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A B S T R A C T   

Volunteer cotton plants germinate and grow at unwanted locations like transport routes and can serve as hosts 
for a harmful cotton pests called cotton boll weevils. The main objective of this study was to develop a 
geographic information system (GIS) framework to efficiently locate volunteer cotton plants in the cotton pro-
duction regions in southern Texas, thus reducing time and economic cost for their removal. A GIS network 
analysis tool was applied to estimate the most likely routes for cotton transportation, and a GIS model was 
created to identify and visualize potential areas of volunteer cotton growth. The GIS model indicated that, of the 
31 counties in southern Texas that may have habitat for volunteer cotton, Hidalgo, Cameron, Nueces, and San 
Patricio are the counties at the greatest risk. Moreover, a method based on unmanned aerial vehicle (UAV) 
remote sensing was proposed to detect the precise locations of volunteer cotton plants in potential areas for their 
subsequent removal. In this study, a UAV was used to scan limited samples of potential volunteer cotton growth 
areas identified with the GIS model. The results indicated that UAV remote sensing coupled with the proposed 
image analysis methods could accurately identify the precise locations of volunteer cotton and could potentially 
assist in the elimination of volunteer cotton along transport routes.   

1. Introduction 

Large scale cotton production dates back to as early as the 1820s in 
Texas, which has become a major cotton-producing area in the world 
(White, 1957) and currently produces nearly half of the U.S. crop. A 
serious concern for cotton production in the southern part of the state is 
the encroachment of the boll weevil from Mexico, a major pest that can 
devastate the crop (Howard, 1903). Boll weevil has been eradicated in 
almost all of the U.S. but not in Mexico, so cotton plants in southern 
Texas must be treated for the pest, and cotton plants growing in un-
managed locations must be eliminated to minimize the habitat for boll 
weevils. Because the seed is still attached to the fiber before the ginning 
process, seed cotton that falls to the ground can germinate. The resulting 

unmanaged cotton plants are referred to as volunteer (or feral) cotton, 
which can potentially provide a host for cotton boll weevils to 
proliferate. 

Volunteer cotton plants can occur in three principal locations. First, 
they can regrow in fields where a cotton crop was planted in a previous 
season and seed cotton fell to the ground during the growing season or at 
harvest. Second, they can grow in areas where unginned cotton was 
stored at the edge of a field and pieces of seed cotton fell and remained 
on the ground at that location. Most modern-day cotton harvesters 
produce round high-density modules of seed cotton that are convenient 
for harvest logistics as well as storage and transportation. The periphery 
of the modules is wrapped in plastic to hold picked cotton together and 
protect it from weathering, but the flat ends are exposed, potentially 
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allowing a few pieces of seed cotton to fall to the ground at storage lo-
cations. Third, transport of the modules from the field to the ginnery is 
often done with trucks having no covering, so small pieces of seed cotton 
from the exposed ends can be deposited along the route, resulting in 
cotton plants along the roadside. While the first two types of volunteer 
cotton locations are reasonably well defined, plants along the roadside 
can be spread over vast areas. To understand the potential extent of 
volunteer cotton along roadsides, it is necessary to map the common 
transport routes. 

The applications of geographic information systems (GIS) in agri-
culture have grown since the early days of GIS (Pierce and Clay, 2007), 
but network analysis, a common GIS tool, has not been widely applied in 
agriculture. Network analysis calculates the optimum path in a network 
(Sadeghi-Niaraki et al., 2011), and it has mainly found application in 
transportation planning. For instance, Duran-Fernandez and Santos 
(2014) built a GIS model of the National Road Network in Mexico that 
enables calculation of the best route between any two locations. Sade-
ghi-Niaraki et al. (2011) proposed a model for route planning that 
considers factors like weather, sight-seeing information, and road type. 
Ahmadzai et al. (2019) used network analysis to assess the suitability of 
urban expansion. Abousaeidi et al. (2016) applied network analysis to 
create a GIS model that determines the quickest routes for vegetable 
delivery in Malaysia. The current study aimed to use network analysis 
and a few additional simple geoprocessing tools to identify potential 
volunteer cotton growth zones along roadsides in the critical area of 
southern Texas. If these zones can be identified, some means to detect 
and remove the volunteer cotton in these zones will be required. 

Remote sensing (RS) has been widely used in agricultural production 
(Khanal et al., 2017; Lee et al., 2010; Read et al., 2003; Sui et al., 2008; 
Yang, 2012) and shown to be appropriate for identifying individual 
cotton plants in areas of mixed ground cover (Westbrook et al., 2016). 
RS with unmanned aerial vehicles (UAVs) is increasingly used in agri-
culture for applications like disease detection, yield prediction, and 
production management (Herrmann et al., 2020; Su et al., 2018; Zhang 
et al., 2019). Previous research has also indicated that UAV RS can be 
used to identify volunteer cotton in a field where another crop is 
concurrently growing (Yadav et al., 2019). UAV RS is able to provide 
image data of high enough resolution to enable cotton plant identifi-
cation at the single-plant level (Wang et al., 2020a). Multispectral in-
formation, including vegetation indices (VIs) like normalized difference 
vegetation index (NDVI), can be used to distinguish cotton plant pixels 
from ground pixels because of the difference in reflectance (Wang et al., 
2020a,b). However, volunteer cotton plants grown on the roadside are 
commonly surrounded by other plants with similar reflectance to cotton 
plants. A major challenge of this research was to differentiate cotton 
plants from other plants accurately. The height difference between 
cotton plants and the surrounding plants could contribute to the 
differentiation. 

The canopy height model (CHM) has been commonly used in forestry 
applications, such as in treetop detection and tree parameter measure-
ment (Guerra-Hernández et al., 2017; Nie et al., 2019; Tian et al., 2019). 
CHM has also been used to estimate the height of crop plants and to help 
separate crop rows from soil (Matese et al., 2017). CHM can be derived 
from light detection and ranging (Lidar) data as well as 

Fig. 1. Interstate 10 (I-10) and the cotton-producing counties in South Texas.  

T. Wang et al.                                                                                                                                                                                                                                   
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photogrammetric processing of mosaicked image data (Gu et al., 2020; 
Han et al., 2018; Jayathunga et al., 2018; Lisein et al., 2013). Because of 
the rapidly increasing use of UAVs in recent years and the low cost of 
multispectral sensors relative to Lidar sensors, the photogrammetrically 
derived CHM has become more common in RS studies. By incorporating 
high-resolution CHM data, identification of individual volunteer cotton 
plants may be possible with the help of an object classification algorithm 
accounting for spectral and height information. 

Superpixel segmentation is an image processing algorithm that ag-
gregates the raw pixels of an image to a larger size, superpixels, based on 
spectral and spatial data. The digital number (DN) values of raw pixels 
are averaged and assigned as the DN of the superpixel. The method is 
thus a means of descaling, but it keeps more of the underlying features of 
an object compared to simple morphological resampling. Therefore, 
Superpixel segmentation has been used in object detection (Sultani 
et al., 2017) and tree delineation (Wang et al., 2018), and it has also 

proven effective for crop disease detection (Zhang et al., 2017, 2018). 
Up to now, no prior research has provided an efficient way to locate 

likely volunteer cotton habitat along roadsides or to identify individual 
volunteer cotton plants. The goal of this study was thus to provide a 
means for effective and efficient identification of volunteer cotton plants 
that might result from transportation in southern Texas cotton produc-
tion regions. Specific objectives were (1) to develop a GIS-based network 
analysis model to predict high-potential zones for volunteer cotton 
habitat resulting from transportation from cotton fields to ginneries, and 
(2) to develop a method to use UAV RS and image analysis to identify 
individual volunteer cotton plants for treatment or removal. 

Fig. 2. Flow chart of volunteer cotton habitat prediction model setup.  

T. Wang et al.                                                                                                                                                                                                                                   
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2. Materials and methods 

2.1. Study area 

This study focused on cotton fields located to the south of Interstate 
Highway 10 (I-10; Fig. 1) as possible sources of volunteer cotton. These 
fields spread across 31 counties in southern Texas with a total area of 
8.9 M ha (22 M acres). While UAV RS has the potential for the identi-
fication of volunteer cotton plants, monitoring such a large area with 
UAVs would be unjustifiably costly and time-consuming. Therefore, 
UAV RS was used in only a few selected areas for detecting volunteer 
cotton in this study. 

2.2. GIS data collection 

Historical location information on cotton field locations in southern 
Texas was provided by the Texas Boll Weevil Eradication Foundation as 
a digitized, spatially referenced, polygon shapefile. Each polygon in this 
file represents the shape and location of an individual cotton field. Lo-
cations of the ginneries in this region were provided by the Texas Cotton 
Ginners Association. The road network data for the study area were 
obtained from the TIGER (Topologically Integrated Geographic Encod-
ing and Referencing) database. 

ArcMap 10.5 GIS software (ESRI Corp., Redlands, CA, USA) was used 
to process the geospatial data and set up the model for analysis. ArcGIS 
has basic mapping capability as well as advanced geoprocessing capa-
bilities, enabling users to import, visualize, and execute customized in-
structions with geospatial data (Abousaeidi et al., 2016). 

2.3. GIS model setup 

A model was developed from the collected data to demarcate the 
potential habitat area of volunteer cotton along roadsides south of I-10. 
The data on locations of cotton fields, ginneries, and roads were pro-
cessed in multiple steps with the network analysis tool (Fig. 2). A 
network model uses links to represent the linear channels of flow and 
nodes to represent the origin and destination (Lupien et al., 1987). The 

coordinates of the ginnery locations were converted into a point 
shapefile and imported to the network analysis tool. The cotton field 
boundaries were converted from polygons to points with a data con-
version tool in ArcGIS; each cotton field was thus represented by a point 
located at the centroid of the original polygon. Considering the magni-
tudes of total transportation distances, the error associated with the 
distance between field centroids and field edges is negligible. 

The first phase of network analysis was to create a geodatabase 
containing all routes in the study area. The road network data of the 31 
counties were thus imported as a feature dataset. The methods of 
network analysis can be divided into three main categories, one-to-one, 
many-to-one (or one-to-many), and many-to-many (Fig. 3). One-to-one 
is used to calculate the optimal route from an individual cotton field 
to a selected ginnery, whereas many-to-one calculates optimal routes 
from multiple fields to a ginnery, and many-to-many calculates optimal 
routes from multiple fields to multiple ginneries simultaneously. The 
‘closed facilities network analysis’ method was applied, which includes 
characteristics from both the many-to-one and many-to-many ap-
proaches. For example, if only one ginnery exists in a particular small 
area, the best routes between every cotton field in the nearby area and 
this ginnery are calculated. If two or more ginneries are in the nearby 
area, the routes between each field and each ginnery are calculated, and 
the algorithm automatically selects the shortest route among them. 

The objective of a network model is to determine the minimum-cost 
path between the origin and destination, which could either be the 
shortest distance, the shortest travel time, or a combination of multiple 
criteria. In this study it was assumed that drivers would select the 
shortest route for cotton transportation. The road network data used in 
this study were included in a simple line shapefile that didn’t contain 
specific attribute information of each road segment. Thus, the model 
assumed all road segments to be bidirectional and ignored possible 
barriers or turning restrictions. The model ignored detailed factors such 
as traffic, road conditions, and the speed limits of all road segments. 
Furthermore, the model did not consider the situations in which cotton 
farmers may choose the facility to gin their cotton for additional 
business-related reasons. 

Once the model identified the “optimal” routes, a 100-m buffer was 

Fig. 3. The basic type of network analysis methods in this study. (a) one to one; (b) many to one; (c) many to many. (Scale 1:500,000).  

Fig. 4. The images were collected with (a) a DJI Matrice 100 UAV with (b) a Zenmuse X3 NDVI camera.  

T. Wang et al.                                                                                                                                                                                                                                   
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subsequently applied to the routes to estimate potential volunteer cotton 
growth areas along roadsides. Based on consultation with a an expert in 
the occurrence volunteer cotton (Yang, 2017), the 100-m buffer was 

selected as a reasonable maximum distance that seed cotton might be 
blown from the roadside into surrounding fields and pastures. The areas 
of potential volunteer cotton habitat along roadsides were calculated 

Fig. 5. The false-color image mosaic of an area along a road near Portland, TX (Nov. 16, 2017).  

Fig. 6. The flowchart of the plant-level volunteer cotton detection method.  

T. Wang et al.                                                                                                                                                                                                                                   
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with the network analysis model for each Texas county south of I-10. 

2.4. Validation of GIS model and classification based on UAV remote 
sensing 

2.4.1. UAV image data collection 
To validate the GIS model, UAV multispectral images were acquired 

near Portland, Texas, along roadsides within the volunteer-cotton 
habitat zone predicted by the model on November 16, 2017. Volun-
teer cotton plants were observed at a specific roadside location, and 
images were collected with a Zenmuse X3 NDVI camera (DJI Technology 
Inc., Shenzhen, China; Fig. 4b) mounted on a DJI Matrice 100 rotary- 
wing UAV (DJI Technology Inc., Shenzhen, China; Fig. 4a). Images of 
1280 × 960 pixels were collected at 15.2 m (50 ft) above ground level 

(AGL), providing for 0.783 cm pixel resolution. The flying speed was 
around 0.9 m/s with 70% of forward and sideward overlap. The survey 
covered 0.55 ha in 270 s. Each image contained two bands of data: blue 
(420–476 nm) and near-infrared (NIR, 764–840 nm). Of the images 
collected, 135 were mosaicked with Pix4Dmapper software (Pix4D 
Corp., Lausanne, Switzerland) to generate an orthomosaic for a short 
segment of road and adjacent roadside area (Fig. 5). The image mosaic 
was geo-referenced by using three ground control points (GCPs). Three 
radiometric references (3%, 20%, and 45% reflectance) were used for 
radiometric calibration. 

To reinforce the original findings with the prediction model, an 
additional round of UAV-based validation was conducted near Woods-
boro, Texas, on September 9, 2021. Images were collected with a DJI 
Matrice 100 carrying a MicaSense RedEdge camera (Micasense, Seattle, 
WA, USA). The UAV was flying at 30 m AGL with 2.8 m/s of flying speed 
and 70% of forward and sideward overlap. 

2.4.2. Classification and validation 
Various types of live vegetation like grass and weeds were observed 

along the road. Because cotton plants have a bushy architecture and are 
commonly taller than most of the surrounding plants on the roadside, 
the height of vegetation was considered along with the spectral infor-
mation to help distinguish cotton plants from other plants. The height of 
the vegetation was determined by creating a CHM, derived by sub-
tracting the digital terrain model (DTM) from the digital surface model 
(DSM). A DTM generated with Pix4D can only achieve pixel resolution in 
that is five times coarser than the DSM. Therefore, the DTM was up- 
sampled to match the DSM’s resolution before being subtracted from 
the DSM. The DSM and DTM were calculated by means of structure from 
motion (SfM) processing in Pix4D. The blue and NIR spectral data and 
height (CHM) data were stacked to form a visual image (referred to as 
the CHM-CIR image) used in a classification process for volunteer cotton 
plants (Fig. 6). An algorithm based on simple linear iterative clustering 
(SLIC) Superpixel segmentation, k-means clustering, and morphological 
image processing was developed to automatically detect individual 
volunteer cotton plants with the CHM-CIR image. The CHM-CIR image 
was segmented into superpixels based on similar spatial (including 
height) and spectral information. The number of segments was user- 
determined according to the resolution of the input image and the size 
of the cotton plants in the image from the canopy view. The DN value of 
each superpixel was the average of the DN values of the original pixels 
within the area of the superpixel. A two-class k-means classification was 
applied to the superpixel image to generate a binary regional classifi-
cation map, which indicated the locations of volunteer cotton plants. In 
the binary map, volunteer cotton regions were assigned a value of 1, 
while all other regions were assigned a value of 0. To improve the 
precision of identification, a morphological process was applied to the 

Fig. 7. A GIS map indicating (a) all the habitats of volunteer cotton in southern Texas (Scale 1:7,000,000), and (b) Nueces county in greater detail 
(Scale 1:3,500,000). 

Table 1 
The volunteer cotton potential habitat area and the potential habitat proportion 
of each county.  

Ranking by 
area 

County 
name 

Potential habitat 
area (ha) 

Potential habitat proportion of 
county area (%) 

1 Hidalgo  43056.57  10.47 
2 Cameron  34347.44  10.74 
3 Nueces  33188.06  10.82 
4 San 

Patricio  
23622.13  12.90 

5 Medina  20892.16  6.05 
6 Willacy  19028.62  9.54 
7 Jim Wells  16806.57  7.48 
8 Uvalde  15176.17  3.76 
9 Zavala  13364.11  3.98 
10 Frio  13353.99  4.57 
11 Bee  12609.81  5.54 
12 Victoria  11392.40  4.96 
13 Kleberg  10558.06  3.75 
14 Refugio  10477.93  5.03 
15 Karnes  10419.33  5.37 
16 Atascosa  9878.02  3.14 
17 Calhoun  7511.50  2.61 
18 Starr  7426.47  2.33 
19 Wilson  7022.44  3.37 
20 Live Oak  6681.41  2.40 
21 DeWitt  5890.57  2.51 
22 Goliad  5058.98  2.28 
23 Bexar  3797.09  1.17 
24 Kinney  3247.40  0.92 
25 Maverick  2588.00  0.78 
26 Dimmit  1980.85  0.58 
27 Duval  1956.06  0.42 
28 Zapata  1780.74  0.65 
29 Lavaca  1683.80  0.67 
30 Aransas  339.27  0.23 
31 La Salle  295.37  0.08  

T. Wang et al.                                                                                                                                                                                                                                   
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superpixel image to identify the centroids of the superpixels. In the 
output of this process, centroids were marked with a 1, while non- 
centroid areas were marked with a 0. The intersection of the binary 
classified image and the centroid output formed a map of individual 
cotton plants, with the center points of each cotton plant clearly marked 
out and given a value of 1. 

To validate the classification result, ground-truth data were collected 
in the study area. Specifically, GPS coordinates of the volunteer cotton 
plants were collected with a Trimble Geoexplorer 6000 GPS receiver 
(Trimble, Sunnyvale, CA). A confusion matrix including overall accu-
racy, kappa coefficient, errors of commission, and errors of omission, 
was generated for accuracy assessment. The classification was assessed 
based on whether each superpixel was correctly classified or not. The 
kappa coefficient represents the agreement between predicted class type 
and ground-truth class type. The errors of commission represent 

overclassification of a superpixel into the volunteer cotton plant, while 
the errors of omission represent underclassification of a superpixel 
where volunteer cotton existed but was not identified. 

3. Results and discussion 

3.1. Network analysis 

The map of potential volunteer cotton habitat resulting from trans-
porting seed cotton from fields to gins (Fig. 7) shows the potential area 
that would need to be surveilled across the 31 counties south of I-10. The 
potential habitat area was 355,431 ha, less than 4% of the total area of 
the 31 counties. 

The potential habitat area in each of these Texas counties was 
calculated (Table 1), and the proportion in each county ranged from less 

Fig. 8. The risk severity of volunteer cotton caused by transportation shown by counties in southern Texas.  

Fig. 9. Three predicted habitat locations in (a) Portland, TX of Nueces county and two predicted habitat locations in (b) Woodsboro, TX of Refugio county validated 
to have volunteer cotton plants. 

T. Wang et al.                                                                                                                                                                                                                                   
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than 0.1% to nearly 13%. A map of these counties was colored according 
to the potential volunteer cotton area (Fig. 8) based on the network 
analysis model. Hidalgo and Cameron counties had the largest (43,057 
ha) and second-largest (34,347 ha) potential volunteer cotton habitat 
areas, respectively. These counties are located on the border with 
Mexico and thus have a high risk of encroachment by cotton boll weevils 
across the Mexican border. Nueces county ranked third with 33,188 ha 
of potential volunteer cotton area. This county is only 161 km (100 

miles) from the border, so it also presents a concern as a potential boll 
weevil habitat. San Patricio county, adjacent to and north of Nueces 
County, ranked fourth with 23,475 ha of potential infested habitat area. 
Nueces and San Patricio counties surround the cotton-intensive Corpus 
Christi Bay area and had the highest proportions of potential habitat 
(10.8% and 12.9%, respectively), so they were of particular interest. 

Fig. 10. The ground-truth images corresponding to Locations A, B, and C in Fig. 9. All of these cotton plants were located along the roadside.  

Fig. 11. The CHM image of Location A. The height of objects ranged from 0 to 0.6 m.  

Fig. 12. The composite image of blue, CHM, and NIR (CHM-CIR). The green (cyan) color clusters represent cotton plants. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

T. Wang et al.                                                                                                                                                                                                                                   
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3.2. Selecting remote-sensing locations based on the GIS model 

Volunteer cotton plants were ground-truthed at five predicted loca-
tions (A, B, C, D and E in Fig. 9) near Portland, Texasin Nueces County 
and Woodsboro, Texas in Refugio county, where volunteer cotton plants 
were readily observed. Most of the cotton plants grew along the roadside 
within roughly 3 to 10 m from the road. At Location B, volunteer cotton 
plants were found in both small bush and larger tree forms (Fig. 10) 
more than 50 m from the road, indicating some plants had been growing 
there for a significant time period. UAV RS was conducted to classify 
volunteer cotton at Location A. In a CHM image of Location A, the height 
and location of small bush-form cotton plants (Fig. 11, bottom left) were 
visible and differentiable from tree-form cotton plants (Fig. 11, top 
right). The canopy height of the volunteer cotton plants in the study 
ranged from a few cm to 0.6 m. One volunteer cotton plant was found at 

each location, D and E. 

3.3. Classification and validation 

The CHM data were linearly normalized into the value range of 
0–255 to match the range of DN values of the blue and NIR bands. The 
raw output image of the Zenmuse NDVI camera had the blue and NIR 
bands assigned to blue and red bands for visualization. To minimize 
changes in the output composite images, CHM was assigned to the green 
band, while blue and NIR were kept in the original bands (Fig. 12). 
Green (cyan) color clusters tended to represent tall objects, which were 
generally cotton plants in this case. 

For the purpose of demonstration, the northeast corner of Location A 
is used as an example of the image composition and classification pro-
cess in Fig. 13. The raw multispectral image (Fig. 13a) and the CHM data 

Fig. 13. The image processing results for each step of the volunteer cotton identification algorithm on the example image. (a) Raw multispectral image; (b) CHM 
data; (c) CHM-CIR image; (d) Superpixel segmentation image; (e) Regional classification for indication volunteer cotton area; (f) Centroid location of each seg-
mentation; and (g) The final identification result of volunteer cotton. 

T. Wang et al.                                                                                                                                                                                                                                   
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(Fig. 13b) were stacked to form the CHM-CIR image (Fig. 13c). SLIC 
Superpixel segmentation was applied to the CHM-CIR image to get the 
segmentation image (Fig. 13d). K-means classification was applied to 
the segmentation image to obtain the two-class classification result 
(Fig. 13e), while the centroids of superpixels were identified (Fig. 13f) 
based on the segmentation image. The identified cotton plants were 
marked with green dots (Fig. 13g). 

The plant-level classification result of the entire Location A region is 
shown in Fig. 14. Volunteer cotton plants were detected correctly in 
96.3% of cases (26 of 27). One plant was misclassified (light blue arrow 
in Fig. 14) and one plant was overclassified (dark blue arrow in Fig. 14). 

The image was segmented into 4,368 superpixels (Table 2). The 

overall accuracy reached 99.95% with a Kappa coefficient of 0.9630. It 
must be noted, however, that the high accuracy was based on a rela-
tively small area. Thus the commission and omission errrors for cotton, 
both of which were 3.70% in this particular case, were more meaningful. 

The misclassified cotton plant (Fig. 13a, plant #2) was observed to 
be similar to the rest in terms of shadows and color variance. However, 
its height was less than that of the other cotton plants, so the CHM data 
did not suggest that the object was a cotton plant. In future studies, a 
filter that generates a buffer area around tall objects should be devel-
oped to increase the weight of CHM information in image processing. 

The Blue-NDVI index (Eq. (1)) was also considered as a potential 
indicator to identify the cotton plants. 

Fig. 14. The plant-level classification result. Each green dot represents an individual volunteer cotton plant. The misclassified and overclassified plants are high-
lighted with light blue and dark blue arrows, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 

Table 2 
The accuracy and confusion matrix of plant-level volunteer cotton classification.  

Overall accuracy 99.95%     
Kappa Coefficient 0.9630      

Class types determined from reference source (Ground-truth)  Commission Omission 
Class types determined from classified map  Cotton Others Totals   

Cotton 26 1 27 1/27 
3.70% 

1/27 
3.70% 

Others 1 4,340 4,341 1/4341 
0.02% 

1/4341 
0.02%  

Totals 27 4,341 4,368    

Fig. 15. All six cotton plants are clearly shown in (a) CHM data, while only 3 of 6 can be observed from (b) Blue NDVI data.  
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Blue NDVI =
NIR − Blue
NIR + Blue

(1) 

However, the reflectance signature of cotton and surrounding plants 
was similar, resulting in similar Blue-NDVI values (Fig. 15). The CHM 
data were decisive in identifying all six cotton plants, but Blue-NDVI 
contributed little to the differentiation of cotton plants #4, #5, and 
#6. In most cases, spectral and height information are expected to 
provide adequate discrimination, but when cotton and surrounding 
plants have similar height and spectral reflectance, the algorithm used 
here will have difficulty distinguishing them without additional 
contextual information. 

CHM-CIR images have been shown to be able to distinguish cotton 
plants from the ground, non-vegetation objects, and other types of short 
plants like short weeds. However, if the weeds are tall, such as well- 
developed Ragweed or Palmer Amaranth, these methods alone may 
not be able to differentiate cotton plants from weeds. In general, how-
ever, this type of UAV RS data can potentially eliminate the effect of 
other plants and provide accurate classificationof volunteer cotton 
plants, or even other types of crop plants needing to be differentiated 
from their surroundings. 

Using UAV RS to identify volunteer cotton is still exploratory, and 
two directions could be followed to improve the process in the future. If 
high-resolution images are being used, cotton bolls can potentially be 
identified as another criterion to differentiate cotton plants. If the res-
olution is too coarse to identify cotton bolls, morphological and deep 
learning algorithms may be able to help. Morphological tools such as 
segmentation can be used to identify cotton plants according to their 
features like shape and color, etc. At mean time, deep learning has good 
performance on automatically feature extraction. 

UAVs currently have limitations making them not feasible for 
covering large areas, but future improvement will likely alleviate this 
problem. For example, issues such as flight time can be overcome with 
breakthroughs in battery technology and removal of airspace re-
strictions against flying beyond visual line of sight (BVLOS). 

4. Conclusion 

Volunteer cotton in southern Texas creates the risk of providing a 
habitat for destructive cotton boll weevils. In this study, a GIS-based 
framework for effective and efficient identification of volunteer cotton 
plants associated with transporting seed cotton from fields to gins was 
established. The proposed GIS network analysis model drastically 
reduced the size of potential habitat area requiring surveillance, 
enabling a focus on transportation routes between cotton fields and 
cotton ginneries. A total of 31 counties in southern Texas have potential 
habitat for volunteer cotton, and the proposed GIS model identified 
Hidalgo, Cameron, Nueces, and San Patricio as particularly high-risk 
counties for volunteer cotton habitat. Three predicted locations in 
Nueces county were used as examples to show volunteer cotton along 
the roadside. A plant-level classification method based on UAV RS was 
developed. The method was able to identify volunteer cotton plants 
automatically with excellent overall accuracy. The proposed GIS model 
and the plant-level volunteer cotton classification method can poten-
tially enable precise and timely treatment and control of volunteer 
cotton. 
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