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1.  Introduction
Continuous forward melting models are necessary to interpret the origins of empirically measured U-series iso-
topic disequilibria in basaltic lavas, but the limited and unreliable availability of reproducible tools for making 
such calculations remains a persistent problem for geochemists. To date, a number of models have been devel-
oped for this task, including classical dynamic melting after McKenzie (1985) and the reactive porous flow model 
of Spiegelman and Elliott (1993). There have since been numerous approaches to using both the dynamic and 
porous flow models that range from simplified analytical solutions (e.g., Sims et al., 1999; Zou & Zindler, 2000) 
to incremental dynamic melting calculators (Stracke et  al.,  2003), two-porosity calculators (Jull et  al.,  2002; 
Lundstrom et  al.,  2000; Sims et  al.,  2002), and one-dimensional numerical solutions to reactive porous flow 
(Spiegelman, 2000) and dynamic melting (Bourdon et al., 2005; Elkins et al., 2019). Unfortunately, some of the 
approaches published since 1990 lacked publicly available tools that would permit others to directly apply the 
authors’ methods, and while the more simplified and incremental approaches remain appropriate for asking and 
approaching some questions, they are insufficient for other applications that require more complex approaches 
(e.g., two-lithology melting; Elkins et al., 2019). Other tools like UserCalc that were available to public users 
(Spiegelman, 2000) were limited in application and have since become unavailable.

In light of the need for more broadly accessible and flexible solutions to U-series disequilibrium problems in par-
tial melting, here we present a cloud-server hosted, publicly available numerical calculator for one-dimensional, 
decompression partial melting. The tool is provided in a Jupyter notebook with importable Python code and can 
be accessed from a web browser. Users will be able to access and use the tool using a free cloud server account, 
or on their own computer given any standard Python distribution. As shown below, the notebook is structured to 
permit the user to select one of two primary model versions, either classical reactive porous flow after Spiege-
lman and Elliott (1993) and Spiegelman (2000), or a new disequilibrium transport model, developed after the 
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appendix formulas of Spiegelman and Elliott (1993). The new model ranges from pure disequilibrium porous 
flow transport (i.e., the mass-conserved equivalent of true fractional melting over time) to a “scaled” disequilibri-
um scenario, where the degree of chemical equilibrium that is reached is determined by the relationship between 
the rate of chemical reaction and the solid decompression rate (which is, in turn, related to the overall melting 
rate), in the form of a Damköhler number.

This scaled disequilibrium model resembles the classic dynamic melting model of McKenzie (1985), with the 
caveat that ours is the first U-series melting model developed for near-fractional, disequilibrium transport where 
mass is also conserved within a one-dimensional melting regime. That is, rather than controlling the quantity of 
melt that remains in equilibrium with the solid using a fixed residual porosity, the melt porosity is controlled by 
Darcy’s Law and mass conservation constraints after Spiegelman and Elliott (1993), and the “near-fractional” 
scenario is simulated using the reaction rate of the migrating liquid with the upwelling solid matrix.

2.  Calculating U-Series in Basalts During Mass-Conserved, One-Dimensional 
Porous Flow
2.1.  Solving for Equilibrium Transport

Here, we consider several forward melting models that calculate the concentrations and activities of U-series 
isotopes (238U, 230Th, 226Ra, 235U, and 231Pa) during partial melting and melt transport due to adiabatic mantle 
decompression. Following Spiegelman and Elliott (1993), we start with conservation of mass equations for the 
concentration of a nuclide i , assuming chemical equilibrium between melt and solid:
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where t is time, f
iE c  is the concentration of nuclide i in the melt, iE D  is the bulk solid/liquid partition coefficient for 

nuclide i ,  fE  is the density of the fluid and sE  is the density of the solid, E  is the porosity (local volume fraction of 
melt), E v is the velocity of the melt and E V  the velocity of the solid in three dimensions, iE  is the decay constant of 
nuclide i , and ( 1)E i  indicates the radioactive parent of nuclide i see Table 1. Equation 1 states that the change in 
total mass of nuclide i in both the melt and the solid is controlled by the divergence of the mass flux transported 
by both phases and by the radioactive decay of both parent and daughter nuclides (i.e., the right hand side of the 
equation above).

The equilibrium model of Spiegelman and Elliott (1993) assumes that complete chemical equilibrium is main-
tained between the migrating partial melt and the solid rock matrix along a decompressing one-dimensional 
column. To close the equations, they assume that melt transport is described by a simplified form of Darcy's Law 
for permeable flow through the solid matrix. In one dimension, for a steady-state upwelling column of melting 
mantle rocks, they defined the one-dimensional melt and solid velocities (E w and E W , respectively), and expressed 
the melt and solid fluxes as functions of height (E z ) in terms of a constant melting rate 0ΓE  :

   0Γf w z� (2)

    0 0(1 ) Γs sW W z� (3)

where 0E W  is the solid mantle upwelling rate, and 0ΓE  is equivalent to  0s maxE W F  divided by the depth E h for a maxi-
mum degree of melting maxE F  .

Assuming an initial condition of secular equilibrium, where the initial activities  ,0
f

i i iE c D  are equivalent for parent 
and daughter nuclides, they derived a system of differential equations for the concentration f

iE c  in any decay chain, 
which can be solved numerically using Equation 10 from Spiegelman and Elliott (1993):
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Variable Definition

f
iE c Concentration of nuclide i in the liquid
s
iE c Concentration of nuclide i in the solid

f
iE U Natural log of the concentration of nuclide i in the liquid relative to its initial concentration
s
iE U Natural log of the concentration of nuclide i in the solid relative to its initial concentration
stable
iE U Stable element component of f

iE U
rad
iE U Radiogenic component of f

iE U

iE a Activity of nuclide i
0
iE a Initial activity of nuclide i

E z Height in a one-dimensional melting column

E h Total height of the melting column

E  z h/  , Dimensionless fractional height in scaled one-dimensional melting column

iE D Bulk solid/liquid partition coefficient for nuclide i
0
iE D Initial bulk solid/liquid partition coefficient for nuclide i

 fE Density of the liquid

sE Density of the solid

E Porosity (volume fraction of liquid present)

0E Maximum or reference porosity

E V Solid velocity

E v Liquid velocity

E W One-dimensional solid velocity

E w One-dimensional liquid velocity

0E W Solid mantle upwelling velocity

iE Decay constant for nuclide i

iE  
i
h W/ 0 , Decay constant for nuclide i scaled by solid transport time

ΓE Melting rate

0ΓE Constant melting rate

maxE F Maximum degree of melting
i
effE w Effective liquid velocity of nuclide i

1i
iE R Ingrowth factor

 0
iE Initial degree of secular disequilibrium in the unmelted solid

E k Permeability

rE K Relative permeability factor

E n Permeability exponent

dE A Permeability calibration function

E R Reactivity rate factor

E d Diffusion/reaction length scale (e.g., grain-size)

E Da Damköhler number

Table 1 
List of Variables Used in This Study
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where c
i
 is the scaled melt concentration ( / ), c c

i

f

i

f

0  , E  is the dimensionless fractional height in the scaled column, 
equal to 0 at the base and 1 at the top, and
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is the effective velocity for element i .

In their appendix, Spiegelman and Elliott (1993) developed the more general (and, arguably, realistic) form where 
ΓE  and iE D  are functions of height E z . The UserCalc model of Spiegelman (2000) then formulated a one-dimensional 
numerical integration for the concentrations of selected U-series isotopes in continuously produced partial melts 
with height E z , after the equilibrium formulas above. The concentration expression derived by Spiegelman (2000) 
for the equilibrium scenario (Formula 6 in that reference) is:
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where E F is the degree of melting. Spiegelman (2000) further observed that solving for the natural log of the 
concentrations normalized to the initial concentration of i , iE U  , rather than the concentrations themselves, is more 
accurate, particularly for highly incompatible elements (Formulas 7–9 of Spiegelman [2000]). This is because 
log concentrations change linearly during melting, rather than exponentially, and are more numerically stable to 
calculate.
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For the formulas above, Spiegelman (2000) defined a series of variables that allow for simpler integration formu-
las and aid in efficient solution of the model, namely
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and substituting from the formulas above
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where 0
iE D  is the initial bulk solid/melt partition coefficient for element i , 1i

iE R  is the ingrowth factor, and  0
iE  is the 

initial degree of secular disequilibrium for element i in the unmelted solid.

U z c z c
i f f
( ) ln( ( ) ) /

0  , the log of the total concentration of nuclide i in the melt, can then be decomposed into

 ( ) ( ) ( )stable rad
i i iU z U z U z� (15)

where
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DU z
FD z� (16)

is the log concentration of a stable nuclide with the same partition coefficients, and ( )rad
iE U z  is the radiogenic 

ingrowth component. An alternate way of writing the radiogenic ingrowth component of Equation 9 of Spiege-
lman (2000) is:
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where
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

i

i
h

W0

� (18)

is the decay constant of nuclide i , scaled by the solid transport time (h W/ 0 ) across a layer of total height E h . Note 
Equation 17 is solved over a column of dimensionless height 1 where   [0,1]E  .

Using these equations, the UserCalc reactive porous flow calculator accepted user inputs for both ( )E F z  and ( )iE D z  . 
The method uses a formula for the melt porosity (( )E z  ) based on a Darcy’s Law expression with a scaled perme-
ability factor (Formula 20 from Spiegelman [2000]):

   
 

  
           

2( ) (1 ) 1 ( ) 1 ( ) 0n s s
r d

f f
K z A F z F z� (19)

where ( )rE K z  is the scaled permeability with height E z , dE A  is a permeability calibration function, and E n is the per-
meability exponent. The permeability exponent for a tube-shaped fluid network is expected to be n = 2, while 
for a sheet-shaped network it is n = 3; recent measurements of the permeabilities of experimental magmatic melt 
networks suggest realistic magma migration occurs in a manner intermediate between these two scenarios, with 
n = 2.6 (Miller et al., 2014). The relative permeability rE K  is calculated with respect to the permeability at the top 
of the column, that is, depth  finalE z z  :


( )( )

( )r
final

k zK z
k z� (20)

and allows for locally enhanced flow (e.g., mimicking the effects of a relatively low viscosity fluid).

Our model implementation reproduces and builds on the prior efforts summarized above, using a readily acces-
sible computer language (Python) and web application (Jupyter notebooks).

2.2.  Solving for Complete Disequilibrium Transport

We further present a calculation tool that solves a similar set of equations for pure chemical disequilibrium 
transport during one-dimensional decompression melting. This model assumes that the solid produces an instan-
taneous fractional melt in local equilibrium with the solid; however, the melt is not allowed to back-react with 
the solid during transport, as it would in the equilibrium model above. In the limiting condition defined by stable 
trace elements (i.e., without radioactive decay), the model reduces to the calculation for an accumulated fractional 
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melt. The model solves for the concentration of each nuclide i in the solid ( )E s  and liquid ( )E f  using Equations 26 
and 27 of Spiegelman and Elliott (1993):

   

 
 

   
  1 1
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which maintain conservation of mass for both fluid and solid individually, and do not assume chemical equilibra-
tion between the two phases. As above, the equations depend on ( )E F z  and ( )iE D z  , that is, melt fractions and bulk 
rock partition coefficients that can vary with depth.

As above, the solid and fluid concentration equations are rewritten in terms of the logs of the concentrations:
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We assume that initial ,0 ,0 ,0
s f
i i iE c D c  . Also as above, the log concentration equations can be broken into stable and 

radiogenic components, where the stable log concentration equations are:
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which are equivalent to a model for a fractionally melted residual solid and an accumulated fractional melt for 
the liquid.

Reincorporating this with the radiogenic component and scaling all distances by E h gives the dimensionless 
equations:
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2.3.  Solving for Transport With Chemical Reactivity Rates

The two models described above are end members for complete equilibrium and complete disequilibrium trans-
port. For stable trace elements, these models produce melt compositions that are equivalent to batch melting and 
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accumulated fractional melting (e.g., Spiegelman & Elliott, 1993). However, the actual transport of a reactive 
fluid (like a melt) through a solid matrix can fall anywhere between these end members depending on the rate of 
transport and re-equilibration between melt and solid, which can be sensitive to the mesoscopic geometry of melt 
and solid (e.g., Spiegelman & Kenyon, 1992). In an intermediate scenario, we envision that some reaction occurs, 
but chemical equilibration is incomplete due to slow reaction rates relative to the differential transport rates for 
the fluid and solid. If reaction times are sufficiently rapid to achieve chemical exchange over the lengthscale of 
interest before the liquid segregates, chemical equilibrium can be achieved; but for reactions that occur more 
slowly than effective transport rates, only partial chemical equilibrium can occur (e.g., Grose & Afonso, 2019; 
Iwamori, 1993, 1994; Kogiso et al., 2004; Liang & Liu, 2016; Peate & Hawkesworth, 2005; Qin et al., 1992; 
Yang et al., 2000). Such reaction rates can include, for example, the rate of chemical migration over the distance 
between high porosity veins or channels (e.g., Aharonov et al., 1995; Jull et al., 2002; Spiegelman, 2000; Stracke 
& Bourdon, 2009); or, at the grain scale, the solid chemical diffusivity of elements over the diameter of individual 
mineral grains (e.g., Feineman & DePaolo, 2003; Grose & Afonso, 2019; Oliveira et al., 2020; Qin et al., 1992; 
Van Orman et al., 2002, 2006).

To model this scaled reactivity scenario, we start with our equations for disequilibrium transport in a steady-state, 
one-dimensional conservative system, and add a chemical back-reaction term that permits exchange of elements 
between the fluid and the solid. The reaction term is scaled by a reactivity rate factor, E R and expressed in kg/ 3mE  /
yr (i.e., the same units as the melting rate). The reactivity rate thus behaves much like the melting rate by gov-
erning the rate of exchange between the solid and liquid phases, effectively scaling the degree to which chemical 
exchange can occur. This new term could simulate a number of plausible scenarios that would physically limit 
the rate of chemical exchange by transport along a given distance in a linear manner, such as the movement or 
diffusion of nuclides through the porous solid matrix between melt channels a given distance apart.

First, returning to the conservation of mass equations for a steady-state, one-dimensional, reactive system of 
stable trace elements, and using Γ( )E z  to represent the melting rate:

   Γ( )f
d w z
dz� (29)

   (1 ) Γ( )s
d W z
dz� (30)

 
 

    
 

( ) ( )( ) Γ( ) ( )
( ) ( )

s s
f fi i

f i i
i i

d c z c zwc z z c z
dz D z D z

R� (31)

 
 

      
 

( ) ( )(1 ) ( ) Γ( ) ( )
( ) ( )

s s
s fi i

s i i
i i

d c z c zWc z z c z
dz D z D z

R� (32)

where, for an adiabatic upwelling column,

 0Γ( ) s
dFz W
dz� (33)

From this, Equations 29 and 30 can be integrated (with appropriate boundary conditions at  0E z  ) to give

   0 ( )f sw W F z� (34)

    0(1 ) (1 ( ))s sW W F z� (35)

Next, we expand the concentration equations to include the reactivity factor, and substitute the conservation of 
total mass determined above:


 

     
 

0
( ) ( )( ) ( ) ( )Γ( ) Γ( ) ( )
( ) ( )

s s
f f fi i

s i i i
i i

d c z c zW F z c z c z z z c z
dz D z D z

R� (36)



Earth and Space Science

ELKINS AND SPIEGELMAN

10.1029/2020EA001619

8 of 30


 

       
 

0
( ) ( )(1 ( )) ( ) ( )Γ( ) Γ( ) ( )
( ) ( )

s s
s s fi i

s i i i
i i

d c z c zW F z c z c z z z c z
dz D z D z

R� (37)

If we then combine the Γ( )E z  terms and rearrange:


   

         
   

0
( ) ( )( ) ( ) Γ( ) ( ) ( )
( ) ( )

s s
f f fi i

s i i i
i i

d c z c zW F z c z z c z c z
dz D z D z

R� (38)


  

            
0

1 ( )(1 ( )) ( ) Γ( ) ( ) 1 ( )
( ) ( )

s
s s f i

s i i i
i i

d c zW F z c z z c z c z
dz D z D z

R� (39)

We can now divide the fluid and solid equations by f
iE c  and s

iE c  , respectively, and rearrange the 0E W  terms:



    
               0

1 1 ( ) ( )Γ( ) 1 1
( )( ) ( ) ( ) ( ) ( )

f s s
i i i

f f f
si i i i i

dc c z c zz
dz W F zc z D z c z D z c z

R� (40)



   
               0

1 1 1 ( ) ( )Γ( ) 1 1
(1 ( )) ( ) ( )( ) ( )

s f
i i i

s s
s i ii i

dc D z c zz
dz W F z D z D zc z c z

R
� (41)

The first terms on the right-hand side of each of these equations are identical to pure disequilibrium melt-
ing, such that if E R is zero, the equations reduce to the disequilibrium transport case of Spiegelman and 
Elliott (1993).

To solve, the final terms that involve the reactivity factor can be further rewritten using the definitions for f
iE U  

and s
iE U  :

  ,0
,0 0( ) exp[ ( )] exp[ ( )]

s
if f f f

i i i i
i

cc z c U z U z
D� (42)

 ,0( ) exp[ ( )]s s s
i i ic z c U z� (43)

Thus:

 0
( ) ( ) ( ) exp[ ( ) ( )]

( )

f
f si i i

i is
i i

D z c z D z U z U z
c z D

� (44)

 
0( ) exp[ ( ) ( )]
( )( ) ( )

s
s fi i
i if

ii i

c z D U z U z
D zD z c z

� (45)

and:



    
                 

0 0

0

1 Γ( ) exp[ ( ) ( )] 1 1 exp[ ( ) ( )]
( ) ( ) ( )

f
s f s fi i i
i i i i

s i i

dU D Dz U z U z U z U z
dz W F z D z D z

R� (46)



   
                

0
0

1 1 ( )Γ( ) 1 exp[ ( ) ( )] 1
(1 ( )) ( ) ( )

s
f si i

i i
s i i i

dU D zz U z U z
dz W F z D z D z D

R
� (47)

Finally, substituting adiabatic upwelling and scaling with depth by E h , and adding radioactive terms gives the full 
solutions for the dimensionless equations dU d

i
/   :
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dU

d F

dF

d

D

D
U U

i

f

i

i

i

s

i

f

   
   





















1
1

0

( ) ( )
exp[ ( ) ( )] 


  













 

Rh

W F

D

D
U U

F

s

i

i

i

s

i

f

f

s

  
 

 


0

0

1
( ) ( )

exp[ ( ) ( )]





 
i

i i

i i

i

f

i

fD

D

U U

0
1

0

1
0 0 1 1


  













exp[ ( ) ( )]

� (48)

dU

d F

dF

d D

h

W D

i

s

i s i
     




























1

1
1

1

10( ( )) ( ) ( )(

R


 



















F

D

D

U U

F

i

i

i

f

i

s

i

i

( ))

( )
exp[ ( ) ( )]

( )




 







0
1

1

1


  













1
0

0 1 1


 
i

i

s

i

s
U Uexp[ ( ) ( )]

� (49)

where E h is the total height of the melting column.

2.3.1.  The Damköhler Number

The dimensionless combination




0s

hDa
W
R

� (50)

is the Damköhler number, which governs the reaction rate relative to the solid transport time. Damköhler num-
bers more generally are used to relate the timescales of chemical reactions to the rates of physical transport in a 
system. If re-equilibration is limited by solid state diffusion, E R can be estimated using:


 2

s i
d

R


� (51)

where iE   is the solid state diffusivity of element i , and E d is a nominal spacing between melt-channels (this spacing 
could, for example, be the average grain diameter for grain-scale channels, or 10 cm for closely spaced veins).

In this case (which we will assume for this article), the Damköhler number can be written

 2
0

ihDa
W d


� (52)

Substituting the definition of E Da above yields the final dimensionless ordinary differential equations (ODEs) for 
the disequilibrium transport model:

0

0 0
1

10 0
1

1 exp[ ( ) ( )] 1
( ) ( ) ( )

exp[ ( ) ( )] 1

f
fs fi i

i i i
i s

f fi i
i i

i i

dU dF DDa U U
d F d D F

D U U
D

 
  

     

  









  
         
 

  
  

�

(53)

dU

d F

dF

d D

Da

D

D

D
Ui

s

i i

i

i

i    














 

1

1
1

1
0( ( )) ( ) ( )

( )
exp[

ff
i
s

i
i

i

i

U

F
U

( ) ( )]

( )
exp[

 








 


























 

1

1

1

1
0

0   












1 1
s

i
s

U( ) ( )] 

� (54)

with initial conditions   0s f
i iE U U  .
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In the limit where the Damköhler number approaches zero, the above formulas reduce to pure disequilibrium 
transport, whereas if E Da approaches infinity (i.e., infinitely fast reactivity compared to physical transport), the 
system approaches equilibrium conditions ( s f

i i iE c D c  ).

2.3.2.  Initial Conditions

Inspection of Equation 53 shows that for the initial conditions described above and (0) 0E F  , 


f
idUE

d
 is ill-defined 

(at least numerically in a floating-point system). However, taking the limit   0E  and applying L’Hôpital’s rule 
yields




  

 
 




  
     

     

0 0
1

0 00 1

(0) (0)lim 1
(0)

f s f
i i i i i

i
i i

dU U U dF DDa
d F d D

� (55)

where









0

(0)
s

s i
i

dUU
d� (56)









0

(0)
f

f i
i

dUU
d� (57)

 

 
0

(0) dFF
d� (58)

The initial radiogenic term also uses the limit from Equation 34:



 


 0
0

lim 1
(0)

f

s

W
F w� (59)

Rearranging Equation 55 gives the value for  (0)f
iE U  for  0E F  as




 

  




   
      
      




0 0
1

0 00 1

1lim (0) 1 1
(0)2

(0)

f
si i i

i i
i i

dU Da DUDad F D
F

� (60)

3.  A pyUserCalc Jupyter Notebook
3.1.  Code Design

The UserCalc Python package implements both equilibrium and disequilibrium transport models and provides 
a set of code classes and utility functions for calculating and visualizing the results of one-dimensional, steady-
state, partial melting forward models for both the 238U and 235U decay chains. The code package is organized 
into a set of Python classes and plotting routines, which are documented in the docstrings of the classes and also 
demonstrated in detail below. Here we briefly describe the overall functionality and design of the code, which is 
open-source and can be modified to suit an individual researcher's needs. The code is currently available in a Git 
repository (https://gitlab.com/ENKI-portal/pyUsercalc), and any future edits or merge requests will be managed 
through GitLab.

The equilibrium and disequilibrium transport models described above have each been implemented as Python 
classes with a generic code interface:

https://gitlab.com/ENKI-portal/pyUsercalc
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```
Interface:
----------
     �model (alpha0,lambdas,D,W0,F,dFdz,phi,rho_f=2800., rho_s=3300., 

method=method,Da=inf)
 
Parameters:
-----------
     alpha0	 :	 numpy array of initial activities
     �lambdas	:	� numpy array of decay constants scaled by solid transport 

time
     �D	 : 	�Function D(z) -- returns an array of partition coefficients 

at scaled height z
     W0 	 :	 float -- Solid mantle upwelling rate
     F 	 :	 Function F(z) -- returns the degree of melting F
     dFdz	 :	 Function dFdz(z) -- returns the derivative of F
     phi 	 :	 Function phi(z) -- returns the porosity
     rho_f	 :	 float -- melt density
     rho_s 	 :	 float -- solid density
     �method 	:	� string -- ODE time-stepping scheme to be passed to solve_ivp 

(one of 'RK45', 'Radau', 'BDF')
     �Da 	 :	� float -- Damkohler Number (defaults to \inf, unused in equi-

librium model)
 
Required Method:
----------------
     �model.solve(): �returns depth and log concentration numpy arrays z, 

Us, Uf
```

�

which solves the scaled equations (i.e., Equation 9 or Equations 53 and 54 for the log concentrations of nuclides 
f

iE U  and s
iE U  in a decay chain of arbitrary length, with scaled decay constants i and initial activity ratios  0

iE  . In the 
code, we use the variable E z for the scaled height in the column (i.e., E z  ), and the model equations assume a 
one-dimensional column with scaled height  0 1E z  . The bulk partition coefficients ( )iE D z  , degree of melting 

( )E F z  , melting rate dF dz z/ ( ) , and porosity ( )E z  are provided as functions of height in the column. Optional argu-
ments include the melt and solid densities  fE  and sE  , the Damköhler number E Da , and the preferred numerical 
integration method (see scipy.integrate.solve_ivp). Some of these variables, such as ( )iE D z  and ( )E F z  , 
are provided by the user as described further below, and are then interpolated using model functions.

UserCalc provides two separate model classes, EquilTransport and DisequilTransport, for the 
different transport models; the user could add any other model that uses the same interface, if desired. Most 
users, however, will not access the models directly but rather through the driver class UserCalc.UserCalc, 
which provides support for solving and visualizing column models for the relevant 238E U and 235E U decay chains. 
The general interface for the UserCalc class is:
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The principal required input is a spreadsheet containing the degree of melting ( )E F P  , relative permeability ( )rE K P  , 
and bulk partition coefficients for the elements UE D  , ThE D  , RaE D  , and PaE D  as functions of pressure E P . The structure of 
the input data spreadsheet is the same as that described in Spiegelman (2000), and is illustrated in Table 2 below. 
Because the user provides ( )E F z  , ( )rE K z  , and bulk solid ( )iE D z  input information to the model directly, any consider-
ations such as mineral modes, mineral/melt iE D  values, and productivity variations are external to this model and 
must be developed by the user separately. Once given this spreadsheet by the user, the code routine initializes the 
decay constants for the isotopic decay chains and provides functions to interpolate ( )E F z  and ( )iE D z  and calculate 
the porosity ( )E z  . Once thus initialized, the UserCalc class further provides the following methods:

�

```
Principal Methods:
--------
     phi	 :	� returns porosity as a function of column 

height
     set_column_parameters	:	� resets principal column parameters phi0, n, 

W0
     solve_1D	 :	� 1D column solution for a single Decay chain 

with arbitrary D, lambda, alpha_0
     solve_all_1D	 :	� Solves a single column model for both 238U 

and 235U chains. returns a pandas dataframe
     solve_grid	 :	� Solves multiple column models for a grid of 

porosities and upwelling rates returns a 3-D 
array of activity ratios

```

```
A class for constructing solutions for 1-D, steady-state, open-system  
	 U-series transport calculations as in Spiegelman (2000) and  
	 this study.
 
   Usage:
   ------
	 us = UserCalc(df,dPdz = 0.32373,n = 2.,tol=1.e−6,phi0 = 0.008,  
		�  W0 =3.,model=EquilTransport,Da=None,stable=False, 

method='Radau')
 
   Parameters:
   -----------
   df	 :	� A pandas dataframe with columns ['P','F', 

Kr','DU','DTh','DRa','DPa']
   dPdz	 :	� float -- Pressure gradient, to convert pressure P to depth z
   n	 :	� float -- Permeability exponent
   tol	 :	� float -- Tolerance for the ODE solver
   phi0	 :	� float -- Reference melt porosity
   W0	 :	� float -- Upwelling velocity (cm/yr)
   �model	 :	� class -- A U-series transport model class (one of EquilTrans-

port or DisequilTransport)
   Da	 :	� float -- Optional Da number for disequilibrium transport model
   stable	 :	� bool
   True	 :	� calculates concentrations for non-radiogenic nuclides with 

same chemical properties (i.e., sets lambda=0)
   Fals	 :	� calculates the full radiogenic problem
   method	 :	� string
   	� ODE time-stepping method to pass to solve_ivp (usually one of 'Radau',  

'BDF', or 'RK45')
```
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Of these, the principal user-facing methods are:

1.	 �UserCalc.solve_all_1D, which returns a pandas.Dataframe table that contains, at each depth, 
solutions for the porosity (E  ), the log concentrations of the specified nuclides in the 238E U and 235E U decay chains 
in both the melt and the solid, and the U-series activity ratios.

2.	 �UserCalc.solve_grid, which solves for a grid of one-dimensional solutions for different reference po-
rosities ( 0E phi  ) and solid upwelling rates ( 0E W  ) and returns arrays of U-series activity ratios at a specified depth 
(usually the top of the column), as described in Spiegelman and Elliott (1993).

3.1.1.  Visualization Functions

In addition to the principal classes for calculating U-series activity ratios in partial melts, the UserCalc package 
also provides functions for visualizing model inputs and outputs. The primary plotting functions include:

1.	 �UserCalc.plot_inputs(df): Visualizes the input dataframe to show ( )E F P  , ( )rE K P  and ( )iE D P
2.	 �UserCalc.plot_1Dcolumn(df): Visualizes the output dataframe for a single one-dimensional melting 

column.
3.	 �UserCalc.plot_contours(phi0,W0,act): Visualizes the output of UserCalc.solve_grid 

by generating contour plots of activity ratios at a specific depth as functions of the porosity (0E  ) and solid 
upwelling rate ( 0E W  ).

4.	 �UserCalc.plot_mesh_Ra(Th,Ra,W0,phi0) and UserCalc.plot_mesh_Pa(Th,Pa,W0, 
phi0): Generates “mesh” plots showing results for different 0E  and 0E W  values on (226E Ra /230E Th ) versus 
(230E Th /238E U ) and (231E Pa /235E U ) versus (230E Th /238E U ) activity diagrams.

Both the primary solver routines and visualization routines will be demonstrated in detail below.

3.1.2.  Miscellaneous Convenience Functions

Finally, the UserCalc module also provides a simple input spreadsheet generator similar to the one provided with 
the original UserCalc program of Spiegelman (2000). This tool is described more fully in the accompanying 
Jupyter notebook twolayermodel.ipynb in Supporting Information S1, and has the interface:

df = UserCalc.twolayermodel(P, F, Kr, D_lower, D_upper, N=100, P_lambda=1)

3.2.  An Example Demonstrating pyUserCalc Functionality for a Single Melting Column

The Python code cells embedded below provide an example problem that demonstrates the use and behavior of 
the model for a simple, two-layer upwelling mantle column, with a constant melting rate within each layer and 
constant  1rE K  . This example is used to compare the outcomes from the original UserCalc equilibrium model 
(Spiegelman,  2000) to various other implementations of the code, such as pure disequilibrium transport and 
scaled reactivity rates, as described above.

To run the example code and use this article as a functioning Jupyter notebook, while in a web-enabled browser 
the user should select an embedded code cell and then simultaneously type the “Shift” and “Enter” keys to run the 
cell, after which selection will automatically advance to the following cell. The first cell below imports necessary 
code libraries to access the Python toolboxes and functions that will be used in the rest of the program:
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3.2.1.  Entering Initial Input Information and Viewing Input Data

In the full Jupyter notebook code available in the Git repository and provided here as Supporting Information S1, the 
user can edit a notebook copy and indicate their initial input data, as has been done for the sample Data Set below. 
The name for the user’s input data file should be set in quotes (i.e., replacing the word “sample” in the cell below 
with the appropriate filename, minus the file extension). This name will be used both to find the input file and to 
label any output files produced. Our sample file can likewise be downloaded and used as a formatting template for 
other input files (see Supporting Information S1), and is presented as a useful example below. The desired input file 
should be saved to a ’data’ folder in the notebook directory prior to running the code. If desired, a similarly simple 
two-layer input file can also be generated using the calculator tool provided in the supplementary code.

Once the cell has been edited to contain the correct input file name, the user should run the cell using the tech-
nique described above:

The next cell below will read in the input data using the user filename specified above:

The next cell will visualize the input dataframe in Figure 1, using the utility function plot_inputs:

P F Kr DU DTh DRa DPa

0 40.0 0.00000 1.0 0.00900 0.00500 0.00002 0.00001

1 39.0 0.00241 1.0 0.00900 0.00500 0.00002 0.00001

2 38.0 0.00482 1.0 0.00900 0.00500 0.00002 0.00001

3 37.0 0.00723 1.0 0.00900 0.00500 0.00002 0.00001

4 36.0 0.00964 1.0 0.00900 0.00500 0.00002 0.00001

5 35.0 0.01210 1.0 0.00900 0.00500 0.00002 0.00001

6 34.0 0.01450 1.0 0.00900 0.00500 0.00002 0.00001

7 33.0 0.01690 1.0 0.00900 0.00500 0.00002 0.00001

8 32.0 0.01930 1.0 0.00900 0.00500 0.00002 0.00001

9 31.0 0.02170 1.0 0.00900 0.00500 0.00002 0.00001

10 30.0 0.02410 1.0 0.00900 0.00500 0.00002 0.00001

11 29.0 0.02650 1.0 0.00900 0.00500 0.00002 0.00001

12 28.0 0.02890 1.0 0.00900 0.00500 0.00002 0.00001

13 27.0 0.03130 1.0 0.00900 0.00500 0.00002 0.00001

14 26.0 0.03370 1.0 0.00900 0.00500 0.00002 0.00001

15 25.0 0.03620 1.0 0.00900 0.00500 0.00002 0.00001

16 24.0 0.03860 1.0 0.00900 0.00500 0.00002 0.00001

17 23.0 0.04100 1.0 0.00899 0.00500 0.00002 0.00001

18 22.0 0.04340 1.0 0.00893 0.00498 0.00002 0.00001

19 21.0 0.04610 1.0 0.00852 0.00488 0.00002 0.00001

20 20.0 0.05000 1.0 0.00700 0.00450 0.00002 0.00001

21 19.0 0.05610 1.0 0.00548 0.00412 0.00002 0.00001

Table 2 
Input Data Table for Example Tested Here, Showing Pressures in kbar (E P ), Degree of Melting (E F ), Permeability Coefficient 
( rE K  ), and Bulk Solid/Melt Partition Coefficients ( iE D  ) for the Elements of Interest, U, Th, Ra, and Pa
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3.2.2.  Single Column Equilibrium Transport Model

In its default mode, UserCalc solves the one-dimensional steady-state equilibrium transport model described in 
Spiegelman (2000). Below we will initialize the model, solve for a single column and plot the results.

First we set the physical parameters for the upwelling column and initial conditions:

Figure 1.  Diagrams showing example input parameters E F , rE K  , and iE D  as a function of pressure, for the sample input file 
tested here.

P F Kr DU DTh DRa DPa

22 18.0 0.06340 1.0 0.00507 0.00402 0.00002 0.00001

23 17.0 0.07100 1.0 0.00501 0.00400 0.00002 0.00001

24 16.0 0.07860 1.0 0.00500 0.00400 0.00002 0.00001

25 15.0 0.08620 1.0 0.00500 0.00400 0.00002 0.00001

26 14.0 0.09370 1.0 0.00500 0.00400 0.00002 0.00001

27 13.0 0.10133 1.0 0.00500 0.00400 0.00002 0.00001

28 12.0 0.10892 1.0 0.00500 0.00400 0.00002 0.00001

29 11.0 0.11651 1.0 0.00500 0.00400 0.00002 0.00001

30 10.0 0.12410 1.0 0.00500 0.00400 0.00002 0.00001

31 9.0 0.13169 1.0 0.00500 0.00400 0.00002 0.00001

32 8.0 0.13928 1.0 0.00500 0.00400 0.00002 0.00001

33 7.0 0.14687 1.0 0.00500 0.00400 0.00002 0.00001

34 6.0 0.15446 1.0 0.00500 0.00400 0.00002 0.00001

35 5.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

36 4.0 0.16964 1.0 0.00500 0.00400 0.00002 0.00001

37 3.0 0.17723 1.0 0.00500 0.00400 0.00002 0.00001

38 2.0 0.18482 1.0 0.00500 0.00400 0.00002 0.00001

39 1.0 0.19241 1.0 0.00500 0.00400 0.00002 0.00001

40 0.0 0.20000 1.0 0.00500 0.00400 0.00002 0.00001

Note. This table illustrates the format required for input files for this model.

Table 2 
continued
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Next, we initialize the default equilibrium model:

and run the model for the input code and display the results for the final predicted melt composition in List 1:

List 1 Model output results for the equilibrium melting scenario tested above.

The cell below produces Figure 2, which shows the model results with depth:

Figure 2.  Equilibrium model output results for the degree of melting, residual melt porosity, and activity ratios (230Th/238U), 
(226Ra/230Th), and (231Pa/235U) as a function of pressure.
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3.2.3.  Single Column Disequilibrium Transport Model

For comparison, we can repeat the calculation using the disequilibrium transport model, and compare the results 
to the equilibrium model. We first initialize a new model with  0E Da  , which will calculate full disequilibrium 
transport:

The cells below calculate solutions for this pure disequilibrium scenario, as shown in List 2:

List 2 Model output results for the disequilibrium melting scenario tested above.

Next we compare the results to our equilibrium calculation above:

The dashed gray curves in Figure 3 illustrate the equilibrium transport solution, which is significantly different 
from the disequilibrium solution. If we increase the value of E Da , however, the disequilibrium transport solution 
should converge toward the equilibrium scenario. To illustrate this, below we calculate the result for  1E Da  :

Figure 3.  Disequilibrium model output results for the degree of melting, residual melt porosity, and activity ratios 
(230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of pressure, for the Damköhler number shown (  0E Da  ). For 
comparison, the dashed gray curves show solutions for the equilibrium transport model.
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List 3 Model output results for the disequilibrium melting scenario tested above, where  1E Da  .

The outcome of the above calculation (Figure 4, List 3) approaches the equilibrium scenario more closely, as 
predicted. Below is an additional comparison for  10E Da  :

For  10E Da  (Figure 5), the activity ratios in the melt are indistinguishable from the equilibrium calculation, sug-
gesting that a Damköhler number of 10 is sufficiently high for a melting system to approach chemical equilibrium, 

Figure 4.  Disequilibrium model output as in Figure 3, but for  1E Da  .
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and illustrating that the equilibrium model of Spiegelman and Elliott (1993) and Spiegelman (2000) is the lim-
iting case for the more general disequilibrium model presented here. For this problem, equilibrium transport 
always provides an upper bound on activity ratios.

3.2.4.  Stable Element Concentrations

For a stable element, that is,   0iE  , Spiegelman and Elliott (1993) showed that the equilibrium melting model 
reduces identically to simple batch melting (Shaw, 1970), while the disequilibrium model with  0E Da  is equiv-
alent to true fractional melting. This presents a useful test of the calculator that verifies the program is correctly 
calculating stable concentrations. To simulate stable element concentrations for U, Th, Ra, and Pa during equi-
librium melting, we can use the same input file example as above and simply test the scenario where iE  values 
are equal to zero.

First, we impose a “stable” condition that changes all decay constants   0iE  :

List 4 Model output results for equilibrium porous flow melting where   0iE  , simulating stable element 
behavior for U, Th, Ra, and Pa and thus true (instantaneous) batch melting.

For comparison with the results in List 4, we can use the batch melting equation (Shaw, 1970) to calculate the 
concentrations of U, Th, Ra, and Pa using the input values in Table 2 for ( )E F z  and iE D  , where:


 0

1
(1 )

f
i

ii

c
F D Fc

� (61)

and determine radionuclide activities for the batch melt using the definition of the activity E a for a nuclide i :

 f
i i ia c� (62)

Figure 5.  Disequilibrium model output as in Figure 3, but for  10E Da  .
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and the initial nuclide activities 0
iE a  , such that:


 

0

(1 )
i

i
i

aa
F D F� (63)

As the activity ratios in List 5 illustrate, the outcomes of this simple batch melting equation are identical to those 
produced by the model for equilibrium transport and   0E  .

List 5 Simple batch melting calculation results using the methods of Shaw (1970), demonstrating identical 
activity ratio results to those calculated using the equilibrium transport model with   0iE  .

Similarly, we can also determine pure disequilibrium melting using the disequilibrium transport model with 
  0iE  . A simple fractional melting problem is easiest to test using constant melt productivity and partitioning 
behavior, so here we test a simplified, one-layer scenario with constant dF dz/  and iE D  values (Figure 6):

We note that numerical ODE solvers may not successfully solve for pure fractional melting with  0E Da  and sta-
ble elements, because the resulting extreme changes in solid concentrations for highly incompatible elements are 
difficult to resolve using numerical methods. Stable solutions can nonetheless be obtained for very small values 
of E Da that approach  0E Da  , and such solutions still provide a useful test of the disequilibrium transport model. 
Here, we use  1010E Da  ; for such low E Da values, the liquid closely approaches the composition of an accumulat-
ed fractional melt, and although the liquid and solid outcomes are slightly different from pure fractional melting, 
the solid is still essentially depleted of all incompatible nuclides.



Earth and Space Science

ELKINS AND SPIEGELMAN

10.1029/2020EA001619

21 of 30

Similar to our approach for equilibrium and batch melting, we can compare the results of disequilibrium transport 
for stable elements with pure fractional melting for constant partition coefficients using the definition of aggre-
gated fractional melt concentrations (Figure 7):

  1/ 1
,0 (1 )
s

Di i
s
i

c F
c� (64)

    1/
,0 1 (1 )
f

Di i i
f
i

c D F
Fc

� (65)

or in log units:

  (1 / 1)log(1 )s
i iU D F� (66)

   
     

 
1/log 1 (1 ) logDf ii

i
DU F
F� (67)

Figure 6.  Simple alternative input file with constant melt productivity and constant solid/melt partitioning, used here to test 
pure fractional melting outputs.
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3.2.5.  Considering Lithospheric Transport Scenarios

In mantle decompression melting scenarios, melting is expected to cease in the shallow, colder part of the regime 
where a lithospheric layer is present. The effects of cessation of melting prior to reaching the surface can be 
envisioned as affecting magma compositions in a number of ways, some of which could be calculated using the 
models presented here by setting  0E dF  .

There are, however, several limitations when using our transport models to simulate lithospheric melt transport in 
this way, as the model equations are written to track steady-state decompression and melting. The first limitation 
is thus the underlying assumption that the solid is migrating and experiences progressive melt depletion in the 
model, while the solid lithosphere should in fact behave as a rigid matrix that does not experience upwelling. 
For the disequilibrium transport model with  0E Da  , no chemical reequilibration occurs while  0E dF  , so the 
lack of solid migration after the cessation of melting does not pose a problem; instead, in the pure disequilibrium 
transport case, imposing  0E dF  simply allows for radioactive decay and ingrowth during transport through the 
lithospheric layer.

The equilibrium transport model, on the other hand, permits full equilibration even if  0E dF  , but the liquid 
composition does not directly depend on the solid concentration, ( )s

iE c z  , so ongoing chemical reequilibration be-
tween the liquid and a modified lithospheric solid could be simulated by modifying the bulk solid/liquid partition 
coefficients iE D  . However, the underlying model assumes that the liquid with mass proportion maxE F  reequilibrates 
with the solid matrix in a steady-state transport regime, at the maximum reference porosity, which may not accu-
rately simulate the transport regime through the fixed lithosphere with no melting. Because it does not directly 
consider mineral abundances or compositions, the model also does not account for complexities such as low 
temperature melt-rock reaction or mineral growth.

The case of the scaled disequilibrium transport model with  0E Da  is the most complex, since the model directly 
calculates reequilibration of the liquid with a progressively melting solid layer, and thus may not accurately simu-
late transport through the fixed solid lithosphere. We advise that if the model is used in this way, the results must 
be interpreted with additional caution.

Finally, calculating a given transport model through the upwelling asthenosphere and into a fixed overlying 
lithospheric layer neglects an additional, significant limitation: namely that melt-rock interactions, and thus the 
magma transport style, may be different in the lithosphere than in the melting asthenosphere. As noted above, 
this could also include low-temperature reactions and the growth of new mineral phases. While it is not possible 
to change transport models during a single 1D run in the current implementation, one alternative approach is to 

Figure 7.  Model output results for the degree of melting, residual melt porosity, and activity ratios (230Th/238U), (226Ra/230Th), 
and (231Pa/235U) as a function of pressure. The solid curves plot the results of pure fractional melting for stable elements, 
while the dashed black curves illustrate the outcomes of the disequilibrium transport model with  1010E Da  and   0iE  . The 
outcomes of the two methods are indistinguishable.
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change the relative permeability, rE K  , in the lithosphere, in addition to modifying the bulk partition coefficients to 
reflect lithospheric values. It may also be possible to run a separate, second-stage lithospheric calculation with 
modified input parameters and revised liquid porosity constraints, but this option is not currently implemented 
and would require an expansion of the current model.

Despite these caveats, there are some limited scenarios where users may wish to simulate equilibrium or dis-
equilibrium magma transport through a capping layer with constant  0E dF  , constant   0E  , and revised iE D  
values for a modified layer mineralogy. The cells below provide options for modifying the existing input data 
table to impose such a layer. The first cell identifies a final melting pressure LithosE P  , which is defined by the 
user in kbar. This value can be set to 0.0 if no lithospheric cap is desired; in the example below, it has been 
set at 5.0 kbar. There are two overall options for how this final melting pressure could be used to modify the 
input data. The first option (implemented in Supporting Information S1 but not tested here) simply deletes all 
lines in the input dataframe for depths shallower than LithosE P  . This is a straightforward option for a one-dimen-
sional column scenario, where melting simply stops at the base of the lithosphere and the composition of the 
melt product is observed in that position. This is an effective way to limit further chemical interactions after 
melting has ceased; it fails to account for additional radioactive decay during lithospheric melt transport, but 
subsequent isotopic decay over a fixed transport time interval could then be calculated using the radioactive 
decay equations for U-series nuclides.

A second option, shown here to demonstrate outcomes, changes the degree of melting increments (E dF ) to a 
value of 0 for all depths shallower than LithosE P  , but allows model calculations to continue at shallower depths. 
This is preferable if the user aims to track additional radioactive decay and/or chemical exchange after melt-
ing has ceased and during subsequent transport through the lithospheric layer, and shall be explored further 
below.

For equilibrium transport scenarios, the cell below offers one possible option for modifying lithospheric solid/
melt bulk partition coefficients. We note that if the disequilibrium transport model is used with  0E Da  (i.e., pure 
chemical disequilibrium), this cell is not necessary.

The option demonstrated below imposes new, constant melt-rock partition coefficients during lithospheric trans-
port. These values are assumed to be fixed. An alternative choice, included in Supporting Information S1, instead 
fixes the shallower lithospheric solid/melt bulk partition coefficients such that they are equal to iE D  values at the 
depth where melting ceased (i.e., LithosE P  ).

Following any changes implemented above, the cells below will process and display the refined input data 
(Figure 8 and Table 3).
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P F Kr DU DTh DRa DPa

0 40.0 0.00000 1.0 0.00900 0.00500 0.00002 0.00001

1 39.0 0.00241 1.0 0.00900 0.00500 0.00002 0.00001

2 38.0 0.00482 1.0 0.00900 0.00500 0.00002 0.00001

3 37.0 0.00723 1.0 0.00900 0.00500 0.00002 0.00001

4 36.0 0.00964 1.0 0.00900 0.00500 0.00002 0.00001

5 35.0 0.01210 1.0 0.00900 0.00500 0.00002 0.00001

6 34.0 0.01450 1.0 0.00900 0.00500 0.00002 0.00001

7 33.0 0.01690 1.0 0.00900 0.00500 0.00002 0.00001

8 32.0 0.01930 1.0 0.00900 0.00500 0.00002 0.00001

9 31.0 0.02170 1.0 0.00900 0.00500 0.00002 0.00001

10 30.0 0.02410 1.0 0.00900 0.00500 0.00002 0.00001

11 29.0 0.02650 1.0 0.00900 0.00500 0.00002 0.00001

12 28.0 0.02890 1.0 0.00900 0.00500 0.00002 0.00001

13 27.0 0.03130 1.0 0.00900 0.00500 0.00002 0.00001

14 26.0 0.03370 1.0 0.00900 0.00500 0.00002 0.00001

15 25.0 0.03620 1.0 0.00900 0.00500 0.00002 0.00001

16 24.0 0.03860 1.0 0.00900 0.00500 0.00002 0.00001

17 23.0 0.04100 1.0 0.00899 0.00500 0.00002 0.00001

18 22.0 0.04340 1.0 0.00893 0.00498 0.00002 0.00001

19 21.0 0.04610 1.0 0.00852 0.00488 0.00002 0.00001

20 20.0 0.05000 1.0 0.00700 0.00450 0.00002 0.00001

21 19.0 0.05610 1.0 0.00548 0.00412 0.00002 0.00001

22 18.0 0.06340 1.0 0.00507 0.00402 0.00002 0.00001

23 17.0 0.07100 1.0 0.00501 0.00400 0.00002 0.00001

24 16.0 0.07860 1.0 0.00500 0.00400 0.00002 0.00001

25 15.0 0.08620 1.0 0.00500 0.00400 0.00002 0.00001

26 14.0 0.09370 1.0 0.00500 0.00400 0.00002 0.00001

27 13.0 0.10133 1.0 0.00500 0.00400 0.00002 0.00001

Table 3 
Input Data Table for an Example Scenario With Modified Lithospheric Transport Conditions, Showing Pressures in kbar  
(E P ), Degree of Melting (E F ), Permeability Coefficient ( rE K  ), and Bulk Solid/Melt Partition Coefficients ( iE D  ) for the Elements 
of Interest, U, Th, Ra, and Pa

Figure 8.  Diagrams showing input parameters E F , rE K  , and iE D  as a function of pressure, for example, the input file and 
modified lithospheric conditions.



The cells below will rerun the end member models for the modified lithospheric input file. First, equilibrium 
transport:

And second, for disequilibrium transport with  0E Da  :

List 6 below displays the activity ratios determined for the final melt compositions at the end of the two simula-
tions (i.e., the tops of the one-dimensional melting columns).

List 6 Model output results for the disequilibrium (  0E Da  ) melting scenarios tested here, with modified 
lithospheric input conditions.
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P F Kr DU DTh DRa DPa

28 12.0 0.10892 1.0 0.00500 0.00400 0.00002 0.00001

29 11.0 0.11651 1.0 0.00500 0.00400 0.00002 0.00001

30 10.0 0.12410 1.0 0.00500 0.00400 0.00002 0.00001

31 9.0 0.13169 1.0 0.00500 0.00400 0.00002 0.00001

32 8.0 0.13928 1.0 0.00500 0.00400 0.00002 0.00001

33 7.0 0.14687 1.0 0.00500 0.00400 0.00002 0.00001

34 6.0 0.15446 1.0 0.00500 0.00400 0.00002 0.00001

35 5.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

36 4.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

37 3.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

38 2.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

39 1.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

40 0.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

Table 3 
continued



The following cell generates Figure 9, which illustrates outcomes with depth for the equilibrium and disequilib-
rium transport models. The model outcomes for the two transport scenarios are notably different, particularly for 
the shorter-lived isotopic pairs.

3.3.  Batch Operations

For many applications, it is preferable to calculate an ensemble of model scenarios over a range of input parame-
ters directly related to questions about the physical constraints on melt generation, such as the maximum residual 
or reference melt porosity (0E  ) and the solid mantle upwelling rate ( 0E W  ). The cells below determine a series of 
one-dimensional column results for the the equilibrium transport model and the parameters defined above (that is, 
the input conditions shown in Table 3 with  2E n  ,   3300sE  kg/ 3mE  , and   2800fE  kg/ 3mE  ), but over a range of 
values for 0E  and 0E W  ; these results are then shown in a series of figures. The user can select whether to define the 
specific 0E  and 0E W  values as evenly spaced log grid intervals (option 1) or with manually specified values (option 
2). As above, all upwelling rates are entered in units of cm/yr. We note that because some of these models tend 
to be stiff and the Radau solver is relatively computationally expensive, the batch operations below may require a 
few minutes of computation time for certain scenarios. Here we show the results for the default equilibrium model 
over a range of selected 0E  and 0E W  values:
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Figure 9.  Comparison of equilibrium (dashed) and disequilibrium (  0E Da  ; solid) transport model output results for the 
degree of melting, residual melt porosity, and activity ratios (230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of 
pressure, for the modified lithospheric transport scenario explored above. Symbols and lines as in Figure 3.
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The figures below illustrate the batch model results in a variety of ways. First, each isotopic activity ratio is 
contoured in 0E  versus 0E W  space (Figure 10), using figures similar to the contour plots of Spiegelman (2000). The 
model outcomes for 0E W  and 0E  values are also contoured as mesh “grids” in activity ratio-activity ratio plots (Fig-
ure 11). These diagrams show the outcomes for model runs with a given 0E W  and 0E  value at each grid intersection 
point, and each curve shows outcomes for a constant 0E W  value with variable 0E  or vice versa, as indicated in the 
figure legend. Because this particular example shows results for the equilibrium transport model, and the input 
values for the shallow, spinel peridotite layer of the sample input file define UE D   <  ThE D  , we note that some of the 
results exhibit (230Th/238U) < 1.0 in Figure 11.
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Figure 10.  Diagrams of upwelling rate ( 0E W  ) versus maximum residual melt porosity (E  ) showing contoured activity ratios for 
(a) (230Th/238U), (b) (226Ra/230Th), and (c) (231Pa/235U).
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4.  Summary
We present pyUserCalc, an expanded, publicly available, open-source version of the UserCalc code for determin-
ing U-series disequilibria generated in basalts by one-dimensional, decompression partial melting. The model has 
been developed from conservation of mass equations with two-phase (solid and liquid) porous flow and perme-
ability governed by Darcy’s Law. The model reproduces the functionality of the original UserCalc equilibrium 
porous flow calculator (Spiegelman, 2000) in pure Python code, and implements a new disequilibrium transport 
model. The disequilibrium transport code includes reactivity rate-limited chemical equilibration calculations 
controlled by a Damköhler number, E Da . For stable elements with decay constants equal to zero, the equilibrium 
model reduces to batch melting and the disequilibrium transport model with E Da  = 0 to pure fractional melting. 
The method presented here can be extended to other applications in geochemical porous flow calculations in 
future work.

Data Availability Statement
The data set for this research consists of a code package, which is available in several ways: (a) in the Support-
ing Information S1, (b) through a binder container (at https://mybinder.org/v2/gl/ENKI-portal%2FpyUsercalc/
master?filepath=pyUserCalc_manuscript.ipynb), and (c) in the ENKI GitLab data repository (https://gitlab.com/
ENKI-portal/pyUsercalc), which can also be accessed at the ENKI cloud server (https://server.enki-portal.org/
hub/login) with a free GitLab account (register at https://gitlab.com/ENKI-portal). The primary source for py-
UserCalc is also hosted in the ENKI GitLab repository, and any future issues and merge requests will be handled 
there.
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