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PREDICTING HUMAN PERCEPTION OF SCENE COMPLEXITY

Cameron Kyle-Davidson⋆ Adrian G. Bors⋆ Karla K. Evans†

⋆Dept. of Computer Science,†Dept. of Psychology, University of York, York, UK

ABSTRACT

It is apparent that humans are intrinsically capable of deter-

mining the degree of complexity present in an image; but it

is unclear which regions in that image lead humans towards

evaluating an image as complex or simple. Here, we develop

a novel deep learning model for predicting human perception

of the complexity of natural scene images in order to address

these problems. For a given image, our approach, Complexi-

tyNet, can generate both single-score complexity ratings and

two-dimensional per-pixel complexity maps. These complex-

ity maps indicate the regions of scenes that humans find to

be complex, or simple. Drawing on work in the cognitive sci-

ences we integrate metrics for scene clutter and scene symme-

try, and conclude that the proposed metrics do indeed boost

neural network performance when predicting complexity.

Index Terms— deep learning, complexity perception,

image analysis, cognitive science, human vision

1. INTRODUCTION

Humans are capable of rapidly evaluating the visual com-

plexity of an image; it is immediately and obviously appar-

ent that a painting of a scene is more complex than a blank

canvas. Beyond this simplistic and stark contrast, there is sig-

nificant evidence that human beings are capable of evaluating

the complexity of images that vary from simple textures, to

complex images of objects. Research into human complexity

perception has both theoretical and practical aspects. From

the theoretical side, determining which elements contribute

to the level of complexity perceived in an image reveal clues

as to how the human visual system operates and automatically

evaluates stimuli. Practically, applications of studying com-

plexity range from marketing to healthcare. An advert may

need to be complex enough to hold attention and inform, but

not so complex that it cannot be understood; the same ratio-

nale applies to educational materials. Psychological experi-

ments may require stimuli of identical complexity to exclude

a confounding factor, and how complex a person finds an im-

age could even be used to track cognitive decline in visual

processing disorders.

The study of perceptual complexity is not new; research

goes back decades and spans the fields of both cognitive psy-

chology and computer science. The theory of complexity per-

ception originally began in the early 20th century as part of a

study on the aesthetics of images [1]; suggesting that com-

plexity is related to the number of distinct elements in an im-

age. This was later redefined as the intricacy present in a line-

drawn representation of an image [2], followed by the level of

difficulty inherent in verbally describing a texture [3]. These

results are indicative that humans can perceive the complex-

ity of images, but these images are simplistic compared to the

natural scenes in which we are constantly immersed. The first

study to evaluate scenes in particular found that both the level

of clutter present in a scene, and the symmetry of the scene

play a role in complexity perception [4].

Advances in computing power have lead to definitions

of visual complexity based on the information sciences; the

Shannon entropy of an image is often used to measure com-

plexity [5, 6]; more complex images are assumed to have a

greater degree of disorganisation, and hence, greater entropy

compared to simple images. This, and a related measure,

the Kolmogorov complexity [7] (often approximated through

compression algorithms) are viewed as measures of the clut-

ter present in the image [8, 9] (clutter having been found to

relate to overall complexity). However, informational met-

rics suffer from being somewhat divorced from human per-

ception; an image of random noise has both high entropy and

a high Kolmogorov complexity, yet is meaningless to a per-

son. Recent approaches to complexity prediction either focus

on combinations of several different metrics [10, 11, 12], or

in employing neural network models to predict complexity

scores [13]. One such study found that neural networks ap-

pear to automatically reveal the complex regions of images in

an unsupervised fashion [13]; and this ”unsupervised activa-

tion energy” (UAE) metric is capable of predicting the com-

plexity of images. That is, the neurons of neural networks

trained for classification automatically activate in the presense

of complex features.

Up to this point, methods that predict complexity focus on

generating a single score for a given image. These methods

do not reveal the regions of images that lead humans to rate

an image as more complex, or more simple. This is primar-

ily due to the lack of ground-truth data. As such, the UAE

metric could not be directly compared with human data to

determine whether neural networks and human beings find

the same parts of images complex. However, the community

is now beginning to treat ”perceptual image characteristics”



such as image memorability, as more than a single rating; in-

stead investigating how said properties vary across an image

[14, 15]. This has recently culminated in the development of

the ”VISC-C” dataset [16], which contains a variety of scene

images, complexity scores, and complexity maps. However,

unlike image memorability, there has not yet been develop-

ment of any neural architectures capable of predicting com-

plexity maps.

We introduce a deep learning network for predicting com-

plexity for scene images. Said network can produce both

complexity maps that highlight the image regions a human

may find complex, or simplistic, and can also generate com-

plexity scores for these scenes that can be directly compared

with human ratings. Given that prior work has found that

clutter and symmetry relate to complexity perception, we in-

troduce an optional module that can feed this information into

the network. We set a baseline for human complexity map

prediction based on human data, and evaluate the relationship

between the prior state-of-the-art method of complexity pre-

diction, the unsupervised activation energy; comparing both

the final score produced by the method, and the intermediate

”UAE maps” that highlight regions that may be complex in

the scene.

2. COMPLEXITYNET: PREDICTING PERCEIVED

VISUAL COMPLEXITY

In the following we describe the deep learning network used

to model complexity of scene images. Given evidence for

clutter and symmetry and its relation to complexity perception

[4], we experiment with including said measures as optional

inputs for our proposed approach. Clutter can be loosely de-

fined as the number of visually distinct regions present in an

image; to capture this we employ a region-adjacency graph

cut algorithm [17] to divide input scene images into a num-

ber of ”perceptually distinct” regions. The normalised cut of

graph G = (V,E) into regions A,B is

Ncut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(1)

where Cut(A,B) computes the sum of edge weights re-

moved, and Assoc(A, V ) is the sum of edge weights from A

to all vertices in the region-adjacency graph. This results in a

segmentation into distinct regions based on their colour simi-

larity. For symmetry extraction we compute the local symme-

try of various patches throughout the image. The amount of

perceptually redundant information increases with the pres-

ence of more local symmetries. This indicates a lower im-

age complexity. We compute the symmetry of image patches

as follows: Given patch Nh×w×c
ij , at location (i, j), bisect

the patch vertically, resulting in (Ah×w

2
×c, Bh×w

2
×c), where

Aij = Ni,0<j<w

2
and Bij = Ni,w

2
<j<w, defining Fh(A) as

the horizontal flip of A, the horizontal symmetry of the patch

is

symh(N) =
√

(fh(A)−B)2 (2)

Hence, sym(N) =
Hsym

n
+V sym

n

2
, and the overall symme-

try of map of image I is

sym(I) =

K
∑

k=0

sym(Nh×w×c
k ) (3)

where K is the set of patches extracted. This generates a

symmetry map; with asymmetric regions of the image being

assigned a lower value than symmetric image regions.

Fig. 1. Proposed dual-headed complexity map and score pre-

diction network.

Inspired by recent work in neural network-based meth-

ods for predicting two-dimensional memorability maps [14,

18], we propose a deep learning model for predicting two-

dimensional (i.e per-pixel) complexity maps. We term this

model ‘ComplexityNet’. Given that it’s advantageous to have

both complexity maps and complexity scores (maps provide

the detail, scores a summary) our network includes two pre-

diction heads that are optimised jointly; one that predicts map,



and one scores for the input images. We optionally include

a module that can integrate features learnt from generated

clutter and symmetry maps, given their hypothesised relation

to complexity perception. The architecture of our proposed

approach can be seen in Figure 1. We select a pretrained

ResNet-152 [19, 20] object-detection backbone for our net-

work under the hypothesis that the semantic features extracted

by such a network are relevant for complexity perception.

We truncate the backbone before the final classification layer,

with extracted feature tensor RH×W×C
∈ R where H,W,C

are the height, width, and channels of the feature tensor; in

this case, 7×7×2048. The input to the network is a 3D tensor

with seven channels, X224×224×7
∈ R. Of these seven chan-

nels, 3 correspond to the RGB channels of the input scene

image, 3 correspond to a clutter map, and 1 corresponds to a

symmetry map.

The part of the input representing the scene image is

passed through the ResNet feature extractor. However, it

would be nonsensical to attempt to use this to extract features

from clutter and symmetry maps; for this we design our own

four-layer feature extractor to extract features from the clutter

and symmetry map; a four channel tensor subset of the in-

put. Learnt features from the clutter and symmetry maps are

included in a ”shared feature core” that concatenates these

features with the ResNet-based semantic features. These fea-

tures are then passed to the map/score prediction head. We

use downsampling convolutions in the clutter/symmetry fea-

ture extractor for dimensionality reduction, avoiding pooling

operations with no learnable features that may reduce rele-

vant features accidentally given the small dataset size. We

do the same for the score prediction head, culminating in a

single average pooling operation to condense features maps

to a singular complexity score. Throughout the network we

keep the number of feature maps of each layer limited; not

exceeding 256 in any one layer; again due to the small dataset

size. The output of the network is a 1-dimensional complex-

ity score and a 2-dimensional complexity map that gives a

2-channel per-pixel score for each pixel in the input image.

The per-pixel score captures either the level of complexity, or

the level of simplicity, that should be assigned to that pixel.

2.1. Loss Function

During the training of ComplexityNet we need to optimise

both complexity scores, and complexity maps, framed as a

regression problem from predicted ratings/maps to ground-

truth. We compute the loss of the complexity maps over the

simple and complex channels compared to the ground-truth

human maps, and combine this with the loss of the score into

the following loss function:

L =

C
∑

i=1

(Mi − M̂i)
2 +

S
∑

i=1

(Si − Ŝi)
2 (4)

where C represents the set of complexity maps, with Mi

Fig. 2. Sample images and complexity maps from the VISC-

C dataset. Red regions indicate areas of scenes humans find

simple, and blue regions indicate complex regions.

and M̂i representing the ground truth and predicted map of

that set respectively, and S the set of complexity ratings Si

and Ŝi the ground truth and predicted complexity ratings.

3. EXPERIMENTAL RESULTS

3.1. Dataset

We use the publicly available [16] Vischema-Complexity

(VISC-C) dataset, a collection of 800 700 × 700 scene im-

ages, with 800 associated ‘complexity maps’ that show the

complex and simple regions of those scenes. Each scene also

comes with an aggregate ‘complexity score’ giving a single

numeric value for the visual complexity of that scene. The

data was gathered from 40 human observers, with each in-

dividual scene being viewed by 10 participants in total. The

image-set is divided into eight scene classes (kitchen, living

room, conference room, airport terminal, work/home, public

entertainment, populated and isolated outdoor scenes) of 100

images each, with each class corresponding to a commonly

encountered real-world scene category.

3.2. Implementation and Training details

We implement our proposed approach using the PyTorch Ma-

chine Learning Library [21], in Python. We train the network

using the RMSProp optimizer with a learning rate of 0.0001

for 200 epochs. We employ n-fold cross-validation during

training, selecting 12.5% of the data as a test set and training

on the rest. Given the small size of the dataset, during train-

ing we employ random data augmentation with a probability

of 0.5. During augmentation, both the input image and all re-

lated input maps (complexity, clutter, symmetry) are flipped

around the vertical axis. The clutter and symmetry input can

be disabled or enabled as required; the network is fully ca-

pable of being trained on images alone. The network takes

approximately 20 minutes to train on a single NVidia V100

GPU.



Fig. 3. Sample results images. GT Map refers to the ground-truth human data for that scene image, while Predicted shows

results from our best performing network. The network appears to have learned the regions that humans find both simple, and

complex, in natural scene images. Red regions are predicted simple, blue regions, complex.

Approach Score Complex Regions Simple Regions

UAE [13] 0.397 0.36 -

CNet 0.693 0.51 0.37

CNet-C 0.729 0.5 0.38

CNet-S 0.719 0.51 0.38

CNet-CS 0.716 0.51 0.39

Table 1. Results for ComplexityNet (CNet). Model with clut-

ter denoted with ”-C”, symmetry ”-S” and clutter and symme-

try with ”-CS” suffix. UAE denotes the ‘Unsupervised Acti-

vation Energy’ [13]. Score performance measured with Pear-

sons correlation, map performance measured by Pearsons 2D

correlation following prior work [14, 18].

3.3. Prediction Results

We show the results of our ComplexityNet architecture in Ta-

ble 1. Results for ComplexityNet are cross-validated, taking

the average performance over an 8-fold split of the training

data. We compare our architecture against the previous state-

of-the-art approach, the Unsupervised Activation Energy

(UAE) [13], which is also the only prior approach that also

generates ”complexity maps” which we can compare against.

Our results are shown in Table 1, and examples of images and

ComplexityNet predictions are given in Figure 3. We find

that our approach outperforms the UAE method (an increase

of 80%) when considering predicting single-score ratings for

the VISC-C dataset. We also find that we are able to gen-

erate complexity maps that better match human data than

the comparative unsupervised method. While clutter alone

offers the best single-score performance, only with clutter

and symmetry combined does the network perform best at

region prediction. Our approach allows us to predict not just

the complex regions of scenes, but also the areas that humans

find ‘simple’; which may explain the improved performance

over prior work that only examines the ‘complex’ regions.

We show some examples of UAE maps against ground-truth

human complexity maps in Figure 4. It can be seen that UAE

maps highlight some regions of the image as complex that

humans do not find complex.

Our original hypothesis, based on prior work in the cogni-

tive science, was that clutter and symmetry may play a role in

how humans perceive the complexity of natural scenes. Our

results provide additional evidence that this is the case; by

including auxilliary clutter and symmetry inputs into our ar-

chitecture we boost score prediction performance by over 3%,

Fig. 4. Comparison between UAE maps [13] (middle row)

against ground-truth human data (bottom row) that indicates

‘complex regions’.

a small but considerable increase considering the very small

dataset size. Interestingly, clutter and symmetry provide no

benefit to predicting where the complex regions of scenes lie;

but appear to be more important for learning which regions of

a scene are perceptually simple to humans.

4. CONCLUSION

In this paper we propose a novel deep learning model for per-

ceptual complexity estimation; predicting the regions of natu-

ral scene images that humans find complex or simple. The

proposed model, ComplexityNet, makes use of clutter and

symmetry metrics, evidenced to relate to human perception of

scene complexity. We find that our metrics do indeed provide

a performance boost, and our proposed approach exceeds the

accuracy of the previous state of the art method over a dataset

of 800 scene images, for both score and map prediction. We

are capable of predicting the scores humans give scenes, when

asked to rate complexity numerically, with a Spearmans cor-

relation of 0.716 and can reproduce complexity maps with

good accuracy for both simple and complex regions of im-

ages. There is much left to be explored with determining how

humans process the complexity of images. Available datasets

are limited, and could be expanded, and there is little data

on how the complexity of scenes influences other perceptual

characteristics of those scenes; such as how easily they are

remembered. Future work may use models of complexity to

examine these characteristics in other datasets without requir-

ing difficult, and expensive, ground-truth data gathering.
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