
Log Signatures in Machine Learning

Shujian Liao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Mathematics

University College London

September 29, 2022

2

I, Shujian Liao, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Acknowledgements

First, I wish to express my deepest gratitude to my supervisor Hao Ni, without

whom my Ph.D. and this thesis would not be possible. Hao is a great mentor both

in life and academy, and provides me a good chance to learn things with her patience

and enthusiastic support.

I am grateful to all my academic collaborators and colleagues; in particular,

Jian Chen, Hang Lou, Marc Sabate-Vidales, Kevin Schlegel, Lukasz Szpruch, Jiajie

Tao, Magnus Wiese, Baoren Xiao, and Weixin Yang. I would also like to thank my

friends who have supported me during the tough Ph.D. journey and made it fruitful.

They are Yanlong Fang, Yupeng Jiang, Zhuang Jiang, Xiaoshu Sun, Weiguan Wang,

Yuting Xiao, Guang Yang. In addtion, I would like to thank my old friends: Yao

Jing, Yangkun Wei, and Qinghao Zeng.

Last but not least, I owe my thanks to my parents for their consistent encour-

agement. I will be forever grateful for your infinite support throughout my life.

Abstract

Rough path theory, originated as a branch of stochastic analysis, is an emerging

tool for analysing complex sequential data in machine learning with increasing at-

tention. This is owing to the core mathematical object of rough path theory, i.e.,

the signature/log-signature of a path, which has analytical and algebraic properties.

This thesis aims to develop a principled and effective model for time series data

based on the log-signature method and the recurrent neural network (RNN). The

proposed (generalized) Logsig-RNN model can be regarded as a generalization of

the RNN model, which boosts the model performance of the RNN by reducing the

time dimension and summarising the local structures of sequential data via the log-

signature feature. This hybrid model serves as a generic neural network for a wide

range of time series applications.

In this thesis, we construct the mathematical formulation for the (generalized)

Logsig-RNN model, analyse its complexity and establish the universality. We val-

idate the effectiveness of the proposed method for time series analysis in both su-

pervised learning and generative tasks. In particular, for the skeleton human ac-

tion recognition tasks, we demonstrates that by replacing the RNN module by the

Logsig-RNN in state-of-the-art (SOTA) networks improves the accuracy, efficiency

and robustness. In addition, our generator based on the Logsig-RNN model ex-

hibits better performance in generating realistic-looking time series data than clas-

sical RNN generators and other baseline methods from the literature. Apart from

Abstract 5

that, another contribution of our work is to construct a novel Sig-WGAN frame-

work to address the efficiency issue and instability training of traditional generative

adversarial networks for time series generation.

Impact Statement

The main motivation of the thesis lies in the growing interest in the applications of

machine learning for time series modelling. Recurrent neural network (RNN), as

one of the popular deep learning methods, has been empirically proven to excel in

sequential data tasks. However, RNN and its variants suffer from the gradient van-

ishing/explosion issues and curse of dimensionality, and hence struggle to handle

long-term temporal dependency of time series. To address these issues, we pro-

pose a novel and hybrid Logsig-RNN model by combining rough path theory with

RNNs, leading to the performance gain and superior robustness.

This thesis is likely to aid a variety of fields. First of all, traditional stochastic

models, such as diffusion processes, are largely parametric, limiting their ability

to simulate complex and random phenomena in the real world. Our method could

provide new insights, as it is a non-parametric model which has the universality

and can be trained in a data-driven way. Besides, in the machine learning field, the

developed method could provide a generic solution to any time series data related

problems as an enhancement of the RNNs. For instance, our algorithm demon-

strates performance boost in handwriting digits classification and skeleton human

action recognition tasks. Further applications include financial market prediction,

molecular dynamic data classification, and clinical anomaly detection, etc.. Fur-

thermore, the proposed Logsig-RNN model can be an effective tool for generative

models to simulate synthetic time series. Synthetic time series generation is a hot

Impact Statement 7

topic with increasing attention, as it can be used to mitigate the data privacy risk

and enable data sharing. Our work demonstrates that our method on the financial

data and medical data achieves superior performance, indicating the method could

be valuable in industries which are involved in the sensitive and confidential data or

suffer from data scarcity.

Contents

Introduction 15

1 Preliminary 20

1.1 Rough path theory . 20

1.1.1 Tensor algebra . 20

1.1.2 Path space . 23

1.1.3 The signature of a path . 25

1.1.4 The log-signature of a path 29

1.1.5 Geometric rough paths . 34

1.2 Neural network . 34

1.2.1 Supervised learning . 35

1.2.2 Introduction to neural networks 35

1.2.3 Generative adversarial network 41

2 Log-signature recurrent neural network (Logsig-RNN) 42

2.1 Introduction . 43

2.1.1 Background and motivation 43

2.1.2 Related works . 47

2.2 Logsig-RNN . 48

2.2.1 Model . 48

2.2.2 Backpropogation . 50

Contents 9

2.2.3 Complexity analysis . 51

2.2.4 Universality theorem . 53

2.3 Generalized Logsig-RNN . 57

2.3.1 Model . 57

2.3.2 Backpropogation . 60

2.3.3 Complexity analysis . 61

2.3.4 Universality theorem . 63

3 Logsig-RNN in supervised learning 67

3.1 Introduction . 67

3.2 Illustrative examples . 69

3.2.1 Synthetic data . 69

3.2.2 Pen-digit data . 71

3.3 Skeleton human action recognition 72

3.3.1 PT-Logsig-RNN network 73

3.3.2 Gesture recognition . 75

3.3.3 Action recognition . 78

3.3.4 Efficiency analysis . 81

3.4 Conclusion and future work . 82

4 Logsig-RNN in generative tasks 84

4.1 Introduction . 84

4.2 Method . 86

4.2.1 Wasserstein generative adversarial network 87

4.2.2 Sig-Wasserstein generative adversarial network 89

4.2.2.1 Expected signature of a stochastic process 89

4.2.2.2 Signature Wasserstein-1 (Sig-W1) metric 89

4.2.3 Generator . 96

Contents 10

4.3 Numerical results . 96

4.3.1 Multi-dimensional geometric Brownian motion (GBM) . . . 98

4.3.2 Rough volatility model . 101

4.3.3 eICU data . 106

4.4 Conclusions . 109

5 Discussion 110

5.1 Limitations and future work . 111

Appendices 112

A Auxiliary Properties of Rough Path Theory 112

B Proof of Chapter 2 118

C Implementation Details of PT-Logsig-RNN 123

Bibliography 125

List of Figures

1.1 The top-left figure represents the trajectory of the digit 2, and the

rest of figures plot the coordinates of the pen location via different

speed respectively, which share the same signature and log signa-

ture given in the first subplot. 28

1.2 The dimensions of signatures and log-signatures comparison, where

M is the truncated degree. 32

1.3 (Left) The chosen pen trajectory of digit 9. (Right) The simulated

path by randomly dropping at most 16 points of the pen trajectory

on the left. 33

1.4 Signature and log-signature comparison for the missing data case. . 33

1.5 Neural Network with two hidden layers. 36

1.6 The recursive structure of the recurrent neural network. 38

2.1 The shared recursive structure of numerical approximation of the

solution Ŷt and the RNN Rσ . 45

2.2 Comparison of Logsig-RNN and RNN. 46

2.3 Visualization of the numerical method in Eqn. (2.23). 58

3.1 The accuracy comparison of Logsig-RNN in the testing set. 71

3.2 Validation of the trained models on the down-sampled dataset. The

accuracy of RNN0 is below 13.5% 72

List of Figures 12

3.3 Architecture of PT-Logsig-RNN Model. It consists with the first

Path Transformation Layers, the Log-Signature (Sequence) Layer,

the RNN-type layer and the last fully connected layer. It is used for

both action and gesture recognition in our experimental section. . . 73

3.4 The sensitivity analysis of EL-Logsig-LSTM model w.r.t. the num-

ber of segments on Chalearn 2013 data. 77

3.5 The sensitivity analysis of Logsig-RNN model w.r.t the number of

segments on NTU+B 120. datast. 79

3.6 The robustness test of random dropping/inserting frames to the

NTU RGB+D 120 data. 81

3.7 Comparison of training time and accuracy of standard LSTM and

Logsig-LSTM. With increasing length of the input sequence the

training time of the Logsig-LSTM model grows slower than that

of the LSTM, without a drop in accuracy. DCT achieves a lower

accuracy at comparable training time. 82

4.1 The top row displays blue and red samples from X, X̂ respectively

for fixed θ1, and different values of θ2 95

4.2 The generalized Logsig-RNN as generator in Sig-WGAN. 96

4.3 The three figures are the covariance error plots of the Logsig-

RNN/LSTM/NRDE generators for each dimension (St ,vt) and each

timestep. From Left to Right, each heatmap displays the covariance

error of the Sig-WGAN and the WGAN respectively. 104

4.4 Comparison of the generated paths under new frequency (i.e. 30

time steps). (a) The real paths with new frequency; (b-c) generated

path by the generalized Logsig-RNN; (d-e) generated path by the

LSTM; (f-g) generated path by the NRDE. 105

List of Tables

3.1 Comparison of methods on the SDEs data. 70

3.2 The accuracy of the modified testing set using different missing data

rate (r). Here N = 4. 72

3.3 Comparison of the accuracy (± standard deviation) for different

methods on the Chalearn 2013 data. 76

3.4 The effect of EL on the testing accuracy. Del is the spatial dimen-

sion of EL output. 77

3.5 The accuracy (%) of the testing set with missing data with different

dropping ratio (r) on Chalearn 2013. Here N = 4. 78

3.6 Comparison of accuracy (± standard deviation) among non-GCN

models on the NTU RGB+D 120. 80

3.7 Comparison of accuracy (± standard deviation) among GCN mod-

els on the NTU RGB+D 120. 80

4.1 Evaluation for 3-dimensional GBM with various numbers of

timesteps N ∈ {10,20,50,100}. 100

4.2 Evaluation for 3-dimensional GBM of 50 timesteps with various

length of input noise in {500,1000,2000,5000}. 101

4.3 The test metrics of the trained models on a one dimensional

price data (St)t∈[0,T] and two dimensional price and volatility data

(St ,vt)t∈[0,T] respectively. 103

List of Tables 14

4.4 The test metrics of the trained models on two dimensional price and

volatility data (St ,vt)t∈[0,1]. Models are trained on data streams sam-

pled every 1
20 units of time, and evaluated on data streams sampled

every 1
N units of time, where N ∈ {5,10,30,40}. 106

4.5 eICU data generation under W1 and SigW1 metrics. 107

4.6 Performance of random forest classifier for eICU tasks when trained

with real data and when trained with synthetic data. 108

Introduction

Stochastic differential equations (SDEs) are useful tools for modelling random phe-

nomena of many physical, chemical and biological systems of interacting particles

as well as financial derivative pricing and risk management ([1, 2, 3, 4]). The main

objective of this thesis is to develop an effective model for time series learning using

the log-signature in rough path theory, motivated by approximating the solutions to

the SDEs. We substantially investigate its applications in supervised learning and

data generation tasks.

Our approach is enlightened by exploiting the connection between the stochas-

tic differential equations and architectures of neural networks, which has recently

been a popular research area ([5, 6, 7, 8]). For example, neural ordinary differential

equations [5] , as a continuous analogue of a ResNet, connect residual networks and

discretized ODEs; Funahashi et al.[9], motivated by approximating the trajectory of

dynamical system, introduced the continuous recurrent neural network (RNN). A

typical continuous RNN has the form

Ẏt =−Yt

τ
+Aσ(BYt)+ It , (1)

where It and Yt are an input and output at time t respectively1. Rough Path Theory

1τ is a constant, A and B are matrices and σ is an activation function.

Introduction 16

teaches us that is more robust to consider the differential equation of the type

dYt = f (Yt)dXt , (2)

and replace I as an input with its integral. We can rewrite (1) in this form by setting

Xt = (t,
∫ t

s=t0 Isds) and f (y,(t,x)) =− y
τ
t +Aσ(By)t + x. This allows the input to be

of a broader type, and X needs not even be differentiable for the equation to be well

defined. This reformulation provides a much broader class of mathematical models

for functionals on streamed data, of which the continuous RNN is a special case.

Lyons [10] made sense of the solution to Equation (2) driven by a path rougher

than semi-martingales, which can apply to paths driven by vector valued Brownian

motion, diffusion processes, and many processes outside the SDE case. With the

extension theorem [10], the control of the p-variation and the iterated integrals of

X (i.e., the signature of X) up to degree ⌊p⌋ is sufficient to control the solution

of Equation (2). The universal limit theorem in [10] allows rough signals with p

much larger than 1 and demonstrates that by viewing the driving signals as rough

path, the differential equation (2) guarantees unique solution. While the signature

provides coarse global description of X , the log-signature, as a more parsimonious

transformation, carries exactly the same information as the signature; it is able to

summarize and vectorize complex un-parameterized streams of multi-modal data

effectively and locally with a low dimensional representation.

One area where the representation ability of the log-signature has been worked

out in detail is with numerical analysis of SDEs. SDEs of the form (2) provide a

general class of functionals on the path space. The most effective high order nu-

merical approximation schemes for SDEs show that describing a path through the

log-signature enables one to effectively approximate the solution to the equation

and any linear functional of that solution globally over interval the path is defined

on, without further dependence on the fine details of the recurrent structure of the

Introduction 17

streamed data. It leads (in what is known as the log-ODE method) to produce a

state-of-the-art discretization method of Inhomogenous Geometric Brownian Mo-

tion (IGBM)[11]. We exploit this understanding to propose a simple but surpris-

ingly effective neural network module ((generalized) Logsig-RNN) by blending the

Log-Signature (Sequence) Layer with the RNN type layer as an universal model for

functionals on un-parameterized (and potentially complex) streamed data.

Our approach is a novel application of rough path theory in machine learning,

which has been an emerging and active research area. The empirical applications

of the rough paths theory primarily focused on the signature feature, which serves

as an effective feature extraction, e.g. for online handwritten Chinese character/text

recognition([12], [13]), action classification in videos [14], and financial data anal-

ysis ([15], [16]). In addition, those previous works mainly combine the signature

with convolutional neural network or fully connected neural network. To our best

knowledge, the proposed method is the first of its kind integrating the sequence

of log signature with the recurrent type neural network. The log-signature has been

used as a local feature descriptor for gesture [17] and action recognition [14]. These

use cases are bespoke; in contrast, the proposed (generalized) Logsig-RNN is a gen-

eral method for sequential data with outstanding performance in various machine

learning tasks. Moreover, we theoretically justified the universality of our model

and extend the work on the back-propagation algorithm of the log-signature trans-

formation in [18] to sequence of log-signatures.

This thesis has the following major contributions:

• We propose the Log-Signature (Sequence) Layer as a transformation of se-

quential data, and design its backpropagation through time algorithm. It is

highlighted that the Log-Signature Layer can be inserted between other neural

network layers conveniently, not limited to the pre-defined feature extraction.

• We propose a novel and generic neural network model, i.e. (generalized)

Introduction 18

Logsig-RNN model, by blending the Log-Signature Layer with RNN and

establish the universality of the Logsig-RNN model for the approximation of

SDEs solutions.

• It proposes Path Transformation Layers (PT)-Logsig-RNN model by insert-

ing path transformation layers (e.g. Graph Neural Network, linear projection

layers) in the front to efficiently and effectively exploit the spatial-temporal

structure of the time series data. We show by experiments on both synthetic

and empirical data of supervised learning tasks, especially on Skeleton Hu-

man Action Recognition tasks. The Logsig-RNN demonstrates superior ac-

curacy, efficiency and robustness against traditional RNN model.

• It develops a novel generative framework Sig-WGAN and proposes an ef-

fective generator for the time series data, i.e. the generalized Logsig-RNN .

The generated paths are overall closer to the real paths regarding test metrics

(especially the correlation metric) than the paths generated by benchmarks

including classical RNN. The generalized Logsig-RNN exhibits superior ro-

bustness in various tasks against the benchmarks.

The thesis is organized as follows:

Chapter 1 introduces the preliminary of rough path theory and neural networks.

The former includes the mathematically principled technology of signatures and

log-signatures as representations for streamed data, while the latter focuses on re-

current neural networks.

In Chapter 2, based on [19, 20], we discuss the mathematical formulation of

the (generalized) Logsig-RNN model, which is motivated by the numerical approx-

imation of the solutions to SDEs, and prove its universality. We first define the

Log-Signature Layer which is a mapping that transforms potentially high-frequency

streamed data to a sequence of log-signatures over sub-time interval. Then we apply

Introduction 19

it on the recurrent type neural networks to produce sequential outputs. We also pro-

pose a generalized version of Logsig-RNN which is a sequence-to-sequence model

and can generate time series data of arbitrary length. It is highlighted that the (gen-

eralized) Logsig-RNN can be inserted between other neural network layers con-

veniently, not limited to the pre-defined feature extraction. Given this flexibility,

we can combine it with different modules when dealing with different tasks and

investigate its advantages against conventional RNN layer.

Chapter 3, based on [19, 21], explores the application of Logsig-RNN in super-

vised learning. The illustrative examples are taken on synthetic SDEs data for re-

gression and UCI pen-digit data2 for classification. The challenging skeleton-based

human action recognition (SHAR) tasks are investigated on the Chalearn 2013 [22]

and NTU RGB+D 120 dataset [23]. As an enhancement of the RNN layer, the pro-

posed Logsig-RNN module can reduce the time dimension, handle irregular time

series and improve the time efficiency as well as the robustness against missing

data and varying frame rates.

Chapter 4, which is written around [20], investigates synthesizing data using

generalized Logsig-RNN. We establish high-fidelity time-series generative frame-

work, the SigWGAN, by combining continuous time stochastic models with the

newly proposed signature W1 metric. The SigWGAN originates from the univer-

sal and principled mathematical features to characterize the measure induced by

time series. It allows turning computationally challenging GAN min-max problem

into supervised learning while generating high fidelity samples. We validate the

generative ability and robustness of the generalized Logsig-RNN on synthetic data

generated by popular quantitative risk models and medical eICU data3.

2https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+
of+Handwritten+Digits

3https://eicu-crd.mit.edu/

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://eicu-crd.mit.edu/

Chapter 1

Preliminary

1.1 Rough path theory

We introduce the signature and log-signature of a path in this section. Their efficient

representations of unparametrized streamed data enables them to be competitive

features extractor in the applications of data science [24, 25]. Throughout the thesis,

let J be a compact interval, E := Rd and F := Re be two real vector spaces and

X : J → E be a continuous path.

1.1.1 Tensor algebra

We start by introducing the extended tensor algebra space, in which the signature

and log-signature take values.

Definition 1.1 (Extended tensor algebra). The extended tensor algebra or formal se-

ries of tensors over E, denoted by T ((E)), is defined to be the space of the following

sequence,

T ((E)) = {a = (a0,a1, . . . ,an, . . .) | an ∈ E⊗n}.

It is equipped with two operations, i.e., an addition + and a product ⊗, defined as

follows. Let a = (ai)
∞
i=0, b = (bi)

∞
i=0 ∈ T ((E)), then

1.1. Rough path theory 21

a+b = (ai +bi)
∞
i=0,

a⊗b = (
i

∑
k=0

ai ⊗bi−k)
∞
i=0.

The space T ((E)) endowed with the two operations and the natural action

of R by λa = (λai)
∞
i=0 is a real non-commutative unital algebra, with unit 1 =

(1,0,0, . . .). The element a is invertible if and only if a0 ̸= 0, whose inverse is given

by

a−1 =
1
a0

∑
n≥0

(
1− a

a0

)⊗n

.

The extended tensor algebra T ((E)) consists of all possible tensor series, in-

cluding the ones with the infinite number of non-zero tensors. To distinguish with

T ((E)), we also introduce the tensor algebra, which is composed with all the finite

tensor sequences and forms a subalgebra of T ((E)).

Definition 1.2. The tensor algebra over E denoted by T (E) is a subalgebra of

T ((E)), which is given by

T (E) :=
∞⊕

n=0

E⊗n.

In practice, we often work on the truncated tensor series. Therefore we define

the truncated tensor algebra, which consists of all sequences of any finite length.

Definition 1.3. Let n≥ 1 be an integer and Bn = {(a0,a1, . . . ,) | a0 = · · ·= an = 0}.

The truncated tensor algebra T (n)(E) over E of order n is defined as the quotient

algebra

T (n)(E) = T ((E))/Bn.

For n ≥ 1, we define the projection

πn : T ((E))→ E⊗n

a → an.

1.1. Rough path theory 22

The canonical projection is defined as the mapping

Πn : T ((E))→ T (n)(E)

a → (ai)
n
i=0.

We proceed with introducing the admissible norm of tensor powers E⊗n.

Definition 1.4. We say that the tensor powers of E are endowed with an admissible

norm || · ||, if the following conditions hold:

1. For each n ≥ 1, the symmetric group Sn acts by isometry on E⊗n, i.e.

||σv||= ||v||, ∀v ∈ E⊗n, ∀σ ∈ Sn

2. The tensor product has norm 1, i.e. ∀n,m ≥ 1,

||v⊗w|| ≤ ||v|| ||w||, ∀v ∈ E⊗n, w ∈ E⊗m.

In this thesis, we use L2 norm denoted as || · ||L2 for tensor powers. To define

the norm, let (e1, · · · ,ed) be a basis for d-dimensional space E, and (e∗1, · · · ,e∗d)

is a canonical basis for the dual space E∗. The elements (eI = ei1 ⊗ ·· · ⊗

ein)I=(i1,...,in)∈{1,...,d}n form a basis for E⊗n. More specifically,

⟨e∗i1 ⊗·· ·⊗ e∗in,e j1 ⊗·· ·⊗ e jn⟩= δi1, j1 · · ·δin, jn,

where

δi, j =

1, if i = j,

0, if i ̸= j.

1.1. Rough path theory 23

The linear mapping e∗I acts on a tensor power µ ∈ E⊗n picks up the coefficient of

the monomial eI in µ . Actually the linear mapping e∗I extends naturally to the linear

mapping (E∗)⊗n → T ((E))∗ defined by

e∗I (a) = e∗I (an), ∀a ∈ T ((E)).

Definition 1.5. Let µ ∈ E⊗n be a tensor power. The L2 norm of tensor powers is

given by

||µ||L2 :=

(
∑

I=(i1,...,in)
|e∗I (µ)|2

) 1
2

where i1, . . . , in ∈ {1, . . . ,d}.

1.1.2 Path space

To define an appropriate class of paths used in our analysis in the thesis, we begin

with the introduction of the p-variation to quantify the oscillation or the roughness

of a path.

Definition 1.6 (p-Variation). Let p ≥ 1 be a real number. Let X : J → E be a

continuous path. The p-variation of X on the interval J is defined by

||X ||p,J =

[
sup
D⊂J

r−1

∑
j=0

∣∣Xt j+1 −Xt j

∣∣p] 1
p

, (1.1)

where the supremum is taken over any finite time partition of J, i.e. D =

(t0, t1, · · · , tr).

Let Vp(J,E) denote the range of any continuous path mapping from J to E of

finite p-variation.

Example 1.1. For any continuously differentiable path X : J → E, the 1-variation

of X is finite.

1.1. Rough path theory 24

Example 1.2. [26] A fractional Brownian motion (fBM) with Hurst parameter H

has sample paths of finite p-variation a.s. for p > 1
H . The larger H is, the rougher

fBM sample path is. For example, Brownian motion is a fBM with H = 0.5. It has

finite (2+ ε)-variation a.s ∀ε > 0, but it has infinite p-variation a.s.∀p ∈ [1,2].

Next, given two normed space K,V , we introduce the Lipschitz conditions for

the function f : K →V to suffice for our purpose of defining controlled differential

equations used in this thesis.

Definition 1.7 (Lipschitz norm). The Lipschitz norm of a function f : K → V , de-

noted by || f ||Lip,K , is defined as

|| f ||Lip,K := sup
x ̸=y,x,y∈K

|| f (x)− f (y)||
d(x,y)

, (1.2)

where d(x,y) is metric on K.

Definition 1.8 (Lipschitz map). A map f : K →V between two normed spaces K,V

is called γ−Lipschitz with γ ≥ 1,

f ∈ Lip(γ),

if f is ⌊γ⌋ times continuously differentiable and there exists a nonnegative constant

M such that

| f |◦γ := max
|k|≤⌊γ⌋

||Dk f ||∞;K + || f ||C⌊γ⌋,{γ} ≤ M,

where || · ||∞;· denotes the infinity norm of a function f : K →V as follows

|| f ||∞;K := sup
x∈K

|| f (x)||.

and || · ||Ck,α is the Hölder norm, where γ = ⌊γ⌋+{γ}. ⌊·⌋ and {·} take the integer

and fractional parts of a real number respectively.

1.1. Rough path theory 25

We then define a control function that is used in controlling the p-variation of

a path.

Definition 1.9 (Control function). A control function on J = [0,T] is a continuous

non-negative function ω on ∆T := {(s, t) ∈ J2 : 0 ≤ s ≤ t ≤ T} which is super-

additive in the sense that

ω(s, t)+ω(t,u)≤ ω(s,u), ∀s ≤ t ≤ u ∈ J

and for which ω(t, t) = 0 for all t ∈ J.

Lemma 1.1. [10] The control function ω on J is uniformly continuous.

Remark 1.1. We say that the p-variation of X is controlled by ω if for all (s, t)∈ ∆T ,

||X ||p,[s,t] ≤ ω(s, t)
1
p .

1.1.3 The signature of a path

Definition 1.10 (The Signature of a path). Let J denote a compact interval and X :

J → E be a continuous path of p-variation such that the following integration makes

sense. Let I =(i1, i2, · · · , in) be a multi-index of length n, where i j ∈{1, · · · ,d},∀ j ∈

{1, · · · ,n}. Define the coordinate signature of the path X associate with the index I

as follows:

X I
J =

∫
· · ·
∫

u1<···<uk
u1,...,uk∈J

dX (i1)
u1 ⊗·· ·⊗dX (in)

un .

The signature of X is defined as follows:

S(X)J = (1,X1
J , . . . ,X

k
J, . . .). (1.3)

1.1. Rough path theory 26

where Xk
J = (X I

J)I=(i1,··· ,ik),∀k ≥ 1. Let Sk(X)J denote the truncated signature of X

of degree k, i.e.

Sk(X)J := Πk(S(X)J) = (1,X1
J , . . . ,X

k
J). (1.4)

The signature of a path is an element of a group called the space of grouplike

elements, which is a subset of T̃ ((E)) defined as

T̃ ((E)) = {a ∈ T ((E)) | a0 = 1}.

To characterise the grouplike elements, we need to define the shuffle product. We

say that a permutation σ ∈ Gr+s is a shuffle of {1, . . . ,r} and {r + 1, . . . ,r + s} if

σ(1)< · · ·< σ(r) and σ(r+1)< · · ·< σ(r+ s). We write σ ∈ Shuffles(r,s). Let

I = (i1, . . . , ir) and J = (j1, . . . , js) be two arbitrary indices, the shuffle product of e∗I

and e∗J is

e∗I � e∗J = ∑
σ∈Shuffles(r,s)

e∗k
σ−1(1),...,kσ−1(r+s)

.

Definition 1.11 (Grouplike elements). An element a ∈ T̃ ((E)) is said to be group-

like if given any e∗, f∗ ∈ T ((E∗)), the following equality holds

e∗(a)f∗(a) = (e∗� f∗)(a).

The set of grouplike elements is denoted by G(∗)(E).

We also define the space of projection of elements in G(∗)(E) into T (n)(E) as

follows

G(n)(E) := {Πn(a)|∀a ∈ G(∗)(E)} ⊂ T (n)(E).

Theorem 1.2 (Shuffle product property). [10] Let I = (i1, . . . , ir) and J =

(j1, . . . , js) be two arbitrary indices. For every path X of finite 1-variation, it

holds that

e∗I (S(X))e∗J(S(X)) = (e∗I � e∗J)(S(X)).

1.1. Rough path theory 27

The signatures take values in the space of grouplike elements due to the shuffle

product property.

The multiplicative property asserts that the signature is a homomorphism. First

we define the concatenation of two paths.

Definition 1.12. Let X : [0,s]→ E and Y : [s, t]→ E be two continuous paths. Their

concatenation is the path denoted by X ∗Y : [0, t]→ E defined by

(X ∗Y)u =

Xu, u ∈ [0,s],

Yu −Ys +Xs, u ∈ [s, t].

Theorem 1.3 (Chen’s identity). Let X : [0,s]→ E and Y : [s, t]→ E be two contin-

uous paths of bounded 1-variation. Then

S(X ∗Y) = S(X)⊗S(Y).

The multiplication property is useful when computing the signature of a piece-

wise linear path numerically.

The next property is the invariance under time reparameterization. Re-

parameterizing a path inside the interval does not change its signature.

Lemma 1.4 (Invariance under time parameterization). [10] Let X ∈ V1(J,E) and

a path X̃ : J → E is the time re-parameterization of X, i.e. there exists increasing

function r : J → J such that

X̃(t) = X(r(t)).

Then

S(X)J = S(X̃)J. (1.5)

In Figure 1.1, speed changes result in different time series representation but

the same signature features. It means that signature features can reduce dimension

1.1. Rough path theory 28

Figure 1.1: The top-left figure represents the trajectory of the digit 2, and the rest of figures
plot the coordinates of the pen location via different speed respectively, which
share the same signature and log signature given in the first subplot.

massively by removing the redundancy caused by the speed of traversing the path.

The uniqueness of signature states that the signature of a path is unique up to

the tree-like equivalence. We first define the tree-like path.

Definition 1.13 (Tree-like path). A path X : J = [S,T]→ E is tree-like if there exists

a continuous function h : J → [0,+∞) such that h(S) = h(T) = 0 and such that, for

all s, t ∈ J with s ≤ t,

||Xt −Xs|| ≤ h(s)+h(t)−2 inf
u∈[s,t]

h(u).

The function h is called a height function for the path X . Intuitively, a tree-like

path is a trajectory in which there is a section where the path exactly retraces itself.

The tree-like equivalence is defined as follows: we say that two paths X and Y are

the same up to the tree-like equivalence if and only if the concatenation of X and

the inverse of Y is tree-like.

Theorem 1.5 (Uniqueness of the signature). [27] Let X ∈ Vp(J,E). Then S(X)

determines X up to the tree-like equivalence.

Theorem 1.5 shows that the signature of the path can recover the path trajectory

under a mild condition. The uniqueness of the signature is important, as it ensures

itself to be a discriminative feature set of unparameterized streamed data.

Any functional on the path can be rewritten as a function on the signature based

on the uniqueness of the signature. The signature of the path has the universality,

1.1. Rough path theory 29

i.e. that any continuous functional on the signature can be well approximated by the

linear functional on the signature (Theorem 1.6)[24].

Theorem 1.6 (Signature approximation theorem). Suppose f : K → R is a contin-

uous function, where K is a compact subset of S(Vp(J,E))1. Then ∀ε > 0, there

exists a linear functional L ∈ T ((E))∗ such that

|| f −L||∞;K ≤ ε. (1.6)

Lastly, we state the decay rate of the signature of path with finite p-variation,

which implies that the information of signatures decays exponentially as the degree

increases.

Lemma 1.7 (Factorial decay of the signature). Let X ∈ Vp(J,E). There exists a

constant β depending only on p such that the k-th level signature Xk
J is controlled

by the p-variation of the path in the following way

||Xk
J|| ≤

||X ||kp,J
βk!

.

1.1.4 The log-signature of a path

After discussion of signature, we introduce the log -signature of a path in this sub-

section. First we define the logarithm map of an element in T((E)).

Definition 1.14 (Logarithm map). Let a = (ai)
∞
i=0 ∈ T ((E)). Then the logarithm

map denoted by log is defined as follows:

log(a) = log(a0)+
∞

∑
n=1

−1
n
(1− a

a0
)⊗n,∀a ∈ T ((E)). (1.7)

Lemma 1.8. The logarithm map is bijective on the domain {a ∈ T ((E))|a0 = 1}.
1S(Vp(J,E)) denotes the range of the signature of X ∈Vp(J,E).

1.1. Rough path theory 30

Definition 1.15 (The log-signature of a path). Similar as the signature, the log sig-

nature of path X by log(S(X)) is the logarithm of the signature of the path X , de-

noted by lS(X). Let lSk(X) denote the truncated log signature of a path X of degree

k.

There is one-to-one correspondence between the signature and log signature.

Define the exponential map of an element a in T̃ ((E)) to be

exp(a) =
∞

∑
n=0

a⊗n

n!
.

Lemma 1.9. The exponential and logarithm map are one-to-one and they are each

other’s inverse.

While the log signature is a parsimonious representation of the signature, it

retains lower dimension compared with the signature, which is of a good property

when being applied in machine learning algorithm to help avoid the curse of dimen-

sionality and improve the time efficiency.

Let us consider the linear subspace of T ((E)) equipped with the Lie bracket

operation [·, ·], defined as follows:

[a,b] = a⊗b−b⊗a.

If F1 and F2 are two linear subspaces of T ((E)), let us denote by [F1,F2] the

linear span of all the elements of the form [a,b], where a ∈ F1 and b ∈ F2. Consider

the sequence (Ln)n≥0 be the subspace of T ((E)) defined recursively as follows:

L0 = 0;∀n ≥ 1,Ln = [E,Ln−1]. (1.8)

Definition 1.16. The space of Lie formal series over E, denoted as L ((E)) is de-

1.1. Rough path theory 31

fined as the following subspace of T ((E)):

L ((E)) = {l = (l0, · · · , ln, · · ·)|∀n ≥ 0, ln ∈ Ln}. (1.9)

Theorem 1.10. [10] For any path X of finite 1-variation , there exist λi1,··· ,in such

that the log-signature of X can be expressed in the following form

lS(X) =
d

∑
i=1

λiei + ∑
n≥2

ei1 ,··· ,ein
∈{1,··· ,d}

λi1,,··· ,in[ei1 , [· · · , [en−1,en]]].

The above theorem shows that the dimension of the truncated log-signature

is no greater than that of the truncated signature due to the linear dependence of

[ei1, [ei2 · · · , [en−1,en]]]. For example, [ei,e j] =−[e j,ei].

The analytic formula for the dimension of the truncated log signature can be

found in the following theorem.

Theorem 1.11. The dimension of the space of the truncated log signature of d-

dimensional path of degree n over d letters is given by:

DL n =
1
n ∑

d|n
µ(d)qn|d

where µ is the Mobius function, which maps n to
0, if n has one or more repeated prime factors

1, if n = 1

(−1)k if n is the product of k distinct prime numbers

Example 1.3. In Figure 1.2, we compare the dimension of the signature and log

signature of path of dimension up to d = 5 and truncated degree up to M = 5. The

1.1. Rough path theory 32

Figure 1.2: The dimensions of signatures and log-signatures comparison, where M is the
truncated degree.

is noticeable dimension reduction of the log signature.

It is an immediate consequence of the bijection between the signature and

log-signature, and the invariance of the signature (Lemma 1.4). Re-parameterizing

a path does not change its log signature (Figure 1.1).

Like the signature, the log-signature has the uniqueness stated in the following

theorem.

Theorem 1.12 (Uniqueness of the log-signature). Let X ∈ Vp(J,E) . Then lS(X)

determines X up to the tree-like equivalence defined in Definition 1.13.

Theorem 1.12 shows that the signature of the path can recover the path trajec-

tory under a mild condition.

Lemma 1.13. A simple sufficient condition for the uniqueness of the log-signature

of a path of finite length is that one component of X is monotone.

1.1. Rough path theory 33

Both the signature and log-signature take the functional view on discrete time

series data, which allows a unified way to treat time series of variable length and

missing data. For example, we chose one pen-digit data of length 53 and simulate

1000 samples of modified pen trajectories by dropping at most 16 points from it,

to mimic the missing data of variable length case (See one example in Figure 1.3).

Figure 1.4 shows that the mean absolute relative error (MARE) of the signature

and log-signature of the missing data is no more than 6%. Besides, the MARE

of the log-signature feature is less that of the signature feature which implies it is

more robust against missing data, and it is of lower dimension compared with the

signature feature, i.e. the log-signature has dimension 5 while the signature has

dimension 14.

Figure 1.3: (Left) The chosen pen trajectory of digit 9. (Right) The simulated path by
randomly dropping at most 16 points of the pen trajectory on the left.

Figure 1.4: Signature and log-signature comparison for the missing data case.

1.2. Neural network 34

1.1.5 Geometric rough paths

Definition 1.17 (p-variation distance). Let ∆T := {(s, t) ∈ J2 : 0 ≤ s ≤ t ≤ T} and

p ≥ 1. Given X,Y : ∆T → G(p)(E), we define the p-variation distance by

dp−var;[0,T](X,Y) = max
k=1,...,⌊p⌋

sup
D

(
∑

ti∈D

||Xk
ti−1,ti −Yk

ti−1,ti||
p/k

)1/p

,

where the supremum is taken over any finite partition D of [0,T].

Let o = 1 be the unit element in G(p)(E), then we note dp−var;[0,T](X,o) =

||X||p−var, is the p-variation norm of X.

Definition 1.18 (Geometric p-rough paths). A geometric p-rough path is the limit

of signatures of degree ⌊p⌋ of bounded variation paths in the p-variation distance.

The space of geometric p-rough paths is denoted by GΩp(E).

Theorem 1.14 (Extension theorem). [10] Let X ∈ GΩp(E) in [0,T] with finite p-

variation controlled by a control ω . For any n≥⌊p⌋, there exists a unique extension

of X to a geometric n-rough path (1,X1
J , . . . ,X

⌊p⌋
J , . . . ,Xn

J)∈G(n)(E)⊂ T (n)(E) with

finite p-variation controlled by ω , i.e., there exists some constant β > 0 depend only

on p such that

||Xk
s,t || ≤

ω(s, t)
k
p

β (k
p)!

, ∀k ≥ 1, ∀(s, t) ∈ ∆T .

1.2 Neural network
The neural network is one of the main streams in solving machine learning prob-

lems which are what we focus on in this thesis. In this section, we introduce the

supervised learning, the basics of neural networks and generative adversarial net-

work.

1.2. Neural network 35

1.2.1 Supervised learning

The supervised learning is a type of machine learning tasks which aims to learn a

function that maps from input to output based on given input-output pairs. Suppose

the data set has N input-output pairs {(x1,y1), . . . ,(xN ,yN)} where the input x ∈ Rd

and the label y ∈ Re. The learning process is to find a function f : Rd → Re such

that the following optimization problem is satisfied

f = argmax
f

g(y, f (x)),

where g is the scoring function which measures the prediction ability of the learned

function. The scoring function, for instance, is the likelihood for classification tasks.

1.2.2 Introduction to neural networks

In recent years, neural networks have been very popular in machine learning, which

gain wide attention. It is one way to construct the function with forecasting ability

in supervised learning problems which has been successfully applied to many real

world problems[28]. The simplest neural network (NN) consists of two different

layers: one input layer where the data flows in and one output layer where the

prediction ŷ ∈ Re is made, which can be formulated as:

ŷ = σ(Wx+b),∀x ∈ Rd,

where W ∈ Re×d is the weight matrix, b ∈ Re is the bias vector and σ is called the

activation function which can add non-linearity to the neural network. Let the set

of parameters be denoted as Θ where Θ = {W,b}. The process of training a neural

network is indeed the following optimization problem

argmin
Θ

L (Θ|{xi,yi}N
i=1),

1.2. Neural network 36

Figure 1.5: Neural Network with two hidden layers.

where L is called the Loss function which measures the difference between the

ground-truth yi and the prediction ŷi. We will discuss the choices of activation and

loss functions in the latter part of this section, both of which play important roles in

the design of neural networks.

To make the algorithm more complex, people increase the number of layers.

The NN with L layers is a nonlinear map hL : Rd → Re which receives the input

x and maps it to the output ŷ such that ŷ := hL(x), where there are three different

layers: input layer, hidden layer and output layer. Figure 1.5 shows a neural network

with two hidden layers. In the first part of this section, we first introduce the basic

feed forward neural network (FFNN). Since we aim at modelling sequential data,

where the popular structure being used is recurrent neural network (RNN), we give

the definition of RNN as well.

Feed Forward Neural Network Conventionally, the feed forward neural net-

works (FFNN) or deep neural network (DNN) is a NN with L > 2. Let l ∈

{1, . . . ,L− 1} be the index for hidden layers and nl be the number of neurons, i.e.

the number of elements in the output vector of the lth layer. Layers in FFNN are

defined in the following recursive way:

1.2. Neural network 37

• Input layer: h0 : Rd → Rd ,

h0(x) = x, ∀x ∈ Rd

• Hidden layer: hl : Rnl−1 → Rnl

hl = σl(Wlhl−1 +bl),

where Wl ∈ Rnl×nl−1 is the weight matrix, bl ∈ Rnl is the bias term and σl is

called activation function.

• Output layer: hL : RnL−1 → Re

hL = σL(WLhL−1 +bL),

where WL ∈ Re×nL−1 is the weight matrix, bL ∈ Re is the bias term and σL is

activation function.

Thus when training the FFNN, the prediction is ŷi = hL(x) and the parameter set is

Θ := {Wl,bl}L
l=1.

Recurrent Neural Networks In this thesis, we mostly deal with time-

dependent data, such as solutions of stochastic differential equations, human ac-

tions, hand-written characters, etc.. Given the time series type of data, it is natural

to consider using the recurrent neural network (RNN) as part of the models. Unlike

the feed forward neural network (FFNN), the data in RNN would flow backward

from the output of hidden layer to the layer itself (Figure 1.6). The RNN is also

composed with three types of layers, i.e. the input layer, the hidden layer and the

output layer. RNN takes the sequential input data (xt)
T
t=1, where xt ∈ Rd , and com-

1.2. Neural network 38

Figure 1.6: The recursive structure of the recurrent neural network.

pute the output (ot)
T
t=1, where ot ∈ Re using Equation (1.10):

ht = σ(Uxt +Wht−1),ot = q(V ht), (1.10)

where (ht)
T
t=1 is the hidden layer output with ht ∈Rh and U ∈Rh×d , W ∈Rh×h and

V ∈ Re×h are model parameters, and σ and q are two activation functions in the

hidden layer and output layer respectively. We denote the RNN model as R((xt)t).

When training the RNN, the prediction is ŷi := R((xt)t) and Θ := {U,W,V} is the

parameter set.

Since neural network is a data-driven technique, there are many factors to con-

sider when designing neural networks to deal with different learning tasks. The

activation and loss functions play important role in designing neural networks. We

introduce some options of activation and loss functions that would be used in our

learning tasks.

Activation Function The choice of activation functions is always essential in neural

network models design. The activation function σ could not only add non-linearity

to the neural network, but also some constraints such as positivity such that the out-

puts could approximate the actual data well. Let x=(x1, . . . ,xd)∈Rd . The common

1.2. Neural network 39

options of scalar activation functions, which act element-wisely on the input, i.e.

σ((x1, · · · ,xd)) = (σ(x1), · · · ,σ(xd)), ∀x ∈ Rd,

are:

• Sigmoid function: The sigmoid function is an approximation of the step

function which is a ’S’-shaped curve, the form of which is

σ(x) =
1

1+ e−x .

The sigmoid function is not zero-centered with range from 0 to 1.

• Hyperbolic tangent function: The hyperbolic tangent function is a general-

ization of the sigmoid function

σ(x) =
e2x −1
e2x +1

, ∀x ∈ Rd.

Its range is from -1 to 1, which is zero-centered.

• ReLU: The ReLU function is the most common activation function at present,

which has the form

σ(x) = max(0,x), ∀x ∈ Rd.

There are also vector valued activation function such as:

• Softmax function: The softmax function has the following form:

σ(x) = (
ex1

ex1 + · · ·+ exd
, . . . ,

exd

ex1 + · · ·+ exd
), ∀x ∈ Rd.

Each element of the output vector is non-negative and the summation of all

1.2. Neural network 40

elements is equal to 1. Thus it is often used to model the probability distribu-

tion as the output layer activation function.

Loss Function When training the proposed models, there are different choices of

loss functions to fulfill different objectives. In our work, we deal with regression

and classification problems. Suppose there are N samples in the dataset such that

the dataset D = {(xi,yi)}N
i=1, where xi ∈ Rd and yi ∈ Re for i = 1, . . . ,N. For the

regression problem, yi is real valued. For the classification problem, suppose there

are K classes, then yi is categorical vector, which is a 1-of-K representation, i.e. for

a class 2 label yi = (0,1,0, . . . ,0). The parameter set for FFNN is Θ := {Wl,bl}L
l=1,

while for RNN is Θ := {U,V,W}. And the prediction of FFNN is ŷi := hL(x), while

of RNN is ŷi := R((xt)t).

In the regression problem, when optimizing the model, the loss function we

use is mean squared error (MSE) defined as

L (Θ|D) =
1
N

N

∑
i=1

|ŷi − yi|2. (1.11)

In the multi-classification problem, let yi be the actual label of sample i. Then

the output ŷi is a probability distribution describing the probability of each class the

current sample belongs to. The commonly used loss function is cross-entropy (CE)

defined as

L (Θ|D) =−
N

∑
i=1

yi log(ŷi). (1.12)

When dealing with large and complicated data, the neural network models are al-

ways complex as well. They may include different types of neural networks into

one.

1.2. Neural network 41

1.2.3 Generative adversarial network

Generative adversarial network (GAN) introduced by [29] is a unsupervised learn-

ing technique on synthetic data generation using neural networks. The model con-

tains two parts, a generator and a discriminator. And both can be represented by

neural networks. The training process alternates between the generator and the dis-

criminator, and aims to solve a minmax problem. To define it mathematically, let

(Ω,F ,P) be a probability space, under which µ and ν are two distributions induced

by X -valued space. Let Z denote a latent space and Z ∈Z denote a variable with

the known distribution µZ ∈P(Z). Let µ ∈P(X) denote a target distribution of

observed data. The GAN is composed of the generator G and the discriminator D.

The generator Gθ : Z →X is a parameterized map transporting the latent distribu-

tion µZ to the model distribution ν , i.e. the distribution induced by Gθg(Z), where

θg ∈ Θg is a parameter set. To discriminate between real and synthetic data, we

also define the discriminator as Dθd(X) which maps from X to R with parameter

θd ∈Θd . D(X) is the probability that x is from the real data rather than the generated

data. Then we train the discriminator D to maximize the probability of assigning

the correct labels to both training data and samples generated by G, and train G to

minimize log(1−D(G(Z))), which leads to the following minmax problem

min
G

max
D

EX∼µ [logD(X)]+EZ∼µZ [log(1−D(G(Z)))]. (1.13)

The min-max problem is solved by iterating gradient descent-ascent algo-

rithms. In practice, for one step optimization of G, the discriminator D is optimi-

tized for k steps such that it is maintained around the optimum as long as G improves

slowly. The GAN proposed above has deficiencies such as the balance between

training the discriminator and the generator needs to be carefully maintained, and

collapse mode. Based on the GAN architecture, researchers [30] proposed model

called Wasserstein GAN to tackle the above problems.

Chapter 2

Log-signature recurrent neural

network (Logsig-RNN)

In this chapter, we propose a novel and generic network module, i.e. the so-called

Logsig-RNN model by combing the log-signature with classcial RNNs. The pro-

posed model, as an enhancement of the RNN model, exploits the mathematically

principle representations of the log-signature to manage high-frequency data and

hence reduce the time dimension of the RNNs to improve accuracy and robustness.

The outline of this chapter is summarized as follows. In Section 2.1, we briefly

introduce the background of the proposed Logsig-RNN model and describe how

the numerical approximation of SDEs motivates the formulation of our methods.

Then we state the advantages of our model and its related works. In Section 2.2, we

mathematically define the Logsig-RNN network and prove its universality. In Sec-

tion 2.3, we then extend it to a generalized sequence-to-sequence model and also

prove the corresponding universality theorem.

2.1. Introduction 43

2.1 Introduction

2.1.1 Background and motivation

Our work is designed to provide an effective non-parametric modelling of time se-

ries data in the machine learning field. Time series data is usually regarded as a

sequence of observations sampled from a certain underlying process, and SDEs

can be used as parametric modelling of that process. Most parametric SDE mod-

els are only vague approximations of the real world phenomena. They are usually

formulated based on limited observations and statistical analysis of the time se-

ries. Model complexity is restricted due to calibration and computational concerns.

With the development of machine learning techniques, deep learning methods, es-

pecially RNNs, are widely used in time series modelling. The RNN models are

non-parametric and data-driven. They allow much freedom in the model com-

plexity and achieve remarkable results in various fields such as natural language

processing [31], financial forecasting [32], human action recognition [33, 34, 35]

and time series generation [36, 37]. However, classical RNNs suffer from gradi-

ent vanishing/explosion and long temporal dependency issues when dealing with

high-frequency data. To achieve the best of both worlds, we generalize the SDEs to

the form (2) as a non-parametric model and integrate it with RNNs to develop the

Logsig-RNN module. Then it enlightens us to investigate the connections between

the numerical approximation of solutions to the SDEs and machine learning mod-

els. Specifically, the numerical approximation method reveals a strong relationship

with rough path theory and RNNs, which motivates us to build up a hybrid neural

network model leveraging the benefits of the two components.

To illustrate the main idea behind the proposed Logsig-RNN model, we first

briefly recall the numerical approximation method for SDEs. Let X := (Xt)t∈[0,T]

and Y := (Yt)t∈[0,T] denote two stochastic processes respectively, which satisfy the

2.1. Introduction 44

following differential equation

dYt = f (Yt)dXt ,Y0 = y0. (2.1)

Let D := {u0, . . . ,uN |u0 = 0,uN = T} be a time partition of [0,T]. We approx-

imate Y evaluated at the time partition D using the k-step Taylor approximation

estimator, denoted by (Ŷu)u∈D and defined in an inductive way, i.e., Ŷu0 = y0, and

∀i ∈ {0, · · · ,N −1},

Ŷuk+1 = Ŷuk +
M

∑
m=1

f ◦m(Ŷti)
∫

uk<s1<···<sm<uk+1

dXs1 ⊗·· ·⊗dXsm
1,

=: g(Ŷuk , lSM(Xuk,uk+1)), (2.2)

where g : W ×L →W ;g(y, l) = y+∑
M
k=1 f ◦m(y)exp(l).

Equation (2.2) shows that the estimator Ŷuk+1 depends on the estimator

at the previous step (Ŷuk) with an additional dependency on the log-signature

(lSM(Xuk,uk+1)). This recursive structure of
(
Ŷuk

)N
k=0 resembles that of the RNNs.

Roughly speaking,
(
Ŷuk

)N
k=0 plays a role similar to the hidden neurons of a RNN

model with the log-signature as an input (see Figure 2.1).

Inspired by Equation (2.2), we propose a novel and non-parametric model, so-

called the Logsig-RNN, which significantly generalize parametric and conventional

SDE models to allow universality by parameterizing the vector field g via neural net-

works. The resulting model can be viewed as the combination of the Log-Signature

and the RNN layer (see Figure 2.2 (Right) for the architecture of the Logsig-RNN

model). On the one hand, the former one can effectively summarize the high fre-

quency stream data locally, and hence reduce the time dimension of input stream

data. On the other hand, the temporal dependence between the segments of stream

1 f ◦m is given recursively by f ◦1 = f ; f ◦k+1 = D(f ◦k) f and D(f) denotes the derivative of the
function f .

2.1. Introduction 45

Figure 2.1: The shared recursive structure of numerical approximation of the solution Ŷt

and the RNN Rσ .

data can be well captured by the RNN-type neural networks.

The proposed Logsig-RNN model is an enhancement of the RNN model, and

can be used as a generic neural network module to be pluggable into neural network

architectures just as RNN-type models. However, in comparison to the RNNs, our

approach has advantages in dealing with time series of irregular sampling frequency

and with missing data case. The RNNs are usually regarded as a discrete approx-

imation to a certain process [9, 38], nevertheless, the discretization breaks down

in this case as the samples of streamed data require varied and non-uniform times-

tamps. Our network, however, can provide an efficient and robust descriptor for

such irregularly spaced sequential data thanks to the log-signature features. More-

over, our method is particularly effective for high-frequency data streams. The large

time dimension of high frequency data usually leads to the curse of dimensionality

and gradient vanishing/explosion issues of the RNNs. On the contrary, the Log-

Signature Layer of our model can successfully alleviate these issues and reduce the

time dimension of the input of RNNs by transforming the original data into a se-

quence of log signature features over a potentially much coarser time partition. To

2.1. Introduction 46

enable the application of RNNs to high-frequency data, one has to downsample raw

data, which may potentially result in information loss. In contrast to it, the Log-

Signature Layer can avoid this issue by summarising high frequency information

using the principled log-signature features (Figure 2.2).

Figure 2.2: Comparison of Logsig-RNN and RNN.

The regular Logsig-RNN model takes sequential data as input and outputs a

static variable. To apply it in broader applications, we can extend it to a sequence-to-

sequence module called the generalized Logsig-RNN which can produce streamed

data with any target length, and even be able to model continuous time series univer-

sally. We validate the effectiveness of our approach in two major types of machine

learning tasks: (1) supervised learning problems where the input is sequential and

output is static, for which we use the regular Logsig-RNN model; (2) generative

tasks for time series, where we use the generalized model to produce sequential

2.1. Introduction 47

outputs. Numerical results (Chapter 3, 4) demonstrate the Logsig-RNN leads to

higher accuracy and efficiency compared with standard RNN-typed model.

2.1.2 Related works

Learning SDEs. SDEs of the form (2) are useful tools for modelling random phe-

nomena and provide a general class of functionals on path space. Statistical infer-

ence for SDEs has a rich literature due to the importance of research outcomes and

applications (see [39] for the survey and overview). On one side, some research

focuses on the parameter estimation of (model-specific) stochastic processes; for

example, in [40] the authors use statistical variational inference to estimate the

solutions of SDEs; [41] estimates parameters for a general stochastic process by

matching the expected signature of the solution process. In contrast, our approach is

non-parametric and is used to learn the solution map without any assumption on the

distribution of the stochastic process. On the other side, researchers develop neural

networks based on SDEs to model unparametrized data. By considering controlled

differential equations (CDEs) and combining them with Neural ODE techniques,

[8] develops a memory-efficient method that can incorporate incoming information

to deal with irregularly sampled or partially observed data. While Neural CDE has

the same severe limitations on high-frequency data as RNNs, [42] is motivated by

the log-ODE method and applies rough path theory to extend it to Neural rough dif-

ferential equation (RDE), which represents long time series data by log-signature

features. By comparison, as our work is free of implementing integration and nu-

merically solving ODE systems, it is less time consuming in computation.

Time series modelling. In [24] Levin et al. firstly proposed the signature of a

path as the basis functions for a functional on the un-parameterized path space

and suggested the linear model on the signature feature (Sig-OLR) as the first non-

parametric model for time series modelling. However, Sig-OLR has the limitation

of inefficient global approximation due to the instability of the polynomial extrap-

2.2. Logsig-RNN 48

olation. Despite the successful empirical applications of the signature feature sets

([12], [13], [14]), the theoretical question on which learning algorithms are most ap-

propriate to be combined with the (log)-signature feature remains open. Our work is

devoted to answering this question with both theoretical justification and promising

numerical evidence.

Functional Data Analysis. Learning a functional on streamed data falls under the

category of functional data analysis (FDA) [43], which models data using functions

or functional parameters and analyses data providing information about curves, sur-

faces or anything else varying over a continuum. The representation theory of the

functional on functions plays an important role in FDA study. Functional principal

components analysis is one of the main techniques of FDA to represent the func-

tion data[44], which express the function data as the linear coefficients of the basis

functions (usually without taking into account the response variable corresponding

to the function input). In contrast to it, albeit taking the functional view of se-

quential data, our approach focuses on the representation of the path in terms of its

effect (functional on the path, i.e. the solution of the controlled differential equation

driven by the path).

2.2 Logsig-RNN

2.2.1 Model

In this section, we introduce the mathematical definition of the Logsig-RNN model.

We first define the Log-Signature (Sequence) Layer, which transforms an input time

series to a sequence of log-signatures of the input over a coarser time partition. Let

J := [0,T] be a compact interval. Consider a discrete d-dimensional time series

xD̂ = (xti)
n
i=1 over the time interval J. We can first embed it into path space with

bounded variation V1(J,Rd) by linear interpolation and denote the continuous path

by x. Let D = (uk)
N
k=0 ⊂ D̂ be a coarser time partitions of J.

2.2. Logsig-RNN 49

Definition 2.1 (Log-Signature (Sequence) Layer). Given the time partition D , a

Log-Signature Layer of degree M is a mapping from V1(J,Rd) to Rdls×N , which

computes (l j)
N
j=1 as an output for any x, where l j is the truncated log-signature of x

over the time interval [uk−1,uk] of degree M as follows:

lk = lSM(x)[uk−1,uk], (2.3)

where k ∈ {1, · · ·N}, lSM is the truncated log-signature of level M defined in Defi-

nition 1.15 and dls is the dimension of the truncated log-signature.

Note that the Log-Signature Layer is a deterministic transformation and it

does not have any trainable weights. In addition, the input dimension of the Log-

Signature Layer is (d,n) and the output dimension is (N,dls) where N ≤ n and

dls ≥ d. It means that the Log-Signature Layer potentially shrinks the time dimen-

sion effectively by using the more informative spatial features of a higher dimen-

sion.

As illustrated in Section 2.1, the numerical approximation scheme (2.2) shares

a common recursive structure with the RNN network, which inspires us to construct

the following Logsig-RNN model by incorporating the Log-Signature Layer with

RNNs.

Model 2.1 (Logsig-RNN Network). Given D := (uk)
N
k=0, a Logsig-RNN network

computes a mapping H := HD
M,Θ from an input path x ∈ V1(J,Rd) to an output

defined as follows:

• Compute (lk)N−1
k=0 as the output of the Log-Signature Layer of degree M for

an input x by Definition 2.1.

• The output layer is computed by Rσ ((lk)N−1
k=0 |Θ), where Rσ is a RNN net-

work with certain activation function σ .

2.2. Logsig-RNN 50

We denote the family of all possible Logsig-RNN models (Model 2.1) by

H :=
⋃
D

∞⋃
M=1

{HD
M }. (2.4)

Remark 2.1 (Link between RNN model and Logsig-RNN model). For M = 1, the

Logsig-RNN network is reduced to the RNN model with (xuk+1 − xuk)
N
k=1 as an

input. When D coincides with D̂ , the Logsig-RNN Model is the RNN model with

increments of the raw data input.

Remark 2.2. The sampling time partition of the raw data D̂ can potentially be much

higher than D used in the Logsig-RNN model. The higher frequency of input data

would not increase the dimension of the Log-Signature Layer, but it makes the

computation of lk more accurate.

2.2.2 Backpropogation

Let us consider the derivative of a scalar function F on (lk)N
k=1 with respect to the

discrete input path xD̂ , given the derivatives of F with respect to (lk)N
k=1. By the

Chain rule, it holds that

∂F(l1, · · · , lN)
∂xti

=
N

∑
k=1

∂F(l1, · · · , lN)
∂ lk

∂ lk
∂xti

. (2.5)

where k ∈ {1, · · · ,N} and i ∈ {0,1, · · · ,n}.

If ti /∈ [uk−1,uk],
∂ lk
∂xti

= 0; otherwise ∂ lk
∂xti

is the derivative of the single log-

signature lk with respect to the path xuk−1,uk . The log signature lS(xD̂) with respect to

xti is proved differentiable and the algorithm of computing the derivatives is given in

[45], denoted by ▽xti
lS(xD̂). This is a special case for our log-signature layer when

N = 1. In general, for any N ∈Z+, it holds that ∀i∈{0,1, · · · ,n} and k ∈{1, · · · ,N},

∂ lk
∂xti

= 1ti∈[uk−1,uk]▽xti
lS(xuk−1,uk), (2.6)

2.2. Logsig-RNN 51

Thus the backpropogation algorithm of the Log-Signature Layer can be imple-

mented using Equation (2.5) and (2.6). 2

2.2.3 Complexity analysis

In this section, we investigate the computational complexity of the Logsig-RNN

(Model 2.1) and compare it with the classical RNN. Consider the input to be a

discrete d-dimensional time series x=(xti)
n
i=1 over the time interval J and the output

oT ∈ Re. Although the Logsig-RNN is combined of the Log-Signature Layer and a

RNN, to highlight the ability of time dimension reduction of our model and simplify

the analysis, we consider the Log-Signature Layer as the preprocessing layer for

features extraction3 and focus on the computational cost of the RNN layer. Suppose

the Log-Signature Layer splits x into N segments and compute the truncated log-

signature of degree M. It is noted that as preprocessing, the Log-Signature Layer

is applied only once before the whole training process. The RNN layer dominates

the computational complexity given large enough training epochs. For the Logsig-

RNN, the input to the RNN is the log-signatures (lk)N
k=1 of dimension (N,dls). We

consider the RNN:

hk = σ(Ulk +Whk−1),ok = q(V hk),

where (hk)
N
k=1 is the hidden layer output with hk ∈ Rh and U ∈ Rh×dls , W ∈ Rh×h

and V ∈ Re×h are model parameters, and σ and q are two activation functions.

We only compute the output from the hidden layer once at the terminal time T

for the Logsig-RNN model. At each step, the complexities for computing Ulk and

Whk−1 are hdls and h2 respectively. The complexity of element-wisely applying
2In the signatory python package [46], the backpropagation part is embedded in pytorch, so that

no function required when coding; In the iisignature python package [18], logsigbackprop(deriv,
path, s, Method = None) returns the derivatives of some scalar function F with respect to path,
given the derivatives of F with respect to logsig(path, s, methods). Our implementation of the back-
propogation algorithm of the Log-Signature Layer uses logigbackprop() provided in iisignature.

3The computational complexities of signature/log-signature are discussed in Appendix A.

2.2. Logsig-RNN 52

σ is counted as h. At the last step, we compute q(V hk) which has the complexity

eh+ e. Thus, it leads to the complexity of the forward direction of RNN layer as

follows

F1 := F1(d,e,h,N,M) = N(hdls +h2 +h)+ eh+ e.

As we only consider the output of the RNN at terminal time, the backward com-

plexity is linear w.r.t to the length of the input as follows

B1 := B1(d,e,h,N,M) = N(eh2 +2eh+2h2 +hdls +h+dls)+ eh

Finally, the computation complexity of the Logsig-RNN is

E1 := F1 +B1 = N(eh2 +2eh+3h2 +2hdls +2h+dls)+2eh+ e. (2.7)

Similarly, the forward complexity of the classical RNN is

F2 := F2(d,e,h,n) = n(hd +h2 +h)+ eh+ e.

The backward complexity of the classical RNN is

B2 := B2(d,e,h,n) = n(eh2 +2eh+2h2 +hd +h+d)+ eh.

Then the computation complexity of the classical RNN is

E2 := F2 +B2 = n(eh2 +2eh+3h2 +2hd +2h+d)+2eh+ e. (2.8)

Next, we assume n>N such that the Logsig-RNN model plays a role of time reduc-

tion, which decreases the original length n of input x to the length N of the output

2.2. Logsig-RNN 53

of the Log-Signature Layer; with this assumption, we show that if the following

additional condition is satisfied

dls

d
≤ n

N
, (2.9)

the bound E1 ≤ E2 holds such that the Logsig-RNN has an advantage on the com-

putational complexity against the classical RNN. Then

E2 ≥ N(eh2 +2eh+3h2 +2h)+n(2hd +d)+2eh+ e.

Thus, we see that it suffices to show

N(2hdls +dls)≤ n(2hd +d),

which implies (2.9). In practice, the inequality (2.9) is often fulfilled since we can

choose small degree M such that dls is not too large, and small number of segments

N such that the time dimension is reduced as much as possible.

2.2.4 Universality theorem

In this section, we prove the universality theorem of the Logsig-RNN (Model 2.1)

to approximate the solution to any controlled differential equation at terminal time

T under mild conditions. Let E := Rd and F := Re be two real vector spaces. Let

L(E,F) denote the continuous linear mapping from E to F . Let Y : J → F be a

solution of the given SDE of the form (2.1), i.e.

dYt = f (Yt)dXt ,Y0 = y0,

and f : F → L(E,F) is the vector field of SDE. We need the following assumption

for the rest of the chapter:

2.2. Logsig-RNN 54

Assumption 1.

(i) X = (1,X1, . . . ,X⌊p⌋) ∈ G(⌊p⌋)(E) is a geometric p-rough path controlled by

ω .

(ii) f ∈ Lip(γ), where γ > p.

Theorem 2.1 (Universality of the Logsig-RNN Model). Under Assumption 1, for

any ε > 0, there exist a constant δ > 0 and parameters Θ such that for any M > ⌊p⌋,

there exists a model H ∈ H with ∆D ≤ δ , whose output oT := Rσ ((lk)N
k=1|Θ)4

satisfies

sup
X∈K

||YT −oT || ≤ ε, (2.10)

where K is any compact subset of G(⌊p⌋)(E).

To derive the error bound in (2.10), we note that the triangle inequality implies

the following

||YT −oT || ≤ ||YT − ŶT ||︸ ︷︷ ︸
E1

+ ||ŶT −oT ||︸ ︷︷ ︸
E2

. (2.11)

where ŶT is the numerical approximated solution at time T given by (2.2). Thus, to

prove the universality theorem 2.1, it suffices to establish the error bounds for E1 and

E2 first. The next global approximation theorem states that the numerical solution

ŶT can approximate YT sufficiently well, which implies E1 can be controlled.

Theorem 2.2 (Global Approximation Theorem). Under Assumption 1, let ŶuN be

defined in (2.2). For any ε > 0, there exists δ > 0 such that when ∆D ≤ δ and

M ≥ ⌊γ⌋, it satisfies that

||YT − ŶuN || ≤ ε, (2.12)
4lk is the log-signature of X of the time interval [uk−1,uk].

2.2. Logsig-RNN 55

More specifically, it holds that

||YT − ŶuN || ≤ C̄
[

max
ui∈D

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

, (2.13)

where

C̄ =Cβ
⌊γ⌋+1−p
1 || f |||γ|+1

◦γ;J Cp
2 . (2.14)

To prove Theorem 2.2, we introduce the following auxiliary theorem, which

establishes an error bound of numerical approximated solution in terms of the p-

variation of X as a classical result [47].

Theorem 2.3. [47] Under Assumption 1, there exists C :=C(p,γ) such that

||YT − ŶuN || ≤C
N

∑
k=1

| f |⌊γ⌋+1
◦γ;J ||X||⌊γ⌋+1

p−var;[uk−1,uk]
. (2.15)

Now we are ready to proceed with the proof of Theorem 2.2.

Proof of Theorem 2.2. According to Theorem 2.3, there exists C := C(ρ,γ) such

that

||YT − ŶuN || ≤C
N

∑
k=1

| f |⌊γ⌋+1
◦γ;J ||X||⌊γ⌋+1

p−var;[uk−1,uk]
. (2.16)

As X has finite p-variation controlled by ω , by Theorem 1.14, there exists some

constants β1 := β1(p,γ)> 0 and C2 > 0 such that for any (s, t) ∈ ∆T ,

||X||p−var;(s,t) ≤ β1ω(s, t)
1
p ≤C2. (2.17)

2.2. Logsig-RNN 56

The inequalities (2.16) and (2.17) implies that

||YT − ŶuN || ≤ Cβ
⌊γ⌋+1
1 || f |||γ|+1

◦γ;J

N

∑
i=1

ω(ui−1,ui)
⌊γ⌋+1

p

Then by the super-additivity of the control ω , we can derive the following inequality

||YT − ŶuN || ≤ Cβ
⌊γ⌋+1
1 || f |||γ|+1

◦γ;J ω(J)
[

max
i

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

≤ C̄
[

max
i

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

(2.18)

where

C̄ =Cβ
⌊γ⌋+1−p
1 || f |||γ|+1

◦γ;J Cp
2 .

Thus by the uniform continuity of ω , for any ε > 0, there exists δ2 > 0, such that

the right hand side of (2.18) can be smaller than ε uniformly over all the partitions

with mesh size smaller than δ2.

Next, we control the error E2 between the numerical approximated solution

ŶT and the output oT of the Logsig-RNN in the inequality (2.11). As shown in

Figure 2.1, it is remarkable that there is a common recursive structure between the

RNN Rσ and the one defined by the numerical Taylor approximation to solutions of

SDEs ŶuN . Thus, we define a recursive function G f̃ ,k applied to above two structures.

Specifically, for any given function f̃ : Rd+e → Re, define G f̃ ,k : Rk×d → Rk×e as

follows:

G f̃ ,k : (x1, · · · ,xk) 7→ (r1, · · · ,rk), (2.19)

where rt+1 = f̃ (xt+1,rt),∀t ∈ {1, · · · ,k−1}, and r1 is the fixed initial value.

2.3. Generalized Logsig-RNN 57

On the one hand, when f̃ (x,r) := Aσ(θ1x+θ2r), where A ∈Re×m, θ1 ∈Rm×d

and θ2 ∈ Rm×e, then G f̃ ,N is the RNN equipped with the activation function σ ,

denoted by R(·|Θ); on the other hand, the numerical solution to SDE ŶuN is Gg,N .

Therefore controlling the error E2 is equal to controlling the norm of the difference

between GAσ(θ1x+θ2r),N and Gg,N , i.e.

ŶuN −Rσ ((lk)N
k=1) =

(
Gg,N −GAσ(θ1x+θ2r),N

)
((lk)N

k=1). (2.20)

Then we can prove the Theorem 2.1

Proof of Theorem 2.1. Theorem 2.2 implies that the error E1 in the triangle inequal-

ity (2.11) can be arbitrarily small given large enough degree of the log-signature M

and small enough ∆D .

Lemma B.3 demonstrates the continuity of the map f̃ 7→ G f̃ ,N , which leads to

the following inequality given Equation (2.20)

ŶuN −Rσ ((lk)N
k=1)≤ C̄N ||g− f̃ ||∞,K

where C̄N is defined in (B.11). Lemma B.2 ensures that for any ε > 0, there exist

integer m > 0, A ∈ Re×m, θ1 ∈ Rm×d and θ2 ∈ Rm×e such that ||g− f̃ ||∞,K ≤ ε ,

which means E2 can be arbitrarily small.

2.3 Generalized Logsig-RNN

2.3.1 Model

In this section, we build up the sequence-to-sequence generalized Logsig-RNN

model, which is capable of producing streamed outputs of any target length. First

we introduce two time partitions of the interval J. Assume D = (uk)
N1
k=0 to be a

time partition. Then we define another finer time discretization of J, denoted as

DY = (t j)
N2
j=0 of J, such that DY ⊃ D , t0 = u0 and tN2 = uN1 = T . The generalized

2.3. Generalized Logsig-RNN 58

Figure 2.3: Visualization of the numerical method in Eqn. (2.23).

Logsig-RNN outputs data at the time steps of DY . The idea is that when estimating

the solution Yt j at t j ∈ (uk−1,uk], the local approximation scheme is based on the

approximated value at uk−1 but not at t j−1 (Figure 2.3) in avoid of long-term de-

pendency issue. In this way, the approximation error can still be controlled by the

partition D , and the output sequences can have arbitrary length. Similar as before,

we need to define a generalized Log-Signature (Sequence) Layer, which transforms

the input path x ∈ V1(J,Rd) to a sequence of the log signature of x over the time

partition DY .

Definition 2.2 (Generalized Log-Signature (Sequence) Layer). Given D , DY , a

Log-Signature Layer of degree M is a mapping from V1(J,Rd) to Rdls×N2 , which

computes (l j)
N2
j=1 as an output for any x, where l j is the truncated log signature of x

over the time interval [uk−1, t j] of degree M with t j ∈ (uk−1,uk] as follows:

l j = lSM(x)[uk−1,t j], (2.21)

where j ∈ {1, · · ·N2} and dls is the dimension of the truncated log-signature. At the

2.3. Generalized Logsig-RNN 59

time steps belong to both D and DY , we also define lk as follows:

lk = l j, when uk = t j (2.22)

for i ∈ {1, · · ·N1} and j ∈ {1, · · ·N2}.

Then similarly as the numerical scheme in (2.2), for any t j ∈ DY find k such

that t j ∈ (uk−1,uk], we apply the Taylor approximation of Yt j around the reference

time point t = uk−1 ∈ D to obtain

Ŷ0 = y0,

Ŷt j = Ŷuk−1 +
M

∑
m=1

f ◦m(Ŷuk−1)
∫

uk−1<s1<···<sm<t j

dXs1 ⊗·· ·⊗dXsm

:= g(Ŷuk−1, l j). (2.23)

where M is the degree of log-signature and any model l j is defined in Equation

(2.21). The method is visualized in Figure 2.3. It is noted that to approximate the

solution Yt j , the method approximates Ŷu0 , . . . ,Ŷuk−1,Ŷt j in order. It implies that the

above method estimate every Yt j in a recursive way the same as that of (2.2).

Thus, we can develop the generalized Logsig-RNN:

Model 2.2 (Generalized Logsig-RNN Network). Given D = (uk)
N1
k=0 ⊂ DY =

(t j)
N2
j=0, the generalized Logsig-RNN network H̄ := H̄D ,DY

M,Θ maps from an input path

x ∈V1(J,Rd) to an output (ot j)
N2
j=1 ∈ RN2×e such that

• For any t j ∈ (uk−1,uk], compute (l j)
N2
j=1 as the output of the Log-Signature

Layer of degree M for an input x by Definition 2.2.

2.3. Generalized Logsig-RNN 60

• The output layer is computed recursively as follows:

ht j = σ1(θ1huk−1 +θ2l j); (2.24)

ot j = σ2(θ3ht j).

where σ1,σ2 are two activation functions and Θ= {θ1,θ2,θ3} is the learnable

parameter set.

We denote the family of the generalized Logsig-RNN model defined in Model 2.2

to be

H :=
⋃

D⊂DY

∞⋃
M=1

{H̄D ,DY
M }. (2.25)

Remark 2.3. For t j ∈ (uk−1,uk], if we focus on the time steps (u0, . . . ,uk−1, t j), it

is observed that the output sequence (ou0 , . . . ,ouk−1,ot j) is derived recursively in

the same way as the outputs of RNNs defined in (1.10). Thus, it implies ot j =

Rσ ((li)k−1
i=1 , l j|Θ), where Rσ is a RNN network with Θ= {θ1,θ2,θ3} and activation

function σ .

2.3.2 Backpropogation

Let us consider the derivative of the scalar function F on (l j)
N2
j=1 with respect to path

xD̂ , given the derivatives of F with respect to (l j)
N2
j=1. By the Chain rule, it holds

that

∂F(l1, · · · , lN2)

∂xti
=

N2

∑
k=1

∂F(l1, · · · , lN2)

∂ l j

∂ l j

∂xti
. (2.26)

where j ∈ {1, · · · ,N2} and i ∈ {0,1, · · · ,n}. If ti /∈ [uk−1, t j],
∂ l j
∂xti

= 0; otherwise
∂ l j
∂xti

is the derivative of the single log-signature l j with respect to path xuk−1,t j where

ti ∈ DY ∩ [uk−1, t j]. Then the computation of ∂ l j
∂xti

is the same as Equation (2.6).

2.3. Generalized Logsig-RNN 61

2.3.3 Complexity analysis

In this section, we investigate the computational complexity of the generalized

Logsig-RNN (Model 2.2) and compare it with the classical RNN. Consider the

input to be a discrete d-dimensional time series x = (xti)
n
i=1 over the time inter-

val J. Given two time partitions D = (uk)
N1
k=0 ⊂ DY = (t j)

N2
j=0 for J, the gener-

alized Logsig-RNN splits the input data into N1 segments with N1 < n and out-

puts (ot j)
N2
j=1 ∈ RN2×e. Similar as in Section 2.2.3, we consider the generalized

Log-Signature Layer as the preprocessing layer. The input of the RNN layer is the

sequence of log-signatures (l j)
N2
j=1 of dimension (N2,dls). At each step, the com-

plexities for computing σ(Ulk +Whk−1) and q(V hk) are hdls + h2 + h and eh+ e

respectively, where σ and q are applied element-wisely. Thus, the forward com-

plexity of the RNN layer is

F1 := N2(hdls +h2 +h+ eh+ e).

To compute the complexity of the backpropagation of the RNN layer, we assume

that the partition D evenly splits the partition DY and N2 ≡ 0 (mod N1), i.e. N2
N1

is

an integer. Then the backward complexity of the RNN layer is

B1 :=
N2

N1

(
N1(N1 +1)

2
(eh2 +2eh+2h2 +hdls +h+dls)+N1eh

)
=

N2(N1 +1)
2

(eh2 +2eh+2h2 +hdls +h+dls)+N2eh.

We see the total complexity of the generalized Logsig-RNN is

E1 = F1 +B1 =
N2(N1 +1)

2
(eh2 +2eh+2h2 +hdls +h+dls)

+ N2(hdls +h2 +h+2eh+ e). (2.27)

2.3. Generalized Logsig-RNN 62

For the classical RNN, the forward complexity is

F2 = n(hd +h2 +h+ eh+ e).

The backward complexity of the classical RNN is

B2 =
n(n+1)

2
(eh2 +2eh+2h2 +hd +h+d)+neh.

Then the computation complexity of the classical RNN is

E2 := F2 +B2 =
n(n+1)

2
(eh2 +2eh+2h2 +hd +h+d)

+ n(hd +h2 +h+2eh+ e). (2.28)

In the following, we assume n ≥ N2
5 and we show the step-by-step derivation to

prove that if the following additional condition is satisfied

dls

d
≤ n(n+1)(h+1)+2nh

N2(N1 +1)(h+1)+2N2h
, (2.29)

the bound E1 ≤ E2 holds. Then

E2 ≥
N2(N1 +1)

2
(eh2 +2eh+2h2 +h)+

n(n+1)
2

(hd +d)

+N2(h2 +h+2eh+ e)+nhd.

It suffices to show that

N2(N1 +1)
2

(hdls +dls)+N2hdls ≤
n(n+1)

2
(hd +d)+nhd,

which implies (2.29). As n > N1 and n ≥ N2, the bound E1 ≤ E2 can hold easily

5If n > N2, we can down-sample the output of the RNN to match the target length of the time
series

2.3. Generalized Logsig-RNN 63

when we choose the log-signature degree M and number of segments N1 to satisfy

the inequality (2.29).

2.3.4 Universality theorem

In this section, we establish the universality theorem of the generalized Logsig-

RNN model to approximate a solution to any controlled differential equation of the

form (2.1) defined on the compact interval J under mild conditions. First given the

partition DY = (t j)
N2
j=0, we define the whole path of the output of the generalized

Logsig-RNN Model 2.2 for any t ∈ [0,T] by

ot = ot j , ∀t ∈ [t j, t j+1). (2.30)

Similarly, we give the definition of Ŷ of the numerical approximation scheme (2.23)

for any t ∈ [0,T] as follows

Ŷt = Ŷt j , t ∈ [t j, t j+1). (2.31)

The universality theorem is as follows:

Theorem 2.4 (Universality of Generalized Logsig-RNN Model). Under Assump-

tion 1, for any ε > 0, there exist a constant δ and parameters Θ such that for

M > ⌊p⌋, there exists a model H̄ ∈ H with ∆D ≤ δ , its outputs o defined in

Eqn. (2.30) satisfies

sup
X∈K

||Y −o||∞;J ≤ ε, (2.32)

where K is any compact subset of G(⌊p⌋)(E).

The main idea of proof is similar to that of Theorem 2.1. By triangle inequality

2.3. Generalized Logsig-RNN 64

we have

||Y −o||∞;J ≤ ||Y − Ŷ ||∞;J︸ ︷︷ ︸
E3

+ ||Ŷ −o||∞;J︸ ︷︷ ︸
E4

. (2.33)

In Theorem 2.2, we state that Ŷ can approximate Y sufficiently well at terminal time

T . In fact, we can prove the following generalised theorem that the error between Ŷ

and Y can be uniformly bounded for any t ∈ J, which implies E3 can be controlled.

Theorem 2.5 (Global Approximation Theorem). Under Assumption 1, let (Ŷt)t∈J

be defined in (2.23). For any ε > 0, there exists δ > 0 such that when ∆D ≤ δ and

M ≥ ⌊γ⌋, it satisfies that

||Y − Ŷ ||∞;J ≤ ε, (2.34)

More specifically, there exists positive constants C1 and C̄ defined in (2.42) and

(2.14) respectively such that

||Y − Ŷ ||∞;J ≤C1φp

(
max
ui∈DY

ω(ui−1,ui)
1
p

)
+C̄

[
max
ui∈DY

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

. (2.35)

To prove Theorem 2.5, we need the next lemma, which states the uniform

bound for the approximation error between the numerical solution Ŷ and Y at dis-

crete time partition t j ∈ DY .

Lemma 2.6. Under Assumption 1, let (Ŷ DY ,M
t j)N2

j=0 be defined in (2.2). For any ε > 0,

there exists δ1 > 0 such that when ∆D ≤ δ1 and M ≥ ⌊γ⌋, then Ŷt j satisfies that

sup
t j∈DY

||Yt j − Ŷt j || ≤ ε, (2.36)

2.3. Generalized Logsig-RNN 65

More specifically, there exists a positive constant C̄ defined in (2.14) such that

sup
t j∈DY

||Yt j − Ŷt j || ≤ C̄
[

max
ui∈DY

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

. (2.37)

The proof of Lemma 2.6 can be found in the Appendix B. Now we are ready to

prove the Theorem 2.5.

Proof of Theorem 2.5. For any t ∈ J, there exist j ∈ {1, . . . ,N2} such that t ∈

[t j, t j+1). Then by triangle inequality, we have

||Yt − Ŷt || ≤ ||Yt −Yt j ||︸ ︷︷ ︸
E5

+ ||Yt j − Ŷt j ||︸ ︷︷ ︸
E6

+ ||Ŷt j − Ŷt ||︸ ︷︷ ︸
E7

. (2.38)

As X has finite p-variation controlled by ω , there exists some constant β1 :=

β1(p,γ) such that for any (s, t) ∈ ∆T ,

||X||p−var;[s,t] ≤ β1ω(s, t)
1
p . (2.39)

Then by the uniform continuity of ω , for any ε > 0, there exits δ1 > 0 such that for

any (s, t) ∈ ∆T with |s− t|< δ1, the following inequality holds

||X||p−var;[s,t] ≤ β1 max
|u−v|<δ1

ω(u,v)
1
p ≤ ε. (2.40)

By Lemma B.1, for any ε > 0, there exists δ1 such that for any |s− t|< δ1,

||Yt −Ys|| ≤C1φp

(
max

|u−v|<δ1
ω(u,v)

1
p

)
< ε. (2.41)

where constant C1 is defined as

C1 :=C
(
| f |◦γ−1 ∨| f |p◦γ−1

)
β1. (2.42)

2.3. Generalized Logsig-RNN 66

As per the above, E5 can be arbitrarily small given ∆D sufficiently small. According

to Lemma 2.6, for any ε > 0, there exists δ2 such that E6 ≤ ε given ∆D < δ2 and

truncation degree of the log-signature M sufficiently large. Finally, as E7 = 0, we

can obtain the required results given δ = min(δ1,δ2).

The error E4 between Ŷ and o in (2.33) is also similar to E2 in the inequality

(2.11) of Theorem 2.1. By Remark 2.3, it is noted that for t j ∈ (uk−1,uk], the output

ot j is indeed the ouput of the function Rσ ((li)k−1
i=1 , l j|Θ), where Rσ (·|Θ) is a RNN

network. Thus, given the definition of the recursive function G f̃ ,k in (2.19), the

control of E4 is equal to control

Ŷt j −Rσ ((li)k−1
i=1 , l j) =

(
Gg,k −GAσ(θ1x+θ2r),k

)
((li)k−1

i=1 , l j), (2.43)

for all j ∈ {1, . . . ,N2}. for all j ∈ {1, . . . ,N2}.

Finally, we arrive at the stage of proving Theorem 2.4.

Proof of Theorem 2.4. Theorem 2.5 implies that the error E1 in the triangle inequal-

ity (2.11) can be arbitrarily small given large enough degree of the log-signature M

and small enough ∆D .

Lemma B.3 demonstrates the continuity of the map f̃ 7→ G f̃ ,k, which leads to

the following inequality

sup
j

{
Ŷt j −Rσ ((li)k−1

i=1 , l j)
}
≤ sup

k
{C̄k}||g− f̃ ||∞,K ≤C3||g− f̃ ||∞,K

where C3 :=C3(N2,K). As Lemma B.2 ensures that the shallow neural network can

approximate any continuous function uniformly well, we are able to show that E4

can be arbitrarily small by the definition of piecewise-constant interpolation.

Chapter 3

Logsig-RNN in supervised learning

3.1 Introduction
In this chapter, we investigate the performance of the Logsig-RNN (Model 2.1) on

several supervised learning tasks to demonstrate its effectiveness and usefulness in

time series data modelling. Supervised learning are mainly divided into regres-

sion and classification depending on the output type and widely studied in machine

learning research [48]. To validate our model on a diverse set of supervised learning

problems, we consider the regression task of learning the SDE solution from syn-

thetic data, and two classification tasks of recognising handwritten digits and human

action from empirical data respectively. We provide an extensive benchmark exper-

iments of our model against conventional RNN model and Sig-OLR [24] on the two

illustrative examples, i.e. synthetic SDEs data and handwritten digits data. Numeri-

cal results confirm that that our model is consistently more efficient and robust than

the baseline methods.

The most challenging one among the above proposed tasks is human action

recognition (HAR). HAR is an important and difficult task in computer vision with

a wide range of applications in human-computer interfaces and communications.

In particular, skeleton-based HAR (SHAR) that involves skeleton representation

of human bodies instead of raw RGB videos, has gained increasing popularity of

3.1. Introduction 68

research and development due to low-cost motion sensing devices, e.g. Microsoft

Kinect, and reliable pose estimation methods. Compared with RGB representation,

skeleton-based methods are robust to illumination changes, free of environmental

noises and have benefits of data privacy and security.

Although vast literature is devoted to SHAR [49, 50, 51], the challenge re-

mains open due to two main issues: (1) how to extract discriminative represen-

tations for the high dimensional spatial structure of skeletons; (2) how to model

the temporal dynamics of motion. With the increasing development and impres-

sive performance of deep learning models e.g. Recurrent Neural Networks (RNN)

[33, 34, 35, 52, 53], Convolutional Neural Networks (CNN) [54, 55, 56, 57, 58, 59],

and Graph Convolutional Networks (GCN) [60, 61, 62], data-driven deep features

have gained increasing attention in SHAR [51]. However, these methods are often

data greedy and computationally expensive, and not well adapted to data of differ-

ent sizes/lengths. For example, when the lengths of data sequences are long and

diverse, LSTMs either suffer from tremendous training cost with heuristic padding

or are forced to down-sample/re-sample the data, which potentially misses the mi-

croscopic information.

To address the above two difficulties, we propose the Path Transformation Lay-

ers (PTs) and Logsig-RNN(Model 2.1) respectively, leading to a hybrid model for

the SHAR tasks to achieve the comparable state-of-the-art results. On the one hand,

the spatial structure in SHAR methods is commonly modelled using coordinates of

joints [63, 64, 65], using body parts to model the articulated system [66, 67, 68]

or by hybrid methods using information from both joints and body parts [69, 57].

Inspired by [57] and [70], we propose the Path Transformation Layers (PTs), which

include an Embedding Layer (EL) to reduce the spatial dimension of pure joint in-

formation and a Graph Convolutional Layer (GCN) to learn to implicitly capture

the discriminative joints and body parts. On the one other hand, the Log-Signature

3.2. Illustrative examples 69

Layer (definition 2.1) provides a parsimonious summary of the extracted spatial

features locally and hence significantly reduce the time dimension of the RNN. The

log-signature transformation is effective to handle time series with variable length

without the use of padding and provide robustness to missing data. This enables the

following RNN layer to learn more expressive deep features, leading to a systematic

method to treat the complex time series data in SHAR.

This chapter is organised as follows. Section 3.2 demonstrates the superior

performance of Logsig-RNN against RNNs on the two illustrative examples in both

accuracy and robustness. Section 3.3 first explains the architecture of the model

PT-Logsig-RNN customized for learning SHAR datasets. Then we show that re-

placing RNNs with Logsig-RNN in the SOTA networks consistently improves the

accuracy and robustness on both Chalearn 2013 and NTU RGB+D 120 dataset. We

also illustrates the efficiency of Logsig-RNN against RNNs and discrete consine

transformation (DCT). Section 3.4 concludes.

3.2 Illustrative examples
In this section, we demonstrate the performance of the Logsig-RNN algorithm on

the synthetic SDE data and handwritten pen-digit data in terms of the accuracy,

efficiency and robustness.1

3.2.1 Synthetic data

As an example of high frequency data, we simulate the solution YT to the SDE of

Example 3.1 using Milstein’s method with the time step T
50000 for T = 10. An input

path is the discretized Brownian motion WD̂ , where D̂ = D50001
2. We simulate

2000 samples of (XD̂ ,YT), which is split to 80% for the training and the rest for the

testing. Here we benchmark our approach with (1) RNN0: the conventional RNN

1We implement all algorithms in Pytorch. It runs on a computer equipped with GeForce RTX
2080 Ti and GeForce Quadro RTX 8000 GPU.

2Dn denotes an equally spaced partition of [0,T] of n steps.

3.2. Illustrative examples 70

model, (2) Sig-OLR: the linear regression model on the signature, (3) Sig-RNN: the

RNN model with the signature sequence.

Example 3.1. Suppose Yt satisfies the following SDE:

dYt = (−πYt + sin(πt))dX (1)
t +YtdX (2)

t ,Y0 = 0, (3.1)

where Xt = (X (1)
t ,X (2)

t) = (t,Wt), Wt is a 1-d Brownian motion, and the integral is

in the Stratonovich sense.

Data Methods Fea. dim.3 Error(×10−6) Train time(s)
High RNN0 (50k, 1) − −
Frequency Sig-OLR 62 2.25 178
(50k steps) Sig-RNN (4,14) 2.40 360

Logsig-RNN (4,8) 2.14 529
Down- RNN0 (1k,1) 7.79 50930
sampling Sig-OLR 62 3.69 9
(1k steps) Sig-RNN (4,14) 2.55 177

Logsig-RNN (4,8) 2.16 343
Missing RNN0 (1k,1) 16.40 47114
Data Sig-OLR 62 3.75 9
(drop 5% Sig-RNN (4,14) 3.05 182
from 1k) Logsig-RNN (4,8) 2.91 372

Table 3.1: Comparison of methods on the SDEs data.

As shown in Table 3.1, we apply the above four methods for three kinds of

inputs (1) XD̂ (high frequency); (2) down-sampling XD̂ to 1k time steps (down-

sampling); (3) randomly throw away 5% points of 1k down sampled data (missing

data). We compare the accuracy and training time of the Logsig-RNN algorithm.

The training time is the first time of the loss function of the model to reach the error

tolerance level 2 ∗ 10−6 before 25k epochs in the train set and the MSE is chosen

as performance metric. First of all, Table 3.1 shows that the Logsig-RNN achieves

the best accuracy for all three cases among all the methods. In particular, it is the

3For features of two dimensions, the first one is for temporal and the second is for spatial.

3.2. Illustrative examples 71

most robust to missing data. Moreover, it reduces the time dimension of RNN from

50k/1k to 4, and thus significantly save the training time from 50930s to 343s.

3.2.2 Pen-digit data

In this subsection, we apply the Logsig-RNN algorithm on the UCI sequential pen-

digit data4. Because the average length of the data is 40 and the minimum length is

9, we did parameter tuning for the number of segments in the set of {2, 4, 8}. In

Table 3.2, the Logsig-RNN with M = 4 and N = 4 achieves the accuracy 97.88% in

the testing data compared with 95.80% of RNN0. In addition, the training time of

the Logsig-RNN takes 3% of the training time of RNN0.

Figure 3.1: The accuracy comparison of Logsig-RNN in the testing set.

Robustness to missing data and change of sampling frequency To mimic

the missing data case, we randomly throw a certain portion of points for each sam-

ple, and evaluated the trained models of Logsig-RNN and RNN0 to the new testing

data. Table 3.2 shows that our proposed method outperforms the other methods

significantly for the missing data case. Figure 3.2 shows the robustness of trained

Logsig-RNN model for the down-sampled test data. Here the test data is down-

4https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+
of+Handwritten+Digits

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

3.3. Skeleton human action recognition 72

sampled to that of length 8 provided in UCI data. For M = 4, the accuracy of

testing data is above 80%, which is about 4 times of that of the baseline methods.

r
M

2 3 4 5 6 RNN0

0% 97.83% 97.83% 97.88% 97.40% 97.68% 95.80%
10% 97.63% 97.77% 97.14% 96.88% 97.60% 40.91%
20% 96.74% 97.06% 96.68% 95.85% 97.06% 37.28%
30% 95.99% 95.40% 95.17% 95.03% 95.77% 32.65%

Table 3.2: The accuracy of the modified testing set using different missing data rate (r).
Here N = 4.

Figure 3.2: Validation of the trained models on the down-sampled dataset. The accuracy of
RNN0 is below 13.5%

3.3 Skeleton human action recognition
In this section, we propose a simple, compact and efficient PT-Logsig-RNN Net-

work for SHAR, which is composed of (1) path transformation layers, (2) the

Logsig-RNN (Model 2.1) and (3) a fully connected layer. The overall PT-Logsig-

RNN model is depicted in Figure 3.3. We start by propose useful path transforma-

tion layers to further improve the performance of the Logsig-RNN module in SHAR

tasks. Then, with quantitative analysis on Chalearn2013 gesture dataset and NTU

3.3. Skeleton human action recognition 73

Figure 3.3: Architecture of PT-Logsig-RNN Model. It consists with the first Path Transfor-
mation Layers, the Log-Signature (Sequence) Layer, the RNN-type layer and
the last fully connected layer. It is used for both action and gesture recognition
in our experimental section.

RGB+D 120 action dataset, we validated the efficiency and robustness of Logsig-

RNN and the effects of the Path Transformation layers.

3.3.1 PT-Logsig-RNN network

To more efficiently and effectively exploit the spatio-temporal structure of the path,

we further investigate the use of two main path transformation layers (i.e. Embed-

ding Layer and Graph Convolutional Layer) in conjunction with the Log-Signature

Layer.

A skeleton sequence X can be represented as a n×F ×D tensor (landmark

sequence) and a F ×F matrix A (bone information), where n is the number of

frames in the sequence, F is the number of joints in the skeleton, D is the coordinate

dimension and A is the adjacency matrix to denote whether two joints have a bone

3.3. Skeleton human action recognition 74

connection or not.

Embedding Layer (EL) In the literature, many models only use landmark

data without explicit bone information. One can view a skeleton sequence as a sin-

gle path of high dimension(d) (e.g. a skeleton of 25 3D joints has d = F ·D = 75).

Since the dimension of the truncated log-signature grows fast w.r.t. d, we add a

linear Embedding Layer before the Log-Signature Layer to reduce the spatial di-

mension and avoid this issue. Motivated by [57], we first apply a linear convolution

with kernel dimension 1 along the time and joint dimensions to learn a joint level

representation. Then we apply full convolution on the second and third coordinates

to learn the interaction between different joints for an implicit representation of

skeleton data. The output tensor of EL has the shape n×del , where del is a hyper-

parameter to control spatial dimension reduction. One can view the embedding

layer as a learnable path transformation that can help to increase the expressivity of

the (log)-signature.

In practice, the Embedding Layer is more effective when subsequently adding

the Time-Incorporated Layer (TL) and the Accumulative Layer (AL) which applies

time augmentation and cumulative sum functions respectively. The details of time

augmentation and cumulative sum can be found in Appendix A. For simplicity we

will use EL to denote the Embedding Layer composed with TL and AL in the below

numerical experiments.

Graph Convolutional Layer (GCN) Recently, graph-based neural networks

have been introduced and achieved SOTA accuracy in several SHAR tasks due to

their ability to extract spatial information by incorporating additional bone infor-

mation using graphs. We demonstrate how a GCN and the Logsig-RNN can be

combined to form the GCN-Logsig-RNN to model spatio-temporal information.

First, we define the GCN layer on the skeleton sequence. Let Gθ denote a

graph convolutional operator F ×D → F × D̃ associated with A by the following

3.3. Skeleton human action recognition 75

mapping

Gθ (x) := (Γ− 1
2 (A + I)Γ− 1

2)xθ ,

where θ is a D× D̃ matrix, Γii = ∑ j(A
i j + Ii j), and I is the identity matrix. Then

we extend Gθ to the skeleton sequence by applying Gθ to each frame Xt , i.e. Gθ :

X = (Xt)
n
t=1 7→ (Gθ (Xt))

n
t=1 to obtain an output as a sequence of graphs of time

dimension n with the adjacency matrix A .

Next we propose the below GCN-Logsig-RNN to combine GCN with the

Logsig-RNN. Let X̂ (i)
t ∈ RD̃ denote the features of the ith joint of the GCN output

Gθ (Xt) at time t. For each ith joint, X̂ (i) = (X̂ (i)
t)n

t=1 is a D̃-dimensional path. We

apply the Logsig-RNN to X̂ (i) as the feature sequence of each ith joint, and hence

obtain a sequence of graphs whose feature dimension is equal to the log-signature

dimension and whose time dimension is the number of segments in Logsig-RNN.

This in particular also allows for the module to be stacked. To further efficiently

and effectively exploit the path, we further propose the transformation layers ac-

companied with Log-Signature Layer which could help extract spatial information

or avoid curse of dimensionality. The overall model, namely PT-Logsig-RNN, is

shown in Figure 3.3. The implementation details of SHAR datasets are given in

Appendix C.

3.3.2 Gesture recognition

The Chalearn 2013 dataset [22] is a public available dataset for gesture recognition,

which contains 20 Italian gestures performed by 27 subjects. It contains 13,858

samples with the average number of frames equals to 39. It provides Kinect data,

which contains RGB, depth, foreground segmentation and skeletons. Here, we only

use skeleton data (20 3D joints) for the gesture recognition.

State-of-the-art performance:We apply the EL-Logsig-LSTM model to

3.3. Skeleton human action recognition 76

Chalearn2013 and achieve state-of-the-art (SOTA) classification accuracy shown

in Table 3.3 of the 5-fold cross validation results. The EL-Logsig-LSTM

(M = 2,N = 4) with data augmentation achieves performance comparable to the

SOTA [71]. With augmentation, the PT-Logsig-RNN significantly outperform oth-

ers to achieve the state-of-the-art result according to 5-folds cross validation results.

Figure 3.4 displays when number of segments (N) is 4, the testing accuracy is the

highest, and when it is larger than 16, there is a significant decrease.

Methods Accuracy(%) Data Aug.
Deep LSTM [52] 87.10 −
Two-stream LSTM [53] 91.70

√

ST-LSTM + Trust Gate [72] 92.00
√

3s net TTM [73] 92.08
√

Shift-GCN [74] 90.86
√

Multi-path CNN[75] 93.13
√

TS-DPM[71] 94.26
√

LSTM0 90.92 ×
LSTM0 (+data aug.) 91.18

√

EL-Logsig-LSTM 91.77 ± 0.34 ×
EL-Logsig-LSTM(+data aug.) 92.94 ± 0.21

√

GCN-Logsig-LSTM 91.92 ± 0.28 ×
GCN-Logsig-LSTM(+data aug.) 92.86 ± 0.23

√

Table 3.3: Comparison of the accuracy (± standard deviation) for different methods on the
Chalearn 2013 data.

Investigation of path transformation layers: To validate the effects of EL,

we compare the test accuracy and number of trainable weights in our network with

and without EL on Chalearn 2013 data. Table 3.4 shows that the addition of EL

increases the accuracy by 1.87 percentage points (pp) while reducing the number of

trainable weights by over 60%. Let Del denote the spatial dimension of the output of

EL. We can see that even introducing EL without a reduction in dimensionality, i.e.

setting Del to the original spatial dimension of 60, improves the test accuracy. De-

creasing the dimensionality can lead to further improvements, with the best results

in our experiments at Del = 30 with a test accuracy of 93.38%. A further decrease

of Del leads to the performance deteriorating. The high accuracy of our model using

3.3. Skeleton human action recognition 77

Figure 3.4: The sensitivity analysis of EL-Logsig-LSTM model w.r.t. the number of seg-
ments on Chalearn 2013 data.

EL to reduce the original spatial dimension from 60 to Del = 30 suggests that EL

can learn implicit and effective spatial representations for the motion sequences. AL

and TL contribute a 0.86 pp gain in test accuracy to the EL-Logsig-LSTM model.

Methods Del Accuracy(%) # Trainable weights

With EL

10 91.09 120,594
20 92.92 213,574
30 93.38 357,954
40 93.10 553,734
50 93.33 800,914
60 93.30 1,099,494

W/O EL - 91.51 985,458

Table 3.4: The effect of EL on the testing accuracy. Del is the spatial dimension of EL
output.

Investigation of different segment numbers in Logsig-LSTM: Figure 3.4

shows that for the EL-Logsig-LSTM, increasing the number of segments (N) up

to 16, the test accuracy stays stable, and increasing N further worsens the model

performance. The optimal number of segments N is 4. As the average number of

frames of the dataset is 39, if N is larger than 16, the information contained in each

segment of many samples would be a straight line. Since the log-signature of a

straight line is just the difference of the start and end point, applying the Logsig-

LSTM would be the same as applying the LSTM, which explains the decreasing in

3.3. Skeleton human action recognition 78

accuracy of the figure.

Robustness analysis: Regarding to the robustness to missing data, we ran-

domly set a certain percentage of frames (r) by all-zeros for each sample in the

validation set, and evaluate the trained models of our method and RNN0 to the new

validation data. Table 3.5 shows that EL-Logsig-LSTM model with M = 2 consis-

tently beats the baseline RNN for different r, which validates the robustness of our

method comparing with the benchmark.

r
M

2 3 4 LSTM

0% 92.21 89.66 70.71 90.92
10% 91.32 88.58 69.11 81.77
20% 90.33 86.60 67.89 68.22
30% 87.68 81.74% 63.24 50.35
50% 74.40 57.13 41.07 21.78

Table 3.5: The accuracy (%) of the testing set with missing data with different dropping
ratio (r) on Chalearn 2013. Here N = 4.

3.3.3 Action recognition

NTU RGB+D 120 [23] is a large-scale benchmark dataset for 3D action recogni-

tion, which consists of 114,480 RGB+D video samples that are captured from 106

distinct human subjects for 120 action classes.

In this subsection, we apply the EL-Logsig-LSTM, GCN-Logsig-LSTM and a

stacked two-layer GCN-Logsig-LSTM(GCN-Logsig-LSTM2) to demonstrate that

the Logsig-RNN can be conveniently plugged into different neural networks and

achieve competitive performance.

Figure 3.5 shows the testing accuracy increases with respect to number of seg-

ments (N) up to 64 and then decreases on both cross-setup and cross-subject tasks.

Different from the Chalearn 2013 dataset, the NTU RGB+D 120 is a large and com-

plex one. Methods in the literature always have severe over-fitting issue, which have

multi-layer architecture with large amount of parameters such that the accuracy can

3.3. Skeleton human action recognition 79

be improved. It is the possible reason that when N = 64, which is close to the

average number of frames (i.e. 79), such that our model achieves best results.

Figure 3.5: The sensitivity analysis of Logsig-RNN model w.r.t the number of segments on
NTU+B 120. datast.

Among non-GCN models, for X-Subject protocol, our EL-Logsig-LSTM

model outperforms other methods, while it is competitive with [54] and [59] for

X-Setup. The latter leverages the informative pose estimation maps as additional

clues. Table 3.6 shows the ablation study of EL-Logsig-LSTM For the X-Subject

task, adding EL layer results in a 0.7 pp gain over the baseline and the Logsig layer

further gives a 5.9 pp gain. As the 5-fold cross validation results shown in Table 3.7,

we subsequently add the Path Transformation Layers (PT) and the Log-signature

layer (Logsig) to the baseline LSTM to validate the performance of each model.

For X-Subject task, adding PT Layer results in a 0.7 percentage points (pp) gain

over the baseline and the Logsig layer further gives a 5.9 pp gain. For X-Subject

protocol, our method outperforms other methods. For X-Setup, our method is com-

petitive with [59]. The latter leverages the informative pose estimation maps as

additional clues. Notice that our PT-Logsig-LSTM is flexible enough to allow in-

corporating other advanced techniques (e.g. data augmentation and attention mod-

ule) or combining multimodal clues (e.g. pose confidence score) to achieve further

improvement.

When changing the EL to GCN in EL-Logsig-LSTM, we improved the accu-

3.3. Skeleton human action recognition 80

Methods X-Subject(%) X-Setup(%)
ST LSTM[34] 55.7 57.9
FSNet[58] 59.9 62.4
TS Attention LSTM[35] 61.2 63.3
Pose Evolution Map[59] 64.6 66.9
Skelemotion[54] 67.7 66.9
LSTM (baseline) 60.9 ± 0.47 57.6 ± 0.58
EL-LSTM 61.6 ± 0.32 60.0 ± 0.35
EL-Logsig-LSTM 67.7 ± 0.38 66.9 ± 0.47

Table 3.6: Comparison of accuracy (± standard deviation) among non-GCN models on the
NTU RGB+D 120.

Methods X-Subject(%) X-Setup(%)
RA-GCN[76] 81.1 82.7
4s Shift-GCN[74] 85.9 87.6
MS-G3D Net[70] 86.9 88.4
PA-Res-GCN[77] 87.3 88.3
(GCN-LSTM) 69.4 ± 0.46 71.4 ± 0.30
(GCN-LSTM)2 72.1 ± 0.53 74.9 ± 0.27
GCN-Logsig-LSTM 70.9 ± 0.22 72.4 ± 0.33
(GCN- Logsig-LSTM)2 75.8 ± 0.35 78.0 ± 0.46

Table 3.7: Comparison of accuracy (± standard deviation) among GCN models on the NTU
RGB+D 120.

racy by 3.2 pp and 5.5 pp for X-Subject and X-Setup tasks respectively. By stacking

two layers of the GCN-Logsig-LSTM, we further improve the accuracy by 4.9 pp

and 5.6 pp. The SOTA GCN models ([70, 77]) have achieved superior accuracy,

which is about 11 pp higher than our best model. This may result from the use of

multiple input streams (e.g. joint, bones and velocity) and more complex network

architecture (e.g. attention modules and residual networks). Notice that our EL-

Logsig-LSTM is flexible enough to allow incorporating other advanced techniques

or combining multimodal clues to achieve further improvement.

To test the robustness of each method in handling missing data and varying

frame rate, we construct new test data by randomly discarding/repeating a certain

percentage (r) of frames from each test sample, and evaluate the trained models on

the new test data. Table 3.5 shows that the proposed EL-Logsig-LSTM exhibit only

3.3. Skeleton human action recognition 81

Figure 3.6: The robustness test of random dropping/inserting frames to the NTU RGB+D
120 data.

very small drops in accuracy on Chalearn2013 as r increases while the accuracy of

the baseline drops significantly. We start to see a more significant drop in accuracy

in our models only as we reach a drop rate of 50%. Figure 3.6 shows that the same is

true for the proposed GCN-Logsig-LSTM model on the NTU data. Compared with

GCN-LSTM (baseline), it is clearly more robust. And compared with the SOTA

model MSG3D Net [70], at a drop rate of 50% or more and a increase rate of 30%

or more, our method even outperforms it which has a 10 pp higher accuracy than our

model at r = 0. This demonstrates that both EL-Logsig-LSTM and GCN-Logsig-

LSTM are significantly more robust to missing data than previous models in many

cases.

3.3.4 Efficiency analysis

To demonstrate that the log-signature can help reduce the computational cost of

backpropagating through many timesteps associated with RNN-type models we

compare the training time and accuracy of a standard single LSTM block with a

Logsig-LSTM using the same LSTM component on the ChaLearn dataset. To eval-

uate the efficiency as the length of the input sequence grows we linearly interpolate

3.4. Conclusion and future work 82

between frames to generate longer input sequences. We can see in the results in

Figure 3.7 that, as the length of the input sequence grows, the time to train the

Logsig-LSTM grows much slower than that of the standard LSTM. Moreover, the

Logsig-LSTM retains its accuracy while the accuracy of the LSTM drops signifi-

cantly as the input length increases. This shows that the addition of the log-signature

helps with capturing long-range dependencies in the data by efficiently summariz-

ing local time intervals and thus reducing the number of timesteps in the LSTM.

We also compare the performance of the log signature and the discrete cosine

transformation (DCT), which was used in [78] for reduction of the temporal dimen-

sion. Both transformations can be computed as a pre-processing step. As can be

seen in Figure 3.7 in this case the log-signature leads to slightly longer training time

than DCT due to a larger spatial dimension, but achieves a considerably higher ac-

curacy. If the transformation is computed at training time, as is essential if it is not

used as the first layer of the model as in this work, we can see in Figure 3.7 that the

cost of DCT is comparable to the log-signature.

Figure 3.7: Comparison of training time and accuracy of standard LSTM and Logsig-
LSTM. With increasing length of the input sequence the training time of the
Logsig-LSTM model grows slower than that of the LSTM, without a drop in
accuracy. DCT achieves a lower accuracy at comparable training time.

3.4 Conclusion and future work
The Logsig-RNN model, inspired from the numerical approximation theory of

SDEs, provides an accurate, efficient and robust algorithm to learn any continu-

3.4. Conclusion and future work 83

ous functional on streamed data. Numerical results show that it improves the per-

formance of LSTM significantly on both synthetic data and empirical data. We

propose an efficient and compact end-to-end PT-Logsig-RNN network for SHAR

tasks, providing a consistent performance boost of the SOTA models by replacing

the RNN with the Logsig-RNN. As an enhancement of the RNN layer, the pro-

posed Logsig-RNN module can reduce the time dimension, handle irregular time

series and improve the robustness against missing data and varying frame rates. In

particular, EL-Logsig-RNN achieves SOTA accuracy on Chalearn2013 for gesture

recognition. For large-scale action data, the GCN-Logsig-RNN based models sig-

nificantly improve the performance of EL-Logsig-RNN. Our model shows better

robustness in handling varying frame rates. It merits further research to improve the

combination with GCN-based models to further improve the accuracy while main-

taining robustness. In situations where the input is time dependent, applying the

algorithm is straightforward where we need to take care of the spatial dimension by

applying embedding layers. When the input is time independent, such as in Graph

Neural Networks [79], by regarding the trajectory starting from a certain node in

the graph as a path, we can apply Log-Signature Layer on it as well. The difficulty

comes from how we define the path, where we need to incorporate domain knowl-

edge of the data such as molecule structures, human skeletons,etc., which we will

focus on in our future works.

Chapter 4

Logsig-RNN in generative tasks

4.1 Introduction
In this Chapter, we investigate the ability of the generalized Logsig-RNN

(Model 2.2) in the challenging data generation tasks. The main obstacles of

synthesizing time series data mainly accrue from the complex dynamics of se-

quential data. Generative adversarial networks (GANs) have recently been applied

in generating realistic-looking time series data, by simply deploying RNNs as the

generators [36, 37, 80, 81, 82]. For instance, in [36], Recurrent GAN (RGAN) and

Recurrent Conditional GAN (RCGAN), which adopt RNN in both generator and

discriminator, are proposed to produce realistic medical data to help resolve the

privacy concerns. However, classical RNNs are less adapted to generating irregular

sampled and high-frequency data as we discussed in Section 2.1. To overcome

these deficiencies, we propose to replace the commonly used RNNs by our gener-

alized Logsig-RNN in order to generate high-fidelity time series data. In contrast

to classical RNNs, the generalized Logsig-RNN, in its sequence-to-sequence for-

mulation, can generate time series of arbitrary length at uneven-spaced time steps.

As Remark 2.3 illustrates, the output data at each time step of our model does not

depend on the output at the previous time step, but depends on the output at the

time step of a much coarser time partition. The novel structure avoids the long

4.1. Introduction 85

temporal dependency issue of classical RNNs. Thus it can handle inputs of long

length and efficiently produce high-frequency data. Apart from RNNs, we use

Neural RDE (NRDE) [42] as another baseline method. NRDE is a model based

on the Neural CDE [8] framework. Motivated by the log-ODE method, NRDE is

developed to handle long length input. By applying the adjoint method, NRDE is

memory-efficient in generating high-frequency output, but it is less time-efficient

compared with the generalized Logsig-RNN model.

Besides innovating the generator based on the Logsig-RNN, we develop a

novel generative framework to enhance the ability of traditional GAN in capturing

the temporal dependence of the joint probability distributions of time series data.

TimeGAN [37] illustrates improvements by adding supervised loss to the optimiza-

tion of the generator and by minimising recovery loss in a embedding space of

the time series data. COT-GAN [82] proposes to replace standard Jensen–Shannon

(JS) divergence by Sinkkorn divergence to overcome the deficiencies of optimizing

traditional GAN. In fact, the min-max objective function of classical GANs make

them notoriously difficult to tune. [83] leverages the Wasserstein distance, propos-

ing an alternative, i.e. Wasserstein GAN (WGAN), to overcome issues such as the

locally saturated JS divergence which leads to 0 gradient for well-trained discrimi-

nator, and collapse mode of classical GAN. In this work, we contribute by changing

the min-max formulation of WGANs to a supervised learning problem. The pro-

posed method, called Sig-Wasserstein GAN (Sig-WGAN), leverages the represen-

tation ability of the expected signature features. It enables Sig-WGAN to efficiently

discriminate real and synthesised data, especially for high frequency and irregular

sampled time series.

This chapter is organised as follows. Section 4.2 explains the details of

WGAN, provides a mathematical definition of the Sig-Wasserstein GAN and states

the theoretical results. In Section 4.3, we train the generalized Logsig-RNN as the

4.2. Method 86

generator with both Sig-WGAN and WGAN on synthetic and empirical datasets.

The generalized Logsig-RNN demonstrates superior performance on the evaluation

metrics of correlations and marginal distributions, and is more rubust and efficient

than LSTM and NRDE. We also show our method outperforms existing methods in

the literature on the eICU dataset. The readers are referred to additional numerical

results such as on stock data in [20] for the superior performance of Sig-WGAN

over WGAN.

4.2 Method
We aim to illustrate the generative ability of the proposed generalized Logsig-RNN

model under both the Wasserstein and Sig-Wasserstein scenarios. In this section, we

first specify the path space used in our methods. Then we review the formulation of

WGAN. Finally, based on the Wasserstein distance, we develop the Sig-Wasserstein

distance and construct Sig-WGAN mathematically.

Let (Ω,F ,P) be a probability space, under which µ and ν are two distributions

induced by a X -valued stochastic process. P(Ω) denotes the set of distributions

supported on Ω. Given D independent trajectories ((x j
ti))

D
j=1 sampled from ν ∈

P(X) or given one long trajectory (x jt,(j+1)t)
D
j=0 of stationary data the aim of

generative modelling is to learn a model capable of producing high fidelity data

sampled from ν ∈ P(X), without explicitly modelling the target distribution.

Let Ω1
0(J,Rd) be the space of continuous time augmented paths, i.e.

Ω1
0(J,Rd) = {t → (t,xt) | xt ∈ C1

0(J,Rd)}. For the discrete time series (xti)
n
i=1 ∈

X ⊆Rd×n, we assume that (xti)
n
i=1 is distributed according to some unknown target

distribution ν ∈ P(X). Unlike the majority of the work in the literature, we don’t

assume that the data points are equidistant from each other. The time augmentation

for discrete time series is defined as a map φ : for all (xti)
n
i=1,

φ((xti)
n
i=1) = ((t1,xt1), . . . ,(tn,xtn)).

4.2. Method 87

Apart from the time augmentation, there are other feasible transformation methods

(listed in Appendix A) on the discrete time series as long as the transformation

secures the uniqueness of the signature.

Remark 4.1. Theorem 1.5 states that the signature determines a path uniquely up

to tree-like equivalence. With the time augmentation, the parametrization variance

of the signature is removed [24] and the signature of the path in Ω1
0(J,Rd) is com-

pletely unique.

4.2.1 Wasserstein generative adversarial network

We start with introducing the Wasserstein distance, which measures the cost of

transporting one probability distribution to another. The Wasserstein distance is a

distance function between two measures µ and ν on the metric space (Ω,d) defined

as follows:

Definition 4.1 (p-th Wasserstein distance). Let Pp(Ω) be the set of measures on Ω

with finite p-th moment, that is there exists x0 in Ω such that for any µ ∈ Pp(Ω),

∫
Ω

d(x,x0)
pdµ(x)< ∞.

The p-th Wasserstein distance between two probability measures µ,ν ∈ Pp(Ω) is

Wp(µ,ν) =

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

d(x,y)pdγ(µ,ν)

) 1
p

(4.1)

where Γ(µ,ν) is the set of all measures on Ω×Ω with marginals µ and ν on the

first and second factors respectively.

Intuitively, the joint distribution γ(µ,ν) describes how much ”mass” need to

be transported from x to y such that the distribution µ is transformed into ν .

In WGAN, the W1 distance is used, because it has so-called Kantorovich-

Rubinstein dual representation which provides a computationally efficient way of

4.2. Method 88

obtaining the W1 distance between two measures µ and ν , denoted by W1(µ,ν) as

follows:

W1(µ,ν) = sup
∥ f∥Lip≤1

EX∼µ [f (X)]−EX∼ν [f (X)], (4.2)

where the supremum is over all the 1-Lipschitz functions f : E → R with its Lips-

chitz norm smaller than 1.

In the context of generative modelling, let Z denote a latent space, and Z ∈Z

denote a variable with the known distribution µZ ∈P(Z). Let µ ∈P(X) denote

a target distribution of observed data. The aim of Wasserstein Generative Adver-

sarial Network (WGAN) is to train a model that induces a distribution ν , so that

W1(µ,ν) is small. Similar to classical GANs, the WGAN is composed of the gener-

ator G and the discriminator D. The generator Gθ : Z →X is a parameterized map

transporting the latent distribution µZ to the model distribution ν , i.e. the distribu-

tion induced by Gθ (Z), where θ ∈ Θg and Θg is the parameter set. To discriminate

between real and synthetic samples, one parameterises the test function f in the def-

inition of the W1 metric (Eqn. (4.2)) by a network fη with the parameter set η ∈ Θd .

Training the generator entails solving a min-max problem. Indeed, to find optimal

(θ ⋆,η⋆) one needs to solve

min
θ

max
∥ fη∥Lip≤1

E[fη(X)]−E[fη(Gθ (Z))].

In practice, the min-max problem is solved by iterating gradient descent-ascent al-

gorithms. Its convergence can be studied using tools from game theory [84, 85].

It is well known that first order methods to solve the min-max problem might not

converge in practice, even in the convex-concave case [86, 87, 88]. Consequently

the adversarial training is notoriously difficult to tune, [89, 84], and generalisation

error is very sensitive to the choice of discriminator and hype-parameters as was

4.2. Method 89

demonstrated in a large scale study [90].

4.2.2 Sig-Wasserstein generative adversarial network

To surmount the inefficiency of training a WGAN for time series generation, we

design a new metric, i.e. Signature Wasserstein-1 (Sig-W1) metric, based on the

desirable properties of signature features. The first is the characteristic property

of the expected signature [91]. The second is the universality of the signature to

approximate any continuous functions on the signature space. The former ensures

the law of the time series can be efficiently captured, and the latter helps to change

the optimization problem and derive the analytical formula for the solution.

4.2.2.1 Expected signature of a stochastic process

Let us consider a E-valued stochastic process X under the probability space. As-

sume that the signature of X is well defined almost surely, and S(X) has finite expec-

tation. We call E[S(X)] the expected signature of X . An immediate consequence of

Proposition 6.1 in [91] on the uniqueness of the expected signature is summarized

in the below theorem:

Theorem 4.1. Let X and Y be two Ω(J,E)-valued random variables. If E[S(X)] =

E[S(Y)] and E[S(X)] has infinite radius of convergence, then X = Y in the distribu-

tion sense.

Intuitively, under some regularity condition, the expected signatures serves

as the moment generating function, which can characterize the law induced by a

stochastic process. For example, the expected Stratonovich signature of Brownian

motion determines the law of the Brownian motion in [92].

4.2.2.2 Signature Wasserstein-1 (Sig-W1) metric

We propose a new Sig-W1 metric on the measures on the path space Ω1
0(J,Rd) by

combining the signature features and the W1 metric to achieve better computation

efficiency. Let µ and ν be two measures on the path space Ω1
0(J,Rd). When using

4.2. Method 90

W1 with discrete time series, one needs to fix the time dimension of the time series a

priori. The signature, as a universal and principled feature, encodes the temporal in-

formation regardless of the sampling frequency and variable length. It motivates us

to consider using the W1 metric on the signature space to define a distance between

the measure induced by two measures on the path space µ and ν , i.e.

W Sig
1 (µ,ν) = sup∥ f∥Lip≤1EX∼µ [f (S(X))]−EX∼ν [f (S(X))] (4.3)

While the use of signature features in W Sig
1 significantly reduces the dimension of

the time series, practical challenges of solving the min-max problem remain. By

working with the signature features, one can reduce the computation of the W Sig
1

distance over the class of Lipschitz functionals to the linear functionals on the sig-

nature space thanks to the universality property of the signature (Theorem 1.6). Let

K be a compact subset of Ω1
0(J,E) and µ a measure defined on K. For any X sam-

pled from µ , the expected signature of X under the measure µ is well defined and

determines the measure on K uniquely. By the definition of W1(µ,ν), there exists

a sequence of fn : K → R with bounded Lipschitz norm to attain the supremum

W1(µ,ν). By the universality of the signature, it implies that ∀ε > 0, for each fn,

there exists a linear functional Ln : T ((E))→ R to approximate fn uniformly, i.e.

|
∫

K
fn(x)µ(dx)− fn(x)ν(dx)−

(∫
K

Ln(S(x))µ(dx)−Ln(S(x))ν(dx))
)
| ≤ 2ε

This leads to the Signature Wasserstein-1 metric by restricting the admissible set of

f to be linear functionals L : T ((E))→ R as follows

Definition 4.2 (Sig-W1 metric). For two measures µ , ν with compact support K on

the signature space S (Ω1
0(J,Rd)), the Signature Wasserstein-1 metric between µ

4.2. Method 91

and ν is defined by

Sig-W1(µ,ν) := sup
L is linear, ∥L∥Lip ≤ 1

EX∼µ [L(S(X))]−EX∼ν [L(S(X))]. (4.4)

Hence, by using Sig-W1 we changed the nonlinear optimisation task to a linear

problem with constraints.

In practice, one needs to truncate the infinite dimensional signature to a finite

degree for numerical computation of W Sig
1 and Sig-W1(µ,ν). The factorial decay of

the signature enables us to approximate the signature in Eqn. (4.4) by its truncated

signature up to degree M for a sufficiently large M, which is given in the following

lemma:

Lemma 4.2. Let L : T ((E))→ R be a bounded linear functional, and K be a com-

pact set of the range of the signature of a path in V1(J,E). For any ε > 0, there

exists an integer M > 0,

sup
x∈K

|L(x)−L(ΠM(x))| ≤ ε. (4.5)

Proof. By the factorial decay of the signature (Lemma 1.7), for any x ∈ K, there

exists l ∈V1(J,E),

|x−ΠM(x)| ≤ ∑
m≥M

|πm(x)| ≤ ∑
m≥M

||l||m1−var

m!
≤

||l||M+1
1−var

(M+1)!
. (4.6)

As K is a compact set, therefore l̃ := supS(l)∈K ||l||1−var is bounded. It follows that

lim
M→∞

l̃M+1

(M+1)!
= 0,

which concludes the proof.

Therefore we propose the definition

4.2. Method 92

Definition 4.3 (Sig-W1 metric of degree M). The truncated Sig-W1(µ,ν) metric up

to a degree M is given as follows:

Sig-W(M)
1 (µ,ν) := sup

L is linear, ∥L∥Lip ≤ 1
L(EX∼µ [SM(X)]−EX∼ν [SM(X)]). (4.7)

To derive the analytical formula for the Sig-W1 metric, we need the following

lemma, which enables us to simplify the Lip-norm1 of linear functionals to the L2

norm.

Lemma 4.3. Let a ∈ T ((E)) be an element of the extended tensor algebra. For any

linear functional L ∈ T ((E))∗, we have

sup
||a||L2=1

|La|= ||L||L2 . (4.8)

Similarly, it holds that

sup
||L||L2≤1

|La|= ||a||L2. (4.9)

Proof. When L = 0, it is trivial as |La| = ||L||L2 = 0. When L ̸= 0, we use the

Lagrange multiplier to prove the lemma. To solve the optimization problem, the

Lagrange function is

L (a,λ) = |La|+λ (||a||L2 −1). (4.10)

We can write a = ∑I aIeI and L = ∑I lIe∗I , where (aI)I and (lI)I are real values,

(eI)I and (e∗I)I are the basis of T ((E)) and T ((E))∗ respectively. Then we solve the

1We let the metric d = ||x− y||L2 in the Lip-norm for any x,y ∈ T ((E)).

4.2. Method 93

following equations

∂L

∂aI
= sgn(aIlI)lI +2λaI = 0, (4.11)

∂L

∂λ
= ∑

I
a2

I = 1. (4.12)

The optimal solution is

a∗I =
sgn(lI)|lI|
(∑I l2

I)
1
2

(4.13)

λ
∗ =

(∑I l2
I)

1
2

2
. (4.14)

Thus, it leads to the optimal value

sup
||a||L2=1

|La|= |La∗|= |∑
I

lIa∗I |=
∑I |lI|2

(∑I l2
I)

1
2
= ||L||L2 . (4.15)

To prove the Equation (4.9), we only consider the case when a ̸= 0 as for a = 0 it

is trivial. Similarly, when ||L||L2 = 1, by the Lagrange multiplier, the optimal value

for lI is

l∗I =
sgn(aI)|aI|
(∑I a2

I)
1
2

(4.16)

such that sup||L||L2=1 |La|= ||a||L2 . By Hölder’s inequality,

sup
||L||L2≤1

|La| ≤ sup
||L||L2≤1

||L||L2 ||a||L2 ≤ ||a||L2, (4.17)

which implies that sup||L||≤L2=1 |La|= ||a||L2 .

By exploiting the linearity of the linear functional L, we can obtain the Lip

4.2. Method 94

norm is equal to L2 norm for L by Lemma 4.3 as follows

||L||Lip = sup
x ̸=y,x,y∈T ((E))

|Lx−Ly|
||x− y||L2

= sup
||a||L2=1

|La|= ||L||L2. (4.18)

Then we can achieve the following theorem for the analytical formula of the Sig-W1

metric.

Theorem 4.4. For two measures µ , ν with a compact support K on the signature

space S(Ω1
0(J,Rd)), the analytical formula of Sig-W1 metric between µ and ν is

given as follows

Sig-W1(µ,ν) = ||Eµ [S(X)]−Eν [S(X)]||L2. (4.19)

Moreover, Sig-W1 metric of degree M is given by

Sig-W(M)
1 (µ,ν) = ||Eµ [SM(X)]−Eν [SM(X)]||L2. (4.20)

Proof. Let a := Eµ [S(X)]−Eν [S(X)] and a = (aI)I . Then by Lemma 4.3 , one can

derive the analytic formula of Sig-W1 metric as follows:

Sig-W1(µ,ν) = sup
||L||Lip≤1

L(Eµ [S(X)]−Eν [S(X)]) = sup
||L||L2≤1

L(a) = ||a||L2

where L = ∑I lIe∗I .

With the optimal solution (4.19), we can efficiently compute the metric without

implementing the optimization procedure. In [93], if one chooses the truncated

signature up to degree M as the feature map, then the corresponding Maximum

Mean Discrepancy (Sig-MMD) is the square of Sig-W(M)(µ,ν).

The following toy example illustrates the relationship between the Sig-W1 dis-

tance and the W1 distance between two path distributions.

4.2. Method 95

0 5 10 15
0.6

0.8

1.0

1.2

1.4

1.6

1.8
1=0.02; 2=0.020

0 5 10 15

1=0.02; 2=0.045

0 5 10 15

1=0.02; 2=0.070

0 5 10 15

1=0.02; 2=0.095

0 5 10 15

1=0.02; 2=0.120

0.02 0.04 0.06 0.08 0.10 0.12
2

10 4

10 3

10 2

10 1

Distance between gbm processes with 1 = 0.02 fixed

w1-dist path space
w1-dist sig space
sigw1-dist

Figure 4.1: The top row displays blue and red samples from X, X̂ respectively for fixed θ1,
and different values of θ2

Example 4.1. Let X =(Xt)t∈[0,T], X̂ =(X̂t)t∈[0,T] be two 1-dimensional GBMs given

by,

dXt =θ1Xtdt +σXtdWt , X0 = 1;

dX̂t =θ2X̂tdt +σ X̂tdŴt , X̂0 = 1,

with the same volatility but with possibly different drifts θ1,θ2. Let µ,ν be the laws

of X , X̂ . We fix σ = 0.1,θ1 = 0.02, and for θ2 = 0.02+ j0.025, j = 0, . . . ,4. When

θ2 is increasing, the discrepancy between X and X̂ is increasing. We calculate three

distances, i.e. W1, W Sig
1 and Sig-W1 as shown in Figure 4.1 to quantify the distance

between X and X̂ for different θ2, which all increase when enlarging θ2 as expected.

Since Sig-W(M)
1 (µ,ν) admits an analytic solution, it is cheaper to calculate than

4.3. Numerical results 96

Figure 4.2: The generalized Logsig-RNN as generator in Sig-WGAN.

W1(µ,ν) and W Sig
1 (µ,ν), where one needs to parametrise f by a neural network

and optimise its weights. We observe in Figure 4.1 how these three values increase

with similar rate as θ2 increases.

4.2.3 Generator

In GAN variants, generators are fed with random noise. Suppose the target time

series is of length N and dimension e, i.e. in Re×N . Fix a probability space

(Ω,F ,P), under which W = (Wt)t∈[0,T] be a d-dimensional Brownian motion. Let

W = (Wt)t∈[0,T] denote the time-augmented Brownian motion, where Wt = (t,Wt)

for ease of the notation. For this chapter, we propose the generalized Logsig-RNN

(Figure 4.2) generator. Given two time partitions D = (uk)
n
k=0 ⊂ DY = (t j)

N
j=0 of

the interval J, we consider the generalized Logsig-RNN network H̄ := H̄D ,DY
M,Θ as

defined in Model 2.2 and use it as the generator mapping from a d-dimensional

Brownian motion W to a path in Re×N .

4.3 Numerical results
To validate the performance of the generalized Logsig-RNN trained with both Sig-

WGAN and WGAN, we consider three datasets: (1) synthetic data generated by

multi-dimensional Geometric Brownian motion (GBM); (2) synthetic data gener-

4.3. Numerical results 97

ated by the rough volatility model; (3) eICU data. The former two datasets are rep-

resentatives of commonly-used Markovian and non-Markovian model for an under-

lying price process. For each dataset, we benchmark the generalized Logsig-RNN

generators of continuous type against the LSTM and NRDE.

To assess the quality of the generated data, we give precise definitions of the

test metrics in the following. More specifically, we let (Xti)
N
i=0 and (X̂ti)

N
i=0 to be

RN×d-valued random variables of the real and generated paths respectively. Except

for the Sig-W1 metric, we consider three main criteria: (a) the marginal distribution

of time series; (b) the temporal dependence; (c) the usefulness [37] - generated data

should be as useful as the real data when used for the same predictive purposes (i.e.

train-on-synthetic, test-on-real (TSTR)).

• Marginal distribution metric. Following [94], at every time step i ∈

{1, . . . ,N}, for each feature dimension j ∈ {1, . . . ,d}, we compute two empir-

ical density functions based on the histograms of the real data and synthetic

data respectively denoted by d̂ f
i, j
r and d̂ f

i, j
G . We take the absolute difference

of those two epdfs as the metric on marginal distribution averaged over fea-

ture dimensions and time steps, i.e.,

1
Nd

N

∑
i=1

d

∑
j=1

|d̂ f
i, j
r − d̂ f

i, j
G |.

• Correlation metric. To quantify the fitting of the spatial and temporal depen-

dence, we consider how close the correlation of X (i)
t and X (j)

s for any feature

coordinate i and j, and any time s and t. The correlation metric of X and X̂ is

defined as

cor(X , X̂) =
N

∑
p,q=1

d

∑
i, j=1

∣∣∣ρ(X (i)
tp ,X (j)

tq)−ρ(X̂ (i)
tp , X̂ (j)

tq)
∣∣∣ ,

4.3. Numerical results 98

where ρ(X ,Y) denotes the correlation of two real-valued random variables X

and Y .

• TRTR/TSTR. We establish classification tasks for the dataset. We train a

random forest classifier on the generated data and then test the model on the

out-of-sample data. We compare the testing accuracy with that of the model

trained on the real data. This is used on the eICU data, for which we can form

classification problems.

Moreover, to examine the robustness of each method, we design three exper-

iments on the synthetic data: first, we vary the target length of output to test the

robustness in generating the long time series; by feeding the models with vari-

ous length of inputs, we investigate their ability in handling high-frequency time

series; lastly, we test the predictive performance of the generative models, which

are trained on the dataset of one time frequency and are tested on another time

frequency. The better fitting performance on the test time frequency shows the

robustness and generalization of the trained generative model against variation in

sampling time.

4.3.1 Multi-dimensional geometric Brownian motion (GBM)

As a motivating example, we consider a d-dimensional GBM X = (Xt)t∈[0,T] satis-

fying the following SDE:

dXt = µXtdt +σXtdW̃t , (4.21)

where Xt ∈ Rd , µ ∈ Rd , σ is a d × d diagonal matrix, W̃ is a d-dimensional cor-

related Brownian motions with correlation matrix (ρi j)i, j∈{1,··· ,d}. In this example,

we set µ i = 0.1, σ i,i = 0.2, ∀i ∈ {1, ...,d} and ρi j = 0.5, for i ̸= j. We use the

equally spaced time partition of the time interval [0,1] with step size ∆t = 10−3,

and simulate 4000 samples of the solution X to the SDE (4.21) using the analytic

4.3. Numerical results 99

formula:

X (i)
tn = X (i)

tn−1
exp[(µi −

1
2

σ
2
i,i)∆t +σ(W̃ i

tn −W̃ i
tn−1

)], (4.22)

where tn = n∆t and i ∈ {1, · · · ,d}.

For a fair comparison, we train the Wasserstein GAN and the Sig-WGAN for

2500 iterations of the generator. The Sig-WGAN provides an explicit form for

the Sig-W1 distance between two path distributions, which implies that the overall

number of gradient steps is 2500. However, training the Wasserstein GAN involves

training the generator and the discriminator; in our settings, for every gradient step

of the generator, we take three gradient steps on the discriminator, thus the overall

number of gradient steps is 10000.

Sensitivity analysis in terms of the length of real data. In Table 4.1, we compare

the performance of different generators under varying time steps of the real data. It

highlights that the performance of the LogsigRNN generator is much more robust

than the LSTM in terms of the high frequency sampling of the data in all evaluation

metrics. The LSTM works well when N is small (e.g. 10 or 20) with both WGAN

and Sig-WGAN. However, when increasing the number of time step N, it gets more

challenging for the LSTM to perform well in all the evaluation metrics, especially

for the correlation metric which describes the spatial-temporal dependency of the

time series. In contrast, combined with the Sig-WGAN, the Logsig-RNN generator

maintains in narrow range of [0.045,0.050] and [0.919,1.032] for the correlation

metric and marginal distribution for each N ∈ {10,20,50,100} respectively. For

N = 100, when using the SigWGAN, the test metrics of the LSTM generator is

about four times of that of the Logsig-generator. Compared with the NRDE, the

Logsig-RNN outcompetes it in most cases, especially for the correlation metric

when trained with Sig-WGAN. Regarding the training time, Logsig-RNN is consis-

tently faster than the NRDE, which reflects the fact that solving the ODE systems

4.3. Numerical results 100

for NRDE is time consuming. For a fixed generator, we observe the consistent per-

formance improvement of using Sig-W1 over the W1 metric as the discriminator.

W1 Sig-W1
N 10 20 50 100 10 20 50 100

SigW1 Metric (1e-1)
LSTM 0.140 0.125 0.677 0.651 0.096 0.064 0.020 0.196
LogsigRNN 0.264 0.128 0.153 0.160 0.047 0.040 0.042 0.037
NRDE 0.186 0.133 0.154 0.184 0.055 0.031 0.034 0.046

Correlation Metrics (1e-2)
LSTM 1.057 0.862 5.512 2.658 0.478 0.852 0.969 3.391
LogsigRNN 2.125 1.811 1.658 2.219 0.962 1.032 0.967 0.919
NRDE 2.265 1.749 1.832 2.470 1.148 1.896 1.314 1.454

Marginal Distribution Metric (1e-1)
LSTM 0.052 0.065 0.132 0.082 0.026 0.043 0.036 0.140
LogsigRNN 0.122 0.059 0.104 0.067 0.050 0.047 0.050 0.045
NRDE 0.106 0.072 0.117 0.074 0.089 0.074 0.048 0.041

Training time (seconds)
LSTM 104 194 561 1075 98 217 476 908
LogsigRNN 324 606 1379 2586 187 334 792 1451
NRDE 831 1109 2013 3369 357 484 942 1755

Table 4.1: Evaluation for 3-dimensional GBM with various numbers of timesteps N ∈
{10,20,50,100}.

Sensitivity analysis in terms of the length of inputs. In Table 4.2, we compare the

performance of different generators under varying length of inputs to investigate

their ability in dealing with high-frequency data. We generate outputs of 50 steps

with the length of inputs in {500,1000,2000,5000}. In contrast to the LSTM, the

generalized Logsig-RNN performs consistently better on the Sig-W1 and correla-

tion metrics when trained with WGAN, and they both achieve comparable results

in other cases. The training time of the Logsig-RNN increases much more mildly

than that of LSTM. Specifically, with the WGAN, the training time of the LSTM

increases by 363% from 500 to 5000 steps of inputs, while it increases by 188% for

the Logsig-RNN; with the Sig-WGAN, the training time of the LSTM increases by

223%, while it only increases by 73% for the Logsig-RNN. It validates the advan-

tage of the Logsig-RNN against classical RNNs in efficiently handling long length

4.3. Numerical results 101

input data. When compared with the NRDE, the Logsig-RNN works especially

better on the correlation metrics, which is consistent with results in Table 4.1; it

implies that the Logsig-RNN is more powerful than NRDE in capturing the spatial-

temporal dependency of the time series. Regarding the training efficiency, although

the NRDE increases mildly given longer inputs, the Logsig-RNN is always faster

in all cases.

W1 Sig-W1
Noise Length 500 1000 2000 5000 500 1000 2000 5000

SigW1 Metric (1e-1)
LSTM 0.629 0.434 0.548 0.570 0.037 0.041 0.045 0.107
LogsigRNN 0.194 0.153 0.129 0.161 0.034 0.042 0.057 0.055
NRDE 0.146 0.154 0.146 0.108 0.066 0.034 0.042 0.209

Correlation Metrics (1e-2)
LSTM 2.924 2.712 1.890 1.779 0.887 0.706 0.911 0.977
LogsigRNN 1.025 1.658 1.490 0.959 0.695 0.967 0.940 0.864
NRDE 1.490 1.832 1.436 1.662 1.255 1.314 0.982 3.732

Marginal Distribution Metric (1e-1)
LSTM 0.092 0.088 0.084 0.093 0.046 0.051 0.038 0.045
LogsigRNN 0.097 0.104 0.105 0.086 0.060 0.050 0.044 0.059
NRDE 0.126 0.117 0.073 0.075 0.053 0.048 0.048 0.734

Training time (seconds)
LSTM 618 930 1205 2861 645 806 1175 2084
LogsigRNN 1128 1379 1799 3253 764 792 913 1324
NRDE 1561 2013 2845 4660 826 942 1115 1675

Table 4.2: Evaluation for 3-dimensional GBM of 50 timesteps with various length of input
noise in {500,1000,2000,5000}.

4.3.2 Rough volatility model

We consider a rough stochastic volatility model for an asset price process St , which

satisfies the below SDE:

dSt =
√

vtStdZt

vt := ξ (t)exp
(

ηW H
t − 1

2
η

2t2H
) (4.23)

4.3. Numerical results 102

where ξ (t) denotes the forward variance and W H
t denotes the fBM given by

W H
t :=

∫ t

0
K(t − s)dWs, K(r) :=

√
2HrH−1/2

where Zt ,Wt are (possibly correlated) Brownian motions. In our experiments, the

synthetic dataset is sampled from (4.23) with t ∈ [0,1],H = 0.25,ξ (t) = 0.25,η =

0.5,ρ = 0 where ρdt = d⟨W,Z⟩t . Each sampled path is a stream of data of 20 points

sampled uniformly between [0,1].

For the training details, we train the generators to learn

• the log price distribution,

• the log price and the log volatility joint distributions

using WGAN and Sig-WGAN. In both learning algorithms we scale the log-price

paths by 2 and the log-volatiliy by 0.5 so that they have similar variance. In addition,

in the Sig-WGAN we augment the paths by adding time dimension and visibility

transformation before computing the expected signature up to degree 4. We train

the generators for 2500 steps on both Sig-WGAN and WGAN.

Table 4.3 shows the results of the evaluation metrics of the trained generators.

The generalized Logsig-RNN consistently beats the other two generators in all eval-

uation metrics when trained with Sig-WGAN. Although LSTM with WGAN gains

a small edge for generating (St ,vt), Logsig-RNN with WGAN outcompetes it by

53% and 51% on correlation and marginal distribution metric respectively. Com-

pared with the NRDE, the Logsig-RNN outperforms on almost all cases except

being slightly defeated on the marginal distribution metric for generating the 2-dim

time series with WGAN. It implies the Logsig-RNN can generate overall higher-

quality data than the benchmarks. Regarding the training time, the LSTM is the

fastest, which is because the input length (20) is much shorter than that of the other

4.3. Numerical results 103

W1 Sig-W1
Data (Xt)t (St) (St ,vt) (St) (St ,vt)

SigW1 Metric
LSTM 0.29 0.42 0.07 0.17
LogsigRNN 0.20 0.49 0.11 0.15
NRDE 0.24 0.58 0.19 0.46

Correlation Metric (1e-3)
LSTM 4.76 5.21 1.58 8.23
LogsigRNN 2.19 5.59 1.09 1.83
NRDE 3.25 7.44 1.96 5.05

Marginal Distribution Metric (1e-2)
LSTM 2.37 1.95 1.62 4.83
LogsigRNN 1.17 3.74 1.38 2.97
NRDE 3.76 3.15 2.33 5.42

Training time(seconds)
LSTM 158 205 164 256
LogsigRNN 814 845 352 452
NRDE 1520 1613 557 611

Table 4.3: The test metrics of the trained models on a one dimensional price data (St)t∈[0,T]
and two dimensional price and volatility data (St ,vt)t∈[0,T] respectively.

two (1000). The Logsig-RNN is more efficient than the NRDE in all cases, which

is consistent with those of other experiments.

Correlation metric comparison. The error plot of the covariance matrix

(
cov(X (i)

s ,X (j)
t)
)

i, j∈{1,2},s,t∈{1,··· ,N}

in Figure 4.3 clearly shows that the combination of the Logsig-RNN and SigW1

metric are able to learn the temporal and spatial dependency of the rough volatility

data best. When trained with WGAN, Logsig-RNN has similar performance as

LSTM and NRDE. It highlights that when combined with the efficient Sig-WGAN

framework, Logsig-RNN can generate data with realistic-looking spatial-temporal

coherence.

Robustness to the variable sampling frequency. We test the robustness of the

trained generator by generating data streams with a lower/higher frequency than

the one used for training and we test them on synthetic data generated from (4.23)

4.3. Numerical results 104

(a) LogsigRNN

(b) LSTM

(c) NRDE

Figure 4.3: The three figures are the covariance error plots of the Logsig-
RNN/LSTM/NRDE generators for each dimension (St ,vt) and each timestep.
From Left to Right, each heatmap displays the covariance error of the
Sig-WGAN and the WGAN respectively.

with the same new frequency. Namely, we generate data streams with length in

{5,10,30,40} on [0,1], whilst training was performed on data streams of 20 points

on [0,1]. Table 4.4 displays that the Logsig-RNN generator outperforms LSTM and

4.3. Numerical results 105

(a) Real paths of new frequency

(b) Logsig-RNN+Sig-WGAN (c) Logsig-RNN+WGAN

(d) LSTM+Sig-WGAN (e) LSTM+WGAN

(f) NRDE+Sig-WGAN (g) NRDE+WGAN

Figure 4.4: Comparison of the generated paths under new frequency (i.e. 30 time steps).
(a) The real paths with new frequency; (b-c) generated path by the generalized
Logsig-RNN; (d-e) generated path by the LSTM; (f-g) generated path by the
NRDE.

4.3. Numerical results 106

W1 Sig-W1
Test Length 5 10 30 40 5 10 30 40

SigW1 Metric
LSTM 0.793 0.808 0.438 0.418 0.389 0.379 0.421 0.472
LogsigRNN 0.656 0.614 0.420 0.417 0.310 0.340 0.155 0.414
NRDE 0.937 0.621 0.727 0.502 1.621 0.590 0.491 0.506

Correlation Metrics (1e-3)
LSTM 22.43 19.89 15.97 17.69 22.14 19.28 5.313 7.605
LogsigRNN 13.88 15.07 12.32 16.72 15.82 15.99 2.130 8.401
NRDE 40.70 12.25 13.92 20.08 118.8 18.02 3.756 11.35

Marginal Distribution Metric
LSTM 0.227 0.213 0.390 0.328 0.529 0.436 0.334 0.453
LogsigRNN 0.273 0.232 0.315 0.407 0.319 0.320 0.128 0.412
NRDE 0.296 0.245 0.326 0.498 0.317 0.293 0.187 0.452

Table 4.4: The test metrics of the trained models on two dimensional price and volatility
data (St ,vt)t∈[0,1]. Models are trained on data streams sampled every 1

20 units
of time, and evaluated on data streams sampled every 1

N units of time, where
N ∈ {5,10,30,40}.

NRDE on the Sig-W1 metric and correlation metric consistently and have compara-

ble results on the marginal distribution metric. It validates the trained Logsig-RNN

generator is more robust than LSTM and NRDE regarding producing data with

varying frequencies. It is also verified qualitatively and visually by comparing the

sample trajectories of the real paths (30 time steps) and the synthetic path gener-

ated by the different generators trained with Sig-WGAN and WGAN in Figure 4.4.

The paths generalized Logsig-RNN are visually closer to the real paths of new fre-

quency.

4.3.3 eICU data

The eICU2 data is a medical type data monitoring patients’ biomedical information

during their stay in ICU. This dataset was collected by the critical care telehealth

program provided by Philips, and it contains 200,000 patients from 208 care units

across the US. We conduct experiments on the four most frequently sampled vi-

tal signs by the bedside monitor: oxygen saturation measured by pulse oximeter

2https://eicu-crd.mit.edu/

4.3. Numerical results 107

(SaO2), heart rate (HR), respiratory rate (RR) and mean arterial pressure (MAP).

We implement the same data preprocessing as that in [36]. We consider the sample

frequency of every fifteen minutes and take the median value of each window. For

the temporal length of data, we focus on the first four hours of patients staying,

which leads to sequential data of 16 steps. To avoid the missing data issue, we drop

out the patients with missing values. After preprocessing the data this way, we end

up with a dataset of 17,693 patients.

The ICU data is visually complex and challenging for nonprofessionals to cap-

ture useful patterns from it. Thus, apart from the comparison of test metrics in

Table 4.5, we evaluate the model performance by TSTR method the same as [36].

To set up the supervised task for evaluating the TSTR method, [36] defines thresh-

olds for vital signs and generates binary labels of whether or not that sign would

exceed the threshold in the next hour of the patient’s stay. As we use the first four

hours as the observed data, the hour between four and five is where the excess of

thresholds is checked. The thresholds are shown in Table 4.6. We evaluate different

methods by training a random forest classifier3 on their generated data and com-

paring the values of the area under the ROC curve (AUROC) and area under the

precision-recall curve (AUPRC).

W1 Sig-W1
SigW1 Metric (1e-1)

LSTM 5.52 5.38
LogsigRNN 5.37 5.24

NRDE 5.45 5.41
Correlation Metric (1e-2)

LSTM 1.13 1.23
LogsigRNN 1.30 1.03

NRDE 1.19 1.73

W1 Sig-W1
Marginal Distribution Metric

LSTM 0.19 0.33
LogsigRNN 0.17 0.19

NRDE 0.16 0.22
Training Time (seconds)

LSTM 73 68
LogsigRNN 202 107

NRDE 292 138

Table 4.5: eICU data generation under W1 and SigW1 metrics.

In the implementations, for Sig-WGAN, we augment the paths by visibility
3The setting of the classifier follows [36], which is given in https://github.com/

ratschlab/RGAN/.

https://github.com/ratschlab/RGAN/
https://github.com/ratschlab/RGAN/

4.3. Numerical results 108

transformation when computing the expected signature up to level 4. For both

WGAN and Sig-WGAN, we train the generator for 2000 epochs. In Table 4.5, we

compare the performance of trained generators under evaluation metrics. Logsig-

RNN outperforms the other two on Sig-W1 metric. For the marginal distribution

metric, Logsig-RNN has comparable results with NRDE, and they both outperform

LSTM. They have similar results on correlation metric. Regarding the time effi-

ciency, the Logsig-RNN can be 31% faster than NRDE when with WGAN and 22%

faster when with Sig-WGAN. It is consistent with the previous results on synthetic

data and highlights that the Logsig-RNN is more efficient than the NRDE method.

SpO2 < 95 HR < 70 RR > 20

AUROC

real 0.95 0.99 0.96
RGAN 0.83 0.93 0.84

TimeGAN 0.80 0.94 0.79
Logsig-RNN+Sig-W1 0.82 0.95 0.82
LSTM-RNN+Sig-W1 0.85 0.95 0.81

NRDE+Sig-W1 0.84 0.91 0.81
Logsig-RNN+W1 0.80 0.92 0.75
LSTM-RNN+W1 0.79 0.94 0.66

NRDE+W1 0.77 0.95 0.72

AUPRC

real 0.90 0.98 0.89
RGAN 0.62 0.89 0.50

TimeGAN 0.63 0.90 0.61
Logsig-RNN+Sig-W1 0.63 0.91 0.72
LSTM-RNN+Sig-W1 0.66 0.88 0.65

NRDE+Sig-W1 0.55 0.87 0.70
Logsig-RNN+W1 0.56 0.86 0.61
LSTM-RNN+W1 0.49 0.91 0.41

NRDE+W1 0.41 0.90 0.61

Table 4.6: Performance of random forest classifier for eICU tasks when trained with real
data and when trained with synthetic data.

Table 4.6 illustrates the performance of different methods in the TSTR tasks.

The first rows of both AUROC and AUPRC shows the results of random forest clas-

sifier on the real data. It shows that the Logsig-RNN generator, when trained with

the Sig-WGAN, outperforms the RGAN [36] and TimeGAN [37] on most tasks

except for the AUROC of ’RR>20’ column. Although the RGAN outperforms the

4.4. Conclusions 109

Logsig-RNN by 2.5% for AUROC, the Logsig-RNN achieves 22% higher than the

RGAN for AUPRC. It implies that for the case of ’RR>20’ case, the Logsig-RNN

has comparable performance on generating imbalanced data and can generate more

realistic positive data given the same training data. For the comparison with the

LSTM and NRDE, the Logsig-RNN has overall better performance. In particular,

when trained with WGAN, the AUROC of Logsig-RNN is 14% higher than LSTM

for ’RR>20’, the AUPRC of Logsig-RNN is 20% higher than LSTM for ’RR>20’

and 15% higher than NRDE for ’SpO2<95’. We concludes that the Logsig-RNN

can generate higher-fidelity data than other generators, and when combined with

the Sig-WGAN, it can achieve better performance than other methods.

4.4 Conclusions
In this chapter, we evaluated the generative ability of the generalized Logsig-RNN

(Model 2.2) for time series data. Leveraging the characteristic property of the ex-

pected signature, we established Sig-WGAN to improve the optimization efficiency

of the classical WGAN. With both Sig-WGAN and WGAN, we compared our ap-

proach with baseline methods, i.e. the LSTM and NRDE. On synthetic datasets,

the generalized Logsig-RNN demonstrates higher robustness than the other two on

the tasks of generating long outputs and generating data with different length from

the training data. Our method is more time efficient than LSTM when dealing with

high-frequency data, and is consistently faster than NRDE on all tasks. The gen-

eralized Logsig-RNN demonstrates better performance than the LSTM and NRDE

on the evaluation metrics, especially in capturing the spatial-temporal dependency

of the time series data. On the eICU dataset, we build up classification problems

and evaluated different methods using TSTR technique. The generalized Logsig-

RNN with Sig-WGAN outcompetes the state-of-the-art benchmarks in generating

realistic-looking time series data.

Chapter 5

Discussion

This thesis proposes a novel and generic module, i.e. the Logsig-RNN, for time se-

ries data in the machine learning context. Enlightened by the non-parametric mod-

elling of SDEs and the time series learning ability of classical RNNs, we developed

a data-driven model that is capable of managing high-frequency, irregular sampled

or re-sampled data. As an enhancement to classical RNNs, the Logsig-RNN ex-

ploits the mathematically principle representations of the log-signature to extract

features efficiently from high-frequency data, and hence reduce the dimension of

RNNs to improve model performance such as accuracy and robustness.

We highlight the advantages of our approach in two major machine learn-

ing tasks, i.e. the supervised learning and the time series generation. Our results

achieves higher accuracy and robustness against the LSTM in SHAR tasks. Com-

bined with path transformation layers, the PT-Logsig-RNN achieves second to the

best result in Chalearn 2013 dataset, while the SOTA results is achieved two years

after our publication. On the generation side, our results show that the Logsig-

RNN generator can produce more realistic-looking data in a efficient and robust

way compared with the LSTM and NRDE benchmarks. For the empirical eICU

data, the Logsig-RNN trained with the Sig-WGAN discriminator outcompetes the

methods in the literature.

5.1. Limitations and future work 111

5.1 Limitations and future work
The major drawback of our approach is from the dimensionality of the algebraic

space of the signature/log-signature features, which maps the time series to tensor

space/free Lie algebra. While the Logsig-RNN reduces the time dimension of high-

frequency data, it increases the spatial dimension. For example, in the SHAR cases,

given a dataset with 25 joints with 6 channels in each joint, i.e. 150-dim spatially,

the degree 4 log-signature would project it to space of 120 million dimensions,

which leaves the dimensionality issue unsolved. As illustrated in Chapter 3, we

proposed Path Transformation layers to handle it. However, this would depend on

the performance of the chosen layers. In the NTU RGB+D 120 dataset, we used

idea from GCN-based SOTA models [70, 77] such that the GCN-Logsig-LSTM has

8% improvement from the EL-Logsig-LSTM, which used plain CNN layers. In the

future work, it merits further research to improve the combination with GCN-based

models to enhance the accuracy while maintaining robustness. Apart from this,

it worths investigation of the application of the log-signature in the Graph Neural

Network [79] field, where the signature/log-signature serves as a natural features

extractor by regarding the trajectory starting from a certain node in the graph as a

path. However, it might not be straightforward to define the path, where we need to

incorporate domain knowledge of the data such as molecular, traffic map, etc..

On the generative tasks, current work emphasises the combination of the log-

signature method with the GAN framework. Recently, the diffusion-based genera-

tive models [95, 96] gain popularity in this area given its success such as in image,

audio synthesis. By slowly adding noise at each diffusion step of a Markov chain

to the data, the model learns the reverse diffusion process to establish the data from

the noise. Authors of [97] extend the idea to continuous time modelling, where one

can apply the rough path theory in the future work to enhance the performance of

the score-based diffusion models.

Appendix A

Auxiliary Properties of Rough Path

Theory

Computations of signature and log-signature. To use signature methods in real

application, we need to compute it numerically. We explain how to compute the

truncated signature of a piecewise linear path. Let us start with a d-dimensional

linear path.

Lemma A.1. Let X : [S,T]→ E be a linear path. Then

Sn(X) =
(XT −XS)

⊗n

n!
. (A.1)

Equivalently speaking, for any multi-index I = (i1, · · · , in),

SI =
∏

n
j=1(X

(i j)
T −X (i j)

S)

n!
(A.2)

Chen’s identity is a useful tool to enable compute the signature of the piecewise

linear path numerically.

Lemma A.2. Let X be a E-valued piecewise linear path, i.e.X is the concatenation

of a finite number of linear paths, and in other words there exists a positive integer

113

L and linear paths X1,X2, ...,XL such that X = X1 ∗X2 ∗ · · · ∗XL. Then

S(X) =⊗L
i=1 exp(Xi). (A.3)

Lemma A.2 implies that we may compute several exponentials and ⊗ to de-

rive the signature of a path. According to [46], the computational complexity can

be optimised by the fused multiply-exponentiate for computing the multiplication

between B ∈ T (M)(E) and exp(x) with x := (x1, . . . ,xd) ∈ Rd , i.e.

B⊗ exp(x) =

(
k

∑
i=0

Bi ⊗
x⊗(k−i)

(k− i)!

)M

k=1

.

The fusing is to expand the level k-th term as follows

k

∑
i=0

Bi ⊗
x⊗(k−i)

(k− i)!
=

(
· · ·
((x

k
+B1

)
⊗ x

k−1
+B2

)
⊗ x

k−2
+ · · ·

)
⊗ x+Bk. (A.4)

Lemma A.3 ([46]). Let X be a Rd-valued piecewise linear path that can be written

as a concatenation of L linear paths X1,X2, ...,XL. Then the complexity of computing

the truncated signature of X of degree M is

M

∑
k=2

(
d +

(
d + k−1

k

))
+(L−1)

(
d(M−1)+

M

∑
k=1

k

∑
i=2

di

)
. (A.5)

Next, we state the complexity of the backpropagation of the signature of a path

by the following lemma.

Lemma A.4. Let X be a Rd-valued piecewise linear path that can be written as a

concatenation of L linear paths X1,X2, ...,XL. The complexity of the backpropaga-

114

tion of the truncated signature of X of degree M is

(L−1)d

(
d(M−1)+4

M

∑
k=1

k

∑
i=2

di

)
. (A.6)

Proof. For simplicity, we denote

Si :=
(((x

k
+B1

)
⊗ x

k−1
+B2

)
⊗ x

k−2
+ · · ·

)
⊗ x

k− i+1
+Bi,

for i ∈ {1, . . . ,k}. Denote 1
k j = (0, . . . , 1

k , . . . ,0) for 1 has index j ∈ {1, . . . ,d}. We

can derive the derivative of Sk w.r.t xi in the style of (A.4) as follows

∂Sk

∂xi = Sk−1 ⊗1i +

(
Sk−2 ⊗

1
2 i
+

(
· · ·
(

S1 ⊗
1

k−1 i
+(

1
k i
)⊗ x

k−1

)
· · ·
)
⊗ x

2

)
⊗ x

It leads to the complexity of the backpropagation of the signature

(L−1)d

(
d(M−1)+4

M

∑
k=1

k

∑
i=2

di

)
.

Different from the computation of signature in the Lie group, the log signature

lives in the Lie algebra. Let’s start with a linear path. The log signature of a linear

path XJ is nothing else, but the increment of the path XT −XS.

There are two ways of computing the log-signature of a path [98]. The first is

to use the Baker-Cambpell-Hausdorff (BCH) formula directly. BCH formula gives

a general method to compute the log-signature of the concatenation of two paths,

which uses the multiplicativity of the signature and the free Lie algebra. It provides

a way to compute the log-signature of the piecewise linear path by induction.

Theorem A.5. [99] Let A be the set of alphabet, A∗ be the set of words. For any

115

S1,S2 ∈ L ((E))

Z = log(eS1eS2) = ∑
n≥1

p1,...,pn≥0
q1,....qn≥0

pi+qi>0

(−1)n+1

n
1

p1!q1!...pn!qn!
r(Sp1

1 Sq1
2 ...Spn

1 Sqn
2) (A.7)

where r : A∗ → A∗ is the right-Lie-bracketing operator, such that for any word w =

a1...an

r(w) = [a1, ..., [an−1,an]...].

This version of BCH is sometimes called the Dynkin’s formula.

The second way is to compute the log-signature from the signature, which is

simpler and is the choice of the signatory package [46] that we use for our experi-

ments. The first step is to apply the logarithm map (1.7) to the signature and obtain

the log-signature in tensor space. The next step is to project it into a basis of the free

Lie algebra. A typical choice is the Lyndon basis [98]. The author of [46] found

a more computational efficient basis such that the projection to one basis element

only requires extracting the coefficient of that Lyndon word from the log-signature

in tensor space. We can derive the computational complexity of log-signature as

follows

Lemma A.6. Let X be a Rd-valued piecewise linear path that can be written as a

concatenation of L linear paths X1,X2, ...,XL. Then the complexity of computing the

truncated log-signature of X of degree M is

M

∑
k=2

(
d +

(
d + k−1

k

))
+(L−1)

(
d(M−1)+

M

∑
k=1

k

∑
i=2

di

)
+M

M

∑
k=1

kdk. (A.8)

Proof. The computational complexity of the log-signature of a path only needs to

116

include additional multiplications of the logarithm map, i.e. for B ∈ T (M)(E),

log(B) =
M

∑
k=1

−1
k
(1−B)⊗k. (A.9)

Thus, we need to count the multiplications of computing a single ⊗ and according

to [46], it requires complexity of

M

∑
k=1

(k−1)dk.

Finally, the multiplications with −1
k count

M

∑
k=1

dk.

After summing up with the complexity of signature, we achieve the results in (A.8).

Path augmentations. In order to derive different information in the signature fea-

tures of time series data, we introduce classical transformation methods that return

us new series. Let x := (xti)
n
i=1 ∈ Rd×n be the discrete time series

• Cumulative sum: The cumulative sum is a map φ : Rd×n →Rd×n defined by

φ(x) = (xt1, . . . ,
j

∑
i=1

xti, . . . ,
n

∑
i=1

xti).

The advantage of cumulative sum with signature is to extract the quadratic

variation and other higher order statistics of the input path x effectively [100].

• Lead-lag transformation: We define the lead-lag transformation by the

117

function φ : Rd×n → R2d×2n−1 as follows

φ(x) = ((xt1,xt1),(xt2,xt1),(xt2,xt2),(xt3,xt2) . . . ,(xtn,xtn))

This transformation help capture the quadratic variation of the time se-

ries [101].

• Visibility transformation: The initial-position-incorporated visibility trans-

formation (I-visibility transformation) [102] is defined as a map φ : Rd×n →

Rd+1×n+2. Let x̄ = φ(x), then we have

x̄t1 = 0, x̄t2 = (x1
t1, . . . ,x

d
t1,0)

T

and

x̄ti+2 = (x1
ti, . . . ,x

d
ti ,1)

T , ∀i ∈ {0, . . . ,n}.

The transformation adds time translation sensitivity and encodes the effect of

absolute position to the signature features.

Along with the time augmentation, all these transformations can be combined to-

gether when dealing with time series data to extract more informative features. For

example, with the cumulative sum and lead-lag embedding together, the signature

features provide information of moments of the data.

Appendix B

Proof of Chapter 2

In this section, we prove some necessary lemmas for the universality theorems. The

first lemma states the error between the numerical approximated solution Ŷ and the

solution to SDE Y at discrete time steps t j ∈ DY can be uniformly bounded.

Lemma 2.6. Under Assumption 1, let (Ŷ DY ,M
t j)N2

j=0 be defined in (2.2). For any ε > 0,

there exists δ1 > 0 such that when ∆D ≤ δ1 and M ≥ ⌊γ⌋, then Ŷt j satisfies that

sup
t j∈DY

||Yt j − Ŷt j || ≤ ε, (B.1)

More specifically, there exists C̄ defined in (2.14) such that

sup
t j∈DY

||Yt j − Ŷt j || ≤ C̄
[

max
ui∈DY

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

. (B.2)

Proof. According to Theorem 2.3, for t j ∈ (uk−1,uk], there exists C :=C(p,γ) such

119

that

||Yt j − Ŷt j || ≤ C
k−1

∑
i=1

| f |⌊γ⌋+1
◦γ;J ||X||⌊γ⌋+1

p−var;[ui−1,ui]

+ C| f |⌊γ⌋+1
◦γ;J ||X||⌊γ⌋+1

p−var;[uk−1,t j]

≤ C
k

∑
i=1

| f |⌊γ⌋+1
◦γ;J ||X||⌊γ⌋+1

p−var;[ui−1,ui]
. (B.3)

And there exist constants β1,C2 > 0 such that for any (s, t) ∈ ∆T ,

||X||p−var;(s,t) ≤ β1ω(s, t)
1
p ≤C2. (B.4)

Then Equation (B.3) and the super-additivity of the control ω implies that for any

j ∈ {0, . . . ,N2} and t j ∈ (uk−1,uk],

||Yt j − Ŷt j || ≤ Cβ
⌊γ⌋+1
1 || f |||γ|+1

◦γ;J

k

∑
i=1

ω(ui−1,ui)
⌊γ⌋+1

p (B.5)

≤ Cβ
⌊γ⌋+1
1 || f |||γ|+1

◦γ;J ω(0,uk)

[
max

i
ω(ui−1,ui)

] ⌊γ⌋+1
p −1

(B.6)

≤ Cβ
⌊γ⌋+1
1 || f |||γ|+1

◦γ;J ω(J)
[

max
i

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

(B.7)

≤ C̄
[

max
i

ω(ui−1,ui)

] ⌊γ⌋+1
p −1

(B.8)

where

C̄ =Cβ
⌊γ⌋+1−p
1 || f |||γ|+1

◦γ;J Cp
2 . (B.9)

Thus by the uniform continuity of ω , for any ε > 0, there exists δ2 > 0, such that

the right hand side of (B.8) can be smaller than ε uniformly over all the partitions

with mesh size smaller than δ2.

120

For the global approximation theorem 2.5, we need the following lemma. Ac-

cording to the existence theorem of solutions to (2.1) in [47], we have

Lemma B.1. [47] Under the Assumption 1, there exists constant C :=C(p,γ) such

that for any s < t in [0,T], the following holds

||Yt −Ys|| ≤Cφp
(
| f |◦γ−1||X||p−var;[s,t]

)
, (B.10)

where the function φp(x) = (x∨ xp).

Next, we introduce the auxiliary lemmas that are necessary for the control

of the error between the numerical approximated solutions and the output of the

(generalized) Logsig-RNN. The following lemma on the universality of shallow

neural network was proved by Funahshi [103].

Lemma B.2. Let σ(x) be a non-constant, increasing, and bounded continuous func-

tion on R. Let K be any compact subset of Rd , and f : K → Re be a continuous

function mapping. Then for an arbitrary ε > 0, there exists an integer m > 0, an

e×m real matrix A, an m× d real matrix B and an m dimensional vector θ such

that

max
x∈K

| f (x)−Aσ(Bx+θ)|< ε,

holds where σ : Rm 7→ Rm is a continuous mapping defined by

σ((u1, · · · ,um)) = (σ(u1), · · · ,σ(um)).

Lemma B.3. Let K be any compact subset of Rd . Let f and f̃ be two continuously

differentiable functions on Rd+e. The function G f ,k is defined in (2.19). Then it

121

follows that

||G f ,k −G f̃ ,k||∞,K < C̄k|| f − f̃ ||∞,K,

where C̄k is a constant depending on the D f and k, i.e.

C̄k =

Ck

1,k−1
C1,k−1 , if C1,k ̸= 1;

k, if C1,k = 1.
(B.11)

C1,k := sup
(x1,··· ,xk)∈K

k
max
i=1

||Dr f (xi,ri)||.

Proof. As f and f̃ are continuous functions and K is compact, then the image of

G f ,k and G f̃ ,k for any (x1, · · · ,xk) ∈ K are compact. Let (hi)
k
i=1 and (h̃i)

k
i=1 denote

G f ,k and G f̃ ,k evaluated at (x1,x2, · · · ,xk) respectively. Then we have

hi+1 = f (xi+1,hi) and h̃i+1 = f̃ (xi+1, h̃i).

Then it follows that

||hi+1 − h̃i+1||= || f (xi+1,hi)− f̃ (xi+1, h̃i)||

≤ || f (xi+1,hi)− f (xi+1, h̃i)||+

|| f (xi+1, h̃i)− f̃ (xi+1, h̃i)||

≤ || f (xi+1, h̃i)− f̃ (xi+1, h̃i)||+

sup
x∈K

||Dh f (x,h)||||hi − h̃i||,

where the supremum of supx∈K ||Dh f (x,h)|| is taken over x only, which shows the

recursive relation of ||hi − h̃i||.

122

It is easy to check that if ai+1 ≤C0 +C1,kai with a0 = 0, it implies that

ai ≤

Ci

1,k−1
C1,k−1C0, if C1,k ̸= 1

iC0, if C1,k = 1.

Therefore using the above inequality when ai = ||hi− h̃i||, C0 = maxx∈K || f − f̃ ||, it

follows that

||hi − h̃i|| ≤ C̄k|| f − f̃ ||∞,K,

and so does

||G f ,k −G f̃ ,k||∞,K ≤ C̄k|| f − f̃ ||∞,K,

where C̄k is defined by Equation (B.11).

Appendix C

Implementation Details of

PT-Logsig-RNN

In this section, we provide the implementation details of the PT-Logsig-RNN ap-

proach on the SHAR datasets.

Gesture Recognition The skeletons are pre-processed by first subtracting the

joint center, which is the average position of all joints for each sample. Then for

each sample we normalize the sequence of joint positions within [−1,1] . For the

EL-Logsig-LSTM, the path transform layers are composed of two Conv2D lay-

ers followed by a Conv1D layer [57] with kernel size (1,32), (3,16) and 30 re-

spectively, a Time-incorporated layer and an Accumulative Layer followed by the

Log-Signature Layer with 4 segments and degree 2 log-signatures. For the GCN-

Logsig-LSTM, we apply it twice where each block has one GCN layer and one

Logsig-RNN layer. The two GCN layers have 192 and 384 features respectively,

and the two Log-Signature Layers have segments equal to 16 and 4 respectively

and both use degree 2 log-signatures. Three methods of data augmentation are used

in the experiments. The first one is to rotate the coordinates along x,y,z axis by the

angles in range of [−π/36,π/36], [−π/18,π/18] and [−π/36,π/36] respectively.

The second one is randomly shifting the frame temporally in range of [−5,5]. The

124

last one is to add a Gaussian noise with standard deviation 0.001 to joints coordi-

nates at each frame.

Action Recognition For both the EL-Logsig-LSTM and the GCN-Logsig-

LSTM, we consider variable length input, for which we pad each sequence to the

maximum length of the batch. For the EL-Logsig-LSTM, the path transform layers

are mainly composed with two Conv2D layers followed by one Conv1D layer with

kernel size equal to (1,32), (5,16) and 40 respectively. The input of the LSTM

layer is the concatenation of the starting frame of each segment of Conv1D output

and the output of Log-Signature Layer with 64 segments and degree 2 log-signature.

For the GCN-Logsig-LSTM, we also apply it twice where each block has one GCN

layer and one Logsig-RNN layer. The two GCN layers have 96 and 480 features

respectively, and the two Log-Signature Layers have segments equal to 80 and 40

respectively and both use degree 2 log-signatures.

Bibliography

[1] Crispin W Gardiner et al. Handbook of stochastic methods, volume 3.

Springer Berlin, 1985.

[2] Fischer Black and Myron Scholes. The pricing of options and corporate

liabilities. Journal of political economy,, 81(3):637–654, 1973.

[3] Robert C Merton et al. Theory of rational option pricing. Theory of Valua-

tion,, pages 229–288, 1973.

[4] John C Cox and Stephen A Ross. The valuation of options for alternative

stochastic processes. Journal of financial economics,, 3(1-2):145–166, 1976.

[5] Weinan E. A proposal on machine learning via dynamical systems. Comm.

in Math. and Stat.,, 5(1):1–11, 2017.

[6] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite

layer neural networks: Bridging deep architectures and numerical differential

equations. arXiv preprint arXiv:1710.10121, 2017.

[7] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duve-

naud. Neural ordinary differential equations. In Advances in Neural Infor-

mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

[8] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural con-

trolled differential equations for irregular time series. In Advances in Neural

Bibliography 126

Information Processing Systems, volume 33, pages 6696–6707. Curran As-

sociates, Inc., 2020.

[9] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical

systems by continuous time recurrent neural networks. Neural networks,,

6(6):801–806, 1993.

[10] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations

driven by rough paths. Springer, 2007.

[11] James Foster, Terry Lyons, and Harald Oberhauser. An optimal polynomial

approximation of brownian motion. arXiv preprint arXiv:1904.06998, 2019.

[12] Benjamin Graham. Sparse arrays of signatures for online character recogni-

tion. arXiv preprint arXiv:1308.0371, 2013.

[13] Zecheng Xie, Zenghui Sun, Lianwen Jin, Hao Ni, and Terry Lyons. Learn-

ing spatial-semantic context with fully convolutional recurrent network for

online handwritten chinese text recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(8):1903–1917, 2018.

[14] Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, and Lianwen Jin. De-

veloping the path signature methodology and its application to landmark-

based human action recognition. In Stochastic Analysis, Filtering, and

Stochastic Optimization: A Commemorative Volume to Honor Mark H. A.

Davis’s Contributions, pages 431–464, Cham, 2022. Springer International

Publishing.

[15] Lajos Gergely Gyurkó, Terry Lyons, Mark Kontkowski, and Jonathan Field.

Extracting information from the signature of a financial data stream. arXiv

preprint arXiv:1307.7244, 2013.

Bibliography 127

[16] Terry Lyons, Hao Ni, and Harald Oberhauser. A feature set for streams and

an application to high-frequency financial tick data. In ACM International

Conference on Big Data Science and Computing, page 5, 2014.

[17] Chenyang Li, Xin Zhang, and Lianwen Jin. Lpsnet: A novel log path sig-

nature feature based hand gesture recognition framework. In 2017 IEEE

International Conference on Computer Vision Workshops, pages 631–639,

2017.

[18] Jeremy Reizenstein and Benjamin Graham. The iisignature library: efficient

calculation of iterated-integral signatures and log signatures. arXiv preprint

arXiv:1802.08252, 2018.

[19] Shujian Liao, Terry Lyons, Weixin Yang, and Hao Ni. Learning stochastic

differential equations using rnn with log signature features. arXiv preprint

arXiv:1908.08286, 2019.

[20] Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese,

and Shujian Liao. Sig-wasserstein gans for time series generation. In 2nd

ACM International Conference on AI in Finance, 2021.

[21] Shujian Liao, Terry Lyons, Weixin Yang, Kevin Schlegel, and Hao Ni.

Logsig-rnn: a novel network for robust and efficient skeleton-based action

recognition. In British Machine Vision Conference, 2021.

[22] Sergio Escalera, Jordi Gonzàlez, Xavier Baró, Miguel Reyes, Oscar Lopes,

Isabelle Guyon, Vassilis Athitsos, and Hugo Jair Escalante. Multi-modal

gesture recognition challenge 2013: dataset and results. In Proceedings of

the 15th ACM on International Conference on Multimodal Interaction, 2013.

[23] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and

Alex C. Kot. Ntu rgb+d 120: A large-scale benchmark for 3d human ac-

Bibliography 128

tivity understanding. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2019.

[24] Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past, predict-

ing the statistics for the future, learning an evolving system. arXiv preprint

arXiv:1309.0260, 2013.

[25] Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and

Terry Lyons. Deep signature transforms. In Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc., 2019.

[26] Ton Dieker. Simulation of fractional brownian motion. Masters Thesis, De-

partment of Mathematical Sciences, University of Twente, 2004.

[27] B.M. Hambly and Terry Lyons. Uniqueness for the signature of a path of

bounded variation and the reduced path group. Annals of Mathematics,,

171(1):109–167, 2010.

[28] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85 – 117, 2015.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in Neural Information Processing Systems, vol-

ume 27. Curran Associates, Inc., 2014.

[30] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein genera-

tive adversarial networks. In International conference on machine learning,

pages 214–223. PMLR, 2017.

Bibliography 129

[31] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recur-

rent neural networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 6645–6649, 2013.

[32] Chang Sim Vui, Gan Kim Soon, Chin Kim On, Rayner Alfred, and Patricia

Anthony. A review of stock market prediction with artificial neural network

(ann). In 2013 IEEE International Conference on Control System, Computing

and Engineering, pages 477–482, 2013.

[33] Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf. Rnn fisher vectors

for action recognition and image annotation. In European Conference on

Computer Vision, pages 833–850, 2016.

[34] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-temporal lstm

with trust gates for 3d human action recognition. In European Conference

on Computer Vision, pages 816–833, 2016.

[35] Jun Liu, Guanghui Wang, Ling yu Duan, Kamila Abdiyeva, and

Alex ChiChung Kot. Skeleton-based human action recognition with global

context-aware attention lstm networks. IEEE Transactions on Image Pro-

cessing, 27:1586–1599, 2018.

[36] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued

(medical) time series generation with recurrent conditional gans. arXiv

preprint arXiv:1706.02633, 2017.

[37] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series gen-

erative adversarial networks. In Advances in Neural Information Processing

Systems, pages 5509–5519, 2019.

Bibliography 130

[38] Coryn Bailer-jones, David Mackay, and Philip Withers. A recurrent neural

network for modelling dynamical systems. Network: Computation in Neural

Systems, 9, 08 2002.

[39] Jaya PN Bishwal. Parameter estimation in stochastic differential equations.

Springer, 2007.

[40] Tom Ryder, Andrew Golightly, A. Stephen McGough, and Dennis Prangle.

Black-box variational inference for stochastic differential equations. In Pro-

ceedings of the 35th International Conference on Machine Learning, vol-

ume 80, pages 4423–4432. PMLR, 2018.

[41] Anastasia Papavasiliou, Christophe Ladroue, et al. Parameter estimation for

rough differential equations. The Annals of Statistics,, 39(4):2047–2073,

2011.

[42] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural

rough differential equations for long time series. In Proceedings of the 38th

International Conference on Machine Learning, volume 139, pages 7829–

7838. PMLR, 2021.

[43] Hans-Georg Müller, Rituparna Sen, and Ulrich Stadtmüller. Functional data

analysis for volatility. Journal of Econometrics,, 165(2):233–245, 2011.

[44] Bernard W Silverman et al. Smoothed functional principal components anal-

ysis by choice of norm. The Annals of Statistics,, 24(1):1–24, 1996.

[45] Reizenstein Jeremy. Iterated-Integral Signatures in Machine Learning. PhD

thesis, 2019.

[46] Patrick Kidger and Terry Lyons. Signatory: differentiable computations

of the signature and logsignature transforms, on both CPU and GPU. In

Bibliography 131

International Conference on Learning Representations, 2021. https:

//github.com/patrick-kidger/signatory.

[47] P.K. Friz and N.B. Victoir. Multidimensional Stochastic Processes as Rough

Paths: Theory and Applications. Cambridge Studies in Advanced Mathe-

matics. 2010.

[48] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of

supervised learning algorithms. In Proceedings of the 23rd International

Conference on Machine Learning, page 161–168, 2006.

[49] Liliana Lo Presti and Marco La Cascia. 3d skeleton-based human action

classification. Pattern Recognition, 53(C):130–147, 2016.

[50] Lei Wang, Du Q Huynh, and Piotr Koniusz. A comparative review of recent

kinect-based action recognition algorithms. IEEE Transactions on Image

Processing, 29:15–28, 2019.

[51] Bin Ren, Mengyuan Liu, Runwei Ding, and Hong Liu. A survey on 3d

skeleton-based action recognition using learning method. arXiv preprint

arXiv:2002.05907, 2020.

[52] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+d: A

large scale dataset for 3d human activity analysis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, June 2016.

[53] Hongsong Wang and Liang Wang. Modeling temporal dynamics and spa-

tial configurations of actions using two-stream recurrent neural networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3633–3642, 2017.

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Bibliography 132

[54] Carlos Caetano, Jessica Sena, François Brémond, Jefersson A Dos Santos,

and William Robson Schwartz. Skelemotion: A new representation of skele-

ton joint sequences based on motion information for 3d action recognition.

In 2019 16th IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS), pages 1–8. IEEE, 2019.

[55] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-cnn: Pose-based cnn

features for action recognition. In Proceedings of the IEEE international

conference on computer vision, pages 3218–3226, 2015.

[56] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Sohel, and Farid

Boussaid. Learning clip representations for skeleton-based 3d action recog-

nition. IEEE Transactions on Image Processing, 27(6):2842–2855, 2018.

[57] Chao Li, Qiaoyong Zhong, Di Xie, and Shiliang Pu. Co-occurrence feature

learning from skeleton data for action recognition and detection with hierar-

chical aggregation. In Proceedings of the 27th International Joint Conference

on Artificial Intelligence, pages 786–792, 2018.

[58] Jun Liu, Amir Shahroudy, Gang Wang, Ling-Yu Duan, and Alex C. Kot.

Skeleton-based online action prediction using scale selection network. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 42(6):1453–

1467, 2020.

[59] Mengyuan Liu and Junsong Yuan. Recognizing human actions as the evo-

lution of pose estimation maps. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1159–1168, 2018.

[60] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convo-

lutional networks for skeleton-based action recognition. In Proceedings of

Bibliography 133

the Thirty-Second AAAI Conference on Artificial Intelligence,, pages 7444–

7452. AAAI Press, 2018.

[61] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, and Qi Tian.

Actional-structural graph convolutional networks for skeleton-based action

recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3595–3603, 2019.

[62] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-based action

recognition with directed graph neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 7912–7921,

2019.

[63] Jiayi Fan, Zhengjun Zha, and Xinmei Tian. Action recognition with novel

high-level pose features. In 2016 IEEE International Conference on Multi-

media & Expo Workshops, pages 1–6. IEEE, 2016.

[64] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J

Black. Towards understanding action recognition. In Proceedings of the

IEEE international conference on computer vision, pages 3192–3199, 2013.

[65] Xiaodong Yang and YingLi Tian. Effective 3d action recognition using

eigenjoints. Journal of Visual Communication and Image Representation,

25(1):2–11, 2014.

[66] Georgios Evangelidis, Gurkirt Singh, and Radu Horaud. Skeletal quads: Hu-

man action recognition using joint quadruples. In 2014 22nd International

Conference on Pattern Recognition, pages 4513–4518. IEEE, 2014.

[67] Meng Li and Howard Leung. Multiview skeletal interaction recognition

using active joint interaction graph. IEEE Transactions on Multimedia,

18(11):2293–2302, 2016.

Bibliography 134

[68] Amir Shahroudy, Tian-Tsong Ng, Qingxiong Yang, and Gang Wang. Multi-

modal multipart learning for action recognition in depth videos. IEEE trans-

actions on pattern analysis and machine intelligence, 38(10):2123–2129,

2015.

[69] Qiuhong Ke, Senjian An, Mohammed Bennamoun, Ferdous Sohel, and Farid

Boussaid. Skeletonnet: Mining deep part features for 3-d action recognition.

IEEE signal processing letters, 24(6):731–735, 2017.

[70] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli

Ouyang. Disentangling and unifying graph convolutions for skeleton-based

action recognition. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020.

[71] Honghui Lin, Jiale Cheng, Yu Li, and Xin Zhang. Temporal-spatial de-

formable pose network for skeleton-based gesture recognition. In 2021 IEEE

International Conference on Image Processing (ICIP), pages 2324–2328,

2021.

[72] Jun Liu, Amir Shahroudy, Dong Xu, Alex C. Kot, and Gang Wang. Skeleton-

based action recognition using spatio-temporal lstm network with trust

gates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

40(12):3007–3021, Dec 2018.

[73] Chenyang Li, Xin Zhang, Lufan Liao, Lianwen Jin, and Weixin Yang.

Skeleton-based gesture recognition using several fully connected layers with

path signature features and temporal transformer module. In Proceedings of

the AAAI Conference on Artificial Intelligence, pages 8585–8593, 2019.

[74] Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian Cheng, and Han-

qing Lu. Skeleton-based action recognition with shift graph convolutional

Bibliography 135

network. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, June 2020.

[75] Lufan Liao, Xin Zhang, and Chenyang Li. Multi-path convolutional neural

network based on rectangular kernel with path signature features for gesture

recognition. In 2019 IEEE Visual Communications and Image Processing

(VCIP), pages 1–4. IEEE, 2019.

[76] Yi-Fan Song, Zhang Zhang, Caifeng Shan, and Liang Wang. Richly acti-

vated graph convolutional network for robust skeleton-based action recog-

nition. IEEE Transactions on Circuits and Systems for Video Technology,

31(5):1915–1925, 2021.

[77] Yi-Fan Song, Zhang Zhang, Caifeng Shan, and Liang Wang. Stronger, faster

and more explainable: A graph convolutional baseline for skeleton-based

action recognition. In Proceedings of the 28th ACM International Conference

on Multimedia, page 1625–1633, 2020.

[78] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning

trajectory dependencies for human motion prediction. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 9489–9497,

2019.

[79] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,

and Philip S. Yu. A comprehensive survey on graph neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 32(1):4–24, 2021.

[80] Shota Haradal, Hideaki Hayashi, and Seiichi Uchida. Biosignal data aug-

mentation based on generative adversarial networks. In 2018 40th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), pages 368–371, 2018.

Bibliography 136

[81] O. Mogren. C-rnn-gan: A continuous recurrent neural network with adver-

sarial training. In Constructive Machine Learning Workshop (CML) at NIPS,

2016.

[82] Tianlin Xu, Li Kevin Wenliang, Michael Munn, and Beatrice Acciaio. Cot-

gan: Generating sequential data via causal optimal transport. In Advances

in Neural Information Processing Systems, volume 33, pages 8798–8809.

Curran Associates, Inc., 2020.

[83] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein genera-

tive adversarial networks. In Proceedings of the 34th International Confer-

ence on Machine Learning, volume 70 of Proceedings of Machine Learning

Research, pages 214–223. PMLR, 2017.

[84] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local

nash equilibria (and only local nash equilibria) in zero-sum games. arXiv

preprint arXiv:1901.00838, 2019.

[85] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for

nonconvex-concave minimax problems. In International Conference on Ma-

chine Learning, pages 6083–6093. PMLR, 2020.

[86] Constantinos Daskalakis and Ioannis Panageas. The limit points of

(optimistic) gradient descent in min-max optimization. arXiv preprint

arXiv:1807.03907, 2018.

[87] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang

Zeng. Training gans with optimism. arXiv preprint arXiv:1711.00141, 2017.

[88] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras.

Cycles in adversarial regularized learning. In Proceedings of the Twenty-

Bibliography 137

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2703–

2717. SIAM, 2018.

[89] Farzan Farnia and Asuman Ozdaglar. Gans may have no nash equilibria.

arXiv preprint arXiv:2002.09124, 2020.

[90] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier

Bousquet. Are gans created equal? a large-scale study. arXiv preprint

arXiv:1711.10337, 2017.

[91] Ilya Chevyrev and Terry Lyons. Characteristic functions of measures on

geometric rough paths. The Annals of Probability, 44(6):4049 – 4082, 2016.

[92] Terry Lyons and Hao Ni. Expected signature of Brownian motion up to the

first exit time from a bounded domain. The Annals of Probability, 43(5):2729

– 2762, 2015.

[93] Ilya Chevyrev and Harald Oberhauser. Signature moments to characterize

laws of stochastic processes. arXiv preprint arXiv:1810.10971, 2018.

[94] Magnus Wiese, Lianjun Bai, Ben Wood, and Hans Buehler. Deep hedging:

Learning to simulate equity option markets. SSRN Electronic Journal, 2019.

[95] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Gan-

guli. Deep unsupervised learning using nonequilibrium thermodynamics. In

Francis Bach and David Blei, editors, Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine

Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

[96] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilis-

tic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and

Bibliography 138

H. Lin, editors, Advances in Neural Information Processing Systems, vol-

ume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[97] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,

Stefano Ermon, and Ben Poole. Score-based generative modeling through

stochastic differential equations. In International Conference on Learning

Representations, 2021.

[98] Reizenstein Jeremy and Graham Benjamin. The iisignature library: efficient

calculation of iterated-integral signatures and log signatures. arXiv preprint

arXiv:1802.08252., 2018.

[99] Christophe Reutenauer. Free lie algebras. In Handbook of algebra, volume 3,

pages 887–903. Elsevier, 2003.

[100] Hao Ni. A multi-dimensional stream and its signature representation. arXiv

preprint arXiv:1509.03346, 2015.

[101] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in

machine learning. arXiv preprint arXiv:1603.03788, 2016.

[102] Yue Wu, Hao Ni, Terence J. Lyons, and Robin L. Hudson. Signature features

with the visibility transformation. In 2020 25th International Conference on

Pattern Recognition (ICPR), pages 4665–4672, 2021.

[103] Ken-Ichi Funahashi. On the approximate realization of continuous mappings

by neural networks. Neural Networks, 2(3):183–192, 1989.

	Introduction
	Preliminary
	Rough path theory
	Tensor algebra
	Path space
	The signature of a path
	The log-signature of a path
	Geometric rough paths

	Neural network
	Supervised learning
	Introduction to neural networks
	Generative adversarial network

	Log-signature recurrent neural network (Logsig-RNN)
	Introduction
	Background and motivation
	Related works

	Logsig-RNN
	Model
	Backpropogation
	Complexity analysis
	Universality theorem

	Generalized Logsig-RNN
	Model
	Backpropogation
	Complexity analysis
	Universality theorem

	Logsig-RNN in supervised learning
	Introduction
	Illustrative examples
	Synthetic data
	Pen-digit data

	Skeleton human action recognition
	PT-Logsig-RNN network
	Gesture recognition
	Action recognition
	Efficiency analysis

	Conclusion and future work

	Logsig-RNN in generative tasks
	Introduction
	Method
	Wasserstein generative adversarial network
	Sig-Wasserstein generative adversarial network
	Expected signature of a stochastic process
	Signature Wasserstein-1 (Sig-W1) metric

	Generator

	Numerical results
	Multi-dimensional geometric Brownian motion (GBM)
	Rough volatility model
	eICU data

	Conclusions

	Discussion
	Limitations and future work

	Appendices
	Auxiliary Properties of Rough Path Theory
	Proof of Chapter 2
	Implementation Details of PT-Logsig-RNN
	Bibliography

