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Abstract  71 

Importin 8, encoded by IPO8, is an ubiquitously expressed member of the importin-β protein 72 

family that translocates cargo molecules such as proteins, RNAs and ribonucleoprotein 73 

complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes 74 

of importin 8 is limited, but TGF-β signaling components such as SMAD1-4 have been 75 

suggested to be amongst them. Here, we report that bi-allelic loss-of-function variants in IPO8 76 

cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-77 

Dietz and Shprintzen-Goldberg syndrome. Seven individuals from six unrelated families 78 

showed a consistent phenotype with early-onset TAA, motor developmental delay, connective 79 

tissue findings and craniofacial dysmorphic features. A C57Bl/6N Ipo8 knock-out mouse model 80 

recapitulates TAA development from 8-12 weeks onwards in both sexes, but most prominently 81 

shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays 82 

suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. 83 

Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization 84 

and fragmentation along with a signature of increased TGF-β signaling, as evidenced by nuclear 85 

pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate 86 

decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for 87 

dysregulation of the TGF-β signaling pathway in TAA development. As importin 8 is the most 88 

downstream TGF-β-related effector implicated in TAA pathogenesis so far, it offers 89 

opportunities for future mechanistic studies and represents a candidate drug target for TAA.  90 

  91 



Van Gucht et al. 

5 

 

Thoracic aortic aneurysm (TAA) refers to a pathological and progressive dilatation of the aorta 92 

which, if left untreated, imposes a risk for life-threatening aortic dissection or rupture. TAA 93 

presents either as an isolated condition (non-syndromic TAA) or as part of a multi-systemic 94 

connective tissue disorder (syndromic TAA). Most typically, the inheritance pattern is 95 

autosomal dominant, but rare X-linked or autosomal recessive families have also been reported. 96 

As pathogenic variants in the more than 30 known TAA genes explain less than 30% of 97 

probands with a positive family history1, additional TAA genes remain to be identified.  98 

Important mechanistic insights into syndromic TAA formation have largely emanated from 99 

elucidation of the etiology of two clinically overlapping autosomal dominant TAA syndromes: 100 

Marfan syndrome (MFS [MIM: 154700]) and Loeys-Dietz syndrome (LDS [MIM: 609192, 101 

MIM: 610168, MIM: 613795, MIM: 614816 & MIM: 615582])2. Besides TAA, MFS is 102 

characterized by ocular (e.g. ectopia lentis), skeletal (e.g. overgrowth, pectus deformity) and 103 

cutaneous (e.g. striae, hernia) manifestations. LDS can be distinguished from MFS by the 104 

unique presence of hypertelorism, cleft palate or bifid uvula and prominent arterial tortuosity, 105 

as well as by a more widespread and severe aneurysm phenotype. Whereas MFS is caused by 106 

dominant-negative or haplo-insufficient variants in the extracellular matrix (ECM) component 107 

fibrillin 13 (FBN1 [MIM: 134797]), LDS results from loss-of-function variants in six key 108 

components of the canonical transforming growth factor β (TGF-β) signaling pathway (i.e. 109 

TGFBR1/2 [MIM: 190181 & MIM: 190182], SMAD2/3 [MIM: 601366 & MIM: 603109], 110 

TGFB2/3 [MIM: 190220 & MIM: 190230]) (Figure S1)4-10. In both conditions, analysis of the 111 

aortic wall in mouse models and affected individuals shows a clear tissue signature for enhanced 112 

TGF-β signaling, including activation of signaling intermediates and increased output of TGF-113 

β target genes11. Interestingly, a third condition with extensive phenotypic overlap with MFS 114 

and LDS but less severe cardiovascular involvement and the unique presence of 115 

neurodevelopmental delay (Shprintzen-Goldberg syndrome (SGS) [MIM: 182212]) is caused 116 
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by heterozygous missense variants located in the R-SMAD-binding domain of a negative 117 

regulator of the TGF-β transcriptional response called SKI (SKI [MIM: 164780]) (Figure S1)12; 118 

13.  119 

Using exome or genome sequencing in six unrelated probands presenting with an LDS/SGS-120 

like phenotype (for details see supplemental materials and methods), we identified bi-allelic 121 

loss-of-function variants in IPO8 [MIM: 605600; GenBank: NM_006390.3], encoding the 122 

nuclear import protein importin 8 (Figure 1A, Figure S2). None of the probands carried a likely 123 

pathogenic variant in any of the known TAA genes. Except for p.(Leu866Profs*12) 124 

(c.2597_2601delTTTTC) (1/250920 alleles), all identified variants are absent from the Genome 125 

Aggregation Database (gnomAD v2.1.1). Causality is further supported by segregation 126 

analysis, which demonstrated heterozygosity in the unaffected parents and siblings (Figure 1A) 127 

as well as homozygosity in one additional affected brother (individual 4-II:3; Figure 1A). 128 

Subsequent Sanger sequencing of the coding regions of IPO8 in 50 other genetically unsolved 129 

MFS-, LDS- or SGS-like probands did not reveal additional individuals with homozygous or 130 

compound heterozygous variants.  131 

Recurrent phenotypic manifestations in our series of cases with bi-allelic IPO8 variants include 132 

facial dysmorphism with dolichocephaly (5/7), frontal bossing (6/7), hypertelorism (6/7), eyelid 133 

ptosis (4/7), retrognathia (6/7) and a high arched (6/7) or cleft palate/bifid uvula (3/7); skeletal 134 

findings with arachnodactyly (6/7), joint hypermobility (7/7), pectus excavatum (7/7), foot 135 

deformity (5/7) and scoliosis (3/7); neuromuscular features including hypotonia (7/7) and 136 

developmental delay (7/7); cardiovascular abnormalities with aortic root and/or ascending 137 

aortic aneurysm (6/7), structural heart disease (atrial or ventricular septal defect (ASD, VSD) 138 

and patent ductus arteriosus (PDA), 7/7); and finally, umbilical and/or inguinal hernia (5/7) 139 

(Figure 1B, Table 1). No disproportionate body growth was observed (Figure S3). Of note, 140 

despite the severe aneurysm phenotype, none of the affected individuals experienced an arterial 141 
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or aortic dissection, but this may be due to their young age. Additionally, marked arterial 142 

tortuosity, a typical LDS feature, was reported in two cases (2-II:1 and 6-II:1), but might have 143 

been overlooked in the others as they have not yet undergone head-to-pelvis arterial imaging. 144 

Overall, the phenotype fits in the spectrum of LDS/SGS-like disorders (Table 2). 145 

Six out of eight IPO8 variants are predicted to result in a premature termination codon and, as 146 

a result, to induce nonsense-mediated mRNA decay (NMD). Indeed, in fibroblast cDNA of 147 

individual 3-II:3 c.2597_2601delTTTTC was only observed upon puromycin treatment (Figure 148 

S4A). In blood-derived cDNA of the same child, c.1428+5G>A was found to result in exon 13 149 

skipping (Figure S5A-B). In silico protein modeling of its predicted resultant in-frame deletion 150 

p.(Lys447_Arg476del) (c.1428+5G>A) suggests abnormal folding due to removal of a single 151 

helix (Figure S5C). In fibroblast cDNA of case 1-II:3, the variant allele was seen even in the 152 

absence of inhibition of NMD with puromycin, revealing surprising escape from NMD (Figure 153 

S4B). Western blotting on fibroblast lysates of individuals 1-II:3 and 3-II:3 using an N-terminal 154 

importin 8 antibody did not show protein expression, in keeping with a loss-of-function 155 

mechanism (Figure S4C). In proband 1-II:3, the lack of importin 8 protein is possibly attributed 156 

to translational repression, which previously has been described in other conditions14, or 157 

significant protein instability. For individual 6-II:1 fibroblasts are not available, but in silico 158 

modeling of the predicted resultant deletion-insertion p.(Thr967_Glu1006delinsLys) (c.2900-159 

1G>A) suggests removal of the last structured part of the protein (Figure S6), which, based on 160 

this region’s role in controlling the protein conformation in some other β-importins, may 161 

significantly affect protein stability15-17. 162 

Murine importin 8 is 92% identical and 95% similar to its human orthologue, rendering mouse 163 

a suitable animal model to pursue supportive in vivo evidence for a causal relationship between 164 

IPO8 deficiency and TAA. We used a C57Bl/6N Ipo8-/- model that was previously only known 165 

to present with reduced grip strength and diminished vertical activity, suggesting muscle 166 
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weakness as well as decreased locomotor exploration, respectively18, and thus corroborating 167 

with the observed hypotonia and (possibly associated) motor delay in individuals with IPO8 bi-168 

allelic variants. Serial transthoracic echocardiography (age 4-32 weeks) of the aortic root at the 169 

level of the sinuses of Valsalva and distal ascending aorta in Ipo8-/- mice and their wild type 170 

(WT) littermates (N=17/group) revealed statistically significant progressive dilatation in mutant 171 

mice at both anatomical locations, with aneurysms of the distal ascending aorta already 172 

becoming visible at the age of 8-12 weeks (proot=1.3E-3 (Figure 2A); pasc=8.4E-9 (Figure 2B)). 173 

Intriguingly, sex-stratified analyses demonstrated aortic root enlargement in both mutant 174 

females (7 Ipo8-/- vs 8 WT; proot_f=2.3E-3 (Figure S7A)) and males (10 Ipo8-/- vs 9 WT; 175 

proot_m=2.3E-2 (Figure S7B)), whereas the ascending aortic aneurysm phenotype is very 176 

pronounced and only statistically significant in the male Ipo8-/- animals (pasc_f=6.5E-2 (Figure 177 

S7C) vs pasc_m=8.4E-10 (Figure 2C)). After the last echo at 32 weeks, 14 Ipo8-/- and 17 WT 178 

animals were kept alive until the age of 48 weeks. Of these, three homozygous mutant males 179 

(3/9, 33.3%) died from an aortic rupture at the age of 32, 36 and 46 weeks, respectively, while 180 

no aortic rupture-related mortality was seen in the homozygous females (0/5, 0%) or WT 181 

animals (0/17, 0%). Sex differences in syndromic TAA penetrance and severity have been 182 

reported before, both in mice and humans19; 20. Generally, males are more severely affected, 183 

exhibiting larger aortas and experiencing dissection and/or rupture more frequently21; 22. Several 184 

studies in TAA mouse models have attempted to define the basis for the observed sex 185 

differences, revealing a context-dependent role for female and male hormone signaling, 186 

hypertension and/or exacerbated ERK activation, but no predominant mechanism has been 187 

identified20. The C57Bl/6N Ipo8-/- mouse model represents a promising tool to further 188 

investigate the TAA sexual dimorphism. Of note, during our echocardiography studies we did 189 

not observe severe structural outflow tract defects. Evaluation of lateral and dorsoventral total 190 

body X-rays, which are publicly available through the International Mouse Phenotyping 191 
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Consortium (IMPC) portal, did not show evidence for scoliosis (visual inspection) or increased 192 

kyphosis (quantitative evaluation; p=2.8E-1) in Ipo8-/- mice as compared to wild type animals. 193 

Given the fact that the aneurysmal phenotype is most pronounced in males at the level of the 194 

distal ascending aorta, we performed further experiments in male mice only. To study the 195 

biomechanical properties of distal ascending aortic rings, the ‘rodent oscillatory tension set‐up 196 

to study arterial compliance’ (ROTSAC) assay was used23. More precisely, ex vivo aortic 197 

stiffness was assessed at 12 (5 Ipo8-/- vs 4 WT), 24 (4 Ipo8-/- vs 4 WT) and 52 (4 Ipo8-/- vs 2 198 

WT) weeks of age. Different experimental conditions were used to evaluate the involvement of 199 

vascular smooth muscle cells (VSMCs) and/or endothelial cells. The Peterson modulus (Ep) 200 

was first determined in Krebs-Ringer solution at a distention pressure of 80-120 mmHg and 201 

120-160 mmHg, revealing a trend towards higher Ep values and, thus, stiffer ascending aortas 202 

at 120-160 mmHg in 12, 24 and 52 week old Ipo8-/- male animals as compared to controls 203 

(Figure 3, Figure S8). As complete VSMC relaxation by diethylamine NONOate (DEANO) 204 

addition or VSMC stimulation with phenylephrine (PE), even upon nitric oxide synthase (NOS) 205 

inhibition through N(Ω)-nitro-L-arginine methyl ester (L-NAME) addition, did not 206 

considerably alter the Ep increase in Ipo8 null males (Figure 3), increased basal tone nor 207 

sustained VSMC contraction seem to contribute to the increased aortic stiffness. Our data rather 208 

point towards an increased passive stiffness of the ascending aorta in male Ipo8-/- mice 209 

throughout life. Increased arterial stiffness, an important marker for cardiovascular disease, has 210 

previously been observed in genetic TAA mouse models24 and affected individuals25. In an 211 

established MFS mouse model, i.e. Fbn1mgR/mgR, stiffness was augmented in mutant non-212 

aneurysmal (circa 3-fold) and aneurysmal (circa 4-fold) ascending aortas, which upon 213 

histological analysis was shown to correlate with a diffuse loss in elastic fiber integrity24. 214 

Compared to age-matched controls, TAA cases exhibit a stiffer mechanical response with aortic 215 

biomechanical properties resembling those of a significantly older (‘aged’) non-aneurysmal 216 
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cohort26. Given the observed trend towards stiffer ascending aortas in Ipo8-/- mice (Figure 3) 217 

and recurrent prior associations between aortic ECM deterioration and TAA2, we evaluated the 218 

structural ECM integrity using histological elastin and collagen staining in ascending aortic 219 

sections of 12- (3 Ipo8-/- vs 3 WT), 24- (3 Ipo8-/- vs 3 WT) and 52-week (3 Ipo8-/- vs 2 WT) old 220 

mice. Whereas the collagen content did not differ noticeably (Figure S9A), the elastic fibers 221 

were more disorganized and fragmented in mutant males of all age groups as compared to their 222 

WT counterparts (page-combined=5.2E-4) (Figure 4A-B, Figure S9B).  223 

Importin 8 is a nuclear transport receptor belonging to the importin-β protein family, which has 224 

not been linked to human diseases before. It is ubiquitously expressed and becomes upregulated 225 

upon TGF-β1 stimulation27. β-importins translocate cargo molecules such as proteins, RNAs 226 

and ribonucleoprotein complexes to the nucleus in a RanGTP-dependent manner. While a 227 

specific cargo can be shuttled by multiple β-importins, superior affinity to one of them is often 228 

observed. The most established cargoes for human importin 8 are phosphorylated SMADs 1-4 229 

(pSMAD1-4)28, AGO229, mature miRNAs30, EIF4E31 and SRP1932. Apart from being a nuclear 230 

transport receptor, importin 8 has been implicated in miRNA-guided gene silencing29. Given 231 

that individuals with bi-allelic IPO8 variants phenotypically resemble individuals with TGF-β-232 

related aortopathy syndromes such as LDS and SGS and key effectors of the canonical TGF-β 233 

pathway (i.e. pSMAD2-4) have been reported to be shuttled by importin 828, a plausible 234 

hypothesis is that dysregulated TGF-β signaling is involved in the pathogenesis of IPO8-related 235 

disease (Figure S1). We determined the levels of nuclear pSmad2, an effector of canonical TGF-236 

β signaling, in ascending aortic sections of 12- (3 Ipo8-/- vs 3 WT), 24- (3 Ipo8-/- vs 3 WT) and 237 

52-week (3 Ipo8-/- vs 2 WT) old mice. A larger fraction of nuclei stained positive for pSmad2 238 

in Ipo8-/- mice as compared to WT animals (page-combined=3.4E-2), suggesting a role for 239 

dysregulated TGF-β signaling in the pathogenesis of IPO8-related TAA (Figure 4A-B, Figure 240 

S9C). Subsequent RT-qPCR analysis for nine TGF-β superfamily-related genes (i.e. Tgfb1, 241 
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Tgfb2, Smad4, Smad6, Smad7, Mmp2, Ccn2 (Ctgf), Eln and Serpine1 (Pai1)) in ascending 242 

aortic samples of 16-week old Ipo8-/- and WT males (N=12/group) revealed significantly 243 

reduced Smad6 (p=6.0E-3) and Smad7 (p=3.6E-2) mRNA expression in the mutant animals, 244 

along with a significant increase in Mmp2 (p=4.2E-3) and Ccn2 (Ctgf) (p=7.8E-3) (Figure 5). 245 

SMAD6 and 7 inhibit SMAD-dependent and -independent TGF-β family signaling through 246 

various mechanisms33. Whereas SMAD6 preferentially inhibits bone morphogenetic protein 247 

(BMP)-related signaling34, SMAD7 impedes both TGF-β- and BMP-induced signaling35. In the 248 

absence of SMAD7, TGF-β receptor activation is augmented, resulting in excessive SMAD2/3 249 

phosphorylation. The detected decrease in Smad7 mRNA levels in the Ipo8-/- aortic walls might 250 

thus be directly linked to the observed increase in nuclear pSmad2 levels. SMAD6, on the other 251 

hand, has mostly been linked to BMP signaling, which is less well studied in the context of 252 

TAA development. Nonetheless, our group identified loss-of-function SMAD6 variants as a 253 

cause of bicuspid aortic valve-related TAA36; 37, demonstrating a mechanistic link between 254 

SMAD6 deficiency and TAA development. MMP2 and CCN2 (CTGF) are prototypical 255 

downstream transcriptional targets of the TGF-β signaling pathway38. MMP2 belongs to the 256 

family of matrix metalloproteinases, which mediate the physiological turnover of the aortic 257 

ECM by degrading structural ECM proteins, including collagen and elastin39. In TAA cases 258 

and mouse models, MMP2 levels and/or activity are strongly increased40-42. Moreover, Mmp2 259 

deletion in Fbn1mgR/mgR mice inhibited TGF-β activation and subsequent Smad2 and Erk1/2 260 

phosphorylation43, which significantly prolonged the lifespan of the MFS Fbn1mgR/mgR mice43. 261 

As such, increased Mmp2 expression might connect increased TGF-β signaling and impaired 262 

elastic fiber integrity in our Ipo8-/- mouse model. CCN2 (CTGF) is a multifunctional protein 263 

that is involved in ECM remodeling38. Overexpression of CCN2 (CTGF) has been proven to be 264 

associated with TAA development44 and was previously been shown to be upregulated in the 265 

aortic walls of individuals with LDS 4;7. Interestingly, elastic fiber fragmentation but normal 266 
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collagen content, as well as reduced Smad6 and Smad7 mRNA expression levels and higher 267 

Mmp activity were also described in aneurysmal aortic tissue specimens and/or VSMCs of 268 

Smad3-/- mice, an established LDS model that presents with TAA already at the age of 6 269 

weeks45. Together, our histological, immunohistochemistry and RT-qPCR findings suggest a 270 

link between IPO8 deficiency and dysregulated TGF-β signaling. Moreover, they recapitulate 271 

prior observations in an established LDS mouse model, further relating IPO8-related TAA to 272 

the LDS disease spectrum. 273 

In conclusion, we describe a syndrome caused by bi-allelic loss-of-function variants in IPO8. 274 

The human and mouse phenotypes caused by importin 8 loss-of-function are characterized by 275 

severe early-onset TAA development. Our immunohistochemistry and RT-qPCR studies of 276 

murine Ipo8-deficient aortic tissue reveal pathophysiological mechanisms that have previously 277 

been described in clinically overlapping TGF-β-related signalopathies. Further research is 278 

warranted to obtain more in-depth insight into the disease’s clinical course and mechanisms. 279 

First, identification of additional individuals with bi-allelic IPO8 variants will shed better light 280 

on the variability with respect to disease expressivity and penetrance. Moreover, longitudinal 281 

follow-up of affected individuals will provide information on aortic/arterial dissection or 282 

rupture risk. Interestingly, our clinical findings are corroborated by the observations of Ziegler 283 

et al in this issue of AJHG who describe aortic dilatation in 11 out 12 individuals with bi-allelic 284 

IPO8 variants. Second, it remains to be determined if and how abnormal cytosol-to-nucleus 285 

shuttling elicits IPO8-related disease and dysregulated TGF-β signaling in aneurysmal aortic 286 

walls. Finally, as we predominantly focused on the TAA phenotype, it would be interesting to 287 

have a closer look at the mechanisms involved in the other affected organ systems, especially 288 

the neuromuscular system in order to explain the motor developmental delay that was observed 289 

in individuals with IPO8 bi-allelic variants. 290 

 291 
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The supplemental data file contains details on the materials and methods, nine figures and 293 

supplemental case reports. 294 
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Figure legends 499 

Figure 1. Familial screening and clinical characterization of individuals with bi-allelic 500 

IPO8 variants. A) Pedigrees of the families with their respective pathogenic variants. Squares 501 

represent males while circles represent females, filled symbols denote affected individuals, a 502 

double line connecting spouses symbolizes consanguinity and a - or + sign denotes presence or 503 

absence of the respective IPO8 variant. Variants are annotated against NM_006390.3. B) 504 

Clinical phenotyping. Proband 1-II:3 showing prominent forehead, hypertelorism, mild ptosis 505 

left eye, retrognathia, pectus excavatum, umbilical hernia, joint hypermobility with thumb 506 

abduction and camptodactyly of the second toe. CT angiography of proband 2-II:1 507 

demonstrating dilatation of the common carotid arteries along with marked tortuosity of the 508 

common carotid and internal carotid artery, mild tortuosity of the vertebral arteries, enlargement 509 

of the anterior and middle cerebral arteries bilaterally. Proband 3-II:3 presenting with frontal 510 

bossing with bitemporal flattening, retrognathia, downturned corners of the mouth and flat feet. 511 

Proband 5-II:2 showing prominent forehead, significant hypertelorism with flat nasal bridge, 512 

mild ptosis of left eye and retrognathia. Proband 6-II:1 demonstrating dolichocephaly, 513 

retrognathia, malar flattening, downslanting palpebral fissures and hypertelorism. MRA 514 

revealing tortuous intracranial and extracranial arterial vessels, most prominently involving the 515 

superior cervical internal carotid arteries with dilation of the left internal carotid artery at the 516 

carotid bifurcation. CT-scan (pre-surgical) showing os odontoideum with cervical spinal canal 517 

stenosis (arrows). 518 

Figure 2. Progressive TAA development in Ipo8-/- mice. A) Log of weight-corrected aortic 519 

root diameters in male and female mice combined (N=17/group). B) Log of weight-corrected 520 

ascending aortic diameters in male and female mice combined (N=17/group). C) Log of weight-521 

corrected ascending aortic diameters in male mice only (10 Ipo8-/- vs 9 WT). The error bars 522 
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show the standard error of the mean (SEM). P-values were calculated using mixed model 523 

analysis, which represent the interaction term between genotype and age. WT: wild type. 524 

Figure 3. Trend towards increased ascending aortic passive stiffness in Ipo8-/- mice at a 525 

distention pressure of 120-160 mmHg. Age- and genotype-dependency of the Peterson 526 

modulus (Ep) of ascending aortic segments of male Ipo8-/- and wild type mice under control 527 

(Krebs-Ringer), maximally relaxed (DEANO) and contracted (PE or PE + L-NAME) 528 

conditions at 12 (5 Ipo8-/- vs 4 WT), 24 (4 Ipo8-/- vs 4 WT) and 52 (4 Ipo8-/- vs 2 WT) weeks of 529 

age. The error bars show the SEM. Two-way ANOVA p-values are shown (*p < 0.05). Sidak 530 

post-hoc testing did not reveal statistically significant genotype-based differences in Ep. PE: 531 

Phenylephrine, DEANO: diethylamine NONOate, L-NAME: N(Ω)-nitro-L-arginine methyl 532 

ester, Ep: Peterson modulus, WT: wild type, NS: non-significant. 533 

Figure 4. Elastic fiber deterioration and nuclear pSmad2 accumulation in the ascending 534 

aorta of Ipo8-/- mice. A) Histological and immunohistochemistry images demonstrating 535 

marked elastin disorganization and fragmentation as well as prominent nuclear pSmad2 536 

accumulation in Ipo8-/- mice. Scale bar = 50µm. B) Elastic fiber integrity scores and nuclear 537 

pSmad2 grades of the ascending aorta of all ages combined (12- (3 Ipo8-/- vs 3 WT), 24- (3 538 

Ipo8-/- vs 3 WT) and 52-weeks (3 Ipo8-/- vs 2 WT)). Elastin grades can range from 1 to 4, with 539 

grade 1 sections presenting with continuous and well-organized elastic bundles and grade 4 540 

sections displaying vastly disorganized fibers, marked fiber fragmentation and a thickened 541 

aortic wall. For pSmad2, grade 1, 2, 3 and 4 denote sections in which respectively <25%, 25-542 

50%, 50-75% and 75-100% of nuclei stained positive. Averaged age-combined scores of 543 

blinded observations of three independent researchers are shown. The error bars depict the 544 

SEM. P-values were calculated using two-way ANOVA statistics (*p < 0.05, ***p < 0.001). 545 

WT: wild type 546 
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Figure 5. mRNA expression analysis of TGF-β-related genes reveals decreased Smad6 and 547 

Smad7 levels as well as increased Mmp2 and Ccn2 (Ctgf) levels in the ascending aorta of 548 

Ipo8-/- mice. Ascending aortic samples of 16-weeks old Ipo8-/- and WT males were used 549 

(N=12/group). The error bars depict the SEM. P-values were calculated using mixed model 550 

statistics (*p < 0.05, **p < 0.01). WT: wild type, NS: non-significant 551 

 552 

Table legends 553 

Table 1. Detailed overview of the clinical characteristics of  individuals with bi-allelic IPO8 554 

variants.  555 

ND: not done, ?: unknown, L: left, R: right, +: present, -: absent, Z: z-score (calculated 556 

according to Lopez et al.)46, P: percentile, Com: common, int: internal, ASD: atrial septal defect, 557 

VSD: ventricular septal defect, PDA: patent ductus arteriosus, homz: homozygous, yrs: years, 558 

mo: months, bilat: bilateral, umb: umbilical, membr: membraneous, OFC: occipitofrontal 559 

circumference. § Proband 6:II-1 also has a chromosomal duplication (1.779 Mb gain of 560 

19q13.41) and learning disability is also present in proband’s mother and maternal half-brother. 561 

 562 

Table 2. Comparative overview of the clinical characteristics of IPO8-related aortopathy 563 

and phenotypically overlapping TAA syndromes. 564 

-: absent, +: occasional, ++: common, +++: typical clinical feature, MFS: Marfan syndrome, 565 

LDS: Loeys-Dietz syndrome, SGS, Shprintzen-Goldberg syndrome, TAA: thoracic aortic 566 

aneurysm; AD: autosomal dominant, AR: autosomal recessive, BAV: bicuspid aortic valve, 567 

ASD:  atrial septal defect, VSD: ventricular septal defect, PDA: patent ductus arteriosus. 568 
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Table 1. Detailed overview of the clinical characteristics of individuals with bi-allelic IPO8 variants  569 

 Family 1 

1-II:3 

Family 2 

2-II:1 

Family 3 

3-II:3 

Family 4 

4-II:4 

Family 4 

4-II:3 

Family 5 

5-II:2 

Family 6 

6-II:1 

Variant c. annotation c.1420C>T homz c.770_777delTATGGTGG; 

c.1000dupG 

c.1428+5G>A; 

c.2597_2601delTTTTC 

c.776G>A homz c.776G>A homz c. 2347_2369del 

homz 

c.2900-1G>A  

homz 

Variant p. annotation p.(Arg474*) 

homz 

p.(Val257Glufs*3); 

p.(Val334Glyfs*19) 

p.(Lys447_Arg476del); 

p.(Leu866Profs*12) 

p.(Trp259*) homz p.(Trp259*) homz p.(Leu783Valfs*5) 

homz 

p.(Thr967_Glu1006 

delinsLys) homz 

Sex M M F M M F M 

Current age 10 yrs 8 yrs 8 yrs 6 yrs 10 yrs 3 yrs 9m 19 yrs 

Growth  

Height 

Weight 

OFC 

(7yrs 11mo) 

 124 cm (P10-25) 

21 kg (P3-5) 

55 cm (P97) 

(8 yrs) 

127 cm (P25) 

19.9 kg (P1) 

 

(7yrs 4mo) 

118.7 cm (P10-25)  

22 kg (P25-50) 

53.5 cm (P50-75)  

(6yrs) 

121 cm (P75) 

18.3 kg (P25-50) 

(9 yrs) 

126 cm (P10-25) 

17.6 kg (P0.3) 

(3yrs9m) 

92 cm (P3) 

11 kg (P0.5) 

47 cm (P10) 

(19 years) 

 175 cm (P25-50) 

63 kg (P25) 

 

Facial features 

Dolichocephaly 

Frontal bossing 

Hypertelorism 

Ptosis 
Retrognathia 

Submucous cleft palate 

High arched palate 

 

+ 

+ 

+ 

+ (L>R) 
+ 

- 

+ 

 

+ 

+ 

+ 

+ (L>R) 
+ 

+ & broad uvula 

+ 

 

- (prominent sutures) 

+ 

- 

- 
+ 

- 

+ 

 

+ 

+ 

+ 

- 
- 

- 

+ 

 

+ 

+ 

+ 

- 
- 

- 

+ 

 

- 

+ 

+ 

+ (L>R) 
+  

+ (bifid uvula) 

- 

 

+ 

- 

+ 

+  
+ 

+ (bifid uvula) 

+ 

Skeletal findings 

Arachnodactyly 

Joint hypermobility 

Pectus excavatum 

Pes planum 

Cervical spine anomalies 

Scoliosis 

Other 

 

+ 

+ 

+ 

+ 

ND 

- 

2nd toes 

camptodactyly 

 

+ 

+ 

+ 

+ 

+ 

+ 

Kyphosis 

 

- 

+ 

+ 

+ 

- 

- 

Recurrent hip, ankle 

dislocation 

 

+ 

+ 

+ 

+ 

ND 

- 

Talipes 

equinovarus (L) 

Vertical talus (R) 

 

+ 

+ 

+ 

+ 

- 

+ 

Sagittal clefts of  

midthoracic 

 vertebrae 
Talipes equino 

varus (R) 

 

 

+ 

+ 

+ 

- 

- 

- 

 

+ 

+ 

+ 

- 

+ 

+ 

Long toes 

Neurological findings 

Hypotonia 

Developmental delay 

Intellectual disability 

 

+ 

+ (mild) 

- 

 

+ 

+ 

- 

 

+ 

+ (motor) 

- 

 

+ 

+ (motor) 

- 

 

+ 

+ (motor) 

- 

 

+ 

+ (motor) 

mild 

 

+ 

+ 

+§ 

Cardiovascular findings 

ASD 

VSD 

(10yrs 8mo) 

+ 

- 

(8yrs) 

+ 

- 

(7yrs 5mo) 

+ 

+ (membr & muscular) 

(1yr 8mo) 

- 

+ (membraneous) 

(9 yrs) 

- 

+ 

(42 months) 

+ 

+ (membraneous) 

(19 years) 

+ (aneurysmal) 

- 
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PDA 

Aortic root 

Ascending aorta 

Sinotubular junction 

Other aneurysms 

 
Arterial/aortic tortuosity 

- 

26 mm (Z=3.5)  

28 mm (Z=5.7) 

 

ND 

 
 

+ 

35 mm (Z=10)  

28 mm (Z=8.7) 

25 mm (Z=5.4) 

Com/int carotid, cerebral 

arteries 
+ 

+ (surgical repair) 

25 mm (Z=3.58) 

21 mm (Z=2.68) 

23 mm (Z=4.99) 

ND 

+ 

25 mm (Z=5.7) 

17 mm (Z=3.9) 

 

ND 

 

- 

38 mm (Z=6.0) 

23 mm (Z=2.7) 

25mm (Z=3.8) 

ND 

- 

15 mm (Z=0,5) 

 

12 mm (Z=0.18) 

pulmonary artery, 

coronary sinus 

- 

41 mm (Z=6.9)  

31 mm (Z=3.8) 

23 mm (Z=1.2) 

ND 

 
+ 

Other findings 

Hernia 

Easy bruising 

 

Umbilical 

+ 

 

Umb/bilat inguinal 

+ 

 

- 

- 

 

- 

- 

 

Umbilical 

- 

 

Umbilical 

- 

 

Umb/inguinal 

- 

 570 



Van Gucht et al. 

24 

 

Table 2. Comparison of Marfan, Loeys-Dietz, Sphrintzen-Goldberg and IPO8 571 

phenotypical characteristics 572 

 MFS LDS SGS IPO8 

Gene FBN1 TGFBR1/2 

SMAD2/3 

TGFB2/3 

SKI IPO8 

Inheritance AD AD AD –  

de novo 

AR 

Ectopia lentis +++ - - - 

Cleft palate/bifid uvula - ++ + + 

Hypertelorism - ++ ++ ++ 

Proptosis - + ++ ++ 

Craniosynostosis - + +++ - 

Arachnodactyly +++ ++ ++ ++ 

Tall stature +++ + ++ - 

Pectus deformity ++ ++ ++ ++ 

Club foot - ++ + + 

Joint hypermobility + ++ ++ +++ 

Cervical spine instability - ++ + + 

Osteo-arthritis + ++ + ? 

Hernia (umbilical, inguinal,…) + + + + 

Aortic root aneurysm +++ +++ + +++ 

Ascending aneurysm + ++ + ++ 

Arterial aneurysm -/+ +++ + + 

Arterial tortuosity - +++ + + 

Early aortic dissection + ++ - - 

BAV/ASD/VSD/PDA - + - ++ 

Motor developmental delay - - ++ ++ 

Intellectual disability - - ++ - 

 573 


