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Abstract

In recent years quantum metrology and quantum sensing have enabled the
advancement of quantum technologies and research in fundamental physics. Through
statistical analysis, in the context of parameter estimation, the amount of informa-
tion about a parameter of interest encoded in a quantum state can be quantified. In
this thesis we focus on the application of quantum estimation theory to imaging and
spectroscopy with quantum light. We study the fundamental bound of the mean
square error for an unbiased estimator in terms of the quantum Fisher information
(QFI) for two problems, one in microscopy and one in spectroscopy.

Firstly, we study the problem of localising multiple point sources below the
diffraction limit. We show that localisation microscopy of multiple weak, incoherent
point sources with possibly different intensities in one spatial dimension is equivalent
to estimating the amplitudes of a classical mixture of coherent states of a simple
harmonic oscillator. We obtain the QFI matrix elements analytically. In the regime
of arbitrarily small separations we find it to be no more than rank two – implying
that no more than two independent parameters can be estimated irrespective of the
number of point sources. We use the eigenvalues of the classical and quantum Fisher
information matrices to compare the performance of spatial-mode demultiplexing
and direct imaging in localisation microscopy with respect to the quantum limits.

Secondly, we study the estimation of the electric dipole moment (EDM) of
a two-level atom through its interaction with quantum pulses of light in free space.
We derive analytical expressions for the states of one-photon wavepackets and en-
tangled photon pairs (EPP). We numerically calculate the QFI for different states
of light, including coherent and squeezed pulses, and compare their performance in
estimating the EDM. We find that the one-photon wavepacket and the EPP have
similar performances, while the performance of the entangled photon pair is not im-
proved by increasing the entanglement of the EPP. Our results indicate that using
Fock states to estimate the EDM of a two-level atom is preferable to using entangled
light.
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Chapter 1

Introduction

Metrology is the field of science that engages in the study of measurement processes.
The aim of metrology is to quantify the information available in a system about a
given parameter, and to determine the optimal way to extract this information. A
measurement process consists of preparing a probe, letting it interact with a target
system and eventually measuring the probe. By repeating this process multiple times
and analysing the measurement outcomes one can obtain an estimate of the param-
eter of interest. Metrology provides the tools to attain the most precise estimate of
this parameter by using an optimal probe, by improving the detection scheme or, if
possible, by optimising both.

The precision of the estimate is affected by statistical errors that lurk in any
measurement process. The effects of statistical error on the precision of the estimate
can be reduced by repeating the measurement multiple times and averaging the
outcomes as a consequence of the central limit theorem. The above process provides
the classical shot noise scaling of the estimation errors as ϵ = O

(
N−1/2

)
, where N

is the number of repetitions [Kay93]. Ultimately, the fundamental limitations of the
precision of the estimate is subject to the principles of quantum mechanics. Using
quantum resources for probe states and detection devices the shot noise scaling,
which is obtained by classically correlated probes, can be surpassed. Specifically,
the Heisenberg scaling on the precision which is achieved for quantum correlated
probes is ϵ = O

(
N−1

)
[GLM11]. The field of metrology which aims at reaching the

fundamental bounds on estimation precision is called quantum metrology.
In recent years quantum metrology and quantum sensing have played a piv-
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otal role in the advancement of quantum technologies, in the study of fundamen-
tal physics and research in other fields of science. Notably, it has allowed to rig-
orously determine the ultimate precision of fundamental constants, such as the
speed of light [BSF17] or the gravitational constant [Li+18], parameters of fun-
damental physics effects, as for example the Unruh-Hawking Effect or spacetime
parameters [Ahm+14; Dow+17; Hog12; KBF19; How+18], gravitational wave de-
tection [Abb+21; BMD18; Cho+17] and parameters whose precise estimation is vital
for the testing of physical models [Bra+19; Ahm+18; Hog12]. New quantum mea-
surement techniques and quantum probe states have made it possible to develop
quantum sensors or optimal detecting schemes [DRC17; Pol+20; Law+19]. This
has led to the advancement of other sciences, from biology [TB16] and medical sci-
ence [Zie+19; Cou+21] to earth sciences [RML20].

In this thesis, we are interested in the application of the tools of quantum
metrology to imaging and spectroscopy. Improving imaging schemes is particularly
important in the measurement of delicate samples for which low illumination and
large signal-to-noise ratio are necessary. Quantum imaging techniques may take
advantage of quantum states of light and their correlations for producing greater
visibility at low intensities and a greater signal-to-noise ratio, such as ghost imag-
ing or imaging with undetected photons, or devise new measurements that achieve
resolution beyond the diffraction limit [Mor+19; Alb+20].

Spectroscopy is an indispensable tool for the study of condensed matter
physics, chemistry, and molecular biology, in which the structure and dynamics of
samples depend on the light that interacts with them [Muk+20; TB16]. Spectroscopy
can benefit from the quantum imaging techniques. For instance, a similar method
to ghost imaging has been applied to spectroscopy where the spectrum of a sam-
ple in the infrared is obtained by detecting the entangled visible photons [Kal+16;
Mor+19]. Besides the detection schemes, the potential advantages of quantum light,
i.e. few-photon or entangled light, are being investigated in spectroscopy in recent
years. For example, the two-photon absorption rate of time-frequency entangled pho-
tons scales linearly with the beam intensity, in contrast to classical signals that scale
quadratically. This could provide another way to perform nonlinear spectroscopy at
lower photon fluxes, which is especially significant in photosensitive samples, where
large intensity must be avoided [DSM16; Sch17a]. Quantum light also allows to
shape and control dynamic processes in molecules in a way that is not possible with
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classical light [DSM16; Muk+20]. However, it is still unclear under which techniques
and conditions a ’quantum advantage’ can be achieved or which quantum states are
optimal for a given spectroscopic task [Muk+20; RW20].

Summary of results

The first contribution of this thesis is in the field of localisation microscopy. We focus
on the estimation of the position of N incoherent point sources whose separation
is smaller than the diffraction limit. The diffraction limit hinders the resolution
performance of optical instruments and has been circumvented by modulating the
fluorescence pattern of emitters within a diffraction-limited region [TPR14]. By
studying the problem of estimating the separation of two light sources in terms of
estimation theory, it has been shown that the diffraction limit is a consequence of the
choice of measurement and not a true resolution limit [TNL16]. For realistic imaging
scenarios, however, one must consider more than two sources. Order-of-magnitude
bounds on the precision of estimating the normalised moments of extended sources
smaller the Rayleigh limit have been obtained [ZJ19; Tsa19b].

We calculate an analytical lower bound on an unbiased estimator’s covari-
ance (mean square error) matrix for the simultaneous estimation of the locations of
N incoherent, weak point sources of unequal but known intensities in one spatial
dimension, with the assumption that the point spread function is Gaussian. Our
analysis shows that no more than two independent parameters can be estimated in
localisation microscopy in the limit of arbitrarily small separations. Furthermore,
we compare the performance of conventional direct imaging and the SPADE mea-
surement [TNL16] in localisation microscopy with the quantum bounds we obtain.

The second contribution is in the field of spectroscopy with quantum light.
The advantages of using entangled light in spectroscopy remain unclear and a way to
quantify them is in the context of quantum metrology. Previous works investigate the
role of entanglement in spectroscopy with photon pairs [Ste17] and have calculated
the two-photon absorption cross section [SFS21] and both of them indicate that
in two-photon interactions entanglement does provide an advantage. We focus on
a two-level atom interacting with different states of light and particularly on the
estimation of its electric dipole moment. Measuring the electric dipole moment
(EDM) of an atom with high precision is important for investigating fundamental

3



physical models [Chu+19] and for characterising the interaction between atoms and
light which is of interest in quantum technologies.

We calculate the lower bound on an unbiased estimator’s variance for the
EDM of a two-level atom when it interacts with short – picosecond – pulses of light
in a free space configuration. We find that an one-photon wavepacket and an en-
tangled photon pair have similar performances, as in Ref. [Ste17]. However, we find
that the performance of the entangled photon pair is not improved by increasing the
entanglement of the photon pair. Hence, entanglement works as an impediment for
the estimation of the electric dipole moment.

The structure of this thesis is the following: in Chapter 2 we introduce the
basics of quantum mechanics. We discuss in detail the quantum states of light that
we use in this thesis. In Chapter 3 we establish the basic concepts of estimation
theory and their generalisation in the context of quantum mechanics. In Chapter 4
we present our results for the estimation of the position of of N incoherent, weak
point sources with separations below the diffraction limit. The results presented
in this Chapter are based on the publication [BBD19]. Finally, in Chapter 5 we
demonstrate our results for the estimation of the electric dipole moment of a two-
level atom with pulses of light. We summarise our results in the conclusions in
Chapter 6.
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Chapter 2

Quantum mechanics

In this chapter we introduce the basics of quantum mechanics. We present in detail
the quantum states of light in a cavity and free space setup.

2.1 Basics of quantum mechanics

A quantum state can be described by a density operator ρ̂ ∈ L(H ), which is the
space of linear operators acting on the vectors in a Hilbert space H . The density
operator is a Hermitian, positive semi-definite operator of trace one. Given a basis
of the Hilbert space H , the density operator can be represented by a density matrix
ρ. The quantum states can be classified into pure and mixed states. A pure state is
described by a vector (ket) |ψ⟩ in a Hilbert space H of unit norm ⟨ψ|ψ⟩ = 1, where
⟨ψ| (bra) is the conjugate transpose of |ψ⟩. The density matrix of a pure state has
the form ρ = |ψ⟩⟨ψ| and satisfies Tr

(
ρ2
)
= 1 as a consequence of their unit norm. A

mixed state can be expressed as an ensemble of pure states

ρ =
∑
n

pn |ψn⟩⟨ψn| , (2.1)

where 0 < pn ≤ 1 are probabilities and satisfy
∑

n pn = 1.
The measurements performed on a quantum state are represented by the

measurement operators {Π̂n} associated with each possible measurement outcome
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n. The probability of each outcome given a state ρ is

Prob(n) = Tr
(
ρΠ̂n

)
. (2.2)

The measurement operators must be Hermitian, positive semi-definite and must sat-
isfy the completeness relation

∑
n Π̂n = Î. The completeness relation ensures that

the probabilities Prob(n) sum up to one. This partition of unity by the positive
operators {Π̂n} is called positive operator-valued measure (POVM). Given an or-
thonormal basis {|ψi⟩} of the Hilbert space, the simplest example of measurement
operators is the set of projection operators {P̂i = |ψi⟩⟨ψi|} which satisfy P̂ 2

i = P̂i

and P̂iP̂j = δij .

2.1.1 Entanglement

The quantum states can be composed by one or more subsystems. If a mixed state ρ
or pure state |ψ⟩ can be written as a product of the composite N subsystems’ states

ρ =
N⊗
i=1

ρi or |ψ⟩ =
N⊗
i=1

|ψi⟩ (2.3)

the state is called separable. A state that is not separable is entangled. The entan-
gled subsystems demonstrate quantum correlations. Entanglement does not account
for all non-classical correlations and separable states can demonstrate correlations
that are not entirely classical [Mod+12]. In entangled systems the state of one con-
stituent cannot be fully described without considering the other parts of the total,
a phenomenon that does not have a classical counterpart.

A bipartite pure system in the Hilber space HAB can be decomposed in the
so-called Schmidt decomposition as:

|ΨAB⟩ =
∑
i=1

√
pi |ϕi⟩A |ψi⟩B , (2.4)

where {|ϕi⟩}, {|ψi⟩} are orthornomal basis in HA and HB respectively. By calculating
the partial density matrix of one of the subsystems, let us say A

ρA = TrB ((|ΨAB⟩⟨ΨAB|) =
∑
i=1

pi |ϕi⟩⟨ϕi|A , (2.5)

6



we see that the scalars pi are the common eigenvalues of the two sub-systems. Thus,
we can associate a Schmidt number, which is the number of non-zero pi, to any
bipartite pure state. In this way, we can determine whether a pure state is entangled:
the state |ΨAB⟩ is entangled if its Schmidt number is greater than one, otherwise it
is separable.

There exist different measures for quantum correlations [Mod+12]. In this
thesis, we only encounter pure bipartite entangled states |ΨAB⟩ for which the von
Neumann entropy, or entropy of entanglement, is a good measure of the degree of
entanglement between the two subsystems HA and HB. We note that for mixed
states ρAB the von Neumann entropy fails to distinguish classical and quantum
mechanical correlations. The entropy of entanglement is defined as:

S(ρA) = −Tr (ρA log ρA) = −Tr (ρB log ρB) , (2.6)

and can be expressed in terms of the Schmidt decomposition coefficients as

S(ρA) = S(ρB) =
∑
i=1

pi. (2.7)

In the case of a separable pure state S(ρA) is zero, and for maximally entangled
states it is log 2.

2.1.2 Quantum dynamics

The time evolution of a closed system is fully determined by the system’s Hamiltonian
operator Ĥ. The evolution of the density matrix under the Hamiltonian Ĥ is given
by the von Neumann equation

∂

∂t
ρ(t) = − i

ℏ
[Ĥ, ρ(t)]. (2.8)

Equivalently, the density matrix at some final time t can be related to the den-
sity matrix at an initial time t0 by the transformation ρ(t) = Û(t, t0)ρ(t0)Û(t, t0)

†.
The unitary operator Û(t, t0) is called the time evolution operator and satisfies the
equation

∂

∂t
Û(t, t0) = − i

ℏ
Ĥ Û(t, t0), (2.9)

7



subject to the initial condition Û(t0, t0) = Î. For a time-independent Hamiltonian
the evolution operator has the form

Û(t, t0) = e−
i
ℏ Ĥ(t−t0). (2.10)

The above description of evolution in quantum mechanics is called the Schrödinger
picture. In this description it is the quantum states that evolve in time and not
the operators. Conversely, in the Heisenberg picture the quantum states do not e
volve in time and the operators do. The two pictures are connected by the trans-
formation of the operators and states under the evolution operator of Eq. (2.10).
If |ψ(t)⟩ is a ket in the Schrödinger picture then the state vector in the Heisen-
berg picture is |ψH⟩ = Û(t, t0)

† |ψ(t)⟩. The operators are transformed according to
Â(H)(t) = Û(t, t0)

†Â(S)Û(t, t0).
An intermediate picture between the Schrödinger and Heisenberg picture is

the so-called interaction picture. In this picture both the operators and states evolve
in time. It is a useful description in cases where the Hamiltonian of a system in-
cludes a perturbation term or an interaction term between its composite parts. Let
us consider a bipartite system whose two parts interact and let the Schrödinger
Hamiltonian be written as Ĥ(S) = Ĥ(S)

0 + Ĥ(S)
int , where Ĥ(S)

0 is the free (uncoupled)
Hamiltonian and Ĥ(S)

int is the interaction (coupling) Hamiltonian between the two
parts. The interaction Hamiltonian and the density matrix are transformed accord-
ing to the following rule

V̂(t) = eiĤ
(S)
0 t/ℏĤ(S)

int e
−iĤ(S)

0 t/ℏ, (2.11)

ρI(t) = eiĤ
(S)
0 t/ℏρ(S)(t)e−iĤ(S)

0 t/ℏ, (2.12)

where Û0(t) = eiĤ
(S)
0 t/ℏ is the free evolution operator. The states evolve according

to the equation
∂

∂t
ρI(t) = − i

ℏ
[V̂(t), ρI(t)], (2.13)

which is the von Neumann equation in the interaction picture.
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2.2 Quantum states of light

In this section we discuss the quantum description of the electromagnetic field that
is useful for quantum optics experiments. It is usually assumed that the field is
contained in a 3-dimensional cavity. The Hamiltonian for the quantised radiation
field is [MW95]

Ĥ(t) =
1

2

∑
k,s

(p̂2k,s + ω2
kq̂

2
k,s), (2.14)

where the index s = 1, 2 indicates the two possible polarisation vectors of the field
and the index k labels the infinite discrete set of the wavevectors k which define the
modes of the light field. The quantity ωk = c|k| is the kth mode’s angular frequency,
where c is the speed of light, and p̂k,s, q̂k,s are the momentum and position operators
that obey the commutation relation

[q̂k,s, p̂k′,s′ ] = iℏδ3k,k′δs,s′ ,

[q̂k,s, q̂k′,s′ ] = [p̂k,s, p̂k′,s′ ] = 0.
(2.15)

The Hamiltonian of Eq. (2.14) can be recast in terms of the dimensionless annihila-
tion and creation operators

âk,s =
1√
2ℏω

(ωkq̂k,s + ip̂k,s), (2.16)

â†k,s =
1√
2ℏω

(ωkq̂k,s − ip̂k,s), (2.17)

which obey the bosonic commutation relations

[âk,s, â
†
k′,s′ ] = δ3k,k′δs,s′ , [âk,s, âk′,s′ ] = [â†k,s, â

†
k′,s′ ] = 0, (2.18)

and give the form

Ĥ(t) =
∑
k,s

ℏωk

(
â†k,sâk,s +

1

2

)
. (2.19)

The electric field operator is given by [MW95]

Ê(r, t) =
∑
k,s

(
ℏω
2ϵ0V

)1/2 (
âk,sεk,se

i(k·r−ωkt) + â†k,sε
∗
k,se

−i(k·r−ωkt)
)
, (2.20)
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where εk is the polarisation vector, ϵ0 is the electric permittivity of vacuum and V

is the volume of the cavity.
The eigenstates of the Hamiltonian operator (2.19) are the number or Fock

states
Ĥ(t) |nk,s⟩ = En,k |nk,s⟩ , (2.21)

where En,k = ℏωk(n + 1/2), n = 0, 1, . . . is the energy value of the eigenstate
|nk,s⟩. These states correspond to a specific energy and frequency value and are
monochromatic states of light. The state |nk,s⟩ is also an eigenstate of the number
operator N̂k,s = â†k,sâk,s with eigenvalue n, i.e. the Fock states are states of light of
specific photon number n in the specific mode k. The Fock states form a complete
set of orthonormal vectors and can be used as a basis. The creation and annihilation
operators act on the Fock states as

âk,s |nk,s⟩ =
√
n |nk,s − 1⟩ , â†k,s |nk,s⟩ =

√
n+ 1 |nk,s + 1⟩ , (2.22)

that is they destroy and create a photon in the mode k. Finally, it is convenient to
define the dimensionless quadrature operators

X̂k,s =
1

2
(â†k,s + âk,s), P̂k,s =

1

2
i(â†k,s − âk,s), (2.23)

which are equivalent to the position and momentum operators.
The second state of light that interests us are the coherent states of light

|{αk,s}⟩ which are the eigenstates of the annihilation operator

âk,s |{αk,s}⟩ = αk |{αk,s}⟩ , (2.24)

where αk is the amplitude of the kth mode of the above multi-mode coherent state.
By defining the unitary displacement operator D̂(αk) as

D̂(αk) = eαkâ
†
k,s−α∗

kâk,s = e−|αk|2/2eαkâ
†
k,se−α∗

kâk,s , (2.25)

the coherent states can be redefined as |αk⟩ = D̂(αk) |0⟩. In the following we focus
on the single-mode case for convenience. The displacement operator acts on the
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annihilation operators of each mode as

D̂(α)†âD̂(α) = â+ α, D̂(α)âD̂(α)† = â− α. (2.26)

By taking the hermitian conjugate of the above expression we can obtain the iden-
tities for the creation operator â†. The derivative of the displacement operator with
respect to the amplitude α can be found by differentiating the Eq. (2.25)

∂

∂α
D̂(α) = D̂(α)

(
â† − α∗

2

)
. (2.27)

The coherent states can be expanded onto the Fock basis and obtain the expression

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ . (2.28)

Using the above relation and the properties of the Fock states, it can be proven that
the set of all coherent states |α⟩ is a non-orthogonal | ⟨α|α′⟩ |2 = exp

{
−|α− α′|2

}
and overcomplete set

∫
dα2 |α⟩⟨α| = I/π. Hence, any state can decomposed onto the

set of coherent states.
The coherent states are minimum-uncertainty states so that ∆p̂∆q̂ = ℏ/2,

or equivalently using the quadrature operators, ∆X̂∆P̂ = 1/4 with ∆X̂ = ∆P̂ . A
state of light can have one of its quadrature uncertainty less than 1/4. One example
of such states is the so-called squeezed state. The single-mode squeezed vacuum state
is defined by

|ζ⟩ = Ŝ(ζ) |0⟩ , (2.29)

where Ŝ(ζ) is the unitary squeezing operator defined as

Ŝ(ζ) = e
1
2
(ζ∗â2−ζâ†2) (2.30)

and ζ is the squeeze parameter with amplitude and phase defined by ζ = reiϑ. The
number-state expansion of the squeezed vacuum is

|ζ⟩ = 1√
cosh r

∞∑
n=0

(−1)n
√
(2n)!

2nn!

(
eiϑ tanh r

)n
|2n⟩ (2.31)
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The variance of the quadratures of a squeezed state with real ζ are ∆2X̂ = e−2r/4

and ∆2P̂ = e+2r/4.

2.3 Pulses of quantum light

The description of the electric field of Sec. 2.2 assumes that the electric field is
confined in a finite cavity space. A typical optical experiment, however, involves light
beams propagating in free space for which the cavity quantisation of the electric field
is not adequate. In order to describe the continuous-mode field operators we use the
one-dimensional formalism of Ref. [Blo+90]. In this formalism the light is considered
to propagate in a straight line and the transverse propagation is ignored, i.e. the
field is well described by a single direction of the wavevector k. The field is assumed
to propagate along the the z−axis and to have a finite and fixed cross-section A

perpendicular to the z−axis. To quantise the field we consider that

∆k =
2π

L
⇒ ∆ω =

2πc

L
, (2.32)

which tends to zero as the length along the propagation axis L tends to infinity.
Hence, light is described by a continuum of modes and the sum that appears in
the Hamiltonian (2.19) and electric field operator (2.20) is converted to an integral
according to the rule ∑

k

→ 1

∆ω

∫ ∞

0
dω. (2.33)

The continuous-mode creation and annihilation operators are obtained by the trans-
formation

âk →
√
∆ωâ(ω), and â†k →

√
∆ωâ†(ω) (2.34)

and satisfy â(ω) |0⟩ = 0 as in the discrete-mode quantisation. Their commutation
relation is obtained by Eq. (2.34) along with the relation δkk′ → ∆ωδ(ω−ω′) and is

[â(ω), a†(ω′)] = δ(ω − ω′). (2.35)

Following the above procedure we obtain the continuous-mode free electromagnetic
field Hamiltonian

Ĥ =

∫ ∞

0
dω ℏωâ†(ω)â(ω), (2.36)
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where we neglect the energy of the vacuum. The number operator is defined as

N̂ =

∫ ∞

0
dω â†(ω)â(ω). (2.37)

Likewise, we can obtain the expression for the electric field operator. The positive-
frequency part of the electric field operator in the Heisenberg picture is

Ê+(z, t) = i

∫ ∞

0
dω

√
ℏω

4πϵ0Ac
â(ω)e−iω(t−z/c). (2.38)

The transverse quantisation area A is formally given by the value of the transverse
electric field at the location (x0, y0, z) that we are interested in each time.

We are interested in situations where the light source is narrow-band, i.e. the
frequency bandwidth of the light beam is much smaller than its central frequency
ωc. Under this narrow bandwidth approximation we can replace the

√
ω with its

value the central frequency ωc and extend the limits of integration from 0 to −∞
without significant errors. The electric field operator then becomes

Ê+(z, t) = i

√
ℏωc

2ϵ0c
a
(
t− z

c

)
, (2.39)

since the narrow bandwidth approximation allows us to define the Fourier trans-
formed operators

â(t) =
1√
2π

∫ ∞

−∞
dω â(ω)e−iωt. (2.40)

The operators of Eq. (2.40) obey the commutation relation

[â(t), â†(t′)] = δ(t− t′). (2.41)

Let us consider a narrow-band function ξ(ω) in frequency, the spectral density
function, and define the discrete photon-wavepacket creation operator

Â†
ξ =

∫
dω ξ(ω)â†(ω) =

∫
dt ξ(t)â†(t), (2.42)

where the time-dependent form is obtained by the use of Fourier transforms. For
simplicity, we consider the spectral density function to be normalised, so that the
operator Â†

ξ creates a single photon in the wavepacket or temporal mode ξ(t) defined
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as
|1ξ⟩ = Â†

ξ |0⟩ . (2.43)

The operator Âξ satisfies the commutation relation [Âξ, Â
†
ξ] = 1 and can be consid-

ered a linear superposition of the operators â(ω) with respect to the weight function
ξ(ω). The continuous-mode photon number states are constructed in a similar way
as the discrete-mode Fock states by successive application of the creation operator
Â†

ξ [Blo+90; RMS07]

|nξ⟩ =
1√
n!
Â† n

ξ |0⟩ , (2.44)

which are eigenstates of the number operator (2.37). The action of the annihilation
operator (2.40) onto the continuous Fock states is

â(t) |nξ⟩ =
√
nξ(t) |nξ − 1ξ⟩ , (2.45)

by taking into account that [â(ω), Â† n
ξ ] = nξ(ω)Â† n−1

ξ and taking its Fourier trans-
form. The action of â†(t) can be defined in a similar manner.

The continuous-mode coherent states |αξ⟩ are generated by a continuous-
mode displacement operator [Blo+90]

|αξ⟩ = e
∫
dω[ξ(ω)â†(ω)−ξ∗(ω)â(ω)] |0⟩ = e−α2/2e

∫
dωξ(ω)â†(ω) |0⟩ , (2.46)

where α2 = ⟨N⟩ =
∫
dω|ξ(ω)|2 is the average photon number of the coherent state.

As the discrete-mode coherent states, they satisfy â(ω) |αξ⟩ = ξ(ω) |αξ⟩.
It is useful to express the continuous-mode operator â(ω) in terms of an

arbitrary discrete set of basis functions. By considering a complete set of orthonormal
functions {fk(ω)}, which satisfy the orthonormality and completeness conditions∫

dωf∗k (ω)fl(ω) = δk,l, and
∑
k

f∗k (ω)fk(ω
′) = δ(ω − ω′), (2.47)

we can define a new set of operators

Â†
k =

∫
dωfk(ω)â

†(ω), (2.48)

which obey the boson commutation relation [Âk, Â
†
l ] = δkl. The inverse relation also
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holds

â†(ω) =
∞∑
k=0

f∗k (ω)Â
†
k. (2.49)

An example of a set of orthogonal functions are the Hermite-Gauss functions that
we will use for the description of the entangled photon pair.

We can also define the Fourier transform with a frequency shifting equal to
the central frequency of the light beam as

b̂(t) =
1√
2π

∫ ∞

−∞
dω â(ω)e−i(ω−ωc)t. (2.50)

The operators b̂(t), b̂†(t) obey the commutation relation of Eq. (2.41). In the same
way, we can define the shifted Fourier transform of the spectral function as

ξ̃(t) → ξ(t)eiωct . (2.51)

The action of b̂†(t) onto the one-photon wavepacket is

b̂(t) |nξ⟩ =
√
nξ̃(t) |nξ − 1ξ⟩ . (2.52)

Finally, we note that in this thesis we consider Gaussian shaped spectral density
functions of the form

ξ(ω) =
1√√
πσ

e−
(ω−ωc)

2

2σ2 → ξ(t) =

√
σ√
π
e−σ2t2/2e−iωct (2.53)

where ωc is the central frequency of the pulse and σ is the bandwidth which satisfy
the relation ωc ≫ σ and ξ(t) is the Fourier transform of ξ(ω).

2.3.1 Entangled light

The Fock states of Eq. (2.44) are a sub-case of the more general set of n-photon states
whose spectral density function is not necessarily in a product form [RMS07]. In this
section we will describe two special cases of multi-photon states with non-factorisable
spectral density functions, the single-continuous-mode squeezed vacuum state and
the entangled photon pair (EPP). Both of those states are produced by a parametric
down-conversion (PDC) process, with the squeezed state being produced in the high-
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gain regime of the PDC [Was+06] and the EPP in the low-gain regime [GW97]. The
PDC process is a non-linear optical process in which a photon of frequency ωp from an
incident pump beam propagating in a non-linear crystal may split into two photons
of lower energy. The PDC unitary is described by [Chr+13]

ÛPDC = exp

{
− i

ℏ

∫
dω1dω2Φ(ω1, ω2)â

†
1(ω1)â

†
2(ω2) + h.c.

}
, (2.54)

where Φ(ω1, ω2) is defined as

Φ(ω1, ω2) = Bf(ω1 + ω2)sinc

(
∆k(ω1, ω2)L

2

)
. (2.55)

Here B is proportional to the pump amplitude that determines the strength of the
PDC process, and hence the mean photon number, f is the pump pulse envelope, L
is the length of the PDC crystal and the wavevector mismatch is equal to

∆k(ω1, ω2) = (kp − k1)(ω1 − ω̄1) + (kp − k2)(ω2 − ω̄2) (2.56)

with ω̄i being the central frequency of each photon.
The continuous-mode squeezed vacuum state |ξ⟩ is the result of a degener-

ate PDC in which the photons that are emitted from the non-linear crystal are
indistinguishable. Mathematically they can be constructed in a similar manner
to the discrete-mode squeezed states by a generalisation of the squeezing operator
as [Lou00, §6.9]

|ξ⟩ = Ŝ(ξ) |0⟩ = e
1
2

∫
dω ξ(ω)â†(ω)a†(ωp−ω) |0⟩ . (2.57)

The spectral density function ξ(ω) must satisfy the following symmetry requirement
ξ(ωp − ω) = ξ(ω). The central frequency of the down-converted beam is ωc = ωp/2.
The spectral density function can be written in terms of an amplitude and a phase
function as ξ(ω) = r(ω)eiϑ(ω). The average photon number for the above state is
⟨n⟩ =

∫
dω|ξ(ω)|2 = sinh2 r(ωc).

The entangled photon pair, also called biphoton state, is obtained from an
spontaneous PDC (SPDC) process for low pump intensities. In the weak PDC regime
the ÛPDC (2.54) can be approximated up to the first order term and be applied on
the vacuum. The zeroth order term, which is the vacuum, is ignored and, hence, the
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EPP |11ent⟩ is described by [GUW01]

|11ent⟩ =
∫
dω1dω2Φ(ω1, ω2)a

†
1(ω1)a

†
2(ω2) |00⟩ . (2.58)

We assume that the pump envelope is a Gaussian function and that the phase match-
ing function can be approximated by a Gaussian function. Under these assumptions
the joint spectral density function has the form [GUW01]

Φ(ω1, ω2) = α
1

√
πσp

e−(ω1+ω2−2ωp)2/σ2
pe−γ(∆k(ω1,ω2)L)2 , (2.59)

where γ = 0.04822 is the numerical value for which the Gaussian function best
approximates the sinc function, σp is the width of the pump beam and ωp the central
frequency of the pump. In Fig. 2.1 the joint spectral density functions of an EPP
with different entropies of entanglement are plotted.

As any bipartite state, the EPP admits a Schmidt decomposition [LWE00]:

Φ(ω1, ω2) =
∑
n

√
λnψn(ω1)ϕn(ω2), (2.60)

where the two sets of eigenfunctions must each obey the orthogonality conditions of
Eq. (2.47). For the spectral density function of Eq. (2.59) the Schmidt decomposition
can be derived analytically. The formulas can be found in Ref. [GUW01; UBW03]
and a detailed derivation can be found in Ref. [Sch17b, App. A]. The Schmidt
decomposition is given by

Φ(x, y) =
∞∑
n=0

√
λnHn(k1x)Hn(k2y), (2.61)

where x = ω1 − ω̄1, y = ω2 − ω̄2, for i = 1, 2,

Hn(kix) =

√
ki√

2nn!
√
π
e−(kix)

2/2hn(kix) (2.62)

are the Hermite-Gauss functions, hn(x) are the Hermite polynomials and the vari-
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(a) (b)

(c)

Figure 2.1: The joint spectral density functions of an entangled photon pair with
different entropies of entanglement. The entropies of entanglement S are (a)S =
0.72, (b) S = 0.85, (c) S = 3.3.
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ables that appear are defined as follows:

λn = w2n(1− w2),

rn =
√
λn,

k1 =

√
2a(1− w2)

1 + w2
,

k2 =

√
2c(1− w2)

1 + w2
,

w =
−
√
ac+

√
ac− b2

b
,

a =
1

2σp
+ γT 2

1 ,

b =
1

2σp
+ γT1T2,

c =
1

2σp
+ γT 2

2 .

(2.63)

The difference T = T2 − T1 defines the entanglement time, the quantities T1, T2
are defined as T1 = (1/vp − 1/v1)L, T2 = (1/vp − 1/v2)L from Eq. (2.56) and vi

is the speed of the ith beam in the PDC crystal. When b > 0 the photons exhibit
frequency anti-correlations, when b < 0 positive frequency correlations and for b = 0

the two photons are uncorrelated. The value of the parameter w ∈ [0, 1) indicates
the degree of entanglement of the photon pair. High values of w correspond to high
values of entanglement, while for w → 0 the photon pair is in a product state. We
also note that

∑
n λn = 1.

The electromagnetic field operator can be expressed in terms of the Schmidt
modes. Its expression can be found by the use of the orthogonality relations of
Eq. (2.47)[Sch17b, App A]:

Êi(t) = A(ω̄)
∞∑
k=1

Ĉ
(i)
k H̃

(i)
k (t), i = 1, 2 (2.64)

where Ĉ
(1)
k = Âk, Ĉ

(2)
k = B̂k are the two effective annihilation operators for

each mode and H̃k(t) is the Fourier transform of the Hermite–Gauss polynomial
F{Hk(ω)} and

Ĉ
(i)
k =

∫
dωH∗

k(kiω)âi(ω), (2.65)

as per Eq. (2.48). We also define the function u
(i)
n (t) = F{Hn(ki(ω − ω̄i))}eiω̄it.

Since the Hermite polynomials are eigenfunctions of the Fourier transform we have:

u(i)n (t) =
in√

2n
√
πn!ki

e−t2/2k2i hn

(
t

ki

)
. (2.66)
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Using the above definitions the two photon entangled state of Eq. (2.58) can be
written as [GUW01]

|11ent⟩ =
∞∑
k=0

rkÂ
†
kB̂

†
k |00⟩ . (2.67)
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Chapter 3

Metrology

The main goal of metrology is to determine the information available in a system
about a given parameter and devise a measurement scheme in order to obtain an
estimate of the parameter as accurate as possible. Using tools from statistical in-
ference one can construct an estimator of the parameter based on observed data.
The performance of an estimator is assessed in terms of a cost function, such as the
mean square error. Once the appropriate cost function is chosen, one can calculate
theoretical bounds on the precision of the estimator.

This chapter is organised as follows: In Sec. 3.1, we discuss about single pa-
rameter estimation and the classical and quantum Cramér-Rao bound (CRB) [Kay93].
The classical CRB is a lower bound on the variance of unbiased estimators, where it is
assumed that the parameter to be determined has a fixed but unknown value within
a known interval. With the use of quantum resources, however, the concepts of clas-
sical estimation theory must be generalised and applied in the context of quantum
mechanics. In Sec. 3.2 we present the multi-parameter Cramér-Rao bound.

3.1 Simgle parameter estimation

Let {x} = X1, X2, ..., Xn be a set of independent identically distributed measurement
outcomes which depend on an unknown parameter ϑ. These outcomes are described
by an underlying probability distribution function p(x|ϑ) conditioned on the value
of ϑ. The goal of parameter estimation is to infer the value of the parameter ϑ,
i.e. obtain an estimator ϑ̃, by post-processing the measurement outcomes. The
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performance of the estimator can be quantified by choosing the mean square error
(MSE)

MSE(ϑ̃) = E[(ϑ̃− ϑ)2], (3.1)

as a cost function. In the above definition, E denotes the expectation value, which
indicates the average mean square deviation of the estimator from the true value of
the parameter. It is desirable for the estimator to have a minimal MSE. The MSE

can be written as
MSE(ϑ̃) = var(ϑ̃) + b2(ϑ) . (3.2)

Here, var(ϑ̃) is the variance

var(ϑ̃) = E[(ϑ̃− E[ϑ̃])2], (3.3)

which indicates the square deviation of the estimates from the expected value of the
estimates, while b(ϑ) is the bias of the estimator

b(ϑ) = E(ϑ̃− ϑ), (3.4)

which is the expected value of the error. In this thesis we focus on unbiased estimators
E[ϑ̃] = ϑ, i.e. estimators which on average yield the true value of the unknown
parameter for all possible values of the parameter.

3.1.1 Classical and quantum Cramér-Rao bound

For any given set of outcomes, a lower bound on the variance for an unbiased estima-
tor can be calculated theoretically and it provides the so called Cramér-Rao bound
(CRB) [CT06; Kay93]

var(ϑ̃) ≥ 1

NC(ϑ)
. (3.5)

Here, N is the number of the independent repetitions of the measurements from
which we extract the data and C(ϑ) is the (classical) Fisher information (CFI) defined
as

C(ϑ) =
∫
dx p(x|ϑ)

(
∂ ln p(x|ϑ)

∂ϑ

)2

=

∫
dx

1

p(x|ϑ)

(
∂p(x|ϑ)
∂ϑ

)2

, (3.6)

where the regularity condition E[∂ ln p(x|ϑ)/∂ϑ] = 0 is assumed.
We are now interested in estimating the parameter θ on which a quantum
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state depends. In this section we follow the derivation of Ref. [Par09; Hel09] and
we assume that the quantum state depends only on one parameter ϑ. In quantum
mechanics the probability outcome of a measurement is given by Eq. (2.2), that is
p(x|ϑ) = Tr

(
ρϑΠ̂x

)
, where {Πx} is a POVM. The CFI of Eq. (3.6) is written as

C(ρϑ,Πx) =

∫
dx

(
Tr
(
∂ϑρϑ Π̂x

))2
Tr
(
ρϑΠ̂x

) =

∫
dx

Re
(
Tr
(
ρϑΠ̂xLϑ

))2
Tr
(
ρϑΠ̂x

) , (3.7)

where L is a hermitian operator, the symmetric logarithmic derivative (SLD) oper-
ator defined as

∂ϑρϑ =
Lϑρϑ + ρϑLϑ

2
, (3.8)

that is the SLD operator is a solution of the Lyapunov equation. As it can be
seen fron Eq. (3.7) the CFI C(ρϑ,Πx) depends on the detection procedure, i.e the
POVM {Π̂x}, as well as the quantum state itself. To identify the ultimate bound
on the precision of the estimator, the CFI must be maximised over all the possible
measurements. The maximisation is bounded as

max
Πx

C(ρϑ,Πx) ≤ Q(ρϑ) (3.9)

by the quantum Fisher information (QFI) which is given by

Q(ρϑ) = Tr
(
ρϑL2

ϑ

)
= Tr (∂ϑρϑLϑ) . (3.10)

Having defined the above quantities, we can now write the quantum Cramér-Rao
bound (QCRB) as

var(ϑ̃) ≥ 1

NC(ρϑ,Πx)
≥ 1

NQ(ρϑ)
. (3.11)

The QCRB provides a fundamental bound that depends only on the quantum state
and not on the detection system.

We note that for a single parameter estimation problem, the classical CRB is
saturated in the limit N → ∞ by the maximum likelihood estimator [Kay93]. Also,
for the case of a single parameter, there exists an optimal POVM that saturates
the inequality (3.9). This POVM Π̂ϑ is the set of projectors over the eigenstates of
Lϑ [Par09; BC94].
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3.2 Multiple parameter estimation

All the above definitions can be extended to a vector parameter, that is, to outcomes
that depend on a set of parameters ϑ = (ϑ1 ϑ2 . . . ϑm). In this case, the estimator
is unbiased if E(ϑ̃i) = ϑi ∀ i, efficient if var(ϑ̃i) is minimum among all the unbiased
estimators for all i, and the CRB becomes a bound on the covariance matrix Cov(ϑ̃)

of the estimators [CT06; Kay93]

Cov(ϑ̃) ≥ 1

N
C(ϑ)−1 . (3.12)

The elements of the covariance matrix are defined as Cov(ϑ̃)ij = E[(ϑ̃i−ϑi)(ϑ̃j−ϑj)]
and C(ϑ) is the CFI matrix with elements

C(ϑ)ij =
∫
dx

1

p(x|ϑ)
∂p(x|ϑ)
∂ϑi

∂p(x|ϑ)
∂ϑj

. (3.13)

Note that the inequality of Eq. (3.12) is a matrix inequality, which means that the
difference Cov(ϑ̃) − (NC(ϑ))−1 is a positive semi-definite matrix. The QFI matrix
Q(ρϑ) elements are defined as

Q(ρϑ)ij =
1

2
Tr (ρϑ(LiLj + LjLi)) , (3.14)

where Li is the SLD corresponding to the parameter ϑi is given by Eq. (3.8). The
QCRB can then be generalised for a vector parameter as

Cov(ϑ̃) ≥ 1

N
C(ρϑ, Π̂x)

−1 ≥ 1

N
Q(ρϑ)

−1, (3.15)

One can obtain a scalar bound from Eq. 3.15 as follows:

Tr
(
W Cov(ϑ̃)

)
≥ 1

N
Tr
(
WC(ρϑ, Π̂x)

−1
)
≥ Tr

(
W

1

N
Q(ρϑ)

−1

)
, (3.16)

where W is some positive weight matrix which allows to prioritise the uncertainty
of different parameters.

There are cases where it might be convenient to change the parameterisation
of the system from a set of (old) parameters ϑ to a new set of parameters ϑ′ =

f(ϑ). Given that the Jacobian matrix B of the transformation with elements Bij =
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∂ϑi/∂ϑ
′
j is non-singular, the CFI matrix is transformed according to [Kay93]

C(ϑ′) = B C(ϑ)BT . (3.17)

The transformation of QFI matrix to a new set of parameters follows the same
transformation rule.

Finally, we note that there are cases in which the FI matrix is singular. This
implies that there are linear combinations of parameters that cannot be estimated
from the data, i.e. the variance of the estimators is infinite. In such cases, the FI
matrix can still provide a meaningful bound for the combination of parameters that
correspond to the non-zero eigenvalues of the CFI matrix [SM01; Val08].

Attainability of the QFI

As mentioned in Sec. 3.1.1, in the case of a single parameter estimation the set of
projectors over the eigenstates of Lϑ saturates the QCRB. However, this strategy
does not generalise to multiple parameters in general. In the case where all SLDs
commute, the SLDs share a common eigenbasis and, thus, there exists a common
measurement optimal for extracting information for all the parameters ϑi. A neces-
sary and sufficient condition for the saturability of QCRB is the satisfaction of the
weak commutativity condition [RJD16]

Tr (ρϑ[Li,Lj ]) = 2Tr (Im{ρϑLiLj}) = 0 (3.18)

where only the expectation value of the SLD operators needs to be equal to zero.
For pure states, the weak commutativity condition is equivalent to some SLDs

commuting, which could make possible to find an optimal measurement as the com-
mon eigenbasis of these SLDs. For mixed states, the weak commutativity guaranties
the saturability for the scalar bound of Eq. (3.16) through its equivalency to the
Holevo bound [RJD16]. However, one might need to perform collective measure-
ments in the the asymptotic limit of many independent copies of the state ρϑ in
order to saturate that bound [RJD16].
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3.2.1 Calculating the SLDs

The general solution to the SLD equation requires the diagonalisation of the density
matrix. We assume that the eigenvalues {λn} and eigenvectors {|ψn⟩} of the density
operator are known and, hence, write the density operator as ρϑ =

∑
n λn |ψn⟩⟨ψn|.

The the SLD operator can be calculated by the formula [Par09]

Li = 2
∑
n,m

⟨ψm| ∂ϑi
ρϑ |ψn⟩

λn + λm
|ψm⟩⟨ψn| , (3.19)

where these sums include only the terms for which λn + λm ̸= 0. We also note
that the set of {|ψn⟩} must include the vectors that span the support of the density
matrix and its derivative1.

There are cases where one might need to manipulate the SLD equation in
order to avoid finding the eigendecomposition of the density matrix. One such way
is the one described in Ref. [GT19], which is also the method we used to calculate
the QFI matrix in the case of localisation microscopy. We pick a convenient, not
necessarily orthogonal, basis Bρ = {|ϕn⟩} that spans the support of the density
matrix ρϑ. We calculate the set’s non-zero derivatives B′

ρ = {∂ϑi
|ϕn⟩}. From the

set B′
ρ we keep the vectors {∂ϑi

|ϕ⟩} such that the set B = {∂ϑi
|ϕ⟩} ∪ Bρ is a set

of linearly independent vectors. The density operator and the SLD operator can be
expressed on terms of the vectors {|ϕi⟩} as

ρϑ =
∑
i,j

ϱij |ϕi⟩⟨ϕj | , (3.20)

∂ϑνρϑ =
∑
i,j

D
(ν)
ij |ϕi⟩⟨ϕj | , (3.21)

Lν =
∑
i,j

Λ
(ν)
ij |ϕi⟩⟨ϕj | . (3.22)

We construct the so-called Grammian matrix Υ whose elements consist of the prod-
ucts

Υij = ⟨ϕi|ϕj⟩ . (3.23)
1The support of a matrix is defined as the space that is orthogonal to the kernel of the matrix.
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The Lyapunov equation (3.15) then takes the form

2D(ν) = Λ(ν)Υϱ+ ϱΥΛ(ν), (3.24)

where ϱ, Λ(ν) and D(ν) are defined from Eq. (3.20)-(3.22). Eq. (3.24) may be solved
using standard linear algebraic methods, such as solving a linear system of equations
or by matrix vectorisation as in Ref. [Saf18]. In the case where we choose matrix
vectorisation to solve Eq. (3.24), the elements of Λ(ν) are found by the following
expression

vec[Λ(ν)] = 2(ϱ⊗Υ−1 +Υ−1 ⊗ ϱ)−1(Υ⊗Υ) vec[D(ν)]. (3.25)

A simple example for which the QFI can be calculated analytically is for the
case of a pure state ρϑ = |ψϑ⟩⟨ψϑ|. Since ρ2ϑ = ρϑ we have ∂ϑi

ρϑ = (∂ϑi
ρϑ)ρϑ +

ρϑ(∂ϑi
ρϑ) from which we recognise Li = 2(∂ϑi

ρϑ). The derivative of the state is
∂ϑi

ρϑ = |∂ϑi
ψϑ⟩⟨ψϑ| + |ψϑ⟩⟨∂ϑi

ψϑ| which leads to the following expression for the
QFI matrix elements [Par09]

Qij = 4Re
{〈
∂ϑi

ψϑ

∣∣∂ϑj
ψϑ

〉
+ ⟨ψϑ|∂ϑi

ψϑ⟩
〈
ψϑ

∣∣∂ϑj
ψϑ

〉}
. (3.26)

An alternative formula for the pure state QFI is [FN95]

Qij = Tr
(
(∂ϑi

ρϑ)(∂ϑj
ρϑ)
)
, (3.27)

where the density matrix is given by ρ = |ψϑ⟩⟨ψϑ|.

3.2.2 Estimation of Hamiltonian parameters and QFI in the inter-
action picture

In this section, we examine whether the expression for QFI is the same in the
Schrödinger and interaction picture. We follow the formalism of Sec. 2.1.2 and
we assume that the Hamiltonian in the Schrodinger picture depends on two parame-
ters, ϑ in the free evolution Hamiltonian Ĥ0(ϑ) and φ in the interaction Hamiltonian
H

(S)
int (φ). We assume that our state ρ(ϑ, φ) is pure for which the QFIM elements are

given by Eq. (3.27) with i, j = ϑ, φ. For convenience, we examine just the diagonal
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elements. In the Schrodinger picture the diagonal QFI elements are given by

Qii = Tr
[
(∂iρ

(S))(∂iρ
(S))
]
. (3.28)

The transformation of the density matrix to the interaction picture is given by
Eq. (2.12) and, thus, the derivative of the state in the interaction picture is

∂iρS = ∂i(UoρIU
†
o ) = ∂i(Uo)ρIU

†
o + UoρI∂i(U

†
o ) + Uo∂iρIU

†
o . (3.29)

In the case where we are interested in the parameter φ of the interaction Hamiltonian,
the derivatives in the two pictures are connected by the transformation ∂φρS =

Uo∂φρIU
†
o and the QFIs in the two pictures are equivalent. However, if we are

interested in the parameter ϑ in the free evolution operator, then the derivatives in
the two pictures are given by

∂ϑρS = ∂ϑ(UoρIU
†
o ) = Uo∂ϑρIU

†
o − itUo[H0(ϑ), ρI ]U

†
o (3.30)

Therefore, the two QFIs are different as Tr [(∂iρS)(∂iρS)] ̸= Tr [(∂iρI)(∂iρI)]. In
this case, the QFI must be calculated in the Schrödinger picture [SRP17]. In the
derivation of the QFI there is the implicit assumption in Eq. (3.7) that

∂ϑp(x|ϑ) = ∂ϑTr[ρϑΠx] = Tr[∂ϑρϑΠx]. (3.31)

However, in the interaction picture the POVM operator is transformed according to
Eq. (2.12) as Πx(ϑ) = Uo(ϑ)ΠxUo(ϑ)

†, that is the POVM is parameter-dependent.
For such cases of non-regular measurements it is already known that a different
approach to the one we have presented in this chapter must be adopted in order to
obtain the correct lower bound to the variance of an estimator [SP20; SRP17]. In
this thesis we are not interested in parameters that appear in the free Hamiltonian.
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Chapter 4

Quantum limits to localisation
microscopy

4.1 Introduction

Precisely locating multiple single emitters is a key challenge in fluorescence mi-
croscopy. The process of estimating these locations depends on the quality of the
image obtained by the microscope. One of the major limitations to the image
quality, known since Abbe and Rayleigh, lies in spatially resolving objects substan-
tially smaller than half the wavelength of the light involved [BW99]. Known as the
Rayleigh limit or diffraction limit, it is a consequence of the diffraction of light due
to its wave nature.

Over the last couple of decades, ways to circumvent the Rayleigh limit in
far-field fluorescence microscopy have been invented [TPR14]. Confocal methods
such as STED, RESOLFT, and SSIM [HW94; HJC02; Gus05; Hof+05] use pat-
terned illumination to spatially modulate the fluorescence pattern of emitters within
a diffraction-limited region such that not all of them emit simultaneously, thereby
achieving sub-Rayleigh resolution. Other far-field methods such as PALM, fPALM
and STORM [RBZ06; Bet+06; HGM06] temporally modulate the fluorescence pat-
tern of emitters with weak laser pulses stochastically such that only a low density
of emitters are active within the Rayleigh limit at one time. Repeating the process
many times, images with sub-Rayleigh resolution are reconstructed from the mea-
sured positions of individual emitters. These techniques, with resolution of tens of
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Figure 4.1: Illustration of localisation microscopy with five point sources, imaged
by a diffraction-limited system and the resultant intensity distribution on the image
plane.

nanometers, have provided insights into biological processes at the cellular scale that
were hitherto unattainable [HBZ10].

Though immensely powerful and impressive, none of these methods seek to
extract all the information available in the emitted light field. As in conventional flu-
orescence microscopy these techniques use ‘direct imaging’—intensity measurements
on the image plane—to extract information from the incident light. That there is in-
deed more information in the light field to be extracted was shown by [TNL16]. Using
methods from classical and quantum estimation theory, it was shown theoretically
that two arbitrarily close incoherent point sources may be resolved, and that this may
be achieved in practice using a spatial-mode demultiplexing (SPADE) measurement.
In the few years since, theoretical studies have considered different source arrange-
ments or parameters of interest [NT16a; LP16; KGA17; Chr+17; Řeh+17; Dut+19]
in one as well as in two and three spatial dimensions [ANT17; YP18; Nap+19;
BSW18]. Other theoretical studies have explored various detection systems that
could achieve the ultimate precision in imaging or get close to it [NT16b; Yan+17;
Reh+17; Řeh+18]. Several experiments have demonstrated some of the principles
underlying these detection systems [TDL16; Paú+16; Yan+16; Don+18; Paú+18;
Par+18; Zho+19; Bon+19]. Advances in this area have been recently reviewed by
[Tsa19b].
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Realistic imaging scenarios typically involve more than two point sources or
even extended objects. It has been shown that an extended one-dimensional ob-
ject much smaller than the Rayleigh limit described only in terms of its centroid
and effective radius can be approximated by a two-level quantum system [Chr+17].
Theoretical optimality of certain measurement techniques in estimating this effec-
tive radius size has also been established in one and two spatial dimensions [Tsa17;
Tsa18; Dut+19]. Order-of-magnitude bounds on the precision of estimating the
normalised moments of extended sources smaller the Rayleigh limit have also been
obtained [ZJ19; Tsa19a].

In this chapter, we provide an analytical lower bound on an unbiased estima-
tor’s covariance (mean square error) matrix for localisation microscopy – simultane-
ously estimating the locations of N incoherent, weak point sources of unequal but
known intensities in one spatial dimension. The bound is provided by the quantum
Fisher information matrix. For a Gaussian point spread function (PSF), we first
describe the light field on the image plane as a classical mixture of coherent states.
We use this to derive the quantum Fisher information matrix analytically. In the
limit of the point sources approaching a single point, we find its rank to be no more
than two. As the inverse of the quantum Fisher information matrix lower bounds the
covariance matrix, our result implies that no more than two independent parameters
can be estimated in localisation microscopy in the limit of arbitrarily small separa-
tions. In this limit, we provide a mathematical explanation for our observation in
terms of an approximation of the light field involving only the first two Hermite-
Gauss modes. Finally, we compare performance of conventional direct imaging and
the recently proposed SPADE [TNL16] in localisation microscopy with the quantum
bounds we obtain. In the limit of the point sources approaching a single point, we
find the classical Fisher information matrices for both these detection systems to
be rank one. Furthermore, in the sub-Rayleigh limit, SPADE does not attain the
quantum limit for localisation microscopy. For the subset of parameters where scal-
ings may be optimal, we find SPADE to be short of the quantum limit in absolute
precision.

This chapter is organised as follows: In Section 4.2 we provide a quantum
mechanical description of localisation microscopy. In Section 5.4 we provide an
analytic expression of the QFIM for localisation microscopy, our main technical
result. We then draw conclusions about its rank and its implications for localisation
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microscopy. We end in Section 4.4 with further insights and discussions about the
sinc PSF and the potential of detection systems attaining the quantum limits of
localisation microscopy.

4.2 Quantum description of localisation microscopy

We consider localisation microscopy – the problem of estimating the locations of N
incoherent point sources or emitters located in a one-dimensional spatial configura-
tion as in Fig. 4.1. As we assume them to be weak, such that on average no photons
arrive on the image place within a coherence time with probability (1 − ϵ), where
ϵ ≪ 1 and one photon arrives with probability ϵ. We also assume the optical field
on the image plane to be quasi-monochromatic and paraxial [TNL16]. The quantum
state of this optical field is then

ρopt ≈ (1− ϵ)ρvac + ϵρ, (4.1)

where we have neglected terms of second and higher orders in ϵ and ρvac = |vac⟩ ⟨vac|
is the vacuum state and ρ is the one-photon state.

The one-photon density matrix on the object plane is an incoherent mixture
of position eigenstates ρ =

∑N
i=1wi |χi⟩ ⟨χi|, where wi are the relative intensities

with
∑N

i=1wi = 1. An imaging system maps ĉ†x, the creation operator producing
one photon in the position x on the object plane, to the corresponding image plane
operator ĉ†i [LP16]

ĉ†i =

∫
dxΨPSF(x− χi)ĉ

†
x, (4.2)

where χi is the position on the source on the object plane and ψPSF(x) is the PSF.
On the image plane this becomes

ρ =
N∑
i=1

wi |ψi⟩ ⟨ψi| , (4.3)

where
|ψi⟩ =

∫
dxΨPSF(x− χi) |x⟩ , (4.4)

as follows from Eq. (4.2).
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An ideal imaging system with ΨPSF(x) = δ(x) is free of any Rayleigh limit as
it transmits all spatial frequencies from the object to the image plane. In practice,
a Gaussian PSF

ψPSF(x) =
1

(2πσ2)1/4
e−

x2

4σ2 , (4.5)

with σ = λ/(2πNA), where NA is the numerical aperture of the imaging system is
a good approximation for quasimonochromatic paraxial light [ZZO06; TNL16] and
also allows us to obtain analytical results. For such a PSF, the state of Eq. (4.3) has
an intensity distribution of the form illustrated in Fig. 4.1. For a Gaussian PSF, the
|ψi⟩ can be expanded in the Hermite-Gauss (HG) basis as (See Appendix 4.5.1)

|ψi⟩ =
∞∑
k=0

αk
i√
k!
e−α2

i /2|ϕk⟩ ≡ |αi⟩ , (4.6)

where |ϕk⟩ are the HG modes1 This has the same mathematical form as the coherent
states, produced by the displacement operator D(αi) = eαiâ

†−α∗
i â [KL10] acting on

the ground state of the harmonic oscillator with αi = χi/2σ ∈ R the dimensionless
positions of the sources. Thus the one-photon state on the image plane is

ρ ≡ ρα =

N∑
i=1

wi |αi⟩ ⟨αi| , (4.7)

a classical mixture of coherent states in the HG basis.
The above is a quantum optical rendition of localisation microscopy—a clas-

sical optics problem. It enables us to harness the mathematical formalism associated
with coherent states and provides a basis that spans the space of the quantum state
as well as its derivative. The latter is an essential ingredient of deriving the quan-
tum Fisher information matrix analytically in Section 4.3.1. We also hope that this
description will provide insights into the quantum limits to localisation microscopy
in the presence of shot noise and assist in designing detection systems that attain
these quantum limits.

1Unlike the conventional quantum optical coherent states which reside in the phase space of
the electromagnetic field, our coherent states reside in physical space on the image plane. This
mathematical form was also identified by [Dut+19] but only used for numerical calculations.
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4.2.1 Previous works on two point sources

Figure 4.2: Illustration of localisation microscopy with five point sources, imaged
by a diffraction-limited system and the resultant intensity distribution on the image
plane

In this subsection, we discuss the Rayleigh limit and the previous work on the quan-
tum limits on super-resolution of two point sources by Tsang et.al. [TNL16]. The
system of two point sources with positions χ1, χ2 is depicted in Fig. 4.2 and is de-
scribed by Eq. (4.1)-(4.5) with a total number of sources N = 2. The density matrix
for two equally bright sources is (Eq. (4.1)):

ρ =
1

2
(|ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2|) . (4.8)

The above system can also be described in terms of the centroid xc = (χ1 + χ2)/2

and the separation d = χ1 − χ2 between the two points.
The direct imaging measurement is a photon-counting measurement at a

specific location z on the image plane. Thus, the POVM of direct imaging is Πz =

|n⟩⟨n|z, n = 0, 1, 2, .. in each pixel z of the image plane. In our case, we have assumed
that the point sources emit one photon at most. We also assume that the data is
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collected over µ coherence time intervals, leading to the average photon number
detected at the image plane M = ϵµ, where ϵ is the probability of a single photon
detection of Eq. (4.1). With the above assumptions, the direct imaging measurement
is given by the operator Πz = |1⟩⟨1|z, which results in the probability distribution

P (z|s12) =
1

2

(
| ⟨z|ψ1⟩ |2 + | ⟨z|ψ2⟩ |2

)
=

1

2

(
|ψ1|2 + |ψ2|2

)
. (4.9)

Using Eq. (3.6) we calculate the CFIM for the original locations χ1, χ2. The Rayleigh’s
limit regards the separations and, hence, we transform the CFIM according to
Eq. (3.17) for the parameters xc and d. We find that the CFI for the separation
d for the direct measurement is [Bet+99]:

Cd ≈ d

σ
(4.10)

where σ characterises the PSF of the diffraction limited system as in Eq. (4.40). It is
obvious from Eq. (4.10) that the CFI for the source’s separations tends to 0 as their
separation tends to 0. This means that then mean-square error for the estimator of
the separation diverges for direct imaging (see Fig. 4.3).

However, as proven by Tsang et.al. [TNL16], this divergent behaviour is not
observed when we calculate the QFI. (For a full derivation of the SLD operators and
the QFIM for the centroid and separation of the two point sources see [TNL16]).
Tsang et al. proved that the QFI for the separation does not depend on its value,
but it is a constant quantity depending only on the width of the Gaussian PSF σ,
i.e. the properties of the imaging system:

Qd ≈ M

4σ2
, (4.11)

where M is the average photon number detected at the image plane. Therefore,
the Rayleigh’s ’curse’ arises as a result of a specific measurement, namely direct
imaging(see Fig. 4.3).
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Figure 4.3: Mean-square error for separation

Additionally, Tsang et al. constructed the spatial-mode demultiplexing (SPADE)
measurement that saturates the separation QFI. In SPADE we decompose the light
on the image plane in terms of the Hermite-Gaussian modes {ϕk} and then we
count photons in each mode, i.e. the SPADE POVM consists of the projectors
Πq = |ϕq⟩⟨ϕq|.

4.3 Results

Localisation has long been treated as an estimation problem with the unknown
locations of the sources χ ≡ {χi}, i = 1, . . . , N being the parameters to be esti-
mated [ORW04; CWO16]. In our formulation, the limits to the localisation of the
point sources are the same as estimating the amplitudes α ≡ {αi}, i = 1, . . . , N of
the coherent states in Eq. (4.7). Let these estimates be α̃ ≡ {α̃i}. We now present
our main result – the analytical expression of the QFIM for localisation microscopy.
Any scalar function of the covariances can be bounded by the inverse of QFIM with
the lower bound following from the spectral decomposition of QFIM. To that end,
calculating the eigenvalues of the QFIM and their scaling is of importance for the
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multi-parameter estimation. We conclude that the QFIM is a rank two matrix as
αi → 0. Eq. (3.15) then implies that the eigenvalues of Cov[α] remains finite for
no more than two independent parameters. Thus, no more than two independent
parameters can be estimated from the entire set α as α → 0.

We lack a fully satisfactory physical explanation for this restriction on the
number of estimable parameters, but provide an explanation involving only the first
two Hermite-Gauss modes for αi ≪ 1.

4.3.1 Analytical expression of QFIM

The state in Eq. (4.7) can be expressed in the basis of {|αi⟩ , â† |αi⟩} as

ρα = A

(
Dw 0

0 0

)
A† ≡ AρAA

† (4.12)

where
A =

(
|α1⟩ |α2⟩ · · · |αN ⟩ â† |α1⟩ · · · â† |αN ⟩

)
(4.13)

and Dw = diag (w1, w2, · · · , wN ) denotes a diagonal matrix. Although the basis
used in Eq. (4.12) is non-orthogonal this representation can still be used to evaluate
the QFIM [GT19]. The coherent states {|αi⟩} are linearly independent and span the
support of the state in Eq. (4.7). The support of the derivative is spanned by {|αi⟩}
and {â† |αi⟩}, which are also linearly independent.

The Grammian matrix
Υ = A†A, (4.14)

whose elements consist of the scalar products between the basis vectors ⟨αj |αk⟩,
⟨αj | â† |αk⟩, ⟨αj | â |αk⟩, and ⟨αj | ââ† |αk⟩ is in block form,

Υ =

(
Υαα Υαd

Υdα Υdd

)
, (4.15)
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where
(Υαα)ij = ⟨αi|αj⟩ = e−(αi−αj)

2/2,

(Υαd)ij = Υ†
dα = ⟨αi| â† |αj⟩ = αie

−(αi−αj)
2/2 = DαΥαα,

(Υdd)ij = ⟨αi| ââ† |αj⟩ = (αiαj + 1)e−(αi−αj)
2/2

= DαΥααDα +Υαα,

(4.16)

and Dα = diag (α1, α2, · · · , αn) .

Since ∂α |α⟩ = (â† − α) |α⟩ for real α, the derivative of the quantum state is

∂jρα = Awj

(
−2αjEj Ej

Ej 0

)
AT ≡ A(∂jρ)AA

†, (4.17)

where ∂j denotes the derivative with respect to αj and (Ej)kl = δjkδjl. Similarly,
the SLD Li

A can be written in the generic form

Lj = ALj
AA

T = A

(
Lj
αα Lj

αd

Lj
dα Lj

dd

)
AT (4.18)

where Lj
αα corresponds to the elements ⟨αi|Lj |αj⟩, Lj

αd to ⟨αj |Lj â† |αi⟩ etc. The
Lyapunov equation Eq. (3.8) can be now rewritten as

2∂jρA = ρAΥL
j
A + Lj

AΥρA, (4.19)

and the QFIM elements from Eq. (3.14) as

[Q(ρα)]jk = Tr ∂jρL
k = Tr ∂jρAΥLk

AΥ. (4.20)

Using the Tracy-Singh block kronecker product ⊙ and the block column vec-
torisation "vecb" operator [KNT91] defined as

vecb
(
Lj
A

)
=


|Lj

αα)

|Lj
dα)

|Lj
αd)

|Lj
dd)

 , (4.21)

where |X) = vec(X) is the column vectorisation of a matrix and (X| its transpose.
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Eq. (4.19) can be blockwise vectorised to

2vecb (∂jρA) = (I⊙ (ρAΥ) + (ρAΥ)⊙ I) vecb
(
Lj
A

)
(4.22)

with I being the identity matrix. Using the matrix identity [KNT91]

TrATBCDT = vecb
(
AT
)T

(D ⊙B)vecb (C) , (4.23)

the QFIM elements from Eq. (4.20) can be re-expressed as

[Q(ρα)]ij = vecb (∂iρA)
T (Υ⊙Υ)vecb

(
Lj
A

)

= wi

[
−2αi(Ei| (Ei| (Ei| 0

]

|Γj

αα)

|Γj
dα)

|Γj
αd)

|Γj
dd)

 ,
(4.24)

where we have defined

(Υ⊙Υ)vecb
(
Lj
A

)
= vecb

(
Γj
)
=


|Γj

αα)

|Γj
dα)

|Γj
αd)

|Γj
dd),

 (4.25)

which is the outstanding quantity to be determined.
We now recast Eq.(4.22) and (4.24) as

2vecb (∂iρA) =
(
Υ−1 ⊙ ρA + ρA ⊙Υ−1

)
(Υ⊙Υ)vecb

(
Li
A

)
=
(
Υ−1 ⊙ ρA + ρA ⊙Υ−1

)
vecb

(
Γi
)
.

(4.26)

Putting it all together, we obtain
−4wiαi|Ei)

2wi|Ei)

2wi|Ei)

0

 =


0

A 0

0

0 0 0 0



|Γj

αα)

|Γj
dα)

|Γj
αd)

|Γj
dd)

 , (4.27)
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where

A =

Dw ⊗ υαα + υαα ⊗Dw Dw ⊗ υαd υαd ⊗Dw

Dw ⊗ υdα Dw ⊗ υdd 0

υdα ⊗Dw 0 υdd ⊗Dw

 , (4.28)

and {υαα, υαd, υdα, υdd} defines the inverse of Υ via

Υ−1 =

[
υαα υαd

υdα υdd

]
. (4.29)

Note that the inverse Υ−1 always exists since Υ is the Grammian matrix of lin-
early independent vectors. The elements of Υ−1 can be found using the formula of
blockwise inversion (See Appendix 4.5.2).

Noticing that |Γj
dd) does not contribute in Eq. (4.24), Eq. (4.27) can be re-

duced to −4wiαi|Ei)

2wi|Ei)

2wi|Ei)

 = A

|Γ
j
αα)

|Γj
dα)

|Γj
αd)

 (4.30)

where A is a 3N2 × 3N2 invertible matrix unless αi = αj for some i, j, which is a
singular case for which the rank of the density matrix reduces. Hence the unique
solution to Eq. (4.30) is |Γ

j
αα)

|Γj
dα)

|Γj
αd)

 = A−1

−4wjαj |Ej)

2wj |Ej)

2wj |Ej)

 , (4.31)

where the block matrices that compose the A−1 can be found by using the formulas
for blockwise inversion (See Appendix 4.5.2).

Substituting Eq. (4.31) into Eq. (4.24) gives us the QFIM elements

[Q(ρα)]ij = 2wiwj(Ei|
[
I⊗ΥdαΥ

−1
αα +ΥdαΥ

−1
αα ⊗ I− 2αiI⊗ I

]
S−1[

I⊗Υ−1
ααΥαd +Υ−1

ααΥαd ⊗ I− 2αjI⊗ I
]
|Ej)

+ 4wiδij
[
1 + α2

i − (ΥααDαΥ
−1
ααDαΥαα)ij

] (4.32)
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where S−1 =
(
Υ−1

αα ⊗Dw +Dw ⊗Υ−1
αα

)−1 is an N2 × N2 matrix and Υ1
αα is the

inverse of the submatrix of Υ which exists, as it is the Grammian matrix of lin-
early independent vectors {|αi⟩}. Eq. (4.32) is an analytic expression for the QFIM
elements for localisation microscopy and our main result.
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Figure 4.4: Diagonal and off diagonal elements of the QFIM for the case of 3 sources
with equal intensities. The sources are separating from each other at equal distances,
(α1, α2, α3) = (x, 2x, 3x). The element Q12 and Q23 elements are equal, as are the
Q11 and Q33 elements.

Fig. 4.4 shows the elements of the QFIM for the localisation microscopy
of three point sources. We choose them to be equidistant, that is, (α1, α2, α3) =

(x, 2x, 3x) and w1 = w2 = w3 = 1/3 for illustration purposes, however, this is
not a necessary condition for our results. Note the non-zero off-diagonal elements
evidencing correlations in the precision around and below the Rayleigh limit of x ∼ 1.

While the diagonal elements are all non-vanishing, more crucially as x → 0

the diagonal and off-diagonal elements combine to make the QFIM singular. This is
revealed by a closer analysis of the QFIM matrix as in Fig. 4.5 which shows that only
two of its eigenvalues remain non-zero as the sources approach each other. This is
in spite of all the diagonal elements of the QFIM remaining non-zero even as x→ 0,
as Fig. 4.4 shows.

This behaviour of only two non-zero eigenvalues also holds for other values
of N . We have explicitly checked this for N = 4, . . . , 10 as well as when the sources
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Figure 4.5: The eigenvalues of the QFIM matrix for 3 sources with equal intensi-
ties. The sources are separating from each other at equal distances, (α1, α2, α3) =
(x, 2x, 3x).

are not equally spaced. In Fig. 4.9 in Appendix 4.5.2 we plot the eigenvalues of the
QFIM for N = 4, 5 as further examples. In the case of different relative intensities
the results are the same except of the limiting case of one extremely bright source
wj ≫ 1, wi ̸=j ≪ 1, where the rank of the QFIM is approximately one (Fig. 4.10 in
Appendix 4.5.2).

Since the QFIM has rank two as x → 0, its inverse is ill-defined except on
a two-dimensional subspace. This implies that the N × N covariance matrix for
localisation microscopy, as per Eq. (3.15), will also be unbounded except on a two-
dimensional subspace. Thus, no more than two independent parameters can be
estimated in localisation microscopy as the point sources approach each other.

In other words, the rank-deficient nature of the QFIM shows that a form
of the Rayleigh limit resurfaces for any N > 2. This had been suggested by pre-
vious works based on order-of-magnitude bounds for the diagonal elements on the
CFIM [ZJ19] or uppers bounds on the diagonal elements of the QFIM [Tsa19a]. Our
analytical expression for the full QFIM—its diagonal and off-diagonal elements for
any N—shows that this rank two behaviour is truly quantum mechanical in origin.
Furthermore, knowing the full QFIM matrix allows us to uncover the nature in which
N − 2 of the eigenvalues approach zero. We return to the behaviour in which this
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rank deficiency or Rayleigh limit emerges in Sec. 4.4.

4.3.2 Why rank two?

We now provide an explanation for the rank deficiency of the QFIM in the regime of
small separations which can be seen as the re-emergence of the Rayleigh limit. To
that end, we expresses the state in Eq. (4.7) in terms of the real-valued displacement
operator D(αi) = eαiĉ

†
i−αiĉi as

ρ =
∑
i

√
wi D(αi) |0⟩ ⟨0|

√
wi D†(αi). (4.33)

In the limit of very small separations (αi ≪ 1), the displacements are approximately

D(αi) = I+ αi

(
â† − â

)
+O(α2

i ), (4.34)

where I is the identity operator and the displacement αi is real. Up to the second
order in αi, the normalised quantum state of the light field on the image place is
then

ρ
(2)
α =

(
1− C2 C1
C1 C2

)
, (4.35)

where Ci are the first two moments

C1 =
N∑
i=1

wiαi, C2 =
N∑
i=1

wiα
2
i . (4.36)

Eq. (4.35) describes the state of two-level quantum system—the two levels
being the first two HG modes. A similar approximation which described the state
relative to a PSF centred at a fixed reference point was used in Ref. [Chr+17] to
estimate the centroid and the effective radius of a distribution of incoherent point
sources. We now consider the more general problem of estimating the location of N
point sources.

The QFIM for α (See Appendix 4.5.3) is

Q
(
ρ
(2)
α

)
≡ Q =

1

A
(I α)M

(
IT

αT

)
, (4.37)
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with

M =

[
M11 M12

M21 M22

]
, (4.38)

where M11 = (C2−1)C2, M12 =M21 = C1(1−2C2), M22 = 4C2
1−1, A = (C2 − 1) C2+

C2
1 , and I = (1 1 . . . 1)T .

The QFIM Q is an N × N matrix, which is a product of three matrices of
dimensions N × 2, 2 × 2 and 2 × N . Since rank(AB) ≤ min {rank(A), rank(B)},
and the matrix M has rank 2, the QFIM Q has rank no more than two. Although
a two-level quantum system has the potential of estimating three real parameters,
localisation microscopy in this limit can estimate only two as the two-level system
possesses a real density matrix2 This is another way of arguing that as the point
sources get closer, the light field on the image plane has enough information to
estimate only two parameters. A physical reason for this observation would be
highly desirable.

4.4 Discussion

Our analytical expression for the QFIM for localisation microscopy has enabled us
to show that as point sources get closer, no more than two independent parameters
can be estimated. A rank-deficient QFIM occurs when the quantum state does
not contain enough information to permit the estimation of some of the parameters
or combinations thereof. The parameters that can be estimated correspond to the
non-zero eigenvalues of the QFIM.

2As the localisation parameters α are real, Tr
(
ρ
(2)
α σy

)
= 2 Im (C1) = 0, where σy is the Pauli

Y matrix.
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Figure 4.6: Fitting of the eigenvalues of the QFIM matrix for the case of 9 sources in
the limit of small distribution size. The sources are positioned at αi = ix. The size
of the distribution is denoted l = 8x. The scale on both axes is logarithmic. The
sources are separating from each other at equal distances, as in the previous plots.
The slope of each line corresponding to different eigenvalues appears in the box in
the plot.

Without additional knowledge of the source distribution this restricts us to
estimating functions of the first two moments f(C1, C2) only deep in the sub-Rayleigh
limit. As Eq. (4.37) shows, when all {αj} are unknown as in localisation microscopy,
there is vanishing information about any single αi itself. This is in contrast to
the scalar QFI [Q(ρα)]ii for αi which is non zero, but assumes that all the other
{αj} are known. The manner in which the eigenvalues of the QFIM tend to zero
is of interest in the search for optimal detection systems for localisation microscopy.
Numerical fitting in Fig. 4.6 shows the vanishing eigenvalues of the QFIM approach
zero polynomially. The degree of the polynomial is given by d = 2⌊µ−1

2 ⌋, where µ
is the order the eigenvalue when arranged in descending order and ⌊·⌋ is the floor
function. These scalings are now extracted from the elements of the full QFIM of
the localisation parameters α – rather than from bounds on estimating the various
moments independently as in previous works [ZJ19; Tsa19a].
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Figure 4.7: The eigenvalues of the QFIM and CFIM for the SPADE with 20 HG
modes and 9 equally bright sources. The sources are positioned at αi = (i − 5)x
such that the peak of |ϕ0⟩ is at the centroid of the distribution. The x axis is the
size l of the distribution, with l = 8x. The QFI eigenvalues scale as in Fig. 4.6. By
SPADE with 20 modes, we mean the POVM {|ϕ0⟩ ⟨ϕ0| , |ϕ1⟩ ⟨ϕ1| , . . . , |ϕ20⟩ ⟨ϕ20| , I−∑20

i=0 |ϕi⟩ ⟨ϕi|}.

Unlike the latter, we can now compare the absolute performance of detection
systems for localisation microscopy relative to its quantum limit. Indeed, while
Fig. 4.7 shows the 2n-th eigenvalue of the QFIM closely parallel to the n-th eigenvalue
of the CFIM for SPADE [TNL16], there is a large gap in the absolute terms. This
could be due to the sub-optimality of SPADE for estimating the ⌊N/2⌋ parameters
it is sensitive to3. Similar scalings were observed with detection using superpositions
of the conventional SPADE basis [Tsa17; Tsa18; ZJ19] that are sensitive to the other
half of the moments. For reference over a range of separations, Fig. 4.12 in Appendix
4.5.5 shows the eigenvalues of the CFIM for SPADE as well as direct imaging. Note
that for both, the CFIM tends towards a rank one matrix.

3Conventional SPADE is not sensitive to all the parameters needed to describe the sources’
distribution, only its even moments [Tsa19a; ZJ19; Tsa19b].
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Figure 4.8: The eigenvalues of the QFIM matrix in the case of 3 sources with equal
intensities and a sinc PSF. The sources are separating from each other at equal
distances, i.e. (α1, α2, α3) = (x, 2x, 3x).

Since it is a multiparameter problem the issue of attainability must be dis-
cussed. It can be seen that the density matrix ρα of Eq. (4.7) as well as its derivative
are real-valued in the orthonormal {|ϕk⟩} basis. Therefore, Eq. (3.8) is a system of
equations with real coefficients and Lµ, Lν are also real and the weak commutativity
condition (3.18) is satisfied. The quantum limit for localisation microscopy is there-
fore attainable, at least in principle, although collective measurements over multiple
copies [Mat02; RJD16] of the light field on the image plane may be required.

Finally, although our analytical result is derived with a Gaussian PSF, we
expect the rank deficiency of the QFIM to be present in a more general family
of PSFs. To that end, Fig. 4.8 shows the numerically obtained eigenvalues of the
QFIM for three equidistant point sources of equal intensities under a sinc PSF (See
Appendix 4.5.4) defined as

ψPSF(x) =
1√
σ
sinc

(πx
σ

)
(4.39)

This PSF is the exact form for diffraction through a sharp one-dimensional slit which
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in its principal peak is well-approximated as Gaussian.
An approximation involving the first two spherical Bessel modes as in Sec. 4.3.2

can be performed for a sinc PSF as well, leading to similar insights. A proof of this
rank deficiency for arbitrary PSFs and a physical explanation remains an open ques-
tion.

4.5 Proofs

4.5.1 Expressing the density matrix in the HG basis

The density matrix is written in terms of the kets |ψi⟩, which are expressed in the
position space as in Eq. (4.3). We assume a normalised Gaussian point spread
function (PSF) of the form

ψPSF(x) =
1

(2πσ2)1/4
e−

x2

4σ2 , (4.40)

and so
|ψi⟩ =

∫
dxψPSF(x− χi) |x⟩ . (4.41)

The kets |ψi⟩ can be expressed in terms of the complete Hermite-Gauss modes as

|ψi⟩ =
∞∑
q=0

⟨ϕq|ψi⟩ |ϕq⟩ , (4.42)

where |ϕq⟩ are the Hermite-Gauss modes, which can be expressed in the position
space as [TNL16]

|ϕq⟩ =
1

(2πσ2)1/4
1√
2qq!

∫
dxHq

(
x√
2σ

)
e−

x2

4σ2 |x⟩ , (4.43)
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where Hq(x) are the Hermite polynomials. The coefficients of the expansion Eq. (4.42)
are

⟨ϕq|ψi⟩ =
1√
2πσ2

1√
2qq!

∫
dxdx′Hq

(
x√
2σ

)
e−

x2

4σ e−
(x′−χi)

2

4σ2
〈
x|x′

∣∣x|x′〉
=

e−
−χ2

i
8σ2√

2πσ22qq!

∫
dxHq

(
x√
2σ

)
e
−( x√

2σ
− χi√

2σ
)2

=
( χi

2σ

)q e− 1
2(

χi
2σ )

2

√
q!

(4.44)

Setting χi

2σ = αi we get

|αi⟩ ≡ |ψi⟩ =
∞∑
q=0

αq
i√
q!
e−α2

i /2 |ϕq⟩ (4.45)

which has the same mathematical form as the coherent states with {|ϕq⟩} forming
the Fock basis [KL10].

The state in Eq. (4.3) can be also written in terms of the displacement oper-
ators D(αi) = eαi(a

†−a), with αi =
χi

2σ ∈ R

ρα =
∑
i

√
wiD(αi) |0⟩ ⟨0|

√
wiD†(αi) (4.46)

where D(α) is the displacement operator.
The derivative of each coherent state with respect to its real amplitude α is

given by
∂ |α⟩
∂α

=
∂D(α)

∂α
|0⟩ =

(
â† − α

)
|α⟩ ,

∂ ⟨α|
∂α

=
∂D†(α)

∂α
⟨0| = (â− α) |α⟩ ,

(4.47)

which yields the formula Eq. (4.17).

4.5.2 Analytic results for N sources

The Tracy-Singh product [TS72; KNT91] defined for matrices A and B subdivided
into blocks Aij and Bkl is A⊙B where the (i, j)-th block of A⊙B is Aij ⊙B whose
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(k, l)-th block is in turn Aij ⊗Bkl. That is if A,B are block matrices with

A =

(
A11 A12

A21 A22

)
, and B =

(
B11 B12

B21 B22

)
,

then the Tracy-Singh product is

A⊙B =

(
A11 ⊙B A12 ⊙B

A21 ⊙B A22 ⊙B

)
=


A11 ⊗B11 A11 ⊗B12 A12 ⊗B11 A12 ⊗B12

A11 ⊗B21 A11 ⊗B22 A12 ⊗B21 A12 ⊗B22

A21 ⊗B11 A21 ⊗B12 A22 ⊗B11 A22 ⊗B12

A21 ⊗B21 A21 ⊗B22 A22 ⊗B21 A22 ⊗B22


Using the above definition, the matrix of Eq. (4.26) is found to be

(
Υ−1 ⊙ ρA + ρA ⊙Υ−1

)
=


Dw ⊗ υαα + υαα ⊗Dw Dw ⊗ υαd υαd ⊗Dw 0

Dw ⊗ υdα Dw ⊗ υdd 0 0

υdα ⊗Dw 0 υdd ⊗Dw 0

0 0 0 0

 .
(4.48)

where the elements of Υ−1 can be found using the formula of blockwise inversion:

Υ−1 =

[
υαα υαd

υdα υdd

]
(4.49)

with

υαα = Υ−1
αα +Υ−1

ααDαΥαα

(
Υdd −ΥααDαΥ

−1
ααDαΥαα

)−1
ΥααDαΥ

−1

υαd = −Υ−1
ααDαΥαα

(
Υdd −ΥααDαΥ

−1
ααDαΥαα

)−1

υdα = −
(
Υdd −ΥααDαΥ

−1
ααDαΥαα

)−1
ΥααDαΥ

−1
αα

υdd =
(
Υdd −ΥααDαΥ

−1
ααDαΥαα

)−1

(4.50)

The inverse of the block matrix Υαα exists, because it is the Grammian matrix of
the linear independent vectors |αi⟩.

For the QFIM elements we need to evaluate the inverse of the top left 3N2×
3N2 part of the matrix of Eq. (4.48) which we denote A. In order to obtain the
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inverse of A, we need to further partition A as

A =

[
ε ϑ

φ ϖ

]
(4.51)

with

ε =
[
Dw ⊗ υαα + υαα ⊗Dw

]
ϑ =

[
Dw ⊗ υαd υαd ⊗Dw

]
φ =

[
Dw ⊗ υdα

υdα ⊗Dw

]
ϖ =

[
Dw ⊗ υdd 0

0 υdd ⊗Dw

] (4.52)

The inverse of ϖ is

ϖ−1 =

(
D−1

w ⊗ υ−1
dd 0

0 υ−1
dd ⊗D−1

w

)
(4.53)

The elements of A−1 will be given by the formulas

(A−1)11 =
(
ε− ϑϖ−1φ

)−1
= S−1

(A−1)12 = −S−1ϑϖ−1

(A−1)21 = −ϖ−1φS−1

(A−1)22 = ϖ−1 +ϖ−1φS−1ϑϖ−1

(4.54)

After calculations and by substituting the Υ−1 elements from Eq. (4.50), we derive
the explicit form of A−1 elements:

(A−1)11 = S−1 =
(
Υ−1

αα ⊗Dw +Dw ⊗Υ−1
αα

)−1

(A−1)12 = S−1
(
I⊗ (Υ−1

ααΥαd) (Υ−1
ααΥαd)⊗ I

)
(A−1)21 =

(
I⊗ (ΥdαΥ

−1
αα)

(ΥdαΥ
−1
αα)⊗ I

)
S−1

(A−1)22 =

(
D−1

w ⊗ υ−1
dd 0

0 υ−1
dd ⊗D−1

w

)
+

(
I⊗ (ΥdαΥ

−1
αα)

(ΥdαΥ
−1
αα)⊗ I

)
S−1

(
I⊗ (Υ−1

ααΥαd) (Υ−1
ααΥαd)⊗ I

)
(4.55)
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The QFIM elements are then obtained from Eq. (4.31) and (4.55)

Qij = 2wiwj

[
−2αi(Ei| (Ei| (Ei|

]
A−1

−2αj |Ej)

|Ej)

|Ej)



= 2wiwj(Ei|
[
−2αiI⊗ I I⊗ I I⊗ I

]
A−1

−2αjI⊗ I
I⊗ I
I⊗ I

 |Ej)

= 2wiwj(Ei|
[
I⊗ΥdαΥ

−1
αα +ΥdαΥ

−1
αα ⊗ I− 2αiI⊗ I

]
S−1

×
[
I⊗Υ−1

ααΥαd +Υ−1
ααΥαd ⊗ I− 2αjI⊗ I

]
|Ej) + 2wiwj(Ei|E−1

w ⊗ υ−1
dd + υ−1

dd ⊗ E−1
w |Ej)

= 2wiwj(Ei|
[
I⊗ΥdαΥ

−1
αα +ΥdαΥ

−1
αα ⊗ I− 2αiI⊗ I

]
S−1

×
[
I⊗Υ−1

ααΥαd +Υ−1
ααΥαd ⊗ I− 2αjI⊗ I

]
|Ej) + 4wiδij(υ

−1
dd )ij

= 2wiwj(Ei|
[
I⊗ΥdαΥ

−1
αα +ΥdαΥ

−1
αα ⊗ I− 2αiI⊗ I

]
S−1

×
[
I⊗Υ−1

ααΥαd +Υ−1
ααΥαd ⊗ I− 2αjI⊗ I

]
|Ej)

+ 4wiδij
[
1 + α2

i − (ΥααDαΥ
−1
ααDαΥαα)ij

]
(4.56)

Finally, to complement the discussion in the main text,we present some fur-
ther examples of the QFIM eigenvalues for N = 4, 5 sources and in Fig. 4.10 we
present the eigenvalues of the QFIM for 3 sources in the case of unequal weights
(relative intensities) Fig.(4.10).
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Figure 4.9: The eigenvalues of the QFIM for 4 (top) and 5 (bottom) sources with
equal intensities. The sources are separating from each other by equal distances:
(α1, α2, α3, α4) = (x, 2x, 3x, 4x) and (α1, α2, α3, α4, α5) = (x, 2x, 3x, 4x, 5x).
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Figure 4.10: The eigenvalues of the QFIM matrix in the case of 3 sources. The sources
are separating from each other at equal distances, i.e. (α1, α2, α3) = (x, 2x, 3x). It
can be noticed that the limiting values of the two non zero eigenvalues are different
as the weights become different. However, the rank 2 of the QFIM remains. In
Fig. (b) the limiting case of one extremely bright source wand two very weak ones
is displayed. The inset shows the two vanishing eigenvalues.
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4.5.3 Analytic results for xi ≪ σ

The state in the sub-diffraction regime is given by Eq. (4.35). The derivative can be
calculated immediately from this formula and it is

∂

∂αi
ρ = −2αi |0⟩ ⟨0|+ [|0⟩ ⟨1|+ |1⟩ ⟨0|] + 2αi |1⟩ ⟨1| =

[
−2αi 1

1 2αi

]
(4.57)

By solving the SLD equation ∂aiρα = (ραLi+Liρα), we can determine the SLDs in
the {|0⟩ , |1⟩} basis:

Li =
2

(C2 − 1)C2 + C2
1

[
C2C1 + (C2 − C2

1)αi (C2 − 1)C2 + (C1 − 2C2C1)αi

(C2 − 1)C2 + (C1 − 2C2C1)αi C1 − C1C2 + (2C2
1 + C2 − 1)αi

]
(4.58)

Knowing the SLDs, we can obtain the QFIM of Eq. (4.37).
As already mentioned in the main text, the rank of the QFIM only depends

on the matrix [
M11 M12

M21 M22

]
(4.59)

of Eq. (4.37), with the elements of this matrix given by Eq. (4.38). The eigenvalues
µ1, µ2 of the matrix Eq. (4.59) are

µ1 =
1

2

(
C2
2 −

√(
(C2 − 1)C2 + 4C2

1 − 1
)2

+ 4
(
(C2 − 1)C2 + C2

1

)
− C2 + 4C2

1 − 1

)
,

µ2 =
1

2

(
C2
2 +

√(
(C2 − 1)C2 + 4C2

1 − 1
)2

+ 4
(
(C2 − 1)C2 + C2

1

)
− C2 + 4C2

1 − 1

)
(4.60)

The condition for the eigenvalues to be zero is(
0 = 3C2

1 − 1−
√(

3C2
1 − 1

)2 ∧ C2 =
1

2

(
1−

√
1− 4C2

1

))
∨(

0 = 3C2
1 − 1−

√(
3C2

1 − 1
)2 ∧ C2 =

1

2

(
1 +

√
1− 4C2

1

)) (4.61)

The first part 0 = 3C2
1 −1−

√(
3C2

1 − 1
)2 is always true, as it reduces to the identity
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(
3C2

1 − 1
)2

=
(
3C2

1 − 1
)2. For the second part we have

C2 =
1

2

(
1±

√
1− 4C2

1

)
⇔ (2C2 − 1)2 = 1− 4C2

1 ⇔ C2
2 − C2 + C2

1 = 0 (4.62)

Substituting C2 and C1 we get(
N∑
i=1

α2
i

)2

−
N∑
i=1

α2
i +

(
N∑
i=1

αi

)2

= 0 ⇔

(
N∑
i=1

α2
i

)2

−
N∑
i=1

α2
i +

N∑
i=1

α2
i + 2

N∑
i,j=1,i ̸=j

αiαj = 0

(
N∑
i=1

α2
i

)2

+ 2

N∑
i,j=1,i ̸=j

αiαj = 0

(4.63)

Since αi are strictly positive, except one that can be zero, this sum of positive
terms cannot be equal to zero. Therefore, this statement is always false. Thus, the
Eq. (4.61) becomes (1 ∧ 0) ∨ (1 ∧ 0) = 0, which means that the two eigenvalues can
never be zero and the QFIM will be rank 2.

4.5.4 Calculation of the QFI for the Sinc PSF

The expansion of the Sinc function on the HG modes is not ideal for numerical
calculations. Instead we use the spherical Bessel function of the 1st kind and express
the states onto those modes in which we then truncate. If the PSF is a sinc function,
the |ψi⟩ are

|ψi⟩ =
1√
σ

∫ ∞

−∞
sinc

(
π(x−Xi)

σ

)
|x⟩ (4.64)

We can use the identity [AS64]

sinc

(
π(x− x′)

σ

)
=

∞∑
q=0

(2q + 1)Jq

(πx
σ

)
Jq

(
πx′

σ

)
, (4.65)
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where Jq(x) is the spherical Bessel function of the 1st kind. The spherical Bessel
function are orthogonal in all R∫ ∞

−∞
dx Jq(x)Jp(x) =

π

2q + 1
δqp, (4.66)

therefore we can define the orthonormal basis

|jq⟩ =
√

2q + 1

σ

∫ ∞

−∞
dx Jq

(πx
σ

)
|x⟩ (4.67)

The set of the spherical Bessel functions is a basis in R, but is not complete since it
is not a resolution of identity as we can see from Eq. (4.65). Hence, we can expand
the sinc function on the bessel function basis, using the identity Eq. (4.65):

|ψi⟩ =
1√
σ

∫ ∞

−∞

∞∑
q=0

(2q + 1)Jq

(πx
σ

)
Jq

(
πXi

σ

)
|x⟩

=
∞∑
q=0

√
2q + 1 Jq

(
πXi

σ

)
|jq⟩

(4.68)

Using the identity for the Bessel functions

∂Jq(x)

∂x
= Jq−1(x)−

q + 1

2
Jq(x) (4.69)

we can also have an expression for the derivative of |ψi⟩

∂ |ψi⟩
∂Xi

=
π

σ

(
Jq−1

(
πXi

σ

)
− q + 1

2
Jq

(
πXi

σ

))
(4.70)

We see that both the state ρ and its derivatives are completely expressed within the
basis |jq⟩. This means that we can use the definition of the SLD (Eq. 4.71) and
express the SLD in the same basis.

2
∂ρ

∂αµ
= ρLµ + Lµρ (4.71)

In this way the fact that the specific basis is not complete does not affect our calcu-
lations.
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For the numerical calculations we have to truncate our state in the appropri-
ate amount of modes. From Figs. 4.8 and 4.11, we can see that our conclusions do
not change with the use of a non-Gaussian PSF.
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Figure 4.11: The eigenvalues of the QFIM matrix in the case of 3 sources with equal
intensities for the sinc PSF. The sources are separating from each other at equal
distances, i.e. (α1, α2, α3) = (x, 2x, 3x).

4.5.5 Eigenvalues of the CFIM for SPADE and Direct Imaging

Finally, we present the eigenvalues of the CFIM for SPADE and direct imaging for
a large range of separations.
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Figure 4.12: The eigenvalues of the CFIMs in the case of 9 sources for SPADE (left)
and direct imaging (right). The sources are positioned at αi = (i− 5)x.
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Chapter 5

Quantum limits to spectroscopy

5.1 Introduction

Measuring the electric dipole moment (EDM) of an atom with high precision is a task
of great importance for investigating fundamental physical models. For example, the
EDM can be used to test models that explain phenomena that are not encompassed
by the Standard model, such as CP violations [CY19], or that indicate the exis-
tence of undiscovered particles [Saf+18; Chu+19]. Moreover, estimating the EDM
is crucial for characterising the interaction between atoms and light. Indeed, the
atom–light coupling is proportional to the EDM, which plays an important role in
applications such as an atom–light interface in free space [Cir+97; Dua+01; Tey+08;
Slo+10].

The experimental setups used to measure the EDM of an atom employ spec-
troscopic methods [Chu+19], where the atom is probed by light. Recent techno-
logical developments have made it possible to use quantum light, i.e. few-photon
states or entangled states of light, in spectroscopy [Muk+20]. This resulted in en-
hanced sensing to limits below the classical shot noise limit [Wal15], in obtaining
different scaling of the spectroscopic signals [DSM16] and in new spectroscopic tech-
niques [YK04; Ray+13]. However, the advantages of using entangled light in spec-
troscopy remain unclear. Previous works have explored the role of entanglement in
one-photon processes and have shown that in this class of processes the results of the
entangled photon pair can be reproduced with correlated separable states [Ste17].
Additionally, in the case of absorption spectroscopy the ultimate precision limit is
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achieved by using single-photon states [Ade+09; Whi+17] and two-mode squeezed
vacuum [Shi+20], with the one-photon states performing better on a per-photon
basis [Bie+21].

In this chapter, we calculate the QFI for the EDM of a two-level atom when
it interacts with different states of light in a free space configuration. Specifically,
we consider the quantum pulses of light that are described in Sec. 2.3. We focus on
the regime of ultra-short pulses, i.e. of pulses whose time duration is of the order
of a picosecond or less. In this regime, we find that the standard deviation of the
estimator is larger than the value of EDM. This means that estimating the EDM
precisely requires repeating the experiment a large number of times, which is the
regime in which the QFI is meaningful [Bra92]. The one-photon wavepacket and
the entangled photon pair have similar performances, while the performance of the
entangled photon pair is not improved by increasing the entanglement of the photon
pair. Overall, our results indicate that using Fock states to estimate the EDM of a
two-level atom is preferable to using entangled light. This complements the results
of Ref. [Ste17], where it is shown that entanglement does not necessarily provide
advantage in one-photon interactions.

5.2 Physical description of the problem

We consider a two level atom which interacts with a light pulse in free space. In
the case of two-mode light, we consider that only one mode interacts with the atom
(Fig. 5.1). This system is described by the Hamiltonian H = HA +HF +Hint. The
free Hamiltonian of the atom HA is given by

HA = ℏω0 |e⟩⟨e| , (5.1)

where we set the energy of the ground state of the atom equal to 0 and we are
interested only in the energy difference ℏω0. The quantity ω0 is called the transition
frequency of the atom. The free Hamiltonian of the light HF is given by Eq. (2.36).
Following the formalism of Sec. 2.1.2, the interaction Hamiltonian is written in the
interaction picture as [SZ97]

V(t) =
(
d(t) + d†(t)

)(
E†(t) + E(t)

)
. (5.2)
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Figure 5.1: Schematic of the atom–light interaction: (a) a wavepacket interacts with
the sample and gets measured (b) the sample interacts with only one beam of the
EPP (as defined in Sec. 2.3) and both beams get measured.

The operator d(t) is the positive frequency part of the dipole operator

d(t) = µegσ−e
−iω0t, (5.3)

where µeg = −qe ⟨e| r |g⟩ is the dipole moment operator, qe is the charge of the elec-
tron and σ− = |g⟩⟨e| = σ†+. The electric field operator E(t) is given by Eq. (2.38),
since we are in a free space configuration. For convenience we set the quantisa-
tion constant of the field A(ω̄) =

√
ℏω̄/(2ϵ0cA). We also assume that the central

frequency of the field is equal to the transition frequency of the atom ω̄ = ω0.
The term d†(t) E†(t) describes a process where a photon is created while the

atom transitions to the excited state, while the hermitian conjugate of this term
describes the opposite process. In the rotating wave approximation these terms that
correspond to higher-order processes are dropped. By substitution of the dipole
moment and electric field operator by their definitions, the interaction Hamiltonian
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takes the form

V(t) = −iℏµ
∫

dω√
2π

(
σ+a(ω)e

−i(ω−ω0)t − σ−a
†(ω)ei(ω−ω0)t

)
, (5.4)

where µ = µ(ω̄) = −µegA(ω̄)/ℏ and has the units of 1/
√
sec. Using the definition of

Eq. (2.50) the above equation is re-written as

V(t) = −iℏµ [σ+b(t)− σ−b
†(t)] . (5.5)

By choosing a complete set of orthonormal functions, as described in Sec. 2.3 and
using Eq. (2.47)-(2.49), the interaction Hamiltonian (5.4) can be recast as

V(t) = −iℏµ
∞∑
n=0

(f̃n(t)σ+An − f̃∗n(t)σ−A
†
n), (5.6)

where f̃(t) is the (frequency shifted) Fourier transform of f(ω). The above expression
allows us to use a discrete and orthonormal basis for our calculations.

We consider an atom with infinite lifetime, that is we ignore any coupling
with modes other than the incoming pulse. The atom, however, emits into the pulse
modes. This approximation is valid in the regime in which the pulse duration is
much smaller than the atom’s lifetime. A detailed discussion about the subtleties
around the dynamics of atoms interacting with N -photon wavepackets can be found
in Ref. [KCW21]. By disregarding the spontaneous emission of the atom, the evolu-
tion is unitary and is described by Eq. (2.13).

We are interested in estimating the dipole moment µeg. This parameter
appears in the interaction Hamiltonian and not in the free evolution Hamiltonian,
which allows us to continue working in the interaction picture and use the usual
formulas for the QFI calculations, as discussed in Sec. 3.2.2. In order to calculate
the QFI for the dipole moment we need to calculate the state of light by solving
Eq. (2.13). In the remainder of the chapter, we study the interaction between a
two-level atom and the states of light described in Sec. 2.3. Specifically, we consider
one-photon wavepackets, coherent, squeezed and entangled states of light.
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5.3 Analytical calculation of the QFI

In this section we provide analytical expressions for some states of light. Following
Ref. [Bar14; KG16], we derive the solution for the n–photon wavepacket which are
defined in Sec. 2.3. Given the Hamiltonian in Eq. (5.5), the state of the atom–light
system can be found by solving the Schrödinger equation for a closed system, namely

∂t |ψ(t)⟩ = − i

ℏ
V(t) |ψ(t)⟩ . (5.7)

The general expression for the total state of the atom–light system is of the form:

|ψ(t)⟩ = |g⟩ |ϕg(t)⟩+ |e⟩ |ϕe(t)⟩ , (5.8)

where |ϕe(t)⟩ and |ϕg(t)⟩ correspond to the state of light when the atom is in the ex-
cited and ground state respectively. The states |ϕe(t)⟩ and |ϕg(t)⟩ are not normalised,
but the total state of |ψ(t)⟩ is. Substituting the above equation into the Schrödinger
equation, we obtain the following system of differential equations [Bar14; KG16]:

∂t |ϕe(t)⟩ = −µb(t) |ϕg(t)⟩

∂t |ϕg(t)⟩ = µb†(t) |ϕe(t)⟩
(5.9)

By integrating the above equations, we obtain the solutions [Bar14; KG16]:

|ϕg(t)⟩ = |ϕg(0)⟩+ µ

∫ t

−∞
dt′ b†

∣∣ϕe(t′)〉
|ϕe(t)⟩ =− µ

∫ t

−∞
dt′ e−µ2(t−t′)/2b(t′) |ϕg(0)⟩

− µ2
∫ t

−∞
dt′
∫ t′

−∞
dt′′ e−µ2(t−t′)/2b†(t′′)b(t′)

∣∣ϕe(t′′)〉 ,
(5.10)

where we have assumed that the pulse envelope is zero at t → −∞. By successive
substitutions of the expression of |ϕe(t)⟩, we obtain the following expressions for the
states of light [Bar14; KG16]:
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|ϕe(t)⟩ =
n+1∑
k=1

(−1)k(µ)2k−1
√
n ...(n− k + 1)

∫ t

−∞
dt1...

∫ t2k

−∞
dt2k+1ξ(t1)... ξ(t2k+1)

× e−µ2(t−t1)/2−µ2(t2−t3)/2−...b(t2) . . . b(t2k) |nξ − (k + 1)ξ⟩
(5.11)

and

|ϕg(t)⟩ = |ϕg(0)⟩+
n∑

k=1

(−1)k(µ)2k
√
n...(n− k)

∫ t

−∞
dt1...

∫ t2k−1

−∞
dt2k ξ(t2)...ξ(t2k)

× e−µ2[(t1−t2)+...+(t2k−1−t2k)]/2b†(t1)...b
†(t2k) |nξ − kξ⟩ .

(5.12)
From the above solutions, it can be seen that the analytical solution for a general n-
photon wavepacket or superpositions therof, such as the coherent or squeezed pulses,
is difficult to calculate and handle. For those states we employ numerical methods
to compute the state of the atom–light system. The solution of the state for the case
of a one-photon wavepacket, however, has a simple expression. By noticing that
when the atom is in the excited state the light is in the vacuum state, the general
atom–light state is written as

|ϕ(t)⟩ = ce(t) |e⟩ |0⟩+ |g⟩ |ϕg(t)⟩ . (5.13)

Assuming that the (frequency shifted) temporal function is ξ̃(t), which is the shifted
Fourier transform defined in Eq. (2.51), the coefficient ce(t) is given by

ce(t) = −µe−µ2t/2

∫ t

−∞
dt′ eµ

2t′/2ξ̃(t′) (5.14)

and the ket |ϕg(t)⟩ is given by

|ϕg(t)⟩ = |ϕg(0)⟩+ µ

∫ t

−∞
dt′ ce(t

′)b†(t′) |0⟩

=

∫ t

−∞
dt′

(
ξ̃(t′)− µ2e−µ2t′/2

∫ t′

−∞
dt′′eµ

2t′′/2ξ̃(t′′)

)
b†(t′) |0⟩ .

(5.15)
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It can be seen from the above equation that the temporal shape of the light pulse
changes as the light interacts with the atom. Therefore, the initial pulse mode |1ξ⟩
does not suffice to describe the state of light. In order to describe the above state
in a discrete basis it is necessary to choose a complete set of orthonormal functions
as described in Sec. 2.3 to fully characterise the state. Choosing the Hermite-Gauss
polynomials {Hn(t)}, with H0(t) = ξ̃(t), as the basis and using Eq. (2.47)-(2.49),
the ket |ϕg(t)⟩ can be recast as

|ϕg(t)⟩ =
∞∑
n=0

cg(n, t) |1n⟩ , (5.16)

where

cg(n, t) = δn0 + µ

∫ t

−∞
dt′ Hn(t

′)ce(t
′) (5.17)

and ce(t) is given by Eq. (5.14). The same result can be obtained by using the
interaction Hamiltonian of Eq. (5.6).

In the limit of infinite time t → ∞, the atom is in the ground state as
ce(∞) = 0. We note that the decay to the ground state is due to the decay in the
pulse mode. The state of the atom–light system is pure, as well as the state of the
light |ϕg(∞)⟩. The QFI for this asymptotic state is calculated by the formula for
pure states (3.26) and gives

Qµ(+∞) = 4

∫ ∞

−∞
dt |∂µc′e(t)|2 + 4

(∫ ∞

−∞
dt [ξ̃(t) + c′e(t)]∂µc

′
e(t)

)2

, (5.18)

where c′e(t) = µ ce(t) = −µ2e−µ2t
∫ t
−∞ dt′ eµ

2t′ ξ̃(t′).

5.3.1 Entangled photon pair

An analytical solution can also be obtained for the case of an entangled photon pair,
which was defined in Sec. 2.3. We assume that only one of the photons, the first
mode of the field, interacts with the atom as depicted in Fig. 5.1(b). Taking into
account the expansion of the electric field operator onto the Schmidt modes given

66



by Eq. (2.64), the interaction Hamiltonian (5.5) is written as

V(t) = ℏµ
∞∑
k=1

(
u
(1)
k (t)Âkσ+ + u

(1)∗
k (t)Â†

−σ+

)
⊗ I2, (5.19)

where I2 is the identity of the space of the second mode. The time evolved state can
be written as

|ψ(t)⟩ = |g⟩ |ϕg(t)⟩+ |e⟩ |ϕe(t)⟩ . (5.20)

The kets corresponding to the state of light can be expanded onto the Schmidt mode
basis and have the form

|ϕg(t)⟩ =
∑
m,n

cmn(t) |1m1n⟩ ,

|ϕe(t)⟩ =
∑
n

dn(t) |01n⟩ .
(5.21)

Substituting Eq. (5.20) into the Schrödinger equation (5.7) we obtain

∂t |ϕg(t)⟩ = µ
∑
k

u∗kÂ
†
k |ϕe(t)⟩

∂t |ϕe(t)⟩ = −µ
∑
k

ukÂk |ϕg(t)⟩
(5.22)

which because of Eq. (5.21) becomes

ċnm = µ u∗n(t)dm(t)

ḋm = −µ
∑
n

un(t)cnm(t)
(5.23)

The solution for the cnm(t) coefficient is

cnm(t) = cnm(0) + µ

∫ t

−∞
dt′u∗n(t)dm(t′) (5.24)

with cnm(0) = rmδnm. Substituting the above solution into the differential equation
for dn we get

ḋm = − µ
∑
n

un(t)cnm(0)− µ2
∫ t

−∞
dt′

∑
n

un(t)u
∗
n(t

′)dm(t′). (5.25)
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Taking into consideration the fact that1

∑
n

un(t)u
∗
n(t

′) =
∑
n

1

2n
√
πn!ki

e−(t+t′)2/2k2i hn

(
t

ki

)
hn

(
t′

ki

)
=

1

ki
δ

(
t− t′

ki

)
= δ(t−t′)

(5.26)
and cnm(0) = rmδnm, we obtain the differential equation

ḋm(t) = −µ rmum(t)− µ2dm(t) , (5.27)

which can be solved by the integrating factor method. Finally, since the atom is
initially in the ground state, dm(0) = 0 ∀ m and we obtain the solutions

dn(t) = −µ rne−µ2t/2

∫ t

−∞
dt′eµ

2t′/2un(t
′)

cnm(t) = rmδnm − µ2rm

∫ t

−∞
dt′
∫ t′

−∞
dt′′e−µ2(t′−t′′)/2u∗n(t

′)um(t′′),

(5.28)

i.e. the kets |ϕg(t)⟩ , |ϕe(t)⟩ are explicitly written as

|ϕg(t)⟩ =
∑
n

rn |1n1n⟩ − µ2
∑
nm

rm

(∫ t

−∞
dt′
∫ t′

−∞
dt′′e−µ2(t′−t′′)/2u∗n(t

′)um(t′′)

)
|1m1n⟩

|ϕe(t)⟩ = |0⟩
∑
m

µ rme−µ2t/2

∫ t

−∞
dt′eµ

2t′/2un(t
′) |1m⟩

(5.29)
The state of the light after we trace out the atom part is ρF = |ϕg(t)⟩⟨ϕg(t)| +
|ϕe(t)⟩⟨ϕe(t)|.

An asymptotic expression for t → ∞ can also be obtained in the case of
the EPP. However, the Hermite-Gauss basis is not appropriate for calculating the
asymptotic state. The numerical integrals that must be evaluated are highly oscil-
latory for t → ∞, especially for the higher order HG polynomials. Additionally,
the numerical solution of the system of differential equations that are derived from
Eq. (5.7) have large numerical errors for large times. The above things makes the
numerical evaluation of the asymptotic QFI unreliable.

1The summation identity can be found at: functions.wolfram.com/05.01.23.0014.01
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5.4 Numerical results

The state of light for the one-photon wavepacket and EPP, as well as their deriva-
tives, are calculated from the expressions of the previous section 5.3 with numerical
integration methods. However, the SLD and therefore the QFI is calculated nu-
merically using Eq. (3.19). For the coherent and squeezed states, both the state
and the QFI are calculated numerically, due to the difficulty to obtain an analytical
expression of the state as discussed in Sec. 5.3.

In our numerical calculations we assume that the atom is initially in the
ground state. We use the experimental data reported in Ref. [Ste19] for theD2 transi-
tion of a sodium atom. Specifically, we set the dipole moment µ = 2.988 · 10−29 C ·m
= 1.868 ·10−8 e ·cm and the transition frequency ω0 = 2π ·508.333THz. The lifetime
of the sodium atom is 16.2492ns and is much larger than the pulse durations we con-
sider, which are of the order of 10−2ps, and, hence, the infinite lifetime approximation
is valid. We calculate the quantisation constant A(ω̄) of the field by considering the
transverse quantisation area to be proportional to the atomic radiative cross section
σ ∝ λ20/2π, with λ0 the central wavelength of the light λ0 = 2πc/ω0.

We assume that the spectral density functions of the one-photon wavepacket,
coherent and squeezed states are Gaussian of the form of Eq. (2.53) with central
frequency equal to the transition frequency of the atom ω0. We consider pulses with
a bandwidth of σp = 3THz (i.e. a pulse duration of τp = 2 ln 2/(πσ) = 0.15ps). We
consider the same bandwidth of σp = 3THz for the pump pulse of the entangled
states.

5.4.1 QFI for one-photon wavepacket

We start by discussing the case where the atom interacts with an one photon
wavepacket. We compute the asymptotic QFI of Eq. (5.18) for the values of µ
and σP mentioned before, and the QFI that is obtained by the numerical solution of
the system of differential equations that are derived from Eq. (5.7). In calculating
the QFI that is plotted in Fiq. 5.2 we assumed that only the first HG mode interacts
with the atom.

By considering the interaction between the atom and the 0th HG mode we
attain half of the total (asymptotic) QFI (Fig. 5.2). Adding more modes does not
lead to significant variations in the QFI. That is, the 0th mode has the only measur-
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Figure 5.2: One-photon wavepacket: QFI for the state of the light, the atom and
the pure atom–light state. The three of them overlap. The light pulse envelope is
plotted for reference, as well as the asymptotic value of the QFI.

able contribution to the state and the other modes have infinitesimal contributions.
Nevertheless, by summing the infinitesimal contributions of infinite modes we attain
the asymptotic QFI (see discussion in App. 5.6.1 and the figures within).

Finally, we note that the QFI of the atom and light states is identical and
equal to the total state QFI for both cases. For a Fock state interacting with a two-
level atom initially in the ground state this result is known for the cavity case [GI12].

5.4.2 QFI for different states of light

We now discuss the performance of various states of light. We have already assumed a
Gaussian spectral density function with a bandwidth of σp = 3THz. We additionally
assume that the coherent and squeezed state have an average photon number of
⟨n⟩ = 1. The squeezed state has an amount of squeezing of 6dB in the transition
frequency, as a result of the specific pulse bandwidth. We also assume that only
the first HG mode interacts with the atom. For the entangled light we vary the
entanglement time, which can be done by setting a different length of the PDC
crystal, to obtain entangled light with different entropies of entanglement [GUW01].
Specifically, we consider entropies of entanglement equal to SEPP = 0.71, 0.85, 1.24
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Figure 5.3: The standard deviation of the estimator of the dipole moment for the
various states of light. The dipole moment is of the order of 10−8e · cm and the
standard deviation is two orders of magnitude larger. It can be noted that the Fock
and the entangle photon pair perform similarly. The bandwidth σa is the bandwidth
that maximises the probability (5.30) in Sec. 5.4.3.

and 1.85. In all of these cases, we consider entangled light that is anti-correlated in
frequency.

The standard deviation for the various states of light is plotted in Fig. 5.3.
As it can be seen, all the states of light have a large variance compared to the value
of the parameter for a single repetition. Indeed, the dipole moment value is µ =

1.868 ·10−8e ·cm and the standard deviation is 6.91 ·10−6e ·cm, i.e.
√

(∆µ)2 ≈ 100µ.
Thus, according to Eq. (3.15) a large number of repetitions of the experiment are
needed in order for the mean square error of the estimator to become comparable
with the value of the parameter, for example N ≈ 1000 in our setting. This should
not pose an obstacle, as the laser repetition rates vary between 0.1-100MHz [CMK14]
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with recent works reporting lasers with repetition rates of the order of GHz [Mis+19].
The standard deviation of the coherent state is not plotted in Fig. 5.3 as it is six
orders of magnitude larger than the deviations of the other states of light, since the
QFI of the coherent state is very close to zero. To demonstrate how the QFI changes
as the atom interacts with the incoming pulse, we plot the QFI for the same states
of light along with the Gaussian pulse temporal envelope of the states of light in
Fig. 5.4. We note that the standard deviation plotted in Fig. 5.3 is the inverse of
the square root of the QFI.

The Fock and entangled states have similar standard deviations but, depend-
ing on the Fock state’s pulse bandwidth, the Fock state can slightly outperform the
entangled light. In particular, the relative difference of the standard deviation be-
tween the entangled states is around 8% and that between the Fock and entangled
states is around 11%. Moreover, the standard deviation for the case of the bipho-
ton increases as the entropy of entanglement decreases, indicating that entangled
light is a disadvantage for the estimation of EDM. This complements the results of
Ref. [Ste17] in the sense that not only entanglement does not provide a fundamental
advantage, but it is also a drawback for the estimation process.

Finally, we elaborate on the efficiencies of the Fock and entangled photon
pair generations, since many repetitions of the experiment are required. The effi-
ciency of a BBO down-converting crystal is between 3.6× 104cps and 1.42× 105cps
[SI08], which is the same efficiency rate for the generation of ultrafast single pho-
tons [Mos+08; Ans+18] and between 1× 104counts-per-second (cps) and 7× 106cps
for single quantum emitters sources [Loh+17]. Thus, there is no significant advantage
of choosing one state of light over the other.

5.4.3 Light–matter entanglement

In a spectroscopic setting the information about the properties of the atom is trans-
ferred to the light through the entanglement between them when they interact. To
explain our results we calculate the entropy of entanglement of the atom–light system
(which we denote by SAF) for the various states of light. We find SAF = 3.7 ·10−5 for
the Fock state, SAF = 3.0 ·10−5 for the biphoton of SEPP = 0.7, and SAF = 1.1 ·10−6

for the squeezed state. For the coherent state we find SAF is very close to zero,
which is the reason for the its very small QFI. The Fock state has the largest light–

72



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●

●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■

■■■■
■■■

■■■
■■
■■
■■
■■
■■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■■
■■
■■
■■
■■
■■
■■■

■■■
■■■■

■■■■■
■■■■■■■■

■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆

◆◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆◆

◆◆◆
◆◆◆◆

◆◆◆◆◆
◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲

▲▲▲▲
▲▲▲

▲▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲▲

▲▲▲
▲▲▲▲

▲▲▲▲▲
▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼

▼▼▼▼▼
▼▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼▼
▼▼▼▼▼

▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

● ��� ������ ����������

■ ��� ������ ���������� (σ�)

◆ ��������� ����� � = ���

▲ ��������� ����� � = ���

▼ ��������� ����� � = ����

□ �������� �����

◇ �������� �����

▽ �����

-�� -� � � ��
�

�

�

�

�

��

����(τ�)}

�
�
�
(·
�
�
�
�
/(
�
·�
�
)�
)

Figure 5.4: The QFI of the dipole moment for the various states of light and the
Gaussian pulse envelope. It can be noted that the Fock state and the entangle
photon pair perform similarly. The bandwidth σa is the bandwidth that maximises
the probability (5.30) in Sec. 5.4.3.

matter entanglement compared to the other states, which means that Fock states
couple more efficiently with the two-level atom. Additionally to the efficient cou-
pling, the Fock and the entangled states of light attain the maximum QFI of the
system (Fig. 5.2).

Having observed that the entropy of entanglement between the atom and
the light is what characterises the enhancement in the EDM estimation, we now
provide an intuitive explanation for the disadvantage of the entangled photon pair
in the EDM estimation. To do so, we determine the entangled photon pair with
the minimum standard deviation by maximising the quantity SAF for the case of
an infinite lifetime atom. The state of the atom for the entangled photon pair is
diagonal (see Sec. 5.6.2). Since the atom is initially in the ground state, a higher
entropy of entanglement is equivalent to a higher probability of excitation. We note
that this is also true for the Fock state, since the state of the atom is also diagonal.
The probability of excitation Pe can be calculated for short times by approximating
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the integrals of Eq. (2.67):

Pe =
∑
m

|dm(t)|2 = µ2√
2aπ

e−2µ2t

(
t2

2
+ µ2t3+

t4

12
(3γ + 7µ4 − 8β) +

t5

12
(4γ + 3µ2 − 10β)

)
+O

(
t6
) (5.30)

where β = w4+1
4a(1−w2)2

, γ = w2(1+w2)
a(1−w2)2

and a,w are the Schmidt decomposition param-
eters. The probability of excitation has a maximum for w = 0, i.e. for a Fock state
with bandwidth σp = σa = 1/

√
2a. Indeed, as it is shown in Fig. 5.5, the one-photon

wavepacket with σa has the highest excitation probability and the lowest standard
deviation (Fig. 5.3). As it can be seen, the probability of excitation decreases with
the degree of entanglement for the light.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■

■■■■
■■■

■■■
■■
■■
■■
■■
■■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■■
■■
■■
■■
■■
■■
■■■

■■■
■■■■

■■■■■
■■■■■■■■

■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆◆
◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲

▲▲▲▲
▲▲▲

▲▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲▲
▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼

▼▼▼▼▼
▼▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼▼

▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇◇◇
◇◇◇

◇◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇◇

◇◇◇◇
◇◇◇◇◇◇

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

● ��� ������ ����������

■ ��� ������ ���������� (σ�)

◆ ��������� ����� � = ���

▲ ��������� ����� � = ���

▼ ��������� ����� � = ����

□ �������� �����

◇ �������� �����

▽ �����

-�� -� � � ��
�

���

���

���

���

���

����(τ�)

�
�
(·
�
�
-
�
)

Figure 5.5: Probability of the atom to be in the excited state after it has interacted
with the various states of light. The bandwidth σa is the bandwidth that maximises
the probability (5.30) in Sec. 5.4.3.

Finally, as it can be seen in Fig. 5.5, the high excitation probability for the
case of the coherent light—which is almost identical to the excitation probability for
the case of the Fock state—does not correspond to high entanglement between the
atom and the coherent light. The reason is that the atom is in a pure state. The same
observation was made for the coherent light–atom interaction in a cavity [PK91].
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Figure 5.6: Schematic for "binary" mode-resolved photon counting measurement,
where only the first component of the Schmidt decomposition is measured and the
higher orders are not discriminated.

Hence, the excitation probability is not necessarily indicative of efficient atom–light
coupling in the presence of coherences in the state of the atom.

5.5 Discussion

In the following, we focus on the Fock and EPP states, since they are the ones with
higher QFI. We are interested in calculating the CFI for these states. We specifically
consider the mode-resolved photon counting [HK13; EBS11; RW20], which counts
the photons in each mode, in our case in each HG mode. The POVM for this
measurement consists of the set {Πi = |1i⟩⟨1i| , i = −1, 0, 1, ...} for the single-mode
case and {Πi,j = |1i1j⟩⟨1i1j | , i, j = −1, 0, 1, ...} for the two-mode (EPP) case,
where we denote as |1−1⟩ the vacuum state for convenience and i ∈ N labels the ith

Hermite–Gauss mode.
The photon resolved measurement saturates the QFI in the case of the one-

photon wave packet. As discussed in the previous section, for the short pulses we
are considering the atom interacts mainly with the initial pulse mode, the 0th HG
mode in our case. Under this assumption and by ignoring the higher modes, the
state of the light is diagonal in the {|0⟩ , |10⟩} basis. Therefore, a POVM consisting
of the projectors onto the basis {|0⟩ , |10⟩}, i.e. the photon-counting measurement,
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saturates the QFI.
The two-mode mode-resolved photon counting measurement also saturates

the QFI for the entangled photon pair. We also consider a "binary" mode-resolved
photon counting measurement2, where only the n = 0 component of the Schmidt
decomposition is measured and the higher orders are not discriminated (Fig. 5.6).
The POVM of this measurement is {Π0 = |011⟩⟨011| ,Π1 = |1111⟩⟨1111| , Π1 = I −
Π0−Π1}. This measurement achieves approximately 98% of the QFI of the entangled
states. This indicates that most of the information about the EDM is in the first
mode of the Schmidt decomposition.
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Figure 5.7: Value of the QFI for the asymptotic state of an one-photon
wavepacket (5.18). It can be seen that the QFI is larger for longer pulses and
there exists an optimal pulse length for which the QFI maximises.

Finally, in Fig. 5.7 the asymptotic value of the QFI (5.18) for a one-photon
wavepacket with Gaussian spectral function for different pulse durations is plotted.
It can be seen that the QFI is larger for ns pulses and there exists an optimal pulse
length for which the QFI maximises. For example, the standard deviation for a 2ns
pulse is

√
(∆µ)2 = 1.26 · 10−8e · cm which is comparable to the value of the dipole

moment µ = 1.86 · 10−8e · cm. Therefore, longer pulses perform better in estimating
2The mode-resolved photon counting measurement that is considered here is mathematically

identical to SPADE measurement with the additional element {|0⟩⟨0|}.
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the EDM. This could be due to the fact that the pulses are narrower around the
transition frequency of the atom, making the excitation probability and the atom–
light entanglement larger, and to the fact that there is more time for the atom to
interact with the light. However, for a fair comparison one must take into account
the many repetitions of the experiment, which for shorter pulses might need less time
to perform. Furthermore, as the pulses get longer the infinite lifetime assumption
for the atom must be waived and the spontaneous emission into the environment
must be considered.

The work presented in this chapter leaves room for further investigations.
Firstly, a natural question is how to estimate the other parameter that characterises
the two-level atom, the transition frequency. Secondly, an atom with finite lifetime
could be considered and, hence, the interaction with the environment should be in-
cluded. Finally, the two-level atom is limited to one-photon transitions for which
we know that entanglement does not offer true advantage [Ste17]. One can consider
more complex systems, such as coupled dimer, for which genuine two-photon interac-
tions can occur and entanglement could lead to results that cannot be reproduced by
non-entangled states. Indeed, for the estimation of the two-photon absorption cross
section squeezed states of light outperform the classical–coherent states, as it has
been shown theoretically in Ref. [SFS21]. Therefore, it is important to determine
the advantage of entangled light in estimating parameters in those more complex
systems.

Finally, we note the results presented here have been independently verified
using the formalism presented in Ref. [KM20]. The contents of this chapter will be
part of a publication that is currently in preparation.
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5.6 Proofs

5.6.1 Expansion of Coherent and Squeezed states onto the Fock
basis

The set of these Fock states {|nξ⟩} is a complete basis (see Sec. 2.3). As such, we
can expand an arbitrary density matrix of the light field onto this basis as

ρ =
∞∑

n,m=0

cn,m |nξ⟩⟨mξ| . (5.31)

We can rewrite the coherent and squeezed states defined in Sec. 2.3 as a superposition
of Fock states.

The coherent states of Eq. (2.46) are defined in terms of ξ(ω) which is an
arbitrary complex function not normalised. Instead its norm gives the average pho-
ton number of the coherent state, α2 =

∫
dω|ξ(ω)|2. By re-defining the spectral

amplitude as ξ(ω) = α ξ̄(ω) with
∫
dω|ξ̄(ω)|2 = 1 we obtain the following expression

|a⟩ = e−α2/2eα
∫
dωξ̄(ω)a†(ω) |0⟩ = e−α2/2

∞∑
n=0

αn

√
n!

∣∣nξ̄〉 , (5.32)

which is a similar expression to the discrete-mode coherent state.
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Figure 5.8: Squeezing Spectrum: The uncertainties ∆X(ω)2 and ∆P (ω)2 around
the central frequency of the pulse.

A similar procedure can be followed for the continuous-mode squeezed vac-
uum of Eq. (2.57). Their expansion onto the Fock basis is

|ξ⟩ =

(
1−

(
Y2

Y1

)2
)1/4 ∞∑

n=0

(−1)n
√
2n!

2n2!

(
Y2

Y1

)n

|2nξ⟩ , (5.33)
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where
Y1 =

∫
dω ξ(ω) cosh(r(ω)), and

Y2 =

∫
dω ξ∗(ω) sinh(r(ω)).

(5.34)

The q-quadrature uncertainty is given by

(∆X(ω))2 =⟨Q̂(ω)2⟩ = 1

2
⟨ξ|
(
a(ω) + a†(ω)

)2
|ξ⟩ =

=sinh2(r(ω)) + cosh2(r(ω))− cosh(r(ω)) sinh(r(ωp − ω)) cos(θ(ωp − ω)),

(5.35)
and the uncertainty for the p-quadrature is given by a similar expression. The
spectrum of a squeezed state is plotted in Fig. 5.8. The squeezed state is assumed
to have a Gaussian amplitude function with central frequency ω0.

5.6.2 EPP excitation probability

In order to calculate the excitation probability, firstly we need to derive the density
matrix of the atom.

ρA(t) =TrF [ρAF (t)] = ⟨00| ρAF (t) |00⟩+
∑
n

⟨01n| ρAF (t) |01n⟩+

+
∑
n

⟨1n0| ρAF (t) |1n0⟩+
∑
nm

⟨1n1m| ρAF (t) |1n1m⟩ =

= |e⟩⟨e|
∑
n

|dn(t)|2 + |g⟩⟨g|
∑
nm

|cnm(t)|2 ,

(5.36)

where ρAF (t) = |ψ(t)⟩⟨ψ(t)|. We can calculate the summations by using the identity
of Eq. (5.26) and Mehler’s formula [MF53, p.781]:

∞∑
n=0

(ϵ/2)n

n!
hn(x)hn(y) =

1√
1− ϵ2

e
− ϵ2(x2+y2)−2ϵxy

1−ϵ2 . (5.37)

The summations that appear in Eq. (5.36) correspond to

∑
m

|dm(t)|2 →
∑
m

r2mu
∗
m(t′)um(t′′) =

1√
2aπ

e−βt′2+γt′t′′−βt′′2 , (5.38)
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∑
nm

|cnm(t)|2 →
∑
nm

r2mun(t
′)u∗n(t1)u

∗
m(t′′)um(t2) =

1√
2aπ

e−βt22+γt2t′′−βt′′2δ(t′ − t1),

(5.39)
where

β =
w4 + 1

4a(1− w2)2
, and

γ =
w2(1 + w2)

a(1− w2)2
.

(5.40)

The quantities w,a and k1 are defined in Eq. (2.63). Using the above expres-
sions, the atom coefficients have the explicit form of

∑
m

|dm(t)|2 = µ2√
2aπ

e−2µ2t

∫ t

0
dt′
∫ t

0
dt′′eµ

2(t′+t′′)e−βt′2+γt′t′′−βt′′2

∑
nm

|cnm(t)|2 = 1− 2µ2√
2aπ

∫ t

0
dt′
∫ t

0
dt′′eµ

2(t′−t′′)e−βt′2+γt′t′′−βt′′2+

+
4µ4√
2aπ

∫ t

0
dt′
∫ t′

0
dt1

∫ t′

0
dt2 e

−µ2t′eµ
2(t′+t′′)e−βt21+γt1t2−βt22

(5.41)

The above integrals cannot be calculated analytically, since they involve Error func-
tion integrals. For this reason, we approximately calculate them for short times by
Taylor expanding them using the Leibniz integral rule. The coefficients are approx-
imately

Pe =
∑
m

|dm(t)|2 = µ2e−2µ2t

√
2aπ

×
[
t2

2
+ µ2t3 +

t4

12
(3γ + 7µ4 − 8β) +

t5

12
(4γ + 3µ2 − 10β)

]
+O(6)

(5.42)

∑
nm

|cnm(t)|2 = 1− 2µ2√
2aπ

[
t2

2
+
t4

6
(3γ + µ4 − 8β) +

t5

6
µ2β

]
+

+
µ4√
2aπ

[
t3

3
+
t4

4
µ2 +

t5

60
(3γ + 7µ4 − 8β)

]
+O(6)

(5.43)

Since β and γ depend on w, the maximum Pe(w) with regards to the value of w can
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be found. The values of w that give maximum probability of excitation are:

w1 = 0, w2 =

√
20− 11tµ2

√
5
√

20 + tµ2
, w3 = −

√
20− 11tµ2

√
5
√
20 + tµ2

(5.44)

The values w2, w3 are rejected since they depend on the interaction time, whereas
w depends only on the properties of the PDC. For w = 0 the photon pair is in a
product state of two Fock states. Therefore, the maximum excitation probability is
obtained for a Fock state.
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Figure 5.9: One-photon wavepacket QFI for different number of HG modes trunca-
tion. The QFI is the same for all different truncations.

5.6.3 Necessary orthogonal modes

Here, we provide numerical evidence that, for the case of ultra-short one-photon
pulses, the 0th mode has the only measurable contribution to the state and that
other modes have infinitesimal contributions, but their infinite sum results in the
asymptotic QFI.
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(b) The values of the coefficients Re{cg(n, t)∂µcg(n, t)} of the state |ϕg(t)⟩
for each mode n for time equal to 10τp, i.e. 10 pulse durations. For
comparison we mention that |cg(0, 10τp)| ≃ 0.97 and |ce(10τp)| ≃ 0.02. It
is clear that the greatest contribution is from the 0th mode.

Figure 5.10: The values of cg(n, t) and the derivatives Re{cg(n, t)∂µcg(n, t)} for
each mode for time equal to 10τp, i.e. 10 pulse durations, much after the light has
interacted with the atom.
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In Fig. 5.10a we plot the values of cg(n, t) for each mode for time equal to
10τp, i.e. 10 pulse durations, much after the light has interacted with the atom. It
can be seen that with the exception of the 0th mode with a value cg(0, 10τp) = 0.9

the rest of the values are much smaller than 1. The same is true for the elements
of the derivative of the state |∂µϕ(t)⟩, as it can be seen from Fig. 5.10b. In Fig. 5.9
the value of the QFI for different truncations of the state is plotted. We can see
that adding extra modes does not change the value of the QFI by a notable amount.
Therefore, in order to obtain the value of the asymptotic QFI we need to take into
consideration the all the infinite modes of light.

5.6.4 Necessary number of modes for the EPP

We start this section with two remarks. Firstly, we want to point out that even
the initially vacant Schmidt modes might become occupied after the interaction
with the light pulse. This is because after a photon from a specific Schmidt mode
has been absorbed, it can be re–emitted into an initially vacant one. This can
be seen more clearly if we consider the example of the second order term of the
expansion of the evolution operator U(t, 0) = e−i/ℏ

∫ t
0 V(t′)dt′ acting on the initial

state |11ent⟩ |g⟩ = |g⟩
∑cf

m=1 rm |1m1m⟩:

U(2)(t, 0) |g⟩
cf∑

m=1

rm |1m1m⟩ =− µ2 |g⟩
∞∑

k,l=1

cf∑
m=1

rmckl(t)Â
†
kÂl |1m1m⟩

= −µ2 |g⟩
∞∑
k=1

cf∑
m=1

rmckm(t)Â†
k |01m⟩

where the k index is running over all the infinite modes.
Secondly, we would like to note that the |0⟩ of the first light mode that

appears in Eq. (5.21) is the vacuum for all modes. This can be seen if we apply the
first order term of the evolution operator:

U(1)(t, 0) |g⟩
cf∑

m=1

rm |1m1m⟩ = −iµ |e⟩
∞∑
k=1

cf∑
m=1

rmck(t)Âk |1m1m⟩

= −iµ |e⟩
∞∑
k=1

(
r1ck(t)Âk |1100...0⟩ |11⟩+ . . .+ rfck(t)Âk |000...1f ⟩ |1f ⟩

)
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The terms where k ̸= m are 0 and the terms for which k = m the photon in this
mode annihilates giving the vacuum for all modes.
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(a) The initial truncation of the bi-photon is for Schmidt modes
SM= 7. We use different number of initially empty Schmidt
modes to see if the QFI converges. We can see that the QFI is
identical for all different number of empty Schmidt modes.
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(b) The QFI for different truncation of the bi-photon. We do not
consider any additional vacant modes. We can see that the QFI
is identical for all different number of empty Schmidt modes.

Figure 5.11: QFI values for the same bi-photon state with entropy of entanglement
S = 0.7 and: (a) different number of vacant modes, (b) different truncation of the
state.
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5.6.5 QFI for the individual states of light

Here, we present the QFI for each case separately. In each figure, the QFI of the
light, the atom and the total atom–light system is plotted.
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Figure 5.12: Coherent state: QFI for the state of the light, the atom and the pure
atom–light state. The state of light has a QFI of six orders of magnitude less than
the total QFI.
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Figure 5.13: Squeezed state: QFI for the state of the light, the atom and the pure
atom–light state. The three of them overlap.
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Figure 5.14: Entangled photon pair: QFI for the state of the light, the atom and the
pure atom–light state. The three of them overlap.

5.6.6 Measurements and probability distributions

The measurements can only be performed on the state of light. For the probabil-
ity derivations for the cases of Fock, coherent and squeezed light we consider the
following general expression, As follows from Eq:

ρF (t) = TrA [ρAF (t)] = |ce(t)|2 |0⟩⟨0|+
∑

m,n=0

|1n⟩⟨1m|
(
cg(n, t)c

∗
g(m, t)

)
, (5.45)

where cg(n, t) are defined from Eq. (5.17). Similarly for the EPP, the light density
matrix is given by

ρEPP (t) =

∞∑
m,n=1

dn(t)d
∗
m(t) |01m⟩⟨01n|+

∞∑
k,l,m,n=1

ck,m(t)c∗l,n(t) |1k1m⟩⟨1l1n|

(5.46)
The POVM of the mode-resolving measurement is defined in Sec. 5.5 as [RW20]

{Πi = |1i⟩⟨1i| , i = −1, 0, 1, ...} for the single-mode case and {Πi,j = |1i1j⟩⟨1i1j | , i, j =
0, 1, ...} for the two-mode case, where for i = −1 the detector in the 1st mode does
not detect any photons. Since the POVMs are the projectors onto the basis elements
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the states (5.46) and (5.45) are projected, the probability distribution is given by

Pn = |cg(n, t)|2,

P−1 = |ce(t)|2,
(5.47)

for the single-mode case and

Pn ̸=−1,m = cn,m(t)c∗n,m(t),

P−1,m = dm(t)d∗m(t),
(5.48)

for the two-mode case. The CFI is given by substitution into Eq. (3.17).
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Chapter 6

Conclusions

This thesis has explored the quantum limits of microscopy and spectroscopy. Al-
though we have limited ourselves to the study of the simplest configurations of these
vast fields that have highly sophisticated methods, we hope that this thesis sheds
light on the fundamental limits of these two ubiquitous tools in science and technol-
ogy.

In chapter 4 we examined the estimation problem of N positions under the
diffraction limit. We have obtained several insights into the quantum limits of lo-
calisation microscopy via an analytical expression for the QFIM. In particular, the
behaviour of the eigenvalues of the QFIM deep in the sub-Rayleigh limit revealed
that only two parameters are eventually estimable. It also enabled us to compare the
performance of known detection systems relative to the quantum limit in absolute
terms, a question left open in the literature [Tsa19b].

Our work is included in the general effort to determine the resolution lim-
its in imaging. The non-orthogonal basis approach for expressing the quantum
states [GT19] and our formalism with block-matrices have enabled the study of
the two-point sources problem in three dimensions with an arbitrary PSF [Fid+21].
Theoretical works have also contributed to the understanding of the role of realistic,
and hence noisy, measurement devices in two-point sources’ separation estimation.
Analysis of SPADE measurements with noisy detectors and detectors that introduce
cross-talks between the decomposed modes have been made and have found that
the super-resolution feature for arbitrarily small separation is lost in such cases. In-
stead, a minimum resolvable spatial separation is introduced which depends on the
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the signal-to-noise ratio or the number of detected photons respectively [Len+20;
GFT20]. Additionally, adaptive strategies for simultaneous centroid and separa-
tion estimation has been proposed [Gra+20], as well as schemes for measuring the
separation of two sources of unequal and unknown intensities, in which case the
Rayleigh curse returns [Bon+19]. Most recent experimental demonstrations include
SPADE measurements using multiple spatial modes for measuring the separation
of two point sources [Bou+20], as well as the the effect of partial coherence on the
sub-diffraction limit localisation of two sources [Wad+21]. In the case of two point
sources an optimal strategy to simultaneously estimate centroid and separation has
still not been determined [Alb+20]. Also based on our results, it can be seen that
the SPADE measurement does not achieve the quantum bounds. The gap identified
by us should motivate the search for detection systems, ideally on a single copy of
the light field on the image plane, seeking to reduce or eliminate it.

In chapter 5 we examined the estimation problem of the electric dipole mo-
ment (EDM) of a two-level atom interacting with light pulses in free space. We
considered the case of ultra-short – picosecond – pulses that are usually employed
in spectroscopy experiments. We derived analytical expressions for the QFI in the
asymptotic limit for the Fock and entangled states of light. We numerically cal-
culated the QFI for finite times for different states of light and compared their
performance in estimating the EDM. We found that entanglement does not offer
an advantage compared to non-entangled light, as expected from Ref. [Ste17], but
entanglement acts as an impediment in the estimation process.

Even though it is shown that entanglement offers true advantage only in
genuine two-photon processes [Ste17], the conditions under which such an advantage
can be achieved is not clear yet. Several experiments have presented evidence that
entangled two-photon absorption in molecules does provide advantages, however,
other experiments, as well as theory, have disputed those conclusions, as reviewed
in Ref. [RW20]. Studies which make use of quantum estimation theory can provide
the means for a clear understanding. The methods described in this thesis fall into
the above category and can be extended to two or multiphoton processes. Another
such example is the recent publication of Ref. [SFS21] in which the estimation of the
two-photon absorption cross section has been calculated. Since there have not been
many works that examine spectroscopy with quantum light in the context of quantum
metrology, it is a fertile ground for future research. It could be of great importance
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both in determining the dynamical processes in light–matter interactions, as well as
the properties of quantum materials [Szo+20; KM17].
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