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Graphical Abstract
Accelerating off-lattice kinetic Monte Carlo simulations to predict hydrogen vacancy-cluster
interactions in 𝛼–Fe
C.J. Williams, E.I. Galindo-Nava
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Abstract
We present an enhanced off-lattice kinetic Monte Carlo (OLKMC) model, based on a new
method for tolerant classification of atomistic local-environments that is invariant under Euclidean-
transformations and permutations of atoms. Our method ensures that environments within a
norm-based tolerance are classified as equivalent. During OLKMC simulations, our method guaran-
tees to elide the maximum number of redundant saddle-point searches in symmetrically equivalent
local-environments. Hence, we are able to study the trapping/detrapping of hydrogen from up to
five-vacancy clusters and simultaneously the effect hydrogen has on the diffusivity of these clusters.
These processes occur at vastly different timescales at room temperature in body-centred cubic
iron. We predict the diffusion pathways of clusters/complexes without a priori assumptions of their
mechanisms, not only reproducing previously reported mechanisms but also discovering new ones
for larger complexes. We detail the hydrogen-induced changes in the clusters’ diffusion mechanisms
and find evidence that, in contrast to mono-vacancies, the introduction of hydrogen to larger clusters
can increase their diffusivity. We compare the effective hydrogen diffusivity to Oriani’s classical
theory of trapping, finding general agreement and some evidence that hydrogen may not always be
in equilibrium with traps, when the traps are mobile. Finally, we compute the trapping atmosphere
of meta-stable states surrounding non-point traps, opening new avenues to better understand and
predict hydrogen embrittlement in complex alloys.

Keywords: Atomistic modelling, Off-lattice kinetic Monte Carlo, Point defects, Hydrogen
embrittlement, Diffusion mechanism

1. Introduction

It has been known for over 100 years [1, 2] that the presence of hydrogen (H) in metals –
particularly steels – can severely reduce ductility, leading to catastrophic failure below the yield-
stress. The processes that cause these effects are collectively termed hydrogen embrittlement (HE).
Despite a century of research, the core mechanisms of HE have yet to be fully understood and are still
a topic of active research/debate [3]. The difficulty in understanding HE stems from its multi-scale
nature; a full description of HE requires understanding of H-adsorption, H-diffusion/transport, and
(most crucially) H interaction/influence with/on crystal defects. These processes span many orders
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of length/time scales, which presents challenges when isolating/connecting the impact of H at the
atomistic scale to the macroscopic results.

A breadth of mechanisms for HE have been proposed, most of them revolve around the interactions
between H and crystal defects. For a more complete description see Ref. 4 and Ref. 3. A few of the
most prominent mechanisms are: Hydrogen-induced decohesion (HID) [5–7], Adsorption-induced
decohesion (AIDE) [8], Hydrogen-enhanced localised plasticity (HELP) [9–13] and Hydrogen-
enhanced strain-induced vacancy (HESIV) formation [14–16]. Many of these mechanisms are
supported by bodies of experimental work. As few are orthogonal to each other, it is likely that a
full description of HE contains a combination of two/three of these mechanisms (alongside some
yet undiscovered).

Theoretical and computational modelling play a crucial role in the study of the Fe-H system due
to the inherent difficulty in experimental observations of atomic H [17]. The low solubility and
high diffusivity [18] of H in body-centred cubic (BCC) iron (Fe), combined with the small ‘nucleus’
and low electron density, make direct experimental observations extremely challenging. Instead,
techniques such as thermal desorption analysis (TDA) [19], electro-permeation (EP) experiments [20]
and atom probe tomography (APT) [21] are employed. Many of these methods (with the notable
exception of APT) are unable to directly investigate H diffusion and trapping behaviour within
metals on the atomic scale thus, we must fall back to computation/theory to unravel the atomic
mechanisms that cause HE.

Different computational modelling techniques have been used to investigate HE over varied
assumptions and time/length scales. On the smallest length-scales, density functional theory (DFT)
is used to study H binding sites [22–24] and occasionally combined with molecular dynamic (MD)
in ab initio MD to study H diffusion at the highest accuracy [25]. Additionally, work has been done
using path-integral MD [26, 27] to explore H diffusion in iron while incorporating quantum effects,
which are known to be important at low temperatures [26]. Nevertheless, progress has been made
modelling much-larger systems using classical approaches, the most popular of these is MD and its
accelerated-variants using semi-empirical potentials. This has enabled the study of H-defect kinetics,
such as grain-boundaries [28, 29] and dislocations [30, 31]. Molecular dynamics simulations must
resolve atomic vibrations in order to accurately track the dynamics of atom-scale systems. This
imposes a significant computational effort as the integration time-step must be of-the-order of
these vibrations. Hence, even using today’s computers, MD simulation timescales rarely exceed
O (100µs). Continuing to the longest/largest scales, Monte-Carlo (MC) [32] and kinetic Monte-
Carlo (KMC) [33] methods overcome this barrier by ignoring the explicit phase-space trajectory,
instead focusing on state→state transitions. This can significantly accelerate simulations. However,
these methods are confined to discrete representation and require knowledge of mechanisms a priori.

Off-lattice1 kinetic Monte Carlo (OLKMC) [34], an extended KMC method, is a general and
unbiased tool (discovering mechanisms without any a priori input) being successfully applied to
study the kinetics of various systems, e.g. Fe/Cu/Al, BBC/FCC, disordered systems, extended
defects, point defects, etc. [35–42]. Off-lattice KMC automatically discovers the mechanisms
available – using saddle-point (SP) searches to locate the transition states – and then applies the
KM algorithm [33, 43] to advance the system state/time. Off-lattice KMC allows for the exploration
of continuous systems, at previously inaccessible timescales, at atomic fidelity. As such, it is the

1Also known as: “adaptive”, “on-the-fly”, “self-learning” and “self-evolving”.
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perfect tool to explore the uncertain and complex mechanisms controlling HE.
In this paper we develop enhancements to the OLKMC method. The motivation for our research

is building a general simulation framework capable of modelling the complex interactions between
crystal defects and H in iron, into the timescales required to study the mechanisms of HE. Our main
contribution is an error-tolerant atomic local-environment (LE) identification/matching process to
elide saddle-point searches.

We apply our OLKMC implementation to study the diffusion of vacancy clusters in the presence
of H. We demonstrate OLKMC is capable of reaching embrittlement timescales, of-the-order-of
seconds, while simultaneously resolving the atomic motion of H-atoms. With OLKMC we can
study the atomic mechanisms through which H affects the diffusion of vacancy clusters. These are
important first steps towards modelling the more complex H-defect interactions required to gain a
full understanding of HE.

2. Background: off-lattice kinetic Monte Carlo

2.1. Saddle-point searches
The process of finding SPs, called the saddle-point search (SPS) procedure, is critical to the

efficiency of OLKMC simulations. Several minimum-mode following algorithms were unified
under one mathematical framework in Ref. 44 and compared. All investigated methods are bounded
in efficiency by the Lanczos method [45]. We choose to use the superlinear dimer-method [46],
owing to it requiring fewer force evaluations but converging almost as fast as the Lanczos method.
The superlinear dimer-method contains several optimisations over the original dimer-method [47] –
notably the improvements of Ref. 48. We discuss a minor modification in Section 3.3.

2.2. Saddle-point recycling
Each SPS requires many hundreds of calls to the force-field and many SPS must be carried out

to ensure the completeness of the KMC catalogue. Due to the local nature of mechanisms, most of
these SPS are unnecessary. For example, in a section of perfect lattice the LE around each atom
is identical hence, the mechanisms that can occur at each atom are identical. Secondly, consider
two atoms sufficiently far apart; a local mechanism centred on one will likely not change the LE
around the second therefore, its accessible mechanisms remain the same. Finally, many atoms are in
LEs differing only by an Euclidean transformation (of the form 𝒓 ↦→ 𝑹𝒓 + 𝒄, with 𝑹 an orthogonal
matrix) hence, their mechanisms are related by the same transformation.

Multiple methods have been developed to reduce the cost of building the KMC catalogue by
exploiting this locality. The simplest of these are system-wide methods, which attempt to reuse SPs
discovered at the previous step [49] however, these do not exploit any relevant symmetries. Due to
this inefficiency, they will not be discussed further. Alternatively, local methods seek to classify the
LE around each atom in the system. It is then possible to associate mechanisms entirely within a LE.
Mechanisms can then be cached and, when an equivalent LE is discovered, instead of launching new
SPS, the mechanisms can be reconstructed from the cached information. If the LE classification is
suitably invariant, these methods can account for all relevant symmetries hence, the focus shifts to
LE classification, of which a number of methods have been proposed.
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Space discretisation. Discrete pattern recognition methods for LE classification have been ex-
plored [50, 51] however, these often fail to account for (continuous) symmetries and, because of
the discretisation of space, are sensitive to small changes in atomic positions (due to inexact energy
minimisations).

Norm-based. Moving toward a tolerant classification, Ref. 52 presents a system that stores the LE of
an atom at 𝒓𝑖 as

{
𝒓𝑖 𝑗 |𝑟𝑖 𝑗 < 𝑟env

}
. Local environments are considered equivalent when each atom in

two superimposed LEs have a corresponding atom in the second environment within tolerance 𝛥𝑟tol.
This method gracefully allows for error on the positions of atoms in a LE. However, no method is
presented for determining this equivalence between arbitrarily permuted/transformed LEs.

Topological. Graph-based topological methods, introduced in Ref. 37, fully exploit the symmetry
of LEs. Atoms in the LE are used to draw a graph; atoms become nodes and atoms considered
bonded (closer than some distance) are connected with an edge. LEs are equivalent if their graph
representations are isomorphic. This is, in general, a problem in its own complexity class GI ∈ NP
which is not known to be in either P or NP-complete [53]. Fortunately, there exists implementations
such as the nauty2 software [54] which can solve this problem in polynomial time for many graphs.
Although powerful, topological methods rely on a one-to-one correspondence between topology
and geometry that may breakdown. Furthermore, they lose the tolerance of norm-based methods.

In Section 3.2, we introduce our own norm-based LE classification that combine the desirable
properties of many of the previous methods.

2.3. Superbasins and the low-barrier problem
A common issue encountered during OLKMC simulations is the low-barrier problem (LBP) [37,

55]. This occurs when a collection of basins – often called a superbasin – are connected by a series
of fast mechanisms. It requires many MC steps to escape from a superbasin. As the rate-sum is very
large during this period, the simulated time advances very slowly.

The simplest methods to overcome the LBP effectively combine states connected by fast
mechanisms into a single state and ignore all internal superbasin kinetics [56] – this is clearly not exact.
Alternatively, TABU-like [57] methods that ban recent-transitions have been employed [37, 58].
These have been shown to be thermodynamically sound providing the total number of KMC steps
is much greater than the oldest banned transition. Two exact solutions to the LBP are presented
in Ref. 59; the key insight is the partitioning of states into transient and absorbing sets, followed
by analytically solving the motion inside the transient states. A similar exact solution, the mean-
rate method (MRM) [60], has been extended to OLKMC to form the basin auto-constructing
MRM (bac-MRM) [61], which constructs superbasins on-the-fly. We discuss minor extensions in
Section 3.5.

3. Methodology

3.1. Interatomic potentials
In order to reach HE timescales – of-the-order-of seconds – we employ embedded atom method

(EAM) potentials [62]. These are short-range, fast, well tested, semi-empirical models of the

2https://pallini.di.uniroma1.it/
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Figure 1 Demonstration of the norm-based equivalence between reference point-cloud Fig. 1a (opaque shapes) and
unclassified point-cloud Fig. 1b (grey shapes) via a permutation of the labels and a rigid-body rotation (transformation).
Shape (square/circle) denotes the colour of each point and arrows act as a guide to the eyes for the permutation. In
Fig. 1e we see all the points/atoms are close enough that the LEs can be considered equivalent.

potential energy of a collection of atoms. Although they are not without criticism [63], EAM
potentials have become well established in the literature, particularly for metallic systems. We use
the variation presented and fitted in Ref. 64, which generalise the EAM embedding function and
are fit to first-principles (DFT) measurements and experimental data. Also, fit to a wide variety
of targets, the potentials provide good reproduction of several crystal defect structures. We also
include the modifications of Ref. 30, the introduction of additional H-H repulsion, to reduce the H
clustering observed in the original potentials.

3.2. New invariant and tolerant local-environment classification
In previous work [65], we adopted a topological classification methodology however, this relied

on the aforementioned one-to-one correspondence between topology and geometry. We found this
correspondence to break-down in the Fe-H system due to the small size of the H-atom and small
displacements during mechanisms. We tried to overcome this problem by allowing the bonding
distance to vary with the species and colouring each atom as the pair formed from the atoms’ atomic
number and the local sum: ⌊

𝑐
∑︁
𝑗

𝐺 𝑗𝑖𝑟𝑖 𝑗

⌋
(1)

with 𝑐 a problem-dependant scaling constant and𝐺𝑖 𝑗 elements of the adjacency matrix. This encodes
much more of the information contained within

{
𝑟𝑖 𝑗

}
into the coloured graph. Unfortunately, with

the above modifications, infinitesimal perturbations in position are more likely to result in many keys
representing the same geometry. Finally, there is no quantitative/qualitative link between topological
keys and the similarity of LEs.

3.2.1. Norm-based definition of equivalence
We require a notion of equivalence between LEs that is invariant under:

1. Infinitesimal-perturbations of atomic positions.
2. Permutation of identical atoms.
3. Euclidean transformations of the group of atoms.
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In order to overcome the aforementioned difficulties when dealing with the small errors in the atomic
positions we move away from the graph-based representation of the atoms. Instead, we represent
atoms as coloured points (2-tuples): (

𝒑 ∈ ℝ3, 𝑝 ∈ ℤ
)

(2)

and a LE centred on the point ( 𝒑1, 𝑝1) as the point cloud:

𝑃 = {( 𝒑1, 𝑝1) , . . . , ( 𝒑𝑛, 𝑝𝑛)} (3)

where (without loss of generality) we set the centroid of the points in 𝑃 to the origin and ∥ 𝒑1 − 𝒑𝑖∥ <
𝑟env for all 𝑖 with 𝑟env the radius of the LE. The question of determining if two LEs, 𝑃 and 𝑄 (of
the same size), are equivalent is the same as asking if there exists a transformation matrix 𝑶 and
permutation 𝜋 such that:

𝑛∑︁
𝑖=1



 𝒑𝑖 − 𝑶𝒒𝜋(𝑖)


2 ≤ 𝛿2 and 𝑝𝑖 = 𝑞𝜋(𝑖) (4)

subject to the constraints:

𝑶𝑶T = 𝑶T𝑶 = 𝐼 and 𝜋 (1) = 1 (5)

where 𝛿 is the maximum ℓ2 norm or distance between the point-cloud as well as the maximum
inter-point separation:

𝛥𝑖 =


 𝒑𝑖 − 𝑶𝒒𝜋(𝑖)



 (6)

The choice of 𝛿 controls how similar two LEs must be before they are considered equivalent. This
equivalence is represented graphically in Fig. 1.

By design, relabelling a pair of identical points will always result in an equivalent environment.
A desirable property, is to ensuring this relabelling results in a corresponding change in 𝜋 (instead
of being absorbed into 𝛿2) hence, for a useful definition of equivalence, we require:

𝛿 < 𝑟min (7)

where 𝑟min is the minimum intra-point separation: 𝑟𝑖 𝑗 =


𝒓𝑖 − 𝒓 𝑗



. This ensures a consistent
correspondence between points in equivalent LEs.

Construction of a point-cloud centred on a point (by selecting points within 𝑟env from some
larger set), is not fully tolerant of point perturbations near the edge of the LE, which could move
atoms into/out of the LE. This is acceptable as the LEs will be used for mechanism reconstruction
which requires a 1-to-1 correspondence between points. Otherwise, unbalanced equivalence is a
natural extension, by simply adding the square of the distance between unmatched points and the
boundary of the LE to Eq. (4).
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𝑖 𝑗𝑖 𝑗
𝛥𝑖 𝛥 𝑗

𝑞𝑖 𝑗

𝑝𝑖 𝑗

Figure 2 Diagram showing the orientation of two pairs of points 𝑖 and 𝑗 in point-clouds 𝑃 (dark grey) and 𝑄 (white)
that maximises 𝛥2

𝑖
+ 𝛥2

𝑗
, the sum of the square inter-point separations, under the constraint 𝛥2

𝑖
+ 𝛥2

𝑗
≤ 𝛿2 from Eq. (4).

3.2.2. Connection to the potential energy
An inequality on 𝛿 can be established by Taylor-expanding the potential energy, 𝑈, about a

converged extrema:

𝛥𝑈 ≈ 𝛥𝒙T
���*0
∇𝑈 + 1

2
𝛥𝒙T𝑯𝛥𝒙

≈ 1
2
𝛥𝒙T𝑸𝜦𝑸T𝛥𝒙 (8)

where we have applied the eigendecomposition [66, p. 80] to the real symmetric Hessian, 𝑯, forming
𝜦 the diagonal matrix of eigenvalues and 𝑸, the orthogonal matrix of eigenvectors. Noting an
orthogonal transformation does not change the magnitude of a vector. A (weak) upper-bound on
𝛥𝑈 near a minima can be constructed from Eq. (8):

𝛥𝑈 ≤ 𝜆max
2



𝑸T𝛥𝒙


2

≤ 𝜆max
2
∥𝛥𝒙∥2

≤ 𝜆max
2

𝛿2 (9)

where 𝜆max is the maximum eigenvalue of 𝑯 and the third line follows from Eq. (4). If two LEs
are equivalent and 𝛿 is small enough (such that the mechanisms are transferable), then the energy
barrier(s) of the reconstructed mechanism(s) should be of-the-order-of 𝛥𝑈 off the true energy
barrier(s). Ultimately, choosing a smaller value of 𝛿 increases the accuracy of the simulation, at the
expense of increasing the number of SPS required. Hence, the largest value of 𝛿 that ensures Eq. (7)
and that 𝛥𝑈 is much less than the minimum relevant energy-barrier should be chosen.

3.2.3. Point-cloud registration
Simultaneously determining the orthogonal transformation and permutation that minimises the

ℓ2 norm between LEs is a variation of the well-studied rigid point-cloud registration problem [67, 68].
In general, this is not possible at the speeds required by OLKMC. However, we are only interested
in finding a specific permutation/transformation that satisfies Eq. (4) and Eq. (5). Here we present a
greedy method, that leverages the problem-specific distribution of points.

To find the minimising permutation, we first realise a relationship between the inter-point
separations and intra-point separations 𝑝𝑖 𝑗 =



 𝒑𝑖 − 𝒑 𝑗



 and 𝑞𝑖 𝑗 =


𝒒𝑖 − 𝒒 𝑗



 of the respective
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point-clouds 𝑃 and 𝑄. Studying Fig. 2 we see:��𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 �� ≤ 𝛥𝑖 + 𝛥 𝑗 (10)

Then maximising 𝛥𝑖 + 𝛥 𝑗 , subject to the constraint from Eq. (4), we find our intra-point tolerance
criterion: ��𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 �� ≤ √2𝛿 (11)

which can be used to match pairs of points in 𝑄 to 𝑃 by recursively ordering 𝑄. At each recursion
we search for a point that ensures Eq. (11) holds for all previously ordered points in 𝑄. As this
method only requires the intra-point separations in 𝑃 and 𝑄 (which are invariant under Euclidean
transformations of 𝑃 and 𝑄), this method can match the order of the points in LEs that are related
by arbitrary rotations/reflections before solving for the rotation/reflection.

Once the order of the points in 𝑃 and 𝑄 match we must solve:

min
𝑶∈𝑀3,3 (ℝ)

𝑛∑︁
𝑖=1
∥ 𝒑𝑖 − 𝑶𝒒𝑖∥2 s.t. 𝑶𝑶T = 𝑶T𝑶 = 𝑰 (12)

this is equivalent to the orthogonal Procrustes problem [69] which can be efficiently solved using
the singular value decomposition (SVD) see Appendix A.

The full permutation/ordering and equivalence-testing method is detailed in Algorithm 1; once
the algorithm has matched the orders and colours it checks if the permutation satisfies Eq. (4). This
is required as there may be degenerate permutations satisfying Eq. (11) ∀𝑖, 𝑗 but not satisfying
Eq. (4). A key consideration for the usefulness of Algorithm 1 is its complexity; for two randomly
permuted point-clouds, we show in Appendix B (under moderate assumptions) provided:

𝛿 ≲
2
5
𝑟min (13)

the average-case time complexity is O (
𝑛2) .

3.2.4. Choosing 𝛿 values
Typically in the Fe-H system (using the perfect lattice as an order of magnitude estimation)

𝜆max ≈ 10eV Å−2. Therefore, according to Eq. (9), we choose 𝛿 = 0.01Å resulting in an energy
tolerance of approximately 𝛥𝑈 ≤ 5 × 10−4eV. In practice we expect 𝛥𝑈 ≪ 5 × 10−4eV as Eq. (9)
assumes 𝛥𝒙 is parallel to the largest eigenvector of 𝑯 which is unlikely. We see 𝛥𝑈 is much less
than the energy barrier for H diffusion, around 5 × 10−2eV, typically the fastest mechanism in the
Fe-H system.

The choice of 𝛿 is continuously validated during a simulation. If 𝛿 is too large then, following a
mechanism reconstruction, a relaxation of the lattice will result in a large energy change. If/when
this is detected 𝛿 can be adjusted. Conversely, if no such energy changes are detected 𝛿 can be
increased to try and increase the performance of the simulation. Furthermore, if we encounter a
local environment that breaks Eq. (7) or Eq. (13) then 𝛿 can be reduced.

9

                  



Algorithm 1 Function greedy_perm and its subroutines attempt to permute elements of 𝑄 such that it is equivalant to
𝑃 (Eq. (4) holds); returns True if 𝑃 and 𝑄 are equivalent otherwise False.

Require: 𝑃 and 𝑄 contain the same number of points, 𝑛 > 1.
function greedy_perm(𝑃, 𝑄)

return _recur(𝑃, 𝑄, 2)

function _recur(𝑃, 𝑄, 𝑖)
if 𝑖 > 𝑛 then

𝑶 ← rotor_onto(𝑃,𝑄) ⊲ See Appendix A
𝛥2 ← ∑𝑛

𝑖=1 ∥ 𝒑𝑖 − 𝑶𝒒𝑖∥2
return 𝛥2 ≤ 𝛿2

for 𝑗 ← 𝑖, . . . , 𝑛 do
if 𝑝𝑖 = 𝑞 𝑗 then

Swap points 𝑖 and 𝑗 in 𝑄

if _match(P, Q, 𝑖) then
if _recur(P, Q, 𝑖 + 1) then

return True
Swap points 𝑖 and 𝑗 in 𝑄

return False

function _match(𝑃, 𝑄, 𝑖)
for 𝑗 ← 1, . . . , 𝑖 − 1 do

if
��𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 �� > √2𝛿 then

return False
return True

3.2.5. Efficiency with 𝛿

The number of SP searches required during an OLKMC simulation is proportional to the number
of local environments, 𝑁env, this is controlled by 𝛿. Figure 3a shows how 𝑁env varies smoothly
with 𝛿 in a single frame of a simulation while Fig. 3b shows how 𝑁env evolves over the course of a
simulation for a selection of 𝛿 values.

We see in Fig. 3a there are three regimes in 𝑁env for each complex. Below 𝛿 ≈ 10−3Å, 𝑁env
levels off and converges to approximately 𝑁

2 for V1H/V2H and 𝑁
4 for the other complexes. This

reflects the 𝐶2/𝐷4 symmetries of the supercell but otherwise classifies every atom as in a different
environment. At the upper limit of 𝛿 we approach Eq. (13) and environments further from the
complex begin to be classified as equivalent. At much smaller values

(
𝛿 ≪ 10−4Å

)
, not included in

Fig. 3a, every atom is classified into its own environment. This is because minimiser-convergence
then machine precision introduce errors into the atomic positions, splitting the atoms that should be
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Figure 3 Plots of the number of local environments, 𝑁env, discovered during OLKMC simulations of V𝑛H diffusing.
The 63 unit-cell supercell contained 𝑁 = 432 − 𝑛 + 1 atoms and 𝑟env = 5.2Å.

related by symmetry into separate local environments.
Figure 3b show us, for V1H, even for very small 𝛿, the number of environments eventually goes

to a constant. This means no more SP searches will be required after this point. The number of steps
to reach this point is also independent of 𝛿. This is a consequence of the tolerance of our method
ensuring no equivalent LEs are ever incorrectly classified as distinct. In the ≈ 1000 steps it requires
to reach this point, an OLKMC simulation with no SP recycling would have effectively encountered
approximately half-a-million environments hence, our system which encounters between 400–25 000
(depending on 𝛿) offers a 1–3 order-of-magnitude reduction in the number of SP searches in this
region. The sharp increase in LE’s near the 400th step corresponds to the hydrogen escaping the
complex. Interestingly, we see a the final value of 𝑁env in Fig. 3b is almost identical for 𝛿 = 5×10−4Å
and 𝛿 = 5 × 10−3Å despite, 𝑁env in Fig. 3a levelling off near 𝛿 = 10−3Å.

These results show the advantage of defining a norm-based tolerance method as, the tolerance
(𝛿) can be optimised for each complex systems to minimise the number of LE’s.

3.2.6. Heuristics
With the algorithms detailed thus far, a catalogue could be built that satisfies our requirements

for LE classification however, although we ensure the condition of Eq. (13), a call to Algorithm 1
still takes ≈ 10µs with a LE containing 65 atoms. Hence, as we may call Algorithm 1 for every LE
in the catalogue when encountering a new LE, this becomes prohibitively expensive. To reduce the
search-space we partition the catalogue into sub-catalogues each indexed by a key, 𝑘:

𝑘 : 𝑃→ (𝑝1, {𝑛𝛼}) (14)

with 𝑛𝛼 the number of points in 𝑃 of the 𝛼th colour. Due to its discrete nature, 𝑘 can be used as the
key to a hash-table (or other suitable key–value store) enabling O (1) look-up of the sub-catalogues.
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The sub-catalogues may still become very large, especially in systems where all points are the same
colour. As a simulation progresses, we can sort the order of the LEs in each sub-catalogue by its
occurrence count. This significantly decreases the look-up time for a typical LE as many systems
have most points in the same LE and only a small number of "active" points (e.g near defects) in
rare LEs.

To further accelerate searches of the sub-catalogues we introduce a second discriminator, the
fingerprint 𝑓 , a collection of sorted sets/lists:

𝑓 : 𝑃→
{
{𝑝1𝑖 | 𝑖 > 1}𝛼≤ ,

{
𝑝𝑖 𝑗 | 𝑖 > 1, 𝑗 > 𝑖

}𝛼, 𝛽≤𝛼
≤

}
(15)

where 𝑝𝑖 𝑗 denotes the intra-point distances between points 𝑖 and 𝑗 and the superscripts 𝛼, 𝛽 indicate
the colour of the points in the point pair. For example, in the H-Fe system there are two possible
point colours hence, 𝑓 contains five ordered lists. Two each containing the intra-point distances
between points of a particular colour and the central point; a further three lists containing the
intra-point distances between pairs of atoms coloured H-H, Fe-H/H-Fe, and Fe-Fe. By construction,
𝑓 is invariant under Euclidean transformations and permutations of the points in 𝑃. Two fingerprints
can be compared for equivalence as follows:

Algorithm 2 Compare two fingerprints for equivalence under Eq. (4) subject to the constraints of Eq. (5).

Require: 𝑃 and 𝑄 have matching keys.
function equiv( 𝑓𝑃, 𝑓𝑄)

for each pair of ordered lists p[], q[] in 𝑓𝑃, 𝑓𝑄 do
for each pair of elements 𝑝, 𝑞 in p[], q[] do

if |𝑝 − 𝑞 | >
√

2𝛿 then
return False

return True

By construction, it is necessary, but not sufficient, for two LEs fingerprints to be equivalent for
Algorithm 1 to return True. In practice, equivalence of fingerprints is a very strong pre-conditioner
for Algorithm 1. As comparison of fingerprints is orders of magnitude faster (typically taking tens
of nanoseconds), this substantially accelerates searching the sub-catalogues.

3.2.7. Searching a catalogue of LEs
The full method for classifying a LE, represented by the point-cloud 𝑄, and reconstructing the

mechanisms discovered by previous SPS at an equivalent LE proceeds as follows:
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Algorithm 3 Search a catalogue of reference LEs for an equivalent LE.

function search_catalogue(𝑄)
𝑘 ← the key of 𝑄
𝑠← the sub-catalogue corresponding to 𝑘 in the catalogue
for each 𝑃 in 𝑠 do

if equiv(𝑃, 𝑄) and greedy_perm(𝑃, 𝑄) then
return P an equivalent LE, whose mechanisms can be reconstructed onto𝑄 by multi-

plying their atomic displacement-vectors by 𝑶T (computed during greedy_perm)

return NULL

If no match is found then 𝑄 represents a new LE; append 𝑄 to the sub-catalogue and launch SPS
centred on the LE in order to discover any mechanisms associated with it.

3.3. Saddle-point searches
In our implementation, we diverge slightly from the original formulation of the superlinear

dimer method [46] during the dimer translation step. We still use the L-BFGS algorithm [70, 71]
for determining the translation direction. Ideally a Wolfe condition [72, 73] satisfying line-search
could be performed however, no explicit form for the potential that generates the effective force is
available. Hence, we introduce a classical trust-radius based approach [74] to limit the step-size.

The maximum step size, 𝑠trust, is scaled according to the success of the previous steps; the
projection of the effective gradient on the search direction is calculated after a step:

𝑃 = −𝑭T
eff 𝒑 (16)

where 𝒑 is the approximate Newton step, computed using the L-BFGS method, and 𝑭eff is the
effective force acting on the dimer. An ideal step length would have 𝑃 = 0. Hence, we increase
𝑠trust when 𝑃 < −𝑃tol and decrease 𝑠trust when 𝑃 > 𝑃tol. Additionally, we bound 𝑠trust such that
𝑠min < 𝑠trust < 𝑠max.

3.4. Kinetic prefactors
Most OLKMC implementations apply the constant pre-factor approximation, 𝜈̃𝑖 𝑗 = 𝑣, to harmonic

transition state theory (HTST) [37, 55] however, Ref. 75 identifies large variations in 𝜈̃𝑖 𝑗 during
Al adatom diffusion events. This is to be expected when dealing with heterogeneous systems and
evidence to start calculating 𝜈̃𝑖 𝑗 , rather than relying on constant approximation. Applying HTST
and assuming the PES is quadratic near the SP, we can calculate 𝜈̃𝑖 𝑗 for each mechanism [76, 77]:

𝜈̃𝑖 𝑗 =

∏𝑁
𝑘=1 𝜈

𝑖
𝑘∏𝑁−1

𝑘=1 𝜈‡𝑘
(17)

where 𝜈‡𝑘 , 𝜈𝑖𝑘 are the real normal-mode frequencies at the SP and state 𝑖 respectively. This requires
computing the full mass-weighted Hessian for each LE. This can be done most efficiently analytically,
the procedure is described in the supplementary material.
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3.5. Superbasin caching
We elect to further extend the bac-MRM to incorporate superbasin caching. We follow Ref. 61

however, when a superbasin is exited, instead of discarding the superbasin, it is stored into a buffer.
The implementation then checks if this new "exit" state is in any of the cached superbasins, if so
the corresponding superbasin is loaded from the cache. This is particularly critical as it avoids
re-exploring a superbasin that is re-entered immediately after it has been exited. We also dynamically
set the tolerance (which the forward and reverse barriers of a mechanism must be less than) for exit
state classification. This is achieved by lowering the tolerance when a superbasin gets too large and
increasing it when the number of superbasins in the cache exceeds some user-defined threshold.

3.6. Measuring diffusivity
The diffusion coefficient of a collection of atoms over a time 𝑡, can be extracted from the

mean-squared displacement (MSD):

⟨𝑅2⟩ = 1
𝑁

𝑁∑︁
𝛼



𝒓𝛼𝑡=0 − 𝒓𝛼𝑡


2 (18)

of the atoms and the Einstein equation [78]:

𝐷 =
⟨𝑅2⟩
6𝑡

(19)

As we use a single H atom throughout our simulations, we compute the diffusivity of H by dividing
the trajectory into intervals and averaging the diffusivity computed in each interval [79, 80]. Due
to the complexity of explicitly tracking the position of vacancies during a simulation, we use the
MSD of the Fe atoms to calculate the simulated diffusivity, 𝐷sim, and effective diffusivity, 𝐷eff of
individual defects. These are related to the MSD via [81]:

𝐷sim =
⟨𝑅2⟩Fe

6𝑡
and 𝐷eff =

𝐷sim
𝑥𝑑

(20)

with 𝑥𝑑 the defect concentration. This has the additional benefit of averaging over many Fe atoms.

4. Results and discussion

4.1. Vacancy cluster diffusion
In order to test our implementation and validate our invariant and tolerant local-environment

classification, we begin by studying small V𝑛 clusters; we aim to thoroughly classify their diffusion
pathways to allow comparisons upon the introduction of H. We construct a vacancy-cluster, V𝑛,
in a (otherwise perfect) 63 unit-cell BCC supercell. After a series of mechanisms, the cluster is
moved to an equivalent state (just rotated/translated). In combination with the periodic boundary
conditions, our norm-based caching recognises this symmetry, reconstructs saddle-points and elides
new searches. Hence, SP searches were only required during the initial learning phase of the
simulation.

The V𝑛 diffusion results are presented in Fig. 4 and summarised in Table 1. The energy profiles
for the identified mechanisms are presented in Fig. 5 alongside the mechanisms themselves in Fig. 6.
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Figure 4 Vacancy clusters diffusing in a perfect 63 unit-cell supercell at 300K, dashed lines are fit to a constant.

In Fig. 4, we see convergence to diffusive behaviour for all clusters, verifying that we are reaching
diffusive timescales. These timescales are a property of each system and range between 10−5s and
1s. The expected behaviour for cluster diffusivity is for larger clusters to become less mobile. This
trend is visible in Table 1 but, the diffusivity for V3 seems to reverse this trend. We shall now discuss
each cluster in detail to fully understand this behaviour.

V1. The single vacancy diffuses by 1
2 ⟨111⟩ vacancy hops (a feature common to all the clusters and

complexes) with an activation energy of 0.65eV and kinetic pre-factor 7.44 × 1013Hz. The energy
barrier and mechanism are in good agreement with the literature [80, 81].

V2. The minimum-energy configuration (MEC) for V2 is the second nearest neighbour (NN) pair
followed by the 1st NN then 4th NN orientations, this matches the literature [82]. The predominant V2
diffusion mechanism was oscillations between the 2nd NN and 4th NN states, with an energy barrier
of 0.65eV. The 1st NN pathway may be expected to be the dominant mechanisms, as one may predict
the transition to the lower-energy 1st NN state to have a lower energy-barrier. However, the 2nd NN
to 1st NN transition has an energy barrier of 0.72eV, making it kinetically less-favourable. The V2

Table 1 Summary of vacancy-cluster diffusion results in the 𝛼–Fe lattice at 300K. All diffusivities have a fractional
error less than one part in one hundred. Quoted kinetic pre-factors for multi-step mechanisms is that of the highest
barrier step.

Cluster 𝛥𝐸 /eV 𝑣/1013Hz 𝐷eff/m2 s−1

V1 0.64(9) 7.44 4.05 × 10−17

V2 0.65(1) 10.4 2.07 × 10−17

V3 0.48(2) 5.22 7.40 × 10−16

V4 0.73(4) 3.41 2.05 × 10−18

V5 0.77(3) 3.12 9.01 × 10−20
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Figure 5 Energy profiles for the vacancy cluster diffusion mechanisms sketched in Fig. 6 – extracted from OLKMC
simulations at 300K. Figure 5a has energy barriers: 0.64 and 0.096eV and corresponding kinetic pre-factors: 7.44×1013

and 1.18× 1013Hz. Figure 5b has energy barriers: 0.64, 0.095, 0.44 and 0.087eV and corresponding kinetic pre-factors:
1.04 × 1014, 1.06 × 1013, 7.52 × 1013 and 1.11 × 1013Hz. Figure 5c has energy barriers: 0.58, 0.16, 0.63 and 0.015eV
and corresponding kinetic pre-factors: 2.97 × 1014, 9.33 × 1012, 1.16 × 1014 and 5.16 × 1012Hz. Figure 5d has energy
barriers: 0.48 and 0.027eV and corresponding kinetic pre-factors: 5.22× 1013 and 5.24× 1012Hz. Figure 5e has energy
barriers: 0.68, 0.063, 0.55 and 0.0056eV and corresponding kinetic pre-factors: 3.41 × 1013, 7.62 × 1012, 3.94 × 1013

and 3.01×1012Hz. Figure 5f has energy barriers: 0.70, 0.081, 0.54, 0.37, 0.56 and 0.0034eV and corresponding kinetic
pre-factors: 3.12 × 1013, 7.17 × 1012, 6.00 × 1013, 6.96 × 1012, 4.31 × 1013 and 2.58 × 1012Hz.

diffusion barrier is very close to the diffusion barrier for V1, this may be an artefact of the EAM
potential used, as ab initio studies typically predict an energy barrier 0.05–0.11eV lower [83, 84].
Nevertheless, this agrees with other works that use similar semi-empirical potentials [80] hence, this
discrepancy is an artefact of the potential and would be resolved with improved potentials. V2 has a
diffusivity approximately half V1, this is due to the combination of a near-identical energy barrier
but requiring two vacancy-hops to diffuse.

V3. As previously hinted, V3 defies the expectation and is the most mobile cluster with a diffusivity
more than an order of magnitude higher than V1 at 300K. This is due to the MEC permitting
a vacancy hop with an energy barrier of 0.48eV, that almost immediately reforms the MEC just
displaced/rotated. This means, similarly to V1, V3 can diffuse without changing its shape. The
simulated MEC matches theoretical predictions, as does the mechanism [84] and the elevated
diffusivity matches KMC simulations in Fe [85] and similar trends seen in FCC Ni [86].

V4. The mobility of V4 resumes the decreasing trend. This is predominantly due to the high energy
barrier, 0.73eV, required to break apart the MEC. Reference 84 used DFT to compute the V4
diffusion mechanism, they obtained a lower energy barrier of 0.48eV however, their mechanism
matches ours. This could be due to image interactions introduced by the small 43 unit-cell supercell
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Figure 6 Diffusion mechanisms for vacancy-cluster diffusion in the 𝛼–Fe lattice. White circles represent an occupied
lattice site; small □ symbols indicate an unoccupied BCC lattice site; arrows mark the path of an atom during a
mechanism and transparent grey planes act as a guide to the eye containing the atomic path. Small perturbations away
from lattice sites have been omitted for clarity. See Fig. 5 for the corresponding energy profiles. Note for V2 only the
lower energy mechanism (Fig. 5b) has been sketched.

used or indicate work is required on the EAM potential. Nevertheless, the match in mechanism
pathway is reassuring and indicates the key physics is being captured by the potential.

V5. Similarly to V4, V5 continues to become less mobile as its size increases. This is again
predominantly due to the high energy barrier, now 0.77eV, required to break apart the MEC.
Furthermore, additional steps are required to diffuse, increasing the probability of backtracking.

4.1.1. Discussion
Off-lattice KMC has successfully been applied to study the diffusion of vacancy clusters. The

mechanisms predicted and diffusivity-trends match those seen in the literature [80, 82, 84, 87].
However, they have all been predicted, without a priori assumptions, by the highly general OLKMC
framework. This is exemplified by the counter-intuitive diffusion mechanisms of V2 that could easily
be misidentified if using simpler models e.g. final-to-initial-state-energy (FISE) [80]. Although, this
could have been captured with traditional KMC and careful DFT analysis, here it arises naturally
without any special consideration or bias. The range in kinetic pre-factors, spanning almost two
orders of magnitude, emphasises the need to compute pre-factors even in single element systems.
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Figure 7 V2H complex diffusing in a perfect 63 unit-cell supercell at 300K, dashed line is a fit to a constant.

A particularly relevant comparisons is with Ref. 87, they also use an OLKMC method to obtain
the diffusivity of V𝑛 clusters but using a different potential [88]. They report the diffusivities at
573K hence, a direct comparison is non-trivial. However, we do see good correlation in the trends
observed: they see a drop in diffusivity from V1 → V2 followed by an increase V2 → V3 and then
decreasing diffusivity for larger clusters. This matches our results and gives us confidence that this
trend is not a quirk of the potentials used.

During our experiments at 300K, no dissociation of the vacancy clusters occurred. This confirms
the dissociation barrier is higher than the diffusion barrier, which is in line with the literature [80].
Exploring diffusion across a range of (higher) temperatures with OLKMC (as we do for V1H in
Section 4.4) would offer an opportunity to confirm the energy barriers with a fit to the Arrhenius
equation and study the dissociation behaviour. If larger clusters become increasingly immobile,
dissociation may become the predominant form of diffusion.

4.2. V𝑛H complex diffusion
To build upon the cluster diffusivity results, we add a single H atom into each of the clusters

described in Section 4.1, forming V𝑛H complexes. The cluster acts as a trap for the H atom, which
can then detrap, diffuse rapidly through the lattice and re-trap at another (possibly the same) cluster.
Alternatively, the complex itself can diffuse. We refer to the H trapping sites within the vacancy
clusters as deep trapping-sites.

The parallel of Fig. 4 is presented in Fig. 7, for the representative V2H complex. We see
timescales range from 10−13s to 10s, this is required to resolve the distinct regimes visible in
Fig. 7. Firstly, below 10−9s, the H atom explores the deep-trapping states within vacancy clusters.
Analytical superbasin acceleration kicks in once all the states are explored, solves the flickering
problem between the deep trapping-states and triggers the discontinuity to 10−5s as the H atom
escapes then rebinds to the cluster. Next, near 10−4s, the H atom detraps and diffuses to another
cluster. Finally, near 1 × 10−2s, the complex displaces and beyond converges to diffuse behaviour.
Like the experiments in Section 4.1, SP searches are only required during the learning phase of the
simulations.
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Figure 8 Histogram of energy barriers for V2H complex diffusion in a perfect 63 unit-cell supercell at 300K.

The complex’s diffusivities and energy barriers are summarised in Table 2; the energy profiles
for the identified mechanisms are presented in Fig. 9 and the mechanisms themselves in Fig. 10. We
expect higher energy barriers for small complexes, especially V1H, due to the larger relative steric
hindrance provided by the H atom in the smaller clusters. As the clusters get larger, one would
predict that the ‘regular’ H-free mechanisms could occur whilst the H atom occupies the opposite
side of the cluster, interacting minimally. Hence, larger complexes are expected to diffuse similarly
to their corresponding clusters. Interestingly, we see for the larger clusters investigated that the
introduction of H lowers the energy barrier, indicating a different mechanism may be occurring. We
shall now discuss each complex in detail to fully understand this behaviour.

V1H. As predicted by the steric argument, V1H experiences the largest increase in diffusion barrier.
The H atom can occupy 6 deep trapping-sites in the vacancy, close to the adjacent octahedral
sites. The H atom must be ‘pushed’ out of the vacancy by an Fe atom during a 1

2 ⟨111⟩ hop which
increases the energy barrier, demonstrating co-dependence. The partially-escaped H atom then
rebinds with the newly formed vacancy. This mechanism is asymmetric; from the perspective of the
reverse direction, the H atom first escapes and then pushes a Fe atom into the vacancy. The energy
barrier, energy profile and mechanism closely match the EAM results of Ref. 81, validating that

Table 2 Summary of cluster-H diffusion results in the 𝛼–Fe lattice at 300K. All diffusivities have a fractional error less
than one part in one hundred. Quoted kinetic pre-factors for multi-step mechanisms is that of the highest barrier step.

Complex 𝛥𝐸 /eV 𝑣/1013Hz 𝐷eff/m2 s−1

V1H 0.75(8) 23.3 3.72 × 10−19

V2H 0.70(5) 8.70 1.00 × 10−18

V3H 0.49(1) 9.22 7.50 × 10−16

V4H 0.71(2) 7.86 3.95 × 10−18

V5H 0.74(8) 7.33 5.16 × 10−20
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Figure 9 Energy profiles for the cluster-H diffusion mechanisms sketched in Fig. 10 – extracted from OLKMC simulations
at 300K. The individual barriers and kinetic pre-factors are omitted for brevity.

our norm-based classification generalises to small interstitials and heterogeneous systems. In the
literature it is suggested that the reverse direction is the preferred mechanism [23, 81] however, in
our experiments this only occurs ≈ 30% of the time. This could be due to a kinetic bias towards the
forward direction at 300K.

V2H. The H atom can occupy 14 deep trapping-sites in the V2 2nd NN cluster, again close to the
surrounding octahedral sites. The larger V2H complex has a diffusion mechanism more similar to
the H free case than V1H; the vacancies first move into a 4th NN coordination leaving the H atom in
the original vacancy, the H atom then jumps out and into the moved vacancy. Finally, the original
vacancy hops and reforms a displaced 2nd NN complex. Less interaction between the H atom
and moving Fe atom(s) results in a lower total energy barrier of 0.71eV, compared to V1H. This
explains the corresponding ten-fold increase in diffusivity compared to V1H. While for V1H only
one diffusive mechanism occurred, for V2H a group of diffusive mechanisms, with energy barriers
0.71–0.95eV were found. Figure 8 depicts the distribution of diffusion-mechanism energy-barriers
identified. The most prolific mechanism at 300K had an energy barrier of 0.78eV. The minimum
barrier mechanism was probably suppressed by the high likelihood of the vacancy hopping back to
the initial configuration before the H atom could hop to the new vacancy. In contrast the 0.78eV
mechanism progressed through a 1st NN intermediate, which is equally likely to move to a new
state or backtrack as the H atom can freely move between the two vacancies. This highlights the
significance of kinetics vs energetics at room temperature.

V3H. The introduction of H to V3 has little effect on the diffusion mechanisms, only fractionally
increasing the exceptionally low-barrier V3 mechanism to 0.49eV. This results in V3H not disas-
sociating for the entirety of the simulation. The V3 cluster provides 18 deep trapping-sites for H.
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Figure 10 Diffusion mechanisms for V𝑛H1 complexes in the 𝛼–Fe lattice. Small red circles mark a H atom; white
circles represent an occupied lattice site; small □ symbols indicate an unoccupied BCC lattice site; arrows mark the
path of an atom during a mechanism and transparent grey planes act as a guide to the eye containing the atomic path.
Small perturbations away from lattice/octahedral/tetrahedral sites have been omitted for clarity. See Fig. 9 for the
corresponding energy profiles. Note for V4H only the frames corresponding to steps 0–3 and 7–10 in Fig. 9d are shown
and similarly for V5H with steps 0–2, 7–9 and 18–20 from Fig. 9e.
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Figure 11 Comparison between V𝑛 and V𝑛H diffusion barriers vs their corresponding effective diffusivities – expectation
is Eq. (21) where we assume equal Arrhenius pre-factors.

Similarly to V2H, a range of diffusion mechanisms were identified with energy barriers 0.49–0.57eV.
This time the minimum energy mechanism accounted for a substantial fraction of the observed
mechanisms but, was still not the most frequent.

V4H. The V4 cluster provides 20–32 deep trapping-sites for H (depending on the cluster configu-
ration). For the first time, introduction of an H atom decreases the energy barrier and increases
the diffusivity of the complex, compared to the cluster alone. Studying Fig. 6 and Fig. 10, we see
the motion of Fe atoms remains the same as V4. Although the H atom has extra space in the large
cluster to ‘avoid’ the hopping Fe atom, as predicted by the steric argument, instead it remains close
and lowers the energy of the saddle-point(s). This effect can be likened to the pathway provided by
the partially-escaped H atom pushing a Fe atom in V1H. However, due to the increased size of the
cluster and its shape, the H atom does not need to escape before providing this push. Furthermore,
the intermediate Fe configuration (steps 3–7 in Fig. 9d) is connected, meaning the H atom can easily
reach all the deep traps in the cluster (unlike V2H) hence, the forwards and reverse directions are
equally likely.

V5H. The V5 cluster provides 28–36 deep trapping-sites for H and continues the V4H trend of
decreasing the energy barrier compared to its corresponding cluster. In Fig. 10 we see (again
contrary to the steric hypothesis) the H atom remains close to the hopping Fe atom, with the first
and last hops very similar to the corresponding steps of the V4H mechanism. Despite the lower
energy barrier, V5H diffusivity is reduced compared to V5. This can be attributed to the additional
complexity of the mechanism (visible in Fig. 9e) and additional backtracking, all of which reinforces
the importance of kinetic effects at room temperature. To the authors knowledge, this is the first-time
mechanisms for V5H have been reported.
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4.2.1. Discussion
As we move from V𝑛 clusters to V𝑛H complexes, we may expect the diffusivities to scale with

the energy barriers according to the classical Arrhenius behaviour:

𝐷H
eff

𝐷eff
≃ 𝑒−𝛽(𝛥𝐸H−𝛥𝐸) (21)

with 𝛽 = 1
𝑘𝐵𝑇

and H superscripts denoting the complexes. This assumes both the cluster and the
complex have the same Arrhenius pre-factor, this assumption can be motivated by the equivalent
pathways of Fe atoms during diffusion in Fig. 6 and Fig. 10. The comparison is drawn in Fig. 11,
where we see a general conformance to expectation. We see the largest deviations for V2H and
V5H, these complexes require three high-barrier steps during their diffusion mechanism hence, these
deviations are probably due to the increased likelihood of backtracking.

For all the complexes beyond V1H, a number of alternative mechanisms were accessible at
300K. Off-lattice KMC was able to discover these on-the-fly; traditional KMC simulation that use
(typically small) pre-determined lists of mechanisms could easily omit mechanisms that contribute
to interesting behaviour. Capturing only the lowest energy barrier mechanisms may not be sufficient.
Figure 8 exemplifies this for V2H, which is the simplest example of this increasing complexity. This
effect will become worse at higher temperatures where alternate, higher-energy mechanisms become
ever more common.

Similarly to Section 4.1, the vacancies in the complexes did not dissociate during the simulation.
This suggests the dissociation barrier remains higher than the complex’s diffusion barriers but, sheds
little light on the effect of H on the dissociation barrier. Extending the simulations across a range of
temperatures (as we do for V1H in Section 4.4) would offer an opportunity to confirm the energy
barriers with a fit to the Arrhenius equation and (through comparisons with the H free case) study
the effect of H on the dissociation barrier.

It has also been found that the interaction between H and vacancy-clusters has not followed
the pattern if extrapolating from V1H; perhaps the most interesting behaviour is the reduction
in diffusion barrier, upon introduction of H into the larger clusters V4H and V5H. A similar
phenomenon, dubbed the hydrogen lubrication effect, has been explored computationally in FCC
metals [89]. If this trend continues and the gap continues to increase, it could help to explain the
experimentally observed H-induced nano-void migration [90] and could have implications for HE by
contributing towards vacancy agglomeration during the HESIV mechanism [14, 91, 92]. A similar
atomic mechanism that lowers the diffusion barrier for Vacancy-H complexes could be responsible
for the predicted increase in dislocation velocity/mobility [93, 94], which could directly support
the HELP mechanism [9] of HE. As ever, we should be wary of extrapolating; nano-sized cluster
and dislocations could be simulated with OLKMC and would need to be studied before drawing
conclusions about macroscopic phenomena.

4.3. Effective hydrogen diffusivity vs classical approaches
Alongside the diffusion of the complexes in Section 4.2, we also investigate the motion of the H

atom between the network of defects. To explore these results we make comparisons with Oriani’s
theory of equilibrium-trapping [95], which predicts the effective diffusivity of H, 𝐷Or, is related to
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Figure 12 Fraction of the total-time the H atom spent outside a sphere of radius 𝑟 centred on the vacancy cluster at
300K.

the diffusivity in the perfect lattice, 𝐷, via [43]:

𝐷Or = 𝐷
𝑛𝐿𝜃𝐿

𝑛𝐿𝜃𝐿 + 𝑛𝑥𝜃𝑥 (1 − 𝜃𝑥) (22)

where 𝜃𝑥 , 𝜃𝐿 are the fractional occupancy of available point-trap and regular lattice sites respectively,
and 𝑛𝑥 , 𝑛𝐿 the corresponding number of sites. Oriani’s theory assumes the traps are stationary
hence, 𝐷Or only takes account for H displacement while the H atom moves between traps.

To obtain the average of 𝜃𝑥 and 𝜃𝐿 over the course of the entire simulation we identify the
locations of the deep trapping-sites in each frame and determine their centroid. Then, defining 𝑟 as
the distance from the H atom to the centroid, we partition the frames into two sets: trapped frames
with the 𝑟 < 𝑟𝑥 , a cut off trapping radius, and lattice frames with 𝑟 ≥ 𝑟𝑥 . We now discuss how 𝑟𝑥
can be chosen and give us information about the size of the defect. Associating trapping sites to the
location of the H atom at trapped frames and similarly for lattice sites/frames, the total time spent in
each partition, 𝑡𝑥 and 𝑡𝐿 , are related directly to 𝜃 and 𝑛 via:

𝑛𝑥𝜃𝑥 =
𝑡𝑥

𝑡𝑥 + 𝑡𝐿 and 𝑛𝐿𝜃𝐿 =
𝑡𝐿

𝑡𝑥 + 𝑡𝐿 (23)

and we assume 𝑛𝑥 and 𝑛𝐿 are approximately constant. As we expect the H atom to spend most of its
time bound to the vacancy cluster, we apply 𝑡𝐿 ≪ 𝑡𝑥 to obtain:

𝐷Or =
𝑡𝐿
𝑡𝑥

𝐷

1 − 1
𝑛𝑥

(24)

In order to determine the appropriate value of 𝑟𝑥 for each complex, we plot the fraction of the
time, 𝐹, the H atom spent outside a sphere of radius 𝑟 centred on the vacancy cluster, as a function
of 𝑟 . The results are presented in Fig. 12: for small 𝑟 , as we expect, 𝐹 → 1 as no trap/lattice sites are
inside the sphere. Conversely, at large 𝑟, 𝐹 levels-out as all the states outside the sphere are linked
by approximately-equal low-barrier mechanisms and the H atom must diffuse an approximately
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Figure 13 Energy profile of the V1H dissociation pathway as a function of the distance of the H atom from the centre of
the vacancy.

constant (but slowly decreasing hence the trail off in Fig. 12) distance before rebinding. Between the
two regions is a sharp discontinuity which marks the bounding sphere that contains all the trapping
sites hence, this discontinuity defines 𝑟𝑥 , an effective size for each defect or trapping atmosphere.
This is recorded in Table 3 alongside the diffusivity of the H atom and the relevant energy barriers.

Oriani’s theory was postulated assuming traps as single points in the lattice interacting with H. In
the present work, we are able not only to predict 𝐷eff but also calculate the effective trapping-distance
or atmosphere of traps with arbitrary structure i.e. non-point traps.

4.3.1. Discussion
As expected, in Table 3 we see increasing the number of vacancies leads to a higher 𝑟𝑥; V2H

has a larger jump in 𝑟𝑥 than the rest of the clusters, this is due to extended size of the 4th NN
intermediate state. All of the clusters have a larger effective size than the cluster radius would
suggest. This is well demonstrated by V1H, where we see 𝑟𝑥 = 3.9Å is between the 2nd and 3rd NN
distances, indicating the tetrahedral sites close to the vacancy also act as a weak trap for H. If
we examine the energy profile of the dissociation mechanism in Fig. 13, we see a collection of

Table 3 Summary of V𝑛H binding energies and detrapping barriers in the 𝛼–Fe lattice extracted from OLKMC
simulations at 300K. Additionally, the diffusivity of the H atom is included alongside the trapping radii and Oriani
diffusivities. Note: V3H did not detrap during the simulation hence, the corresponding values are omitted.

Complex 𝑟𝑥/Å 𝛥𝐸detrap/eV 𝛥𝐸 − 𝛥𝐸detrap/eV 𝐸𝐵/eV 𝐷H/m2 s−1 𝐷Or/m2 s−1

V1H 3.9 0.63(3) 0.13 0.59 1.57 ± 0.21 × 10−16 8.47 × 10−17

V2H 6.2 0.66(7) 0.04 0.62 1.25 ± 0.06 × 10−16 5.69 × 10−17

V3H 5.2 - - - 1.24 ± 0.11 × 10−15 -
V4H 6.3 0.70(3) 0.01 0.65 4.88 ± 0.80 × 10−16 1.22 × 10−16

V5H 6.6 0.70(8) 0.04 0.66 4.01 ± 0.27 × 10−17 6.84 × 10−18
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metastable states just below 𝑟 = 3.9Å. These metastable states join the vacancy’s superbasin; as
the state-to-state dynamics are not preserved inside superbasins the time fractions at 𝑟 < 𝑟𝑥 in
Fig. 12 do not correspond to the Boltzmann distribution. Understanding the depth and density of
hydrogen’s weak-trapping/metastable states introduced by defects is of key importance to designing
HE resistant steels that utilise H traps. Our results show that even the simplest defects have a
complex secondary-structure of surrounding metastable states. Furthermore, the large effective size
of the defects means they will alter the diffusive cross section to a greater extent than would be
expected for point defects and such variations are not monotonic with the defect complexity (i.e. the
number of vacancies).

The detrapping barriers and binding energies in Table 3 increase with the number of vacancies
and the two are separated by ≈ 0.047eV for each complex. Therefore, larger clusters act as deeper
traps, this trend should level-out as the inside of the cluster approaches a surface.

The diffusivities of the H atom follow a more complex trend. In general, 𝐷H and 𝐷Or fall in
accordance with 𝛥𝐸detrap and 𝛥𝐸𝐵 rising but, 𝐷Or under-predicts the diffusivity. This is because
𝐷Or assumes the traps are immobile while in reality the energy barrier for the complex diffusing can
be very close to the detrapping barrier. This would present a minor contribution to the diffusivity of
the H atom if the mean free path (MFP) in the lattice was large, as the diffusion in the lattice is very
fast. However due to the high defect-concentration limiting the MFP, the two effects are competing.
Furthermore, 𝐷Or becomes a worse estimator of 𝐷H as the defect size increases, this is because the
approximations made by Oriani (point trapping, single trapping barrier and no change in diffusive
cross-section) become less true as the defect’s size increases. The trend is broken by V4H, despite
having a higher detrapping barrier, the H atom diffuses faster than in V1H and V2H. This could be
partially explained by fact that V4H has the smallest gap between 𝛥𝐸 of the complex and 𝛥𝐸detrap
thus, complex diffusion is contributing more to 𝐷H. The corresponding rise in 𝐷Or (which should
not take into account complex diffusion) could then be attributed to the H atom not having enough
time to reach equilibrium between the lattice/defect before the defect diffuses again. Nevertheless,
the detrapping barriers for V1H and V2H are still lower than the complex-diffusion barrier of V4H;
perhaps the difference is made up by the kinetic pre-factors of the rate limiting step(s).

Interpolating Table 3 we would expect the detrapping barrier for V3H to be 0.67–0.70eV, this is
much higher than the diffusion barrier, which explains the lack of detrapping. If we compare the
H diffusivities between the complexes, we see that V3H complex-diffusion offers a pathway for H
transport that is about an order of magnitude faster at 300K compared to trapping and detrapping
from the other complexes. This is partly due to the aforementioned high defect-concentration – due
to the periodic nature of the system – limiting the MFP of lattice-diffusing H. Nevertheless, this
unexpected result could explain elevated H transport in some scenarios. Furthermore, with the
energy barrier for H transport via V3H complex-diffusion being so much lower, this could be the
predominant H transport mechanism at lower temperatures.

4.4. Variation with temperature
In order to make comparison of our predictions with molecular dynamics, which require higher

temperatures to reach diffusive timescales, we extend the V1H simulations from Section 4.2 across a
range of temperatures. Focusing on V1H avoids entanglement of diffusion with dissociation effects
for multi-vacancy complexes, to better illustrate the agreement with other results. The results are
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Figure 14 Arrhenius plot of the effective diffusivity of the V1H complex diffusing in an otherwise perfect 63 unit-cell
supercell. The blue data corresponds to the effective diffusivity, 𝐷eff, of the complex computed from the motion of the
Fe atoms while the orange data corresponds to the diffusivity of the H atom, 𝐷H.

presented in Fig. 14, where we have fit to an Arrhenius curve:

𝐷eff = 𝐷0𝑒
−𝛽𝛥𝐸 (25)

For the complex we obtain 𝐷0 = 2.0 ± 0.8 × 10−6m2 s−1 and 𝛥𝐸 = 0.75 ± 0.02eV and for H we
obtain 𝐷0 = 1.5 ± 0.6 × 10−5m2 s−1 and 𝛥𝐸 = 0.64 ± 0.01eV. During the simulation, even at the
highest temperatures, the high H-mobility and effective concentration ensure that the H always
rebinds to a vacancy before the vacancy has an opportunity to diffuse independently.

The Arrhenius-fitted energy-barrier for V1H diffusion is within-error of our direct measurement
in Table 2. Furthermore, we see the effective energy-barrier for hydrogen diffusion from the
Arrhenius plot is within-error of our measurement of the detrapping barrier in Table 3. This
confirms, under these conditions, the diffusivity of the hydrogen is entirely mediated by detrapping
events.

Hydrogen diffusion in Fe is separated into two regimes: H has a very low mass and large
de Broglie extension hence, at low temperatures, H diffuses via a quantum tunnelling mediated
mechanism [26, 27, 96]; at higher temperatures, classical diffusion dominates. Therefore, to ensure
we are in the classical region we should choose a high temperature. Unfortunately, the barrier for
H diffusion in the lattice is relativity low, as 𝑘𝐵𝑇 approaches this barrier the dynamic pressure
effects make HTST a poor description of the system – the HTST approximation may begin to fail.
This is a fundamental limitation to all KMC simulations which effectively quench the system to 0K
at each step. Therefore, we should choose a low temperature to ensure the validity of the HTST
approximation.

These two temperature requirements are opposing so, in Section 4.2, we choose the compromising
temperature of 300K. This is close to room temperature, relevant for H embrittlement and used
in other KMC studies [43]. To verify our temperature is sufficiently low, such as that the HTST
approximation is a good description of the system we must make comparisons to a model that
does not make this assumption. The ideal comparison is provided by Ref. 81, they simulate
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the diffusivity of V1H complexes using MD and parallel replica dynamics (PRD) and obtain
𝐷800K

eff = 1.7–2.0 × 10−11m2 s−1. We can make a direct comparison by interpolating the results in
Section 4.4, we obtain: 𝐷800K

eff = 3.8 ± 2.3 × 10−11m2 s−1. This is within-error of the MD/PRD
results and gives us good confidence that the HTST approximation is still valid at 0K and the results
are not very different from reality.

In summary, we demonstrate through direct quantitative-comparison with other methods that
our results are not significantly distorted by the HTST approximation of low-barrier events.

5. Conclusions

We have developed and implemented a tolerant norm-based LE classification method for
OLKMC, that is invariant under Euclidean-transformations and permutations of atoms. This has
enabled the simulation of the Fe-H system into HE timescales at room temperature, predicting
features not previously reported using a single modelling framework. The introduction of hydrogen
has produced a system that presents many challenges to model with OLKMC: small interstitials,
multi-stage mechanisms, frequent flickering-problems, varied harmonic pre-factors and sensitive
energy-barriers. Nevertheless, these have been overcome and OLKMC has proved an invaluable
and capable tool for the study of Fe-H with no a priori assumptions of the underlying mechanisms.
This is extremely promising for the future of modelling H-defect interactions and improving our
understanding of HE at the atomic scale. Specifically, we have:

• Investigated the diffusion of small (less than six) vacancy-clusters, with and without the
addition of H and found evidence that H can increase the diffusivity of larger clusters.

• Thoroughly classified the diffusion pathways of these cluster/complexes (energetically and
mechanistically) and understood how H changes their diffusion mechanisms.

• Simultaneously, obtained the trapping/detrapping barrier(s) of H from – and its effective
diffusivity in – the presence of these clusters. We have made comparisons to Oriani’s theory,
testing the equilibrium hypothesis in the presence of mobile traps and expanded the conclusions
to also include predicting trapping atmospheres in arbitrarily defined non-point traps.

• Quantified the trapping atmospheres surrounding vacancy clusters and begun to demonstrate
the kinetic effects of shallow traps surrounding point-defects.

• Found examples of harmonic pre-factors varying by two orders-of-magnitude, reinforcing
that the constant pre-factor approximation should always be carefully verified (particularly in
multi-element systems).

Finally, OLKMC is a materials-agnostic method. Our norm-based classification should find
applications in many materials systems requiring long-term atomistic predictions.

Code availability

The software used to perform the simulations in this work, including an implementation of the
norm-based classification developed, is open-source3 or available upon request.

3https://github.com/ConorWilliams/onthefly
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Appendix A. Orthogonal Procrustes problem

Algorithm 4 Solves the orthogonal Procrustes problem, find and return the optimal orthogonal transformation to map
the point-cloud 𝑄 onto the point-cloud 𝑃 [69, 97].

Require: 𝑃 and 𝑄 contain the same number of points, 𝑛.
function rotor_onto(𝑃, 𝑄)

𝑯 ← ∑𝑛
𝑖=1 𝒒𝑖 𝒑

T
𝑖

Compute 𝑼, 𝑽 from the SVD of 𝑯 such that 𝑯 = 𝑼𝜮𝑽T

return 𝑽𝑼T

Appendix B. Complexity analysis of greedy_perm

The time complexity of the _recur function fromAlgorithm 1, O (𝑅𝑖), when called with integer
𝑖 and point clouds 𝑃 and 𝑄 of size 𝑛 is:

O (𝑅𝑖) =
{
(𝑛 − 𝑖) (O (𝑀𝑖) +O (𝑅𝑖+1)) 𝑖 ≤ 𝑛

𝑛 𝑖 > 𝑛
(B.1)

with O (𝑀𝑖) the time complexity of _match called with integer 𝑖 and point clouds 𝑃 and 𝑄. This is
clearly exponential in 𝑛 for general point clouds. However, in 3D, each intra-point pair in 𝑃 defines
a (thin) shell of thickness 2

√
2𝛿 around the corresponding points in 𝑄, which the next point must fall

inside of for _match to return True. As the distance from four non-coplanar points in 3D define a
unique point, once we have matched a small, constant number of points that span the LE, we expect
the intersections of these shells to converge to a sphere. Therefore, the volume of space that the
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tolerance defines in 𝑄 is:

𝑉 ≈ 8
3
√

2𝜋𝛿3 (B.2)

and point the density, 𝜌, is bound in the worst case by closely-packed spheres of radius 𝑟min
2 [98]:

𝜌 ≤
√

2
𝑟3

min
(B.3)

hence, the expected number of points inside the volume of tolerant space, 𝑚, is approximately:

𝑚 ≈ 16𝜋
3

(
𝛿

𝑟min

)3
(B.4)

Each iteration will on average: call _match 𝑚 times for points that will match, each with O (𝑛)
runtime; trigger 𝑚 recursions; call _match O (𝑛) times for points that will not match, each with
constant runtime. Hence, we can rewrite Eq. (B.1):

O (𝑅) = 𝑛𝑚 + 𝑚 (𝑛𝑚 + 𝑚 (. . .))

O (𝑅) =
{
𝑛2 𝑚 ≤ 1
𝑛𝑚𝑛 𝑚 > 1

(B.5)

In order to avoid exponential complexity, we require 𝑚 ≤ 1. Rearranging Eq. (B.4) and using the
approximate nature to simplify the constants, this requires:

𝛿 ≲
2
5
𝑟min (B.6)

For the case of 𝛼-Fe with 𝑟min ≈ 1Å, this requires 𝛿 ≲ 0.4Å. This matches our empirical experiments
with typical LEs in 𝛼-Fe where, we observe the runtime of Algorithm 1 blowing-up beyond 𝛿 ≳ 0.4Å.
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