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Genomic data are informative about the history of species divergence and interspecific gene flow, including the
direction, timing, and strength of gene flow. Nevertheless, gene flow in opposite directions generates similar patterns
in multilocus sequence data, such as reduced sequence divergence between the hybridizing species, and as a result,
inference of the direction of gene flow is challenging. Here we study the amount of information about the direction
of gene flow in data of multilocus sequence alignments, when the data are analyzed using likelihood-based methods
under the multi-species coalescent with introgression (MSci) model. We analyze the case of two species, and use
simulation to examine larger species trees. We found that it is easier to infer gene flow from a small population to
a large one than in the opposite direction, and easier to infer inflow (gene flow from outgroup species to an ingroup
species) than outflow (gene flow from an ingroup species to an outgroup species). If introgression is assumed to
occur in the wrong direction, the time of introgression tends to be correctly estimated, Bayesian test of gene flow
is often significant, and the estimated introgression probability may be even greater than the true rate. We discuss
factors that cause gene flow to be asymmetrical, including geography, behavior, and incompatibility of introgressed
alleles with the host genomic background. We analyze a dataset of Heliconius butterflies to demonstrate that typical
genomic datasets are informative for inferring the direction of interspecific gene flow, as well as its timing and
strength.
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Introduction
Gene flow between species is an important evolutio-
nary process that can facilitate species diversification
and adaptation (Arnold and Kunte, 2017; Campbell
et al., 2018; Feurtey and Stukenbrock, 2018; Marques5

et al., 2019; Edelman and Mallet, 2021). It occurs
as a result of hybridization followed by backcrossing
with one of the two hybridizing parental species,
with one parent as the source or donor and the other
the target or recipient. The outcome of introgression10

in each direction is influenced by multiple factors
including mating preference and reproductive barriers,
ecological selection on hybrids, and incompatibility
of the introgressed alleles with the host genomic
background (Coyne and Orr, 2004; Peters et al., 2017;15

Martin and Jiggins, 2017; Moran et al., 2021). Gene
flow is thus intrinsically asymmetrical, being more
likely in one direction than in the other. Reliable
inference of the direction of introgression, as well
as its timing and rate, using the abundant genomic20
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data will advance our understanding of this important
evolutionary process and its consequences, including
the role of gene flow during the speciation process, and
the adaptive nature of the introgressed alleles.

Two types of models of interspecific gene flow 25

have been developed, both in the multispecies coale-
scent (MSC) framework. The MSC-with-introgression
(MSci; Flouri et al., 2020) model, also known as
multispecies network coalescent (MSNC; Yu et al.,
2012; Wen and Nakhleh, 2018; Zhang et al., 2018), 30

assumes that gene flow occurs at a particular time
point in the past. The rate of gene flow is measure
by the introgression probability (ϕ or γ), which is the
proportion of immigrants in the recipient population
at the time of introgression. The MSC-with-migration 35

(MSC-M) model, also known as the isolation-with-
migration (IM) model, assumes that gene flow occurs
continuously at a certain rate every generation after
species divergence (Nielsen and Wakeley, 2001; Hey
et al., 2018). The rate of gene flow is measured by 40

the expected proportion (mAB) or number (MAB) of
immigrants in every generation, with mAB = NBmAB,
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where NB is the population size of the recipient
population. In both models, the rate of gene flow (ϕ
or M) should be considered an ‘effective’ rate, as it45

reflects the combined effects of gene flow, genetic drift,
and natural selection purging or fixing introgressed
alleles, influenced by the local recombination rate.

Interspecific gene flow alters gene genealogies,
causing fluctuations over the genome in the genealo-50

gical history of sequences sampled from the extant
species. Under both the MSC-M and MSci models,
the gene tree and coalescent times have probabilistic
distributions specified by the model and parameters,
including species divergence times, population sizes55

for extant and extinct species, and the rate of gene flow
(see Yang, 2014; Jiao et al., 2021 for reviews). Data of
multilocus sequence alignments, which are informative
about the gene tree topologies and coalescent times that
underlie the sequence data, are thus informative about60

the direction of gene flow as well as its timing and
strength. Here in this paper we study the nature of the
inference problem and focus on likelihood methods for
inferring gene flow under the MSci model (Flouri et al.,
2020). Commonly used heuristic methods for inferring65

gene flow such as the D statistic (Green et al., 2010;
Durand et al., 2011) may not be informative about the
direction of gene flow as they do not use all information
in the data. The computational strengths and statistical
deficiencies of heuristic methods have been reviewed70

by Hibbins and Hahn (2021), Jiao et al. (2021),
Huang et al. (2022), and Yang and Flouri (2022).
We assume that multiple sequences are sampled per
species per locus, but will also consider the special case
of only one sequence per species. Sampling only one75

sequence per species leads to unidentifiability or severe
reduction in information about gene flow (Degnan,
2018; Yang and Flouri, 2022).

We note that opposite directions of gene flow often
create similar features in gene genealogies and thus80

in the sequence data. In the case of two species (say
A and B) with one sequence sampled per species
per locus, the coalescent time (tab) between the two
sequences (a,b) has the same distribution under the
models with A → B or B → A introgression, so that the85

direction of introgression is unidentifiable using such
data (Yang and Flouri, 2022, fig. 10) (see also below).
However, the introgression direction is identifiable
when multiple sequences are sampled per species per
locus. When gene flow occurs between non-sister90

species, the opposite directions of gene flow affect both
gene tree topologies and coalescent times, so that it is
easier to infer introgression between non-sister species
than between sister species.

We use a combination of mathematical analysis95

and computer simulation to study the features of the
sequence data that are informative about the direction
of gene flow. The analysis allows us to compare
and quantify the amount of information in the data
under different scenarios. A second objective is to100

examine the impact of misspecified direction of gene
flow on Bayesian estimation of parameters in the MSci
model (Flouri et al., 2020) and on Bayesian test of
introgression (Ji et al., 2022). If introgression occurs
from species A to B but is assumed to occur from B 105

to A in analysis of genomic sequence data, is gene
flow likely to be inferred? What will be the estimated
rate of introgression, relative to the true rate in the
opposite direction? In a previous study, we examined
the impacts of incorrect assignments of introgression 110

events onto branches on the species tree, of ghost
species which exchange migrants but are not included
in the data sample, and of the misspecified mode
of gene flow (e.g., gene flow occurs continuously
over time as in the MSC-M model but assumed to 115

occur at a fixed time point as in the MSci model)
(Huang et al., 2022). In this paper we focus on
the direction of gene flow. We study the distribution
of the coalescent times (taa, tab, tbb) under models of
introgression between two species A and B. Analysis 120

of the two-species case provides important insights into
more complex cases. Next, we explore the amount of
information gained when a third species is added to
branches of the species tree for two species. Finally, we
study the impact of introgression direction when gene 125

flow involves non-sister species. Our results provide
practical guidelines for inferring introgression from
genomic sequence data. We analyze two datasets (one
coding and another noncoding) from three species of
Heliconius butterflies to demonstrate the feasibility of 130

using genomic sequence data to infer the direction of
gene flow, as well as its timing and strength.

Results
The MSci model and its parameters in the case of
two species 135

We use the MSci model of figure 1a with introgression
from species A to B to introduce the notation and
set up the problem. The model assumes that the
two species diverged at time τR and came into
contact and hybridized at time τX . The rate of 140

introgrssion or hybridization is measured by the
introgression probability ϕY , which is the proportion
of immigrants from A in population B at the time
of introgression/hybridization. There are three types
of parameters in the model: species divergence times 145

or introgression times (τR,τX ), population sizes for
extant and extinct species (θA,θB,θX ,θY ,θR), and the
introgression probability (ϕY ). The divergence time
parameter is defined as τ = T µ , where T is the
divergence time in generations and µ is the mutation 150

rate per site per generation. Each branch on the species
tree represents a species or population and is associated
with a population size parameter, θ = 4Nµ , where
N is the (effective) population size of the species.
A branch on the species tree is also referred to by 155
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its daughter node so that branch RX is also branch
X , with population size parameter θX . Both τ and θ

are measured by the expected number of mutations
per site; i.e., one time unit is the expected time to
accumulate one mutation per site. At this time scale,160

coalescent occurs between any two sequences in a
population of size θ as a Poisson process at the rate
2
θ

.
We consider estimation of parameters in the MSci

model using multilocus sequence data. Each dataset165

consists of sequence alignments at L loci, with nA
sequences from A and nB sequences from B at each
locus, and with n sites in each sequence. Underlying
the sequences at each locus is a gene tree with branch
lengths (coalescent times). The probability density for170

the gene tree with coalescent times is given by Yu et al.
(2014). The data are analyzed under three introgression
models: the I model with A → B introgression, the O
model with B → A introgression, and the B model with
bidirectional introgression (A ⇆ B) (fig. 1a-c). The175

‘inflow’ (I) and ‘outflow’ (O) labels are used here in
anticipation of models involving more than two species
to be analyzed later.

We are interested in the following questions. First,
what features of sequence data are informative about180

the direction of introgression (i.e., about distinguishing
the I and O models of fig. 1a&b)? Second, what
are the biases in estimated introgression probability
and introgression time if the introgression direction
is misspecified (i.e., if data are generated under the185

I model and analyzed under the O model)? We
analyze the distributions of the coalescent times as
major features of the multilocus sequence alignments,
and augment our mathematical analysis by computer
simulation using the Bayesian program BPP (Flouri190

et al., 2018, 2020).

Distribution of coalescent times under the
two-species model
While likelihood methods under the MSci model
average over the full distribution of the gene tree (G)195

and coalescent times (ttt) for the sampled sequences at
every locus, this distribution depends on the sampling
configuration (nA,nB) and is too complex to analyze.
Instead, we study the marginal distributions of the
coalescent times between two sequences sampled200

from the same population (taa, tbb) or from different
populations (tab), which are analytically tractable.

Under model I (‘inflow’) with A → B introgression
(fig. 1a), the probability density of the coalescent time
between two sequences sampled from species A is205

fI(taa) =
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This is a function of τR,τX ,θA,θX ,θR, independent of
θB,θY ,ϕY . From the viewpoint of the coalescent betw-
een two A sequences, there are demographic changes
in population size with θA,θX ,θR, respectively, for the
three time segments (0,τX ), (τX ,τR), and (τR,∞). The 210

density is plotted for four sets of parameter values in
figure 2.

The coalescent time between two sequences sam-
pled from species B has the distribution

fI(tbb)=
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This is a function of τR,τX ,θB,θX ,θY ,θR,ϕY , indepen- 215

dent of θA. The density is plotted in figure 2. In the
time interval (0,τX ), coalescent between the two B
sequences occurs at the rate 2/θB, as when there is no
gene flow. There is a suppression of coalescent events
during the interval (τX ,τR), due to introgression, as no 220

coalescent is possible if one of the two B sequences
migrates into X (with time running backwards).

The coalescent time between two sequences sam-
pled from A and B has the distribution

fI(tab) =


ϕY

2
θX

e−
2

θX
(tab−τX ), if τX < tab < τR,[

(1−ϕY )+ϕY e−
2

θX
(τR−τX )

]
× 2
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e−

2
θR
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(3)
This is a function of τR,τX ,θX ,θR, and ϕY , independent 225

of θA,θB,θY . Note that coalescent between a and b
is impossible in the interval (0,τX ), while over the
interval (τX ,τR) it may occur if the B sequence migrates
into A (with time running backwards).

Under model O with B → A introgression (fig. 1b), 230

the densities fO(taa), fO(tab), and fO(tbb) are similarly
derived, and are indeed given by fI(tbb), fI(tab), and
fI(taa) with a change of symbols.

In particular, fI(tab) = fO(tab) for all tab > 0, with
the parameter mapping τ

(O)
R = τ

(I)
R ,τ (O)

X = τ
(I)
X ,θ (O)

Y = 235

θ
(I)
X , θ

(O)
R = θ

(I)
R and ϕX = ϕY (Yang and Flouri,

2022, fig. 10). Here the superscripts indicate the
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assumed model. Thus if only one sequence is sampled
per species per locus in the data, models I and O
are unidentifiable, and the direction of introgression240

cannot be inferred. However, if the direction of
introgression is specified (given model I, say), the
introgression probability (ϕY , say) is identifiable using
data of one sequence per species per locus.

Furthermore, the direction of introgression is245

identifiable if multiple sequences are sampled from A
and B. Information for distinguishing models I and
O of figure 1 are mostly from the coalescent times
between sequences from the same species (taa, tbb).
If gene flow is from A → B, the coalescent time for250

sequences from the donor species, taa, is not affected
by the A → B introgression. If different populations on
the species tree have the same size (θA = θX = θR),
taa will have a smooth exponential distribution (e.g.,
fig. 2a&b). Otherwise the distribution is discontinuous255

at time points τX and τR, as in a demographic model
of population size change (e.g., fig. 2c&d). In contrast,
the coalescent time for sequences from the recipient
species, tbb, will have a mixture distribution, depending
on which parental hybridizing species each of the two260

B sequences is traced back to on the gene genealogy.
The A → B and B → A models thus make different
predictions about the coalescent times taa and tbb,
allowing the models to be identified using genomic
sequence data, which contain information about gene265

trees and coalescent times.

Best-fitting parameters in the two-species model
We consider multilocus datasets generated under the I
model with A → B introgression (fig. 1a) and analyzed
under both the true I model and the misspecified O270

model with B → A introgression. When the amount
of data (the number of loci) L → ∞, the maximum
likelihood estimates (MLEs) under the I model will
converge to the true parameter values, with Θ̂I → ΘI.
Under the O model, when L → ∞ the estimates will275

converge to the infinite-data limit, Θ̂O → Θ∗
O. Known

as the best-fitting or pseudo-true parameter values, Θ∗
O

minimizes the Kullback–Leibler (KL) divergence from
the true model to the fitting model (e.g., Yang and
Zhu, 2018). It does not seem possible to calculate Θ∗

O280

analytically with arbitrary data configurations. Instead
we use as substitute the averages of posterior means
in BPP analysis of simulated large datasets of L =
4000 loci (with S = 4 sequences per species per locus
and n = 500 sites in the sequence), shown in table285

S1. Note that at this datasize, the average estimates
under the true I model are extremely close to the
true values (table S1), suggesting that the data size
may be large enough for the average estimates to be
close to the infinite-data limits. We aim to understand290

the estimates Θ∗
O by comparing the true distributions

of the coalescent times under model I, fI(taa), fI(tab),
and fI(tbb) (eqs. 1–3), with the fitted distributions

fO(taa), fO(tab), and fO(tbb), calculated using Θ∗
O. In

effect, the former are data, while the latter are the best 295

fit to data achieved by the misspecified model O.
We used four sets of parameter values in model I

(fig. 1a) in the numerical calculation, representing four
different scenarios: (a) same θ tall tree, (b) same θ

short tree, (c) small to large, and (d) large to small 300

(fig. 2, table S1). See Methods section.
First, we consider the case where all populations

on the species tree have the same size (table S1a&b).
The true distribution fI(taa) is a continuous exponential
density (fig. 2, black curves in cases a and b). 305

The true distribution fI(tbb) is discontinuous at τX
and τR, with a drop in the probability mass during
the time interval (τX ,τR); the A → B introgression
makes coalescence between the two B sequences less
likely over (τX ,τR). The true distribution fI(tbb) is 310

discontinuous at τR, and is exponential within each
of the two time segments: (τX ,τR) and (τR,∞). In
the fitting O model, the assumed B → A introgression
should lead to the opposite expected pattern, i.e.,
discontinuities in fO(taa) but not in fO(tbb). The 315

introgression time τ̂
(O)
X is largely determined by the

smallest coalescent time between sequences from the
two species (tab), while the discontinuity in fI(tab) as
well as in fI(tbb) should be very informative about τ

(O)
R .

Thus we expect those parameters to be close to the true 320

values under model I: τ̂
(O)
R ≈ τ

(I)
R and τ̂

(O)
X ≈ τ

(I)
X . If

the sequence is infinitely long with n = ∞ (i.e., if the
true coalescent times are given as data), the best fitting
parameter values for τ

(O)
R and τ

(O)
X should match the

true values in model I (Huang et al., 2022). Population 325

sizes θ̂
(O)
A , θ̂ (O)

B , and θ̂
(O)
R should be close to the true

values as well, as those are well-estimated from the
multiple samples from the same species. Here we focus
on ϕX ,θ

(O)
X , and θ

(O)
Y .

Consider taa. In the true model, both A sequences 330

will enter X and may coalesce in (τX ,τR). In the
fitting O model, the two A sequences may be separated
due to introgression (one in X and one in Y ), so
they may not coalesce in (τX ,τR) as often. Thus we
expect θ̂

(O)
X ≤ θ

(I)
X as an increased coalescent rate 335

in X may compensate for this deficit of coalescence
over (τX ,τR) in model O. Next, consider tbb. In the
true model, A → B introgression reduces the chance
of coalescence between sequences from B during
(τX ,τR). In the fitting model, both B sequences will 340

enter Y , leading to a higher chance of coalescence
during (τX ,τR). Thus we expect θ

(O)
Y ≥ θ

(I)
Y to reduce

the chance of coalescence in (τX ,τR). Finally, consider
tab. By matching the amount of coalescence between
sequences a and b over the time interval (τX ,τR), or by 345

matching the probability densities fI(tab) and fO(tab)
for τX < tab < τR, we have approximately

ϕ̂X
[
1− e−2∆τ/θ̂

(O)
Y

]
= ϕY

[
1− e−2∆τ/θ

(I)
X
]
, (4)
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where ∆τ = τR − τX is assumed to be the same under
models I and O based on the arguments above. Eq. 4
predicts that more gene flow will be inferred under350

model O (ϕ̂X > ϕY ) when θ̂
(O)
Y > θ

(I)
X , while ϕ̂X <

ϕY if θ̂
(O)
Y < θ

(I)
X . Note that θ̂

(O)
Y > θ

(I)
X means that

the coalescent rate between sequences a and b during
(τX ,τY ) is lower in the fitting model than in the true
model, so that a higher introgression rate ϕ̂X than355

the true rate ϕY will increase the chance of such
coalescence and achieve a better fit to fI(tab).

In summary, if the population sizes are the same
for all species on the species tree in the true model,
consideration of taa predicts θ̂

(O)
X < θ

(I)
X , consideration360

of tbb predicts θ̂
(O)
Y > θ

(I)
Y , while consideration of

tab predicts that ϕ̂X is greater or smaller than ϕY

depending as θ̂
(O)
Y is greater or smaller that θ

(I)
X . The

actual estimates of ϕX ,θ
(O)
X , and θ

(O)
Y will depend

on the parameter values under the true model. Those365

predictions match the estimates of table S1 (cases a
and b). Using the estimates of θ̂

(O)
Y , eq. 4 predicts ϕ̂X

to be 0.31 and 0.35 for cases a and b, respectively,
compared with ϕ∗

X = 0.27 and 0.30 in table S1. The
approximation is reasonably good.370

The case where different species have different
population sizes is more complex (table S1c&d).
As in the case of equal population sizes, τX is
largely determined by the smallest coalescent time tab,
while τR is determined by the discontinuities in the375

distribution of taa, tab, tbb. Both should be correctly
estimated despite the misspecification of introgression
direction in model O. Similarly population sizes
for the extant species (θA,θB) are informed by the
multiple samples from those species and thus correctly380

estimated, as is θR for the root population. However,
estimates of ϕX ,θ

(O)
X , and θ

(O)
Y depend on all of taa, tbb,

and tab, which may make conflicting predictions about
the parameter estimates. For example, eq. 4 based on
tab predicts ϕ̂X to be 0.44 and 0.22 for cases c and385

d, respectively, compared with ϕ∗
X = 0.98 and 0.17 in

table S1. The approximations are poor, especially for
case c, suggesting that ϕ∗

X is influenced not only by
tab but also by taa and tbb. We discuss the parameter
estimates in model O in those cases later when we390

describe the simulation results.
The limiting parameter values determine the beha-

vior of the Bayesian test of gene flow (Ji et al., 2022)
in large datasets, as they determine the asymptotic
behavior of posterior probabilities of the compared395

models (the null model of no introgression and the
alternative model of introgression) (Yang and Zhu,
2018). If data are simulated under model I (with
ϕY > 0) and analyzed under model I, the posterior
probability for the true model I should approach 1, the400

Bayes factor for comparing model I against model 0
(no gene flow, fig. 1d) BI0 → ∞, and the power of the
test should approach 100%, when the data size L → ∞

(Yang and Zhu, 2018). If the data are simulated under
model I and analyzed under model B, the power for 405

testing ϕY (which has the true value ϕY > 0) should
approach 100%, and the false positive rate for testing
ϕX (which has the true value ϕX = 0) should approach
0, when the data size L → ∞.

If the data are generated under model I and analyzed 410

under model O, with the introgression direction
misspecified, both the null model (0: no gene flow)
and the alternative model (O: B → A introgression)
are wrong. Then the asymptotic behavior of the
Bayesian test depends on whether or not the pseudo- 415

true parameter value ϕ∗
X = 0. As ϕ∗

X > 0 according
to our analysis, model O is a ‘less wrong’ model
than model 0 (Yang and Zhu, 2018). Thus when L →
∞, BO0 → ∞, and the probability of rejecting H0 :
ϕX = 0 will approach 100%. In this comparison of 420

models O against 0, the biological interpretation of
test results is somewhat ambiguous. If one emphasizes
the fact that model O allows gene flow while model
0 does not, rejecting the null and detecting gene flow
may be considered a correct result. However, if one 425

considers model O as a wrong model with misspecified
introgression direction, rejecting the null and accepting
model O may be considered a false positive error. In
this paper, we use the second interpretation.

It may be noteworthy that the Bayesian test based on 430

Bayes factors may lead to a strong support for the null
model, rejecting the more general alternative model
with great force. When two models fit the data equally
well, Bayesian test favors the simpler model with
fewer parameters. This is in contrast to Frequentist 435

hypothesis testing, which may fail to reject the null
but never provides strong support for the null. Those
expectations are confirmed later in our analyses of the
simulated and real data.

Simulation under the two-species models 440

To verify and extend our theoretical analysis, we
simulated datasets under model I of figure 1a using
four sets of parameters (cases a–d), with ϕY = 0.2 in all
cases (table S1). Each dataset consists of L= 250,1000
or 4000 loci, with S = 4 sequences sampled per species 445

per locus and N = 500 sites in the sequence. The data
were then analyzed under models I, O, and B (fig. 1a-c)
using BPP. The posterior means and the 95% highest-
probability-density (HPD) credibility intervals (CIs)
are plotted in figure 3 (see also table S1 for L = 4000). 450

The results of Bayesian test of introgression are in
figure S1.

Performance under the true model

Model I is the true model, so that the performance
under this model constitutes the best-case scenario. 455

Indeed all parameters were well estimated, with the
posterior means approaching the true values and the

5
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CI width approaching 0 when the amount of data
L → ∞ (fig. 3 and table S1, cases a-d, model
I). Population sizes for extant species (θA,θB) were460

much better estimated than those for ancestral species
(θX ,θY ). The divergence times (τR,τX ) were well
estimated as well. The introgression probability (ϕY )
had substantial uncertainties with wide CIs but with
L = 4000 loci in the data, the estimates were fairly465

precise. Thousands of loci appeared to be necessary to
get reliable and precise estimates of the introgression
probability. The results are similar to those found in
our early simulation examining the impact of various
factors (L,S,n) on the information content concerning470

parameters in the MSci model (Huang et al., 2020).
Model B allows bidirectional introgression and thus

is a correct model although it is over-parametrized
with an extra introgression probability parameter (ϕX ).
When the amount of data increases, ϕ̂Y should475

converge to the true value while ϕ̂X to 0. Estimates
of other parameters were very similar to those under
the I model, and the CI widths under models I and
B were very similar. In particular, ϕY was estimated
with very similar precision in the two models. In the480

large datasets of L = 4000 loci, the average CI width
was 0.07, 0.12, 0.08, and 0.16 for cases a–d under
model I, compared with 0.07, 0.12, 0.09, 0.17 under
model B. Even in the small or intermediate datasets
with L = 250 or 1000 loci, the CIs for ϕY were485

similar between the two models. Over-parametrization
did not seem to have incurred any major cost to the
statistical performance of the method. This result may
appear surprising, as given the difficulty of inferring
the direction of introgression, one might expect the490

assumed nonexistent introgression in the B → A
direction in model B to interfere with the estimation
of the rate in the right direction (A → B), so that
ϕ̂A→B may be expected to have much larger variances
under model B than under model I. Nevertheless, the495

information concerning ϕA→B is mostly determined by
the number of sequences reaching the hybridization
node Y and by the difficulty with which one can tell the
parental path taken by each B sequence at Y . There is
thus little difference in information content about ϕA→B500

between models I and B. Computationally, model B
is much more expensive due to sampling an extra
parameter in the Markov chain Monte Carlo (MCMC)
algorithm and to MCMC mixing issues (Yang and
Flouri, 2022).505

Information content for estimating ϕY under model I

Next, we discuss the comparison of model I results
among the four cases, to highlight the impact of
multiple factors on the amount of information in the
data for estimating ϕY .510

Consider tracing the genealogical history of seque-
nces at a locus backwards in time. When sequences
from B reach the hybridization node Y in the species

tree (fig. 1a), there is in effect a binomial sampling
process, with each sequence taking the horizontal 515

(introgression) parental path with probability ϕY and
the vertical parental path with 1 − ϕY . However the
outcome of the sampling process (i.e., the parental path
taken by the sequence) is not directly observed and is
instead reflected in the gene tree and coalescent times, 520

which are in turn reflected in the observed mutations in
the sequences. If a sequence from B coalesces with an
A sequence during the time interval (τX ,τR), it will be
clear that the B sequence has taken the introgression
parental path. Thus the amount of information for 525

estimating ϕY at any locus is affected by (i) the number
of B sequences reaching Y and (ii) how easy it is to
tell the parental path taken by each B sequence at Y .
The number of B sequences reaching Y is given by
the number of B sequences sampled at the locus (nB) 530

minus the number of coalescent events among them
in B before reaching Y , the latter of which is affected
by the length of branch B measured in coalescent
units: 2τY/θB. Each locus contains a greater amount
of information for a larger nB or smaller 2τY/θB. Also 535

increasing the number of sampled sequences (nB) is
less effective than increasing the number of sequences
reaching node Y , which is in turn less effective than
increasing the number of loci (L).

The second factor concerns the probability that two 540

sequences entering X coalesce in X before reaching
R; there is more information about ϕY in the data
the longer the internal branch RX is or the smaller
the population size θX is. This may be illustrated by
considering the special case where the data consists 545

of one sequence per species per locus and where the
true coalescent time (tab) is available at each locus.
Then the information content for estimating ϕY may
be measured by the Fisher information, given by

II,tab(ϕY )≈ E
[
− ∂ 2

∂ϕ2
Y

log fI(tab)
]

= PX
ϕY (1−ϕY PX )

< 1
ϕY (1−ϕY )

,
(5)

where the expectation is with respect to tab (eq. 3), 550

and where PX = 1 − e−
2

θX
(τR−τX ) is the probability

that two sequences entering population X (sequences
a,b) coalesce in X . Eq. 5 is approximate as it ignores
the correlation between parameters and the Fisher
information is in this case a 5× 5 matrix (see eq. 3). 555

The asymptotic variance of the estimate is

V(ϕ̂Y )≈ 1
IL = ϕY (1−ϕY PX )

LPX
≥ ϕY (1−ϕY )

L , (6)

the binomial variance, with equality held if PX = 1.
There is thus more information for estimating ϕY if
PX is greater, or if the branch length 2

θX
(τR − τX) is

greater. Indeed eq. 6 suggests that increasing PX is 560

more effective in reducing V(ϕ̂Y ) than increasing the
amount of data (L) by the same factor.
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In our simulation (fig. 3), the introgression proba-
bility ϕY was better estimated in case a “same θ tall
tree” than in case b “same θ short tree”. For L =565

4000, the 95% HPD CI width was 0.07 for case a,
and 0.12 for case b. We suggest that two effects may
explain the difference. First, in case a, branch Y B is
longer, with length 2τY/θB in coalescent units, so that
fewer sequences reach Y , providing less information570

about ϕY than in case b. Indeed, starting with nB = 4
sequences sampled from B, the probability that 1, 2, 3,
4 sequences remain by time τY is 0.388, 0.515, 0.095,
0.002, respectively in case a, with on average 1.71
sequences reaching Y . For the short tree of case b, the575

corresponding probabilities are 0.122, 0.481, 0.347,
0.050, with on average 2.32 B sequences reaching Y .
The average number of sequences reaching Y differ
by a factor 1.36. Second, in case a the species tree
is tall, so that any B sequence reaching Y and taking580

the left parental path is more likely to coalesce with A
sequences in X than in case b. PX = 1−e−1 = 0.632 in
case a while PX = 1−e−0.5 = 0.393 in case b, different
by a factor of 1.61. As mentioned earlier, increasing PX
is more effective than increasing the number of loci L585

(eq. 6, which is in turn more effective than increasing
the average number of sequences reaching Y . Thus ϕY
was far more precisely estimated in case a than in b
(table 3, table S1). If we use the same population size
θB in cases a&b, the number of sequences reaching590

Y will be the same, and the performance differences
between the two cases will be even greater.

Introgression probability ϕY was much better
estimated with narrower CIs in case c “small to large”
than in case d “large to small” (fig. 3). At L = 4000,595

the CI width was 0.08 for case c compared with 0.16
for case d (table S1). In case c more B sequences reach
Y because of the large θB than in (d). Furthermore B
sequences that reach Y and migrate into X (with time
running backwards) have a high chance of coalescing600

with other sequences in population X . Both effects
make it easier to estimate ϕY in case c than in case d.

Biases in parameters under model O with misspecified
introgression direction

As discussed above, we expect species divergence time605

τR, the introgression time τX , and population sizes
for the extant species and for the root (θA,θB,θR)
to be well estimated under model O despite the
misspecification of the introgresion direction. Here we
focus on estimation of parameters ϕX , θX , θY under610

model O (fig. 3, I-O in cases a–d).
In case a (same θ tall tree), all populations have

the same size (fig. 3, case a). As the true model
I predicts a smooth density for taa while model O
may have a deficit of taa over the interval (τX ,τR)615

due to the assumed introgression, we expect θ̂
(O)
X ≤

θ
(I)
X to compensate by increasing the coalescent rate

for sequences from A in X . Similarly, based on the
distribution of tbb, we expect θ̂

(O)
Y ≥ θ

(I)
Y . Given θ̂

(O)
Y ≥

θ
(I)
X = θ

(I)
Y , we expect from the distribution of tab 620

that ϕ̂X ≥ ϕY . Because the coalescent rate between
sequences a and b during (τX ,τY ) is higher in the true
model than in the fitting model, a higher introgression
rate ϕX than the true rate ϕY helps with the fit to the
distribution of tab. 625

Case b (same θ short tree) is similar to case a, but
the divergence times (τR,τX ) were half smaller. As in
case a, we expect θ̂

(O)
X < θ

(I)
X , θ̂

(O)
Y > θ

(I)
Y and ϕ̂X > ϕY .

Furthermore, we expect ϕ̂X to be larger in case b than
in case a. Note that when θ

(O)
Y and θ

(I)
X are fixed with 630

θ
(O)
Y > θ

(I)
X (or when θ̂

(O)
Y is similar in the two cases,

table S1), the smaller ∆τ of case b (than in case a)
means a larger ϕ̂X according to eq. 4. We have ϕ∗

X ≈
0.27 and 0.30 for cases a and b respectively (table S1).

Case c (small to large) assumes that populations on 635

the left of the species tree (fig. 1a) are 1/5 as small as
those on the right, with θA = θX = θR = 0.01 and θB =
θY = 0.002. Based on tab, we need a large ϕ̂X or a small
θ̂

(O)
Y to increase the chance of coalescence between

sequences a and b over (τX ,τR) to mimic the effect 640

of the smaller source population in the true model.
However, consideration of tbb suggests θ̂

(O)
Y > θ

(I)
Y

to compensate for the reduced coalescence between
B sequences caused by the A → B introgression in
the true model. Thus tab and tbb make conflicting 645

predictions about θ̂
(O)
Y . In the simulation, θ̂

(O)
Y was

close to θ
(I)
Y . Then ϕ̂X needs to be large to obtain a good

fit to tab. However, ϕ̂X was nearly 100%, much larger
than ϕY = 0.2 in the true model, and consequently, θ̂

(O)
X

was poorly estimated (fig. 3). The extreme estimate 650

of ϕX , with ϕX/θ
(O)
Y ≈ ϕY/θ

(I)
X , may be explained by

considering tab. In the true I model (small to large),
many B sequences reach Y (as θB is large) and when
a B sequence takes the introgression parental path, it
has a high chance of coalescing with an A sequence 655

in population RX (as θX is small), resulting in an
excess of coalescence during τX < tab < τR. In the
fitting O model, few A sequences reach node X (as
θA is small), and A sequences reaching X and taking
the introgression parental path at node X may coalesce 660

slowly with B sequences in population Y if θY is large.
Thus having a very large ϕ may increase coalescence
during (τX ,τR) and may improve the model fit to
the data. The extreme estimate (ϕ̂X ≈ 100%) also
caused small biases in the divergence time τR and the 665

introgression time τX .
Case d (large to small) is the opposite to case c

and assumes that population sizes on the left of the
species tree, θA = θX = θR (fig. 1a) are five times as
large as those on the right (θB = θY ), and introgression 670

is from a large population to a small one. We expect
θ̂

(O)
X < θ

(I)
X based on taa, and θ̂

(O)
Y > θ

(I)
Y based on tbb,

7



THAWORNWATTANA ET AL.

as before. Moreover, the larger source population in the
true model means tab is less common in (τX ,τR), with
most coalescence occurring in the common ancestor675

R. Thus based on tab we predict a larger θ̂
(O)
Y or

a smaller ϕX to reduce the amount of coalescence
in (τX ,τR) in the fitting model. Thus considerations
of both tbb and tab suggest θ̂

(O)
Y > θ

(I)
Y . Depending

on whether θ̂
(O)
Y is smaller or greater than θ

(I)
X , the680

introgression rate ϕ̂X may be greater or smaller than
the true rate ϕY , according to eq. 4. In our setting,
θ̂

(O)
Y = 0.0107, slightly greater than θ

(I)
X = 0.01, and

ϕ̂X = 0.17, slightly smaller than ϕY = 0.2 (table S1).
In summary, from the distributions of coalescent685

times between sequences expected under the true and
fitting models (fig. 3), we can predict or explain the
patterns of parameter estimates in the fitting model.
When introgression is assumed in the wrong direction,
the species divergence time and introgression time690

(τR,τX ) are often correctly estimated, except in case
c where model O has a extreme estimate with ϕX ≈
100%, which affected the estimation of τR and τX as
well. Population sizes for extant species and for the
ancestral species unrelated to the introgression event695

on the species tree (θA,θB,θR) are well estimated as
well.

Bayesian test of introgression

We applied the Bayesian test of introgression of Ji et al.
(2022) to the data simulated under model I of figure700

1a. The MCMC samples generated in the BPP runs of
figures 3 were processed to calculate the Bayes factor
B10 in favor of the introgression model (H1) against
the null model of no gene flow (H0) via the Savage-
Dickey density ratio (see Methods). The results are705

summarized in figure S1.
The power of the Bayesian test for introgression

when the data were simulated and analyzed under
model I was high, reaching ∼ 100% at L = 1000
loci. When the data were analyzed under model O, the710

direction of introgression was misspecified, in which
case detection of gene flow was considered a false
positive error. The false positive rate was comparable
to the power in the analysis under model I. When the
data were analyzed under model B, power to detect715

the A → B introgression was only very slightly lower
than under model I, also reaching ∼ 100% at L =
1000, while the false positive rate for detecting the
non-existent B → A introgression was low, below the
nominal 1%.720

Added information from including a third species
Given two species (A,B) with introgression from A →
B at the rate of ϕ (fig. 1a), we consider the information
gain for estimating ϕ from including a third species
(C). There are five branches on the two-species tree725

onto which C can be attached, creating five scenarios:
(a) the root population, (b, c) the source and target
populations before gene flow, and (d, e) the source and
target populations after gene flow (fig. 4a–e). Case c
is one of ‘inflow’, with gene flow from the outgroup 730

species (A) into one of the ingroup species (B), while
b represents ‘outflow’, with gene flow from an ingroup
species (A) into the outgroup (B). Note that in all cases
the correct MSci model is used in the analysis, so
that the Bayesian estimate (posterior mean) of ϕ will 735

converge to the true value (which is 0.2). However, the
information content may differ among the five cases.
We assumed the same population size θ1 = 0.01 for
all populations, but examined the impact of different
population sizes in cases b and c. We simulated 100 740

replicate datesets in each case. The posterior means,
the posterior standard deviation (SD), and the width of
the HPD CI for ϕ are summarized in figure 4f-h. While
the average of the estimate (ϕ̂) was close to the true
value in all cases, the posterior SD was smaller and 745

the posterior CI was narrower if the data were more
informative about ϕ . The 95% CIs for other parameters
are shown in figure S2.

Equal populations sizes on the species tree

If all populations on the species tree have the same 750

size (θ ), we expect the amount of information for
estimating ϕ to be in the order a ≺ d ≺ (b, e) ≺ c,
with the order of b and e undecided (fig. 4f–h).

First, a ≺ d. Cases a and d are the least informative.
Adding an outgroup species C in case a adds very 755

little information about ϕ . In d, the C sequences may
reach node X and coalesce with a B sequence in RX ,
providing information about whether sequences from
B take the introgression parental path at node Y . Thus
we expect more information in the data in d than in a. 760

Next, d ≺ b. The number of B sequences reaching
node Y is the same in the two cases, so the only
difference is in the difficulty of inferring the parental
path taken by B sequences at Y . In case b, coalescence
of a sequence b with one from A causes a change to 765

gene tree topology. In case d, introgression does not
cause such topological change to the gene tree. The
information content may thus be higher in b than in d.

Next, d ≺ e. In case e, sequences from both B and
C may reach the hybridization node Y while in d only 770

sequences from B may reach Y . The sample size for
binomial sampling at Y is thus larger in e than in d.
In d, more sequences enter node X , increasing the
probability of coalescence for any B sequence that take
the introgression parental path at Y , but this effect may 775

be less important than that of increased sample size in
e.

Next, b ≺ c or it is easier to infer inflow than
outflow. In both cases, the same number of B sequences
reach node Y so that the sample size for the binomial 780

sampling at Y is the same. However, the two cases
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differ in the difficulty with which one can tell the
parental path taken by each B sequence at Y . In c, the
coalescence of a sequence b with a sequence a over the
time period (τX ,τR) causes a change to the gene tree785

topology. In b, the coalescence of a sequence b with an
a over (τX ,τS) causes a gene tree topology change but
the resulting gene tree has a shorter internal branch and
is harder to infer than in case c. In addition, if sequence
b does not coalesce with an a over (τX ,τS) and enters790

population S, it may coalesce with both sequences a
and c and may not lead to a topology change. Both
effects suggest that it is easier to resolve the parental
path taken by each B sequence at Y in case c than in b,
and the data are more informative about ϕY in case c795

than in b. It is easy to infer inflow than outflow.
Finally, e ≺ c. In case c, introgression leads to

changes in gene tree topology which may be very
informative about ϕ whereas in e, more sequences
reach Y so that in effect the sample size for the800

binomial sampling is increased. In the simulation here,
the increased sample size was less informative than the
gene tree topology change (fig. 4g&h, case c same-θ
vs. case e). Nevertheless, we note that in both c and e,
the data are more informative about ϕ the smaller τX is,805

and that in e, the data are more informative the closer
τS is to τY .

Different populations sizes on the species tree

For cases b and c, we also examined the impact
of different population sizes, with gene flow from a810

small population to a large one (small→large) or in
the opposite direction (large→small) (fig. 4f–h). The
patterns are more complex than in the case of equal
population sizes.

First, in case b (outflow), ϕ is most poorly estimated815

in the large→small setting, much better estimated
in the same-θ setting, and best in the small→large
setting. Note that the same-θ setting is a case of
large→large. In particular, case b large→small is much
worse than case b same-θ . This seems to be mainly820

due to the different numbers of B sequences reaching
Y or the sample size for the binomial sampling in the
two cases. In the same-θ case, we used θ1 = 0.01
for all branches on the species tree, with τY = θ1/2.
From Huang et al. (2022, fig. S4 ), the probability825

that all S = 4 sequences from B have coalesced with
only one sequence reaching time τY is P(tMRCA <

τY/
θB
2 ) = P(tMRCA < 1) = 0.387, so there is a 61.3%

chance that two or more B sequences reach Y . Note
here that τY/

θB
2 = 1 is the length of branch Y B in830

coalescent units, or in other words the introgression
time τY is equal to the expected coalescent time for
a pair of sequences from a population of size θB.
In the large→small case, we have θB = θ0 = 0.002,
and P(tMRCA < 5) = 0.988, so at 98.8% of loci the835

four sequences from B should have coalesced before

reaching Y with only one sequence reaching Y . This
large difference in the sample size should explain why
ϕ is far more poorly estimated in case b than in case
b same-θ . Next, data are far more informative about 840

ϕ in case b small→large than in b same-θ . In both
cases, the number of B sequences reaching node Y is
the same, but in b small→large, B sequences taking the
introgression path at node Y coalesce at much higher
rate with sequences from A in population SX and with 845

sequences from A and C in population RS, making
it much easier to tell the parental path taken by B
sequences at node Y .

Similarly in case c (inflow), ϕ was more poorly
estimated in the large→small and same-θ settings, and 850

was best in the small→large setting. The differences
among the three settings are much smaller than in
case b. Case c large→small and large→large (same-
θ ) had similar performance, which may be explained
by two factors having opposite effects. The first factor 855

is that in c large→small, fewer B sequences reach Y
on average leading to a smaller sample size for the
binomial sampling. This favors c large→large (same-
θ ). The second factor is that in c large→small, the
smaller sizes of populations SY and RS means that B 860

sequences reaching Y and taking the vertical parental
path coalesce faster. This favors c large→small. The
two effects may have similar magnitude leading to
similar performance between c large→small and c
large→large (same-θ ). Next, case c small→large 865

is more informative than c large→large (same-θ ),
because in the small→large setting, B sequences taking
the introgression path at node Y coalesce at much
higher rate with sequences from A in population RX .

While in the case of same-θ , b outflow is less 870

informative than c inflow, the order is reversed in
the small→large setting, with b inflow small→large
being more informative than c outflow small→large.
The same number of B sequences reach node Y in
the two cases, so the difference must be due to the 875

different levels of difficulty by which one can tell
the parental paths taken by B sequences at node Y .
In b, B sequences taking the introgression parental
path go through the small population SX and may
coalesce at the high rate with sequences from A (which 880

lead to changes to the gene tree topology informative
about introgression), and with sequences from both
A and C in population RS. Note that because species
divergence and introgression times (τR,τX ) are well
estimated, between-species coalescent times younger 885

than species divergence (tbc < τR) are informative
about introgression as well. In c, B sequences taking
the vertical parental path may coalesce in population
RS with C sequences, but given that both populations
SY and RS are large, this effect may be expected to be 890

minor. While multiple factors have inconsistent effects
on the relative information content concerning ϕ in
cases b versus c small→large, on balance, the data are
more informative in case b than in c.
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Simulation in the case of four species895

We simulated datasets under the three MSci models
of figure 5 for four species on the species tree
((A,(B,C)),D), with introgression between non-sister
species A and B in different directions: inflow (I),
outflow (O), and bidirectional introgression (B). The900

data were analyzed under the same three models (I, O,
B), resulting in nine combinations. We first consider
the case where all populations on the species tree have
the same size (θ0 = θ1 = 0.01) in the simulation model.
The average posterior means and 95% HPD CIs are905

shown in figure 6 and the results for the large datasets
of L = 4000 are summarized in table S2. We then
assumed different population sizes, with θ0 = 0.002
for the thin branches and θ1 = 0.01 for the thick
branches on the species trees of figure 5. The results910

are summarized in figure S3 and table S3.

Equal population sizes

First we consider the case where all species on
the tree have the same population size (θ ) (fig. 6,
table S2). Some parameters that are shared among915

all three models were well estimated, with no
discernible impact from the model misspecification.
These include the population sizes for the extant
species (θA,θB,θC,θD), population sizes for ancestral
species R and S (θR,θS), and the species divergence920

and introgression times (τR,τS,τT , and τX = τY ). The
correct estimation of the introgression time when the
introgression direction is misspecified (e.g., τX in the
I-O and O-I settings) is noteworthy. As discussed
earlier for the case of two species, the estimate of925

introgression time (τ̂X ) is dominated by the minimum
sequence divergence between the species involved in
introgression (tab). Ancestral population sizes (θR,θS)
were slightly less well estimated but appeared to
converge to the correct values in all settings when930

the number of loci L → ∞ (fig. 6). Below we focus
on introgression probabilities (ϕX ,ϕY ) and population
sizes θX , θY , and θT .

In the I-I, O-O, and B-B settings, the true
model was used in the analysis, and the results935

provided a reference for comparison. The introgression
probability ϕY in the I-I setting was more precisely
estimated than ϕX in the O-O setting, with narrower
CIs. Inflow was easier to infer than outflow, as found
earlier in our simulations for the three-species case940

(fig. 4b&c, same θ ). Similarly in the B-B setting, the
inflow rate ϕY was better estimated than the outflow
rate ϕX . The B-B setting had wider CIs for ϕX and
ϕY than in the I-I and O-O settings, because of more
parameters in model B; however, the differences were945

very small (fig. 6, table S2). Overall the introgression
probabilities were well estimated under all three
settings, although thousands of loci appeared necessary
to obtain precise estimates. Population size θX was

better estimated in the I-I setting than in the O-O 950

and B-B settings, as the estimation was affected by
uncertainties in ϕX in model O and B. Similarly θY was
better estimated in the O-O setting than in the I-I and
B-B settings.

In the I-B and O-B settings, gene flow occurred 955

in one direction but the model assumed bidirectional
gene flow. The model was over-parametrized but not
misspecified. As Bayesian estimation under the correct
model is consistent, the introgression probability for
the nonexistent introgression (ϕX in I-B, ϕY in O-B) 960

should converge to 0 when the data size approaches ∞.
Results in both the I-B and O-B settings are consistent
with this expectation (fig. 6). Other parameters were
well-estimated, with CI widths indistinguishable from
those in the I-I and O-O settings. The results suggest 965

that the over-parametrization in the bidirectional model
had incurred little cost to the statistical performance of
the method, as found for the case of two species (fig. 3).

In the I-O and O-I settings, introgression is assumed
to occur in the wrong (opposite) direction. Our 970

analysis of the two-species case predicts that this
misspecification should only affect the estimation of
the introgression probability as well as the population
sizes θX ,θY , and θT , while other parameters should be
largely unaffected (see fig. 3). In particular, the time of 975

introgression should be correctly estimated. This was
indeed the case (fig. 6). In the I-O setting, we expect θX
to be underestimated, θY and θT to be overestimated,
and the introgression probability ϕX may be larger or
smaller than ϕY depending on how the estimates of 980

θY and θT are compared with the true value of θX .
Simulation results confirmed these predictions (fig. 6).
In the O-I setting, the effects were the opposite: θX was
overestimated while θY and θT were underestimated.
The introgression probability ϕY was estimated to be 985

smaller than ϕX .
Finally, in the B-O and B-I settings, introgression

occurs in both directions but is assume to occur in only
one direction. The estimates of θX ,θY , and θT followed
the same pattern of the I-O and O-I, respectively. The 990

introgression probability (ϕX in B-O, ϕY in B-I) was
larger and less well-estimated than the case when the
true model had unidirectional gene flow (ϕX in O-I, ϕY
in I-O). This positive bias may be explained by the fact
that gene flow in the two directions in the true model 995

B have an additive effects on the distribution of the
coalescent time between species (tab). For instance, in
the B-I setting, B → A introgressions in the true model
B are expected to increase the chance of coalescence
during τX < tab < τS, and such introgression events 1000

may be recognized and misinterpreted as A → B
introgression in the fitting model I, leading to ϕ̂

(I)
Y >

ϕ
(B)
Y .

10
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Different population sizes

Next, we consider the case where the source and target1005

populations differ in size (fig. 5). Data were simulated
under models I, O, and B, and analyzed under I, O,
and B, resulting in nine settings (fig. S3, table S3). In
the simulation, model I assumes inflow from a small
population to a large one, model O assumes outflow1010

from a large population to a small one, while model B
assumes both inflow from a small population to a large
one and outflow from a large population to a small one
(fig. 5).

As in the case of equal population sizes, species1015

divergence and introgression times (τR,τS,τT , and
τX = τY ) and population sizes for extant species
(θA,θB,θC,θD) and common ancestors R and S (θR,θS)
are all well estimated, irrespective of possible model
misspecification. Thus we focus on introgression1020

probabilities (ϕX ,ϕY ) and population sizes θX , θY , and
θT .

In the I-I, O-O, and B-B settings, the correct model
was assumed in data analysis. The introgression rate
ϕY in model I was far more precisely estimated than1025

ϕX in model O. At L = 4000 loci, the average 95%
CI was 0.19-0.22 for I-I and 0.16-0.24 for O-O (table
S3). The difference was far greater than in the case
of equal population sizes where the inflow rate ϕY in
model I was slightly better estimated than the outflow1030

rateϕX in model O (table S2). The large performance
difference is mainly because it is easier to estimate the
rate of small → large introgression (in model I) than in
the opposite direction. Similarly in the B-B setting, the
inflow rate of small → large introgression (ϕY ) is much1035

better estimated than the outflow rate of large → small
introgression (ϕX ): for L = 4000, the average 95% CIs
were 0.18-0.23 for ϕY and 0.15-0.24 for ϕX (table S3).

In the I-B and O-B settings, the B model was over-
parametrized. Performance was very similar to the I-1040

I and O-O settings, respectively, with the rate for the
nonexistent migration approaching 0 when the increase
in data size (L) (fig. S3, table S3).

In the I-O and O-I settings, the direction of
introgression was misspecified. In the I-O setting, ϕ̂X1045

was much greater than in the case of equal population
sizes. The extremely large ϕ̂X was noted in our analysis
of the two-species case: when gene flow occurs from a
small population to a large one but is assumed to occur
in the opposite direction, a large introgression rate1050

is preferred to improve the fit to the between-species
coalescent time (tab) (fig. 3c small→large, model O).

In the O-I setting, gene flow was from a large
population into a small one, the donor population
size θY was grossly underestimated while the recipient1055

population size θX was overestimated when the
introgression direction was misspecified. The patterns
were the same as in the two-species analysis (fig. 3d
large→small, model O). The large θ̂X helped improve
the fit to tab by reducing the coalescent rate in X in1060

the fitting model to match the reduced coalescence in
Y and T because of gene flow in the true model. The
estimate ϕ̂Y was much lower than the true introgression
probability ϕX = 0.2 in the opposite direction.

The B-I and B-O settings showed a cumulative effect 1065

in the estimates of the migration rate: ϕ̂Y was greater
in the B-I setting than in the I-I setting, and ϕ̂X was
greater in the B-O setting than in the O-O setting.
This is the same pattern as found in the case of equal
population sizes (fig. 6). 1070

Bayesian test of introgression

We also applied the Bayesian test of introgression of
Ji et al. (2022) to the data simulated under the I,
O, and B models of figure 5 and analyzed in figures
6&S3. The results are summarized in figures S4&S5. 1075

When the correct model is assumed to analyze data
(as in the I-I, O-O, and B-O settings), the power of
the test was high, reaching ∼ 100% at L = 1000 loci
(figs. S4&S5). In the I-B and O-B settings, the power
detecting introgression that exists in the true B model 1080

was high, while the false positive rate for detecting
the non-existent introgression was low, below the
nominal 1%. In the I-O and O-I settings, the direction
of introgression was misspecified, in which case we
consider detection of gene flow as a false positive error. 1085

The false positive rate was very high, comparable to the
power in the analysis under the correct model. Overall,
the results are very similar to those for the two-species
simulation (fig. S1).

Analysis of Heliconius genomic datasets to infer the 1090

direction of introgression
To demonstrate the feasibility of inferring the direction
of gene flow using genomic sequence data, we
analyzed two datasets of noncoding and coding loci
from three species of Heliconius butterflies: H. hecale 1095

(H), H. cydno (C), and H. melpomene (M) (fig. 7). One
dataset consisted of 5341 noncoding loci, the other of
4942 coding loci. We fitted four models: (0) MSC with
no gene flow, (I) MSci with C → M introgression, (O)
MSci with M → C introgression, and (B) MSci with 1100

C ⇆ M bidirectional introgression. We ran the MCMC
algorithm in BPP to generate the posterior estimates of
parameters in each model (Flouri et al., 2020) (table 1)
and conducted Bayesian test of introgression (Ji et al.,
2022) (table 2). To compare the four different models, 1105

we calculated Bayes factors using two approaches:
thermodynamic integration with Gaussian quadrature
(Lartillot and Philippe, 2006; Rannala and Yang, 2017)
and Savage-Dickey density ratio (Ji et al., 2022); see
Materials and Methods section. 1110

First, we discuss the results of the Bayesian test
(table 2). The precise value of the Bayes factor for
the same test showed differences depending on the
quadrature points in the thermodynamic integration

11
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approach, and was often ∞ by the Savage-Dickey1115

density ratio, reflecting the challenges of calculating
reliably the marginal likelihood or Bayes factors in
very large datasets (Rannala and Yang, 2017). For
example the logarithm of BI0 for comparison of the I
model with C → M introgression against the 0 model1120

of no gene flow was 1087.1 and 1082.5, respectively,
when K = 32 and 64 quadrature points were used.
This difference is mainly due to the difficulty of
calculating the power posterior reliably rather than
the use of too few quadrature points (Rannala and1125

Yang, 2017). Nevertheless, both values were far greater
than the cutoff of 100. Similarly the Savage-Dickey
density ratio approach estimated BI0 to be ∞ at all
three threshold values (ε = 1%,0.1%,0.01%). Both
approaches thus strongly support model I with C → M1130

introgression and reject model 0 with no gene flow.
For both datasets, the two approaches to Bayes

factor calculation led to the same conclusions, as
did the three threshold values for the Savage-
Dickey density ratio (ε = 1%,0.1%,0.01%). The1135

null hypothesis ϕC→M = 0 was rejected in the I-
0 and B-O comparisons, with strong support for
the C → M introgression, whether or not the M →
C introgression was accommodated in the null and
alternative hypotheses.1140

The B-I comparison tests the null hypothesis
ϕM→C = 0 when both the null and alternative models
accommodate the C → M introgression. This test
was not significant at rejecting the null model I. In
fact, the test led to strong support for the null model1145

I, with BBI < 0.01. Unlike Frequentist hypothesis
testing, which never supports the null strongly, here
the Bayesian test strongly favored the null model I,
rejecting the more general alternative model B. In other
words, under the assumption that there is C → M1150

introgression, the test strongly supported the absence
of M →C introgression.

However, test of ϕM→C = 0 was significant when
the C → M introgression was not accommodated in the
null and alternative models (the O-0 comparison). The1155

result mimics our mathematical analysis and computer
simulation, which showed that the test of gene flow was
often significant if the assumed gene flow was in the
wrong direction.

Finally, models I and O are not nested, but the Bayes1160

factor can be used to compared them. BIO suggested
strong preference for model I (C → M gene flow) over
model O (M →C gene flow).

In summary, all the tests led to the same conclusions.
Both the noncoding and coding datasets strongly1165

supported the presence of H. cydno → H. melpomene
introgression, and both strongly supported the absence
of the H. melpomene → H. cydno introgression.

Next, we consider the estimates of introgression
probabilities. Consistent with the results of Bayesian1170

testing above, estimates of ϕ under model B with
bidirectional introgression suggested that gene flow

was unidirectional. The estimates for the noncoding
data were ϕ̂C→M = 0.28 (95% HPD CI: 0.25–0.31)
and ϕ̂M→C < 1% in the opposite direction, while for 1175

the coding data, they were ϕ̂C→M = 0.51 (95% HPD
CI: 0.47–0.54) and ϕ̂M→C < 1% (table 1). The reasons
for the higher rate (ϕ̂C→M) for the coding than the
noncoding data are unknown. One possible factor may
be that introgression was mostly adaptive, driven by 1180

natural selection and coding loci are under stronger
selection. The time of introgression was nearly zero,
suggesting that gene flow may be on-going. Estimates
under model I were nearly identical to those under
model B. In model O where only M →C gene flow was 1185

allowed, the introgression probability was estimated to
be ϕ̂M→C = 0.17 (0.15,0.20) for the noncoding data,
and 0.14 (0.08, 0.20) for the coding data. Those rates
were substantial, consistent with the significant test
results when model O was compared against model 0. 1190

Even though gene flow appeared to be unidirectional
from C to M, assuming introgression in the opposite
(and presumably wrong) direction led to high estimates
of the rates and significance test results. Those results
mimics our findings in the simulations (figs. S1, S4 1195

& S5). The misspecified introgression direction in
model O caused large estimates of θs and reduced τs.
Those results are consistent with the behavior of the
misspecified model in the large→small case in our
theoretical analysis and simulation of the two-species 1200

case (fig. 3, table S1d large→small).
Finally we note that the divergence time between

H. cydno and H. melpomene (τs) was estimated to be
much smaller, and θS was much larger under model
0 (no gene flow) than under models I or B. This 1205

is because ignoring gene flow when it occurs leads
to underestimation of the divergence time between
species.

Discussion
Asymmetry of gene flow in nature 1210

No systematic studies have examined the frequency
of unidirectional versus bidirectional gene flow given
that two species are involved in introgression or
hybridization. Both scenarios appear to be common.
Sometimes gene flow occurs in one direction even 1215

though opportunities exist for gene flow in the opposite
direction. A well-documented example is gene flow in
the Anopheles gambiae group of mosquitoes in sub-
Saharan Africa. Analysis of genomic data provides
strong evidence for gene flow from A. arabiensis to 1220

A. gambiae or its sister species A. coluzzii, while
the rate of gene flow in the opposite direction was
estimated to be 0 (Thawornwattana et al., 2018; Flouri
et al., 2020). This result from comparisons of genomic
sequences is consistent with crossing experiments 1225

which supported introgression of autosomal regions
from A. arabiensis into A. coluzzii but not in the
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opposite direction (della Torre et al., 1997; Slotman
et al., 2005b). One possible explanation is genetic
incompatibilities of the X chromosome from one1230

species in an autosomal background of another species
(Slotman et al., 2004, 2005a). The introgression is
thought to facilitate the range expansion of A. gambiae
and A. coluzzii into more arid savanna habitats of
A. arabiensis (Coluzzi et al., 1979; Ayala and Coluzzi,1235

2005).
Note that the rate of gene flow in the MSci model

estimated from the genomic sequence data is an
‘effective’ rate, and reflects the combined effects of
gene flow, natural selection, and genetic drift. Most1240

introgressed alleles may be expected to be purged
in the recipient population because they were not
compatible with the host genomic background. It
appears highly unlikely that the chance of acceptance
of introgressed alleles from species A in the genomic1245

background of species B should be the same as that
of introgressed alleles from B in the background of
A. This reasoning appears to suggest that by norm
one should expect gene flow to be asymmetrical, with
different rates in the two directions.1250

Gene flow in Heliconius butterflies
Heliconius cydno and H. melpomene are broadly
sympatric across Central America and northwestern
South America, and are known to hybridize regularly
in the wild (Mallet et al., 2007). Our analysis supports1255

recent unidirectional gene flow from H. cydno into
H. melpomene (fig. 7, tables 1–2). In Panama,
H. cydno chioneus and H. melpomene rosina are
broadly sympatric. When they hybridize, male F1
hybrids are fertile while female F1 hybrids are sterile;1260

male hybrids backcross readily in both directions
(Naisbit et al., 2001, 2002).

Previous studies used several different approaches to
estimate gene flow between these two species. Early
phylogenetic analyses of multilocus data attributed1265

recent gene flow between H. cydno chioneus and
H. melpomene rosina as a cause of gene tree variation
among loci (Beltrán et al., 2002). An isolation-with-
migration (IM) analysis (Hey and Nielsen, 2004)
using a small number of loci yielded an estimated1270

symmetric bidirectional migration rate m between the
two species of 1.7 × 10−6 (95% CI 1.0–45 ×10−6)
per generation, with H. cydno chioneus having a
larger population size (Bull et al., 2006). An IM
model allowing for different migration rates in each1275

direction found evidence for unidirectional gene flow
from H. cydno and H. melpomene, with 2NMmC→M =
0.294 (90% HPD interval: 0.116–0.737) whereas
2NCmM→C = 0.000 (0.000, 0.454) (Kronforst et al.,
2006), consistent with our results. Similar patterns1280

were obtained in a subsequent IMA2 analysis (Hey,
2010) of a larger dataset (Kronforst et al., 2013). In
a more recent analysis of genome-scale data, Martin

et al. (2015) estimated a symmetric bidirectional
migration rate between H. c. chioneus and H. m. rosina 1285

to be M = Nm = 0.20 (90% HPD interval: 0.09–0.40)
per generation. Lohse et al. (2016) compared three
models: complete isolation after divergence, and two
IM models with unidirectional gene flow. Consistent
with our results, the preferred model was the IM 1290

with gene flow from H. cydno into H. melpomene
rosina, with estimated migration rate 4Nm = 1.5, and
with H. cydno having a larger population size than
H. melpomene and the ancestral population (which
were assumed to have the same size). Other genomic 1295

analyses relied on summary statistics of sequence data
such as D and fd statistics or gene tree topologies
across the genome to detect gene flow (Martin et al.,
2013; Martin and Van Belleghem, 2017; Martin et al.,
2019). In Martin et al. (2019), frequencies of gene 1300

trees across the genome were used to suggest that
there has been extensive gene flow from H. cydno into
H. melpomene in Panama.

In summary, our results are consistent with previous
studies, although our analyses provided estimates of a 1305

number of important population parameters including
the species divergence times and population sizes, as
well as the rate of introgression (table 1).

Inferring the direction of gene flow using genomic
data 1310

If introgression is assumed to occur in the wrong
(opposite) direction, the estimated introgression rate
will typically be nonzero, and may even be higher than
the true introgression rate. If one tests for introgression
and assumes the wrong direction, for example, by 1315

using the Bayesian test of Ji et al. (2022), the test
may have high power and be often significant. Thus
neither a high estimate of the introgression rate nor
a significant test of introgression is reliable evidence
that introgression occurred in the specified direction. 1320

If one considers the presence or absence of gene flow
but ignore the direction, this result may be considered
good power for the test. However, if one insists on
correct inference of the direction of introgression,
both the large estimates of the introgression rate 1325

and the significant test results for the non-existing
introgression event may be surprising and disturbing.

If there is uncertainty concerning the direction of
gene flow, application of the bidirectional model may
be a feasible option, although this adds computational 1330

cost. Our results in this paper suggest that if gene
flow is truly unidirectional, the over-parametrization
of the bidirectional model appears to incur very
little cost in statistical performance, as the posterior
CIs and the power to detect gene flow under the 1335

bidirectional model are very similar to those under the
true unidirectional model.
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Materials and Methods
Asymptotic analysis and simulation in the case of
two species1340

We examined the distributions of coalescent times and
conducted computer simulations in the case of two
species (A,B) with introgression from A to B. This is
model I of figure 1a. We used four sets of parameter
values.1345

(a) same θ tall tree: all populations have the same
size with θ = 0.01. The other parameters are τR =
θ ,τX = 0.5θ , and ϕY = 0.2.

(b) same θ short tree: θ = 0.01 for all populations,
τR = 0.5θ ,τX = 0.25θ , and ϕY = 0.2.1350

(c) small to large: different species on the species tree
have different population sizes, with θA = θX =
θR = θ0 = 0.002 on the left of the tree and θB =
θY = θ1 = 0.01 for other branches (fig. 1). Other
parameters are τR = 3θ0,τX = 1.5θ0 and ϕY = 0.2.1355

(d) large to small: This is the same to case (c)
except that θB = θY = θ0 = 0.002 while all other
populations have θ1 = 0.01.

We simulated multilocus sequence datasets under
model I (fig. 1a) and analyzed them under models I,1360

O, and B (fig. 1a–c). Each replicate dataset consists
of L = 250,1000 or 4000 loci, with S = 4 sequences
sampled per species per locus. The sequence length is
N = 500 sites. The simulate option of BPP (Flouri
et al., 2018) was used to simulate gene trees with1365

coalescent times and to ‘evolve’ sequences along the
gene tree under the JC mutation model (Jukes and
Cantor, 1969). Sequences at the tips of the gene tree
constitute the data. The number of replicates is 100.

Each replicate dataset is then analyzed using BPP1370

(Flouri et al., 2018, 2020) under models I, O, and B of
figure 1a–c. This is the so-called A00 analysis, with the
model fixed (Yang, 2015). The JC model was assumed
in the analysis. Gamma priors are assigned to the age
of the root of the species tree (τR) and to population1375

size parameters (θ ), with the shape parameter α = 2 so
that the prior is diffuse and with the rate parameter β

chosen so that the prior mean is close to the true values.
We used τR ∼ G(2, 200) and θ ∼ G(2, 200) for case a
“same θ tall tree”; τR ∼ G(2, 400) and θ ∼ G(2, 200)1380

for case b “same θ short tree”; τR ∼ G(2, 400) and
θ ∼ G(2, 400) for case c “small to large” and d “large
to small”. Introgression probability ϕ was assigned the
beta prior beta(1,1), which is U(0,1).

MCMC settings were chosen by performing pilot1385

runs, with MCMC convergence assessed by verifying
consistency between replicate runs for the same
analysis. The same setting is then used to analyze all
replicate datasets. We used 16,000 MCMC iterations
as burnin, and then took 105 samples, sampling every1390

2 iterations. Running time for analyzing one replicate
dataset is ∼ 45mins for L = 250 loci or ∼ 3hrs for
L = 1000 using one thread, and ∼ 12hrs for L = 4000

using two threads.

Simulation to evaluate the gain in information for 1395

estimating the introgression rate by adding a third
species
Given the introgression model for two species (A,B)
of figure 1a, with A → B introgression, we add a
third species (C) and assess the gain in information 1400

for estimating ϕ . There are five branches on the
two-species tree, resulting in five cases: (a) the root
population, (b, c) the source and target populations
before gene flow, and (d, e) the source and target
populations after gene flow (fig. 4a–e). Note that case c 1405

represents ‘inflow’, with gene flow from the outgroup
species (A) into one of the ingroup species (B), while
b represents ‘outflow’. The true introgression rate
was ϕ = 0.2. The original two-species tree had the
divergence time τR = θ1 and the introgression time 1410

τX = θ1/2. In cases b–e, species C was attached to
the midpoint of the target branch, while in a, the new
root was 1.25× as old as the old root. For models
a, d & e, all populations on the species tree had the
same size, with θ1 = 0.01. For cases b and c, three 1415

scenarios are considered: equal population size, with
θ1 = 0.01 for all populations; from small to large,
with θA = θX = θS = θ0 = 0.002 for the thin branches
in case b and θA = θX = θ0 = 0.002 in case c and
with θ1 = 0.01 for all other branches; and from large 1420

to small, with θB = θY = θ0 = 0.002 in case b and
θB = θY = θS = θ0 = 0.002 in case c and with θ1 = 0.01
for all other branches.

For each parameter setting, we simulated 100
replicate datesets. Each dataset consisted of L = 1000 1425

loci, with S = 4 sequences per species per locus and
N = 500 sites in the sequence. Each dataset was
analyzed using BPP to estimate the parameters in the
MSci model (fig. 4a–e). Gamma priors are assigned to
τR and θ : τR ∼ G(2, 200) and θ ∼ G(2, 200), while 1430

ϕA→B ∼ U(0,1). We used 32,000 MCMC iterations
as burnin, and then took 106 samples, sampling every
10 iterations. Running time for analyzing one dataset
using one thread is ∼30 hrs.

Simulation in the case of four species: inflow versus 1435

outflow
We simulated data under the three MSci models (I,
O, B) of figure 5a-c, with introgression between
non-sister species A and B on a four-specie tree
((A,(B,C)),D). The three models differ in the assumed 1440

direction of gene flow, with I for inflow from A to B,
O for outflow from B to A, and B for bidirectional
introgression between A and B. We used two sets of
parameter values. In the first set (same-θ ), all species
on the tree had the same population size, with θ0 = 1445

θ1 = 0.01. In the second set (different-θ ), the thin
branches had θ0 = 0.002 while the thick branches
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had θ1 = 0.01 (fig. 5a-c). Other parameters were the
same in the two settings, with τR = 4θ0, τS = 3θ0,
τT = 2θ0, and τX = τY = 1.5θ0, and the introgression1450

probabilities are ϕX = ϕY = 0.2.
Each dataset consisted of L = 250,1000, or 4000

loci, with S = 4 sequences per species per locus and
with N = 500 sites in the sequence. The number of
replicates was 100. With three MSci models (I, O,1455

B), two population-size settings (same-θ vs. different-
θ ), and three data sizes (L), a total of 3 × 2 × 3 ×
100 = 1800 datasets were generated. Each dataset was
analyzed under the three models (I, O, B), with the
direction of introgression either correctly or incorrectly1460

specified. Gamma priors were assigned to τR and θ :
τR ∼ G(2, 200) and θ ∼ G(2, 400), while ϕ ∼ U(0,1).
We used 32,000 MCMC iterations as burnin, and took
2×105 samples, sampling every 5 iterations. Running
time for analyzing one dataset was ∼12hrs for small1465

datasets of L = 250 loci and 60hrs for L = 1000 using
one thread, and ∼120hrs for L = 4000 using two
threads.

Analysis of the Heliconius butterfly dataset
We fitted MSci models with different introgression1470

directions to two genomic datasets (one noncoding
and another coding) from three species of Heliconius
butterflies: H. hecale (H), H. cydno (C), and
H. melpomene (M). Raw genomic sequencing data
from Edelman et al. (2019) were processed to compile1475

one dataset of 5341 noncoding loci and another of
4942 coding loci from chromosome 1, following the
procedure of Thawornwattana et al. (2022). Each locus
consisted of three unphased diploid sequences, with
one sequence from each species. The heterozygote1480

phase in the diploid sequence was resolved using
an analytical integration algorithm in the likelihood
calculation in BPP (Gronau et al., 2011; Flouri et al.,
2018; Huang et al., 2022). We fitted four models: (0)
MSC with no gene flow, (I) C → M introgression, (O)1485

M → C introgression, and (B) C ⇆ M bidirectional
introgression.

We assigned priors τr ∼ G(4, 200), θ ∼ G(2, 200),
and ϕ ∼ U(0,1). We used 105 MCMC iterations for
burnin, and recorded 104 samples, sampling every1490

100 iterations. For each model, we performed ten
independent runs to confirm consistency between runs.
The resulting MCMC samples were combined to
produce final posterior estimates. Each run took ∼
80hrs.1495

Bayesian test of introgression
We applied the Bayesian test of introgression to test
whether there is significant evidence for introgression
(Ji et al., 2022). The test was applied to data for two
species simulated under the models of figure 1a-c, the1500

data for four species simulated under models I, O, and

B of figure 5, and the Heliconius dataset for three
species (fig. 7).

The Bayes factor for comparing two models H0 and
H1 is defined as the ratio of the marginal likelihood 1505

values M0 and M1 for the two models: B10 = M1
M0

.
If the prior probabilities for the models are π0 and
π1, the Bayes factor can be converted into posterior
model probabilities, P(H1|X)

P(H0|X) = π1
π0

· B10. If the prior
probabilities are equal (π0 = π1), then B10 = 100 1510

translates to the posterior probability P(H1|X) ≈ 1%.
Thus B10 > 100 may be considered strong evidence
in support of H1 over H0, while B10 < 0.01 is strong
evidence in favor of H0 over H1.

In the test of introgression, the two models are 1515

nested, with H0 : ϕ = 0 to be the null model of no
gene flow and H1 : ϕ > 0 to be the alternative model
of introgression. Then B10 can be calculated using the
Savage-Dickey density ratio (Dickey, 1971), by using
an MCMC sample under H1 (Ji et al., 2022). Define 1520

an interval of null effects, ø : ϕ < ε , inside which the
introgression probability is so small that introgression
may be considered nonexistent. The Bayes factor in
favor of H1 over H0 is then

B10,ε =
P(ø)
P(ø|X) , (7)

where P(ø) is the prior probability of the null 1525

interval, while P(ø|X) is the posterior probability, both
calculated under H1 (Ji et al., 2022). Note that P(ø) =
P(ϕ < ε) = ε if the prior is ϕ ∼U(0,1). When ε → 0,
B10,ε → B10 (Ji et al., 2022). We used a few values
for ε in the range 0.01%–1% to assess its effect. This 1530

approach has a computational advantage as it requires
running the MCMC under H1 only and avoids trans-
model MCMC algorithms and calculation of marginal
likelihood values.

For the Heliconius datasets, we in addition used 1535

thermodynamic integration (TI) combined with Gaus-
sian quadrature to calculate the marginal likelihood
under each model, using 32 or 64 quadrature points
(Lartillot and Philippe, 2006; Rannala and Yang,
2017). This approach applies even if the compared 1540

models are nonnested, and was used to conduct
pairwise comparisons of all four models fitted to the
Heliconius.
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Figure 1: (a–c) MSci models for two species with (a) A → B introgression (I for ‘inflow’), (b) B → A
introgression (O for ‘outflow’), or (c) bidirectional introgression (B). The parameters under each model are
ΘI = (τR,τX ,θA,θB,θX ,θY ,θR,ϕY ), ΘO = (τR,τX ,θA,θB,θX ,θY ,θR,ϕX), ΘB = (τR,τX ,θA,θB,θX ,θY ,θR,ϕX ,ϕY ).
The rate of introgression is represented by the introgression probability: ϕY ≡ ϕA→B in a and c, and ϕX ≡ ϕB→A in
b and c. (d) MSC model with no gene flow, with parameters Θ0 = (τR,θA,θB,θR).
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under the I, O, and B models of figure 1a–c. The true parameter values in the I model (ΘI) are shown in table S1.
The best-fitting parameter values under the O model (Θ∗

O) are approximated using the average estimates in BPP
analysis of simulated large datasets of L = 4000 loci (with S = 4 sequences per species per locus and n = 500 sites
in the sequence) shown in table S1.
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simulate and analyze data: (a) inflow from A to B (I); (b) outflow from B to A (O); and (c) bidirectional introgression
between A and B (B). Divergence times used are shown next to the nodes: τR = 4θ0, τS = 3θ0, τT = 2θ0, and
τX = τY = 1.5θ0, with population sizes θ0 = 0.002 for the thin branches and θ1 = 0.01 for the thick branches.
We also used a setting in which all populations on the species tree have the same size, with θ0 = θ1 = 0.01. The
introgression probabilities are ϕX = ϕY = 0.2.
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models I, O, and B of figure 5, assuming the same population size for all species (θ0 = θ1 = 0.01) when the data
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Figure 7: Species tree for Heliconius hecale (H), H. cydno (C), and H. melpomene (M), with introgression between
H. cydno and H. melpomene, used to analyze genomic datasets. The introgresion (MSci) model involves the species
divergence and introgression times (τr,τs,τc = τm) and population sizes for branches on the tree (e.g., θC for branch
C and θc for branch sc), as well as the introgression probability (e.g., ϕm for the c → m introgression). The data
support the C → M introgression but not the M →C introgression, with ϕm > 0 and ϕc ≈ 0.
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Table 1. Posterior means and 95% HPD CIs for parameters in BPP analyses of two datasets of noncoding and coding loci from
Heliconius butterflies (fig. 7) under four MSci models with different introgression directions

Model 0 (no gene flow) Model I (C → M) Model O (M →C) Model B (C ⇄ M)

Noncoding loci (L = 5,341 loci)
θH 0.0131 (0.0127, 0.0136) 0.0134 (0.0129, 0.0139) 0.0134 (0.0129, 0.0138) 0.0134 (0.0129, 0.0139)
θC 0.0407 (0.0329, 0.0496) 0.0500 (0.0274, 0.0759) 0.0231 (0.0070, 0.0415) 0.0499 (0.0267, 0.0759)
θM 0.0026 (0.0021, 0.0031) 0.0003 (0.0002, 0.0005) 0.0001 (0.0000, 0.0002) 0.0003 (0.0002, 0.0005)
θr 0.0124 (0.0119, 0.0128) 0.0123 (0.0118, 0.0127) 0.0122 (0.0118, 0.0127) 0.0123 (0.0118, 0.0127)
θs 0.0343 (0.0328, 0.0358) 0.0152 (0.0141, 0.0162) 0.0185 (0.0175, 0.0194) 0.0152 (0.0141, 0.0162)
θc n/a 0.0256 (0.0241, 0.0271) 0.0230 (0.0206, 0.0254) 0.0255 (0.0240, 0.0270)
θm n/a 0.0188 (0.0162, 0.0214) 0.0294 (0.0262, 0.0327) 0.0189 (0.0164, 0.0215)

τr 0.0116 (0.0114, 0.0117) 0.0118 (0.0116, 0.0120) 0.0118 (0.0116, 0.0120) 0.0118 (0.0116, 0.0120)
τs 0.0010 (0.0008, 0.0012) 0.0068 (0.0064, 0.0072) 0.0051 (0.0048, 0.0053) 0.0068 (0.0064, 0.0071)
τc = τm n/a 0.0001 (0.0001, 0.0002) 0.0000 (0.0000, 0.0001) 0.0001 (0.0001, 0.0002)

ϕc n/a n/a 0.1744 (0.1458, 0.2038) 0.0019 (0.0000, 0.0057)
ϕm n/a 0.2830 (0.2565, 0.3090) n/a 0.2802 (0.2530, 0.3067)

Coding loci (L = 4,942 loci)
θH 0.0055 (0.0053, 0.0058) 0.0055 (0.0053, 0.0058) 0.0055 (0.0052, 0.0057) 0.0055 (0.0053, 0.0058)
θC 0.0054 (0.0048, 0.0060) 0.0361 (0.0203, 0.0545) 0.0307 (0.0133, 0.0513) 0.0363 (0.0204, 0.0553)
θM 0.0016 (0.0015, 0.0018) 0.0010 (0.0008, 0.0011) 0.0005 (0.0003, 0.0008) 0.0010 (0.0008, 0.0011)
θr 0.0092 (0.0088, 0.0096) 0.0092 (0.0088, 0.0096) 0.0094 (0.0090, 0.0098) 0.0092 (0.0088, 0.0096)
θs 0.0117 (0.0111, 0.0124) 0.0027 (0.0004, 0.0054) 0.0092 (0.0084, 0.0100) 0.0027 (0.0004, 0.0053)
θc n/a 0.0059 (0.0055, 0.0063) 0.0044 (0.0032, 0.0055) 0.0058 (0.0053, 0.0062)
θm n/a 0.0119 (0.0076, 0.0168) 0.0105 (0.0072, 0.0144) 0.0129 (0.0077, 0.0189)

τr 0.0049 (0.0047, 0.0050) 0.0049 (0.0047, 0.0050) 0.0048 (0.0047, 0.0050) 0.0049 (0.0047, 0.0050)
τs 0.0009 (0.0008, 0.0010) 0.0047 (0.0045, 0.0049) 0.0017 (0.0015, 0.0019) 0.0047 (0.0045, 0.0049)
τc = τm n/a 0.0005 (0.0004, 0.0006) 0.0002 (0.0001, 0.0003) 0.0005 (0.0004, 0.0006)

ϕc n/a n/a 0.1360 (0.0783, 0.1959) 0.0073 (0.0000, 0.0194)
ϕm n/a 0.5119 (0.4780, 0.5451) n/a 0.5064 (0.4722, 0.5412)
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Table 2. Bayes factors for comparing four models of introgression for the Heliconius datasets (fig. 7, table 1), calculated using
thermodynamic integration with 32 or 64 Gaussian quadrature points and Savage-Dickey density ratio with threshold ε = 1%,

0.1%, or 0.01%

Thermodynamic integration Savage-Dickey density ratio

32 points 64 points ε = 1% ε = 0.1% ε = 0.01%

Noncoding loci (L = 5,341 loci)
BI0 (ϕC→M) e1087.1 e1082.5 ∞ ∞ ∞

BO0 (ϕM→C) e946.9 e904.9 ∞ ∞ ∞

BBI (ϕM→C) e−5.6 e−9.9 0.0101 0.0025 0.0020
BBO (ϕC→M) e134.6 e167.8 ∞ ∞ ∞

BIO (ϕM→C vs. ϕC→M) e140.2 e177.6 n/a n/a n/a
BB0 (ϕM→C and ϕC→M) e1081.6 e1072.6 n/a n/a n/a

Coding loci (L = 4,942 loci)
BI0 (ϕC→M) e359.9 e358.5 ∞ ∞ ∞

BO0 (ϕM→C) e128.0 e147.6 ∞ ∞ ∞

BBI (ϕM→C) e−13.0 e−8.6 0.0073 0.0090 0.0136
BBO (ϕC→M) e218.9 e202.3 ∞ ∞ ∞

BIO (ϕM→C vs. ϕC→M) e231.9 e210.9 n/a n/a n/a
BB0 (ϕM→C and ϕC→M) e346.8 e349.9 n/a n/a n/a

Note.— The four models (table 1) are (0) MSC with no gene flow, (I) C → M introgression, (O) M → C
introgression, and (B) bidirectional introgression (C ⇆ M). The approach based on Savage-Dickey density ratio

produces B = ∞ if all values of ϕ in the MCMC sample are > ε .
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Figure S1: (2s-power) Power (blue) and false positive rate (red) of Bayesian test for introgression applied to the
simulated data with two species under the I model of figure 1a using four sets of parameter values (cases a–d).
Bayesian test is conducted using a cutoff of 100 for the Bayes factor, calculated using the Savage-Dickey density
ratio with the small value for null effect (ε). Note that the I model is the true model with A → B introgression at
the rate ϕY . A significant result for testing ϕY under the I or B models is considered a true positive, whereas a
significant result for testing ϕX under the O or B models is considered a false positive. Parameter estimates from
those data are summarized in figure 3.
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Figure S2: The 95% HPD CIs for parameters in 100 replicate datasets simulated and analyzed under the models of
figure 4a–e. Results for ϕ are summarized in figure 4h.
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Figure S3: (4s-diff-θ ) The 95% HPD CIs for parameters in 100 replicate datasets simulated and analyzed under
models I, O, and B of figure 5, with θ0 = 0.002 for the thin branches and θ1 = 0.01 for the thick branches in the
species tree. See legend to figure 6.
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Figure S4: (4s-same-θ -power) Power (blue) and false positive rate (red) of Bayesian test for introgression applied
to data of four species simulated under the (a) inflow (I), (b) outflow (O), and (c) the bidirectional (B) models of
figure 5a–c, assuming the same θ for all populations. The data were analyzed under the same I, O, and B models,
resulting in nine combinations. Parameter estimates from those data are summarized in figure 6.
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Figure S5: (4s-diff-θ -power) Power (blue) and false positive rate (red) of Bayesian test for introgression applied to
data of four species simulated under the I, O, and B models of figure 5a–c, assuming different θ for populations on
the species tree. Parameter estimates from those data are summarized in figure S3. See legend to figure S4.
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