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Abstract: We show that magnetic skyrmions can be stabilised at room temperature in continuous
[Ir/Co/Pt]s multilayers on SiO2/Si substrates without the prior application of electric current or mag-
netic field. While decreasing the Co thickness, a transition of the magnetic domain patterns from
worm-like state to separated stripes is observed. The skyrmions are clearly imaged in both states
using magnetic force microscopy. The density of skyrmions can be significantly enhanced after ap-
plying the “in-plane field procedure”. Our results provide means to manipulate magnetic skyrmion
density, further allowing for the optimised engineering of skyrmion-based devices.
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1. Introduction

Low-dimensional topological spin textures in magnetic materials are technologically
attractive since it is expected that they can be used in next-generation storage devices as
information carriers. One example is the magnetic skyrmion—a nanometre-sized, topo-
logically protected, swirling spin texture. Their topological properties and efficient cur-
rent-driving dynamics, together with their nanoscale size and stable particle-like features,
make magnetic skyrmions promising candidates for carrying magnetic information in fu-
ture high-density and low-power consumption spintronic devices [1-4].

Recently, heavy metal (HM)/ferromagnet (FM) multilayers deposited by magnetron
sputtering and hosting skyrmions have attracted attention. Indeed, the strong spin—orbit
coupling (SOC) of the HM layer can lead to an antisymmetric exchange known as the
interfacial Dzyaloshinskii-Moriya interaction (iDMI) [5,6], which plays a key role in the
stabilisation of magnetic skyrmions [7-10]. Regarding this, different combinations of
HM/FM multilayers, such as Ta/Co/Pt, Ir/Co/Pt, and W/Co/Pt, have been intensively in-
vestigated. The generation of room-temperature skyrmions in these multilayers has been
observed, as well as their motion under spin torques [11,12]. When iDMI is utilised for the
formation of skyrmions, it is possible to control the nucleation processes and skyrmions’
properties using a variety of approaches [13,14]. In this way, relevant magnetic parame-
ters, such as the perpendicular magnetic anisotropy (PMA) or the iDMI strength, can be
strongly modified to affect both their nucleation and properties (e.g., density, size, and
dynamics).
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Although skyrmions have been observed at room temperature in HM/FM multi-
layers, in most cases, their nucleation and stabilisation require an injection current and/or
external magnetic field [15-17]. Additionally, lithographically defined structures were
used to confine single or multiple skyrmions depending on the geometry [18,19]. The us-
age of skyrmions in the next-generation spintronic devices will depend on the achieve-
ment of skyrmions without the support of external stimuli. Hence, it is important to nu-
cleate skyrmions without the need for any external force, even without nanostructured
confinement. In this aspect, the search for an efficient method to establish skyrmions
yields interesting findings, such as the observation of zero-field skyrmions at room tem-
perature through an exchange bias field created at the interface of the antiferromag-
netic/ferromagnetic-based structure [20,21] and their direct writing using X-rays [22] and
electron beams [23]. Moreover, the investigations into how to enhance the skyrmion den-
sity are of great significance for achieving ultrahigh density spintronics devices. For ex-
ample, the skyrmion density in [Ta/Co/Pt]« has been enhanced by changing the Co thick-
ness [24], and the crossover from a few isolated skyrmions to a dense skyrmion lattice has
been realised by controlling the Co and Fe composition in [Ir/Fe/Co/Pt]n [25]. The influ-
ence of structure repetition (n) on skyrmion density in [Pt/Co/Ta/MgQ]x has also been
investigated [26]. Additionally, it has been shown that the in-plane magnetic field contrib-
utes to the creation of skyrmions in [Ta/Co/Pt]» and that a high concentration of skyrmions
can be achieved by increasing the in-plane field [27]. In fact, the skyrmion density in-
creased with increasing the critical material parameter k= 7D /4\/Weff, where A is the
exchange stiffness, K¢, is the effective PMA, and D is the iDMI constant [25]. The appli-
cation of the in-plane field will diminish the role of the PMA, while keeping iDMI and A
unchanged, which leads to the increase of « [27].

In this work, we show that magnetic skyrmions can be stabilised at room temperature
in continuous [Ir/Co/Pt]s multilayers on SiO:/Si substrates; external magnetic fields, cur-
rent injections, and geometric confinement are not required to generate skyrmions. The
magnetic, structural, and interfacial parameters of the multilayer are analysed using vi-
brating sample magnetometry, X-ray reflectivity, and Brillouin light scattering. The imag-
ing of skyrmions was performed by magnetic force microscopy. By thinning the Co layer
(tco) a transition of the magnetic domain patterns from a worm-like state to separated
stripes is observed. The skyrmions are clearly observed in both states. We also report that
the density of skyrmions can be significantly enhanced after undergoing an “in-plane field
procedure”, in which a high density of skyrmions can be detected after applying an in-
plane magnetic field of around 2 T and subsequently ramping it down to zero. Magneti-
sation curves showed the dependence of the perpendicular magnetic anisotropy (PMA)
with the Co thickness, providing a way to interpret the magnetic textures observed in the
magnetic force microscopy images. These results could provide a criterion for designing
skyrmion magnetic thin films, which has the potential to advance the development of
skyrmion-based magnetic devices.

2. Sample Fabrication and Characterisation

The multilayers [Ir(1.2nm)/Co(fc,)/Pt(1.3nm)]s and (tc;=0.4nm-0.8nm) were grown us-
ing DC magnetron sputtering in a high-vacuum system. The samples grown on SiO/Si
substrates were used to determine the magnetic, structural, and interfacial properties us-
ing vibrating sample magnetometry (VSM), Brillouin light scattering (BLS), and X-ray re-
flectivity (XRR), as well as to image their magnetic textures using magnetic force micros-
copy (MFM). Additionally, the identical counterpart multilayers grown on a SisNs mem-
brane (deposited in the same run) were used for Lorentz transmission electron microscopy
(LTEM) measurements (see Supplementary Materials). The base pressure in the chamber
before growth was of the order of 1x10-¥ mbar, and a flow of 60 sccm/5.02 mTorr of argon
gas was used throughout the sputtering process. The different layers in the multilayer
structure were grown in turn by moving the substrate over the top of the sputter guns for
set periods of time, while applying a constant source current to the target materials. The
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target composition, gun position, source current, and subsequent power of the magnetron
gun for each material are shown in Table S1 (see Supplementary Materials), as well as the
typical growth rates for each material. The separation between the sputter target and the
sample substrate was 7 cm during growth.

The multilayer structure is schematically illustrated in Figure 1a (top). The sample
structure was characterised using XRR (Fig. 1b) and the resulting fringe pattern was sim-
ulated using GenX [28] confirming the thicknesses within the multilayer. The fitting pa-
rameters are shown in 51 (see Supplementary Materials).

In the [Ir/Co/Pt]s multilayer film, there is iDMI between spins S1 and Sz of two adja-
cent Co atoms located close to heavy metals atoms (Ir or Pt) with a strong SOC. The Ham-
iltonian can be expressed as Homi = D12(S1 x S2) [29], where D12 is the DMI vector as shown
in Figure 1a (bottom). To determine the strength of the iDMI, we used BLS. BLS measure-
ments from thermally excited spin waves (SWs) were performed in the backscattering ge-
ometry focusing about 150 mW of a monochromatic laser beam (wavelength A = 532 nm)
on the sample surface through a camera objective with numerical aperture NA =0.24. The
frequency of the scattered light was analysed by a Sandercock-type (3+3)-tandem Fabry-
Perot interferometer (The table stable ltd, Mettmenstetten, Switzerland). Due to the con-
servation of momentum in the light-scattering process, the magnitude of the spin wave
vector k is related to the incidence angle of light 0, by the relation k = 47t sin 0/A. First, the
dependence of the SW frequency as a function of the intensity of the in-plane applied field
HoH was measured at normal incidence, i.e., for k=0 rad/m (Figure 1c, dots). To quantita-
tively estimate the out-of-plane anisotropy constant K, and the gyromagnetic ratio v, a
best fit procedure of the experimental data (Fig.1(c), red line) was performed using the
Kittel equation:

(%)2 - [H : (H - M%Ku + 47TMS>] (1)

where M; is the saturation magnetisation of the ferromagnet [30]. From this analysis
the values K, =1.89x10¢]J/m?and y=176 GHz/T were obtained for the tco=0.8 nm sample.
The strength of the iDMI was quantitatively extracted by measuring the iDMI induced
frequency asymmetry, Af, for Damon-Eshbach (DE) modes propagating in opposite di-
rections. BLS measurements were performed in the DE geometry, applying an in-plane
magnetic field p,H=1.5T sufficiently large to saturate the magnetisation in the film plane,
and sweeping the in-plane transferred wave vector along the perpendicular direction. The
top inset of Figure 1d shows the BLS spectra measured at k=2.25x107 rad/m. The Stokes
and anti-Stokes peaks are characterised by a sizeable frequency asymmetry, which re-
verses upon reversing the magnetic field direction. Figure 1d shows the SW frequency
asymmetry, Af, measured at k=1.67x107 rad/m and k=2.25x107 rad/m upon reversing the
direction of the applied magnetic field, which is equivalent to the reversal of the propaga-
tion direction of the DE mode. The effective iDMI constant, D, was determined by means
of a linear fit (continuous red line) to the experimental data using the relation Af = %Z k,
and fixing the gyromagnetic ratio and the saturation magnetisation to the values obtained
from the analysis of the BLS measurements as a function of pyH and from VSM measure-
ments, respectively. A value for D was obtained, D = (1.8 + 0.2)m]/m?, indicating that
the right-handed chirality is favoured by the iDMIL. This is in agreement with previous
investigations that expect a right-handed chirality for a Co/Pt stack where the Pt is the
overlayer [31].
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Figure 1. Structural and interfacial characterisation of [Ir/Co/Pt]s multilayers for fco=0.8 nm at
room temperature. (a) Schematic diagrams of the multilayer film structure and the corresponding
interfacial DMI produced between St and Sz spins of two adjacent Co atoms located close to the Ir
or Pt atoms with a strong SOC. (b) XRR measurement result: intensity as a function of 26 incident
angle. (c,d) BLS measurements. (c) Dependence of the spin wave (SW) frequency (f) as a function of
the intensity of the in-plane applied field, poH, as measured at normal incidence for k=0 rad/pm. (d)
SW frequency asymmetry, Af, measured at k=1.67x10” rad/m and k=2.25x10” rad/m when reversing
the direction of the applied magnetic field, which is equivalent to the reversal of the propagation
direction of the DE mode. Top inset: BLS spectra measured at k=2.25x107 rad/m. Bottom inset: Sche-
matic of BLS experiment. The sample is saturated in-plane by an external field, poH=1.5T, applied
along the z-axis. Stokes and anti-Stokes events in the scattering process correspond to SW propa-
gating with +k and -k, respectively.

3. Results and Discussion

The configuration of the vertical magnetic texture was investigated with MFM. The
MEM imaging of the multilayers was performed at room temperature with an NT-MDT
Ntegra Aura (Moscow, Russia) scanning probe microscope (SPM) [31-34]. The system is
fitted with an electromagnet, which allows the application of an out-of-plane magnetic
field up to 115 mT during scans. Low moment tips (NT-MDT MFM-LM) were chosen to
minimise the probe-sample interaction. All MFM images were obtained using the lift
mode at a pre-set lift height of 100 nm. To image the magnetic domain patterns without
any prior applied magnetic field, the samples were imaged in the as-grown state when
tco=0.8 nm (Figure 2a). The MFM images show that the magnetisation is broken up into
small domains of a worm-like configuration. Some skyrmions were also clearly observed
among the worm-like textures, as indicated by the dashed black arrows in Figure 2a. As
the measurements were performed before cycling the magnetic field, these images reveal
that no prior stabilizing magnetic field or injection current are required to generate skyr-
mions. Therefore, skyrmions at zero field can be spontaneously stable, even for samples
in the as-grown state. Then, in order to explore the different processes that can stabilise
skyrmions or/and manipulate the density of skyrmions, the sample was imaged after ap-
plying an in-plane magnetic field of around 2 T and subsequently turning off the in-plane
magnetic field (Figure 2b). We refer to this sequence as the “in-plane field procedure”. In
fact, in previous investigations, it has been reported that the applied in-plane component
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of the magnetic field will affect the concentration of skyrmions [27]. In Figure 2b, we show
the MFM images at zero field after application of the “in-plane field procedure”. This pro-
cedure is highly favourable for skyrmion formation and increases their density, creating
a maximum skyrmion area value of =0.37 um? (beforeitwas ~0.03 um?). The skyrmion
area is defined from the area of the data that are extracted using a 50% threshold and is
implemented using image processing. After the “in-plane field procedure”, MFM images
were obtained under different applied out-of-plane magnetic fields, pyH. An example of
the images at poH = 32 mT is shown in Figure 2c. In Figure 2d, we show the dependence
of the skyrmions’ area on pyH. We show that the skyrmions’ area slightly decreases (rang-
ing from ~0.37 um? to ~0.3 um?) atlow p,H, and then a sharp decrease occurs at high
HoH (downto =0.17 um?) before the magnetisation reaches the saturation point. The cir-
cularity is almost constant at low poH and increases slightly when p,H is increased
(ranging from =0.7 to =0.9). The circularity is defined by fitting an ellipse to these ex-
tracted data; then, we take the ratio of the semi minor and semi major axis of the ellipse
(i.e, 1to 1is a circle and 0.5 to 1 is an ellipse).
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Figure 2. MFM measurements on [Ir/Co/Pt]s multilayers for £c,=0.8nm at room temperature. (a)
The MFM image was acquired in the as-grown state. Red and blue contrast represents out-of-plane
magnetisation of opposite directions. Some skyrmions are indicated by dashed black arrows. (b)
Magnetic state following the “in-plane field procedure”. (¢) Example of the evolution of skyrmions
vs. the perpendicular applied magnetic field at poH = 32 mT. (d) Plot showing the area of the skyr-
mions (open square) and circularity (blue spheres) vs. poH.

We further studied the effect of the Co thickness on the magnetic properties of the
[Ir/Co(tco)/Pt]s multilayers (Figure 3). For tc=0.6 nm, the magnetic domains exhibit a clear
worm-like configuration, though some individual skyrmions can be seen in the as-grown
state (Figure 3a). By further reducing the Co layer thickness (tc=0.4 nm), we observed a
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transition from the worm-like pattern to separate stripes in the magnetic domain (Fig. 3b).
By reducing the Co thickness to 0.4 nm, we observed a smaller size of skyrmions in the
as-grown state (Figure 3b). In addition, in Figure 3c, we show the dependence of the skyr-
mions’ area versus fcoat zero field after the “in-plane field procedure”. The skyrmions’
area decreases with decreasing tco (ranging from ~0.37 um? to ~0.18 um?) and the cir-
cularity remains almost constant (=0.7). To understand the effect of thickness, we refer to
the magnetisation measurements. The out-of-plane and in-plane magnetisation curves
(normalised to the saturation magnetisation M) are summarised in Figure 3d. For the
thicker Co samples (0.8 nm and 0.6 nm), the out-of-plane hysteresis shows a tail feature,
whilst the thinner sample (0.4 nm) presents a more square-shaped loop. The anisotropy
field (see arrows), which is obtained from the in-plane magnetisation curve at saturation,
is higher for the samples with thinner Co layers, indicating an increased PMA [35].
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Figure 3. MFM and magnetisation measurements vs Co thickness (fco) at room temperature. The
MFM images were acquired in the as-grown state for tc=0.6nm (a) and tc=0.4nm (b). (c) Plot show-
ing the area of the skyrmions and the circularity vs tco at zero field after the “in-plane field proce-
dure”. (d) Normalised hysteresis curves, M/Ms vs. the external magnetic field poH, in both the out-
of-plane (left) and in-plane (right) directions for tc=0.8 nm, tc=0.6 nm, and tc,=0.4 nm. Arrows show
the anisotropy field, which is obtained from the in-plane magnetisation curve at saturation.

4. Conclusions

In summary, we investigated the formation of magnetic domains in [Ir/Co/Pt]s mul-
tilayers. The magnetic skyrmions can be stabilised at room temperature without the prior
application of either an electric current or magnetic field. By reducing the Co thicknesses,
we observed a transition from a worm-like magnetic domain pattern to separate stripes.
The skyrmions are also clearly observed in both states. Significantly, a high density of
skyrmions is imaged after undergoing the “in-plane field procedure”. Our results could
provide a criterion for designing a skyrmion magnetic thin film, which may advance the
development of skyrmion-based magnetic devices.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mil13111911/s1. S1: Growth conditions. Table S1: The target
materials and sputtering parameters used to grow the magnetic multilayers. S2: LTEM zero-field
cooling measurements. Fig. S2: LTEM study of [Ir/Co/Pt]s multilayers for tcc=0.8 nm. S3: LTEM field-
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polarized cooling measurements. Fig. S3: The phase diagram resulting from a field-polarized cool-
ing procedure on multilayers for tco=0.8 nm.
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