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ABSTRACT: Past forest fire events and fire frequencies are reconstructed with sediment–charcoal records at lake
catchment spatial scales. Few quantitative palaeofire analyses exist in tropical montane forests, where fire return
intervals are long (decadal and centennial scales) because of the infrequency of fire weather and fuel conditions. Fire
return intervals are a key characteristic of fire regimes and changing fire frequencies rapidly alter land cover
compositions and vegetation structure. Charcoal records from small lakes with relatively small catchments covered
with dense forest provide an opportunity to reconstruct low‐frequency, high‐severity fires through a time series
decomposition approach to identify charcoal peaks above a varying background rate as a proxy for palaeofire events.
The sediment core from Rumuiku wetland on Mount Kenya, equatorial eastern Africa, accumulated a nearly linear
age–depth model and provided a high temporal resolution (10 years cm–1) sieved charcoal count record (>125 µm).
Pollen analysis showed a significant change in montane forest assemblage occurred at 21 200 cal a BP from a
montane forest with abundant Podocarpus and Juniperus to a forest with more abundant Hagenia. This change in
forest altered the vegetation composition and structure with concomitant changes to the fire regime. Forest biomass in
the Hagenia forests decreased and it is likely that fire activity qualitatively changed toward lower intensity and lower
severity fires. The quantitative fire event reconstruction focuses on the interval from 27 000 to 16 500 cal a bp and the
older montane forest that experienced higher severity fires from 27 000 to 21 200 cal a BP, which reconstructed a
temporally heterogeneous fire regime with fire return intervals that ranged from 30–430 years and a mean of
120 years (median 160 years) in the catchment. These are the first estimates of fire return intervals of mountain forests
in eastern Africa. We then explore the potential for further comparative research and incremental research
contributions to improve quantitative and qualitative palaeofire research in tropical forest ecosystems. We discuss the
potential to use these types of data for characterizing variables of fire regimes prior to ostensibly significant
modification by anthropogenic activity as well as during the recent past as human land use pressures increased
within Afromontane forests. © 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction

Tropical montane forests are important as global hotspots for
biodiversity conservation that underpin agricultural livelihoods
and a wide spectrum of ecosystem services for both mountain
and downstream communities (McClanahan et al., 1996;
Bussmann, 1999; UNEP, 2012). Fires in the mountain forests
of eastern Africa are commonly featured in the international
news media (Henry et al., 2019a; BBC News, 2020;
Hemp, 2020) and are driven by human activities, land use
changes and meteorological variability. In recent centuries and
decades the anthropogenic pressures on montane forest
resources and land cover conversions have increased in
eastern Africa (Hobley, 1914; Troup, 1932; Ndegwa
Gichuki, 1999; Petursson et al., 2013; Heckmann et al., 2014;
Finch et al., 2017; Githumbi et al., 2021). For example, the
forests of Mount Kenya have been extensively converted to tea
and coffee agriculture and agroforestry (Routledge and
Routledge, 1910; Bussmann, 1996; Gathara, 1999;

Mugo, 2007; Kleinschroth et al., 2013). The disturbance
ecology of ostensibly pre‐anthropogenically modified montane
forests is important for understanding the vegetation responses
to fire and a comparator for current and future forest manage-
ment (Mahaney, 1986; Bussmann and Beck, 1998; Kindt
et al., 2007; Omoro et al., 2010, 2011).
Several palaeoenvironmental studies of palustrine and

lacustrine sediment cores collected on Mount Kenya and
neighbouring mountains have described the late Quaternary
and Holocene vegetation assemblage variability of lower
montane forests (Ficken et al., 1998; Olago et al., 1999, 2003),
mid‐montane forests (Coetzee, 1964, 1967; Cooremans and
Mahaney, 1990; Ficken et al., 2002; Wooller et al., 2003;
Rucina et al., 2009) and Afroalpine elevations (Hamil-
ton, 1982; Perrott, 1982; Barker et al., 2001; Courtney
Mustaphi et al., 2017, 2021a). Despite available studies of
long‐term dynamics of Afromontane ecosystems, quantitative
estimates of past variability for fire return intervals (Landres
et al., 1999) in the different moist montane forest ecosystems of
eastern Africa are unknown. Forest management plans for
ecosystems with decadal‐ to centennial‐scale patterns of fires
benefit from a long‐term perspective (Marchant et al., 2018;

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
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Manzano et al., 2020; Marchant, 2021). Management plans in
the moist montane forests do not incorporate quantitative
estimates of return intervals as there are no detailed analyses of
forest disturbance over long time scales beyond the latter past
century on Mount Kenya (FAO, 2012; Henry et al., 2019b).
Because of the quantitative knowledge gap, fire management
plans have tended to focus on ecosystems with observable
and measurable fire return intervals (Hempson et al., 2017)
and on fire protection in agroforestry and agricultural areas
(Phillips, 1965; Wesche et al., 2000; Sang, 2001). Palaeoen-
vironmental research contributes to our understanding of fire
in modern ecosystems (Seddon et al., 2014; Armstrong
et al., 2017; McLauchlan et al., 2020) to provide information
about disturbance dynamics under different climate conditions
and levels of anthropogenic modifications (Keane et al., 2009;
Bowman et al., 2011; Archibald et al., 2012).
Fires in dense forests can produce large quantities of burned

biomass and a large influx of charcoal occurs during the
post‐fire years that may be detected as charcoal accumulation
peaks in sediment–charcoal records (Whitlock and
Millspaugh, 1996; Larsen and Whitlock, 2001; Courtney
Mustaphi et al., 2015). The purpose of this study was to
reanalyse palaeoenvironmental data from the Rumuiku wet-
land sediment core to reconstruct estimates of fire frequency in
a mid‐montane forest of Mount Kenya, Meru County, Kenya,
eastern Africa. The sieved sediment charcoal time series
(Courtney Mustaphi et al., 2021b) was reanalysed to estimate
charcoal accumulation rate time series peaks that represent fire
episodes in the geological record (Long et al., 1998; Gavin
et al., 2006; Higuera et al., 2009, 2010, 2011a; Blarquez
et al., 2013) and was then integrated with previously published
pollen data from the same sediment core (Rucina et al., 2009;
Courtney Mustaphi et al., 2021b). The lowermost section of the
Rumuiku record was dominated by Podocarpus pollen and the
charcoal was deposited under lacustrine conditions, from 27
000 to 21 200 cal a BP, and produced a charcoal signal with a
relatively high mean value and relatively high peaks above the

varying background accumulation rate used for peak analysis.
Here we report on the sample selection, analysis and
interpretation of the charcoal time series analysis to estimate
fire return intervals.

Study area

The Rumuiku stream is part of the Tana River watershed that
originates within a small Cyperaceae and Poaceae vegetation‐
covered wetland in an extinct volcanic crater near the eastern
edge of the Mount Kenya National Park and Forest Reserve
boundary at 2160m asl (geographical coordinates: −0.118583,
37.5611; Fig. 1 and Supporting Information Fig. S1). The
lacustrine and palustrine sediment stratigraphy of the wetland
provided an environmental record of the past 27 000 years to
the present (Rucina et al., 2009). The elliptical crater is ~350 ×

200m across and the crater wall is asymmetric with steeper
walls on the south and west (Fig. 1; Fig. S1). The surrounding
mid‐montane forest is currently composed of Croton macro-
stachyus, Macaranga kilimandscharica, Neoboutonia macro-
stachys, Podocarpus, Polyscias spp., Schefflera spp. and
Tabernaemontana holstii and others (Rucina et al., 2009). At
higher elevation the forests transition to Juniperus‐dominated
forests, then Podocarpus‐dominated forests, with considerable
spatial variability and patchiness in forest stands and composi-
tions (Wimbush, 1937; Coe, 1967; Bussmann, 2001, 2006). A
narrow Hagenia forest zone exists at the upper montane forests
on the western side of the mountain and is much wider along
the southern flank (Bussmann and Beck, 1995) (Fig. 1).
Holocene and Pleistocene forest extents were much larger

(Hamilton, 1982; van Zinderen Bakker and Coetzee, 1988) and
allowed for more genetic connectivity among highland vegeta-
tion (Hamilton and Taylor, 1991; Jump et al., 2014; Hemp and
Hemp, 2018). Montane forest extents have been reduced
during, at least, the past millennium (Finch et al., 2017) and
further reduced during the past century (Hutchinson, 1907;
Cranworth, 1912; Hobley, 1914; Troup, 1932; Castro, 1991a)

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)

Figure 1. The Rumuiku wetland study site location inset maps of (A) Africa and (B) in central Kenya. (C) An oblique perspective of the eastern flank
of Mount Kenya from the edge of Mount Kenya National Park and forest reserve to Batian peak (5199m asl) with generalized vegetation biomes
(Hedberg, 1951; Hedberg, 1955; Bussmann, 2002) and (D) a southward‐facing view of the Rumuiku volcanic crater wetland (−0.118583, 37.5611;
2160m asl; 8.9 ha; Rucina et al., 2009). Image date 9 February 2020 from Google Earth Pro version 7.3.3.7699 (64‐bit) with 2.0× vertical
exaggeration to show topographic relief (Google Earth/DigitalGlobe, 2021).
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and recent decades (Castro, 1991b; Fanstone, 2016), but with
some stable forestlines and reforestation areas (Gathaara, 1999;
Hansen et al., 2013; Eckert et al., 2017). At present on Mount
Kenya, fires occur most frequently in the Ericaceous vegetation,
along trail routes, along protected area boundaries and on the
drier leeward northwestern flank (Fig. 2) (Vacik et al., 2018;
Henry et al., 2019b). In the relatively more fire‐prone north-
western area of the mountain, most observed fires since 1980
occurred during February–March and a secondary mode during
August–September (Poletti et al., 2019). Montane vegetation has
the potential to burn at any time of the year if the fire weather
conditions occur (Wesche, 2003) and small‐scale fires ignited
by people occur even under moist conditions. Fire ignitions
occur naturally, commonly by cloud‐to‐ground lightning, and
purposefully or accidentally by people using forest resources
(KFS, 2010; Nyongesa and Vacik, 2018; Nyongesa and
Vacik, 2019). Fires in Mount Kenya National Park and Forest

Reserve together make the area one of the most frequently
burned protected areas of Kenya, as observed by satellite
products from 2003–2014 (Karanja, 2016). The long‐term fire
and disturbance ecologies of the different montane forest types
have yet to be fully characterized across the highlands of eastern
Africa. Changing fire frequencies on mountains of eastern Africa
are key processes that influence vegetation composition and
structure (Wesche, 2003) with many effects on patchiness and
ecotonal transitions (Hemp and Beck, 2001; Hemp, 2005; Gil‐
Romera et al., 2019; Courtney Mustaphi et al., 2021a). It is
unknown what disturbance ecology processes promote the
persistence or hindrance of the spatial and temporal patterns of
tree stand compositions over multidecadal, centennial and
millennial time scales, and how these processes interact with
other ecological processes. Stand‐replacing fires have been
proposed as a disturbance ecology mechanism to explain the
spatial vegetation patterns in highland forests across eastern
Africa (Wimbush, 1937; Lange et al., 1997; Wesche, 2000), yet
there are few datasets available for analysis.

Material and methods

Sampling and previously published data

A 1469‐cm‐long sediment stratigraphy was collected in 2005
from the Rumuiku crater wetland surface with a Russian peat
corer (Jowsey, 1966) from parallel boreholes by overlapping 50
cm long, 5 cm diameter hemicylindrical cores. Nine accel-
erator mass spectrometry (AMS) radiocarbon dates provided a
27 000‐year chronology to the present (−55 cal a BP; Table 1;
Rucina et al., 2009; Rucina, 2011) and we reused the
radiocarbon calibrations (IntCal13, Reimer et al., 2013; Ta-
ble 1; Fig. 3) and age–depth model presented in Courtney
Mustaphi et al. (2021b). Select pollen taxa have been
presented in this study from the previously published pollen
relative abundance data and pollen zones from the same
sediment core (Rucina et al., 2009; Sánchez Goñi et al., 2017).
Charcoal analysis used continuous 1‐cm‐thick subsamples
(n= 969) of 0.5–3 cm3 wet sediment that were immersed for
>24 h in a sodium metaphosphate solution and manually wet
sieved through a 125‐µm mesh (Bamber, 1982). The retained
material was visually inspected with a metal probing pick
under a Zeiss Stemi 2000‐C optical stereomicroscope at
10–40× magnification and the charcoal pieces were diagnos-
tically identified and counted (Whitlock and Larsen, 2001;
Hawthorne et al., 2018).

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)

Figure 2. The total number of observed fire events from 2001 to 2013
on Mount Kenya binned by 100‐m elevation bands. Fires with >50%
detection confidence from the satellite‐based Earth observation
MODIS active fire product MCS14ML (years: 2001–2013) around
the entire mountain (also see Henry et al., 2019). Generalized
vegetation on the eastern flank of Mount Kenya are shown in
horizontal bands: brown, agriculture; greens, montane forests;
yellow, ericaceous; grey, Afroalpine and tundra (Hedberg, 1951;
Hedberg, 1954; Coe, 1967; Zhou et al., 2018). Note the boundary for
Mount Kenya National Park and the forest reserve varies in elevation
around the mountain from ~1500 to 2200m asl.

Table 1. Age determinations for the Rumuiku wetland sediment core collected in 2005 (−55 cal a BP) (Rucina et al., 2009; Rucina, 2011). BP, before
present, 1950 CE. Analytical radiocarbon dating error values are not rounded (sensu Stuiver and Polach, 1977) and presented as reported from the
laboratories (SUERC, Scottish Universities Environmental Research Centre Radiocarbon laboratory, University of Glasgow, UK; Wk, Waikato
Radiocarbon Dating Laboratory, University of Waikato, New Zealand). The lowermost radiocarbon date (SUERC‐17200) was rejected from the
age–depth model (Rucina et al., 2009). NA, not applicable.

Depth (cm) Age (14C a BP) 1σ error (± a BP) δ
13C (‰) Material Laboratory code or description

0 −55 0 NA Top of core Surface of sediments
100 2252 30 −10.7 Bulk sediment SUERC‐22553
245 7763 40 −21.8 Bulk sediment SUERC‐17195
400 13 325 75 −23.1 Bulk sediment SUERC‐22554
545 13 953 59 −24.5 Bulk sediment SUERC‐17196
745 15 759 71 −29.8 Bulk sediment SUERC‐17197
945 17 296 85 −29.6 Bulk sediment SUERC‐17198
1145 19 578 111 −31.5 Bulk sediment SUERC‐17199
1400 22 016 180 −29.7 Bulk sediment WK‐18792
1465 19 006 112 −30.0 Bulk sediment SUERC‐17200
1469 Base of sediments

PLEISTOCENE FIRES ON MOUNT KENYA 3
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The weighted mean age–depth model results (Blaauw and
Christen, 2011a) were applied to the palaeoenvironmental
data and charcoal concentrations (pieces cm−3 of wet
sediment) were resampled to a median temporal sampling
interval of 10 years (mean = 10.6, median = 10.3, range
7.8–14 a cm−1) to create an even interval time series and
converted to charcoal accumulation rates (CHAR; pieces cm−2

a−1) (Courtney Mustaphi et al., 2021b). CHAR was analysed
using the CharAnalysis Matlab script as implemented through
an ensemble‐member strategy for decomposing the charcoal
series to identify charcoal peaks (Higuera et al., 2009, 2010)
that represent robust fire events, RFEs (Blarquez et al., 2013),
above the variable background CHAR (Gavin et al., 2006).
RFEs were determined and supported through consensus
between the ensemble member iterations of multiple smooth-
ing window lengths and smoothing techniques (LOWESS
smoother, LOWESS smoother robust to outliers, moving
average, moving median and moving mode) (Blarquez
et al., 2013). Smoothing window durations of 100–1500 years
at 50‐year increments were implemented for each of the five
smoothing techniques creating a total of 470 runs for each of
the five smoothing techniques. Fire return intervals (FRIs) were
obtained from each member and fire frequencies were
calculated from the identified fire dates within each member
using a kernel density function. The final RFEs were obtained
from the ensemble of fire events through consensus, defined as
the 75th percentile of the distribution as a threshold for the
minimum number of members identifying the same peak
(minimum agreeing iterations cutoff n= 463). The times
between the detected charcoal peaks were used as estimates
of FRIs. The signal‐to‐noise ratio of the CHAR time series was
also calculated for all iterations (Higuera et al., 2009; Blarquez

et al., 2013). For visualization on graphics, a minimum
threshold value of 3.0 was applied for data interpretation of
the CHAR time series that used the LOWESS smoother with a
750‐year window duration and implemented in CharAnalysis
(Higuera et al., 2009; Kelly et al., 2011).
First, we analysed the charcoal time series available from 27

000 to 16 500 cal a BP (1500–500 cm). We then focus on the
section from 27 000 to 21 200 cal a BP that spanned Rumuiku
pollen zones I and II with Podocarpus‐dominated mid‐
montane forests. We argue that the results from this section
are the most representative because of the taphonomic effects
of the palaeolake shallowing and hydroseral succession to a
wetland and potentially the very different fire regime under the
Hagenia‐dominated pollen zones (RUM III and IV, 21 200–16
500 cal a BP) that led to a charcoal signal with a lower mean
charcoal accumulation rate and much smaller peaks. We
present the distribution of FRI results for the two palaeofire
regimes of the Podocarpus‐dominated mid‐montane forests
(27 000–21 200 cal a BP) and the Hagenia‐dominated zones
(21 200–16 500 cal a BP), as well as the entire duration of 27
000–16 500 cal a BP.

Results

The Rumuiku wetland sediment record presents a high
temporal resolution and relatively stable depositional environ-
ment with a near‐linear pattern of sediment accumulation rates
from 27 000 to 16 500 cal a BP (1469–500 cm depth; Fig. 3 and
Table 1). The Rumuiku crater lake then accumulated organic‐
rich deposits through a hydroseral succession to a wetland
(palustrine sediments) characterized by increased relative

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)

Figure 3. An age–depth model produced with the R package Bacon version 2.2 (Blaauw and Christen, 2011a, 2011b; R Development Core
Team, 2015) that used nine AMS radiocarbon dates (Rucina et al., 2009) and the IntCal13 radiocarbon curve (Reimer et al., 2013) and parameterized
as shown in red text. Blue symbols represent the calibrated radiocarbon date probability distributions, the grey shaded areas represent the probability
densities of the Markov chain Monte Carlo (MCMC) iterative random walks through the age probability distributions, and the dashed lines show the
95% confidence intervals. The dashed red line shows the weighted mean of all iterations (age–depth model applied to the charcoal and
palaeoenvironmental data). The lowermost radiocarbon date (SUERC‐17200) was objectively rejected from the age–depth model and was rejected
in the original study (Rucina et al., 2009). Core lithology with sediment types and legend (Troels‐Smith, 1955) and hydroseral interpretation shown
horizontally below the x‐axis (Rucina et al., 2009).
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abundances of epiphytic diatom taxa (Courtney Mustaphi
et al., 2021b) and more rapid sedimentation rates (Rucina
et al., 2009). The hydroseral transition occurs just after the
significant transition from pollen zone II to III, from Podocar-
pus‐dominance to Hagenia forests (Fig. 4). Sedimentation rates
ranged from 7.8 to 14.0 years cm−1 throughout the record
analysed with a median rate of 10.3 years cm−1 (mean = 10.6
years cm−1) (Fig. 4 at left). Charcoal concentration values
averaged 82 pieces cm−3 throughout the record, with lower
magnitudes following the forest transition. The analysis
presented here is focused on the two fire regime zones based
on the charcoal record between the Podocarpus‐dominated
pollen zone and forest type section from 27 000 to 21,200 cal
a BP (Rumuiku pollen zones I and II) and the Hagenia‐
dominated zone (after 21 200 cal a BP, pollen zones III and IV)
based on the pollen zonation and amplitude differences of
peaks and varying background rates observed in the charcoal
record.
The record was divided at 21 200 cal a BP by pollen zones

and charcoal with a pollen assemblage change from Podo-
carpus‐ to Hagenia‐dominated, lower mean charcoal and
lower charcoal peak amplitudes, and the onset of hydroseral
succession from lake to wetland. Even with no significant
change in sedimentation rates after 21 200 cal a BP (Fig. 4), the
charcoal record has a nearly stepwise decrease in mean and
variance amplitudes that are concomitant with the abrupt and
persistent increased Hagenia pollen abundances that sug-
gested a changed forest type in the catchment (Rucina
et al., 2009). We explored peak analysis (RFEs) that used both
the entire charcoal record of 1469–500 cm (27 000–16 500 cal
a BP; Supporting Information Figs S2–S5) and then focus on two
subset records divided at 21 200 cal a BP. The apparent
stepwise change in CHAR cannot be disentangled from the
influence of taphonomy or vegetation and fire ecology

changes, and the techniques used should be robust to
significant ecosystem changes (Blarquez et al., 2013).
A total of 64 RFEs were estimated for the entire record

analysed (27 000–16 500 cal a BP) that produced 63 FRI
estimates (Fig. 4, top right) with a median FRI of 110 years
(mean = 160 years). The Podocarpus‐dominated zone had a
median FRI of 120 years (mean = 155 years) and the Hagenia‐
dominated zone had a median FRI of 110 (mean = 167 years).
We did not fit a model distribution to the FRI distribution and
instead we present the arithmetic descriptive statistics because
there is no evidence for whether the performance of Weibull
or negative exponential distributions (or another distribution)
are appropriate models of the FRIs of Afromontane forests
(compare with other forest types: Johnson and Wagner, 1985;
Moritz et al., 2009). The FRI distributions for the Podocarpus‐
and Hagenia‐dominated zones are both right‐skewed but are
different (Fig. 4 at right). The smoothed fire frequency suggests
there were 4–8 fires per 1000 years, with the highest frequency
centred at 23 500 cal a BP (Fig. 4).
The palaeofire reconstruction approach of RFEs was applied

to the older sediments that have the properties of a stable
sediment accumulation rate of ~10 years per sample (con-
tiguous 1‐cm intervals), stable montane forest assemblage
(pollen zones I and II; Rucina et al., 2009), and relatively high
charcoal concentrations and accumulation rates (range of
3–672 pieces cm−3, mean = 120, standard deviation = 102
pieces cm−3, n= 504 of the 969 samples analysed for charcoal
content) (Fig. 4). The calculated signal‐to‐noise index (SNI)
values for this section were generally >3.0, with the exceptions
of when SNI reached 2.8 during 23 710–23 460 cal a BP

(n= 26 samples, 5.2% of the analysed record) and an edge
effect at the very beginning of the time series (Fig. 4), which
supported that the signal was appropriate for a time series peak
component analysis for the duration of pollen zones I and II

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)

Figure 4. The hydroseral succession of the palaeolake Rumuiku to wetland conditions in the crater are summarized at left based on diatom
assemblages, aquatic invertebrate remains, aquatic pollen types and lithology data (Rucina et al., 2009; Courtney Mustaphi, 2021b). The charcoal
accumulation rate (CHAR) record of the Rumuiku sediment core and the portion analysed for peak detection to reconstruct fire events (‘+’ symbols)
and fire frequency (brown curve). Signal‐to‐noise index values are shown (black curve at left) with >3.0 cut‐off detection (grey line; Kelly
et al., 2011). Range of fire return frequencies (yellow envelope), 10th percentiles (orange), 25–75th percentiles (red) and the median (black line)
estimated by the ensemble RFE approach.The calculated fire return intervals (FRIs) that used the robust fire events reconstructed from the sediment
charcoal record of the entire record (at right, top) and for each pollen taxon‐dominated assemblage zones (at right).
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(Kelly et al., 2011). SNI values are moderate (>3.0) because of
the relatively high‐amplitude peaks and standard deviation of
the charcoal record in the older section of the core, under the
catchment charcoal transport and preservation of palaeolake
Rumuiku conditions. To our knowledge, this is the first record
used for a quantitative palaeofire reconstruction in Africa and
that closely fits the assumptions developed for the CHAR peak
analysis approach (Higuera et al., 2009; Blarquez et al., 2013;
Crawford and Vachula, 2019).

Discussion

Palaeofire reconstruction and uncertainties

The vegetation record of Rumuiku has a major compositional
change at 21 200 cal a BP from pollen zone II to III (Fig. 4) and
this change to Hagenia‐dominated vegetation cover probably
produced changes in total forest biomass within the catch-
ment, different fire–vegetation interactions and potentially
different charcoal taphonomic processes (Whitlock et al., 1997;
Marlon et al., 2006; Courtney Mustaphi et al., 2015). The FRIs
reconstructed from the Rumuiku crater palaeolake sediments
from 27 000 to 21 200 cal a BP (Fig. 4) show a temporally
heterogeneous distribution with short multidecadal return
intervals (<100 years), intermediate duration return intervals
(100–200 years) and longer return intervals (200 to a
maximum of 490 years) (Fig. 4). The temporal heterogeneity
of FRIs (Johnson and Gutsell, 1994) reconstructed at Rumuiku
suggest that FRI variability is one of the disturbance ecology
mechanisms that contribute to the patchy mosaic of montane
forest subtype associations and stand structures around Mount
Kenya. Multidecadal‐scale burning evident in agroforestry
stands in northwestern Mount Kenya produced estimates of fire
rotation durations of 87–92 years (Poletti et al., 2019). North-
western Mount Kenya, which included some patches of
indigenous forests, has a drier hydroclimate, is highly modified
by human land uses and the total area is significantly larger
than the Rumuiku wetland catchment. At present, there are
few additional sources of palaeoenvironmental evidence to
compare with these results. It is difficult to assess whether the
shorter FRIs (<100 years) could be related to secondary peaks
caused by continued erosion of post‐fire surface soil charcoal
on the Rumuiku catchment or if the peaks are true relatively
rapid reburns. The variability in fire weather, the vegetation
regrowth patch conditions and ecohydrological feedbacks
could promote drier conditions and thus increased flamm-

ability as the forest stands regenerated. To date, there are no
publications that provide support for these mechanisms or
occurrences. Reconstructed mean annual temperatures at
neighbouring Sacred Lake on the mountain (2350m asl)
varied between 13 and 17 °C from 27 000 to 21,200 cal a BP

(Loomis et al., 2017), but a quantitative reconstruction of local
hydroclimate has not been developed. Qualitative evidence from
the Rumuiku record derived from the aquatic plant pollen,
diatom and presence data of aquatic invertebrates (Daphnia
ephippia, Bryozoa statoblasts, oribatid mites) suggest a hydros-
eral succession from shallow lake to wetland well after
21 500 cal a BP (Courtney Mustaphi et al., 2021b); but the
sampling resolution for the pollen data limited further precision
for interpretation of the pattern of change at.
At present, there are no additional proxy data or available

palaeofire techniques to independently corroborate the peak
analysis and the estimates potentially underestimate past FRIs
(Finsinger et al., 2014). Observations (Pisaric, 2002) and
charcoal source area and transport studies (Woodward and
Haines, 2020; Vachula, 2021) from temperate ecosystems

have shown the spatial fidelity of charcoal records is
influenced by fires from beyond the watershed (Lynch
et al., 2004; Adolf et al., 2018; Vachula et al., 2018;
Hennebelle et al., 2020), with implications for the interpreta-
tion of sediment–charcoal data (Ohlson and Tryterud, 2000;
Tinner et al., 2006; Leys et al., 2015, 2017). Indeed, single
fragments of grass charcoal from burned savannas have been
observed to be transported 10 km across relatively flat areas
during the evening by the authors. The contribution of long‐
distance transport of charcoal to background charcoal
accumulation rates on mountain areas has yet to be assessed
(Courtney Mustaphi et al., 2021a, 2022). Future studies should
incorporate quantification of charcoal transport and deposition
in tropical mountain areas, similar to approaches for pollen
(Schüler, 2012; Ssemmanda et al., 2014; Schüler and
Hemp, 2016) and charcoal in temperate ecosystems (Adolf
et al., 2018). The fire weather and convection patterns for
lofting charcoal particles into the atmosphere have not been
explored and remain an emerging study area for tropical
mountains and lowland source areas of charcoal (Courtney
Mustaphi et al., 2022).
Although Juniperus, Podocarpus and Hagenia co‐occur under

similar climate conditions and recruit in monospecific stands
following fire,Hagenia germination rates are highest in bare soils
following ecological disturbances that open surfaces and
canopy, and as the forest develops, Hagenia stands maintain a
less dense canopy (Bussmann, 2001). These mid‐elevation
montane forest types occupy similar temperature–moisture
climatic conditions on Mount Kenya (Niemelä and Pellik-
ka, 2004; Zhou et al., 2018) and variability in FRIs may
contribute to the interspecific competition of the dominant tree
taxa and promote the spatial heterogeneity of forest stands
(Fig. 5; and see supplementary information in Courtney
Mustaphi et al., 2021b). The fire ecology of the moist forests of
Mount Kenya has not been fully documented, including
information on fire weather and climatology, ignition sources
and rates, and the conditions and effects of multiple ecological
disturbance interactions (e.g. windfall, wildlife interactions, plant
diseases, plus fire) (White, 1979), and notably, prior to significant
modification by human agency. Fire regimes in the mixed‐
species broadleaf forests that are Podocarpus‐ or Juniperus‐
dominated experience low‐frequency (not quantified in previous
studies), high‐severity, stand‐replacing fires that have been
observed to be replaced by even‐aged stands (Wimbush, 1937;
Bussmann, 2001). Fire frequency distributions and quantifica-
tions of ‘low‐frequency’ fires, with return intervals longer than
several decades, have not been published in previous studies.
Fire statistics of the past few decades at lower elevation
agroforestry areas in the leeward northwestern area of Mount
Kenya provide some insight into spatiotemporal patterns (Poletti
et al., 2019). Fires can benefit both Podocarpus and Juniperus
forests, leading to nearly monospecific stands, and dominance
may also relate to seed germination conditions or local site
factors (Sharew et al., 1996). Other forest type associations with
abundant Ocotea or Hagenia have overlapping hydroclimatic
ranges and elevational distributions on the highlands of eastern
Africa, supporting the importance of non‐climatic ecological
controls on forest compositions of the co‐dominant trees
(Bussmann, 2001).
Hagenia forests benefit from disturbances that cause open

canopies with abundant light to establish and maintain and
Hagenia seeds, which are easily wind‐blown in large numbers
to open areas (Fetene and Feleke, 2001; Lange et al., 1997;
Young et al., 2017; Grímsson et al., 2021). Mature Hagenia
trees are fire‐adapted with relatively flakey, resistant bark
(Fetene and Feleke, 2001) and bole architecture that reduces
fuel laddering from the ground surface to canopy. In Hagenia

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)
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forests, fire regimes may be characterized by lower intensity
burns that are more frequent, and potentially, surface fires if
gramminoid and detrital fuels (litter) accumulate in less dense
forests (Fig. 5). Even in relatively dense Hagenia stands,
grazing–fire interactions in modern forests of Ethiopia inhibited
surface fire activity (Johansson and Granström, 2020), but
herbivore grazing pressures prior to African defaunation during
the Pleistocene and Holocene would have been different from
what is observed today (Phelps et al., 2020; and see Hempson
et al., 2017). In some cases, very large individual Hagenia trees
tower above the surrounding canopy, such as on some slopes in
Ethiopia (Umer et al., 2007) and some of the northern Tanzania
highlands. An example is along the Themi River catchment,
Mount Meru, although this could be due to conservation
interventions and not solely abiotic ecological disturbance
regimes. Hagenia at its upper elevation limit can persist in fire‐
sheltered areas among Ericaceous vegetation, but may be
reduced by short‐duration (not quantified) FRIs (Johansson and
Granström, 2020) if the fire severity is sufficient enough to cause
mortality (see also Gil‐Romera et al., 2019). The establishment
of Hagenia stands modifies surface fuels through the seasonal
accumulation of large numbers of shed flower parts and
anemophilous seeds and may modify soil nutrients over the
long term (Habtemariam and Woldetsadik, 2019) (Fig. 5).

Challenges and opportunities for future research

Previous observations and explanations have suggested the role
of stand‐replacing fire and complex fire–vegetation interactions
for some of the spatial vegetation patterns in highland forests
across eastern Africa (Wimbush, 1937; Lange et al., 1997;
Wesche, 2000). Re‐analysis of the Rumuiku sediment–charcoal
record presented here generated the first quantitative estimates
of forest fires in tropical Afromontane forests. Charcoal‐based
fire reconstruction methods have been developed for lacustrine
deposits in ecosystems with long FRIs that experience high‐
severity fires, for example boreal forests (Higuera et al., 2009;
Clear et al., 2015), temperate mixed conifer‐dominated forests
(Long et al., 1998; Gavin et al., 2006; Morris et al., 2013;
Courtney Mustaphi and Pisaric, 2013, 2014a; Davis et al., 2016)
and forests with mixed‐severity fire regimes (Courtney Mustaphi
and Pisaric, 2014a). Aggregating sediment charcoal records is

also useful for comparisons between different sites (Daniau
et al., 2010) at intermediate and larger spatial scales
(Baker, 1989; Falk et al., 2007). Sediment–charcoal studies in
temperate ecosystems have the potential to be compared with
dendrochronological palaeofire evidence (Brossier et al., 2014;
Barhoumi et al., 2019) and observational records (Courtney
Mustaphi and Pisaric, 2018). Dendrochronological sources of
paleofire evidence have yet to be applied to tropical montane
forest of eastern Africa (Henry et al., 2019b). Remote sensing
products, such as Royal Air Force air photography (from the
1940s and 1950s), early satellite observations (1960s–1980s), in
combination with modern earth observations and fire detection
satellites could provide some additional evidence for decadal‐
scale fire activity in the mountain forests. These additional tools
are limited by temporal and spatial resolutions, and data
aggregation challenges, and still lack the long duration for
centennial‐scale FRIs (Marchant et al., 2018; Courtney Musta-
phi et al., 2019). Archival sources also supplement historical
knowledge of fire activity, yet available sources have focused on
fires in savannas and shrublands (ex. Sinclair, 2012), whereas
fires in the moist montane forests have less frequently been
presented (Wood, 1965a, 1965b; Spinage, 2012; Aleman
et al., 2018).
Recent observational fire records are limited for exploring

past fire regimes as the recent history reflects the significantly
altered direct and indirect anthropogenic effects, such as
accidental or purposeful burning, introduced plant taxa, and
forest wildlife defaunation. Local‐scale modelling provides
another source of evidence for fire regimes in wet tropical
forests, but many studies have focused on regional, con-
tinental and global scales (Hantson et al., 2016, 2017, 2020).
Modelling fire at smaller spatial extents would be more
applicable for national, subnational and land management
institutions for characterizing and planning ecosystem man-
agement. Exploring fire models, both heuristic (Van
Wagner, 1978; Johnson and Gutsell, 1994; McCarthy
et al., 2001; Iglesias et al., 2015) and computational (Pfeiffer
et al., 2013; Lasslop et al., 2014, 2018; Hantson et al., 2020),
for relatively small spatial areas have yet to be developed for
the montane forests of eastern Africa (Lasslop et al., 2016).
Analysing the potential of other palaeoenvironmental

research approaches, or combined approaches, for palaeofire

© 2022 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–14 (2022)

Figure 5. Pollen zones and data are
summarized into forest type, inferred forest
structure and fire type schematics at middle
and right of the diagram. Photographs by Colin
Courtney Mustaphi.
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records and disturbance ecology has yet to be a major focus in
tropical ecosystems. Use can be made of other palaeoenvir-
onmental archives (tree rings, soils, cave, marine sediments,
glacial ice) (Marlon, 2020), other sediment analyses of fire
proxies such as pyrogenic chemicals (Battistel et al., 2017;
Karp et al., 2020), subfossil charcoal morphologies (Courtney
Mustaphi and Pisaric, 2014b; Courtney Mustaphi et al., 2022;
Hubau et al., 2015) and historical ecology (Phillips, 1965;
Fanstone, 2016). Dendrochronological techniques for estab-
lishing past FRIs have yet to be developed for these tropical
forests and have not been used to establish estimates (Higuera
et al., 2011b; Brossier et al., 2014; Barhoumi et al., 2019). In
the tropics, there has been some use of long‐lived trees for
investigating stand age distributions (Swart, 1963; Coughenour
et al., 1990; Patrut et al., 2013) and stand ages (Wyant and
Reid, 1992; Martin and Moss, 1997; Maingi, 2006; Patrut
et al., 2020), including applications for fire histories by
analysing fire scars on trees (Richardson, 1988; Verlinden
and Laamanen, 2006; Patrut et al., 2010). Only a handful of
dendroclimatological records exist for eastern Africa and their
potential has yet to be fully investigated (Trouet et al., 2006).
Analyses of soil profiles using sedimentological, palaeobota-
nical and palaeofire techniques add additional evidence on
past fire activity (Kasin et al., 2013; Montade et al., 2018). In
soil stratigraphies, temporal resolution and uncertainties are
rarely as constrained as lacustrine and palustrine sediment
records, such as Rumuiku (Rucina et al., 2009). Anthropolo-
gical studies in eastern Africa have investigated purposeful
human use of fire on savannah landscapes in eastern Africa
(Anderson and Lochery, 2008; Butz, 2009; Kamau and
Medley, 2014), coastal forests (Ming'ate and Bollig, 2016),
and in the foothill forests of mountain areas (Nyongesa and
Vacik, 2019). Newspaper reports of forest fires, early European
documents and Forest Service archives have not been fully
analysed to develop historical and archival records of past fire
activity (for examples see Spinage, 2012; Nyongesa and
Vacik, 2018; Henry et al., 2019b). Fire and vegetation
modelling studies focused on the catchments of Mount Kenya
would be useful for exploring biodiversity, forest structural
diversity and human–environment interactions relevant to land
management and policy.
The spatial and temporal patterns of ecological disturbances

deserve particular attention in the moist Afromontane forests,
to explore and analyse disturbance effects on the spatial
distribution of forest types and biodiversity and ecosystem
resilience of managed forests of high conservation and societal
value. Few palaeoenvironmental studies have investigated
multiple ecological disturbance interactions, and records such
as Rumuiku offer some potential for multi‐proxy single study
site analyses using the potential of high‐resolution subsam-

pling designs and geochronologies (see Courtney Mustaphi
and Pisaric, 2018; Rey et al., 2019). Disturbance dynamics
have been shown to be important in nearby wooded tropical
ecosystems (Anderson et al., 2008). For example, the
combination of elephant damage plus fires has been shown
to be an important contributor to savannah tree demographics
and mortality in parts of the Serengeti (Dublin et al., 1990;
Sharam et al., 2006; Morrison et al., 2016; Rugamalila et al.,
2016). The interaction of several ecological disturbance types
in forests would be a useful avenue for investigating the legacy
effects of multiple processes and for conservation.

Prospects

Quantification of fire regimes is a shared knowledge gap
among the research agendas of palaeoecological research,
ecology, conservation sciences and land management

(Veblen, 2003; Rull, 2010, 2014; Gillson and Marchant, 2014;
Courtney Mustaphi et al., 2019). Archival and observational
data should be collated and analysed to estimate historical fire
frequency regimes around Mount Kenya. The results presented
here are the first estimations of FRIs using one palaeofire
technique applied to a single mid‐montane catchment on the
western side of the mountain. This example presents a record
of past ranges of FRI variability of montane forests prior to
significant (or evident) anthropogenic modification and a
geological period with lower atmospheric CO2. As climate
change, introduced species, CO2 increases and human
population pressures increase on the remaining forested areas
of the mountain, knowledge of fire regimes helps define
priority forest stands and stands experiencing more frequent
fires. Fire regime changes facilitate ecological changes and
could be a consideration for allocating forest fire suppression
effort, fire prevention or areas for non‐intervention on the
mountain. Changing fire regimes at the interfaces of primary
forests and agroforestry causes changes at the ecotonal edges
(Thijs et al., 2014; Wekesa et al., 2019; Cardoso et al., 2021)
as well as at indigenous ecotonal zones within protected areas
(Wesche, 2000; Wesche et al., 2003; Hemp and Beck, 2001).
Future projects investigating palaeofire in Afromontane forests
should be co‐produced with land users, and land management
and academic stakeholders to align priority research questions
(Seddon et al., 2014; Chazdon et al., 2017) and facilitate the
longer‐term deployment of sediment and charcoal traps in the
field to improve the calibration of sediment–charcoal studies
to the level of development available in temperate forests (for
an example see Adolf et al., 2018). Studies quantifying
ecological disturbance regimes are necessary for the long‐
term management of Afromontane forests, to understand
spatially heterogeneous patterns of compositions and structure
and the influence on biodiversity on ecosystem functioning.
Rehabilitation of montane forest areas requires knowledge of
disturbance ecologies to manage wildlife habitat spaces, fog
forest ecohydrology (Omoro et al., 2010; Aerts et al., 2011;
Thijs et al., 2014; Los et al., 2019), and riparian (Thijs
et al., 2012) and wetland areas (Wesche et al., 2003; Macharia
et al., 2010; Githumbi et al., 2021) crucial to the ‘water tower’
ecosystem functioning of Mount Kenya (Funnell, 2003; Liniger
et al., 2005; Notter et al., 2007) and to the communities
around central Kenya (Bussmann, 1999;Wiesmann et al., 2000;
Aeschbacher et al., 2005).

Conclusions

The Rumuiku wetland palaeoenvironmental record provided
an opportunity to develop a first‐order estimation of past
ranges of FRIs for this small mid‐montane catchment. The
montane forest assemblages represented in the Rumuiku
record still persist on the mountain today, but have been
modified by climate variability, land use and forest resource
pressures and introduced species throughout the Holocene to
present. The charcoal record shows a stepwise change in
forest type at 21 200 cal a BP, and we used the charcoal
record from 27 000 to 21 200 cal a BP, during Rumuiku pollen
zones I and II, to reconstruct fire events and frequencies
during the Podocarpus‐ and Juniperus‐dominated montane
forest. The results show a temporal heterogeneity in a single
catchment area, showing that fires potentially may be
relatively rapid reburns (<100 years), of moderate duration
(100–200 years), and infrequently very long (200–430 years).
Future work should make more use of collating and
interpreting observational records complemented with archi-
val research, computer models and the development of
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conceptual heuristic models for fire in moist montane forests
to improve tropical palaeofire investigations. Research should
garner multistakeholder co‐produced perspectives on forest
management to improve the longevity and success of
research outputs. Alignment of research agendas with land
management and local land users and improved dissemina-
tion promotes research insights that inform land management
options and decisions (Capitani et al., 2016; Courtney
Mustaphi et al., 2019; Kariuki et al., 2021). The observed
pattern toward larger fires in tropical latitudes and tendency
for anthropogenic activities to homogenize forest fire regimes
could put forest biodiversity at further risk on Mount Kenya.
Quantifying the spatial and temporal distributions of FRIs and
other fire regime components (fire sizes, seasonality, inten-
sities, severities; Maezumi et al., 2021) are important for
long‐term management of these moist montane forests with
relatively long durations (decades to centuries) between fires
but with a degree of spatial heterogeneity that remains
unquantified.

Supporting information

Additional supporting information can be found in the online
version of this article.
Supplementary Figure 1. View of Rumuiku wetland from the

eastern edge facing southwest (0.118583°S, 37.5611°E; 2160
m asl), Mount Kenya National Park and forest reserve, Kenya
(Courtney Mustaphi et al., 2021). Photographs taken in 2014
by Colin Courtney Mustaphi.
Supplementary Figure 2. Signal to Noise Index (SNI) and

Kolmogorov‐Smirnov Goodness of Fit (GOF) p values of the
Rumuiku wetland charcoal concentration data using five
techniques to define the varying background rate of charcoal
accumulation across variable moving window lengths. The
median of the ensemble runs (black lines), the 25th and 75th
percentiles (red lines), and the 5th and 95th percentiles (blue
lines), are shown for SNI and GOF. Window lengths shaded in
grey were rejected and the zone in white was retained during
the analysis and the number is shown at top (N). Output
designs and code by Blarquez et al. (2013) and incorporated
Higuera et al. (2009) and Gavin et al. (2006).
Supplementary Figure 3. Ensemble sums of reconstructed

fire events that contributed to establishing robust fire events
(RFEs; ‘+’ symbols) (Blarquez et al., 2013).
Supplementary Figure 4. Fire return interval (FRI) distribu-

tions of each of the five techniques for background charcoal
accumulation rate estimation techniques (Blarquez et al.,
2013). Weibull distributions (black line) were fitted and
parameters and number of fire events shown.
Supplementary Figure 5. The ensemble of fire frequency

reconstructions (Blarquez et al., 2013). Warm colours show
the mid percentiles 25‐75, cool colours show higher percen-
tiles >25 and <75, the median (black line), and dashed black
lines show a filtering of the CHARraw using a rLOWESS with a
700 year window width (the bootstrapped 90% confidence
intervals are displayed using dashed lines).
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