ωLOj,+ , and
ωLOj,− :

ϕ− = tan−1 (E−,y/E−,x) , (43)

ϕ− = tan−1
(

2εxy
εxx − εyy − q

)
. (44)

We begin with the angular parameters of the linear
eigenpolarization at the LO mode frequencies. Because
n± = 0 at the frequency of an LO mode, we therefore
note that

ω = ωLOj,+ → q = −p, (45)

and

ω = ωLOj,− → q = p. (46)

Recalling that p = εxx + εyy, we can see that

ϕ−(ωLOj,+) = tan−1
(
εxy
εxx

)
= αLOj,+ ±

π

2
, (47)

and

ϕ−(ωLOj,−) = tan−1
(
−εxy
εyy

)
= αLOj,− . (48)

The former is the cotangent and the latter is the tangent
of the LO mode eigenvector angular parameter, which be-
comes clear when comparing with the definition of the LO
mode eigenvector in Eq. 7. Hence, the polarized bands
of reflection end at the angular orientation of the LO
mode for outer (-) modes, and perpendicular to the ori-
entation of the LO mode for an inner (+) mode. This
can be inspected, for example, in Fig. 2 of our paper,
where the polarized bands of total reflection connect to
the angular orientation of the LO− modes, or to perpen-
dicular orientations of the LO+ modes. The LO modes
are depicted by squares. Closed squares are the eigen-
vector orientations. Open squares are shifted away from
the closed squares along the abscissa by ±π2 to indicate
the perpendicular position of the eigenvectors.

Next we investigate the angular parameters of the lin-
ear eigenpolarization at the TO frequencies. The struc-
ture of Eq. 44 can be simplified substantially when ω
approaches one of the frequencies of the TO modes. We
introduce tensor amplitude factors, fi

fj =
A2

TO,j

ω2
TO,j − ω2

. (49)
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Note that factors for N+1 (ε∞,N+1) and N+2 (ε∞,N+1)
are wavelength independent. Now we can rewrite the
angular parameters, and note that the amplitude factor

belonging to a given TO mode j, fj , is growing over
all other amplitude parameters, and which thus can be
ignored:

ϕ−(ω) = tan−1

 2
∑
fj sinαj cosαj∑

fj cos2 αj −
∑
fj sin2 αj −

√(∑
fj cos2 αj −

∑
fj sin2 αj

)2
+ 4 (

∑
fj sinαj cosαj)

2

 , (50)

ϕ−(ω → ωTOj,±) = tan−1

 2fj sinαi cosαj

fj cos2 αj − fj sin2 αj −
√(

fj cos2 αj − fj sin2 αj
)2

+ 4 (fj sinαj cosαj)
2

 , (51)

ϕ−(ω → ωTOj,±) = tan−1

 2fj sinαi cosαj

fj cos2 αj − fj sin2 αj −
√(

fj cos2 αj + fj sin2 αj
)2
 , (52)

ϕ−(ω → ωTOj,±) = tan−1
(

2fj sinαj cosαj

fj cos2 αj − fj sin2 αj − |fj |

)
. (53)

Hence, the signature of fj determines the outcome. With
increasing frequency, bands of type I and type II begin
at an outer TO mode. Approaching a mode ωTOj,− from
frequencies slightly above (larger), the associated leading
amplitude function fj reaches negative infinity. Hence,
the signature of fj is negative. Then

ϕ−(ω → ωTOj,−) = tan−1
(

−2 sinαj cosαj

− cos2 αj + sin2 αj − 1

)
(54)

ϕ−(ω → ωTOj,−) = tan−1
(

sinαj
cosαj

)
(55)

ϕ−(ω → ωTOj,−) = αi = αTOj,− . (56)

With increasing frequency, bands of type II and type III
end at an inner TO mode. Approaching a mode ωTOj,+

from frequencies slightly below (smaller), the associated
leading amplitude function fj reaches positive infinity.
Hence, the signature of fj is positive. Then

ϕ−(ω → ωTOj,+
) = tan−1

(
cosαj
sinαj

)
(57)

ϕ−(ω → ωTOj,+
) = αi ±

π

2
= αTOj,+

± π

2
. (58)

Hence, polarized bands of total reflectance begin at outer
TO mode frequencies for light polarized parallel to the
TO mode orientation, and end at inner TO mode fre-
quencies with light polarized perpendicular to the TO

mode orientation. This can be inspected, for example,
in Fig. 2 of our paper, where the polarized bands of to-
tal reflection connect to the angular orientation of the
TO− modes, or to perpendicular orientations of the TO+

modes. The TO modes are depicted by circles. Closed
circles are the eigenvector orientations. Open circles are
shifted along the abscissa by ±π2 .

XIV. DETAILS OF DENSITY FUNCTIONAL
THEORY CALCULATIONS

Density functional theory (DFT) calculations were car-
ried out independently from the processing of experi-
mental data. We used the open-source plane-wave code
Quantum ESPRESSO.[8] While working on the current
manuscript, we noticed that the sequence of LO and TO
modes, and particularly the inner-outer mode pairs, de-
rived from the calculations we published previously [1],
and performed at the local density approximation level,
differs in several significant details from the experimen-
tal picture. Therefore, the DFT results included here are
from a different calculation at the generalized gradient
approximation (GGA) level, which is otherwise identical
to the one we presented in Ref. [9], which in that study
we used as the starting point of hybrid band structure
calculations, and for which the calculated phonon prop-
erties were not presented before.

We used exchange-correlation functional of Perdew,
Burke and Ernzerhof (PBE),[10] and classic norm-
conserving Troullier-Martins pseudopotentials originally
generated using FHI98PP,[11, 12] available in Quantum
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ESPRESSO pseudopotentials library. The pseudopoten-
tial for gallium did not include the semicore 3d states
in the valence configuration. The dynamical matrix (in-
cluding the Born effective charges) was calculated at the
Γ-point of the Brillouin zone using density functional per-
turbation theory, [13, 14] with a tight convergence thresh-
old for self-consistency of 10−18 Ry. The dynamical ma-
trix was then processed by a post-processing code dyn-
mat.x (part of the Quantum ESPRESSO distribution
used for diagonalizing the dynamical matrix and com-
puting its eigenvectors and eigenvalues). The parameters

of the TO modes were calculated by simply diagonaliz-
ing the as-obtained dynamical matrix. The limiting fre-
quencies of the Bu modes, including direction-dependent
electric field contributions, were obtained by setting the
direction of approaching the Γ-point. The entire mono-
clinic a − c plane was probed with a fine step of 0.01◦,
and the angular dependence of phonon frequencies for all
eight Bu modes is presented in Fig. 1 of our publication.
The LO modes were identified as extrema (minima or
maxima) on the curves of limiting frequencies not coin-
ciding with the frequencies of TO modes.

[1] M. Schubert, R. Korlacki, S. Knight, T. Hofmann,
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