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A B S T R A C T   

Thermal sensing provides rapid and accurate estimation of crop water stress through canopy temperature data. 
Canopy temperature is highly dependent on the transpiration rate of the leaves. It is usually assumed that any 
reduction in crop evapotranspiration (ET) leads to crop yield loss. As a result, an increase in canopy temperature 
due to a decrease in crop ET would indicate crop yield loss. This research evaluated the hypothesis that crop 
water stress could be detected using canopy temperature measurements (increased leaf temperature) from 
infrared thermometers (IRTs) before incurring crop yield loss. This would be possible in a narrow range when the 
photosynthesis rate (and carbon assimilation) is limited by solar radiation (energy-limiting water stress) while 
the leaf has abundant carbon dioxide for photosynthesis. Once photosynthesis becomes limited by carbon dioxide 
(carbon-dioxide-limiting water stress), then yield reduction would occur. In this field experiment, measured 
response variables included the integrated crop water stress index (iCWSI), ET, and crop yield for maize and 
soybean during the 2020 and 2021 growing seasons. The irrigation was applied at four different refill levels: 
rainfed (0%), deficit (50%), full (100%), and over (150%). The irrigation depth was prescribed using four 
different irrigation methods. The field was irrigated with a center pivot irrigation system, which was also used as 
a platform to mount IRT sensors. The iCWSI thresholds required for irrigation management were determined 
using the iCWSI dataset collected in 2020. The low, medium, and high iCWSI thresholds were 120, 150, and 180, 
respectively for maize and 110, 130, and 150, respectively for soybean. These thresholds should be updated with 
iCWSI data from future studies in this region to increase the credibility of the thresholds for irrigation man-
agement. The mean iCWSI values for consecutive days after a wetting event substantially increased with time for 
each irrigation level and a larger range in iCWSI values was observed among the irrigation levels after three days 
from a wetting event. The seasonal iCWSI for different levels were found to be negatively correlated with sea-
sonal evapotranspiration for both years. The correlations between seasonal ET and crop yield were significant 
with the rainfed and deficit levels for maize (p-value < 0.001) and soybean (p-value = 0.04) in 2020. The iCWSI 
and yield data for the fully watered plots indicated that thermal stress was detected using the sensing system 
without incurring yield loss (i.e., energy-limiting water stress). The ET and yield data for 2021 indicated that 
reduction in seasonal crop ET did not result in yield loss which also supported the hypothesis. Future studies 
should investigate whether this phenomenon of detecting crop water stress in an early stage without yield loss is 
observed in other climates and locations.   

1. Introduction 

With increased pressure on freshwater resources, irrigation man-
agement focuses on maximizing crop water productivity to produce 

optimal yield with reduced water application. Researchers have studied 
the relationships between crop water stress, crop water use, irrigation, 
and crop yield for different cropping systems, climate, and locations 
(Djaman and Irmak, 2012; Eck, 1986; Hanks, 1974; Ko and Piccinni, 
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2009; Musick and Dusek, 1978). These relationships inform the irriga-
tion scheduling methods to achieve maximum productivity. Heat stress 
as a result of high ambient temperatures is another form of crop stress 
which affects crop physiology, growth, and reproduction (Lobell et al., 
2015). Crop water stress information is crucial for developing various 
deficit irrigation strategies for improved productivity (Fereres and Sor-
iano, 2007; Kullberg et al., 2017). Crop biomass and yield are directly 
affected by the incidence of crop water stress (Han et al., 2016; O’Sh-
aughnessy et al., 2017). The plants react to crop water stress by reducing 
transpiration through the leaves (DeJonge et al., 2015). The timing and 
duration of crop water stress determines both the quantity and quality of 
crop yield (Aladenola and Madramootoo, 2014; Payero et al., 2006; 
Rossini et al., 2013; Zhang et al., 2017). 

Crop yield is found to be linearly related to crop water use or ET in a 
majority of studies (Garrity et al., 1982; Payero et al., 2006; Schneekloth 
et al., 1991). The slope of this linear relationship is dependent on irri-
gation management, soil and residue management, climate, soil texture, 
hybrid characteristics, plant population, and disease pressure (Irmak, 
2015). The linear relationship between crop yield and ET does not 
indicate direct proportional relation among the two variables. In fact, 
some reduction in ET may not affect crop yield if the plant has adequate 
concentration of carbon dioxide required for carrying out photosyn-
thesis. Crop yield is produced as a result of photosynthesis, and crop 
transpiration (accounts for majority of ET following canopy closure) 
results from loss of water through stomata. These are two different 
processes which are independent of each other and are not directly 
affected by each other. The rate of change in photosynthesis with crop 
transpiration is highly dependent on the leaf-air vapor pressure differ-
ence under natural conditions (Bierhuizen and Slatyer, 1965). The water 
transpired by a crop and the amount of biomass accumulated during the 
same time are strongly connected by photosynthetically active radiation 
absorbed by the canopy (Monteith, 1986). We hypothesize that a crop 
can experience some water stress, with a reduction in transpiration 
causing increased leaf temperature (which can be detected for irrigation 
management), without a reduction in photosynthesis. The common 

phenomena that affect both photosynthesis and ET is stomatal 
conductance. 

Stomatal guard cells present in crop leaves regulate the flux of water 
vapor lost by the leaf and the carbon dioxide entering the stomata 
(Medlyn et al., 2011). Stomatal conductance during the day is a function 
of atmospheric vapor pressure deficit and soil water content (Zhang 
et al., 2021b). With reduction in the stomatal conductance, the mass flux 
of water vapor leaving the leaf surface and the mass flux of carbon di-
oxide entering the leaf decreases. Hence, the changes to stomatal 
conductance instantly affect the crop ET through changes in the mass 
flow rate of water vapor. The decrease in the loss of water by transpi-
ration results in an increase of the leaf temperature which can be 
detected by thermal sensors. The rate of photosynthesis is mainly driven 
by carbon dioxide present in the leaf and/or light energy from the sun; in 
a subhumid climate, in the absence of water stress, photosynthesis is 
often energy-limited. At the onset of water stress (reduced transpiration 
rate), when there is only a small decrease in stomatal conductance, the 
rate of photosynthesis (and production of crop biomass) may not be 
affected if the rate of photosynthesis is still energy-limited. With only a 
small reduction in stomatal conductance, the carbon dioxide concen-
tration gradient across the stomate may increase enough to result in the 
same influx of carbon dioxide to the leaf, and the leaf has adequate 
supply of carbon to carry out photosynthesis at the optimal level along 
with other carbon related processes. This stage of crop water stress, in 
which the plant still has enough carbon for photosynthesis (i.e., 
energy-limited photosynthesis), will be referred to as energy-limiting 
water stress; we summarize this concept in Fig. 1. Carbon is seques-
tered by the plant at an optimal rate (similar to the rate with no crop 
water stress) during the energy-limiting stage of the photosynthesis. 
With continued reduction in the stomatal conductance below a critical 
level, the carbon dioxide flux rate in the leaf decreases leading to a 
decrease in the photosynthetic rate. This will result in a reduction in the 
rate of carbon assimilation (and biomass produced by the crop). This 
stage will be referred to as the carbon-dioxide-limiting water stress. The 
photosynthesis at this stage is limited by the amount of carbon present in 

Fig. 1. Schematic of three conditions of water stress: no water stress, low water stress (energy-limiting photosynthesis), and high water stress (carbon-dioxide- 
limiting photosynthesis), including how the stress impacts the leaf processes. 
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the leaf and not by the energy available to the leaf. 
Thermal sensing is widely used in research to quantify crop water 

stress through canopy temperature measurements (Berni et al., 2009; 
Kullberg et al., 2017; Lena et al., 2020; Masseroni et al., 2017; O’Sh-
aughnessy et al., 2013; Osroosh et al., 2016; Singh et al., 2021). Canopy 
temperature data obtained using thermal sensing is used to determine 
changes to crop ET at a particular net energy (Zhang et al., 2021a). Crop 
water stress is commonly expressed using various thermal indices 
including crop water stress index (CWSI; Jackson et al., 1981), water 
deficit index (WDI; Moran et al., 1994), and temperature-time threshold 
(TTT; Upchurch et al., 1996). Canopy temperature data required to 
compute these indices are usually collected using IRTs installed at 
remote locations of the field (Payero and Irmak, 2006; Taghvaeian et al., 
2012; Wanjura et al., 1995). Mounting crop canopy sensors on a center 
pivot irrigation system provides an opportunity to utilize the pivot 
lateral as a moving platform for data acquisition across the field 
(O’Shaughnessy et al., 2020; Stone et al., 2020; Vories et al., 2020). New 
center pivot systems are available with a high-speed drive, allowing the 
pivot lateral to make a complete revolution in a commercial-scale field 
(e.g., 125 ha) in only 4 h. This is significant because: 1) data can be 
collected without irrigating, minimizing interference from water on the 
canopy, yet only needing to stop irrigation for 4 h, and 2) data can be 
collected on the entire field at the time when detecting stress is most 
likely (approximately 1 h before solar noon to three hours after solar 
noon). A scaling algorithm (Peters and Evett, 2004) is used to estimate 
canopy temperature during the daylight hours for each remote location. 
The spatiotemporal canopy temperature data is used to compute inte-
grated crop water stress index (iCWSI; Evett et al., 2014). The iCWSI was 
used as a thermal index in this study to detect crop water stress and 
trigger irrigation. The iCWSI integrates canopy temperature measure-
ments throughout the day and is better at representing daily crop water 
stress as compared to indices using single time of day measurement of 
canopy temperature. The plants with high crop water stress will corre-
spond to high iCWSI values and higher water application depth. In 
contrast, the plants with lower crop water stress will correspond to lower 
iCWSI values and requiring either no irrigation or lower application 
depth (O’Shaughnessy et al., 2020). The Irrigation Scheduling Super-
visory Control and Data Acquisition (ISSCADA; Evett et al., 2020) sys-
tem computes the spatial iCWSI maps and is capable of managing 
site-specific irrigation without user input. Irrigation management 
using thermal sensing relies primarily on leaf temperature changes that 
are related to transpiration rate before the onset of 
carbon-dioxide-limiting water stress. There is limited research on can-
opy thermal sensing that focuses on studying crop ET, and crop water 
stress before the onset of carbon-dioxide-limiting water stress. The 
notion of inducing crop water stress with no reduction in potential yield 
is not widely investigated. The detection of crop water stress in an early 
phase should be further explored in different locations and climates to 
understand the crop physiology during this phase. The moving platform 
for thermal sensing of crops should also be researched in the context of 
practical irrigation management. 

This research investigated the detection of crop water stress using 
IRT sensors in an early phase of water stress (with energy-limited 
photosynthesis) without incurring crop yield loss. The iCWSI was used 
to determine the crop water stress. The findings from this study will also 
inform about the effectiveness of the irrigation scheduling methods 
developed on canopy temperature based thermal indices. The analyses 
involved evaluation of the relationships between crop yield, ET, and 
crop water stress for maize and soybean during the 2020 and 2021 
growing seasons. The specific objectives of the study included: (1) 
studying the trends in iCWSI and crop yield among four different irri-
gation levels ranging from high stress to no stress, (2) computation of 
iCWSI based irrigation thresholds for maize and soybean in the sub- 
humid climate of eastern Nebraska, and (3) evaluating the correlations 
between crop yield, ET, and iCWSI for different irrigation levels. 

2. Material and methods 

2.1. Study site and design 

A 58-ha research field situated at the University of Nebraska’s 
Eastern Nebraska Research, Extension and Education Center (ENREEC) 
near Mead, Nebraska (centered at 41.172445◦N, 96.478248◦W) was 
used for this experiment during the 2020 and 2021 growing seasons. The 
field was divided in two halves, which were rotated between maize and 
soybean each year. The experiment included data from soybean in the 
north half in 2020, maize in the south half in 2020, maize in the north 
half in 2021, and soybean in the south half in 2021. The soils in the field 
were classified as silt loam and silty clay loam (gSSURGO, Soil Survey 
Staff, 2018), which were nearly equally distributed between the north 
and south halves. The field was irrigated using a speed-control enabled 
center pivot irrigation system, model Valley Irrigation 8000 (Valmont, 
Valley, NE), and fitted with high-speed X-Tec center drive motors. 

The field area under spans six and seven of the center pivot system 
were used for this study. The area was divided into four radial zones and 
24 arc-wise plot boundaries defining 96 plots, which were divided 
equally among the north and south halves (Fig. 2). The area of the plots 
ranged between 1870 m2 and 2630 m2. The four radial rings were 
managed using four different levels of irrigation: rainfed, deficit, full, 
and over. Rainfed plots were applied with no irrigation, deficit plots 
were applied with 50% of the full amount, full plots were applied with 
100% of the prescribed irrigation, and over plots were applied with 
150% of the full amount. The irrigation amount applied in the full level 
plots were determined using four different irrigation methods: plant 
feedback ISSCADA, hybrid ISSCADA, common practice, and spatial 
evapotranspiration model (SETMI; Neale et al., 2012). 

2.2. Experimental data 

Infrared thermometers (IRTs; SAPIP-IRT, Dynamax Inc., Houston, 
TX) were mounted on the pivot lateral and stationary posts to monitor 
canopy temperature. These IRTs had a field of view (FOV) of 20◦. The 
IRTs were programmed to sense canopy temperature every five seconds 
and average these readings over one minute. Two IRTs were mounted 
for each radial zone totaling eight IRTs on the center pivot lateral. These 
IRTs were installed at a spacing of 6.1 m from the edges of the radial 
zone. The paired IRT sensors on the pivot lateral were positioned such 
that the FOV is pointing towards the center of the respective radial zone. 
A stationary IRT was installed at one full irrigated plot for each crop 
(Fig. 2). The stationary IRT was positioned to have a nadir view of the 
canopy. The height of the stationary IRT was adjusted at least once every 
month to maintain a constant height of 1 m above the crop canopy. More 
details on the position and orientation of IRTs can be found in Bhatti 
et al. (2022). 

Soil water data from two neutron probes, model 503 Elite Hydrop-
robe (CPN, Concord, CA), were collected at 48 locations with a fre-
quency of about three weeks. These 48 locations included rainfed and 
full irrigated plots with 24 locations in each crop. A local calibration 
from a nearby field (~ 3 km from the study site) with same soil types 
were used to calibrate the first neutron probe. The second neutron probe 
was cross calibrated using the first neutron probe. The slope and inter-
cept from the calibration were 0.2738 and − 0.0991 m3 m− 3, respec-
tively for the first probe, and 0.2766 and − 0.1189 m3 m− 3, respectively 
for the second probe. The data were acquired at depths of 15, 45, 76, and 
107 cm. The soil water content representing 122 cm deep root zone was 
computed using depth weighted average of neutron probe readings from 
the four depths. Soil water data was also monitored using Acclima soil 
water sensors (Acclima, Inc., Meridian, ID) at one location for each crop. 
These sensors were installed horizontally at depths of 15, 30, 46, and 
76 cm for each location. 

Weather data for the ISSCADA system including air temperature, 
wind speed, wind direction, rainfall, relative humidity, and solar 
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radiation, were obtained using an AgSense weather station (Valmont 
Industries Inc., Huron, SD). These weather variables were recorded at a 
frequency of 5 min. The weather station was installed just west of the 
field in an open area with grass. The cup anemometer was installed at a 
height of 3 m. For the SETMI model, weather data from Memphis 5 N 
station (Nebraska Mesonet) were used at hourly and daily time step. This 
station was about 5 km away from the field. 

Remote sensing imagery from PlanetScope (Planet Labs, Inc., San 
Francisco, CA) was used in SETMI. The resolution of the imagery was 
3 m and was acquired at a daily time step. Images were inspected for 
cloud cover using ArcMap 10.4.1 (ESRI, Redlands, CA), and images 
having cloud cover over or around the field were not included in the 
model. The red and near infrared bands of the imagery were used in the 
model to compute the soil adjusted vegetation index (SAVI; Huete, 
1988). 

2.3. Irrigation management 

The irrigation was managed using four irrigation scheduling 
methods applied at four different irrigation levels. The ISSCADA system 
was used to prescribe two methods: plant feedback and hybrid. The 
plant feedback method used IRTs on the center pivot and the stationary 

posts along with weather data to compute spatial iCWSI maps. The 
iCWSI data were used to schedule irrigation for the plant feedback 
method. In addition to iCWSI data, the hybrid method also used soil 
water data acquired from Acclima soil water sensors. The third method 
was the common practice, which included soil sampling using a soil 
probe and using the hand feel method on the sampled soil to make an 
irrigation recommendation. The fourth method was scheduled using the 
SETMI model, which used PlanetScope imagery and soil water data from 
neutron probe. The SETMI model was used for irrigation recommenda-
tions similar to Bhatti et al. (2020). This model computed spatial soil 
water balance at 3 m pixel resolution and recommended irrigation at a 
sub-field scale (experimental plots). The irrigation recommendations 
obtained from these four methods were applied at four levels: 0% or 
rainfed, 50% or deficit, 100% or full, and 150% or over. This study 
focused on the differences in response variables found among different 
levels of irrigation. The evaporation loss during irrigation applications 
was expected to be larger in the deficit level since the irrigation depth 
was smaller in deficit as compared to the other irrigated levels. There 
were 10–11 irrigation events applied in 2020 and 4–5 irrigation events 
applied in 2021 for both crops. The mean seasonal irrigation depth 
prescribed for the four levels are given in Table 1. 

Fig. 2. Layout of experimental plots used in the study during 2020 and 2021 growing seasons. Letters used in the plot denote irrigation methods applied in 2020/ 
2021. World imagery from ESRI ArcMap was used as the background basemap. 
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2.4. Computation of response variables 

2.4.1. Integrated crop water stress index 
The crop water stress was represented using iCWSI computed by the 

ISSCADA system. The iCWSI is more descriptive of the cumulative crop 
water stress during a day as compared to other thermal indices utilizing 
only single measurement of canopy temperature. The thermal data from 
the IRT sensors on the stationary post and pivot lateral were used to 
compute the iCWSI. The center pivot was moved to complete a revolu-
tion without running water (dry scan) during the daylight hours for data 
collection from the pivot-mounted IRTs. In total, there were 16 dry scans 
conducted in 2020, and 19 dry scans conducted in 2021 (Table 2). A 
temperature scaling algorithm (Peters and Evett, 2004) was used to 
estimate canopy temperature for each remote location on a diurnal 
basis. The algorithm also used data from the stationary IRTs installed at 
the full level plots in both crops. The iCWSI was computed by integrating 
the crop water stress index (CWSI; Jackson et al., 1981) over peak 

daylight hours (9:00 AM to 7:00 PM) at a time step of 1 min. The iCWSI 
at a given location was computed as mentioned in O’Shaughnessy et al. 
(2017) (Eq. 1): 

iCWSI =
∑N

i=1

(
T ′

c − Ta
)
− (Tc − Ta)ll

(Tc − Ta)ul − (Tc − Ta)ll
(1)  

where i is the ith time step, N is total number of one-minute steps be-
tween 9:00 AM and 7:00 PM, T′

c is canopy temperature estimated using 
scaling algorithm, Ta is ambient air temperature, (Tc − Ta)ll represents 
the lower limit of the canopy and air temperature differential, and 
(Tc − Ta)ul represents the upper limit of the canopy and air temperature 
differential. The lower and upper limits of the temperature difference 
between canopy and air were computed using the theoretical CWSI 
approach (Jackson et al., 1981). 

The iCWSI computed for each location was used to produce spatial 
crop water stress maps for the field on a given day. The GPS data from 
the pivot were used to georeference the iCWSI data. The ISSCADA sys-
tem outputs the iCWSI maps at a resolution of 2◦. The iCWSI values for 
locations lying within a radial zone were averaged to compute a 
representative value of iCWSI for that zone. 

2.4.2. SETMI modeled evapotranspiration 
SETMI was used to model spatial ET using PlanetScope satellite 

imagery. The dual crop coefficient approach was used to compute crop 
ET (Allen et al., 1998). The model computed SAVI values were used to 
compute reflectance based-crop coefficients (Campos et al., 2017). The 
alfalfa-based reference ET was computed using the ASCE Standardized 
Tall Reference Evapotranspiration equation (ASCE-EWRI, 2005). The 
reference ET was computed at hourly time step and added up to daily 
time step. The weather data for reference ET was acquired from the 
Memphis 5 N station (Nebraska Mesonet). The SETMI modeled ET was 
computed for all four irrigation level plots. The field capacity for the 
plots were estimated using the first neutron probe soil water measure-
ment taken on June 12, 2020 (observational field capacity). The field 
received rainfall of about 10 mm two days prior to the measurement 
day. The model was not updated with soil water data when computing 
modeled ET since there were no soil water data for the deficit and over 
plots. 

2.4.3. Measured evapotranspiration 
Soil water balance adjusted with neutron probe measurements in 

SETMI was also used to compute seasonal crop ET. These ET values 
computed from soil water balance were referred to as measured ET since 
soil water data were used to update the water balance. SETMI was used 
to output seasonal deep percolation and runoff. The soil water storage 
term on a seasonal basis was computed from the difference between first 
and last neutron probe measurements. The neutron probe data was used 
to represent a root zone depth of 122 cm. During the 2020 season, it was 
possible that the rainfed crop may have extracted some water from 
depths greater than 122 cm which were not accounted for in the 
measured ET. The measurement period (first and last neutron probe 
measurement day) used to represent seasonal ET for each crop is shown 
in Table 3. This measurement period was used for representing the 
seasonal ET for each crop-year. The measured ET was only computed for 

Table 1 
Mean seasonal irrigation depth prescribed for four different levels in 2020 and 
2021.  

Level Maize 2020 Soybean 2020 Maize 2021 Soybean 2021 

Rainfed  0  0  0  0 
Deficit  118  94  46  28 
Full  236  188  92  56 
Over  354  282  138  84  

Table 2 
Days when the pivot was moved dry to collect data from pivot-mounted sensors 
in 2020 and 2021. The cloud cover increases in the order of clear, scattered, 
partly cloudy, mostly cloudy, and overcast. The cloud cover was determined 
using the solar radiation data collected by the AgSense weather station. The 
times are mentioned in Central Time zone.  

Date Time of scan Cloud cover Date Time of scan Cloud cover 
2020   2021   

Jul 21 12:25–16:34 Partly 
cloudy 

May 
23 

11:25–15:30 Mostly 
cloudy 

Aug 
04 

12:26–16:31 Mostly 
cloudy 

Jun 04 10:33–14:40 Scattered 

Aug 
09 

10:36–14:43 Scattered Jun 05 13:09–17:15 Partly 
Cloudy 

Aug 
10 

13:13–17:20 Scattered Jul 02 11:06–15:14 Partly 
Cloudy 

Aug 
11 

13:02–17:08 Partly 
cloudy 

Jul 06 11:28–15:31 Scattered 

Aug 
12 

10:06–14:12 Mostly 
cloudy 

Jul 08 10:33–14:40 Mostly 
cloudy 

Aug 
17 

09:56–15:22 Clear Jul 20 11:30–15:36 Scattered 

Aug 
18 

09:50–15:16 Mostly 
cloudy 

Jul 26 11:30–15:37 Clear 

Aug 
19 

11:58–17:23 Partly 
cloudy 

Jul 30 11:47–15:55 Mostly 
cloudy 

Aug 
20 

12:16–16:23 Mostly 
cloudy 

Aug 
02 

12:13–16:22 Partly 
cloudy 

Aug 
26 

10:29–14:35 Clear Aug 
04 

11:43–15:52 Scattered 

Aug 
27 

13:16–17:22 Clear Aug 
16 

12:31–16:40 Clear 

Sep 08 10:01–14:07 Overcast Aug 
18 

14:02–18:15 Partly 
cloudy 

Sep 14 10:24–15:50 Clear Aug 
23 

11:32–15:43 Partly 
cloudy 

Sep 15 10:30–15:56 Scattered Aug 
24 

12:56–17:06 Clear 

Sep 16 11:10–16:37 Partly 
cloudy 

Sep 08 11:25–15:33 Clear    

Sep 10 11:22–15:39 Scattered    
Sep 11 11:30–15:40 Partly 

cloudy    
Sep 15 11:20–15:28 Clear  

Table 3 
Planting date, harvesting date and neutron probe measurement period for the 
different crop-year combinations. The seasonal evapotranspiration was 
computed for this measurement period.  

Crop Planting date Harvesting date Measurement period 

Maize 2020 April 24 Oct 13 June 12 - Sept 25 
Soybean 2020 May 2 Sept 28 June 12 - Sept 25 
Maize 2021 April 28 Oct 8 June 4 - Sept 24 
Soybean 2021 May 13 Oct 21 June 8 - Sept 24  
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the rainfed and full level plots since soil water data was only measured in 
these plots. 

2.4.4. Crop yield 
The crop yield data were recorded using yield monitoring equipment 

(model John Deere 2630 Yield Monitor System with RTK GPS accuracy) 
on the combine harvesters (model John Deere S650). The combine yield 
monitors were calibrated at the beginning of each season following 
Original Equipment Manufacturer procedure. The yield monitors have 
an expected accuracy range of ± 3% and were recalibrated if the error 
was higher than the expected range. Similar yield monitoring equipment 
were utilized in Barker et al. (2018); Bhatti et al. (2020). The yield data 
were processed and filtered using the Yield Editor software version 2.0 
(Agricultural Research Service, United States Department of Agricul-
ture). The processed yield was compared to the weighing grain cart 
readings to validate the processed data. The grain moisture was removed 
to compute dry grain during yield processing and the dry yield was used 
to conduct the analysis. The plot yield for each crop was computed by 
averaging the yield points within the plot using ArcGIS 10.4 software 
(ESRI, Redlands, CA). 

2.5. Data analysis 

The response variables used for analyses included crop yield, iCWSI, 
and crop ET. These variables were correlated to study the type and 
strength of correlation. An inner buffer of 6.1 m around the edges of 
each plot was used to remove boundary effects from adjacent plots. The 
data collected from the buffer area of each plot were excluded from the 
analyses. The iCWSI data collected between August 4 and 20 were used 
for maize and soybean in 2020. For 2021, the iCWSI data used for maize 
were collected between July 2 and August 24, and for soybean were 
collected between July 20 and August 24. The soil had significant 
interference in the iCWSI data for soybean before July 20, 2021, since 
the canopy was not completely covering the soil. These measurement 
periods for iCWSI represented fully grown crop with canopy closure 
before the onset of crop senescence. The iCWSI data for different ana-
lyses were compared among the four irrigation refill levels. 

The iCWSI data collected from the dry scans were averaged under 
different scenarios. These scenarios included combined (all data), sunny 
days, cloudy days, more than two days from a wetting event, more than 
three days from a wetting event, and within 2 days of a wetting event. 
The classification of cloud cover on a certain day was determined using 
the incoming solar radiation data collected by the AgSense weather 
station. The radiation data were investigated for the periods during a 
day when there was a significant decrease in solar radiation from its 
upper limit. The day was classified as cloudy if the incoming solar ra-
diation was lower than the upper potential limit for more than 25% of 
the time during the daylight hours. Further, the iCWSI data collected in 
2020 were used to define thresholds for irrigation scheduling in 2021. A 
total of three thresholds were computed to indicate low, medium, and 
high stress. The iCWSI data collected between August 4 and August 20 
were used to compute these thresholds. There were total of nine dry 
scans conducted between these days. The iCWSI data collected only from 
the full irrigated plots were used for the computation of these thresholds. 
The high threshold was computed by averaging the iCWSI data collected 
after two or more days from a wetting event (rainfall or irrigation). The 
low threshold was computed by averaging the iCWSI data acquired 
within two days of a wetting event. The average value of the high and 
low thresholds was used for computing the medium threshold. 

The relation between iCWSI and wetting events was investigated 
using data acquired on consecutive days after a wetting event. There 
were two instances in 2020 where iCWSI data were collected succes-
sively for four days after a wetting event. However, there was only one 
instance in 2021 where iCWSI data were collected during 7–13 days 
after a wetting event. The iCWSI data for this analysis were averaged for 
each irrigation level plots and differences in iCWSI values among the 

different levels were also discussed. 
The seasonal crop ET was computed for the respective neutron probe 

measurement period for each case (Table 3). The daily values of ET were 
added for all days within the measurement period to compute the sea-
sonal ET. The modeled ET computed from SETMI, and the measured ET 
computed from water balance were compared on a seasonal basis. Since 
the neutron probe data was not available for the deficit and over levels, 
the SETMI model was not updated with neutron probe data during the 
modeling of seasonal ET. The coefficient of determination (r2) along 
with the regression equation were determined. This comparison was 
made using rainfed and full irrigated plots. 

The iCWSI and ET data were correlated for both crops in 2020 and 
2021. The iCWSI data acquired after two or more days from a wetting 
event were used for this analysis (Table 5). The data for each irrigation 
level were then averaged over the selected dry scan days to get a single 
average iCWSI value for each level. There were total of 12 plots that 
were used to average iCWSI data for each irrigation level in each crop. 
The seasonal ET was also averaged among the plots for each level. The 
measurement period mentioned in Table 3 was used for computing the 
seasonal ET. The plot averaged seasonal measured ET and iCWSI were 
correlated for the rainfed and full level plots. The seasonal modeled ET 
and iCWSI correlation was investigated for all four levels. 

The crop yield and seasonal ET were also correlated at plot scale for 
both years. The correlation used with measured ET was conducted for 
rainfed and fully irrigated plots. The correlation used with modeled ET 
was conducted for all four levels. For the modeled ET analysis, two re-
gressions were computed: the first regression between the rainfed and 
deficit plots, and the second regression between the full and over level 
plots. It was investigated whether the first regression yielded a positive 
slope, and the second regression had a zero slope. Statistical t-tests were 
conducted at a 5% significance level to investigate if the slope of the 
correlations were different from zero. 

The r2, linear regression analysis, root mean square error (RMSE), 
and statistical tests were conducted using the Microsoft Excel (Microsoft 
Corporation, Redmond, WA). The least squares method was used to 
select the linear regression model. The RMSE was computed using the 
following equation: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Oi)

2

√

(2)  

where Si are predicted values, Oi are observations, and n are number of 
observations. 

3. Results and discussion 

3.1. Mean weather conditions 

The weather variables presented for both study years were computed 
between June 1 and September 30 (Table 4). The average daily 
maximum and minimum temperature were similar for 2020 and 2021. 
The total rainfall depth in 2020 was smaller than half of the total rainfall 
depth received in 2021. A weather station (Mead 6 S, National Centers 

Table 4 
Average weather conditions between June and September for 2020 and 2021. 
The hourly weather data was acquired from Nebraska Mesonet’s weather sta-
tion. The wind speed was monitored at a height of 3 m.  

Parameters 2020 2021 

Max temperature (◦C)  28.9  29.2 
Min temperature (◦C)  16.6  16.1 
Wind speed (m s− 1)  3.5  3.2 
Relative humidity (%)  58  58 
Vapor pressure deficit (kPa)  1.6  1.6 
Incoming solar radiation (W m− 2)  549  541 
Rainfall (mm)  178  386  
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for Environmental Information) close to the field (~6.5 km) reported a 
historic average rainfall (1991–2020) of 381 mm between the months of 
June and September. Hence, the 2020 growing season was extremely 
dry for this region. The average wind speed, relative humidity, vapor 
pressure deficit, and solar radiation were computed for daylight hours 
from 9 AM to 7 PM. 

3.2. Seasonal water inputs and crop water stress 

The seasonal iCWSI, rainfall, and irrigation data for the four crop- 
year scenarios in common practice plots were shown using Fig. 3. The 
rainfall events among the two seasons were observed to be different 
primarily in terms of rainfall depth. The rainfall in the second half of the 
2021 growing season experienced substantially larger rainfall events as 
compared with 2020. There were seven rainfall events larger than 
25 mm in 2021 as compared to only one in 2020. The seasonal irrigation 
depth applied in 2020 was larger as compared with 2021 (Table 1). The 
iCWSI data for 2020 had higher values on average as compared to 2021. 
The iCWSI data from mid-May to mid-June in 2021 indicated high crop 
water stress because of small canopy cover and significant soil inter-
ference in the background for both crops. Crop water stress was also high 
in 2020 towards the end of the season, which could be attributed to the 
effects of senescence on crop physiology. 

The iCWSI data were averaged for the sunny days, cloudy days, all 
measurement days, or certain number of days from a wetting event to 
study how these conditions affect the crop water stress. The averaged 
iCWSI values for all four crop-years are listed in Table 5. In 2020, the 
average iCWSI values ranged between 118 observed in over and 254 
observed in rainfed for maize. The soybean iCWSI values ranged be-
tween 109 observed in over and 201 observed in rainfed. The iCWSI 
among the irrigation levels increased in the order of over, full, deficit, 
and rainfed for both crops. This observation was consistent with 
Kashyap (2021) in which high-frequency unmanned aircraft flights were 
conducted to acquire thermal imagery of soybean at this field site on 
August 26, 2020. He found that the difference in canopy and air 

Fig. 3. Time series data of rainfall, irrigation, and iCWSI for A) maize 2020, B) soybean 2020, C) maize 2021, and D) soybean 2021. The iCWSI data was plotted 
using the left y-axis, and water depths were plotted using the right y-axis. 

Table 5 
Averaged iCWSI values under different scenarios for the different levels in 2020 
and 2021. The irrigation levels included rainfed (0%), deficit (50%), full 
(100%), and over (150%). The different scenarios included data from all dry 
scan days, sunny days, cloudy days, more than two days from a wetting event, 
more than three days from a wetting event, and within two days of a wetting 
event.  

Scenario Rainfed Deficit Full Over 
Maize 2020     

Combined  178  157  144  138 
Sunny  165  147  137  132 
Cloudy  193  169  152  145 
More than 2 days from wetting event  224  195  175  168 
More than 3 days from wetting event  254  221  196  190 
Within 2 days of wetting event  145  130  122  118 
Soybean 2020         
Combined  157  125  119  114 
Sunny  152  124  120  117 
Cloudy  170  134  126  118 
More than 2 days from wetting event  201  153  142  135 
More than 3 days from wetting event  196  170  159  151 
Within 2 days of wetting event  132  113  111  109 
Maize 2021         
Combined  84  82  77  84 
Sunny  81  78  73  81 
Cloudy  104  102  94  102 
More than 2 days from wetting event  98  95  89  97 
More than 3 days from wetting event  125  124  117  130 
Within 2 days of wetting event  55  52  48  56 
Soybean 2021         
Combined  70  67  64  70 
Sunny  73  69  66  72 
Cloudy  86  81  77  83 
More than 2 days from wetting event  98  95  89  97 
More than 3 days from wetting event  100  95  91  97 
Within 2 days of wetting event  34  31  30  35  
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temperature followed a clear diurnal pattern, and the canopy tempera-
ture for the full level was consistently higher than the canopy temper-
ature for the over level throughout the day. In 2021, the average iCWSI 
values ranged between 48 observed in full and 130 observed in over for 
maize. The iCWSI values ranged between 30 observed in full and 100 
observed in rainfed for soybean. It is evident that average iCWSI values 
in 2020 were nearly double than that observed in 2021 for both crops. 
The reason for higher crop water stress in 2020 could be attributed to 
smaller rainfall depth and larger available energy (i.e., higher average 
solar radiation) than 2021 (Table 4). Further, it was observed that the 
over level experienced similar crop water stress as rainfed crop in 2021 
as indicated by average iCWSI data shown in Table 5. The high crop 
water stress observed in over could be due to anaerobic conditions and 
low oxygen in the root zone as a result of over application of water 
(Pezeshki, 2001; Wu et al., 2018). The iCWSI values observed for sunny 
days were consistently lower than for the cloudy days. This observation 
could be attributed to more diffused radiation available on cloudy days 
than on sunny days (Durand et al., 2021). 

The average iCWSI values for full irrigated plots were used for 
defining the low, medium, and high iCWSI thresholds. Since the full 
irrigated plots were managed to experience crop water stress without 
incurring yield loss, the thresholds were computed only using these 
plots. The data from the full irrigated plots on a given dry scan day were 
averaged to compute a single averaged value of iCWSI. The iCWSI values 
obtained by averaging data collected after two or more days from a 
wetting event were 180 for maize and 150 for soybean, which were used 
as the high threshold. The iCWSI values obtained by averaging data 
collected within two days of a wetting event were 120 for maize and 110 
for soybean, which were used as the low threshold. The mean of the 
respective low and high thresholds was used for the medium threshold 
for both crops. In summary, the low, medium, and high thresholds for 

maize were 120, 150, and 180, respectively and for soybean were 110, 
130, and 150, respectively. These values corresponded to different 
irrigation depths prescribed by the ISSCADA system: 12.7 mm for the 
low threshold, 19 mm for the medium threshold, and 25.4 mm for the 
high threshold. Crop exposure to water stress during the early vegetative 
stages will reduce the vegetative cover and during the reproductive 
stages will impact the grain yield. Prolonged iCWSI readings above the 
low threshold for several days will likely result in crop yield loss from 
the potential crop yield for the season. The high iCWSI threshold denotes 
higher crop water stress as compared to low or medium threshold and 
indicates immediate need to irrigate the crop to avoid crop yield loss. 

It is expected that these iCWSI thresholds used for ISSCADA system 
should be transferrable to locations with similar climate in the Central 
Great Plains. These iCWSI thresholds were used for managing irrigation 
for the ISSCADA methods in 2021. The crop yield observed in the ISS-
CADA plots were not significantly different from other irrigation 
methods in 2021. Since 2021 was significantly wetter than 2020, these 
thresholds should be further tested for irrigation management of maize 
and soybean to evaluate the suitability of these thresholds over multiple 
seasons with varying weather conditions. The 2021 iCWSI data were not 
used for computing the final thresholds since significant crop water 
stress was not observed during this season and there were small differ-
ences in crop water stress between the irrigation levels. It is recom-
mended to incorporate iCWSI data from two more seasons in the 
computed thresholds. These iCWSI thresholds could still be used for 
implementation of the ISSCADA system in this region and could be 
further updated with data from additional seasons. 

3.3. Crop water stress after a wetting event 

In 2020, iCWSI data from two intervals were used for investigating 

Fig. 4. Average iCWSI values for each irrigation level plotted against days after a wetting event in 2020: A) maize after 8 mm rainfall on August 9, B) soybean after 
8 mm rainfall on August 9, C) maize after 18 mm rainfall on August 16, and D) soybean after 18 mm rainfall on August 16. The dashed blue, yellow, and red lines in 
the plots denotes the low, medium, and high iCWSI thresholds developed for maize and soybean. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

S. Bhatti et al.                                                                                                                                                                                                                                   



Agricultural Water Management 274 (2022) 107946

9

the trend between iCWSI and wetting events. The two intervals included 
iCWSI data from August 9–12 (Fig. 4A and B) and August 17–20 
(Figs. 4C and 4D). The wetting events before these two intervals were 
8 mm rainfall on August 9 and 18 mm rainfall on August 16. The rainfall 
event on August 9 occurred between 5:30 and 8:30 AM, which was 
before the data collection from the pivot-mounted sensors on that day. It 
was observed that the iCWSI increased for all levels with each day after 
the wetting events for both crops (Fig. 4). An exception to this obser-
vation was found for data on August 9 and 10, where iCWSI values 
decreased on the next measurement day. The rainfall event on August 9 
had occurred just two hours before the dry scan was conducted. The 
decrease in iCWSI on August 10 may be attributed to the delay in 
response of the crop canopy to the added water in the soil root zone 
through the rainfall event. The variability in iCWSI among the four 
levels also increased with each day after the wetting events. For the data 
between August 17 and 20, the range of average iCWSI among the four 
levels increased from 14 during day 1–67 during day 4 after the wetting 
event for maize, and from 6 during day 1–95 during day 4 after the 
wetting event for soybean. The rainfed crop had the largest iCWSI values 
among the four levels for each measurement day. The average dry maize 
yield observed for the rainfed, deficit, full, and over levels were 11.8, 
13.1, 13.6, and 13.7 Mg ha− 1, respectively. The average dry soybean 
yield observed for rainfed, deficit, full, and over levels were 4, 4.4, 4.4, 
and 4.5 Mg ha− 1, respectively. The rainfed maize and rainfed soybean 
had significantly lower yield than the respective irrigated crops. 
Therefore, the iCWSI values obtained for the rainfed crop indicated 
carbon-dioxide-limiting water stress. However, the iCWSI values ob-
tained for the full and over levels indicated the energy-limiting water 
stress. These results show that the crop water stress could be detected 
before the onset of carbon-dioxide-limiting water stress and could be 
used for real time irrigation scheduling. 

In 2021, the iCWSI data was not available immediately following a 
wetting event. The iCWSI data collected between July 2 and 8 following 
a rainfall event of 38 mm on June 25 was presented for both crops. 
Similar to 2020, the iCWSI values for all levels increased from 7 day to 
13 days after the wetting event (Fig. 5). The soybean iCWSI values were 
much larger than maize iCWSI for this case. This was due to the low 
canopy cover in soybean (~ 60% canopy cover) and significant inter-
ference from the soil surface. The range in iCWSI values among the four 
levels increased from 3 to 12 for maize and 5–24 for soybean. The 
average dry maize yield observed for the rainfed, deficit, full, and over 
levels were 14.6, 14.8, 15.0, and 14.8 Mg ha− 1, respectively. The 
average dry soybean yield observed for rainfed, deficit, full, and over 
levels were 5.0, 4.9, 4.9, and 5.0 Mg ha− 1, respectively. The maize and 
soybean yield obtained in 2021 were not significantly different among 

the different irrigation levels. Since the yields were similar among the 
four levels, it can be implied that the iCWSI values computed for the four 
levels predominantly detected the energy-limiting water stress in 2021. 
In summary, the iCWSI data indicated considerable differences among 
the irrigation levels, but there were no differences observed in crop yield 
among the levels. Therefore, the iCWSI data could be effectively used to 
detect stress signals for scheduling irrigation without incurring any yield 
loss. 

3.4. Modeled and measured evapotranspiration 

The seasonal modeled and measured ET were compared for all four 
crop-year cases (Fig. 6). The plots from the rainfed and full levels were 
used for this comparison since the soil water data was only available 
from these plots. The range of measured ET among the different plots for 
maize were 299 mm as compared to 217 mm estimated by modeled ET 
in 2020. The range of soybean ET was also larger for measured ET 
(183 mm) as compared with modeled ET (151 mm). It was found that 
the linear correlations between the measured and modeled ET were 
strong for both crops in 2020. The r2 observed for these correlations was 
0.90 and 0.88 for maize and soybean, respectively. The RMSE obtained 
for maize was 38 mm and for soybean was 32 mm. The linear correla-
tions were close to the 1:1 line (Fig. 6). The modeled ET were able to 
capture about 88% of the variability observed in measured ET. The 
range of measured ET among the plots for maize was 299 mm and for 
soybean was 183 mm in 2020. In contrast, the range of modeled ET was 
about 217 mm and 151 mm for maize and soybean, respectively. The 
larger range observed in measured ET was primarily due to variability in 
the soil water storage term of the water balance computed using neutron 
probe data. The neutron probe data was used to represent the root zone 
to a depth of 122 cm. Since 2020 was a dry year, it is possible that 
rainfed crop had used soil water from depths larger than 122 cm and 
may have induced some uncertainty in measured ET for rainfed plots. 
The two-source energy balance approach of the SETMI model was not 
implemented for modeling ET due to logistical time constraints and 
unavailability of thermal imagery. This approach could also capture the 
variability in the crop ET among the different plots. 

In 2021, the range of modeled ET (91 mm for maize and 77 mm for 
soybean) was comparable to that observed for measured ET (109 mm for 
maize and 92 mm for soybean) for both crops. The linear correlations 
were not as strong as was observed in 2020. The r2 observed for both 
crops in 2021 was between 0.42 and 0.49. The RMSE obtained for maize 
and soybean was 75 and 52 mm, respectively. The weaker correlation in 
2021 as compared with 2020 could be attributed to differences in sur-
face runoff between the two years. The runoff estimated by the model 

Fig. 5. Average iCWSI values for each irrigation level plotted against days after a wetting event in 2021: A) maize after 38 mm rainfall on June 25, and B) soybean 
after 38 mm rainfall on June 25. 
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was 3 mm in 2020 and 58 mm in 2021. Further, the measured ET was 
directly affected by the computed runoff value as measured ET was 
estimated from the water balance equation. However, the modeled ET 
was primarily computed from the dual crop coefficient approach and 
may not account for runoff explicitly. Further, the root zone depletion 
adjustment using the mean difference method and neutron probe data 
(Bhatti et al., 2020) was tested to improve modeled ET results. However, 
the adjusted modeled ET had high RMSE and lower r2 when compared to 
the model results without the adjustment and was not used for analysis. 
It was concluded that neutron probe data for all plots was required as an 
input to the model for improved results. In conclusion, the variability in 
crop ET captured by the measured ET was larger as compared to the 
modeled ET for all four crop-year combinations. There were larger dif-
ferences in crop ET observed among rainfed and irrigated crops using 
both measured and modeled methods in 2020 as compared to 2021. The 
2020 season had less rainfall, which caused the rainfed plots to have 
substantially lower crop ET in 2020. 

3.5. Crop water stress, evapotranspiration, and crop yield 

The average iCWSI was correlated with seasonal ET for the different 
irrigation levels. The seasonal ET was modeled for all four levels. 
However, the measured ET obtained from the water balance could only 
be computed for the rainfed and full levels. The mean iCWSI in 2020 
ranged from 168 in over to 225 in rainfed for maize, and 135 in over to 
201 in rainfed for soybean. The iCWSI range was smaller for both crops 
in 2021 (between 77 and 98). The crop water stress is known to increase 
with a decrease in stomatal conductance and crop ET (DeJonge et al., 
2015; Zhang et al., 2021b). This relation was found to be consistent for 
both crops during both growing seasons. Negative linear correlations 
were observed among all levels for maize and soybean in both years 
(Fig. 7). The mean iCWSI for rainfed was significantly higher from the 

other irrigated levels in 2020 since the confidence interval of iCWSI for 
rainfed was larger than that of the other levels. The standard error in 
iCWSI ranged between 8 and 10 for 2020 and between 6 and 8 for 2021. 
An anomaly to this relationship was found in the over level in 2021. The 
over irrigation level had the largest seasonal crop ET among the levels, 
but the mean iCWSI was found to be larger than deficit and full levels for 
both crops. The over application in the over level plots could have 
negatively impacted the crop due to waterlogging issues and/or leaching 
of nutrients. In 2020, the mean iCWSI was larger for deficit as compared 
to full for both crops even with no significant differences in yield and 
noticeable differences in crop ET (55 mm for maize and 26 mm for 
soybean on average). In 2021, the mean iCWSI data were different 
among the irrigation levels indicating that the IRTs were able to sense 
differences among the treatments even when there were no yield dif-
ferences observed for both crops. 

Crop yield was correlated with seasonal ET modeled using SETMI for 
maize and soybean (Fig. 7). The data points computed using the average 
crop yield and seasonal ET for each refill level were also shown in the 
figure for each crop-year. The data points for rainfed and deficit were 
used to compute one regression and the data points for full and over 
were used to compute the second regression. It was investigated if the 
first regression had a positive slope between rainfed and deficit, and the 
second regression had a zero slope between full and over. A positive 
slope indicated an increase in yield with an increase in ET. A zero slope 
will indicate no increase in yield with an increase in ET. There were 
significant positive correlations observed between rainfed and deficit for 
both maize (p-value < 0.001) and soybean (p-value = 0.04) in 2020. In 
all other cases, the slopes of correlations were no different than zero (p- 
value > 0.05). The correlations observed in 2021 were found to be no 
different than zero for both crops depicting that reduction in seasonal ET 
for the different irrigation levels did not result in a yield loss. 

It can be observed from Fig. 8 that there was more separation 

Fig. 6. Relation between measured and modeled evapotranspiration using data from rainfed and full irrigation level plots for both crops in 2020 and 2021: A) maize 
2020, B) soybean 2020, C) maize 2021, and D) soybean 2021. The dashed light grey line in the figure is a 1:1 line. The SETMI model was used to compute the 
modeled ET and seasonal water balance was used to compute the measured ET. 
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between data points for each level for 2020 as compared with data from 
2021. The data points for each level had more overlap in 2021. This 
overlap in data was caused by the variability in prescribed irrigation 
within a level. The range of prescribed irrigation for the full irrigation 
plots was about 39 mm in 2020 and about 73 mm in 2021. Although the 
range of irrigation in the full irrigated plots was larger in 2021, mean 
irrigation applied in 2020 was substantially larger than in 2021 
(Table 1). In summary, a significant positive increase in crop yield with 
crop ET was found for the rainfed and deficit levels for both crops in 
2020. Further, the mean seasonal modeled ET increased from rainfed to 
full by 59 mm in maize and 29 mm in soybean in 2021. This increase in 
ET on average from rainfed to full using the measured data (neutron 
probe data with seasonal water balance) was 44 mm in maize and 
36 mm in soybean in 2021. While a considerable increase in crop ET was 
observed from rainfed to full, there were no significant differences in 
yield found in 2021 between the irrigation levels. This also demon-
strated that the reduction in ET for rainfed did not result in loss of carbon 
assimilation and hence, similar crop yield among the rainfed and irri-
gated methods. 

It is evident from the data presented in the previous sections that 
larger seasonal crop ET did not result in improved crop yield for all 
cases. Additionally, the crop water stress was detected using IRTs in 
cases where there were no yield losses and considerable reductions in 
crop ET as compared to the full irrigation level. This observation was 
true for rainfed and deficit irrigation levels in 2021 since there were no 
yield differences among the levels. The seasonal iCWSI, ET, and crop 
yield data from soybean in 2020 were used to demonstrate the different 
stages of crop water stress (Table 6). It can be observed from the table 
that the mean iCWSI is increasing with higher crop water stress, mean 
ET is reducing with higher crop water stress, and crop yield is similar 

between the well-watered and low crop water stress cases. Hence, the 
data from the study supports the hypothesis that the IRTs can be used to 
detect crop water stress by sensing increased canopy temperature before 
the onset of yield limiting or carbon-dioxide-limiting water stress. 

The study highlighted that the reduction in stomatal conductance 
and evapotranspiration does not result in loss of carbon assimilation and 
crop yield instantaneously. This inference is crucial for using thermal 
sensors (IRTs) for full irrigation management to achieve maximum crop 
yield. Thermal sensors rely on sensing increased canopy temperature as 
a signal for crop water stress. This study presented the case that the 
increased canopy temperature due to partial stomatal closure does not 
result in yield loss during the early phase. Hence, the thermal sensors 
can be effective for irrigation management in the well-watered crop. 
Previous research studies have confirmed that the rate of stomatal 
conductance is reduced at a faster rate as compared with reduction in 
the carbon assimilation under water deficit conditions (Chaves and 
Oliveira, 2004). Water consumption by plants can be reduced by 
manipulating stomatal functioning without affecting plant functioning 
and growth (Loveys and Davies, 2004). On the contrary, many studies 
assume instantaneous yield reduction with the development of crop 
water stress (Holzman et al., 2018; Peters and Evett, 2008; Zhang et al., 
2021b). Future studies should investigate whether the concept of 
energy-limiting water stress is observed in other climates and provide 
recommendations on management of irrigation using thermal sensing. 

This research presented data from two growing seasons and 
computed iCWSI thresholds for the sub-humid climate of Eastern 
Nebraska. Therefore, these results are representative of the corn- 
soybean producing fields in sub-humid portion of the Central Great 
Plains. Since the crop water stress in 2021 was observed to be mild on 
most days, data from only the 2020 growing season was used in 

Fig. 7. Mean iCWSI vs. seasonal ET for 2020 and 2021: A) maize 2020, B) soybean 2020, C) maize 2021, and D) soybean 2021. The labels used for data points 
include ‘R′ for rainfed, ‘D′ for deficit, ‘F′ for full, and ‘O′ for over. The error bars on each data point denotes the standard error in computation of mean iCWSI for 
each level. 
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computing the iCWSI irrigation thresholds. The thresholds computed do 
not include year-to-year variability in weather and crop water stress. 
Hence, data from at least two additional seasons should be incorporated 
to strengthen the representativeness of these thresholds. Further, these 
thresholds may not be applicable in other geographic locations, partic-
ularly in drier climates. The absence of a zone control variable rate 
irrigation system restricted the randomization of different irrigation 
refill level plots across the field. This study utilized a speed control 
system since this system was more commonly used by producers and was 
lower cost than a zone control system. Future research can include a 
zone control system to distribute treatments with more flexibility across 
the field and improve the randomization of treatments. Additional 
research is warranted to investigate the transition from the energy- 
limiting water stress to the carbon dioxide-limiting water stress and 
the factors affecting the timing of this transition. This study draws 
conclusions about stomatal conductance from the measured 

evapotranspiration data. Future studies could incorporate direct mea-
surement of stomatal conductance when studying effects of varying 
levels of water stress on evapotranspiration, yield, and carbon 
assimilation. 

4. Conclusions 

This two-year study evaluated the use of pivot-mounted IRTs for the 
detection of crop water stress in maize and soybean. This research was 
successful in detecting crop water stress from thermal sensors in fully 
irrigated plots without incurring crop yield loss (i.e., detecting energy- 
limiting water stress before carbon-dioxide-limiting water stress oc-
curs). Contrary to the common assumption, a reduction in seasonal crop 
ET did not always result in lower crop yield. Mild crop water stress for a 
short period of time may not lead to crop yield loss. This finding is 
fundamental for management of full irrigation using thermal sensing to 
achieve potential yield. Significant ET-yield correlations were observed 
only with rainfed and deficit levels in 2020. The mean iCWSI and sea-
sonal ET for each level was found to be negatively related for both 2020 
and 2021. It was found that the iCWSI substantially increased after two 
days from a wetting event. 

The low, medium, and high iCWSI thresholds for irrigation man-
agement were determined as 120, 150, and 180, respectively for maize 
and 110, 130, and 150, respectively for soybean. These thresholds are 
applicable for the sub-humid climate of the Central Great Plains. It is 
proposed that two more seasons of iCWSI data from this region should 
be incorporated into the developed thresholds to account for variability 
among the seasons. Future research should implement the developed 
iCWSI thresholds for management of irrigation and validate their use for 
the sub-humid climate. 

Fig. 8. Seasonal crop evapotranspiration vs. crop yield for A) maize 2020, B) soybean 2020, C) maize 2021, and D) soybean 2021. The labels used for averaged data 
points include ‘R′ for rainfed, ‘D′ for deficit, ‘F′ for full, and ‘O′ for over. 

Table 6 
Integrated crop water stress index (iCWSI), evapotranspiration, and crop yield 
from soybean in 2020 demonstrating the three conditions of water stress. The 
data from rainfed, deficit, and full irrigation levels are used to represent no water 
stress, low water stress, and high water stress, respectively.  

Condition iCWSI Evapotranspiration 
(mm) 

Yield (Mg 
ha− 1) 

No water stress 
(Energy-limiting 
photosynthesis)  

140  417  4.4 

Low water stress 
(Energy-limiting 
photosynthesis)  

153  365  4.4 

High water stress 
(Carbon-dioxide-limiting 
photosynthesis)  

201  310  4.0  
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