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Intelligent buildings are among the most active Internet-of-Things (IoT)

verticals, encompassing various IoT-enabled devices and sensing technologies

for digital transformation. Analysis of spatial data, a very common type of data

collected in intelligent buildings, offers a lot of insights for many purposes

such as facilitating spacemanagement and enhancing the utilization efficiency

of buildings. In this paper, we recognize two major challenges in spatial

data analysis for intelligent buildings (SDAIB): (1) the complicated analytical

contexts that are related to the building space and internal entities and (2)

the uncertainty of spatial data due to the limitations of positioning and other

sensing technologies. To address these challenges, we identify and categorize

different kinds of analytical contexts and spatial data uncertainties in SDAIB,

and propose a unified modeling framework for handling them. Furthermore,

we showcase how the proposed framework and the associated modeling

techniques are used to enable context-aware and uncertainty-aware SDAIB, in

the tasks of hotspot discovery, path planning, semantic trajectory generation,

and distance monitoring. Finally, we offer several research directions of SDAIB,

in line with the emerging trends of the IoT.

KEYWORDS

spatial data uncertainty, context-aware computing, indoor spaces, smart buildings,

mobility analysis, IoT data quality

1. Introduction

Driven by the popularity of the Internet of Things (IoT) infrastructure, the

digital transformation in the architecture industry is experiencing rapid growth. As a

well-recognized notation, intelligent buildings (or smart buildings) (Qolomany et al.,

2019; Daissaoui et al., 2020) formulate a paradigm that integrates various IoT-enabled

devices, sensing technologies, and big data analysis technologies for achieving improved

efficiency of building uses and enhanced comfort of residents. According to a report1

by the research firm MarketsandMarkets, the global market of intelligent buildings is

expected to grow from 66.3 billion in 2020 to 108.9 billion in 2025, at a compound annual

growth rate of 10.5%.

1 https://www.researchandmarkets.com/reports/5235835/global-smart-buildings-market-by-

component
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Intelligent buildings are thought of as an ecosystemmade up

of both hardware and software (Daissaoui et al., 2020). Based on

this, Figure 1 presents an overall picture of intelligent buildings,

which includes three key components, namely the IoT-enhanced

buildings (lower left corner), the data analysis platform (lower

right corner), and the intelligent building applications (upper

side). In particular, the IoT-enhanced buildings encapsulate a

wide variety of IoT-enabled devices such as sensors, actuators,

and robots that bridge the physical building space and the

cyber space. As the underlying infrastructure, the IoT-enhanced

buildings employ various sensing technologies to collect data,

which are then sent to the data analysis platform. The data

analysis platform plays the central role in the ecosystem,

extracting useful information and generating control messages

from the collected data, which in turn facilitate the sensing

and interactions within the IoT-enhanced buildings. In the data

analysis platform, the fundamental data management module

is responsible for data preprocessing, modeling, and storage,

on which various data analysis tasks are built. Finally, on top

of the IoT-enhanced buildings and the data analysis platform,

intelligent building applications are designed and tailored for

many different building types like hospitals, office buildings,

and transportation stations. Some typical applications are

asset tracing (Jensen et al., 2009a; Oztekin et al., 2010; Kim

et al., 2014), HVAC (heating, ventilation, and air conditioning)

control (Capozzoli et al., 2017), and crowd evacuation (Chen

and Feng, 2009; Kamkarian andHexmoor, 2012; Li et al., 2018b).

The management of an intelligent building is often required

to be aware of the statuses of many key places of the building.

As a result, the data collected in intelligent buildings are

FIGURE 1

An overall picture of intelligent buildings: IoT devices, data analysis, and applications.

often associated with spatial attributes. For example, a smart

meter record contains the ID of the room that consumes

energy (Ni et al., 2016), while indoor positioning data usually

captures a target object’s whereabouts as a specific two- or

three-dimensional geometric coordinate in the building (Liu

et al., 2007; Li et al., 2020b). Correspondingly, a good number

of fundamental data analyses for intelligent buildings are

oriented to such spatial data, making efforts on facilitating

space management and enhancing the utilization efficiency of

the building. In this study, we pay particular attention to such

spatial data analysis for intelligent buildings (SDAIB). Referring

to the data analysis platform in Figure 1, general data analysis

tasks include anomaly detection, frequent pattern mining, and

forecasting, while typical SDAIB tasks are hotspot discovery (Li

et al., 2018b,c), path planning (Feng et al., 2020; Chan et al.,

2021; Liu et al., 2021a,c), semantic trajectory generation (Li et al.,

2020a,b), and distance monitoring (Chan et al., 2022).

The past two decades have seen a lot of spatial data analysis

research for different building types and different application

scenarios (cf. literature reviews Cheema, 2018; Qolomany et al.,

2019; Daissaoui et al., 2020). Setting aside those application-

specific technical difficulties, we identify two general challenges

faced by SDAIB in regard to the fundamental data management,

as presented in Figure 2.

• Extracting and exploiting complicated analytical

contexts. In most SDAIB tasks, algorithms are required to

be aware of the analytical context for extracting accurate

knowledge and making correct decisions accordingly.

For example, in the distance monitoring task, physical
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FIGURE 2

Two general data management challenges in SDAIB.

contexts such as windows, obstacles, and floors must be

taken into account in the distance estimation. Otherwise,

the obtained results are inaccurate or even useless (Yang

et al., 2010; Chan et al., 2022). For another example,

in the path planning task, if the algorithm can obtain

real-time and accurate contextual information about the

populations and flows in each room, it can find for users

or robots the routes that avoid potential congestion and

collisions—such routes are practically more useful than

those routes with the shortest distances (Liu et al., 2021c).

However, the analytical contexts in SDAIB are complicated

and diverse, involving many aspects related to the building

environment and the internal entities like human beings

and sensory devices. Many existing works (Yang et al.,

2010; Kamkarian and Hexmoor, 2012; Lin et al., 2016; Teng

et al., 2017; Li et al., 2018c, 2020b; Liu et al., 2021c) find

relevant analytical contexts according to the need of the

analytical task and design specific data structures for them.

In this light, it is desirable to have a general mechanism

for efficiently and effectively modeling different types of

analytical contexts, in order to facilitate the data modeling

and data storage for SDAIB tasks.

• Modeling and mitigating the uncertainty of spatial

data. Indoor positioning technologies and other sensing

technologies (such as Bluetooth- and RFID-based tracking)

typically offer limited accuracy and low sampling rates,

resulting in low quality of spatial data used for analyses (Liu

et al., 2007; Xie et al., 2013; Lu et al., 2016). In particular,

the limited accuracy makes an object’s observed location

deviate, while the low sampling rate makes the object often

unobserved. Both two issues enlarge the uncertainty of

spatial data and thus lower the effectiveness of downstream

SDAIB tasks. To make matters worse, buildings involve

much more complicated analytical contexts in relatively

small spaces compared to outdoors, further amplifying the

negative effects of spatial data uncertainty. For example,

in the semantic trajectory generation task, multiple indoor

regions, such as shops in a mall, are close to each other and

are only segmented by walls, and a positioning deviation

of merely a few meters will likely cause a mis-annotation

of the target object’s located region (Li et al., 2020a,b). In

the hotspot discovery task, the unique indoor topology and

the low-sampling issue incur multiple possible paths for

a moving object, which complicate the computation and

reduce the accuracy of the computation results (Li et al.,

2018b). Modeling and reducing spatial data uncertainty

have been widely studied for Euclidean space and road

networks (Züfle, 2021). However, those data preprocessing

techniques fall short in the intelligent building setting that

is characterized by the unique indoor topology and indoor

positioning issues. Notably, addressing the challenges of

spatial data uncertainty relies on appropriate handling

of the analytical contexts (see Figure 2). This is because

the contexts involved in intelligent buildings provide key

prior knowledge for modeling and reducing spatial data

uncertainty; some examples have been provided later

in Section 2.2.3. Therefore, it is considered a proper

routine to model the context first and then the spatial

data uncertainty.

In this paper, we will introduce the recent progress in

addressing these two general challenges in SDAIB. To be specific,

Section 2 will review the recent efforts to handle analytical

contexts and spatial data uncertainties for SDAIB, respectively.

Based on a classification of the existing works and a summary of

their technical highlights, we will propose a unified framework

for accommodating modeling techniques for a variety of

analytical contexts and spatial data uncertainties in Section 3.

Subsequently, Section 4 will select four representative SDAIB

tasks and demonstrate the usage of the proposed modeling
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FIGURE 3

A non-exhaustive taxonomy of the analytical contexts in SDAIB.

framework for context-aware and uncertainty-aware SDAIB.

The four tasks are hotspot discovery, path planning, semantic

trajectory generation, and distance monitoring. In Section 5,

we will discuss the open issues and emerging opportunities

of SDAIB in the new technology ecosystem. We will finally

conclude the paper in Section 6.

2. Modeling techniques in SDAIB

We will revisit and summarize relevant techniques for

modeling analytical contexts and spatial data uncertainties in

Sections 2.1 and 2.2, respectively.

2.1. Modeling analytical contexts

The analytical contexts refer to a set of important data

that exists along with the analytical process, describing the

states of related objects in processing, the ancillary information,

the requirements of the analysis task, etc. Figure 3 presents

a non-exhaustive taxonomy of the analytical contexts in

SDAIB, in which we categorize analytical contexts into the

contexts related to the building space and those related to

the internal entities in the building. Note that we exclude the

human-centered contexts (e.g., user preference and sentiment)

because they are considered not specific to spatial data

analyses. In each category, we further distinguish the dynamic

(analytical) contexts from those static contexts. The former

evolves with the analytical process while the latter does not.

We proceed to go through different kinds of analytical contexts

in SDAIB and describe their scope and recent efforts in

handling them.

2.1.1. Building space

2.1.1.1. Static contexts of building space

The building environment, whose geometric information

(e.g., the dimensions of the whole building or a region, and

the position of a particular door), topological information (e.g.,

the connectivity or accessibility between adjacent regions and

floors), and semantic information (e.g., the name of a region

and the maximum capacity of a region), are all fundamental to

SDAIB (Worboys, 2011). Therefore, building space (or indoor

space) models are usually hybrid, in which the basic data
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structure (Afyouni et al., 2012) is constructed based on either

of the three aspects whereas the other two are extended on the

basic data structure.

To represent two- or three-dimensional geometric

information of the building elements (e.g., doors, windows,

rooms, and staircases), the lattices (Elfes, 1989; Li and Lee, 2008;

Lin et al., 2017), tetrahedrons (Penninga et al., 2006), polygonal

prisms (Kim et al., 2009), Voronoi tessellation (Choset and

Burdick, 2000), boundary-based representation (Crowley, 1989)

have been exploited, on top of which tree-based (Li and Lee,

2008) or graph-based (Penninga et al., 2006; Kim et al., 2009)

indexes can be built to accelerate spatial search.

Topological information captures the relationship between

the building elements, for which the graph structure (Lee, 2004)

is the most commonly used. Typically, building partitions (e.g.,

a room or a region) are represented by graph nodes, while

their interactions, such as adjacency and intersection (Lee, 2004;

Kim et al., 2009; Lin et al., 2017), mutual visibility Franz et al.

(2005), connecting doors (Lu et al., 2012; Xie et al., 2014),

passed sensors (Jensen et al., 2009a; Teng et al., 2017), passed

positioning reference points (Li et al., 2018b), are recorded at

graph edges. In some settings, considering the search efficiency,

a dual transformation of the above structure is applied. For

example, a door graph (Yang et al., 2010) with doors as nodes and

spatial information between doors as edges is used to facilitate

the calculation of the minimum indoor walking distance; a

deployment graph (Baba et al., 2014) capturing RFID readers

as nodes and passed region(s) between two readers as edges is

designed for cleaning RFID reader ID sequences. Recently, some

work considers indexing topological information to improve

computation efficiency, e.g., VIP-tree (Shao et al., 2016) is a

hierarchical model on the connectivity of rooms to speed up the

shortest path finding.

Semantic information is indispensable in many indoor

location-based services, such as navigation (Li and Lee, 2008; Lin

et al., 2013; Kang and Li, 2017) and door access control (Bhatt

et al., 2009). Pure semantic models for buildings are often object-

oriented, using UML-like languages [such as CityGML (Kolbe

et al., 2005) and indoorGML (Kang and Li, 2017)], task-specific

ontologies (Bhatt et al., 2009;Wu et al., 2018), IFC (International

Foundation Class) data formats (Lin et al., 2013), etc. It is

worth noting that semantic information is often associated

with the building elements, e.g., names and functionality of

rooms. Therefore, compared to maintaining a purely object-

oriented semantic model, it would be more efficient to attach the

semantic information to the building’s spatial model which can

be easily enhanced with a spatial index, as done in many existing

works (Li and Lee, 2008; Teng et al., 2017; Li et al., 2018b, 2020a;

Feng et al., 2020; Liu et al., 2021a).

2.1.1.2. Dynamic contexts of building space

Since the building environment is dynamic, all three

types of information described above may evolve during

the analytical process. Relatively few studies have considered

dynamic modeling of building space information:

• Change of geometric information. To capture the change

in the geometric information of the building elements, an

event-based updating approach is often used, i.e., deleting

outdated information and inserting new information.

Correspondingly, the spatial index should be updated

incrementally or fully (Li and Lee, 2008; Lu et al., 2012;

Xie et al., 2014; Liu et al., 2021b). Since the geometric

information changes infrequently, event-based updating is

acceptable for most applications.

• Change of topological information. The topological

relationship between building elements should be updated

timely when particular events happen, such as the lock

and unlock of a door, the combination or division of

building partitions, and the block of a region. Otherwise,

such changes may invalidate the computation results

in services like real-time indoor navigation (Liu et al.,

2021a). Walton and Worboys (2012) model the static

topological information using a bi-graphical model. In

their topological model, the dynamic change is defined by a

reaction rule consisting of a pair of a pattern to be changed

and a resulting pattern. Xie et al. (2014) maintain for each

building partition a set of pointers to other partitions,

which can be updated dynamically. Also assuming a

graph-based model, Liu et al. (2021a) propose both

synchronous and asynchronous mechanisms to check the

temporal variations of door’s accessibility along the path

planning process. This work also utilizes VIP-tree (Shao

et al., 2016) to index the topological information. To reflect

the topological changes on the index, life span interval

information is extended to the internal nodes of the tree.

• Change of semantic information. For most models that

augment semantic information to a base spatial model, the

event-based updating approach and the life span interval

definition can handle the dynamic changes of building

semantics. Recently, some studies (Teng et al., 2018; Guo

et al., 2021) consider extracting updates of semantics from

crowdsourced images and videos for building self-updating

indoor semantic floorplan models.

2.1.2. Internal entities

The internal entities that are interesting to SDAIB include,

but are not limited to, stationary objects (e.g., appliances,

furniture, obstacles, and indoor POIs), moving objects (e.g.,

pedestrians, robots, and vehicles), sensors (e.g., smoke detectors

and RFID readers), and positioning reference points2.

2 Positioning reference points are the predefined locations in the

building, providing calibration information and ground truth for

positioning algorithms (Liu et al., 2007).

Frontiers in BigData 05 frontiersin.org



Li et al. 10.3389/fdata.2022.1049198

2.1.2.1. Static contexts of internal entities

For internal entities, the approaches to modeling their static

geometric, topological, and semantic information can follow

those for the building elements presented in Section 2.1.1. In

general, object-oriented models can be used to maintain various

aspects of information of each internal entity, including UML-

like languages and IFC data formats. For example, IFC data

format (Lin et al., 2013) can represent the furnishing objects

and facilities in a building. Moreover, for search and storage

efficiency, the maintained internal entities are often attached

to the existing spatial model of the building space, according

to the spatial relationship (e.g., intersection and containment)

between the internal entity and the building space. To realize

this, pointers, linked lists, and hash tables are used. For example,

the composite indoor index (Xie et al., 2014) maintains an

object bucket for each of its building partitions and an object

hashtable for quickly finding the pointer of the host partition of

a particular object; the deployment graph (Jensen et al., 2009a)

links doors and partitions to the two-dimensional location,

activation range, and types of each deployed RFID reader.

2.1.2.2. Dynamic contexts of internal entities

In practice, internal entities feature dynamic changes.

Therefore, a good body of modeling techniques has been

proposed to handle different kinds of dynamic contexts

related to internal entities. Several important dimensions are

introduced below.

2.1.2.2.1. Object movement

For the real-time position changes of moving objects, some

works (Li et al., 2018c; Chan et al., 2022) consider updating

the mappings between objects and the building partitions to

which they belong. However, this mechanism is not suitable

for analyzing large-scale historical trajectory data as it may lead

to high accumulated processing latency. Therefore, indexing

techniques are usually applied to historical trajectories generated

by indoor moving objects, either based on R-trees (Jensen et al.,

2009b; Alamri et al., 2013; Lin et al., 2016) or grid cells (Choi

et al., 2004). Such indexes facilitate the range and nearest

neighbor queries, which lay the foundation for other complex

spatial computations.

2.1.2.2.2. Behaviors and events

Becker et al. (2009) propose a multilayered space-event

model for indoor navigation, in which the sensor space layer

is built on top of the topographic space layer for maintaining

the locations and ranges of installed transmitters and sensors.

Likewise, Jin et al. (2012) design a conceptual modeling

framework for indoor space, whosemoving object layer supports

tracking an indoor entity’s visiting durations, moving patterns,

and other behavioral information. Kim et al. (2014) pay

particular attention to indoor facility management and propose

a CityGML extension of modeling indoor facility features.

Li et al. (2020a,b) model an indoor behavior as a triple [s, e, τ ],

which captures an object’s event e ∈ E in a semantic region s ∈ S

during a particular time period τ .

2.1.2.2.3. Populations and flows

In many tasks, such as path planning (Liu et al., 2021c) and

crowd evacuation (Kamkarian and Hexmoor, 2012), algorithms

need to know the populations of regions and the flow of

doors in a building. To support the planning of pedestrian

facilities, Lam et al. (2003) devise a generalized walking time

function considering bi-directional flow distributions, which

can be calibrated for various flow conditions. Aiming for finding

populated locations using RFID-like tracking data, Ahmed et al.

(2017) propose a hierarchical location-time index that maintains

the number of distinct objects entering, exiting, and presence

at a particular location at discrete timestamps or during time

intervals. To enable finding a path with the least encountered

objects or a path with the shortest travel time in the presence

of crowds, Liu et al. (2021c) capture the flows of doors using a

Poisson distribution based function.

2.1.3. Summary of modeling techniques for
analytical contexts

To sum up, multiple aspects of analytical contexts have

been considered and modeled in existing studies. In Table 1, we

select representative studies on modeling contexts for SDAIB.

We can find that these studies accommodate different modeling

techniques for different application goals. However, these works

do not consider a commonmethodology to guide analysts in the

design and adoption of different types of modeling techniques,

which is indeed the main objective of our work (as to be detailed

in Section 3).

Aiming for formulating the methodology of modeling

analytical contexts in SDAIB, we draw the following findings

from the aforementioned studies. First, spatial models for

buildings, whether based on geometric information or

topological information, are suitable as the base model for

organizing the analytical contexts, with which semantic

information can be efficiently associated. When discussing a

base model here, we mean a basic data structure that can be

extended with advanced models/functions for handling specific

types of analytical contexts. Second, for dynamic contexts

of the building space, amendment and updating to the base

model are often needed; in contrast, dynamic changes of the

internal entities can be modeled by some external, complex

models/functions that are flexibly linked to the base model.

2.2. Modeling spatial data uncertainty

The spatial data uncertainty in SDAIB is mainly caused

by two technical limitations of indoor positioning (tracking)
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TABLE 1 Featural comparison of representative studies on intelligent building context modeling.

References
Building space Internal entities Remarks

SG ST SS DG DT DS Static Dynamic

Li and Lee (2008) X – X – – – – – Basic semantic relationships like containment and overlap

Worboys (2011) X X X – – – – – Formal models for building space

Jin et al. (2012) X X X – – – X X Supports sensors and static/moving objects

Lu et al. (2012) X X – X X – – – Focuses on distance-related computations in building spaces

Lin et al. (2013) X X X X X X X X Support dynamic changes via database update

Alamri et al. (2013) X X – X X – X X Support dynamic changes via indexing

Xie et al. (2014) X X – X X – X X Support dynamic changes via indexing and pointers

Kang and Li (2017) X X X X X X – – Semantic representations of building spaces

Objective of this

work

X X X X X X X X Methodology on context modeling

SG, static geometric information; ST, static topological information; SS, static semantic information; DG, dynamic geometric information; DT, dynamic topological information; DS,

dynamic semantic information.

FIGURE 4

An example of different kinds of spatial data uncertainties in SDAIB.

systems, namely (1) the inaccuracy of the positioning algorithm

and (2) the discrete sampling scheme of the system. The former

is mainly reflected in the errors of estimated locations observed

at a specific time point, while the latter results in incomplete

and insufficient overall information for analysis. An example

is shown in Figure 4. Suppose p and q are two locations

consecutively observed by the positioning system at timestamps

tp and tq, respectively. Due to the positioning inaccuracy, there

are many possibilities for the actual locations at tp and tq. In

Figure 4, two small circles in pink are used to indicate the

spatial uncertainties caused by positioning inaccuracy. On the

other hand, the object whereabouts between tp and tq also have

many possibilities as there are no observations in-between: First,

the snapshot location at time t ∈ (tp, tq) is undetermined

(called snapshot uncertainty) but should be constrained within

a geometric region, e.g., as indicated by the shaded portions in

Figure 4, the location at t should be within an indoor distance

r to the location at tp such that r is the maximum distance

one can reach from tp to t; Second, the overall movement from

tp to tq is also unknown (called interval uncertainty), e.g., one

can reach q from p through either the door d2 or the doors d3

and d1, as illustrated by the two possible paths in Figure 4. In

general, the modeling techniques for the uncertainties due to the

positioning inaccuracy and those due to low sampling issues are

quite different. As such, we present a classification of relevant

techniques in Figure 5. Their details are given below.

2.2.1. Uncertainty due to the positioning
inaccuracy

For a target object at a particular timestamp, the estimated

location may deviate from the true location due to the

inherent positioning error. This phenomenon is reflected in

the uncertainty of the observed spatial data (Hunter, 1999;

Pfoser and Jensen, 1999; Jeung et al., 2013; Züfle et al.,

2017), which must be taken into consideration in spatial data
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FIGURE 5

The classification of the approaches for handling spatial data uncertainties in SDAIB.

analyses, especially for the indoor scenes that usually pose high

requirements on the precision of the spatial data.

Different modeling approaches have been employed,

depending on the technologies (e.g., Wi-Fi, RFID, or Bluetooth)

and positioning algorithms (e.g., proximity-based, geometry-

based, or learning-based) employed in the indoor positioning

system (Liu et al., 2007).

In the proximity-based positioning that is commonly seen

in RFID- and Bluetooth-based tracking solutions, the activation

range based representation (Jensen et al., 2009a; Yang et al., 2010;

Lu et al., 2011, 2016) is employed to model the uncertainty of

the object location reported in a tracking record. Specifically, a

tracking record (oi, rj, t) indicates that an object (e.g., an RFID

tag) oi has been detected by a device (e.g., an RFID reader) rj

at time t. As the proximity-based tracking cannot give exact

geometric coordinates, the possible position of oi at t is simply

considered to be within the activation range of the device rj,

which is usually modeled as a small circle ◦(lj,mrdj), centered

at rj’s deployment position lj with the maximum reader distance

mrdj of rj as the radius.

The location result as a geometric coordinate is more

widely used in practice (Liu et al., 2007). Its form of (oi, lj, t)

indicates that object oi is considered to be at a specific

indoor location lj at time t. Usually, the indoor location is

a two-dimensional plane point on a particular floor. In this

study, for the sake of presentation simplicity, we focus on

the uncertainty of the estimated location on a determined

floor as the floor determination has proven highly accurate

(>99%; Wang and Luo, 2017). For geometric positioning

results, the two following kinds of representations are

often used.

• The instance-based representation (Xie et al., 2013, 2014; Li

et al., 2018b) models the possible locations of the target

object as a set of location samples, each being a pair

of a location and an existence probability. Formally, the

sample set is denoted as {(li, ρi)} where li is the sample

location and ρi is the corresponding probability such that
∑

i ρi = 1. The instance-based representation fits well

with typical localization algorithms, such as kNN and naive

Bayes (Liu et al., 2007), which produce multiple possible

locations along with their corresponding likelihoods.

Moreover, instances can be used to approximate arbitrary

distributions, providing high flexibility.

• The circle-based representation (Chan et al., 2022) captures

the possible location of the target object oi as a circle

◦(lj, ǫ) where the circle center lj is the observed location

and the radius ǫ is the pre-known average positioning

error of the underlying positioning system. The circle-

based representation can be modified and extended with

prior knowledge, such as using different radii at different

locations (Chan et al., 2022). It can also be converted

into the instance-based representation (Chan et al., 2022).

However, it is nontrivial to determine the radii at different

building locations.

2.2.2. Uncertainty due to low sampling issues

For the uncertainty caused by low sampling issues, we

further differentiate the snapshot uncertainty and the interval

uncertainty. Their main difference is that the snapshot

uncertainty discusses the object’s whereabouts at a particular

Frontiers in BigData 08 frontiersin.org



Li et al. 10.3389/fdata.2022.1049198

time point, while the interval uncertainty concerns the

object’s whereabouts during a time interval between two

observations (Lu et al., 2016).

2.2.2.1. Snapshot uncertainty

Snapshot uncertainty is caused when the last observation has

expired while the current object location has not been observed.

Given the latest positioning record (oi, xj, tl), where xj is the

observed location at the latest sampling time tl, the possible

locations of oi at the current time tc(> tl) can be derived

based on geometric approaches (Yang et al., 2010; Li et al., 2018c;

Chan et al., 2022), as a space- and speed-constrained region.

To be specific, given the maximum speed Vmax of all indoor

moving objects3, the possible locations of the object oi at time

tc are covered by an uncertainty region UR(xj, tl, tc), which is

computed as follows.

UR(xj, tl, tc) =



















































RangeI(xj, δ), if xj is a specific location,
⋃

p∈xj.boundary
RangeI(p, δ) \ xj, if xj is an

activation range,
⋃

e∈xj
RangeI(e, δ), if xj is an instance set,

⋃

p∈xj.boundary
RangeI(p, δ) ∪ xj, if xj is a

small circle.

(1)

where δ = Vmax · (tc − tl) is the maximum distance that

oi can walk from tl to tc, and the Indoor Range Query

function RangeI(p, dis) returns the indoor portions that can

be reached within the distance dis from the given point p.

The implementation of the RangeI function has been covered

in existing studies (Lu et al., 2012; Xie et al., 2013; Li et al.,

2018c). In Equation (1), Case 1 assumes there is no positioning

uncertainty (Li et al., 2018c), while the other three cases

correspond to different kinds of representations of positioning

uncertainties (see Section 2.2.1). In particular, Case 2 considers

the activation range based representation (Yang et al., 2010) and

xj is excluded because the object is currently unobserved and

must not be within any activation range; Case 3 considers the

instance-based representation, and each instance is used to infer

an uncertainty region that will be merged then; Case 4 refers

to the circle-based representation (Chan et al., 2022) used in

geometric positioning and the uncertainty region is modeled as

an outwardly extended region of the last observed location xj.

Generally speaking, the distribution of possible locations

in the derived uncertainty region is not necessarily uniform.

Following the first law of geography (Tobler, 2004), i.e., things

that are near are more related than things that are far away,

various distance-decaying functions (Li et al., 2018c; Chan et al.,

2022) have been designed to model the likelihood of different

possible locations in an uncertainty region.

3 The maximum speed can be maintained object-wise, as long as prior

knowledge is available.

2.2.2.2. Interval uncertainty

Unlike snapshot uncertainty, interval uncertainty happens

across the intervals between two consecutively observed

locations. We categorize three different types of approaches for

modeling interval uncertainty as follows.

• The geometric approaches (Jensen et al., 2009a; Lu et al.,

2011, 2016; Teng et al., 2017; Li et al., 2020b) calculate the

possible locations of an object between its two consecutively

observed locations based on spatial constraints. Suppose

(xa, ta) and (xb, tb) are two consecutively positioning

records, where xa and xb are observed locations and ta

and tb are the corresponding timestamps. Referring to

Section 2.2.1, an observed location xa in the RFID setting

is represented as a small circle ◦(la,mrda) centered at the

reader’s deployed location la with the maximum reader

distance mrda as the radius. Jensen et al. (2009a) and

Lu et al. (2016) point out that the possible locations

during the time interval [ta, tb] must be constrained by an

extended ellipse, whose two foci are located at la and lb
and eccentricity is defined by the distance

[

Vmax · (tb −

ta)+mrda +mrdb
]

where Vmax is the maximum speed of

moving objects. Moreover, the ellipse must exclude those

unreachable indoor parts in terms of minimum indoor

walking distance, rather than the Euclidean distance. Also

in the RFID tracking scenario, Lu et al. (2011) indicate that

the possible location at a particular time point tc ∈ [ta, tb]

is constrained by two rings ring[la,mrda,Vmax · (tc − ta)]

and ring[lb,mrdb,Vmax ·(tb−tc)], where ring(p, dia1, dist2)

refers to a ring centered at point p with inside diameter

dia1 and outside diameter dia2. Finally, the intersection of

the two rings excluded those unreachable indoor portions is

used to model the uncertainty region at time tc. Similar to

the space-constrained intersection of rings (Lu et al., 2011),

Li et al. (2020b) employ the space-constrained intersection

of circles for geometric positioning results. Assuming grid-

based partitioning of the target indoor space, Teng et al.

(2017) use a set of reachable cells to represent possible

object locations. Each grid satisfies that any moving object

can reach the previously observed location la and next

observed location lb within the limited traveling time.

• The probabilistic approaches (Li et al., 2018b, 2020b)

represent the possible indoor movement between two

observed locations in a probabilistic form. Representing the

indoor space as a graph with rooms as nodes and doors as

edges, Li et al. (2020b) compute the transition probability

on each directed edge using historical data, and analyze

the movement between two observation locations (rooms)

based on conditional probabilities with the computed

transition probabilities as prior knowledge. Assuming that

the location at each observed time point is a set of instances

with probabilities, another work (Li et al., 2018b) uses

the Cartesian product of the instances at continuous time
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points to generate a set of possible indoor paths, and the

probability of each path is calculated as the product of the

probabilities of the instances it goes through. Those indoor

paths violating indoor topology will be removed and the

probabilities of the rest paths will be normalized.

• The model-based approaches (Hightower and Borriello,

2004; Petzold et al., 2005; Bekkali et al., 2007; Asahara

et al., 2011; Laursen et al., 2012; Patel and Thakore,

2013; Yu et al., 2013; Baba et al., 2016; Belmonte-

Hernandez et al., 2019; Li et al., 2020a; Tariq et al.,

2021) capture the underlying data generation mechanism

of the observed data in a model, which is then used to

recover the unsampled time points. Three representative

techniques, namely Bayes filters, probabilistic graphical

models, and neural networks, have been explored, mainly

depending on capturing the temporal dependencies of the

sequential positioning records. The Bayes filter sequentially

estimates the optimal location of the target object by

mapping the noisy location observations at each time

point to a fuzzy representation, such as samples in particle

filters (Hightower and Borriello, 2004; Yu et al., 2013) and

Gaussian distributions in Kalman filters (Bekkali et al.,

2007; Patel and Thakore, 2013). Probabilistic graphical

models represent the observed object positions as discrete

and piecewise constant states and learn dependencies

between those states using historical data. Different

models have been explored to incorporate different

kinds of application semantics, such as hidden Markov

models (Laursen et al., 2012; Baba et al., 2016), conditional

random fields (Li et al., 2020a), dynamic Bayesian

networks (Petzold et al., 2005), and mixed Markov-chain

models (Asahara et al., 2011). Recently, several works

propose using deep neural networks to learn intrinsic

dependencies among sequential positioning records, such

as recurrent neural networks (Belmonte-Hernandez et al.,

2019) and 1-D convolutional networks (Tariq et al., 2021).

2.2.3. Summary of modeling techniques for
spatial data uncertainties

First, to handle the spatial data uncertainty, the

characteristics of the indoor positioning/tracking system,

such as the used technologies and positioning algorithms,

must be taken into account. Second, the uncertainty due

to the positioning inaccuracy should be handled before the

uncertainty due to low sampling issues. In the latter case, the

handling techniques usually utilize spatial observations to derive

the uncertainty regions. Such spatial observations, obtained

from an indoor positioning system, often carry positioning

errors (see Section 2.2.1). As these positioning errors take

effect in the analyses, they should be handled before deriving

the uncertainty regions with respect to low sampling issues.

Referring to the example in Figure 4, the positioning errors

of the observed location p are considered in modeling the

snapshot uncertainty at a time t ∈ (tp, tq) (the shaded regions).

Last, in handling uncertainties caused by low sampling, the

analytical contexts are very useful. For example, the Indoor

Range Query function used in snapshot uncertainty models (Xie

et al., 2013; Li et al., 2018c) heavily relies on the geometric

and topological information of the building space: To return

the indoor portions that one can reach within a limited time

budget, the function needs to know the positions of doors to

access adjacent rooms as well as the size of rooms. In Figure 4,

deriving the uncertainty region (the shaded portions) considers

the position of door d3 and geometries of partitions v1 and

v3. For another example, some model-based approaches for

interval uncertainties (Laursen et al., 2012; Yu et al., 2013; Li

et al., 2020a) require both spatial and semantic information to

build a probabilistic graphical model. In particular, semantics

like sensor deployment and geometries of indoor space are used

as prior knowledge for designing the corresponding state space.

3. A unified modeling framework

Given that various kinds of analytical contexts and spatial

data uncertainties should be considered in different SDAIB

tasks, we propose a unified modeling framework based on

which data analysts can incorporate relevant contexts and spatial

data uncertainties into their specific tasks through a standard

workflow. The framework is illustrated in Figure 6, which

consists of six steps for modeling analytical contexts followed

by two steps for modeling spatial data uncertainties. We model

the analytical contexts first and then spatial data uncertainties

because handling data uncertainties usually rely on the contexts.

1. Handling Static Contexts of Building Space. According

to the summary in Section 2.1.3, we first use the

spatial information (including geometric and topological

information) to build a base model called connectivity base

graph (Jensen et al., 2009a)4. We use a graph-basedmodel due

to its flexibility in handling dynamic changes in both nodes

and edges. Specifically, we divide the target building space

into a set of basic topological units according to the geometric

decomposition algorithm (Xie et al., 2014). Each such unit

is called a partition and represented as a graph node. Then,

each two topologically connected partitions are represented

by an edge, on which the connecting door is maintained.

Using directed edges is an alternative solution if the door

directionality is critical (see accessibility graph; Jensen et al.,

2009a). Afterwards, we capture the geometric and semantic

4 Different notations are used to refer to the base indoor graph

structure with partitions as nodes and doors as edges (Jensen et al.,

2009a; Worboys, 2011; Afyouni et al., 2012; Lu et al., 2012). In this study,

we use the connectivity base graph following an early work (Jensen et al.,

2009a).
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FIGURE 6

A unified framework for modeling analytical contexts and spatial data uncertainties.

properties of each building element using object-oriented

data models and link those data models to the components

of the connectivity base graph (i.e., doors and partitions).

2. Handling Static Contexts of Internal Entities. Similar to

linking building elements to the connectivity base graph,

internal entities such as sensors and positioning reference

points are associated with the graph nodes and edges after

beingmodeled with geometric and semantic properties. Some

analyses require knowing topological relationships between

specific internal entities. For example, the asset tracing task

may need to know whether two specific RFID readers’

activation ranges overlap with each other (Jensen et al., 2009a;

Yang et al., 2010; Lu et al., 2011, 2016). Thus, we derive

topological relationships of internal entities based on their

geometric and semantic information, and add them to the

base graph.

3. Specific Optimization to Static Context Modeling. To

improve data access efficiency for specific tasks, facilitator

data structures are designed. Firstly, if the analysis task

focuses on the data captured as IDs of sensors (or doors,

or positioning reference points), a dual-form transformation

of the original connectivity base graph will be beneficial.

In particular, the dual-form graph captures the sensors (or

doors, or positioning reference points) of interest as graph

nodes and their relationships as edges. Secondly, materialized

mappings between different kinds of objects can be pre-

computed to facilitate search. Moreover, spatial indexes

would speed up spatial computations (Liu et al., 2021b),

e.g., R-trees and grids for geometric computations (Choi

et al., 2004; Lu et al., 2012) and VIP-trees for topology-

relevant operations (Shao et al., 2016). Nevertheless, building

these additional facilitator data structures incurs more

storage space.

4. Handling Dynamic Contexts of Internal Entities. Steps 4

and 5 can be performed simultaneously, while Step 4 for

internal entities is more straightforward. Specifically, for

the dynamic changes of an internal entity, we update its

corresponding object-oriented model directly. The update

order is geometric information first, semantic information

second, and topological information last, considering that the
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update of one kind of information will affect another kind

of information.

5. Handling Dynamic Contexts of Building Space. Updating

building elements in this step is almost the same as

updating internal entities in Step 4, except for the

topological information. Since topological relationships

between building elements aremaintained directly in the base

graph, frequently updating the base graph will lead to chained

changes. An optimization strategy is to establish checkpoints

of the base graph (or its dual-form graph) along the time

and maintain incremental updates of graph edges. We refer

interested readers to materials (Mondal and Deshpande,

2012; Zaki et al., 2016) on dynamic graph modeling.

6. Update Mappings/Indexes Related to Dynamic Contexts.

Mappings and indexes should be updated accordingly if there

are dynamic information changes in building elements and

internal entities. Updating such facilitator data structures

will potentially incur a large time overhead, which should

be considered carefully in their design. We refer interested

readers to an empirical study on indoor spatial indexes (Liu

et al., 2021b).

7. Handling Uncertainty Caused by the Positioning

Inaccuracy. The summary in Section 2.2.3 discloses

that positioning uncertainty must be handled before

the low sampling uncertainty. To model positioning

uncertainty, the representation choice depends on the

technology and positioning algorithm employed by the

underlying indoor positioning system. Usually, activation

range based representation is used in symbolic tracking

using RFID and infrared, instance-based representation

fits well with the probabilistic positioning algorithms, and

circle-based representation is a default choice for geometric

positioning results.

8. Handling Uncertainty Caused by Low Sampling Issues.

Finally, we deal with low sampling uncertainty. Before

modeling, we need to introduce relevant analytical contexts

as prior knowledge, such as topology and geometric

information of the building. If the data observations before

and after the analysis time are available, modeling interval

uncertainty is considered. Otherwise, we model the snapshot

uncertainty. The choice of the modeling approach for low

sampling uncertainties (see Section 2.2.2) should consider

the characteristics of the indoor positioning system, as

well as the availability of prior knowledge and historical

positioning data.

The last two steps of the proposed framework focus

on modeling data uncertainties related to data analyses,

which is considered a fundamental process for reducing data

uncertainties in downstream applications. On the one hand,

interpolation and sampling techniques on top of a data

uncertainty model can be employed to derive or recover the

unobserved data (Li et al., 2020b), thus reducing the data

uncertainty explicitly. On the other hand, data uncertainty

models can be incorporated into some analytical processes [e.g.,

graphical models Li et al. (2020a) and probabilistic queries Li

et al. (2018c)] in a probabilistic way, mitigating the negative

impact of spatial data uncertainty in analyses. Examples of

reducing data uncertainty based on themodeling techniques will

be provided in Section 4.

4. Context-aware and
uncertainty-aware data analyses

We will describe how the unified modeling framework

proposed in Section 3 enables context-aware and uncertainty-

aware data analyses. Sections 4.1–4.4 cover hotspots discovery,

path planning, semantic trajectory generation, and distance

monitoring, respectively. For each task, we will introduce its

problem background, modeling process, and analysis algorithms

based on the aforementioned framework. We refer interested

readers to the original papers for detailed empirical studies.

4.1. Hotspots discovery

Public indoor venues, such as shopping malls, subway

stations, and airports, are often crowded during peak times. For

example, as early as 2004, the weekend traffic at Hong Kong

New Town Plaza5 reached 320,000 (Xie et al., 2014). Crowd

gatherings can easily lead to congestion, safety incidents, and

public health concerns. Therefore, it becomes fundamentally

important to find out and monitor those indoor hotspots with

high populations and flows. Below, we present our techniques

for finding out the indoor dense regions with the highest

populations (Li et al., 2018c) and the indoor popular semantic

locations with the highest flows (Li et al., 2018b), respectively.

4.1.1. Indoor dense regions

The previous study (Li et al., 2018c) aims to timely find

the k most dense regions using only the latest geometric

positioning result of each observed object in a Wi-Fi based

indoor positioning system. The candidate regions are arbitrary

rectangles customized by users. As the latest observed locations

may be outdated, the counting of objects in a region is

based on the objects’ uncertainty regions derived from their

latest observations. Specifically, for each object oi whose

uncertainty region at the current query time intersects with

the candidate region rj, the proportion of the intersecting

area occupying oi’s uncertainty region is added to the

density of rj as the probability that oi currently presents

in rj.

5 https://en.wikipedia.org/wiki/New_Town_Plaza
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The modeling for analytical contexts and spatial data

uncertainties are as follows.

• Analytical Contexts. For static contexts, a connectivity

base graph is built with geometric and topological

information of rooms, hallways, and staircases. The indoor

moving objects, as internal entities, are maintained in each

partition’s associated bucket. An R-tree and the mappings

between moving objects and partitions are used to speed

up locating objects. There is no dynamic change of the

building space but the object movements are updated in the

base graph and facilitator structures.

• Spatial Data Uncertainties. For simplicity, positioning

uncertainty is not considered in the latest positioning

records—nevertheless, it can be extended to instance-based

or circle-based representation. Subsequently, to infer the

possible location of an object at a particular query time, the

snapshot uncertainty model is introduced, corresponding

to Case 1 in Equation (1).

Given the snapshot uncertainty region, it is however time-

consuming to compute the probability-based object presence

for each pair of a moving object and a candidate region.

We briefly introduce the basic idea for efficiently finding the

top-k densest regions. In particular, instead of calculating the

intersecting areas in the indoor space, a simple counting of those

certainly and possibly intersected objects is used to derive the

lower bound and upper bound of a region’s density. In this

way, some unpromising regions can be pruned before concrete

density computations. The search further utilizes spatial loose

bounds enabled by Euclidean distances and temporal loose

bounds enabled by the oldest observed timestamps for even

more aggressive pruning.

4.1.2. Indoor popular semantic locations

The study (Li et al., 2018c) focuses on identifying those

region-like semantic locations with the highest flows during

a past time interval. The available historical positioning data

is in the instance-based representation and each instance

corresponds to a pre-selected reference point in the Wi-Fi

based positioning system. Due to low sampling uncertainty, it is

necessary to obtain all possible indoor paths of each object that

appeared in the given time interval. To this end, the Cartesian

product is used to connect instances of any two consecutive

reporting times, and the probability of a resultant sequence is

the product of the probabilities of all instances on that sequence.

Among all generated sequences, those having two consecutive

instances not topologically connected are invalid and should

be removed, and those remaining sequences are assigned

normalized probabilities eventually. As a result, we consider

the flow of each candidate semantic location as the summed

probabilities of all valid indoor paths that have passed that

semantic location.

The summary of its modeling of contexts and data

uncertainties is as follows.

• Analytical Contexts. First, a dual-form graph is generated

from the original connectivity base graph, in which

reference points are regarded as nodes and the passed

semantic locations between two reference points are

maintained at edges. In this way, it is easy to find

relevant semantic locations given any two consecutive

instances (reference points). Second, R-trees are used to

index both semantic locations and positioning data, which

enable efficient spatial joins between semantic locations and

positioning instances in the search.

• Spatial Data Uncertainties. As mentioned above,

positioning uncertainty is modeled using the instance-

based representation while low sampling uncertainty is

modeled using an interval uncertainty model, i.e., a set of

possible instance sequences.

To speed up the search, several supporting techniques

are proposed. First, to avoid the explosive instance sequences

generated by the Cartesian product, indoor topology based

pruning and semantic information based instance grouping

are used for data reduction. Second, spatial joins over the

semantic location R-tree and the positioning instance R-

tree are utilized, prioritizing those semantic locations (and

their parent regions) that potentially cover more passing

moving objects.

4.2. Path planning

Modern buildings are becoming increasingly large and

complex, e.g., the Dubai Mall covers an area of over 12 million

square feet (equivalent to more than 50 soccer fields)6, the King

Fahd International Airport is 3.5 million square feet7, and the

Louvre museum covers a total area of 782,910 square feet of

galleries space, as big as 280 tennis courts8. It is difficult for

people to find an appropriate path in such a large and complex

building, especially when they are new visitors. Moreover, to

better cater to the user’s navigation needs, some important

contextual information, such as semantic information of POIs,

temporal variation of doors, and dynamic crowds, should be

considered in the pathfinding, rather than simply returning

the shortest path between the source point and the target

point. Correspondingly, we present the following techniques

6 https://en.wikipedia.org/wiki/The_Dubai_Mall

7 https://en.wikipedia.org/wiki/King_Fahd_International_Airport

8 https://en.wikipedia.org/wiki/Louvre
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for keyword-aware path planning (Feng et al., 2020), temporal-

variation aware path planning (Liu et al., 2021a), and crowd-

aware path planning (Liu et al., 2021c).

4.2.1. Keyword-aware path planning

In the previous study (Feng et al., 2020), we focus on finding

indoor paths that can cover user-specific keywords (e.g., “cola”

and “toilet”). Specifically, an indoor top-k keyword-aware routing

query is defined, which returns the k best routes from the start

point to the target point that are not longer than a distance

constraint and have the highest ranking scores defined as a linear

combination of the route’s keyword relevance and its length.

According to the workflow defined in the proposed

framework, the modeling is as follows.

• Analytical Contexts. A connectivity base graph is built

to maintain the geometric and topological information

used for routing. For semantic information, two types

of keywords are considered. An identity word (i-word)

is an indoor partition’s unique semantic name such as

McDonald’s and toilet, while a thematic word (t-word) is the

description of an i-word such as hamburger and cola for

McDonald’s. Two mappings are used to organize i-words

and t-words, i.e., finding a group of relevant t-words for

a given i-word and finding relevant i-words for a given

t-word. Two other mappings are used to maintain the

one-to-many relationships between an i-word and a set of

associated partitions. The mappings allow for updating in

case of changes of semantic information.

• Spatial Data Uncertainties. As the analysis does not

involve any internal entities and positioning data, no

uncertainty is modeled.

The aforementioned context model supports the top-

k keyword-aware routing query answering in the following

aspects. First, the maintained relationships between keywords

and partitions are used to compute the keyword relevance

score of a given route represented as a sequence of passed

partitions. The keyword relevance score is further combined

with the route distance in a weighted manner for ranking the

most suitable indoor paths for the user query. Second, geometric

and topological information of the building space is used to

design a set of pruning rules, reducing the search space of

candidate paths between the source and the target. Enabled by

different pruning rules, two search strategies are proposed. In

particular, the topology-oriented expansion strategy expands a

partial path to the next graph node9, computes the ranking

score of the partial path, and prioritizes processing those partial

9 A partial path, in contrast to a complete path, represents those paths

that start from the source but have not reached the target.

paths with higher ranking scores until k complete paths are

found. In contrast, the keyword-oriented expansion strategy

first finds all keyword-relevant partitions and then searches

for complete paths by orchestrating these keyword-relevant

partitions and complementing other in-between partitions based

on indoor topology.

A follow-up work (Chan et al., 2021) considers more

sophisticated contexts in keyword-aware routing, such as the

time cost to spend on a POI and the category word of a POI. In

the modeling, these static contexts of building space are linked

to the partitions in the base graph.

4.2.2. Temporal-variation aware path planning

The previous work (Liu et al., 2021a) aims to find the shortest

indoor paths for users while considering the temporal variations

of doors and blocking of rooms during their navigation. Such

a pathfinding problem reflects the real-world scenarios where

many doors have regular opening and closing times and

many rooms may be temporarily occupied and unavailable for

routing use.

To solve the problem, we consider the modeling process

as follows.

• Analytical Contexts. Static contexts including geometric

and topological information are maintained in the base

graph, like partitions’ shapes and locations of doors.

Dynamic contexts mainly consist of doors’ Active Time

Intervals and types of doors/partitions, where the former

records each door’s opening and closing times and the latter

indicates whether a door/partition is private or public. All

these dynamic contexts are linked to the graph and allow

for updating. To speed up pathfinding, an indoor temporal-

variation index is built upon VIP-tree (Shao et al., 2016).

The tree structure is constructed by hierarchically gathering

those topologically connected partitions such that each

internal tree node corresponds to an interconnected area.

Moreover, each internal node links to a distance cube

that materializes the time-parameterized shortest path

information among the doors covered by the internal node.

• Spatial Data Uncertainties. Similar to the work above, no

spatial data uncertainty is involved.

Based on the constructed context model, synchronous and

asynchronous strategies are proposed to deal with temporal

variations during the pathfinding over the graph. In particular,

synchronous pathfinding checks temporal variations whenever

a node expansion is needed whereas asynchronous pathfinding

enjoys lazy computations as graph checkpoints are used

to indicate the topological changes. An accelerated search

using the indoor temporal-variation index is also proposed.

This search first finds leaf nodes covering the source and
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the target, then finds the lowest common ancestor for the

two leaf nodes, and finally connects the source to the

target via their common ancestors with materialized shortest

path information.

4.2.3. Crowd-aware path planning

The work (Liu et al., 2021c) aims for finding proper indoor

paths by taking into account the crowded people en route. Two

different query types are studied. The indoor crowd-aware fastest

path query (FPQ) returns the path with the shortest traveling

time in the presence of the lag caused by crowds, and the indoor

least crowded path query (LCPQ) finds a path encountering the

least number of objects.

To answer these two queries, contexts and data uncertainties

are handled as follows.

• Analytical Contexts. Static topological and geometric

information such as partitions’ areas and shapes are

maintained in the base graph. The dynamic contexts of

internal entities, such as the populations of partitions

at each time interval and the flow via a door, are

modeled by external models that are linked to the base

model. They serve to estimate the traveling time and

number of encountered objects at a particular time during

en route.

• Spatial Data Uncertainties. Positioning data is used to

model and predict the time-evolving door flows and

partition populations, whose uncertainty will however

affect the estimation of traveling time and the number

of encountered objects. Without deriving the uncertainty

region of each individual object, we aggregate the uncertain

positioning data to obtain uncertain flows at different time

points, and fit it with a Poisson distribution. To deal with

the uncertainty at the flow level, we capture the relationship

between inflows and outflows of partitions according to the

indoor topology, and exploit it to design a recursive flow

rectification scheme for accurate population estimation.

The Dijkstra-based search over the graph model along with

time-evolving population estimators is used to process FPQ

and LCPQ. Two exact and two approximate estimators are

provided in the query processing framework. Among the two

exact estimators, the global one executes flow rectification over

all partitions while the local one focuses on rectifying the

inflow/outflow of a relevant partition. The two approximate

estimators accelerate the query processing at the cost of

accuracy. One skips the outflow rectification of those dependent

partitions when deriving the population of a relevant partition,

while the other optionally uses probability functions to predict

populations instead of the timestamp-by-timestamp derivation

of populations.

4.3. Semantic trajectory generation

Translating raw indoor positioning sequences into human-

readable, concise indoor semantic trajectories is practically

useful. Various downstream applications, such as querying,

visualization, and recommendation, can all benefit from such

semantics-oriented representation. Following many existing

studies on outdoor semantic trajectories (Parent et al., 2013; Yan

et al., 2013), an object’s indoor semantic trajectory is captured

as a sequence of triples in the form of (s, e, τ ), meaning that

the object has a mobility event e ∈ {stay, pass-by} within a

semantic region s during the time interval τ . Semantic trajectory

generation is a complex process. A layered framework for

constructing indoor semantic trajectories has been introduced

in previous studies (Li et al., 2018a, 2020b), encompassing the

subtasks of data cleaning, semantic annotation, and sequence

completion. A follow-up work (Li et al., 2020a) focuses on

improving the performance of semantic annotation. In these

studies, sufficient consideration of contexts and data uncertainty

is a prerequisite for achieving decent performance in generating

indoor semantic trajectories.

Following the proposed framework, the modeling process is

executed as follows.

• Analytical Contexts. On top of the connectivity base graph,

the information of those semantic regions is maintained

by hashtables where each semantic region is mapped to

a set of indoor partitions. The topological relationships

between semantic regions are also derived and added to the

base graph. Indoor partitions are indexed by R-trees such

that raw positioning records can be efficiently mapped to

the covering indoor partition and further mapped to the

covering semantic region.

• Spatial Data Uncertainties. To facilitate the cleaning of

historical positioning data, an interval uncertainty model

is employed, capturing the possible object whereabouts as

the space-constrained intersection of two circles (Li et al.,

2020b). Subsequently, to complete the missing triples in

a generated semantic trajectory, the possible movement

across the unobserved time interval is modeled as a set

of possible paths on the connectivity base graph. The

historical data is used to calculate the prior transition

probabilities between two semantic regions such that

the missing movement between semantic regions can be

modeled and inferred using probabilistic approaches.

Finally, we briefly describe how these models for contexts

and data uncertainties support the subtasks of semantic

trajectory generation:

1. For positioning data cleaning, the interval uncertainty model

is used to identify outliers in the raw data. Particularly,

any observed location falling out of the derived uncertainty
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region is determined as an outlier, and a sample drawn from

the uncertainty region will substitute the outlier.

2. For semantic annotation, positioning sequence is segmented

using a density-based clustering approach. In particular, a

segment with low spatiotemporal density is likely to match

a pass-by event; otherwise, high spatiotemporal density

indicates a stay event. Once events have been determined,

the corresponding semantic region is estimated as the one

occupying the largest fraction of the segment’s combined

uncertainty region. This method determines the event

and semantic region sequentially, which may bring about

chained errors. Therefore, probabilistic graphical models (Li

et al., 2020a) have been exploited to jointly model the

matching probabilities of semantic regions and those of

events as well as learn their dependencies along the time.

To model the energy functions in such a graphical model,

indoor geometric information, and semantic information

are exploited.

3. For sequence completion, the missing triples corresponding

to the low sampling issue of the raw data are inferred.

Specifically, the historical movement patterns among

semantic regions are modeled as transition probabilities

between graph nodes. Subsequently, the most likely path

between two generated triples is found as the one with

maximum posterior probability.

4.4. Distance monitoring

The COVID-19 pandemic has endangered people’s life since

the beginning of 2020. As of August 22, 2022, it had caused

more than 6millions deaths10. One of the effective approaches to

contain the spread of the virus is to keep proper social distancing

(e.g., at least 1 m apart) between people. This is particularly

important in buildings like high-risk workplaces (e.g., people

in nursing homes and quarantine hotels). In the following, we

introduce continuous social distance monitoring (SDM) (Chan

et al., 2022), which aims to monitor and predict the pairwise

distances between moving objects (people) in real-time. In

particular, given a set of moving objects in an indoor space, SDM

identifies all object pairs that are going to form close contact,

i.e., having a distance smaller than a pre-defined threshold (e.g.,

1 m) within a near future (e.g., in 5 s or so). One example

application is that a museum or gallery can integrate this social

distance monitoring into their guide app, which allows visitors

to keep track of their distances from others while visiting the

exhibition. It can suggest further actions to those contact visitors

by alerting them.

In this task, the modeling process is as follows.

10 https://covid19.who.int

• Analytical Contexts. To maintain the static context

including the geometric and topological information of

the building, a connectivity base graph is used. Door-to-

door shortest distances and partition-to-partition shortest

distances are pre-computed and stored in twomatrices. The

internal entities of interest are the indoor moving objects

(people), and they are maintained in the buckets linked

to the covering partition. When a new location update

is received, the bucket information of the corresponding

object will be updated.

• Spatial Data Uncertainties. Both positioning inaccuracy

and low sampling issues are considered in modeling

object positions. To deal with uncertainties caused by

the positioning inaccuracy, we use the circle-based

representation combined with different distance decaying

functions. However, in the implementation, we draw

instances from the circle-based representation as

such instances fit in arbitrary distributions and make

computations easier. To deal with uncertainties caused

by low sampling issues, the interval uncertainty region

model is used, corresponding to Case 4 (circle-based

representation) in Equation (1).

To process SDM efficiently, a set of acceleration techniques

are proposed. First, to reduce the number of pairwise distance

computations, we prune unpromising object pairs based on

the floors they are located on, the indoor topology, and their

probability distributions. Second, we propose a batch processing

strategy to group nearby objects into one large group, and update

the distances between the objects within and outside the group

in one pass.

5. Future directions

Above, we have introduced recent advances in addressing

complicated analytical contexts and spatial data uncertainties

in SDAIB. Next, we discuss new opportunities that emerging

technologies bring to SDAIB.

• Decentralized and edge-resident SDAIB. In the past

decade, SDAIB tasks have been mainly run in a centralized

manner, which potentially incurs high costs in the data

center for data integration, computation, and storage.

Currently, edge computing (Mao et al., 2017) emerges as

a novel paradigm, pushing the data processing as close

as possible to the place where the data is generated.

In this way, reduced computation workload of the data

center and improved service responsiveness are achieved.

There may be hundreds or thousands of IoT devices

in an intelligent building environment, using different

working mechanisms to collect, transmit, and process

data. Spatial data analyses feature inherent locality, i.e.,
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data generated locally can be analyzed locally. This means

that the main process of a spatial data analysis task is

very suitable for running in decentralized devices resident

in the IoT edge. However, it is nontrivial to realize

such a decentralized, edge-resident SDAIB. Specifically,

IoT devices in intelligent buildings are heterogeneous

and dynamic, with distinct computing capabilities and

life cycles. To make appropriate task decomposition and

task assignment among IoT devices, new techniques for

profiling IoT devices, modeling tasks’ objectives (e.g.,

processing latency, accuracy, and transmitted data volume),

and efficient coordination are required. Recent efforts (Ma

et al., 2019; Li et al., 2022) have been made to manage and

analyze spatial and spatiotemporal data in the IoT edge

computing environments.

• Privacy-preserving SDAIB. In the new technology

ecosystem, another important issue is data security and

privacy protection. Compared with data centers, IoT

devices are less protected, and their data computation and

storage face security risks. In the foreseeable future, more

and more spatial data collected in intelligent buildings

will be anonymized, obfuscated, encrypted, or removed,

which will bring greater challenges to analyses. On the one

hand, the efficiency of analysis will potentially be degraded

due to more complex data security schemes; on the other

hand, privacy-enhanced data may lead to information loss

and thus degradation of the results’ effectiveness. Some

potential techniques can be applied to privacy-preserving

SDAIB. First, representation learning techniques (Kumar

et al., 2021) can be introduced into a hierarchical analysis

process from end devices to IoT devices to the data

center, in which generated data encodings are exchanged

in the IoT and the network, and end devices and the

data center take the normal input and output. Second,

data summaries (Siddique and Eldawy, 2018), specific to

particular data analysis tasks, can be used in scenarios

that are fault-tolerant. Finally, for some model-driven

analyses, federated learning (Kumar et al., 2021) and

machine learning in Blockchain (Chen et al., 2021) can

help avoid sharing sensitive data while maintaining

decent performance.

• Lightweight and energy-saving SDAIB. Last but not least,

the realization of lightweight and energy-efficient data

analysis is of great benefit to intelligent buildings. IoT-

enhanced buildings require a lot of energy to acquire data

and interact with people and the environment. Hence,

it is necessary to cut ineffective operations from data

analysis, for sustainable intelligent building applications.

We illustrate potentially applicable technologies from

several perspectives. (1) From a data perspective, how to

sample, retain, and discard data is worth investigating.

Many sensors collect redundant data at high frequency,

therefore, data sampling strategies based on reinforcement

learning (Yoon et al., 2020) will be highly usable, e.g.,

to adaptively change the sampling rate or the buffer size

according to the objective of the analysis task. (2) From

a computational perspective, identifying and removing

invalid or inefficient operators in the analysis can be

explored. For some machine learning tasks, lightweight

techniques (Menghani, 2021) such as model compression,

knowledge distillation, and parameter pruning have been

applied in computer vision and natural language processing

fields, but how to design light models for spatial data and

spatiotemporal data in IoT scenarios still remains open.

Based on the above, we envision an end-edge-cloud

architecture for SDAIB, which encompasses various data privacy

protection schemes and decentralized algorithms built on them.

This architecture also integrates a coordinator module, which

provides a quality-aware and energy-efficient mechanism to

decompose tasks and assign them to heterogeneous and dynamic

IoT devices.

To support the aforementioned future directions, the unified

modeling framework proposed in Section 3 should be further

improved. In terms of context modeling, the framework should

be able to represent more complex and diverse IoT devices

and building environments. On the one hand, compared to

current manually designed models, automated means such

as semantic parsing and extraction (Teng et al., 2018; Guo

et al., 2021) can be developed to extract contexts from the

physical world; on the other hand, data structures with more

powerful expression capabilities such as heterogeneous graphs

and hypergraphs (Zhou et al., 2006) can be introduced to the

modeling framework. In terms of data uncertainty modeling,

the framework should support the decentralized data setting (Li

et al., 2022), i.e., heterogeneous computing nodes generate and

consume data with different mechanisms. In this case, the

framework should be able to model and analyze the spatial data

uncertainty of heterogeneous data nodes, and the merging of

such spatial data in different degrees or types of uncertainty.

6. Conclusion

In this article, we focus on advanced techniques of spatial

data analysis for intelligent buildings (SDAIB), and identify two

general technical challenges in SDAIB, namely the complicated

analytical context and inherent spatial data uncertainty. We

then revisit recent advances in modeling analytical context

and spatial data uncertainty. By summarizing the technical

highlights of these modeling approaches, we propose a unified

modeling framework that creates a roadmap for handling

various analytical contexts and spatial data uncertainties. We

demonstrate the support of this unified modeling framework

for several SDAIB tasks. Finally, we discuss the future directions

of SDAIB in the presence of emerging technologies, which may
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inspire researchers and practitioners in constructing innovative

intelligent building applications.
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