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A misadventure of the
correlation coefficient
Dmitri A. Rusakov 1,*

The correlation coefficient gauges
linear association between two
variables. However, interpreting its
value depends on the question at
hand. This article argues that rely-
ing on the correlation coefficient
may be irrelevant for many neuro-
science research tasks. When the
experimental dataset is contextu-
ally suitable for binning-averaging,
other indicators of statistical asso-
ciation could prove more suitable.
Interpreting Pearson’s R
The commonly used Pearson’s correlation
coefficient, Pearson’s R, evaluates linear
association between two experimental
variables, say X and Y. It has been widely
accepted, at least across biological sci-
ences, including neurobiology, that R > 0.7
indicates a strong linear relationship be-
tween X and Y, R < 0.3 weak, and the rest
is moderate. This rule of thumb normally
reflects the aim to predict the value of Y
from measuring X, based on the X–Y rela-
tionship established for the population.
The prediction reliability aspect of Pearson’s
R follows from the fact that the R2 value,
termed the coefficient of determination,
stands for the proportion of the variation
in Y that could be predicted from X. In
essence, the correlation coefficient indi-
cates how closely the data fit a linear pattern
[1,2], which may explain practical usage of
the foregoing traditional rule of thumb, par-
ticularly in clinical studies where prediction
reliability is of importance.

However, in many documented cases
these cut-off points appear arbitrary and in-
consistent [2,3]. The correlation coefficient
is of little importance unless it can be
properly interpreted, which has been
considered a difficult task for all scale values
[1]. In fact, it has long been emphasised that
the interpretation and usability of R depend
on the specific question under study [2,4].
The use of Rmay be of particular relevance
if the question falls into one of the following
three categories: (i) How accurate is the pre-
diction? (ii) What is the magnitude of error in
a reliability task? (iii) What is the strength of
the X–Y relationship? [4]. The present article
will argue that, in many instances, neuro-
science research tasks that involve the
linear X–Y relationship fall outside this
scope, so that referring to R appears irrele-
vant to the posed question.

Cumulative effects arising due to a
populational trend
In many experimental quests, predicting
the Y value from measuring X for individual
objects is not among the relevant, or even
feasible, objectives. Such cases arise,
for instance, when one or both variables
show high inherent (biological) variability
and/or when there has been a large mea-
surement error. Multiple examples for this
can be found in neurophysiology. In cellular
neurophysiology, for example, a common
objective is to understand whether cell
behaviour is affected by some cumulative
populational feature arising across
thousands of synaptic connections. The
X–Y datasets describing individual synap-
ses normally display significant scatters.
Such datasets may include, for instance,
dendritic spine density against dendrite
diameter [5]; local numbers of synaptic
AMPA receptors against distance from the
soma [6]; quantal content against a short-
term plasticity parameter for glutamate
release [7]; and so on. Here, the X–Y rela-
tionship among synapses varies too
strongly to reliably predict Y from X for any
individual synapse, which is duly reflected
in low R values. It can be argued, however,
that the focus of these studies is beyond
the scope of questions relevant to R: here,
given the unlimited numbers of realisations
or events (synaptic inputs times synaptic
discharges), relatively weak (but highly
significant) positive correlations can have a
clear cumulative effect, which is not duly
captured via the analyses of R. For instance,
a weak correlation between synaptic release
probability and the distance from the
synapse to the neuronal soma can result in
a highly significant shift in synaptic signal
summation leading to cell spiking [8].

In this context, the question is therefore not
about the strength of the X–Y relationship
per se but whether the X–Y relationship is
statistically significant (i.e., whether it tran-
spires over virtually unlimited sampling).
Here, the magnitude of the physiological
effect will depend not so much on the
adherence of the X–Y scatter to the straight
line, but rather on how steep the X–Y
dependence is. A conventional estimator
of this steepness is linear regression,
where the regression coefficient (algebraic
slope of the best-fit straight line) describes
the expected magnitude of change in Y
for a one-unit change in X. In such cases,
referring to the R value as an indicator of
the effect strength could be highly am-
biguous, as illustrated later.

Data binning-averaging increases
R for the same dataset
The X–Y data scatter shown in Figure 1A
is produced by generating a linear depen-
dence between uniformly distributed X
values over the 0–1 interval and Y values
that follow theGaussian distribution centred
around the slope line (coefficient 0.5). This
data scatter is illustrative of the experimental
datasets mentioned earlier [5–7]: it reflects
high data variability, low R value, yet highly
significant regression (Figure 1A; β, linear
regression coefficient). However, if we bin
this dataset, by averaging Y values over
the regular 0.1-long X intervals, we arrive at
the reduced data scatter that shows an ex-
cellent linear relationship, with the strongly
increased R but virtually unchanged β
(Figure 1B). As an experimental example
from work by the author and colleagues, a
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Figure 1. Binning raw data in the X–Y dataset elevates the correlation coefficient. Hypothetical datasets were computer generated to illustrate the effect of
binning on Pearson’s correlation coefficient. (A) A Monte Carlo generated data set (n = 300 data points; OriginPro random number generator), with X values distributed
uniformly randomly over [0; 1] interval and Y values following a Gaussian distribution centred at the slope line Y = βX (β = 0.5), with standard deviation σ = 0.7;
unbroken line, best-fit linear regression; R, Pearson’s correlation coefficient; P, confidence level to reject the null-hypothesis ‘zero-slope of linear regression’. (B) The
dataset as in (A), but binned with Y values averaged over 0.1 X intervals; X values shown at bin centres; other notations as in (A). (C) An example of Pearson’s R based
image colocalisation analysis: computer generated brightness signals in a pair of image channels (green and magenta; Gaussian pixel noise added; ImageJ Fiji Process/
Noise). The size of image pixels (binning) increases from left to right column as indicated. The Pearson’s R values for the interchannel pixel brightness colocalisation, and
the statistical significance of the respective linear regression slope (H0-hypothesis rejection level p; ImageJ Fiji Colocalization/Coloc 2), are shown for the respective image
pairs. (D) ‘True signal’: images as in (C) 'Raw data' panel but with all noise removed; notations as in (C).
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similar increase in R by data averaging can
be shown in a dataset reporting release
probability values versus distance from the
synapse to the soma [8]. In the latter case,
averaging (binning) synaptic features over a
dendritic segment length reflects a realistic
scenario when the bulk of synapses in that
segment are activated [9]. Thus, essentially
the same data sample could generate
different R values, as long as the bio-
logical question under study permits data
binning-averaging.

Image binning and Pearson’s
correlation
Pearson’s R has also been used to evaluate
colocalisation or correlation between dis-
tributed signals recorded in two separate
imaging channels, either static or dynamic
(e.g., [10,11]). Digital images consist of
pixels or voxels, the ‘elementary’ square
or cubic areas over which the intensity of
native signal sources (diffraction-limited
light in case of light microscopy) is averaged.
Thus, setting the pixel or voxel size by
the imaging system is equivalent to the
averaging-binning of raw data, as dis-
cussed earlier. It is no surprise, therefore,
that Pearson’s R calculated to assess signal
colocalisation between two images or image
channels may depend on the pixel size [12].
The simulated example in Figure 1C illus-
trates a colocalisation test for a pair of
image channels, each with two brightness
spots representing the signal of interest;
Gaussian noise has been added to re-
flect typical imaging conditions. Calcu-
lating Pearson’s R for signal colocalisation
shows that its value increases strongly
with image binning (increasing pixel size;
Figure 1C). This increase does not appear
spurious because the ‘true signal’ (noise
removed) corresponds to the highest R
(Figure 1D). At the same time, the linear cor-
relation slope remains significantly above
zero throughout (P < 0.001), suggesting
that colocalisation is statistically significant.
However, quantifying the strength of signal
colocalisation in such cases is a complex,
context-dependent task, which is outside
the scope of this article. Here we simply
argue that relying on Pearson’s R may not
be the most robust approach for establish-
ing signal correlation or colocalisation for
multiplexed imaging.

Concluding remarks
This article outlined some basic consider-
ations around the use of Pearson’s R and
argues against overinterpreting Pearson’s
R as an unequivocal indicator of the
‘strength’ or ‘weakness’ of the effect arising
from the linear dependence of two variables.
In some experimental designs where the
task in question permits data binning or
averaging, as often encountered in neuro-
science, a regression analysis should pro-
vide more reliable insights. In this context, it
might be particularly ambiguous to rely on
R in the case of experimental metrics with
inherent binning-averaging, such as variable
pixel/voxel values used in cellular or brain
imaging.
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