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Abstract 

Background: Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow condi‑
tions in patients with congenital heart disease (CHD). This requires patient‑specific anatomy, typically obtained from 
segmented 3D cardiovascular magnetic resonance (CMR) images. However, segmentation is time‑consuming and 
requires expert input. This study aims to develop and validate a machine learning (ML) method for segmentation of 
the aorta and pulmonary arteries for CFD studies.

Methods: 90 CHD patients were retrospectively selected for this study. 3D CMR images were manually segmented 
to obtain ground‑truth (GT) background, aorta and pulmonary artery labels. These were used to train and optimize 
a U‑Net model, using a 70‑10‑10 train‑validation‑test split. Segmentation performance was primarily evaluated 
using Dice score. CFD simulations were set up from GT and ML segmentations using a semi‑automatic meshing and 
simulation pipeline. Mean pressure and velocity fields across 99 planes along the vessel centrelines were extracted, 
and a mean average percentage error (MAPE) was calculated for each vessel pair (ML vs GT). A second observer (SO) 
segmented the test dataset for assessment of inter‑observer variability. Friedman tests were used to compare ML vs 
GT, SO vs GT and ML vs SO metrics, and pressure/velocity field errors.

Results: The network’s Dice score (ML vs GT) was 0.945 (interquartile range: 0.929–0.955) for the aorta and 0.885 
(0.851–0.899) for the pulmonary arteries. Differences with the inter‑observer Dice score (SO vs GT) and ML vs SO 
Dice scores were not statistically significant for either aorta or pulmonary arteries (p = 0.741, p = 0.061). The ML vs GT 
MAPEs for pressure and velocity in the aorta were 10.1% (8.5–15.7%) and 4.1% (3.1–6.9%), respectively, and for the pul‑
monary arteries 14.6% (11.5–23.2%) and 6.3% (4.3–7.9%), respectively. Inter‑observer (SO vs GT) and ML vs SO pressure 
and velocity MAPEs were of a similar magnitude to ML vs GT (p > 0.2).

Conclusions: ML can successfully segment the great vessels for CFD, with errors similar to inter‑observer variability. 
This fast, automatic method reduces the time and effort needed for CFD analysis, making it more attractive for routine 
clinical use.
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Background
The past two decades have seen increasing interest in the 
use of computational fluid dynamics (CFD) for the assess-
ment of cardiovascular disease, including congenital 
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heart disease (CHD) [1]. Computational fluid dynam-
ics models enable realistic calculation of patient-specific 
blood flow conditions and provide valuable insights into 
pathological hemodynamics. These models can also be 
used to predict hemodynamic response to interventions, 
thereby aiding therapeutic planning.

The patient specific anatomies needed for CFD are 
often derived from three dimensional (3D) cardiovascu-
lar magnetic resonance (CMR), particularly cardiac and 
respiratory gated whole-heart sequences. This is because 
whole-heart images have the sharp borders and high con-
trast necessary for semi-automated segmentation of car-
diovascular structures.

Automatic or semi-automatic segmentation meth-
ods based on shape models or level-set algorithms have 
existed for years [2–4]. However, they often require some 
type of user input or manual post-correction, rely on pri-
ors which are not readily available, or may struggle to 
adapt to abnormal anatomies (e.g., CHD). Thus, segmen-
tation remains one of the most user-intensive and time-
consuming parts of the CFD workflow, and one of the 
barriers to greater clinical use.

Recently, it has been shown that machine learning 
(ML) can accurately segment ventricles and great vessels 
from CMR images [5–7]. Quantitative metrics derived 
from ML segmentations (e.g., ventricular volumes) com-
pare well with manual segmentations [8, 9] and these 
techniques are now entering clinical practice. However, 
the effectiveness of ML segmentation for CFD has not 
previously been investigated.

The aims of this study were to: (i) Develop a ML 
method for simultaneous segmentation of the aorta and 
pulmonary arteries from whole heart CMR images in 
patients with pediatric or adult CHD, (ii) Compare con-
ventional and ML segmentations using traditional image-
based scores, (iii) Compare CFD metrics derived from 
both conventional and ML segmentations, and (iv) Inves-
tigate the association between image-based scores and 
CFD errors.

Methods
Subjects
Ninety cardiac triggered, respiratory navigated, 3D 
whole heart, balanced, steady state, free precession 
(WH-bSSFP) data were collected from previously 
scanned children and adults with paediatric or CHD 
(excluding patients with single ventricles). All patients 
were scanned on a 1.5  T CMR  scanner (Avanto, Sie-
mens Healthineers AG, Erlangen, Germany) using a 
conventional WH-bSSFP sequence [10]. The imaging 
protocol was as follows: orientation: sagittal, matrix 
size: 256 × 144 × 96 (head-foot, anterior–posterior, 

left–right), acquired voxel size: 1.6  mm (isotropic), 
flip angle: 90°. Image acquisition was accelerated using 
GRAPPA (factor of 2 along phase encoding dimen-
sion) and partial Fourier (factor of 6/8 along both phase 
and slice encoding dimensions). The use of retrospec-
tively collected training and test data was approved by 
the local research ethics committee, and written con-
sent was obtained from all subjects/guardians (Ref: 06/
Q0508/124).

Additionally, 10 external examples were retrospec-
tively collected from a different centre. These were 
scanned on a 1.5  T CMR  scanner (Ingenia, Philips 
Healthcare, Best, the Netherlands) with the follow-
ing imaging protocol: orientation: axial, matrix size: 
240 × 240 × 110 (left–right, anterior–posterior, head-
foot), acquired voxel size: 1.44  mm (isotropic), flip 
angle: 90°. Image acquisition was accelerated using 
SENSE (reduction factor of 2) and partial Fourier (6/8). 
Collection of this data and sharing with our site was 
approved by the local research ethics committee, and 
written consent was obtained from all subjects/guard-
ians (Protocol No. X20-0237 & 2020/ETH01333).

Ground truth segmentation
Reference standard conventional segmentation of the 
aorta and pulmonary arteries was performed using 
a semi-automatic technique with manual correction 
(Plug-ins built in Horos v4.0, Horosproject.org spon-
sored by Nimble Co LLC d/b/a Purview, Maryland, 
USA). Initial segmentation was done using the fast 
level-set method [2]. This requires the user to: (i) set a 
threshold, (ii) place seeds in the vessel of interest and 
(iii) add blocking regions to prevent segmentation of 
unwanted structures. The quality of this initial segmen-
tation is dependent on both the underlying anatomy 
and the image quality, but manual correction is always 
required to remove unwanted structures and clip ves-
sels. The proximal limit of both the aortic and pulmo-
nary artery segmentations was the semi-lunar valve. 
The distal limit of the segmentations were the diaphrag-
matic level of the aorta, and hilar branches of the pul-
monary arteries. Head and neck arteries were manually 
removed at their origin.

All 90 datasets were segmented by a primary observer 
(RJ—10 years’ experience in CMR post-processing). We 
refer to the primary observer’s segmentations as the 
ground truth (GT). In addition, a secondary observer 
(VM—19  years’ experience in CMR post-processing) 
segmented 10 of these images (test set, see below) to 
investigate inter-observer variability. We refer to these 
as the second observer (SO) data. The 10 external 
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examples were segmented by the secondary observer 
only following the same procedure.

Data preparation
Prior to ML training, the pixel intensities of the WH-
bSSFP data were normalized (range [0, 1]). The aortic 
and pulmonary binary segmentation masks were con-
catenated in the channel dimension and combined with 
a third channel containing a binary “background” mask 
(one-hot encoding). The images and 3-channel segmen-
tation masks were either centrally cropped or symmetri-
cally zero-padded to a fixed matrix size of 160 × 96 × 64 
(superior-inferior, anterior–posterior, left–right). Finally, 
the image-label pairs were randomly split into a train-
ing set (70 examples, 78%), a validation set (10 examples, 
11%) and a test set (10 examples, 11%). This split was used 
to maximize the size of the training set, while providing 
sufficient data for validation and statistical analysis.

The examples from the external test set were reori-
ented, interpolated and cropped to match the orienta-
tion, matrix size and voxel size of the in-house data.

Network architecture
A U-Net [11] convolutional neural network was used to 
simultaneously segment the aorta and pulmonary arter-
ies from WH-bSSFP data. The network architecture is 
shown in Fig.  1. Each convolutional layer was followed 
by a batch normalization layer and a rectified linear unit 

(ReLU) activation. Downscaling was performed using 
max-pooling layers and upscaling was performed using 
transpose convolution layers. The number of convolu-
tional filters after the first layer was set to double after 
each downscaling layer and halve after each upscaling 
step. The final convolutional layer has three filters (equal-
ling the number of possible classes—aorta, pulmonary 
artery and background), followed by a softmax activa-
tion. Final predicted labels were obtained by assigning 
each pixel to the class with the highest probability.

Training, hyperparameter optimization and evaluation
The network implementation and training scheme were 
parametrized to allow investigation of multiple hyper-
parameter values, with the full search space shown in 
Table 1. We used the Hyperband algorithm [12] to per-
form efficient hyperparameter optimization. This method 
samples the search space randomly and adaptively allo-
cates more computational resources to the most promis-
ing hyperparameters combinations. Dice score was used 
by the Hyperband to assess performance and choose the 
final model.

The neural network and related functionality were 
implemented and trained using TensorFlow [13].In par-
ticular, the model implementation, losses and metrics 
are available in TensorFlow MRI [14], an open-source 
framework developed in-house Weights were initialized 

Fig. 1 Parameterized network architecture. The height of the blocks represents changes in spatial resolution while the width represents the 
number of filters or channels. The figure shows the three network parameters whose value was optimized: initial filters, layers per block and scales. 
This example is shown with 2 layers per block and 3 scales. BN batch normalization
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using He’s method [15] and optimized using the Adam 
algorithm [16]. Training, including hyperparameter 
optimization, took ~ 24  h on an Nvidia Titan RTX GPU 
with 24 GB of onboard RAM (Nvidia Corporation, Santa 
Clara, California, USA).

The optimized ML model was evaluated on the test 
dataset against the GT segmentations (ML vs GT). The 
accuracy of segmentation was quantified using several 
image-based segmentation metrics: Dice score, Intersec-
tion over Union (IoU), Hausdorff distance (HD) and aver-
age surface distance (ASD). Each metric was computed 
independently for each vessel. Additionally, the same 
metrics were calculated for the secondary observer’s seg-
mentation against the GT (SO vs GT), and between the 
ML model and the SO (ML vs SO).

To assess generalization ability to data from other 
sources, the ML model was also evaluated on the exter-
nal test set. We computed the same set of metrics (Dice, 
IoU, HD and ASD) between the ML predictions (Ext-ML) 

and the GT segmentations (we refer to these as Ext-SO, 
because the manual segmentation was performed by the 
same person as the SO data).

Prior to evaluation, ML masks were filtered to remove 
all but the largest connected component, as identified 
using 3D connected component labelling with 26-con-
nectivity [17]. This postprocessing step was used to 
eliminate small background regions which had been mis-
classified as vessels.

Surface and volume meshing pipeline
The resultant segmentation masks were converted into 
finite element volume meshes, using the processes shown 
in Fig.  2. The masks (GT, ML and SO) were first trans-
formed into surface meshes, by applying the marching 
cubes algorithm (implemented in VMTK), and then re-
meshed and smoothed with consistent parameters. The 
surface meshes were clipped manually at inlets and out-
lets to create planar surfaces; 30  mm extensions were 
added to ensure the fluid flow in the region of interest 
was fully developed and capped at the ends to gener-
ate close surfaces. These were meshed with tetrahedral 
elements to build the final unstructured grid for CFD 
analysis. The grid resolution was determined through a 
sensitivity analysis (see Additional file 1).

To assess the effect of the manual clipping of the anato-
mies on the CFD, the simulations from the ML segmen-
tations were also re-run using the same inlet and outlet 
locations as the GT data, defined by overlaying the GT 
clipped geometry to the corresponding ML geometry.

Computational fluid dynamics and boundary conditions
CFD simulations were carried out using the solver Fluent 
(v19.0, Ansys, Canonsburg, Pennsylvania, USA). Blood 

Table 1 Hyperparameter search space

{  ∙ } represents a discrete set of values; [ ∙ ] represents a continuous interval of 
real values. The learning rate was sampled using a log‑uniform distribution

CCE categorical cross‑entropy

Parameter Type Domain

Scales Architecture {2, 3, 4}

Layers per block Architecture {2, 3, 4}

Initial filters Architecture {32, 64}

Learning rate Training [0.0001, 0.01]

Batch size Training {2, 4}

Loss function Training {CCE, Dice, IoU, 
Tversky, focal 
Tversky}

Fig. 2 Automatic mesh processing pipeline from segmentation to computational flow dynamica (CFD) analysis, followed by post‑processing to 
reshape the data in a consistent format between subjects (99 planes from inlet to outlet containing average pressure and velocity)
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was modelled as an incompressible Newtonian fluid 
with density 1060 kg/m3 and 0.004 Pa∙s dynamic viscos-
ity [18]⁠. Vessel walls were considered rigid, and no-slip 
conditions were imposed. A laminar, steady-state model 
was selected to simulate blood flow at peak systole [19, 
20]⁠. A generalisable inlet condition for the aorta and pul-
monary artery was applied to all subjects with a uniform 
(plug) inlet velocity profile of 0.66 m/s for the aorta and 
0.57 m/s for the pulmonary artery [21]⁠. The outlets for all 
cases were assumed to be at zero pressure and the con-
vergence criteria was set at  10–4 for the residual errors. 
Simulations were run on a Dell workstation, with a Xeon 
CPU E5-2630 (24 processors at 2.3  GHz), 32  Gb RAM 
and an Nvidia GeForce GTX 1080 Ti.

CFD post‑processing and analysis
To compare the flow field between the pairs of different 
unstructured meshes (ML vs GT, SO vs GT and ML vs 
SO), correspondence was created by subdividing each 
vessel with 99 planes orthogonal to the centrelines, cal-
culated in VMTK, and equally distanced. Static pressure 
and velocity magnitude were averaged in each plane (see 
Fig.  2) and a percentage error was calculated for each 
plane pair, using ML as reference (GT in the compari-
son between SO and GT). The mean absolute percentage 
errors (MAPE) for pressure and velocity were computed 
for each vessel pair.

Statistical analysis
Shapiro–Wilk tests were used to test the normality of the 
different segmentation metrics and CFD errors, grouped 
by vessel (aorta and pulmonary artery), and segmenta-
tion pair (ML vs GT, ML vs SO and SO vs GT). Wilcoxon 
signed rank tests were used to compare the pressure and 
velocity errors for the ML vs GT group. Mann–Whit-
ney U-tests were used to compare segmentation metrics 
and flow field errors between the aorta and the pulmo-
nary artery, for the ML vs GT group. Friedman tests for 
repeated measurements were performed to compare seg-
mentation metrics and flow field errors between the ML 
vs GT, ML vs SO and SO vs GT groups, for both aorta 
and pulmonary artery segmentations. Significant Fried-
man test results were followed up by pairwise Wilcoxon 
post-hoc tests. Additionally, Wilcoxon signed rank tests 
were used to compare ML vs GT and SO vs GT met-
rics for both aorta and pulmonary artery segmentations. 
Mann–Whitney U-tests were used to compare Ext-ML 
vs Ext-SO segmentation metrics against ML vs SO met-
rics. Wilcoxon signed rank tests were used to compare 
the pressure and velocity errors for the manually clipped 
ML vs GT data and the equally clipped ML vs GT data. 
Pearson’s correlation coefficient was used to measure the 
linear relationship between each pair of a segmentation 

metric (i.e., Dice, IoU, HD or ASD) and a flow field error 
(pressure or velocity MAPEs), for both aorta and pulmo-
nary artery segmentations. The p-value was calculated 
for each comparison to test non-correlation. Throughout 
this work, a p-value < 0.05 was considered statistically 
significant.

Results
Hyperparameter optimization
A total of 124 hyperparameter configurations were sam-
pled during the neural network optimization procedure 
(see Additional file 2). The best performing configuration 
was as follows: scales = 3, layers per block = 2, initial fil-
ters = 64, learning rate = 3.46 ×  10–4, batch size = 2, and 
loss function = focal Tversky. This model was selected 
and used in all further experiments.

ML segmentation
The ML segmentation was successful in all 10 test data-
sets. The specific diagnoses for these patients were: 
repaired tetralogy of Fallot (n = 1), repaired Tetralogy of 
Fallot with mild right pulmonary artery stenosis (n = 1), 
Marfan syndrome with dilated aorta (n = 1), Marfan syn-
drome with pectus excavatum (n = 1), dilated pulmonary 
artery (n = 1), bicuspid aortic valve with dilated aorta and 
unrepaired VSD (n = 1), repaired double outlet right ven-
tricle with right sided arch (n = 1), unrepaired atrial sep-
tal defect (n = 1), aortic regurgitation with dilated aorta 
(n = 1), post Ross procedure with mechanical aortic valve 
(n = 1). Inference time for the ML model was approxi-
mately 160  ms for simultaneous segmentation of aorta 
and pulmonary arteries (compared to approximately 
30 min for manual segmentation of aorta and pulmonary 
arteries). There was good agreement between the ML 
and GT segmentation with a median Dice score of 0.945 
(interquartile range: 0.929–0.955) for the aorta and 0.885 
(0.851–0.899) for the pulmonary arteries. The Dice score 
was significantly higher for the aorta than the pulmonary 
arteries (p = 0.002) with similar findings observed for 
IoU, HD and ASD (Fig. 3A–D).

The best, median and worst segmented images in terms 
of Dice score are shown in Fig. 4. The three main differ-
ences were: (i) the length of the vessel segmented, (ii) 
differences in pixel labelling that resulted in small devia-
tions of the vessel border, and (iii) small protrusions at 
origin of the carotid and subclavian arteries in the ML 
segmentations of the aorta.

The aortic inter-observer Dice score (SO vs GT) was 
0.949 (0.916–0.960) and was not significantly different 
from ML vs GT (p = 0.575). The pulmonary Dice score 
for the SO vs GT was 0.882 (0.870–0.894) and was also 
not significantly different from ML vs GT (p = 0.721). 
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The ML vs SO Dice score was 0.933 (0.924–0.944) for the 
aorta, which was not significantly different from ML vs 
GT and SO vs GT (p = 0.741), and 0.843 (0.791–0.860) 
for the pulmonary arteries, which trended towards being 
lower than ML vs GT and SO vs GT (p = 0.061).

The ML segmentation was also successful in the exter-
nal dataset. The specific diagnoses for these patients 
were: cardiomyopathy (n = 4), normal anatomy (n = 1), 
repaired tetralogy of Fallot (n = 1), left pulmonary artery 
stenosis (n = 1), anomalous pulmonary venous drainage 
(n = 1), repaired coarctation of the aorta with hypoplas-
tic arch (n = 1), bicuspid aortic valve with severe AR and 
dilated aortic root (n = 1). The best, median and worst 
examples from the external test set are shown in Fig. 5. 
There was reasonable agreement between the Ext-ML 

and Ext-SO segmentations, with a median Dice score of 
0.913 (0.889–0.927) for the aorta and 0.751 (0.728–0.797) 
for the pulmonary arteries. Agreement was signifi-
cantly lower than ML vs SO for the pulmonary arteries 
(p = 0.011), but not for the aorta (p = 0.089). Similar find-
ings were observed for IoU, HD and ASD (Fig. 6).

CFD metrics
There was overall good agreement in CFD metrics cal-
culated using ML and GT segmentations (Fig.  3E, F). 
The median MAPE for pressure and velocity in the 
aorta were 10.1% (interquartile range: 8.5–15.7%) and 
4.1% (3.1–6.9%) respectively, and for the pulmonary 
arteries 14.6% (11.5–23.2%) and 6.3% (4.3–7.9%). Pul-
monary artery MAPEs trended towards higher values 

Fig. 3 Segmentation metrics and flow field errors. Three segmentations are compared in a pairwise fashion: machine learning (ML), ground 
truth (GT) and second observer (SO). A, B Confusion‑based similarity metrics: dice score and IoU. C, D Distance‑based similarity metrics: Hausdorff 
distance (HD) and average surface distance (ASD), measured in pixels. E, F CFD‑derived pressure and velocity mean average percentage errors 
(MAPE)
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compared to aortic MAPEs, but this did not reach sta-
tistical significance (p = 0.081 for pressure and p = 0.093 
for velocity). However, pressure was more sensitive than 
velocity to different segmentations, with pressure MAPE 
being ~ 2.5 × greater than velocity MAPE (p < 0.001).

Figure 7 shows the surface meshes of test cases with the 
highest and lowest CFD MAPE, as well as pressure and 
velocities along the length of each vessel. Figure 8 shows 
pressure and velocity fields calculated using both ML and 
GT manual segmentations. The main difference in the 
surface meshes (particularly for the worst cases) were 
associated with the inlets and outlets (angle and size) and 
these differences propagated into pressure and velocity 
fields.

SO vs GT (inter-observer) and ML vs SO pressure and 
velocity MAPEs were of a similar magnitude to the errors 
from the ML segmentations (Fig.  3E, F, p > 0.2). When 
the clipping planes of the GT segmentations were used 
on the ML geometries, the median pressure and velocity 
MAPEs were reduced to 8.0/3.1% (p < 0.01) for the aorta, 
and to 1.0.4/3.7% for the pulmonary artery (p < 0.01) (see 
Additional file 3).

Figure  9 illustrates the relationship between the seg-
mentation metrics and the CFD errors on the ML vs 
GT comparison. No significant correlations were found 

between any of the metrics, either for the aorta or the 
pulmonary arteries, for either manual or equally clipped 
data.

Discussion
In this study, a deep neural network was trained to simul-
taneously segment the aorta and pulmonary arteries from 
3D CMR data. As its primary purpose was to provide 
patient specific anatomies for CFD models, we evaluated 
accuracy using conventional image-based segmentation 
metrics and resulting errors in CFD measures. The main 
findings were: (i) The proposed network achieved high 
performance in terms of image-based segmentation met-
rics, (ii) There was reasonable agreement between CFD 
models derived from the ML and GT manual segmenta-
tion, (iii) These errors were similar in magnitude to those 
observed between two different manual segmentations, 
and (iv) There was no relationship between the segmen-
tation metrics and the resulting CFD errors.

ML segmentation
In data from the same distribution as the training data, 
the segmentation model achieved comparable or bet-
ter performance than previously reported 3D ML 

Fig. 4 Test set segmentation overlays. Predicted and ground truth masks are overlayed over the original images for the best, median and worst test 
cases. Aorta and pulmonary artery masks are shown in red and blue, respectively. Multiplanar reformats of the original 3D volume were manually 
selected on a case‑by‑case basis to be most informative. Best case had Ross procedure and mechanical aortic valve, the median case had an atrial 
septal defect and the worst case had a dilated pulmonary artery
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Fig. 5 External test set segmentation overlays. Predicted and ground truth masks are overlayed over the original images for the best, median and 
worst test cases. Aorta and pulmonary artery masks are shown in red and blue, respectively. Multiplanar reformats of the original 3D volume were 
manually selected on a case‑by‑case basis to be most informative. Best case had normal anatomy with gothic arch, the median case had bicuspid 
aortic valve and the worst case had mild left pulmonary artery stenosis

Fig. 6 Segmentation metrics. The model’s segmentation (ML) is compared with the an observer’s segmentation (SO) for two different datasets: 
our original data (ML vs SO) and an external test set from a different site and vendor (Ext‑ML vs Ext‑SO). A, B: Confusion‑based similarity metrics: 
dice score and intersection‑over‑union (IoU). C, D Distance‑based similarity metrics: Hausdorff distance (HD) and average surface distance (ASD), 
measured in pixels
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Fig. 7 Best and worst cases for aortas and pulmonary arteries (PA). Graphs show planar‑averaged metrics along the length of the vessels, starting 
from the inlet. Black geometries correspond to ground truth, whereas red correspond to predictions. Best aorta case had atrial septal defect and 
the worst had a repaired double outlet right ventricle with right arch. The best PA has a bicuspid aortic valve with dilated aorta and unrepaired 
ventricular septal defect and the worst is a Marfan syndrome with dilated aorta
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segmentation of the great vessels, including in patients 
with CHD [6, 22]. This suggests that the chosen net-
work architecture and subsequent hyperparameter 
optimization were sufficient for accurate segmentation. 

Nevertheless, there were some differences between the 
GT and ML segmentations and visual inspection reveals 
three main types of error. The first error was a tendency 
for ML to start and stop segmenting at slightly different 

Fig. 8 Best and worst aorta and pulmonary artery predictions. Flow fields of pressure and velocity displayed
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points in the vessel compared to the GT. The second type 
of error was the presence of “bumps”, due to the seg-
mentation masks bleeding out at the locations of arte-
rial branches, particularly in the aorta. Both these errors 
can be considered failures to properly demarcate vessel 
limits, rather than failures to correctly label blood pool 
pixels. The third type of error was inaccurate labelling of 
blood pixels at the vessel border, resulting in subtle differ-
ences in surface geometry. It should be noted that none of 
these patients had very abnormal pulmonary vascular or 
aortic anatomy, which was necessary to ensure that CFD 
models could be created from the segmentations. How-
ever, further testing on complex CHD is necessary if seg-
mentation models are to be used more widely. Extension 
to complex CHD may require further enhancements, 
and several strategies could potentially help improve the 
ML segmentation accuracy and generalizability. These 
include increasing the amount and heterogeneity of 
training data, or performing data augmentation, both of 
which improve generalizability and performance of ML 
models [23, 24]. Another interesting option might be the 
inclusion of statistical shape models [25, 26], which could 
help ensure that the segmented shapes conform to com-
mon patterns.

The model was also tested on 3D data acquired on a 
different vendor scanner. Although the type of sequence 
(3D WH-bSSFP) and imaging protocol were similar to 
the original data, there were visually apparent differences 
in image quality and characteristics. Nevertheless, we 

observed reasonable segmentation quality. For the aorta, 
agreement with a human observer was only slightly lower 
than agreement with the same observer in our original 
data. However, there was a larger reduction in agreement 
for the pulmonary arteries. This suggests there is scope 
for improving the generalizability of the model. One of 
the best solutions for this is to include multi-site, multi-
vendor data in the training set, but this would incur obvi-
ous labelling costs and potential data sharing difficulties. 
Other approaches to improve robustness to out-of-distri-
bution data might be the use of data augmentation (e.g., 
domain translation methods to generate multi-vendor 
datasets [27, 28]) and the use of strategies that incorpo-
rate additional domain knowledge [29].

Of course, segmentation is a challenging task and we 
demonstrated that the agreement between two humans 
was similar to the agreement between ML and the GT 
human segmentation. This suggests that ML “errors” are 
approximately at the level of the inter-observer variability 
and similar observations have previously been made for 
aortic segmentation [6]. Thus, we believe ML can provide 
segmentation with ‘real world’ accuracy. Furthermore, 
there are significant advantages of ML over manual seg-
mentation including very fast segmentation without user 
interaction and perfect reproducibility, due to its deter-
ministic nature. This makes ML particularly useful for 
removing clinical bottlenecks and accelerating popula-
tion-based research.

Fig. 9 Flow errors against similarity metrics. The figure shows a scatter‑plot matrix where each point corresponds to a subject. In the abscissas, two 
confusion‑based metrics, Dice and IoU, and two distance‑based metrics, the Hausdorff distance and the average surface distance, measured in 
pixels. In the ordinates, the pressure and velocity mean average percentage errors (MAPE). All values are for the ML vs GT comparison. Red and blue 
colours identify aorta and pulmonary artery data, respectively. Trend lines are least‑squares polynomial fits of degree 1. For Dice and IoU, higher is 
better (more similar). For Hausdorff distance, average surface distance and pressure and velocity MAPEs, lower is better
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Relationship between CFD and segmentation errors
We demonstrated reasonable agreement in velocity and 
pressure fields calculated from ML and manual segmen-
tations. Importantly, the differences in CFD metrics using 
ML vs manual segmentations were of a similar magni-
tude to those between two independent manual segmen-
tations. This suggests that ML can be successfully used 
to provide a starting point for CFD simulations, with 
accuracy similar to inter-observer variability. However, 
there were some differences in CFD metrics between ML 
vs GT segmentations, particularly for pressure calcula-
tions. We think pressure errors are higher because local 
deviations in surface geometry tend to cause only local 
velocity field derangement, but have a global effect on 
upstream pressures. This can be seen in the worst-case 
aorta, where a kink in the GT descending aorta results 
in localized flow acceleration, and significantly altered 
upstream pressures.

Interestingly, we found no significant correlations 
between image-based segmentation metrics and errors in 
the pressure and velocity fields. This suggests that neither 
overlap-based (Dice, IoU) nor boundary distance-based 
(HD, ASD) metrics can accurately capture the features 
that ensure CFD accuracy. This may be because CFD 
models are highly sensitive to local geometric errors, 
while segmentation metrics are global and therefore may 
not fully capture these localized deviations. Another rea-
son may be that differences in clipping (which were not 
accounted for by segmentation metrics) are responsible 
for some of the CFD errors, as shown by our analysis of 
equally clipped data. However, significant CFD errors 
remained after removing this confounding factor, and 
these errors were still not correlated with image-based 
segmentation metrics. Irrespective of the cause, the poor 
correlation between segmentation and CFD errors has 
some important implications. Specifically, in our appli-
cation it might be better to combine conventional global 
image-based losses with more CFD specific objective 
measures during training.

Computational fluid dynamics can benefit in several 
ways from machine learning. Firstly, ML segmentation 
is completely automated and very fast, enabling signifi-
cant reduction in pre-processing time, one of the major 
impediments to clinical uptake. Secondly, ML segmenta-
tions are completely reproducible, and this is important 
as we have shown significant human inter-observer vari-
ability. Finally, there has been recent work demonstrating 
the use of ML to accelerate the CFD simulations. Com-
bined with ML segmentation this would substantially 
reduce the time taken to perform CFD and make CFD 
much more attractive for routine clinical use.

Limitations
Our study has several limitations. One of the main limi-
tations of this study was that a simplified CFD model 
was applied across all subjects (laminar, steady state with 
no patient-specific parameters). This was done to bet-
ter isolate the effect of segmentation differences on the 
resulting CFD model. However, it does limit the patient 
specific aspect of these comparisons and in the future, 
boundary conditions for each subject (such as velocity 
profiles taken from phase contrast CMR) could be incor-
porated into the model. Furthermore, now that we have 
demonstrated good agreement using simple CFD mod-
els, the utility of ML segmentation for more complex 
CFD models should be investigated.

Another limitation is that the methods used for com-
parison don’t necessary account for the full flow field. We 
used plane-averaged pressures and velocities along the 
length of the centreline to quantitatively compare differ-
ent CFD models. However, this averaging does lead to a 
loss of localized details in the flow fields. Additionally, 
the slice locations were determined independently for 
ML, GT and SO models, so there may not be an exact 
one-to-one correspondence. In future studies, particu-
larly if using more complex CFD models, new metrics of 
CFD errors that capture subtle deviations will need to be 
developed.

Conclusions
A convolutional neural network was developed, opti-
mized and trained for segmentation of the aorta and the 
pulmonary arteries in 3D CMR. The segmentation net-
work was validated for its primary purpose: the creation 
of CFD models and calculation of flow fields. Segmenta-
tion errors in terms of Dice, IoU, HD and ASD as well 
as derived pressure and velocity field errors were in the 
range of human inter-observer variability. The proposed 
method could help to automate clinical hemodynamic 
assessment workflows and improve their robustness.
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