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A B S T R A C T   

Irrigation scheduling methods have been used to determine the timing and amount of water applied to crops. 
Scheduling techniques can include measurement of soil water content, quantification of crop water use, and 
monitoring of crop physiological response to water stress. The aim of this study was to evaluate the performance 
of a simplified crop canopy temperature measurement (CTM) method as Irrigation Principles. Soil and Water 
Conservation Engineera technique to schedule irrigation for maize. Specifically, the Degrees Above Non-Stressed 
(DANS) index, which suggests water stress when canopy temperature exceeds the non-stressed canopy tem-
perature (Tcns), was determined by estimating Tcns from a weather based multilinear regression model. The 
modeled Tcns had a strong correlation with observed Tcns with a pooled R2 values of 0.94 across the 2018, 2019, 
and 2020 growing seasons. This DANS index was also highly correlated with the conventionally used Crop Water 
Stress Index (CWSI) with R2 values of 0.67, 0.59, and 0.76 in 2018, 2019, and 2020, respectively. Furthermore, 
DANS had a strong linear relationship with soil water depletion above 60% in the 0.60 m soil profile with an R2 

of 0.78. The CTM method was also compared to more commonly used scheduling methods namely: soil moisture 
monitoring (SMM) and crop evapotranspiration modeling (ETM). Grain yield was significantly lower for the CTM 
method than for the ETM method in 2018 and 2020 but not in 2019. No significant differences were observed in 
Irrigation Water Productivity (IWP) in 2018; however, all treatments were significantly different with the CTM 
method having the greatest IWP in 2020. For attempting to trigger full irrigation with the CTM method, a fixed 
DANS threshold of 0.5 ◦C was found to be more appropriate than the literature value of 1.0 ◦C, but consideration 
of crop growth stage would further improve scheduling.   

1. Introduction 

Global population growth is anticipated to rise to an estimate of 9.2 
billion people in 2050 which will consequently increase demand on 
available food sources and associated agricultural production resources, 
particularly water (Jury and Vaux, 2007). Stewardship of current water 
resources therefore necessitates adaptable and innovative methodolo-
gies to optimize water use while efficiently meeting demands, such as 
agricultural production for this increasing population. In water limited 
environments such stewardship includes development and adoption of 
irrigation water management methods and technologies to determine 

proper timing and depth of irrigation. Irrigation scheduling methods and 
technologies include soil moisture monitoring (SMM), plant sensors, 
proximal sensors, daily evapotranspiration modeling (ETM), visual 
observation, mimicking neighbors, and feel of soil, among others 
(USDA-NASS, 2019; Rudnick et al., 2020). Unfortunately, however, 
these methods vary widely in their ability to match irrigation with crop 
water needs (Rudnick et al., 2020). 

For instance, a variety of sensors can be used in SMM to quantify soil 
attributes and associate them to soil water content within the crop root 
zone (Evett et al., 2012; Lekshmi et al., 2014). Typically, SMM methods 
involve the estimation of volumetric soil water content (θv) which is 
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maintained above a trigger threshold often based on the management 
allowable depletion (MAD) concept. The θv measurements are influ-
enced by instrument accuracy and must consider soil physical charac-
teristics and crop development and rooting depth, which are complex 
parameters to estimate, when scheduling irrigation (Evett et al., 2012; 
Gu et al., 2020; Taghvaeian et al., 2020). Recently developed SMM 
measuring tools are also limited by their ability to represent large spatial 
areas at continuous temporal scales while long-established methods 
such as the neutron moisture meter (NMM) and gravimetric soil sam-
pling are not widely utilized outside the academic research community 
due to complexity in application and associated costs (Evett et al., 2012). 
Alternatively, ETM and soil water balance based models have been 
employed to estimate crop water use, and this information is utilized to 
quantify how much water is needed to replenish the root zone storage 
via irrigation (Huffman et al., 2013; Anderson and French, 2019; Gu 
et al., 2020). However, the accuracy of model input parameters can 
affect the correctness of crop ETM based irrigation water management 
methods. Model inaccuracies are likely to arise from imprecise soil 
physical property estimation, inexact measurements of microclimate 
and resulting reference evapotranspiration (ETr), and/or the use of 
generic crop coefficient (Kc) values (Gu et al., 2020). 

Emerging irrigation water management techniques such as canopy 
temperature measurement (CTM) using infrared thermometers have 
been described as a non-destructive, affordable means to spatially and 
temporally monitor crop water stress for irrigation management (Jones, 
2004; DeJonge et al., 2015; O’Shaughnessy et al., 2015; Ihuoma and 
Madramootoo, 2017). Commonly, the crop water stress index (CWSI) 
(Idso et al., 1981) has successfully been used to monitor water stress in a 
variety of crops, including sorghum (O’Shaughnessy et al., 2012), sug-
arbeet (King et al., 2021), maize (Payero and Irmak, 2006), and soybean 
(Payero and Irmak, 2006). However, adoption of CWSI as an irrigation 
scheduling method has been limited because its computation requires 
establishment or modeling of non-stressed and maximally stressed crop 
conditions, along with concurrent measurements of air temperature and 
relative humidity (DeJonge et al., 2015). Alternatively, simplified crop 
thermal indices such as Degrees Above Non-Stressed (DANS) have been 
developed by relating observed canopy temperature (Tc) to a single 
non-stressed canopy baseline temperature (Tcns) (Taghvaeian et al., 
2014). Although this DANS method has been used for monitoring water 
stress in maize (DeJonge et al., 2015) and sunflower (Taghvaeian et al., 
2014) in arid environments, there is opportunity to test the method’s 
viability and transferability in different climatic regions to establish 
appropriate scheduling protocols and index thresholds. Furthermore, 
while initial Tcns baselines were suggested by maintaining and moni-
toring a non-stressed reference area (DeJonge et al., 2015), increased 
access to weather datasets presents an opportunity to alternatively 
model the Tcns which could further simplify the computation of the 
DANS index and increase the method’s adoption as an irrigation water 
management tool by farmers. 

This study was therefore focused on the implementation of CTM, 
specifically the DANS index, as a real-time irrigation water management 
tool in semi-arid, mid-western United States and highlights the method’s 
development, implementation, and outcomes (e.g., applied irrigation, 
yield response, and performance metrics). This will contribute to the 
resources pool that water managers can consider reviewing as they 
determine which irrigation water management method to adopt in semi- 
arid environments. Additionally, the DANS index method was compared 
to the conventional SMM and ETM methods under similar environments 
and agronomic practices. The selection of irrigation water management 
methods to investigate was based on a technique’s extensive usage in 
research (SMM method), common application amongst farmers (ETM 
method), and contemporary scheduling approaches used in recent years 
(CTM method). 

The study objectives were 1) to develop and evaluate an empirical 
non-stressed canopy baseline Tcns for the degrees above non-stressed 
(DANS) index; 2) to compare the DANS index against conventional 

canopy temperature measurement method, CWSI; and 3) to evaluate the 
effectiveness of the DANS index against soil water monitoring and 
evapotranspiration model for irrigation scheduling by assessing soil 
water dynamics, irrigation water use efficiency, and grain yield. 

2. Materials and methods 

2.1. Site description 

2.1.1. Experiment design 
The field experiment was conducted in 2018, 2019, and 2020 at the 

University of Nebraska-Lincoln West Central Research, Extension, and 
Education Center in North Platte, Nebraska, USA (latitude 41.1◦ N, 
longitude 100.8◦ W, and elevated at 861 m above sea level). The pre-
dominant soil type is Cozad silt loam (Fluventic Haplustoll). Soil sam-
ples were collected in increments of 0.3 m to a depth of 3.0 m at 72 
sampling locations in the experimental field and sent to a commercial 
laboratory (Ward Laboratories, Kearney, NE, USA). Soil physical and 
hydraulic properties are presented in Table 1. Particle size distribution 
in the 3 m soil profile ranged from 0.8% to 2.0% organic matter, 
33.3–50.7% sand, 31.3–43.3% silt, and 14.9–23.5% clay content. Soil 
field capacity (FC) and wilting point (WP) were estimated following 
Saxton and Rawls (2006) and ranged from 0.217 to 0.298 and 
0.096–0.151 m3 m− 3, respectively. 

Pioneer 1197 AMT (Corteva Agriscience, Wilmington, Delaware, 
USA) maize (Zea mays L.) was planted on 27 April, 13 May, and 29 April 
in 2018, 2019, and 2020, respectively, in 0.76 m rows at a seeding rate 
of 84,000 seeds ha− 1 under a no-till system following soybean in rota-
tion. Nitrogen (N) fertilizer was prescribed based on soil residual N 
(Shapiro et al., 2019) and was applied to the entire field in the form of 
urea-ammonium-nitrate (UAN 32%). Prior to planting, 67 kg ha− 1 of N 
was applied each year followed by an in-season application of 179, 157, 
and 126 kg ha− 1 in 2018, 2019, and 2020, respectively. Pesticides were 
applied uniformly, as needed, to the entire study. The study field was 
harvested on 29 October, 7 November, and 30 October in 2018, 2019, 
and 2020, respectively, using a John Deere Model 9500 combine with a 
calibrated yield monitor. 

A randomized complete block design was implemented, consisting of 

Table 1 
Field-average ± standard deviation of soil textural composition (sand, silt, and 
clay), organic matter content (OMC), field capacity (FC), and wilting point (WP) 
every 0.3 m to a soil depth of 3 m from 72 sampling locations. Soil texture and 
OMC were measured at a commercial lab (Ward Laboratories, Kearney, NE) and 
FC and WP were estimated using Saxton and Rawls (2006).  

Soil 
Depth 

OMC Sand Silt Clay Field 
Capacity 

Wilting 
Point 

(cm) (%) (%) (%) (%) (m3 m− 3) (m3 m− 3) 

0–30 2.0 ±
0.3 

47.7 ±
5.7 

33.3 ±
5.8 

19.0 ±
2.8 

0.25 ±
0.02 

0.13 ±
0.02 

30–61 1.5 ±
0.2 

45.3 ±
5.5 

33.8 ±
4.0 

20.9 ±
4.9 

0.26 ±
0.03 

0.14 ±
0.03 

61–91 1.7 ±
0.3 

45.0 ±
9.7 

32.4 ±
8.3 

22.6 ±
6.7 

0.27 ±
0.05 

0.15 ±
0.04 

91–122 1.6 ±
0.4 

33.3 ±
5.2 

43.3 ±
3.8 

23.5 ±
3.0 

0.30 ±
0.02 

0.15 ±
0.02 

122–152 1.0 ±
0.2 

50.7 ±
4.7 

33.8 ±
4.5 

15.5 ±
2.2 

0.22 ±
0.02 

0.10 ±
0.01 

152–183 1.0 ±
0.2 

46.9 ±
5.7 

34.9 ±
4.0 

18.2 ±
4.2 

0.24 ±
0.03 

0.12 ±
0.03 

183–213 1.1 ±
0.2 

49.6 ±
6.0 

31.3 ±
7.5 

19.1 ±
4.3 

0.24 ±
0.03 

0.12 ±
0.03 

213–244 1.1 ±
0.2 

46.9 ±
5.1 

36.1 ±
4.0 

17.1 ±
2.3 

0.24 ±
0.02 

0.11 ±
0.01 

244–274 0.8 ±
0.1 

46.4 ±
4.9 

35.8 ±
3.6 

17.8 ±
2.4 

0.24 ±
0.02 

0.11 ±
0.01 

274–305 0.8 ±
0.1 

49.0 ±
4.2 

36.1 ±
4.2 

14.9 ±
2.5 

0.22 ±
0.02 

0.10 ±
0.02  
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four blocks each having 9 m by 72 m experimental plots. Three irrigation 
scheduling treatments were evaluated namely: soil moisture monitoring 
(SMM), crop evapotranspiration model (ETM), and canopy temperature 
measurement (CTM). Irrigation of 20 mm was applied when a treatment 
triggered. To further evaluate the three scheduling methods, it was 
necessary to compare the method’s performances with a non-irrigated, 
low irrigated and excessively irrigated crops. The experiment design 
therefore, included treatments managed under different irrigation levels 
namely: rainfed (RF) which received no irrigation water, deficit irriga-
tion (DI), and excess irrigation (EI). The DI and EI treatments were 60% 
(12 mm) and 140% (28 mm) of the SMM treatment, respectively, and 
followed the irrigation timing of the SMM treatment. The DI and EI 
treatments were included to properly evaluate whether the three irri-
gation treatments under, optimally or over irrigated as determined by 
the crop production function. The experimental units were individually 
irrigated by a subsurface drip irrigated (SDI) system. The SDI system 
consisted of laterals (drip lines) spaced at 1.52 m under alternate fur-
rows and at a depth of 0.4 m below the soil surface. The drip tape type 
was T-Tape, TSX 515–12–340 with 0.3 m emitter spacing (Tarkalson and 
Payero, 2008). 

2.1.2. Weather conditions 
The research site in North Platte is located in a semi-arid climatic 

zone where the growing season evaporative demand greatly influences 
irrigation requirement (Klocke et al., 1989; Payero et al., 2005). The 
microclimatic data including air temperature (Ta), incoming solar ra-
diation (Rs), wind speed at 3 m height (U3), precipitation (P), and 
relative humidity (RH) were collected from an automatic weather sta-
tion (North Platte 3SW Beta) that was 100 m away from the experi-
mental field and is part of the Nebraska Mesonet network 
(https://mesonet.unl.edu). 

During the experimental growing seasons, Rs ranged from 10.4 to 
23.8 MJ m− 2 d− 1 with an average of 18.5 ± 5.1 MJ m− 2 d− 1 in 2018; 
from 12.0 to 24.3 MJ m− 2 d− 1 with an average value of 18.5 ± 4.8 MJ 
m− 2 d− 1 in 2019, and 12.0–25.3 MJ m− 2 d− 1 with an average value of 
20.1 ± 5.0 MJ m− 2 d− 1 in 2020 (Table 2). This resulted in percentage 

ETr differences from the 30-year long term seasonal total of − 8.8, −
15.9%, and 10.5% in 2018, 2019, and 2020, respectively, which sug-
gested a greater evaporative demand and need for irrigation in 2020 in 
comparison to 2018 and 2019. Furthermore, the corresponding rainfall 
totals from May 1 to October 31 were 432, 503, and 235 mm in 2018, 
2019, and 2020, respectively. These seasonal totals translated in 19.8% 
and 39.5% increase in rainfall above long-term average in 2018 and 
2019 as compared to a 34.9% decline in 2020. These weather parameter 
differences suggested a drier than average year in 2020, a wetter than 
average year in 2019, and a slightly wetter than average year in 2018. 

2.2. Data collection 

Volumetric soil water content (θv) was measured weekly to bi-weekly 
from a depth of 0.15–1.80 m in 2018 and 0.15–2.59 m in 2019 and 2020, 
at increments of 0.30 m using neutron moisture meters (NMM) CPN 503 
Elite Hydroprobe and CPN 503DR (InstroTek, CA USA). The CPN 503DR 
were gravimetrically calibrated for the site with R2 of 0.977 and RMSE 
of 0.010 m3 m− 3, respectively, while the CPN 503 Elite Hydroprobe was 
cross calibrated to the CPN 503DR with R2 of 0.994 and RMSE of 0.004 
m3 m− 3, respectively (Lo et al., 2020). 

During the 2018 season, one neutron access tube was placed within a 
crop row in three plots of each treatment. In 2019 and 2020, a pair of 
access tubes were placed in four plots of each treatment, with the two 
tubes straddling a crop row evenly and being 0.38 m apart perpendicular 
to the row direction. 

Canopy temperature measurements were taken using SI-1H1 and SI- 
4HI series infrared thermometers (IRT) sensors (Apogee Instruments Inc. 
UT, USA). Due to limitations in sensor availability, an IRT sensor was 
installed in three SMM plots every year but in two CTM plots for 2018 
and three CTM plots for 2019 and 2020. There were no IRT sensors 
installed in the ETM treatment. The IRT sensors were mounted 
approximately 1 m above the crop canopy and oriented at a 45◦ view 
angle towards the crop. To maximize the viewing of sunlit crop canopy 
during mid-afternoon hours, the IRTs were oriented in the northeast 
direction. The sensors were programmed to collect data every six 

Table 2 
Growing season weather parameters measured during the experimental period (2018–2020) and long-term seasonal weather outlook (1986–2015) for the research 
site.    

Tmin Tmax RHavg U2 P Rs ETr 

Year Month (◦C) (◦C) (%) (m s− 1) (mm) (MJ m− 2) (mm) 

2018 May 10.3  24.1  67.3  2.6 147.1  19.4 169.5 
June 15.1  29.2  65.5  2.6 91.2  23.1 208.2 
July 16.7  30.4  64.2  1.9 62.5  23.8 196.1 
August 14.7  30.0  62.2  2.0 42.9  19.4 170.2 
September 12.3  26.4  67.4  2.7 13.0  14.8 161.5 
October 1.5  16.0  68.0  2.3 75.7  10.4 90.5 

2019 May 4.6  17.6  68.7  2.6 109.2  15.8 117.5 
June 11.8  27.2  65.9  2.2 83.8  23.8 189.1 
July 17.1  30.3  68.6  2.1 175.0  24.3 198.7 
August 15.7  27.8  75.7  1.8 93.5  18.0 139.3 
September 12.5  28.4  65.6  2.6 25.4  17.3 168.7 
October -2.0  14.7  62.6  2.9 16.3  12.0 105.7 

2020 May 6.5  20.7  67.6  2.6 83.1  20.6 155.0 
June 14.6  32.3  56.9  3.3 12.2  25.3 282.8 
July 13.6  32.2  65.8  2.6 117.1  24.0 237.5 
August 15.2  31.8  62.4  2.6 4.8  22.3 231.5 
September 7.7  26.5  58.3  2.5 15.2  16.5 181.1 
October -1.0  17.1  60.5  2.5 2.5  12.0 119.1 

Long term average (1985 − 2015) May 7.2  22.3  63.6  3.2 75.6  20.6 185.0 
June 12.9  28.2  64.1  3.0 88.6  23.7 215.8 
July 15.8  31.2  64.9  2.8 63.0  23.5 228.1 
August 14.5  30.0  67.3  2.7 58.7  20.5 198.0 
September 8.6  25.6  63.3  2.8 39.2  16.4 158.6 
October 1.4  18.4  62.8  2.5 35.7  11.7 107.0 

Note: Tmin and Tmax are the average daily minimum and maximum temperatures, respectively; RHavg is the average daily relative humidity; U2 is the average daily wind 
speed at 2 m height; Rs is the average daily incoming short wave solar radiation; ETr is the cumulative tall crop reference evapotranspiration; and P is the cumulative 
precipitation. 
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seconds which was averaged over one minute and sampled using 
CR1000 measurement and control data loggers (Campbell Scientific, 
Inc., UT). 

2.3. Irrigation scheduling methods 

2.3.1. Soil moisture monitoring (SMM) 
For irrigation scheduling, the top 0.91 m soil depth was considered as 

the effective root zone in the vegetative to early reproductive growth 
stages for irrigation management in this study following Kranz et al., 
(2008) and the root zone was expanded to 1.22 m in the late repro-
ductive season to allow for extraction of water from a deeper soil depth 
(Yonts et al., 2008). The soil available water content (AWC) was 
computed as: 

AWC =
∑n

i
(θFCi − θWPi)di +…+ (θFCn − θWPn)dn (1)  

where, θFC is the volumetric water content at field capacity (FC) (m3 

m− 3), θWP is the volumetric water content at wilting point (WP) (m3 

m− 3), and d is the soil depth ranging from i to n within the limits of the 
managed maize crop root depth as determined by the crop growth stage. 

Depending on the crop growth stage, the allowable depletion (AD) 
value varied to reflect the crop’s ability to extract water and tolerate 
water stress prior to irrigation events. These AD values were developed 
based off near optimal irrigation management conditions for maize at 
the research site in 2017 (Lo et al., 2019), which took into account the 
crop growth stage and approximate rooting depth. The AD values ranged 
from 27.4 mm at fifth leaf (V5) to 152.4 mm at kernel dent (R5.75) 
growth stage (Table 3). The difference between the average volumetric 
water content (θv) across the 0.91 m soil profile and θFC across the 
managed rooting depth was computed and denoted as the real time 
depletion value (RTD) (Eq. 2). A decision to irrigate was made when the 
RTD value exceeded a selected allowable depletion (AD) value. 

RTDi = (θFCi − θvi )Rzi (2)  

where, RTD is the real time soil water depletion (m) at time i, θv is the 
average measured volumetric water content (m3 m− 3), and Rz is the root 

depth (m). 

2.3.2. Crop evapotranspiration model (ETM) 
Irrigation was determined for the ETM treatment when soil water 

deficit (WD) exceeded the AD. A soil water balance model (Allen et al., 
1998; Trout and DeJonge, 2018; Gu et al., 2020) was used to calculate 
WD (Eq. 3). 

WDj = ETaj− 1 + ROj− 1 + DPj− 1 +WDj− 1 − Ij− i − Pj − 1 (3)  

where, DP is deep percolation (mm); P is precipitation (mm); I is applied 
irrigation (mm); ETa is crop evapotranspiration (mm); RO is runoff 
(mm); and subscripts j and j-1 represent the current day and previous 
day, respectively. Runoff (RO) was computed using the USDA Natural 
Resources Conservation Service (NRCS) runoff curve number method 
(USDA-NRCS, 1985) with a curve number of 75. Deep percolation was 
assumed to occur two days following a wetting event and was estimated 
using the cascading method (Djaman and Irmak, 2012). In this study all 
water above field capacity was assumed to drain. Maize ETa was 
computed using the two step method (Allen et al., 1998) calculated as: 

ETa = Kc × ETr (4)  

where, Kc is a single crop coefficient and ETr is alfalfa (tall crop) refer-
ence evapotranspiration. The Kc values were derived using data 
collected during the 2017 growing season and are presented in Table 3. 
Daily maize ETa was measured from an onsite eddy covariance system. 
The field was fully fertilized and irrigated, and extended 230 m south of 
the tower. The system was installed with a maximum instrument height 
of 3.96 m, which allowed for a 1 m height above canopy. Latent heat 
flux data processing and filtering accounting for only the footprint from 
the maize field was done by LI-COR Biosciences (Lincoln, NE) using 
EddyPro software (version 6.2). ETr was calculated using the ASCE 
standardized reference crop evapotranspiration equation (ASCE-EWRI, 
2005; Rudnick and Irmak, 2014; Lo et al., 2019) using onsite weather 
data collected by the Nebraska Mesonet (https://mesonet.unl.edu/). 
The resultant Kc values were compared to Kc values previously measured 
at the experiment site (Gerosa, 2011) and within the experiment region 
(Hinkle et al., 1984) and were found to be similar and representative of a 

Table 3 
Average eddy covariance system derived Kc values per growth stage, corresponding values of allowable depletion (AD) and cumulative growing degree days (

∑
GDD) 

across the growing seasons.  

Beginning growth stage End growth stage Average 
Kc 

Managed root depth (mm) AD (mm) 2017 
∑

GDD (◦C) 2018 
∑

GDD 
(◦C) 

2019 
∑

GDD 
(◦C) 

2020 
∑

GDD 
(◦C) 

P VE  0.22 – – 56 72 47 43 
VE V1  0.22 – – 77 96 71 62 
V1 V2  0.22 – – 94 116 114 82 
V2 V3  0.22 – – 131 154 171 116 
V3 V4  0.22 – – 175 201 214 188 
V4 V5  0.24 – – 223 248 268 241 
V5 V6  0.33 457 27.4 281 295 319 294 
V6 V7  0.44 610 35.6 324 345 373 350 
V7 V8  0.52 762 44.5 368 391 412 401 
V8 V9  0.60 914 53.3 404 433 437 462 
V9 V10  0.66 914 53.3 450 460 474 507 
V10 V11  0.75 914 53.3 482 486 509 560 
V11 V12  0.81 914 53.3 520 512 552 588 
V12 V13  0.88 914 53.3 560 554 593 627 
V13 V14  0.96 914 53.3 600 583 622 650 
V14 VT/R1  1.03 914 53.3 678 664 692 683 
VT/R1 R2  1.03 914 53.3 811 798 820 832 
R2 R3  1.03 914 53.3 902 888 917 929 
R3 R4  1.03 914 68.6 1003 993 1017 1065 
R4 R4.7  1.03 914 83.8 1150 1137 1159 1153 
R4.7 R5.25  1.01 1219 111.8 1219 1231 1243 1232 
R5.25 R5.5  0.88 1219 132.1 1302 1356 1362 1309 
R5.5 R5.75  0.73 1219 152.4 1413 1411 1402 1365 
R5.75 R6  0.53 1219 152.4 1454 1477 1421 1431 

Note: The base and upper limit temperatures for GDD calculation were 10 and 30 ◦C, respectively (Nielsen and Hinkle, 1996; Rudnick and Irmak, 2014) 
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well-watered maize crop. 

2.3.3. Canopy temperature measurement (CTM) 
Degrees Above Non-Stressed (DANS) thermal index was used as the 

CTM irrigation scheduling method. The computation of DANS (Eq. 5) 
ideally requires the maintenance of a well-watered non-stressed crop 
which is contrasted with the canopy temperature measured from the 
study treatments (Taghvaeian et al., 2014; DeJonge et al., 2015; Kull-
berg et al., 2017; Drechsler et al., 2019). The maintenance of a 
well-water-crop necessitates constant monitoring and frequent irriga-
tion of the crop to prevent water stress yet irrigation system limitations 
amongst other constraints may be encountered. Additionally, the 
non-stressed crop ideally needs to be monitored for each growing season 
to reflect ongoing atmospheric demand. To satisfy the requirement of a 
non-stressed-canopy baseline, DeJonge et al. (2015) considered the 
lowest observed temperature from available treatments as the Tcns in 
both CWSI and DANS index computations. Alternatively, this study 
suggested that a modeled non-stressed temperature be used to approx-
imate the well-watered crop conditions for the DANS index. 

DANS = Tc − Tcns (5) 

A multilinear regression model was used to estimate Tcns (dependent 
variable) with weather parameters (Ta, Rs, and vapor pressure deficit 
(VPD)) as the independent variables. The lowest observed peak time 
(14:45–16:45 Central Daylight Time (UTC-5)) Tc measurements 
amongst treatments starting after 80% canopy closure were used in the 
regression analysis and model development. 

Peak time Tc measurements were selected because greater standard 
deviations in measured Tc were observed across the treatments in 
comparison to those observed in the early morning or late-night hours of 
the day (data not shown). This diurnal variation in maize Tc values was 
also observed in research conducted by DeJonge et al. (2015) and sug-
gested that spot thermal indices could be computed from temperature 
data collected 1–2 h after solar noon. The multilinear regression was 
done using R 3.5.0 (R Core Team, 2018) packages while the correlation 
statistics were computed in Microsoft Excel 365 (Microsoft Corporation, 
Redmond, WA, USA). The coefficients of the selected predictor param-
eters were significant at a p – value of 0.05 to the model. The data was 
filtered to remove cloudy day conditions as well as dates when VPD 
values were less than 1 kPa. In 2018, data from the 2017 growing season 
was used in the model, while in 2019 and 2020 the model included data 
sets from both 2017 and 2018 (Table 4). The resulting model RMSE 
values were 0.46 and 0.38 ◦C in 2018 and 2019, respectively. 

Maize was considered minimally, moderately, and severely stressed 
at DANS values of 1.0 ◦C, 1.0–5.0 ◦C, and 5.0–8.3 ◦C, respectively, in a 
previous study in Colorado (DeJonge et al., 2015). In the current study, 
an irrigation threshold of 1 ◦C was selected in 2018, but this threshold 
was later lowered to 0.5 ◦C in 2019 and 2020 to better capture and 
respond to the onset of crop water stress. The difference between the 
observed (field measured) Tc and modeled Tcns was compared to the 
selected DANS index threshold value prior to making an irrigation 

decision. An irrigation decision was therefore made when the computed 
DANS value exceeded the set threshold (i.e., 1 ◦C in 2018 and 0.5 ◦C in 
2019 and 2020). 

2.4. Crop Water Stress Index 

The crop water stress index (CWSI) has been used as a measure of 
maize crop water thermal stress in studies conducted in the mid-west 
USA (Payero and Irmak, 2006; Singh et al., 2021). CWSI infers water 
stress as a function of thermal measurement and environment. In this 
research the computed DANS index was compared to empirically 
established CWSI index following Idso et al. (1981) (Eq. 6.1). The lower 
baseline (LB) (Eq. 6.2) was developed as a linear regression of the peak 
time VPD and Tcns - Ta differential. The field observed Tcns was used in 
the Tcns - Ta differential computation and subsequent LB development 

CWSI =
(Tci − Ta) − LB

UB − LB
(6.1)  

(Tcns − Ta) = (m × VPD)+ c (6.2)  

where, Tci (◦C) is the canopy temperature measured from any given 
treatment i, Ta is the corresponding average air temperature, ΔT (◦C) is 
the difference between measured Tcns and Ta, LB (◦C) is the lower canopy 
temperature baseline, and UB (◦C) is the upper canopy temperature 
baseline, m is the slope, and c is the intercept. Peak time pooled data 
from 2017, 2018, and 2019 was used to define LB (LB = − 1.6012VPD +
2.0677, R2 = 0.75) for the CWSI computations. On the other hand, a 
constant value 4 ◦C was used as the upper baseline (UB) based on field 
observed measurements of canopy temperature from the deficit and 
rainfed treatments. 

2.5. Performance assessment and statistical analysis 

Differences in grain yield across irrigation scheduling treatments and 
years were investigated using the analysis of variance (ANOVA) statis-
tical procedures in SAS Studio 3.8 software (SAS Institute, Inc., Cary, 
NC). The ANOVA analysis assumed normal distribution of variables, 
independence of variables and homogeneity of variances. The Fisher’s 
protected least significance difference test was performed at 95% sig-
nificance level. In addition, the impact of irrigation scheduling method 
on crop water productivity was evaluated using irrigation water pro-
ductivity (IWP, Eq. 7) (Bos, 1980, 1985; Rudnick and Irmak, 2013; Lo 
et al., 2019; Evett et al., 2020). 

IWP =
Yi − YRF

Ii
(7)  

where Y is grain yield adjusted to 15.5% moisture content; I is applied 
irrigation; and subscripts i and RF represent irrigated and rainfed 
treatments, respectively. 

3. Results and discussion 

3.1. Modeled non-stressed canopy temperature and seasonal DANS index 
variation 

A multilinear regression (Table 4) was used to model the non- 
stressed canopy temperature baseline which was required for the 
computation of the DANS index. The coefficient of determination (R2) 
values for the regression between the peak time observed Tcns and 
modeled Tcns on non-cloudy days were 0.95, 0.94, and 0.96 in 2018, 
2019, and 2020, respectively (Fig. 1). The corresponding growing sea-
son RMSE values were 0.46, 0.55, and 0.41 ◦C in 2018, 2019, and 2020, 
respectively. The higher RMSE values observed in 2019, which was the 
wetter growing season suggest that modeling of Tcns did not perform as 
well in wetter-than-average conditions at the experiment site. Despite 

Table 4 
Multilinear regression equations used to calculate the non – stressed canopy 
temperature baseline, Tcns for DANS index computation and irrigation man-
agement during the 2018, 2019, and 2020 growing seasons. The Eq. 5.1 was 
used to model Tcns in 2018 while Eq. 5.2 was used to model Tcns in 2019 and 
2020.  

Equation 
number 

VPD 
(kPa) 

Equation Adjusted 
R2 

RMSE 
◦C 

5.1 > 1 Tcns = 0.8743Ta +

0.003284Rs − 1.4143VPD +

3.3350 

0.93 0.46 

5.2 > 1 Tcns = 0.8637Ta +

0.003581Rs − 1.4906VPD +

3.3853 

0.97 0.38  
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this, the overall goodness of fit across the three experimental years 
suggested that modeled Tcns could be used in substitution to field 
measured Tcns during the computation of the DANS index. This model 
based Tcns could therefore further ease the adoption and application of 
the DANS index method for irrigation scheduling. 

The variation in the DANS index per treatment contrasted against the 
selected thermal threshold values during the growing seasons of 2018, 
2019, and 2020 are presented in Fig. 2. In 2018 a trigger threshold value 
of 1.0 ◦C was selected for the DANS index while in 2018 and 2020 the 
trigger threshold was 0.5 ◦C. In 2018, the DANS index for the CTM 
treatment in July was closer in magnitude to the DI treatment than to 
SMM treatment in which irrigation was managed to maintain full crop 
ET. This delay in irrigation (i.e., greater crop water stress) by the CTM 
treatment in 2018 was due to the higher stress threshold selected. 

The DANS seasonal values ranged from − 2 ◦C to over 8 ◦C across the 
three different growing seasons. Higher DANS index values were 
observed in the RF treatment after the R4 growth stage, at the onset of 
crop senescence. Taghvaeian et al. (2014) reported DANS values slightly 
over 8 ◦C and those below 0 ◦C for sunflower during different mea-
surement times in the peak period and the negative values are assumed 
to indicate non-water stressed conditions. The 2019 growing season 

Fig. 1. Comparison of field observed and modeled non-stressed canopy tem-
peratures (Tcns) in the 2018, 2019, and 2020 growing seasons. The modeled Tcns 
computed using the multilinear equations shown in Table 3 on non- 
cloudy dates. 

Fig. 2. Seasonal degrees above non-stressed (DANS) index variation for the rainfed (RF), deficit (DI), soil moisture monitoring (SMM), and canopy temperature 
measurement (CMT) treatments in 2018, 2019, and 2020. 
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received above normal rainfall, which resulted in less water stress and 
subsequently overall lower magnitude DANS values across the treat-
ments. The season was also characterized with days that had VPD values 
of less than 1 kPa for which the DANS index was not computed for 
irrigation scheduling. Therefore, the greatest spread in DANS index 
values was observed in 2020 which was a dry year, while the above 
normal rainfall year of 2019 had the least difference in DANS values 
across treatments. The difference in DANS values indicated that the 
index was responsive to irrigation and could be used to infer crop water 
stress. 

Slightly higher early season (V6 growth stage) DANS values in 2019 
could be attributed to partial view of the soil surface by the IRT sensor 
prior to full canopy closure while the late season peak DANS values 
across the seasons were associated with crop maturity and onset of 
senescence. These higher range DANS values were not considered for the 
DANS index-based irrigation scheduling which renders that method 
unusable prior to full canopy closure or at the end of the growing season, 
if the need for irrigation water is warranted. In 2018 and 2019 there 
were slight differences in magnitude of DANS values during the early 
season (V8 to VT) due to reduced early crop water demand. On the other 
hand, the V8 to VT DANS values across treatments in 2020 were greater, 
reflecting the dry nature of the growing season. The mid reproductive 
season (R2 to R3) in 2018 and 2019 indicated difference in DANS values 
which could be attributed to differences in irrigation water applied as 
determined by the scheduling method. The extreme dry conditions in 
2020 resulted in concurrent irrigation triggering by both the SMM and 
CTM treatments hence the lower differences in magnitude of DANS 
values during the R3 to R4 growth stages. Greatest differences in DANS 
were observed during the later reproductive stage (R4) especially in the 
RF treatment, which was attributed to early senescence. These in season 
variations in DANS values with growth stages suggested that a static 
DANS threshold as the one used in the study was likely to under or 
overestimate stress along the growing season. 

3.2. CSWI-DANS relationship 

The correlations between conventionally used CWSI and the DANS 
index for the RF, DI, SMM, and CTM treatments are presented in Fig. 3. 
The resulting correlation coefficients across the three experiment sea-
sons were 0.67, 0.59, and 0.75 in 2018, 2019, and 2020, respectively. 
This correlation of the DANS index computed using modeled Tcns to 
conventionally used thermal stress CWSI suggested that DANS could 
also be used for crop water monitoring and irrigation scheduling. 

Taghvaeian et al. (2014) found that the correlation coefficients of CWSI 
and DANS for sunflower ranged from 0.80 to 0.86 across different hourly 
periods and that DANS was responsive to irrigation. The relationship 
between CWSI and DANS was stronger in the drier 2020 growing season 
which also had higher average Tc values across the treatments. The 
increased correlation in the drier growing season suggested that both 
indices were more responsive to crop water stress in water-limited 
conditions. Similarly, DeJonge et al. (2015) reported a correlation co-
efficient of 0.50 for mean canopy temperatures between 27 ◦C and 
29 ◦C, and a higher correlation coefficient of 0.90 between CWSI and 
DANS for mean canopy temperatures greater than 29 ◦C in maize. 

3.3. Seasonal irrigation patterns across scheduling treatments 

Seasonal cumulative irrigation as applied by the three scheduling 
methods juxtaposed with rainfall and crop growth stage is presented in  
Fig. 4. The CTM method triggered irrigation later in the season, during 
the mid-reproductive growth stage in 2018 and a cumulative total of 
102 mm was applied. The amount was relatively lower in magnitude 
than that applied by the SMM (166 mm) and ETM (193 mm) methods 
given the same environmental and soil physical conditions. This un-
derestimation of irrigation water requirement was attributed to the 
higher DANS index irrigation trigger threshold of 1 ◦C observed and 
selected in 2018, which required more water stress to trigger irrigation 
than other methods during the late-vegetative and mid-reproductive 
growth stages. Although the CTM method responded to cumulative 
stress and triggered irrigation in the later part of 2018, it was evident 
that this late timing of the irrigation negatively impacted (Table 5) crop 
yield (Table 6). Studies by Han et al. (2018) and Lena et al. (2020) noted 
limitations of early-season leaf area index coupled with soil background 
and late season crop senescing in the computation of CWSI for maize. 
Therefore, the onset of early senescence prior to meeting a crop’s full 
water demand could be a drawback to utilizing CTM based measure-
ments in irrigation water management. Additionally, Payero et al. 
(2009) found that irrigation stress timed during the reproductive stage 
for maize grown in the same research site resulted in 17–33% of yield 
variation. The detection of crop water stress as well as the proper timing 
of an irrigation event were therefore key indicators of a scheduling 
method’s appropriateness to manage irrigation. 

Even though the irrigation threshold was lowered from 1.0◦ to 0.5◦C 
following 2018, it was kept constant throughout the growing season yet 
crop response to water stress was likely to vary across growth stages. 
Thermal stress thresholds and baselines alike have typically been kept 
unvarying throughout the growing season unlike in soil monitoring 
where variables like MAD are adjusted to accommodate for crop growth 
and associated stress. An in-season dynamic threshold model for CWSI 
was developed by Osroosh et al. (2015) to monitor water stress in apple 
trees and it was found that the dynamic CWSI thresholds evaded false 
irrigation triggers, while accounting for growth changes in trees. 

In all three growing seasons the CTM irrigation events were triggered 
after the SMM and ETM methods which alluded to early season mining 
of AWC prior to the method’s triggering of irrigation. Starting water 
application later in the season compared to other methods, suggested 
that irrigation events triggered by the CTM were likely to happen at or 
after the onset of crop water stress and the method was likely better 
suited for DI practices. 

The SMM cumulatively applied 166, 61, and 244 mm of irrigation in 
2018, 2019, and 2020, respectively. The higher irrigation amount in 
2020 resonated with the season’s drier than normal climate which 
created a greater need for water as compared to 2018 and 2019. 
Although the seasonal irrigation initiation and timings of SMM was 
similar to the ETM method, there was a significantly higher application 
of water by the ETM method specifically: 19%, 100% and 33% in 2018, 
2019, and 2020, respectively. While the ETM method may be an easier 
method to apply, the method is prone to incremental errors in estimation 
of water depletion in the soil (Gu et al., 2020) and runoff uncertainty. An 

Fig. 3. Scatter plots and resulting regression equations of crop water stress 
index (CWSI) against the degrees above non-stressed (DANS) index in 2018, 
2019, and 2020. 
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alternative to ‘stand-alone’ scheduling methods could therefore be 
combining methods together to maximize their advantages. As an 
example, a combined approach could include measurement of the soil 
water and translation of these measurements into the irrigation decision 
(SMM method) while considering crop water needs and soil’s water 
holding capacity (ETM method). Also, methods can be implemented 
concurrently (‘parallel application’) or utilization of one method after 
the other (‘series application’) depending on which strategy best iden-
tifies crop water stress along changing crop growth stages. A cost – 
benefit analysis of duo or multiple scheduling method application ought 
to be considered prior to adoption. 

Fig. 4. Cumulative irrigation water applied, daily rainfall and corresponding growth stages across the 2018, 2019, and 2020 growing seasons for the scheduling 
method treatments. The corn growth stages are described as follows: V1 to Vn = first leaf to nth leaf, VT/R1 = tasseling and silking stage, R2 = blister stage, 
R3 = milk stage, R4 = dough stage, R5 = kernel dent stage, and R6 = black layer/physiological maturity. 

Table 5 
Linear relationship between DANS index and soil water depletion below 60% 
and above 60% at 0.6, 1.8, and 2.1 m for the 2020 growing season.  

Depletion level Soil depth (m) R2 Slope (◦C/%) Intercept  

0–0.6 m  0.17  0.011  0.471 
Below 60% 0–1.8 m  0.33  0.028  -0.703  

0–2.1 m  0.32  0.026  -0.481  
0–0.6 m  0.78  0.098  -6.663 

Above 60% 0–1.8 m  0.71  0.094  -5.572  
0–2.1 m  0.70  0.106  -6.334  

Table 6 
Maize yield and irrigation water productivity (IWP) of the scheduling methods (SMM, ETM, and CTM) and the rainfed, deficit, and excessive irrigation treatments.  

Parameter Year Treatments 

Rainfed Deficit SMM ETM CTM EI 

Grain yield 
(Mg ha− 1) 

2018 12.09 ± 0.63d 16.18 ± 0.58b 17.23 ± 0.27a 17.84 ± 0.45a 15.09 ± 0.62c 17.47 ± 0.47a 
2019 12.5 ± 0.54d 13.67 ± 0.59c 13.84 ± 0.52 BCE 14.43 ± 0.79ab 15.26 ± 0.52a 14.05 ± 0.43b 
2020 7.45 ± 0.24d 12.48 ± 0.67c 14.50 ± 0.62b 16.29 ± 0.34a 15.01 ± 0.27b 16.04 ± 0.71a 
Pooled 10.68 ± 2.81 14.11 ± 1.89 15.19 ± 1.80 16.19 ± 1.71 15.12 ± 0.31 15.85 ± 1.72 

IWP 
(kg m− 3) 

2018 N/A 4.30 ± 0.58b 3.19 ± 027a 3.10 ± 0.45a 3.01 ± 0.62a 2.47 ± 0.47a 
2019 N/A 3.08 ± 0.59a 2.05 ± 0.52a 1.74 ± 0.79ab 1.13 ± 0.52b 1.79 ± 0.43a 
2020 N/A 3.17 ± 0.67a 2.75 ± 0.62b 2.74 ± 0.34c 3.27 ± 0.27a 2.51 ± 0.71d 
Pooled N/A 3.52 ± 0.68 2.66 ± 0.57 2.52 ± 0.70 2.47 ± 1.17 2.26 ± 0.40 

Note: Values followed by similar letters across the rows are not statistically significant (P > 0.05) and the data was analyzed separately by year 

Fig. 5. Distribution of neutron moisture meter measured total water (TW) in the 1.8 m soil profile during the growing seasons in 2018, 2019, 2020.  
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3.4. Soil water dynamics 

The initial total water (TW) content following recharge from the off- 
season precipitation (October to April) amongst the three scheduling 
treatments ranged from 533 to 553 ± 11 mm in 2018, 492–461 
± 20 mm in 2019, and 428–450 ± 11 mm in 2020 (Fig. 5). Although 
there were notable interannual differences in initial TW due to variation 
of previous season and off-season precipitation, in-season initial values 
of TW were within a similar magnitude range, across the experimental 
treatments. Since the rainfall received during the season was assumed to 
be constant across the treatments, subsequent in season variations in soil 
water content were primarily attributed to irrigation water applied. 
There was evidence of a greater separation of TW values of the CTM 
method compared to the SMM and ETM methods in 2018. Also, early 
season TW values were lower for the CTM compared to the DI and RI 
treatments. These low magnitude TW values in the CTM treatment were 
attributed to reduced frequency of irrigation events as triggered by the 
CTM method in the early portion of 2018 due to the high DANS index 
canopy stress threshold of 1.0 ◦C. In 2018 the end of season TW for the 
SMM was 40 mm less than that for the ETM which was influenced by 
fewer irrigation events. This difference suggested that the SMM allowed 
for potential extraction of soil water by the roots from deeper soil layers 
which reduced irrigation. Drawing down of water in the soil profile 
could save on application of irrigation water and provide a greater 
storage volume for off-season precipitation which could be utilized by 
crops in subsequent growing seasons. 

The 2019 growing season received above normal rainfall of 580 mm 
(Table 2) which resulted in less irrigation water applied across treat-
ments but on average a higher amount of end of season TW across the 
soil profiles of the treatment plots compared to 2018 and 2020. The 
2019 beginning and ending TW values for the scheduling treatments 
ranged from 498 to 315 for SMM, 492–326 mm for ETM, and 
461–394 mm for CTM scheduling methods. The CTM end of season TW 
value was greater than that of the other treatments in 2019, including 
the EI treatment (334 mm), indicating that more irrigation events than 
agronomically viable were triggered for the CTM method. This irrigation 
application error suggested that deciding on an appropriate irrigation 
cutoff date which considers soil water status and a crops growth stage 
was essential. It also suggested that crop canopy thermal response was 
possibly varied across crop developmental stages. These possible dif-
ferences in DANS index values ought to be accounted for in baseline 
development, irrigation threshold selection, and irrigation cutoff timing 
for subsequent studies. The drier-than-normal growing season of 2020 
experienced a steady decline in soil TW across all treatments (Fig. 5) 
despite more applied irrigation than 2018 and 2019. Crop water demand 
driven by both increased soil and atmospheric water deficits were key 
contributors to the low TW values. 

The combination of the irrigation water trends and soil TW varia-
tions across treatments suggested that prompt detection of crop water 
stress influenced irrigation triggering and scheduling. From this 
research, the three main indicators that infer crop water stress in a 
suggested chronological order of occurrence can be stated as: i) micro-
climatic evaporative demand, ii) soil moisture decline, and iii) crop 
thermal physiological response. If all other factors are kept constant, 
then the implications could be that the ETM and SMM methods were 
more likely to trigger irrigation concurrently while the CTM method 
triggered irrigation in response to an already experienced degree of crop 
water stress. The instances where all methods trigger at a time could 
suggest that the CTM was responding to a crop water stress episode 
experienced previously rather than presently. These observations 
regarding timing of irrigation and influences could imply that the CTM 
method if solely used is best suited to manage deficit irrigation rather 
than fully irrigated cropping systems. This deduction of use of CTM 
methods is so because crop water stress is required to have occurred 
before it’s detected by the CTM method. Hence, even in cases when 
water stress is detected at the onset, full irrigation coupled with non- 

stress conditions can never be fully met which renders the CTM 
methods as one best for deficit irrigation practices. 

3.5. DANS variation with percentage soil water depletion 

To investigate the relationship between the DANS index and soil 
water, DANS was linearly compared with percent soil water depletion in 
the 2020 growing season on neutron-based soil water measurement 
dates at depths of 0.6, 1.8, and 2.1 m (Fig. 6). The comparison was made 
under two percent depletion levels i.e., below 60% depletion and above 
60% depletion which were denoted as below and above respectively. 
Stronger linear relationships with DANS were observed for percent 
depletion values above 60% compared to percent depletion below 60% 
across the measurement depths (Table 6). DANS was slightly correlated 
with percent depletion below 60% at 1.8 m depth compared to the other 
depths with a R2 value of 0.33 and 0.028 ◦C (slope) rise for every percent 
increase in depletion. The 1.8 m depth was within the active maize crop 
root zone and this relationship evidenced that the DANS index was able 
to characterize soil water status albeit weakly at 60% soil water deple-
tion. At a percent depletion greater than 60%, DANS values were 
strongly correlated with percent depletion values with R2 values of 0.78, 
0.71, and 0.70 at 0.6, 1.8, and 2.1 m, respectively. The correlation of the 
index at higher depletion levels across soil depths suggested that the 
DANS index was best suited to manage irrigation under deficit and/or 
water stress conditions. Similarly, Katimbo et al. (2022) discussed that 
the maize crop CWSI was better correlated with soil water depletion 
greater than 80%. Extreme values of DANS and the corresponding near 
out-of-range percent depletion values were observed in the RI treat-
ments (Fig. 6). In addition to soil water dynamics, these extreme values 
are likely to correlate highly with other factors such as daily weather 
conditions and it is suggested to further investigate the sensitivity of the 
DANS index with key weather-based parameters as well as effect of crop 
growth stage. 

3.6. Crop yield response across the irrigation scheduling methods 

The variation of the yield and IWP across the scheduling treatments 
is shown in Table 6. The average yield across the SMM, ETM, and CTM 
irrigation scheduling treatments was 16.72 ± 1.45, 14.51 ± 0.71, and 
15.27 ± 0.92 Mg ha− 1 in 2018, 2019, and 2020, respectively. In all three 
growing seasons the scheduled treatments’ yields were greater in 
magnitude and significantly different from the RF treatment. Interan-
nual differences in yield values were also observed within similar 
scheduling method treatments. Irmak (2015) discussed that variations 
of yield across years for the same experimental treatment was attributed 
to seasonal climate differences. 

Despite the irrigation differences amongst the SMM, ETM, and EI 
treatments in 2019, as discussed in Section 3.3, the grain yield for these 
three treatments was not significantly different (P > 0.05) (Table 6). 
Additionally, the CTM method’s grain yield was not statistically 
different from that of the ETM method in 2019 despite having applied 
significantly more irrigation water. Since 2019 was a wetter than normal 
year, the statistical influence of irrigation and effect of scheduling 
method was indistinct. In 2020 the SMM and CTM where statistically 
similar (P > 0.05) while the ETM was similar to the EI treatment. The 
CTM scheduling method based on the DANS index performed best under 
dry conditions in which the method was more suited to identify crop 
water stress. 

Irrigation water productivity values averaged across the scheduling 
treatments varied from 3.10 ± 0.09, 1.64 ± 0.47, and 2.92 
± 0.30 kg m− 3 in 2018, 2019, and 2020, respectively. In all the exper-
imental seasons, the IWP decreased with applied irrigation water similar 
to findings presented by Klocke et al. (2007), Lo et al. (2019), and 
Payero et al. (2008) at the same location. The CTM treatment had the 
least value of IWP in 2019 because excess irrigation coupled with the 
wetter than normal rainfall patterns reduced the impact of irrigation on 
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grain yield. During the normal year of 2018 the IWP were statistically 
similar across the scheduling treatments while in the wetter year of 2019 
SMM and CTM were similar to the ETM model but not to each other. 
Significant differences in IWP across scheduling treatments occurred in 
2020 with the CTM treatment having the greatest value. Since higher 
values of IWP indicated lower irrigation inputs per grain yield produced, 
growers under water limited conditions might opt for irrigation sched-
uling methods that maximize IWP for optimal profitability (Payero et al., 
2008). For instance, the CTM method had a larger value of IWP in 2020 
which could suggest that it was a suitable method for irrigation in 
limited water conditions. The reliability of IWP as reference metric for 
irrigation method performance may however only be limited to the dry 
growing season of 2020 where majority of the water applied contributes 
to crop evaporation with minimum runoff and/or deep percolation 
losses (Djaman and Irmak, 2012). Hence the evaluation of irrigation 
scheduling methods in the wetter years requires alternative reference 
metrics. 

3.7. Practical considerations for application of DANS index-based 
irrigation scheduling 

The transferability of the DANS index to other regions for irrigation 
water management is likely to be influenced by climatic and site specific 
factors. For example, it is postulated that for similar climatic conditions, 
there will be a gradual increase in the DANS index values in heavy clay 
soils which have a greater water holding capacity compared to a rapid 
increase of DANS values in sandy soils with low water holding capac-
ities. In sandier soils crops are more prone to incur water stress faster 
which will be detected by the DANS index and will require frequent but 
shallow depths of application to avoid loss via percolation. On the other 
hand, crops planted on heavy clay soils which can accommodate deeper 
depth of irrigation water are likely to experience and indicate high 
DANS index values at a later time. Comparison of the thermal response 
of crops across soil types in localized and generalized settings is a 
research line to be investigated. 

Considering climate, the numerical difference between the stressed 
and non-stressed baseline temperature is greater in arid compared to 
humid and sub-humid regions which also corresponds to a greater 
evaporative demand in the arid regions compared to humid regions. As 
such, a unit increase in canopy temperature above the non-stressed 
baseline temperature in humid regions likely accounts for greater 
stress level compared to that in arid regions. As such it is hypothesized 
that the DANS index threshold for a given crop will be lower in humid 
compared to arid regions to account for the same degree of stress. 
Further infield investigations are required to test this hypothesis. It is 
also important to note that the DANS index is only reflective of a point in 
time water stress intensity level. Further work to explore cumulative 
changes in DANS index over time and how these related to water stress 
indictors such as soil moisture are also recommended. 

It was also hypothesized that since the DANS index varied across 
growth stages, growth-specific baselines and trigger thresholds could 
further improve the method. 

4. Conclusions 

This study evaluated the performance of canopy temperature based 
(CTM) irrigation scheduling using the degrees above non-stressed 
(DANS) index as compared to commonly applied soil moisture moni-
toring (SMM) and crop ET model (ETM) based irrigation scheduling 
techniques under semi-arid climatic conditions in three growing seasons 
of 2018, 2019, and 2020. This study used a modeled non-stressed can-
opy temperature (Tcns) in the computation of the DANS index and the 
comparison between the modeled and field observed Tcns had coefficient 
of determination (R2) values of 0.88, 0.81, and 0.84 in 2018, 2019, and 
2020, respectively. The utilization of a modeled rather than an observed 
Tcns could further ease the application and adoption of thermal indices 
specifically the DANS index in crop water stress monitoring. Also, the 
DANS index matched closely to CWSI, a conventionally used thermal 
indicator of crop water stress, with R2 values of 0.64, 0.61, and 0.75 in 
2018, 2019, and 2020, respectively. 

In 2018 and 2019 the grain yields from the SMM and ETM methods 
were statistically similar but different from the CTM method while in 
2020 the grain yield of the SMM and CTM were statistically comparable 
but dissimilar from those of the ETM treatment. Across the scheduling 
treatments more irrigation water was applied during the 2020 dry year 
and the CTM method had the highest IWP of the scheduling treatments. 
On the other hand, the IWP was statistically similar for the scheduling 
treatments in the normal 2018 year. These differences in dry compared 
to wet and normal years further authenticated that CTM based irrigation 
scheduling was better suited for deficit irrigation conditions. For irri-
gation scheduling, the selected thermal index thresholds played a great 
role in irrigation efficiency for the CTM method and lowering the DANS 
index trigger threshold from 1.0◦ to 0.5◦C improved the method’s per-
formance in 2020 under the experiment conditions. 

The DANS index values were observed to vary across crop growth 
stage in this study, and it is therefore suggested that growth stage-based 
irrigation trigger threshold values could be adopted. For example, 
growth stage specific thresholds could be set lower in the early season to 
capture onset of water stress but increase overtime to reflect crop’s 
increased root zone as well as early senescence. Based on observation of 
the DANS crop growth stage variations in this study, threshold value 
range could be characterized as: 0.4 ◦C < DANS threshold < 0.5 ◦C 
during high water sensitive growth stages (tasseling and silking), DANS 
threshold = 0.5 ◦C post silking to mid-reproductive growth stages, and 
0.5 ◦C < DANS threshold < 1 ◦C in late reproductive stage. The testing 
of growth stage-based thresholds and baselines is suggested for future 
research. 

Fig. 6. Comparison between degrees above non-stressed (DANS) index and percent soil water depletion at soil profile depths of 0.6, 1.8, and 2.1 m during the 2020 
growing season. 
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