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Abstract: The modernization of computational resources and application of artificial intelligence
algorithms have led to advancements in studies regarding the evapotranspiration of crops by remote
sensing. Therefore, this research proposed the application of machine learning algorithms to estimate
the ETrF (Evapotranspiration Fraction) of sugar can crop using the METRIC (Mapping Evapotranspi-
ration at High Resolution with Internalized Calibration) model with data from the Sentinel-2 satellites
constellation. In order to achieve this goal, images from the MSI sensor (MultiSpectral Instrument)
from the Sentinel-2 and the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor)
sensors from the Landsat-8 were acquired nearly at the same time between the years 2018 and 2020
for sugar cane crops. Images from OLI and TIR sensors were intended to calculate ETrF through
METRIC (target variable), while for the MSI sensor images, the explanatory variables were extracted
in two approaches, using 10 m (approach 1) and 20 m (approach 2) spatial resolution. The results
showed that the algorithms were able to identify patterns in the MSI sensor data to predict the ETrF
of the METRIC model. For approach 1, the best predictions were XgbLinear (R2 = 0.80; RMSE = 0.15)
and XgbTree (R2 = 0.80; RMSE = 0.15). For approach 2, the algorithm that demonstrated superiority
was the XgbLinear (R2 = 0.91; RMSE = 0.10), respectively. Thus, it became evident that machine
learning algorithms, when applied to the MSI sensor, were able to estimate the ETrF in a simpler way
than the one that involves energy balance with the thermal band used in the METRIC model.

Keywords: irrigation scheduling; sugarcane; remote sensing

1. Introduction

Evapotranspiration is the phenomenon of transferring water from liquid to gas to the
atmosphere from the evaporation of water from the soil and water bodies, as well as the
transpiration of plants through the leaves [1]. According to Allen et al. [2], quantifying
water consumption in large areas, particularly in extended irrigated agricultural areas, is
of great relevance for planning and managing water resources, mitigating impacts on the
water bodies’ streamflow rate, establishing use rights and consumption regulation, and
avoiding conflicts of water use.

Evapotranspiration can be determined directly in the field by lysimeter techniques,
which are quite reliable but costly, or estimated with (1) full-physical models based on the
principles of conservation of mass and energy; (2) semi-physical models that use conser-
vation of mass or energy; and (3) black-box models based on artificial neural networks,
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empirical relationships, fuzzy, genetic [3] and machine learning algorithms. Remote sens-
ing can be included in the physical models because it uses the radiation reflected and
emitted by the Earth’s surface to estimate the properties of the Earth’s surface when sub-
jected to radiation interaction models. Vegetation cover biomass, and indexes for each
image can also be spatially and temporally modeled [4,5]. Several models for estimating
evapotranspiration based on remote sensing were developed and have been widely used,
especially in scientific research focused on the water planning field. Some examples are the
Surface Energy Balance Algorithm for Land (SEBAL) [6], Mapping Evapotranspiration at
High Resolution with Internalized Calibration (METRIC) [7], and Simple Algorithm for
Evapotranspiration Retrieving (SAFER) [8]. However, these models estimate a fraction of
the evapotranspiration, which corresponds to a coefficient that must be multiplied by the
reference evapotranspiration to obtain the actual daily evapotranspiration.

The METRIC model [7] estimates the evapotranspiration fraction (ETrF) through the
instantaneous evapotranspiration (ETints) and the reference potential evapotranspiration of
the alfalfa (ETr) or grass (ETo) on a daily scale. This model is very complex, as it demands,
a priori, the estimation of parameters for the energy balance calculations, which can be
prone to errors since this model presents an interactive method of selecting “hot” and
“cold” pixels to calculate aerodynamic resistance to heat transport and exchange derived
from the SEBAL model [6].

The aforementioned models were developed using data from the Landsat satellite con-
stellation sensors with dependence on visible, near, mid and thermal infrared wavelengths.
Satellites from the Landsat series provide information about the Earth’s surface with a
temporal resolution of 16 days and a spatial resolution of 30 m. Temporal resolution limits
the model’s application, as it presents a limited number of images available by the sensors
on these satellites. In contrast, the Sentinel-2 satellites constellation arises as an alternative
to this limitation. Formed by two satellites, Sentinel-2A and Sentinel-2B, with sensors with
similar waveband characteristics, this constellation supplies images every 5 days, with
spatial resolution fluctuating between 10, 20, and 60 m, hence, producing a larger number of
images of the Earth’s surface than the Landsat constellation. The sensor from the Sentinel-2
satellites constellation is the MultiSpectral Instrument (MSI). It acquires information from
the Earth’s surface in the visible, red edge, near, and mid-infrared wavelengths. However,
it does not have a sensor in the thermal infrared portion of the spectrum.

By considering the differences between the satellites mentioned above, the develop-
ment of models with a prediction capacity of the crop’s actual evapotranspiration (ETa)
using the MSI sensor will be of great value for the scientific community and field profes-
sionals, enabling determining ETa with a better spatial and temporal resolution during
crop cycles, and can even be integrated with sensors on other satellite platforms forming a
multi-sensor suite, which, in the absence of information from one sensor, allows it to be com-
plemented by the other, in concordance with the approach described by Filgueiras et al. [9].
Another important aspect is that, even though the MSI does not include the thermal in-
frared band, ETa can be estimated without the surface temperature information, which
can reduce the introduction of additional errors as models involving thermal information
have, in their structure, the complex energy balance to quantify the latent energy of the
system. Furthermore, thermal bands have a coarser spatial resolution, so interpolation is
often necessary to align pixel sizes with those of the other bands, such as Landsat 5.7 and 8.
Alternatively, modeling evapotranspiration in the absence of data from the thermal band
can generate unsatisfactory results due to the intrinsic relationship between vegetation
canopy temperature derived from the thermal band with stomatal conductance [10,11].

By aiming to develop models with higher prediction capacity and reliability, this work,
through the application of machine learning (ML) algorithms, sought to model variables
of interest. Such algorithms, based on artificial intelligence, have a robust structure that
allows the identification of relationship patterns between the variables to be modeled and
the so-called predictor variables (independent). According to Cervantes et al. [12], ML is an
interdisciplinary area based on computer science, statistics, mathematics, and optimization,
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among several other areas. Many ML algorithms, each with different characteristics, are
used for prediction and classification, being, in recent years, applied in research focused on
agricultural sciences and remote sensing to develop models with greater ability to represent
phenomena [13–17]. In evapotranspiration prediction, these models used remote sensing
data and climate data to estimate actual evapotranspiration [18,19], as well as only climate
data to estimate reference evapotranspiration [20–23]. The various available studies applied
the algorithms in predicting reference evapotranspiration or actual evapotranspiration
using remote sensing with thermal data. Thus, this work sought to train machine learning
algorithms to estimate the evapotranspiration fraction (ETrF) used in the METRIC model
from the data of the Sentinel-2 satellites constellation that does not use thermal data on the
sugar cane crop used in this case study.

2. Materials and Methods
2.1. Study Area

The study was performed in the northern region of the state of Minas Gerais, Brazil,
classified as AS climate—tropical with dry summer [24] (Figure 1). The sugar cane crop is
under 150 irrigated fields using center pivot irrigation used in this study.
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Figure 1. Location of the study area with the central pivots used for training, testing, and applying
the models highlighted.

This area was chosen because it is a research partnership area with little to no precipi-
tation (Figure 2) that favors the acquisition of a larger number of cloud-free images, thus
being able to acquire a volume of spectral information of the area, mainly coinciding with
Landsat-8 and Sentinel-2.
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Figure 2. Climatological normal of the study region extracted from station 83,386 of INMET (Instituto
Nacional de Meteorologia).

2.2. Landsat-8 and Sentinel-2 Data

The data from the sensors onboard the Landsat-8 and Sentinel-2 satellites were ac-
quired to generate the observed variable through the METRIC model, and the explanatory
variables used for training and testing the machine learning algorithms can be seen in a
simplified way in the flowchart in Figure 3.
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A total of 56 satellite images were acquired, of which 22 were from OLI (Operational
Land Imager) sensor and TIRS (Thermal Infrared Sensor) from the Landsat-8 satellite, and
34 came from the MSI (Multispectral Instrument) sensor of the Sentinel-2A and 2B satellites.
Images from OLI and TIRS sensors were necessary to estimate the evapotranspiration
fraction (ETrF) using the METRIC model, this being the response variable, whereas data
from the MSI sensor were used as predictor variables in the machine learning models. The
spectral and spatial characteristics of the sensors used are available in Tables 1 and 2.

Table 1. Spectral and spatial characteristics of the OLI and TIRS sensor.

Spectral Band Wavelength (µm) Spatial Resolution (m)

OLI

B1 Coastal aerosol (Ca) 0.43–0.45

30

B2 Blue (B) 0.45–0.51
B3 Green (G) 0.53–0.59
B4 Red (R) 0.64–0.67
B5 Near-infrared (NIR) 0.85–0.88
B6 Shortwave infrared 1 (SWIR1) 1.57–1.65
B7 Shortwave infrared 2 (SWIR2) 2.11–2.29
B8 Panchromatic (PCh) 0.50–0.68
B9 Cirrus (C) 1.36–1.38

TIRS

B10 Thermal infrared 1 (TIRS1) 10.60–11.19
100 *B11 Thermal infrared 2 (TIRS2) 11.50–12.51

* The sensor’s resolution is 100 m, but images are resampled and made available in 30 m.

Table 2. Spectral and spatial characteristics of the MSI sensor.

Spectral Band Wavelength (µm) Spatial Resolution (m)

MSI

B2 Blue (B) 0.459–0.525

10
B3 Green (G) 0.542–0.578
B4 Red (R) 0.650–0.680
B8 Near-infrared (NIR) 0.781–0.887

B5 red edge 1 (Re1) 0.697–0.712

20

B6 red edge 2 (Re2) 0.733–0.748
B7 red edge 3 (Re2) 0.773–0.793

B8A Near-infrared narrow (NIRn) 0.856–0.876
B11 Shortwave infrared 1 (SWIR1) 1.569–1.660
B12 Shortwave infrared 2 (SWIR2) 2.115–2.290

B1 Coastal aerosol 0.433–0.453
60B9 Water vapor 0.935–0.955

B10 Cirrus 1.359–1.390

Images were obtained between the years 2018 and 2020. During this period, eight
images from the Landsat-8 satellite and eight from the MSI sensor covered the study area
on the same day. Images of those dates were used to train and test the models and the
application of residual analysis. The choice for images with coinciding dates between
the two satellites was made to avoid different reflectance of the same study area since
vegetation, especially crops, change quickly. Thus, obtaining images on different days to
perform the modeling could have introduced bias and not a faithful representation of the
modeled product. In Table 3, images with date, time (GMT-3), and path/row used to train
the models are available.
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Table 3. Characteristics of the eight images selected to develop the models.

Date
(mm/dd/aaaa)

Landsat-8 Sentinel-2

Time (hh:mm:ss) Path/Row Time (hh:mm:ss) Tile Number

Training and Test

07/06/2018 09:55:17.157 218/71 10:12:41.024 T23LPD
05/22/2019 09:55:49.714 218/71 10:12:51.024 T23LPD
10/04/2019 10:02:19.874 219/70 10:12:49.024 T23LPD
10/29/2019 09:56:34.656 218/71 10:12:49.024 T23LPD
01/17/2020 09:56:20.969 218/71 10:12:41.024 T23LPD
05/31/2020 10:01:27.427 219/70 10:12:49.024 T23LPD
08/19/2020 10:02:00.995 219/70 10:12:49.024 T23LPD

Residual analysis

12/02/2020 09:56:32.117 218/71 10:12:41.024 T23LPD

From 11/23/2019 to 09/04/2020, 17 images were obtained from OLI and TIRS sensors
(including 4 images in Table 3) and 30 from MSI sensors (including 4 images in Table 3).
Those images were used to determine crop coefficient (Kc) and actual evapotranspiration
(ETa) during the sugar cane cycle. The estimation was performed by both the METRIC
model and the suggested model.

2.3. Response Variable

The response variable, evapotranspiration fraction (ETrF), was obtained for each pixel,
with a 30 m × 30 m spatial resolution, from the METRIC model. ETrF is reckoned by
dividing instantaneous evapotranspiration (ETinst) in each pixel by the hourly reference
evapotranspiration (ETr) given by the meteorological station. Allen [7] standardized ETr
for alfalfa at 0.5 m high. According to the authors, when using this condition, the ETrF can
be considered equivalent to the crop coefficient (Kc). It also enables the extrapolation of the
crop’s actual evapotranspiration when the satellite switches to the daily 24 h level. Thus,
the ETrF is determined by Equation (1).

ETrF =
ETinst

ETr
(1)

where ETinst is the instantaneous evapotranspiration (mm·h−1) and ETr is the reference
evapotranspiration (mm·h−1) standardized to alfalfa at 0.5 m height at the moment the
satellite is passing.

ETinst is calculated from the latent energy consumed in the evapotranspiration (ET)
process and the latent heat of vaporization Equation (2).

ETinst= 3600
LE
λρw

(2)

where 3600 is the conversion from seconds to hours of the duration of the satellite pass; LE
is the latent energy consumed in ET (W m−2); ρw is the density of water (~1000 kg m−3); λ
is the latent heat of vaporization (J kg −1).

λ represents the heat absorbed when one kg of water is evaporated, and it is deter-
mined by Equation (3).

λ =[2.50− 0.00236(Ts − 273.15)] × 106 (3)

where Ts is the surface temperature (◦K) determined by band 10 of the TIRS sensor (Table 1).
LE is calculated from the Earth’s surface energy balance, Equation (4), which involves

net radiation (Rn), a sensible flux of heat transferred to the ground (G), and a sensible flux
of heat convected to air (H). These three components, responsible for determining LE, are
usually expressed in W m−2.

LE = Rn −G−H (4)
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Rn is the radiant energy of the surface that is partitioned into H, G, and LE and is
determined by Equation (5).

Rn= Rs↓ − αRs↓+RL↓ − RL↑ − (1− ε0)RL↓ (5)

where Rs↓ is the input of shortwave radiation (W m−2); α is the surface albedo (adim.)
determined by bands 2, 3, 4, 5, 6, and 7 of the Landsat-8 (Table 1); RL↓ and RL↑ are the input
and output of long waves (W m−2), respectively; and ε0 is the surface thermal emissivity.

G is the heat storage flux in the ground due to heat conduction. When vegetation is
present, G tends to have lower values, which means that the rate of heat storage in the soil
is lower. The METRIC model provides two methodologies to quantify G, one developed by
Bastiaanssen [4] and another by Tasumi [25] (the details can be seen in Allen [7]). For this
work, the methodology of Tasumi [25] was chosen, as it was developed in irrigated areas.
Thus, G was quantified by Equation (6a,b).

G
Rn

= 0.05 + 0.18e−0.521 LAI for LAI ≥ 0.5 (6a)

G
Rn

=
1.80(Ts − 273.15)

Rn+0.084
for LAI < 0.5 (6b)

where LAI is the leaf area index (m2 m−2) estimated by the methodology applied by
Allen [2].

Finally, H represents the rate of heat loss to air by convection and conduction influ-
enced by a temperature difference. H was calculated by Equation (7).

H = ρairCp
dT
rah

(7)

where ρair is the air density (kg m−3); Cp is the specific heat of air at constant pressure (J
kg−1 K−1); dT is the temperature difference between two heights (z1 and z2) in an area
close to the surface; r_ah is the aerodynamic drag (s m−1) between these two heights.

All calculations to reach ETrF described in this topic were performed using the Water
package developed by Olmedo [26] for the R language environment [27].

2.4. Data Extraction for Training

Images from MSI sensors were divided into two groups according to their spatial
resolution. Two approaches were applied: approach 1 using a 10 m spatial resolution
and approach 2 with a 20 m spatial resolution. This division aimed to understand the
effect of the number of predictor variables and spatial resolution on the performance of
predictive models.

The primary variables selected for approach 1 were reflectance of blue (ρB), green (ρG),
red (ρR), and near-infrared (ρNIR) bands; the variables for approach 2 were reflectance
of blue (ρB), green (ρG), red (ρR), red edge 1 (ρRe1), red edge 2 (ρRe2), red edge 3 (ρRe3),
near-infrared (ρNIR), shortwave infrared 1 (ρSWIR1), and shortwave infrared 2 (ρSWIR2).
As approaches 1 and 2 have, respectively, a 10 and 20 m spatial resolution, it was necessary
to match their dimensions with the dependent variable, that is, reduce their resolution to
30 m × 30 m. Therefore, the resample function was used with the bilinear method of the
raster package [28] for the R language based on the images of the dependent variable. With
images in the same spatial resolution, the central irrigation pivots were cut within each
scene using a shapefile, and then the pivots were separated into two groups. The first group
encompassed 70% of the total pivots and was used to train the model. The remaining 30%
of center pivots were used to test the model (Figure 1).

Due to computational limitations, it was not possible to use all pixels of each pivot
of the seven images. Therefore, 25,000 pieces of information, totaling 175,000 pieces of
data, were randomly extracted to train the model (Table 3). To test the model, 10,714 pieces
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of data were also randomly extracted from each image, totaling 74,998 pixels, maintain-
ing the 30% data proportion for model training. Afterward, ETrF values lower than 0
that eventually contained some pixels generated by noise in some images were filtered
out. In the end, data frame files with geographic coordinates, spectral bands, and ETrF
were obtained.

2.5. Training and Statistical Evaluation of Models
2.5.1. Production and Selection of Predictor Variables

By aiming to increase the number of predictor variables, the NRPB (normalized ratio
procedure between bands) technique was applied to the primary predictor variables in
approaches 1 and 2. The NRPB normalized all primary variables, therefore increasing the
explanatory variable number for the models (Equation (8)). Hence, the number of variables
produced on each approach was higher than the primaries, especially in approach 2, which
has the biggest variable number.

NRPB =
ρx − ρy

ρx+ρy
(8)

where ρx and ρy correspond to the surface reflectance of the wavelengths of the MSI sensor.
The NRPB process was performed using the band ratio function of the labgeo pack-

age [29] for the R language, successfully applied by Filgueiras [14,30].
A two-step selection was applied to the NPRB variables to select the most important

model variables. The first step removed correlated variables. Explanatory variables with
a correlation above 95% were removed to decrease information redundancy. The second
step removed the least important variables. Therefore, the recursive feature elimination
algorithm (RFE) was applied through the caret package [31] in the R language. This
algorithm removes the least important predictor variables from the model by building
a base model with all predictors. Then, the importance of each predictor for the base
model was calculated, and subsequently, the algorithm classifies these predictors and
removes the least important ones, leaving a minor number of variables for the training steps.
This is a key process, as it reduces unnecessary variables, aiding both training steps and
future applications.

2.5.2. Training and Test

The machine learning model training consisted of the input of the remaining predictor
variables after the variables selection process into four regression algorithms: Linear regres-
sion (LM); Cubist; eXtreme gradient boosting—linear method (Xgblinear); and eXtreme
gradient boosting—tree method (Xgbtree). These models were chosen for having an ele-
vated predictive potential and for performing fast on the training, which was carried out
with the aid of the caret package [21]. After training, 8 possible predictions were obtained,
4 for approach 1 and 4 for approach 2, which were submitted to testing for evaluating the
assertiveness and statistical error.

Thirty percent of data extracted from the pivots were used to test the trained al-
gorithms. Statistical analyses for the test were: the coefficient of determination (R2),
Equation (9); root mean squared error (RMSE), Equation (10); mean absolute error (MAE),
Equation (11); mean bias error (MBE), Equation (12).

R2 =

[
∑n

i=1
(
Pi − P

)(
Oi − O

)]2[
∑n

i=1
(
Pi − P

)2
][

∑n
i=1
(
Oi − O

)2
] (9)

RMSE =

√
∑n

i=1(Pi − Oi)2

n
(10)
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MAE =
1
n

n

∑
i=1
|Pi − Oi| (11)

MBE =
1
n

n

∑
i=1

(Pi − Oi) (12)

where Pi is the value predicted by the model; Oi is the observed value; O is the average
observed value; n is the number of data pairs.

2.5.3. Residual Analysis

In addition to statistical metrics, a residual analysis was performed to evaluate the
error behavior of predicted values for all models trained for both approaches. Therefore,
an image was selected exclusively for this purpose (Table 3). In this image and inside the
study area, 11 pivots were selected (highlighted in yellow in Figure 1) for residual analysis
between the observed and the predicted values. The 11 pivots were chosen for being close
to each other, making it easier to elaborate thematic maps, and because there was no cloud
coverage near them. It is noteworthy that the image destined for residual analysis was not
in the training process, so the data from this image are new information for the models
already trained. Thus, models were applied. Then the predicted ETrF (approaches 1 and 2)
and the observed ETrF (METRIC) were extracted from the 11 pivots (Figure 1) to reckon
the residues (Equation (13)).

Residual = Observed value − Predicted value (13)

2.6. Application

Among the selected pivots (Figure 1), one pivot (highlighted in black) was used for the
application of the trained models. This pivot was chosen due to having the largest number
of Sentinel-2 images during the crop cycle. It had images from before sugarcane budding
to harvest. The application consisted in quantifying the crop coefficient (Kc) and the actual
evapotranspiration (ETa) during the sugarcane crop cycle for the best METRIC model. In
addition to Kc, water consumption during the sugar cane crop cycle also was estimated
using 29 images of the MSI sensor from 11/23/2019 (DAE-days after emergency 05) to
09/03/2020 (DAE 290) and 17 images of the OLI and TRIS sensor between 12/07/2019
(DAE 19) and 09/04/2020 (DAE 291).

From the 29 images of the MSI sensor, the model with the best statistical results on
approaches 1 and 2 was applied to determine the ETrF. According to Allen [7], the ETrF is
equivalent to the Kc when using the ETr of the alfalfa, which is the condition in which the
ETrF was modeled. The 17 images of the OLI and TIRS sensor were used to calculate Kc
through the METRIC model. After quantifying the Kc, the crop’s actual evapotranspiration
was established. Therefore, the accumulated reference evapotranspiration for a 24 h (ETr-24)
period was calculated on the same day the image was acquired.

The ETr-24 in each day was calculated using the Penman–Monteith equation stan-
dardized by the ASCE (American Society of Civil Engineers) [32], and meteorological
data were acquired in the A539 station, Mocambinho from the INMET (National Institute
of Meteorology). With all the ETr-24 and Kc, the ETa in each pixel was established by
Equation (14).

ETa = Kc × ETr−24 (14)

Finally, the sugar cane crop total evapotranspiration was determined during the cycle
through METRIC and approaches 1 and 2 applying integral function through time, where x
was the dates referring to images, and y was the ETa of each date. Thus, the area under
the curve, which corresponds to the total evapotranspiration during the cycle, was calcu-
lated. This process was performed using function auc from the MESS package [33] for the
R language.
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3. Results
3.1. Models

In approach 1, 11 predictors were generated by normalizing the spectral bands of
spatial resolution of 10 m. Only seven predictors remained after removing predictors with a
correlation above 95% and five when using the recursive feature elimination (RFE). Figure 4
shows the results after the application of the RFE algorithm. Notably, the potential number
of predictor variables (ideas) is five. Thus, in the case of more than five variables, the ones
with low importance can be removed without significantly impacting the trained models.
On the other hand, less than five variables negatively affect the model prediction.

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 24 
 

 

equivalent to the Kc when using the ETr of the alfalfa, which is the condition in which the 
ETrF was modeled. The 17 images of the OLI and TIRS sensor were used to calculate Kc 
through the METRIC model. After quantifying the Kc, the crop’s actual evapotranspira-
tion was established. Therefore, the accumulated reference evapotranspiration for a 24 h 
(ETr-24) period was calculated on the same day the image was acquired. 

The ETr-24 in each day was calculated using the Penman–Monteith equation stand-
ardized by the ASCE (American Society of Civil Engineers) [32], and meteorological data 
were acquired in the A539 station, Mocambinho from the INMET (National Institute of 
Meteorology). With all the ETr-24 and Kc, the ETa in each pixel was established by Equa-
tion (14). 

ETa = Kc × ETr-24 (14)

Finally, the sugar cane crop total evapotranspiration was determined during the cy-
cle through METRIC and approaches 1 and 2 applying integral function through time, 
where x was the dates referring to images, and y was the ETa of each date. Thus, the area 
under the curve, which corresponds to the total evapotranspiration during the cycle, was 
calculated. This process was performed using function auc from the MESS package [33] 
for the R language. 

3. Results 
3.1. Models 

In approach 1, 11 predictors were generated by normalizing the spectral bands of 
spatial resolution of 10 m. Only seven predictors remained after removing predictors with 
a correlation above 95% and five when using the recursive feature elimination (RFE). Fig-
ure 4 shows the results after the application of the RFE algorithm. Notably, the potential 
number of predictor variables (ideas) is five. Thus, in the case of more than five variables, 
the ones with low importance can be removed without significantly impacting the trained 
models. On the other hand, less than five variables negatively affect the model prediction. 

 
Figure 4. Statistical results for the selection of predictor variables when applying the RFE in ap-
proach 1. 

In approach 2, the number of predictors generated by normalizing the bands is 45, 
higher than in approach 1 because of the bigger number of spectral bands for the special 
resolution of 20 m. When establishing the baseline of 95% of correlation, 22 variables re-
mained and were later reduced to 12 after the application of the RFE. Figure 5 shows the 
stability of the statistical metrics using 12 predictable variables to train the model. 
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In approach 2, the number of predictors generated by normalizing the bands is 45,
higher than in approach 1 because of the bigger number of spectral bands for the special
resolution of 20 m. When establishing the baseline of 95% of correlation, 22 variables
remained and were later reduced to 12 after the application of the RFE. Figure 5 shows the
stability of the statistical metrics using 12 predictable variables to train the model.
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In Table 4, the 5 predictor variables selected for approach 1 and the 12 selected for
approach 2 can be found. It is worth mentioning that the predictors in this table are not
rated by importance, as each algorithm assigns different importance after the training. In
supplementary materials are the figures with the importance of the predictors for each
model in approaches 1 and 2.

Table 4. Selected predictor variables for training models in approaches 1 and 2.

N◦ Approach 1 Approach 2

1 B2 B6
2 B4 B8
3 B8 B12
4 (B2 − B3)/(B2 + B3) (B2 − B3)/(B2 + B3)
5 (B2 − B4)/(B2 + B4) (B2 − B4)/(B2 + B4)
6 - (B2 − B5)/(B2 + B5)
7 - (B2 − B12)/(B2 + B12)
8 - (B5 − B11)/(B5 + B11)
9 - (B5 − B12)/(B5 + B12)
10 - (B6 − B8)/(B6 + B8)
11 - (B8 − B12)/(B8 + B12)
12 - (B11 − B12)/(B11 + B12)

For approach 1, the most common wavelengths among the predictors were B2 (blue)
and B4 (red), both appearing twice, counted individually and in the NRPB, followed by
B3 (green) and finally B8 (near infrared). B2 and B4, which stood out in this approach, are
absorbed in higher intensity by plants from photosynthesizing pigments [11]. B3 is also
absorbed by the same pigments, however, at a much lower intensity. While B8 tends to be
reflected or transmitted because when there is absorption, the physiological structures of the
plant heat up, and the plant tends to dissipate this energy through its structures. Therefore,
the more nourished the dissipation structures are, the more efficient the reflectance and/or
transmittance are. Thus, for approach 1, the wavelengths B2, B3, and B4 correspond to
the pigments of the leaves, while B8 (Near-infrared) is related to the structural part. As a
result, the selected predictors are important for both the photosynthesis process and the
structure of the cellular components of the plants studied. Hence, three wavelengths have
characteristics related to the photosynthesizing pigments and one related to the structure.
In approach 2, the bands that stood out were B12 (short infrared), appearing five times, and
B2, appearing four times. B12 is a short wavelength related to water content, which is an
object of study in this work, through the physical–biological process of evapotranspiration.
B5 and B6 bands, both red edges, also stood out, representing a transition among the visible
region and near-infrared, and B8 and B11, shortwave infrared. Thus, it can be noted in
this approach that the selected predictors are related not only to the photosynthetic and
structural parts but also to water content. Hence, it can be inferred that three wavelengths
with photosynthetic characteristics were assigned, one structural, two in the transition from
photosynthetic to structural, and two with water content.

Test performances for approach 1 for each machine learning model can be seen in
Figure 6.
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Among the four models chosen for this approach, XgbLinear and XgbTree obtained
the best statistical results, with R2 = 0.80 and RMSE = 0.15; followed by the Cubist with
R2 = 0.77 and RMSE = 0.15; lastly, and with the worst result, the multiple linear regression
(Lm) with the minimum R2 = 0.73 and the major RMSE = 0.17. Regardless of the model,
the high dispersion shown on the test draws attention, especially in values lower than 0.6
(Figure 6). Ke et al. [34], when estimating evapotranspiration using machine learning in
Landsat-8 data and MODIS for a heterogeneous environment, noted that in areas with
crops, there was a higher dispersion between predicted vs. observed values than in areas
with forest, grazing, and bushes. Thus, results from these authors agree with the ones
found here, as, in crop areas, there is a higher surface movement, being more dynamic both
in terms of vegetation cover and in terms of soil moisture.

Figure 7 shows the statistical results of the test for approach 2, which used only a 20 m
spatial resolution as a source of predictor variables.
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It is observed in Figure 7 that Lm, as well as in approach 1, obtained the worst result,
while Cubist, XgbLinear, and XgbTree were the ones that best explained the response
variable, with lower RMSE (0.10) and higher R2. R2, as in approach 1, had different
values among these last three models, being 0.91 for XgbLinear and 0.90 for Cubist and
XgbTree. When comparing Figures 6 and 7, approach 2 obtained more satisfying results
than approach 1, with models with R2 higher than 0.88 and RMSE lower than 0.11, whereas
approach 1 had R2 lower than 0.80 and RMSE higher than 0.15. It seems that approach 2
even reduced the dispersion seen in Figure 6 significantly.

3.2. Residual Analysis

The elaborated models were applied to the image of 02/12/2020 (Table 3), which was
destined for the residual analysis. The results are shown in Figure 8.
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Notably, Figure 8 maintains the same pattern found in Figures 6 and 7, in which
approach 1 presented a result inferior to approach 2 due to the minor concentration of
residual points close to the zero value. For Approach 2, a good performance was observed,
as less than 10.3% of the values distanced from−0.2 to 0.2, which indicates a low prediction
error, mainly XbgLinear. In both approaches, the explanatory variable tends to be less
precise when ETrF is low, especially for values under 0.6, as previously discussed; this is
better shown in Figure 9.
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Figure 9 shows the lower precision during the prediction of values lower than 0.6 in
greater detail, with particular reference to pivot 9. On this pivot, when METRIC showed
values close to 0.6, approaches 1 and 2 obtained predicted values close to zero, which
can be seen in Figure 8 with the residual analysis. Nevertheless, Figure 9 also reveals the
great assertiveness of the models, which can be seen especially in pivots 7 and 10, where
prediction models were able to capture a wealth of details regarding METRIC estimates.
On pivot 10, the southeast region shows low ETrF values through METRIC and machine
learning models. However, for that pivot, this result was more prominent when using
Sentinel-2 images, as they showed greater spatial resolution. Additionally, the thermal
band on Landsat-8, which has a coarser resolution (100 m), can mask nuances of the surface
of the monitored area.

3.3. Models Application

Figure 10 shows the distribution of the crop coefficient (Kc) during the sugar cane
cycle, determined through the XgbLinear, which presented better metrics for approaches 1
and 2 through the METRIC model and also through the FAO-56 report [1].
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mended by the FAO’s 56 reports.

Figure 10 evidences what was previously discussed; for the initial phases of the
crop, with low-density plant coverage, machine learning prediction model values showed
uncertainties when compared to METRIC, but, as the culture develops, this error tends
to reduce. For phase I (initial), when there is a crop emergency, the Kc for approaches 1
and 2 were 0.3 and 0.32, respectively, while METRIC estimated a Kc of 0.20, and the Kc
determined by the 56 FAO’s report [1] is 0.40. In phase II (development), the Kc curves
in approaches 1 and 2 become closer to the ones of the METRIC as the phenological state
progresses, as well as the Kc-FAO curve becomes closer to both approaches and distances a
little from the METRIC curve. For phase III (mid-season) crop growth, the average Kc was
0.98 for approach 1 and 1.00 for METRIC, while for approach 2, it was 1.02, and FAO’s 56
report recommends using a 1.25 value. Moreover, in phase III, the METRIC curve behaves
similarly to approach 2, which corroborates the results found in the models’ tests. In
phase IV (late-season), maturation, approach 1 was the most distant from both FAO’s and
METRIC’s Kc, with a value equal to 0.69, while approach 2 had a Kc of 0.76 and METRIC
of 0.77. Dingre and Gorantiwar [35], when quantifying Kc for sugar cane through the
water balance method, found medium values for phases I, III, and IV of 0.36, 1.20, and 0.78,
respectively. Silva et al. [36], for the Brazilian semiarid region, obtained a Kc for ratoon cane
in phases I, III, and IV equal to 0.65, 1.10, and 0.85, different from FAO’s recommendation.
This evinces a divergence in Kc values shown in the literature from the ones recommended,
which can be explained by the specificity of the local weather in which each study was
performed, as well as the physiological conditions of the crop at the time of the satellite
imaging. Phase III, for this work, reached the maximum value of 1.09; however, it showed
variations throughout the whole phase.

Regarding Figure 10, it is noticeable that with Sentinel-2, due to its better temporal
resolution, it was possible to obtain a larger number of Kc information throughout the
crop cycle than Landsat-8, which is important to obtain a major temporal variability of
this coefficient. This can lead to more assertive crop management than if only Landsat-
8 data were used. Saleem and Awange [37] mention that Sentinel-2 represents a new
age for obtaining more precise information about the Earth’s surface, as it has a greater
spatial and temporal resolution among satellites that provide images for free. Nevertheless,
information referring to Kc can be expanded when joining the two orbital platforms, as
more information will be obtained with a larger frequency of images, as highlighted in
Filgueiras et al. [9].
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Crop actual evapotranspiration in a spatial resolution of 10, 20, and 30 m for approach 1,
approach 2, and METRIC, are shown in Figure 11.
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In Figure 11, attention is drawn to DAE 030 with a ray with an ETa larger than for
the rest of the pivot. On that day, crops were in the initial emergency phase, and soil was
exposed in most of the area, receiving water from irrigation. This ray corresponds to the
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moisture in the exposed soil, and it is displaced clockwise from the irrigation equipment.
Such information is only visible with 10 and 20 m resolution, and thus, the METRIC model,
due to the use of thermal images, can not show. Spatially detailed information, as seen
in the Sentinel-2 images of Figure 11, has great value for field professionals. Coinciding
dates between Sentinel-2 and Landsat-8 show high similarities in the spatial ETa between
approaches 1 and 2 with METRIC. Approach 2 stands out for having larger spatial proximity.
Such proximity is evidenced in Table 5, in which the averages ETas in approach 2 have
the smallest differences in the estimated averages by the METRIC model. In addition, the
standard deviation for approach 2 was also smaller than approach 1 but larger than the
METRIC model. This fact might be attached to the more detailed spatial resolutions of
approaches 1 and 2 when compared to the method using the METRIC model.

Table 5. Evapotranspiration averages for coinciding dates between Sentinel-2 and Landsat-8.

DAE
Approach 1 Approach 2 METRIC Difference (%)

(mm) (mm) (mm) Approach 1 Approach 2

060 6.71 ± 0.44 6.63 ± 0.36 6.75 ± 0.25 0.59 1.77
195 4.52 ± 0.22 4.48 ± 0.09 4.78 ± 0.06 5.44 6.28
220 4.25 ± 0.21 4.68 ± 0.11 4.79 ± 0.08 11.27 2.30
275 3.75 ± 0.36 4.32 ± 0.20 4.44 ± 0.17 16.54 2.77

ET-Total 1417.77 1474.26 1544.11 8.18 4.52

After calculating the integral of ETa, it was found that the sugar cane total water
demand along the crop cycle was 1417.77 mm for approach 1, 1474.26 mm for approach 2,
and 1544.11 mm for METRIC. It is perceptible that total evapotranspiration estimated for
approaches 1 and 2 were close to the total evapotranspiration by METRIC, where percentual
differences were 8.18 for approach 1 and 4.52 for approach 2 when compared to METRIC.
Approach 2 had a closer value to the one estimated by METRIC, going against the values
found for dates indicated in Figure 11. Sugar cane total evapotranspiration during its cycle,
found by Dingre and Gorantiwar [35], was 1388 mm. The one found by Silva et al. [38]
for the Brazilian Northeast conditions was 1600 mm. Thus, it can be noticed that the total
evapotranspiration found in this work is close to the values found in Brazil.

4. Discussions

The spectral bands of blue and red stand out in approach 1 because these wavelengths
are absorbed mostly by alpha and beta-chlorophylls, resulting in the release of oxygen
from photosynthesis [11,39,40]. It means that the magnitude of the release of this chalcogen
occurs in them. Thus, the greater the absorption of blue and red wavelengths, the greater
the oxygen release and, consequently, the greater the water vapor release since water
vapor is released along with oxygen during photosynthesis, explaining why these spectral
bands stood out. The green wavelength of the MSI sensor ranges from 0.53 to 0.59 µm,
and the wavelengths in this range are less absorbed by pigments [11]; thus, it impacts
little on photosynthesis and water release by plants. The near-infrared is reflected and/or
transmitted by the structure of the mesophyll as a form of protection of its physiological
and molecular structure. Thus, this length is not related to photosynthesis but to the physi-
ological structure that influences photosynthesis indirectly. As a result, this wavelength has
less prominence than the others. The wavelengths in the short infrared are the ones that
stood out in the second approach because they are spectral bands strongly absorbed by the
water content present in plants [41,42]. Therefore, when the leaves are in hydric comfort,
these wavelengths tend to be more absorbed. On the other hand, when occurring hydric
stress, these wavelengths tend to be less absorbed and more reflected. Several studies
demonstrated the importance of shortwaves for monitoring and quantifying water stress
on plants [43–46]. The red edge wavelengths are also important bands in approach 2 for
the same principles as the short infrared. They are absorbed by water content in plants as a
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result of the sensitivity of red edge spectral responses to water content in plant leaves [47].
These authors mention that vegetation indices that have red edges in their equation have a
higher sensitivity to water content in maize crops. Santos et al. [42], studying water stress
and spectral response in sugarcane crops, identified that the near-infrared wavelength was
sensitive to the water content in leaves. Chandel et al. [43] also obtained similar results with
wheat crops. Thus, it strengthens the evidence for the importance of these wavelengths
in quantifying water content, even more so when they are normalized with other bands
through the NRPB. This is one of the arguments stating the superior predictive capacity
of approach 2 compared to approach 1. The presence of the short infrared and red edge
spectral bands in approach 2 significantly improves the statistical metrics of the models.

The dispersion found in ETrF values lower than 0.6 in both approaches may be related
to greater heterogeneity of the cultivated area. When ETrF values are lower than 0.6, the
crop does not completely cover the soil, and there may be patches of soil with different
colors, moisture, etc., a proliferation of weeds in parts of the area, and even a greater degree
of the vigor of the crop in parts of the plot. The fact that approach 1 is more dispersed than
approach 2 is linked, quantitatively and qualitatively, to their predictors. Approach 2 had a
total of 12 predictors: the same as approach 1 and some others, mainly the short infrared
wavelength and red edge.

The main results and discussion found in the literature when applying METRIC to
predict the evapotranspiration fraction is to consider ETrF to be equal to Kc when using
the reference evapotranspiration of alfalfa [7,48–50]. However, this interpretation is not
correct because sensors on board satellites or other platforms capture the information that
is occurring in the field under natural conditions, and one cannot be sure that the plant is
in maximum water comfort and with nutritional, pest, disease, and weed management
adequate for maximum water uptake. Thus both METRIC and the models trained in
this study estimate the product between Kc and Ks (stress coefficient), the latter being
responsible for reducing ETrF to values lower than Kc when the crop is under stress or
making it equal to Kc when the plant is in favorable conditions for maximum water uptake.

5. Conclusions

Approach 2 had statistical results superior to approach 1, mainly for the XgbLinear
model, which obtained R2 of 0.91 and RMSE of 0.10, whereas the metrics for the same
model considering approach 1 were 0.80 and 0.15 for the R2 and RMSE, respectively. This
result was mainly influenced by the greater number of spectral bands that are strongly
related to water content as the short infrared and the red edge, thus being the model to be
applied. However, all models developed showed limitations when the dependent variable
presents values lower than 0.6, a condition in which the crop canopy has not completely
covered the soil, and there is greater variability.

Despite the limitation when the soil is not fully covered, the application proved
efficient in predicting ETrF since the analysis had values close to zero and the maximum
distance only in the linear regression algorithms for both approach 1 and approach 2.
Furthermore, it was possible to note that ETrF cannot be considered the same as Kc because
the onboard sensors capture the actual condition of the crop in the field, hydric comfort or
not. Hence, ETrF can be understood as the product between Kc and Ks that best represents
field conditions.

The use of the MSI sensor and machine learning techniques proved to be a new
and simple alternative to estimate ETrF through spectral information, complementing the
METRIC model estimation using OLI and TIRS sensors and increasing the frequency that
information is generated for areas of interest. The combination of these sensors is useful
to obtain the highest temporal resolution of the crop, especially for irrigated agriculture,
which requires Kc and Ks coefficients to be determined daily for adequate replenishment of
the irrigation blade.

Finally, this work highlights the possibility of using this methodology for other remote
sensors to calculate spatial and temporal evapotranspiration, enriching the scientific debate.
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Further, it can be applied in other locations and different cultures since the data needed
are from the orbital sensors and meteorological data from the area of interest. Thus, the
methodology, despite being extensive, is easy to apply with a low financial cost. However,
in hopes of advancements, this methodology can be performed with field instrumentation
to collect the actual evapotranspiration, as this evapotranspiration would be replaced by
the evapotranspiration of the METRIC model, but more funding would be required.
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ETa Actual Evapotranspiration
ETints Instantaneous Evapotranspiration
ETo Reference Potential Evapotranspiration of the Grass
ETr Reference Potential Evapotranspiration of the Afalfa
ETrF Evapotranspiration Fraction
METRIC Mapping Evapotranspiration at High Resolution with Internalized Calibration
ML Machine Learning
MSI MultiSpectral Instrument
OLI Operational Land Imager
R2 Coefficient of Determination
RMSE Root Mean Squared Error
MAE Mean Absolute Error
MBE Mean Bias Error
SAFER Simple Algorithm for Evapotranspiration Retrieving
SEBAL Surface Energy Balance Algorithm for Land
TIRS Thermal Infrared Sensor
P Precipitation
Tmean Mean Air Temperature
Tmax Maximum Air Temperature
Tmin Minimum Air Temperature
µm Micrometer

https://www.mdpi.com/article/10.3390/atmos13091518/s1
https://www.mdpi.com/article/10.3390/atmos13091518/s1
http://dx.doi.org/10.17632/j74vdswh86.1


Atmosphere 2022, 13, 1518 21 of 23

m Meter
Kc Crop Coefficient
LE Latent Energy
ρw Density of Water
λ Latent Heat of Vaporization
Ts Surface Temperature
Rn Net Radiation
G Sensible Flux of Heat Transferred to the Ground
H Sensible Flux of Heat Convected to Air
Rs↓ Input of Shortwave Radiation
α Surface Albedo
RL↓ Input of Long Waves
RL↑ Output of Long Waves
ε0 Surface Thermal Emissivity
LAI Leaf Area Index
ρair Air Density
Cp Specific Heat of Air at Constant Pressure
dT Temperature Difference Between Two Heights
rah Aerodynamic Drag
ρB Reflectance of Blue
ρG Reflectance of Green
ρR Reflectance of Red
ρNIR Reflectance of Near-Infrared
ρRe Reflectance of Red Edge
ρSWIR Reflectance of Shortwave Infrared
NRPB Normalized Ratio Procedure Between Bands
LM Linear Regression
Xgblinear eXtreme Gradient Boosting-linear method
XgbTree eXtreme Gradient Boosting-tree method
DAE Days After Emergency
FAO Food and Agriculture Organization
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