
Quantitative modelling of bacterial
growth physiology, cell size and

shape control

By

Diana Maria Serbanescu

A thesis submitted to

University College London

for the degree of

Doctor of Philosophy

Department of Physics and Astronomy

University College London

September 23, 2022



I, Diana Maria Serbanescu confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the thesis.

Signed ............................................ Date ................

2



Abstract

Bacteria are highly adaptive microorganisms that proliferate in a wide range of en-

vironmental conditions via changes in cell size, shape and molecular composition. How

bacterial cell size, shapes and physiological properties are regulated in diverse environ-

mental conditions are questions of longstanding interest. Regulation of cell size and

shape imply cellular control mechanisms that couple bacterial growth and division pro-

cesses to their cellular environment and molecular composition. Studies in the past

decades have revealed many fundamental principles of bacterial growth physiology, in

particular the relationship between cellular growth rate, proteome composition and the

nutrient environment. However, the quantitative relations defining the interdependence

of cell growth and morphology, together with the molecular mechanisms underlying the

control of bacterial cell morphology remain poorly understood. In this thesis I develop

quantitative theory and models for bacterial growth dynamics that link cellular proteome

with cell size and division control (Chapter 2), cell shape control (Chapter 3), regula-

tion of bacterial growth and morphology in the presence of antibiotic stress (Chapter 4),

and energy allocation strategies for cellular growth and shape control (Chapter 5). My

work reveals that cell size maintenance under nutrient perturbations requires a balanced

trade-off between ribosomes and division protein synthesis. Deviations from this trade-

off relationship are predicted under translation inhibition, leading to distinct modes of

cell morphological changes, in agreement with single-cell data on Escherichia coli growth

and cell morphology. Using the particular example of ribosome-targeting antibiotics, I

present a systems-level model for the regulation of cell shape and growth physiology un-

der antibiotic stress, and uncover various feedback mechanisms that bacteria can harness

to increase their fitness in the presence of antibiotics.
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Impact Statement

Cell size maintenance is crucial for regulating bacterial growth physiology, cell function,

and fitness. Maintaining a characteristic cell size requires a balance between the rates

of cell growth and division. How this balance is regulated in different growth conditions

has been an outstanding question in the field of bacterial physiology. In this thesis, I

develop a whole-cell model for bacterial growth dynamics that connects cell size and di-

vision control in bacteria to the regulation of protein synthesis. My work reveals that cell

size is controlled by a trade-off between the allocation of cellular resources toward ribo-

somal and division protein synthesis. This principle quantitatively determines bacterial

cell morphology and growth rates under nutrient shifts or translational perturbations,

resolving a long-standing question in the field.

Using the quantitative model developed in this thesis, I investigate the relationship

between cell morphology, nutrient quality, and bacterial growth rate under antibiotic

treatments. In particular, I predict that round cells are most resistant to translation-

inhibitory antibiotics, and that drug resistance increases with increasing nutrient quality.

By analyzing cell growth and morphological data of different bacterial model organism

under antibiotic stress, I characterize the effect of antibiotics on bacterial growth and

morphology to test and validate theoretical predictions. In particular, we propose a an-

tibiotic resistance mechanism that bacteria employ to increase fitness by reducing the

influx of antibiotics via changes in cell surface-to-volume ratio. Shape changes there-

fore make bacteria more adaptive to surviving antibiotics, suggesting that cell shape

regulators may serve as potent targets for preventing antibiotic resistance.
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The proposed morphological changes that promote bacterial fitness have major im-

plications in healthcare, where a new mechanism of action can be employed to prevent

bacterial growth and infections. We can identify new modes of antibiotic action by ex-

amining the shapes of the cells. The model I developed can be applied to various types

of perturbations of bacterial physiology, such as osmotic shocks, mechanical stress, star-

vation, and antibiotics targeting the cell membrane and the cell-wall. The versatility of

the model allows it to be used in antibacterial drug design to prevent bacterial growth

but also in designing bacterial growth experiments due to its predictive power.
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1.6 General cell-size law in bacteria A. Schematic adapted from Si et al.
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2.2 Prediction of the proteome allocation theory. A. Cell size versus

growth rate, plotted in semi-log scale. B. Theoretical prediction for cell

size using ⟨V ⟩ = κ/(κ0
p

(
ϕmax∗
R − ϕmin
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)
− κ0

pκ/κt, where ϕmax∗
R depends on

the nutrient specific growth rate: ϕmax∗
R = (κnϕ

max
R + κtϕ

min
R ) / (κn + κt)

C. Dependence of the division protein mass fraction ϕX on the ribosome

mass fraction ϕR. The tradeoff between ϕX and ϕR can be modeulated

by translational (κt)) or nutritional (κn) perturbations. ρ is a conversion

factor between ribosome mass fraction and ribosome concentration (r):

ρ ≈ 0.8 [4], ϕmin
R = ρrmin ≈ 0.08, ϕmax

R = ρrmax ≈ 0.56. D. The same

perturbations as in C. showing the relationship between ϕX and growth

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Cell size control under translation inhibition. A. Model predic-

tion for the dependence of division protein synthesis rate κp on growth

rate κ under translation inhibition for three values of δr. Decreasing κn

corresponds to decreasing the nutrient quality of the growth medium. B.

Model predictions for cell volume versus growth rate under translation

inhibition, capturing three distinct trends in cell size changes depending

on the value of δr. C. Model fit to experimental data for κp in three

different nutrient conditions under translation inhibition. Inset: depen-

dence of nutritional capacity κn on the growth rate, Solid line is a fit of

the form κn = κtκ/ (κm − κ), with the fitting parameter κm = 2.6. D.

Dependence of δr on nutrient-specific growth rate. Solid like shows the

theoretical prediction for the dependence of δr on nutrient-specific growth

rate δr = −κm

κ
+(ϕmax

R − ϕmin
R ) κ

κm
. E. Cell volume as a function of growth

rate under translation inhibition. . . . . . . . . . . . . . . . . . . . . . . 56
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2.4 Prediction of the proteome allocation theory. Relationship be-

tween cell size, division protein production rate and C+D period.

A. Scatter plot showing the negative correlation between kp and C+D,

with data taken from [12]. κp is estimated using the relation κp ≈ κ/V .

Dashed line is the best fit of the predicted relation kappap ∝ (C +D)−1,

suggesting that measurements of C +D period could reliably predict the

production rate of the division proteins. B. Estimating κp from mea-

surements of the C +D period. Dashed line is a fit through the origin as

predicted by [13] and solid line is unconstrained linear fit. For each growth

condition we removed the outliers that are more than three standard de-

viations away from the mean and then binned the data. C. Relationship

between cell size and κ(C +D). The gray line is a linear fit to data from

Zheng et al. [13]. The red line is an exponential fit to data from Zheng et

al. [13], Zhu et al. [14] and Basan et al. [15]. Data from Si et al. [5] is

shown on y-axis to the right. We observe that a linear fit works well for

κ(C +D) < 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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(V ): S = γV 2/3 (legend on the right, 5011 data points). Best fit shown

in dashed black line for steady-state data from [5] gives γ = 6.24 ± 0.04,

and a power law exponent 0.671 ± 0.006. For single deletion Keio set [19],

the best fit curve is S = 5.79V 2/3. B. Aspect-ratio distribution for cells

growing in steady-state, corresponding to the data in A [5]. (Inset) Re-

lationship between γ and aspect ratio η for a sphero-cylinder (red line).

Best fit from A shown with horizontal green band gives aspect ratio 4.14

± 0.17. C. S/V vs growth rate. Model line uses S = 2πV 2/3 and the

nutrient growth law (Eq. 1.9). Data from [5]. . . . . . . . . . . . . . . . 63

3.2 Surface-to-volume scaling in rod-shaped bacteria. A. S-V relation

for various bacterial cell shapes. Black dashed line: Small, medium, and

large rod-shaped cells with a conserved aspect ratio of 4 follow the relation:

S = 2πV 2/3. Gray dashed line: Filamentous cells with constant cell width

follow the scaling law: S ∝ V . Red dashed line: Spheres follow S ∝ V 2/3.

B. S vs V for 49 different bacterial species [21, 22, 23, 24, 25, 26, 17, 27,

28, 29, 30, 31, 20], and one rod-shaped Archaea (H. volcanii). Rod-shaped

cells lie on S = 2πV 2/3 line, above the line are Spirochete and below the

line are coccoid. For coccoid S. aureus exposed to different antibiotics

best fit is S = 4.92V 2/3, with preserved aspect ratio η = 1.38± 0.18. Red

dashed line is for spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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3.3 Aspect ratio control in E. coli at the single cell level. A. S vs V for

newborn E.coli cells grown in the mother machine [32]. Single cell data

(small circles) binned in volume follow population averages (large circles).

B. Probability distribution of newborn cell aspect ratio is independent of

growth rate, fitted by a log-normal distribution (solid line). C. Model

schematic. Cell length L increases exponentially during division cycle at

rate k. Division proteins (P ) are produced at a rate kP , and assemble a

ring in the mid-cell region. . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Aspect ratio preservation during nutrient shifts at the single cell

level. A-C. At time t = 0h cells are exposed to nutrient upshift or

downshift. Population average of n = 105 simulated cells. A. Growth rate

κ vs time used as input for simulations. B. Population-averaged cell length

and width vs time. C. Population-averaged aspect ratio of newborn cells

vs time. Changes in cell width and length result in a transient increase

in aspect ratio during nutrient downshifts, or a transient decrease during

nutrient upshifts. Note: When Pr reaches the threshold P0, the mother

cell divides into two daughter cells whose lengths are 0.5 ± δ. Parameter

δ is picked from a Gaussian distribution (µ = 0, σ = 0.05). . . . . . . . . 69

4.1 Changes in cell shape and surface-to-volume ratio of rod-shaped

bacteria under different antibiotics. . . . . . . . . . . . . . . . . . . 76
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4.2 Cell shape control under translational inhibition. A. Schematic

illustrating nutrient and antibiotic transport across cell surface and an-

tibiotic interactions inside the cell. B. Model predictions for the surface

area synthesis rate (β) as a function of the growth rate (κ) for varying nu-

trient conditions, and its inhibition under Chloramphenicol perturbations.

β is calculated using β = κA/V . C. Single-cell simulations of growth in

response to a step pulse of Chloramphenicol applied at t = 0 h in the ex-

tracellular medium. Top to bottom: Dynamics of intracellular antibiotic

concentration, growth rate, cell volume, surface-to-volume ratio, normal-

ized nutrient and antibiotic flux. Both nutrient and antibiotic fluxes are

higher in rich media due to the increase in surface-to-volume ratio. . . . 80
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4.3 Cell shape and nutrient quality control bacterial resistance to

ribosome-targeting antibiotics. A. Growth inhibition curves for three

different values of cell aspect ratio in a nutrient-rich medium. Dashed line

corresponds to IC50 on the x-axis, the concentration of antibiotic when

the growth rate reduces by half. B. Heatmap of IC50, a metric for drug

resistance, showing the effects of changing aspect ratio and nutrient qual-

ity. Red asterix: Maximally resistant, blue asterix: least resistant. C.

Heatmap of drug dose-sensitivity (n), showing the effects of changing cel-

lular aspect ratio and nutrient quality of the growth medium. D. Corre-

lation between drug resistance and dose-sensitivity under changes in nu-

trient quality (κspecific). Inset: Correlation between drug resistance and

dose-sensitivity under changes in aspect-ratio. E. Schematic illustrating

fitness value for cell shapes and morphological changes that accompany

bacterial response to translation inhibition in nutrient-rich and nutrient-

poor growth media. F. Schematic representation of the feedback pathways

that connect ribosomal translation to bacterial cell shape, growth, nutri-

ent and antibiotic transport. See Tables 7.1, 7.2 and 7.3 for a complete

list of parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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4.4 Role of cell shape changes on antibiotic dilution. A. Relative an-

tibiotic concentration inside the cell vs time obtained by model simulations

for two cases: (i) S/V = const. = 5µm−1 (red), (ii) S/V decreases from

5 to 3 µm−1 (green) via the pathway shown in Figure 4.3. Here aout = 5

µM and Pin/Pout = 1. B. Bacterial growth rate vs time obtained from

simulations for two different cases as in panel A. The decrease in S/V

results in fitness gain. C Heat map of antibiotic dilution factor predicted

from simulations as functions of membrane permeability ratios (Pin/Pout)

and the ratio of antibiotic-ribosome binding and unbinding rates (kon/koff).

Antibiotic dilution was calculated when bacterial S/V was altered from

15 to 3 µm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Model schematic and optimization principle. A. Food from extra-

cellular environment is imported inside the cell via the membrane and

represented by the intake energy (Eintake) which is proportional to the

surface area of the cell. Cells elongate while maintaining a fixed radius

(shape maintenance represented in green) by using the energy for growth

(Egrowth). The energy used by the cell during a growth cycle is allo-

cated to different physiological processes such as maintenance of biomass

(Emaintenance) and division (Edivision), but also converted to mechanical

energy (Emechanical) to balance turgor pressure and store stain energy in

the cell wall (proxy for crosslinkers and glycan strands, see main text).

We also account for energy loss due to dissipation (Edissipation) and pro-

tein production. B. Energy diagram showing the energy used for growth

Egrowth = Eintake−Eused, where Eused = Edivision+Edissipation+Emechanical+

Emaintenance. Optimizing the rate of assimilation of physiological energy

(i.e. dEgrowth/dt = 0) translates into optimizing the energy for cell growth. 94
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5.2 Single cell trajectories predicted by the energy budget model. A.

Growth rates (κ) and division protein synthesis rates (κP ) for rich and poor

nutrients in the extracellular medium. B. The minimum of the effective

energy Eeff corresponds to the preferred radius in the respective growth

condition. Nutrient shifts correspond to transitions from one minimum to

another. C. Dynamics of length in two nutrient conditions where cells have

the same growth rates as shown in panelA. The length grows exponentially

in time and add a fixed length between birth and division ∆L = Ld − Lb

in agreement to the threshold initiator model and the adder principle.

D. Cells accumulate division proteins as described by dX/dt = kPL and

divide upon reaching a threshold value proportional to the circumference

of the cell: X0 = 2γR. The threshold value is constant for a nutrient

condition leading to constant added lengths ∆L (defined in panel C.). . 98
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5.3 Dependence of cell morphology on growth rate obtained using

the energy budget model. A. Heatmap of fitting coefficient (S) for

different values of λ̄ and ḡ. The fitting coefficient is defined as S =√∑
(Vexp−Vsim)2

N
, where Vexp is the expected cell size value from the ex-

ponential fit following the nutrient growth law, Vsim is the average steady

state value in simulations and N is the number of points used. Red line

indicates λ̄ ≈ 30, value estimated from literature (see main text) and the

star indicates the minimum value for S for this value that helps set g ≈ 30.

Unless otherwise stated, the parameter values are λ̄ = 30 and ḡ = 30. B-

C. Cell size volume and surface area as a function of growth rate obtained

from the model and experimental data. D. Cell length as a function of

growth rate, where we accounted for the pole-to-pole length to compare

to experimental data (inset). E-F. Radius and division protein synthe-

sis rate (κP = kP/(πR
2)) as a function of growth rate obtained from the

model and experimental data from Taheri et al. [32]. κP is estimated as

κ/V from experimental data as in Chapter 2. Parameters used: η = 3,

γ = 100, µ = 1, ξ = 0.0036, kc = 1, µ̄R = 0.1, h = 0.1 ∗ 10−3, ḡ = 30,

λ̄ = 30, R0 = 0.3, σR = 0.0267. . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Cellular energy allocation in different nutrient environments. A-

B. The values for the energy components are calculated from theory (sum-

marised in Table 7.4) and the expression for length and radius as a func-

tion of growth rate are obtained from fitting single cell data from [32] (i.e.

L = 1.262e0.3288κ and R = 0.1κ + 0.195). C. Combining the energy com-

ponents into energy for growth, mechanical energy and metabolism for a

qualitative comparison to proteomic data from [6]. D. The normalised

energy for growth increases with ribosome mass fraction. . . . . . . . . . 102
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5.5 Single-cell nutrient shift simulation using the energy model. A.

The upshift is simulated by increasing ϵ using a Heaviside step function:

ϵ̄ = ϵ̄(1 + α(1 + e−hs(t−tshift))−1), where α represents the increase (or de-

crease if α < 0) in nutrient quality and tshift is the time at which the

perturbation is applied. hs describes the steepness of the function or how

fast the nutrient quality is changed: high hs corresponds to a fast change

in nutrient quality, while low hs corresponds to a slow change. B-D. The

response of growth rate κ, radius R and length L of the cell upon a nu-

trient up-shift when hs = 1 and the mobility coefficient for three different

values of µR corresponding to slow, medium and fast adaptive response.

E-F. Comparison of simulated nutrient up- and down-shift to experimen-

tal data from [33]. Parameters used: η = 3, γ = 30, µ̄R = 0.1 in panel

A and variable in B-D, kc = 1, h = 0.1 ∗ 10−3, ḡ = 30, λ̄ = 30, R0 = 0.3,

σR = 0.0267, α = 0.3, hs variable in panel A and hs = 1 in panels B-D.

For panels E and F we fitted α and hs to capture the nutrient shifts. Note:

for the nutrient downshift we decreased ḡ by 2 ∗ 10−5. . . . . . . . . . . 104

5.6 Single-cell osmotic shock simulation using the energy model. A.

Growth rate dynamics following a hyperosmotic shock at t = 0 simulated

by an instantaneous increase in λ̄ from 30 to 180. B. Length and radius

dynamics following a hyperosmotic shock. The rate of change in length

decreases at t = 0 and upon a division event, the subsequent division and

birth lengths decrease with respect to the pre-shock values C. Growth

rate dynamics following a hypoosmotic shock at t = 0 simulated by an

instantaneous decrease in λ̄ from 30 to 15. D. Steady state growth rate

after osmotic shocks for different values of λ̄. A and C indicate the values

used in panels A and C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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6.1 Graphic summary of the work presented in this thesis. A. The

bacterial cell size is determined by a trade-off between resources invested

in growth and division. In nutrient-rich conditions, cells have an increased

ribosomal sector mass fraction ϕR which leads to high growth rates and

large sizes. Conversely, in nutrient-poor conditions, cells allocate less re-

sources to the growth rates and increase the division proteins sector mass

fraction ϕX which results in smaller cells. B. Cells control their shapes

across growth conditions by maintaining a constant aspect ratio on av-

erage (≈ 4 for E. coli cells) which leads to a conserved scaling relation

between cell surface area and volume S ∝ V 2/3. C. Diagram showing

how E. coli cells change morphology under translation inhibition induced

by Chloramphenicol in a nutrient-dependent manner. Bacteria growing

in nutrient-poor conditions increase the volume to decrease the surface-to-

volume ratio and reduce the intracellular antibiotic concentration, whereas

bacteria growing in rich conditions increase the surface-to-volume ratio to

promote nutrient influx. As shown in Figure 4.1 E. coli cells tend to de-

crease S/V when treated with a wide variety of cytosolic antibiotics, and

increase S/V when treated with membrane-targeting antibiotics. . . . . 108
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Chapter 1

Introduction

Bacteria are highly adaptive microorganisms that thrive in a wide range of growth

conditions via changes in cell morphologies and macromolecular composition. How bac-

terial cell size, shape and growth rates are regulated in diverse environmental conditions

are longstanding questions. Cell morphology is a fundamental physiological trait that

is crucial for cellular growth, nutrient uptake, and environmental adaptation. Bacterial

cells need to maintain appropriate sizes to optimize their fitness and regulate cell phys-

iology [35]. Regulation of cell size and shape implies cellular control mechanisms that

couple growth and division to cellular environment and macromolecular composition. In

the past decade, simple quantitative laws have emerged that connect cell growth to pro-

teomic composition and the nutrient availability. However, the relationships between cell

size, shape and growth physiology remain poorly understood and unifying models are

lacking. The goal of this thesis is to develop regulatory models of cell size control that

reveal the connections between bacterial cell size, shape and growth physiology. In this

chapter, I review the existing literature on bacterial growth physiology, focusing on the

literature models for bacterial growth control and cell size regulation. The timeline in

Part of this chapter is published in Serbanescu, D., Ojkic, N., & Banerjee, S. (2021). Cellular

resource allocation strategies for cell size and shape control in bacteria. The FEBS Journal. [34]
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Figure 1.1 is based on the main results discussed in this chapter and shows discoveries

related to the physiology of bacteria.

1950 - Schaechter, 

Maaløe and Kjeldgaard

nutrient growth law

𝑉 = 𝑉0𝑒
𝛼𝜅

1949 - Monod

growth curve

𝜆 = 𝜆𝑚𝑎𝑥
0 𝑠

𝑠+𝜅𝐷

1950-1960 - Powell 

and others

cell division is 

stochastic

1968 - Helmstetter and Cooper

chromosome replication cycles 

Two-timer model: cell division 

time 𝜏𝑑 and cell cycle time 

𝜏𝑐𝑦𝑐 = 𝐶 + 𝐷

constant initiation mass (mass-per-

origin of DNA replication is 

constant)

1961 - Maaløe

Perturbation and growth 

inhibition experiments

1960-1970 - Margolis and Cooper

computer simulations for bacterial 

growth and cell cycle

1963 - Schaechter

RNA/protein increases linearly 

with doubling rate

Ribosomes play a catalytic role in

protein synthesis

1966 - Maaløe and Kjeldgaard

ribosomes operate at maximum rate

Growth rate proportional to protein

mass fraction of ribosomes

1968 - Donachie

1991 - Lutkenhaus

FtsZ forms ring-like 

structure

1991 - Cooper

Mixer model

1993 - Voorn and 

others

Adder mechanism

2010

coarse-graining cellular resources

proteome partitioning

2010-2014 - Scott et al.

Rate of protein synthesis per 

ribosome not growth dependent

Faster growth → more ribosomes 

→ increase comes at expense of 

synthesizing other proteins

2010 - Wang et al.

“re-discovery” of adder mechanism

Mother machine: single cell growth 

and division

1974 - Bremer

Regulation of ribosome 

synthesis

1977 - Bailey et al.

Measurements of cellular 

composition (proteins and 

nucleic acid contents)

1980 - Lutkenhaus, Wolf-

Watz and Donachie

FtsZ

1973 - Donachie

Proposed mechanism for size 

control (first mixer model)

1983 - Diekmann and others

sizer and timer models

1940-1960 1960-1970 1970-1990 1990-2000 2010-2015

Figure 1.1: Timeline showing the important discoveries in the field in the past

sixty years [1]. The timeline was based on the main points discussed in Chapter 1.

1.1 Determinants of bacterial growth rate

The physiological state of a cell is characterized by its size, shape, macromolecular com-

position, and the rate of growth. Their interdependence is one of the key questions in

bacterial growth physiology. The pioneering work of Monod in the 1940s on bacterial

physiology revealed the dependence of cellular growth rate on the extracellular nutrient

concentration. In his work [36], Monod observed that the growth rate of Escherichia coli

cells increases with increasing glucose concentration up to a maximum and defined the

empirical hyperbolic dependence as:

κspecific = κ0
[n]

[n] + n∗ (1.1)
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where κspecific is the nutrient-specific growth rate, [n] is the concentration of the nutrients,

n∗ is the nutrient concentration at half-maximum growth rate, and κ0 is the maximum

growth rate that the bacteria can achieve in a given nutrient medium. When the concen-

tration of nutrients inside the cells reaches maximum, the growth rate κ of the bacteria

becomes equal to κspecific.

However, to understand how cells achieve a nutrient-specific growth rate, a mecha-

nistic link has to be established between the rates of nutrient import, energy production,

protein synthesis and cell envelope biogenesis. Protein synthesis is essential for bacteria

to proliferate. At the core of protein synthesis is the ribosome machinery which syn-

thesizes new proteins through the process of translation. In recent work [37], Belliveau

et al. used proteomics data across a large number of growth conditions to examine the

possible candidates that limit the growth rate of bacteria. It is found that bacterial cell

growth is not limited by transporter expression for nutrient import, biosynthesis of cell

envelope components, or by ATP synthesis. Instead, the translation machinery plays a

crucial role, such that the synthesis of ribosomes is the rate limiting process for bacterial

growth Figure 1.2 A.

1.2 Bacterial growth laws

In E. coli ribosomes contain approximately 85% of the RNA [3]. Therefore the ratio

of RNA to protein mass can be approximated as the ribosome mass fraction ϕR in a

cell. Earlier works by Neinhardt, Magasanik and Harvey [38, 39] uncovered a positive

linear relationship between ribosome mass fraction and nutrient specific growth rate in

moderate to fast growth conditions. Scott et al. [4] formalized this into a quantitative

growth law of ribosome synthesis (Figure 1.2 B and Figure 1.4 B red shading) - growth

law under nutrient perturbations:

ϕR = ϕmin
R +

κ

κt

(1.2)

where ϕmin
R is the mass fraction of inactive ribosomes and κt is the translational capacity,

defined as the average rate for amino acid chain elongation per ribosomes. Eq. 1.2 is not
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unique to bacterial cells as a linear scaling between the growth rate and ribosome mass

fraction was also found in the eukaryotic buddying yeast and fission yeast [40, 41].

ribosome
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synthesis

≈7 min

protein synthesis

≈ 15 amino 

acids/

(ribosomes x sec)

mRNA
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chain
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Figure 1.2: Growth rate regulation in bacteria. A. Schematic showing translation

and ribosomal protein synthesis, which constitute the limiting factors for bacterial cell

growth. B. Ribosomal mass fraction in E. coli, approximated by the ratio of RNA to

protein mass, increases linearly with the growth rate of the cell modulated by nutrients.

Data taken from refs. [2, 3, 4, 5].

When the growth rate is altered by inhibiting translation (e.g. by adding ribosome-

targeting antibiotics), ribosome mass fraction decreases linearly with growth rate (Fig-

ure 1.4 B green shading - growth law under translation inhibition [4]:

ϕR = ϕmax
R − κ

κn

, (1.3)

where ϕmax
R is the maximum mass fraction of ribosomal proteins, and κn is the nutritional

capacity of the medium that has a positive correlation with the nutrient-specific growth

rate. The observation that the maximum mass fraction of ribosomal proteins ϕmax
R ≈ 0.55

is much below 1, suggests a coarse-grained model of proteome partitioning into three

components: ribosome-affiliated proteins (R-sector) of mass fraction ϕR, housekeeping

proteins (Q-sector) of mass fraction ϕQ that are not affected by translation inhibition,
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A Three-component proteome model

Figure 1.3: Three component proteome model. A. The three-component proteome

partitioning model [4], consisting of the Q-sector that is invariant under translational

perturbations, the R-sector of ribosomal proteins that increase in mass fraction with

increasing growth rate, and the P-sector of non-ribosomal proteins that is constrained

by the relation: ϕP + ϕR = ϕmax
R = 1 − ϕQ ≈ 0.55. B. Proteomic data [6] show a

decrease in the mass fraction of metabolic sector proteins with growth rate, at the cost

of an increase in mass fraction of ribosomal sector proteins (information storage and

processing), consistent with the three-component proteome allocation model.

and the remaining non-ribosomal proteins (P-sector) whose mass fraction ϕP → 0 as

ϕR → ϕmax
R (Figure 1.3A-B). Given the invariance of ϕQ with translational perturbations,

the R- and P - sectors add up to a constant such that ϕR + ϕP = ϕmax
R = 1− ϕQ.

During steady-state exponential growth, the rate of amino acid supply by the P -

sector proteins must be balanced by the rate of amino acid consumption by the R-sector

proteins, such that there is no net change in the amino acid pool. If the amino acid

pool increases such that the supply exceeds demand, then ϕR increases to meet the

demand of protein biosynthesis and simultaneously decrease supply due to the constraint

ϕP = ϕmax
R −ϕR [8]. This strategy underlies flux balance and maximization of the growth

rate. The partitioning of the proteome into three main components is supported by
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mass spectrometry data [6] (Figure 1.3 B) where clustering the proteins based on their

function reveals similar behaviour to the proposed model components. More precisely,

the category identified as “information storage and processing”, which contains ribosome-

affiliated proteins, increases with growth rate, while the “metabolism” cluster decreases

with growth rate, equivalent to the non-ribosomal proteins in the P -sector. This leaves

the mass fraction of the rest of the proteins to be independent of growth rate, akin to

the housekeeping Q-sector.

1.3 Proteome allocation strategies for bacterial growth control

The proteome partitioning model [4] generates constraints on cellular resource strategies

linking cell growth, nutrient uptake, metabolism and protein synthesis. This framework

provides a theoretical basis for explaining the empirical growth laws (Eq. 1.2 and 1.3).

The positive linear relationship between growth rate and ribosome mass fraction follows

from exponential growth of total protein mass M at steady-state: dM/dt = κM . The

rate of accumulation of protein mass is balanced by the rate of protein synthesis by active

ribosomes:

κM = κt(MR −Mmin
R ) (1.4)

where Mmin
R is the mass of inactive ribosomes, leading to the first empirical growth law

in Eq. (1.2). The second growth law (Eq. 1.3) follows from the constraint on amino

acid flux to meet the demand of protein synthesis during exponential growth [42, 4, 8]

Fig. 1E. The rate of change of amino acid concentration (A) in a cell is given by:

dA

dt
= κn(A)ϕP − κt(A)(ϕR − ϕmin

R ) , (1.5)

where ϕP = ϕmax
R − ϕR and both the translational capacity (κt) and the nutritional

capacity (κn) are functions of the amino acid concentration A. In particular, κt increases

and then saturates with A [43, 8], whereas there is a negative feedback control of κn to

limit the concentration of amino acids [44]. At steady-state, there is no net accumulation

of amino acids in the cell: the nutrient import needs to meet the demands of synthesizing

new proteins [4, 8, 45], resulting in the growth law: κ = κt(ϕR − ϕmin
R ) = κn(ϕ

max
R −
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ϕR). The flux balance condition then determines the relationship between steady-state

ribosome mass fraction and amino acid concentration:

ϕR =
κn(A)ϕ

max
R + κt(A)ϕ

min
R

κn + κt

. (1.6)

As a result the steady-state value of ϕR decreases with A, but there is no unique

value of ribosome mass fraction that satisfies the amino acid flux in a given growth

condition. How do then bacterial cells regulate the ribosomal mass fraction ϕR? The

optimum value of ribosome mass fraction is set by the maximum achievable growth

rate [42, 8], which exhibits a unique maximum as a function of ϕR (Fig. 1.4 B). In a given

growth environment the maximum growth rate is reached when both the translational

and nutrient capacities are at their maximal value, and increases with increasing κn.

In similar spirit, other mechanistic models of growth rate optimization and ribosome

regulation have been developed [46, 47, 48, 49].

Taking further the idea of compartmentalizing the proteome, Pandey and Jain [7]

developed a precursor-transporter-ribosome model, where they considered the coupled

dynamics of transporters (P ) that import nutrients from the extracellular medium and

convert them into amino acid precursors (A). The amino acids are then converted into

transporters and ribosomal proteins (R) (Figure 1.4 A). The ribosomes in turn catalyze

the production of both transporters and ribosomes, while the transporters catalyze the

production of more precursors [7]. The coupled dynamics of transporters (mass MP ) and

ribosomal proteins (mass MR) are given by

dMP

dt
= κtfP (MR −Mmin

R )− dPMP (1.7)

dMR

dt
= κtfR(MR −Mmin

R )− dRMR (1.8)

where dP and dR are the degradation rates for the transporters and the ribosomes, respec-

tively, fR is the fraction of ribosomes engaged in the production of ribosomal proteins,

and fP is the fraction of ribosomes catalyzing the production of transporters. The pa-

rameters fR and fP are subjected to the constraint: fP + fR = ϕmax
R , where the choice of
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Figure 1.4: Minimal model for nutrient import, amino acid production and

protein production in a bacterial cell. A. Schematic of the Precursor-Transporter-

Ribosome model of a minimal cell [7]. Precursor molecules (amino acids, A) are produced

by the action of transporters (P) on the external nutrients. Transporters (P) and ribo-

somal proteins (R) are synthesized from the precursors by the ribosomes R. B. The

optimum value of the ribosomal protein mass fraction ϕR depends on the growth en-

vironment (poor nutrient - red line, moderate nutrients - blue, rich nutrient - green).

Dashed lines correspond to the equation: κ = κt(ϕR − ϕmin
R ) and κ = κn(ϕ

max
R − ϕR). For

each nutrient condition the growth rate exhibits a maximum (solid circle) corresponding

to an optimal allocation of ϕR. The upper bound on the growth rate maximization occurs

when the translation efficiency κt and the nutritional efficiency κn are both maximum

for a given nutrient environment. Figure adapted from Ref. [8].

fR can be determined by the regulatory condition of growth rate maximization [42]. In a

given growth environment with other cellular parameters fixed, the regulation adjusts the

value of fR such that the growth rate is maximized (Figure 1.4 B). The optimized steady-

state of the precursor-transporter-ribosome model then reproduces the empirical growth

laws (Eq. 1.2 and 1.3) [7]. Thus the proteome allocation theory provides a promising

framework to understand the relationships between the growth rate and macromolecular
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composition of the bacterial cell.

1.4 Cell size control and homeostasis in bacteria

How cell size adapts to changes in growth conditions is a fundamental question in bacterial

growth physiology. Soon after Monod’s growth law was formulated, Schaechter et al.

revealed how bacteria modulate cell sizes in response to changes in nutrient conditions.

By studying the growth and morphologies of Salmonella enterica cells in different nutrient

conditions, Schaechter et al. discovered the nutrient growth law – the average cell size

of a bacterial population (V pop) increases exponentially with the population growth rate

(κpop) [50]:

V pop ∝ eακ
pop

, (1.9)

where V pop is usually measured as optical density, κpop is measured as doublings of culture

volume per hour and α is a constant. For a better size characterisation, the length and

diameter of cells can be measured at the single cell level. Trueba and Woldringh [51]

found that the diameter of E. coli cells negatively correlate to the length during the cell

cycle in a systematic way. Under different growth conditions, they find that cells grown

in rich nutrients are larger than cells grown in poor nutrients, consistent with the nutrient

growth law.

Recent studies have confirmed the result in Eq. 1.9 for evolutionary divergent bacterial

species such as E. coli, Bacillus subtilis and Sinorhizobium meliloti [32, 52, 5, 53, 54],

suggesting shared strategies for cell size control in bacteria. However, deviations from the

nutrient growth law have been reported in studies perturbing cellular growth rate and

translation via antibiotics [15, 5]. Thus the relationship between cell size and growth rate

does not simply follow from the nutrient growth law and requires a deeper systems-level

understanding of cellular growth physiology at single-cell level.

At single-cell level, control of cell size emerges from a temporal coupling between

growth and division. There are three main mechanisms: sizer, timer and adder as shown

in Figure 1.5 A. The sizer model assumes that cells divide after reaching a threshold size
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Figure 1.5: Mechanisms for cell size homeostasis in bacteria. A. Schematic

showing the three main mechanisms for cell size control: sizer – the size at birth is

constant Vb = const., timer – the growth time/cycle duration is constant τcyc = const.

and adder – the added size is constant ∆V = const. B. Added size as a function of size at

birth for each mechanism with slopes −1, 0 and 1 for sizer, adder and timer respectively.

C. Corrections of long and short cell sizes across several subsequent generations, where

the dashed line indicates the target cell size. The size at birth Vb diverges from the target

size for the timer mechanism in the presence of noise in growth and division ratio.
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drawn from a probability distribution that depends on growth conditions: Vd = const.

where Vd is the cell size at division. In the timer model cells divide after a constant

time has elapsed since birth. In other words, the duration of the cell cycle (τcyc) is

constant for exponentially growing cells: τcyc = const. And lastly, the adder mechanism

proposes that cells divide upon adding a constant size (∆V ) between consecutive division

events: ∆V = Vd − Vb = const., where Vb is the cell size at birth. Each model shows a

characteristic slope when plotting the added cell size between birth and division against

the size at birth: −1, 0 and 1 for sizer, adder and timer respectively Figure 1.5 B.

While the sizer and adder model ensure cell size homeostasis, there is little to no cell size

correction in the timer morel (Figure 1.5 C).

Individual cells achieve size homeostasis via a negative feedback between the cell size

at birth and inter-division times [55, 56, 32, 57, 58]. A particular manifestation of this

principle is the adder model [55, 59, 25, 60, 32]. By virtue of this adder mechanism, larger

cells divide in less time than smaller cells, such that cells deviating from the homeostasis

cell size quickly converge to the average cell size in a few generations (Figure 1.5 C).

While this strategy for cell size homeostasis is followed by a wide range of bacterial

species including E. coli, B. subtilis, and Pseudomonas aeruginosa [59, 25, 60, 61, 32]),

the adder model does not readily reveal neither a molecular basis for cell size control nor

any connections between cell size and growth physiology.

In recent years, regulatory models have emerged that provide a molecular-level under-

standing of cell size control and the coupling between cell growth and division in bacteria.

First is the replication-initiation-centric model [62, 57, 63], where cell size is determined

by the time period of chromosome replication (C-period) and the interval between the end

of chromosome replication and cell division (D-period). In this model, the cell divides

after a fixed time interval (C + D period) since the initiation of chromosome replica-

tion. Second is the division-centric model for cell size control [25, 12, 64, 17, 65, 66],

where cell division is triggered by accumulation of a threshold amount of division pro-

teins [25, 12, 64, 65, 67] or cell envelope precursors [17]. However, how the synthesis of
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Figure 1.6: General cell-size law in bacteria A. Schematic adapted from Si et al.

[5] showing the general cell size law, where the cell volume V is related to the volume

V0 of unit cells as V (V0, τcyc, τ) = V02
τcyc/τ , where τcyc is the cell cycle duration (C +D

period) and τ is the cell doubling time. Each unit cell contains sufficient resources for

self-replication (active ribosomes, inactive ribosomes, and nonribosomal proteins). the

number of unit cells correlates with the number of overlapping cell cycles such that fast-

growing cells that initiate multiple rounds of DNA replication have more unit cells. B.

Experimental validation of the general growth law. After rescaling the cell volume by unit

cell volume V0 and the growth rate by τ−1
cyc, all data obtained for translation perturbations

and other types of perturbation (see legend) collapse onto the master curve V/V0 = 2τcyc/τ .

Data taken from [5].

division initiator proteins and the C + D period is controlled by the bacterial cells in

different growth conditions is not well understood, leaving open the relationship between

cell size, growth rate and division timing.

1.5 Bacterial cell size law

In recent work, Si et al. [5] established a general cell size law for bacteria that is able to

predict bacterial cell size for a wide range of genetic, antibiotic and nutrient perturbations.
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Using turbidostat in combination with high-throughput image analysis, Si et al. measured

the relationship between cell size and growth rate under perturbations to translation,

transcription, DNA replication, cell division and cell wall synthesis for a range of nutrient

limitations. Their findings experimentally confirmed the phenomenological relationship

between cell volume V , cell cycle duration τcyc (= C +D period) and the cell doubling

time τ originally proposed by [62] (Figure 1.6):

V = V02
τcyc/τ , (1.10)

where V0 is the cell size at initiation or size of a unit cell , which remains constant

(V0 ≈ 0.27µm3) under growth perturbations. Each unit cell contains all the necessary

components for self-replication [5] such that the cell size at division is the sum of all

the unit cells. Interestingly, the volume of a unit cell coincides with a B. subtilis bac-

terial spore volume (0.2 - 0.3 µm3) – the smallest self-sufficient bacterial compartment

[27, 31]. The general growth law for cell size accounts for cell cycles longer than the av-

erage doubling time (τcyc > τ) where the chromosome contains multiple replication forks

(Figure 1.6 A). After rescaling cell size with the initiation size and growth rate with the

inverse of the C +D period, all the available data collapse on the curve predicted by the

general growth law (Figure 1.6 B). The invariance of initiation mass with elongation rate

and birth size is consistent with the threshold initiation model – the molecular origin

of the adder model for cell size control (Chapter 2), but its mechanistic origin remains

unknown. Si et al. [5] discuss that the threshold initiation model alone is not sufficient

to explain the invariance of the unit cell. In addition, the initiator concentration must

also be independent of the growth conditions and growth inhibition. Furthermore, they

predicted the existence of a specific protein sector that is constant under physiological

perturbations that alter the ribosome fraction of the proteome.

1.6 Outline of the thesis

In Chapter 2, I focus on quantitative models of cell size control, introducing the threshold

initiation model for cell size homeostasis and an extended resource allocation model for
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understanding how bacterial cells optimize their macromolecular resources to control

cell sizes in response to nutrient conditions. I show how a nutrient-dependent trade-

off between resources allocated to growth and division leads to cell sizes in agreement

with experimental observations. The models suggest a possible molecular origin of the

phenomenological nutrient-growth law, connecting the gap between the single-cell growth

and division behaviour in E. coli cells (i.e. the adder model) and the population average

cell size scaling with the growth rate imposed by the growth medium.

The theory presented in Chapter 2 can also capture the divergence from the nutrient

growth law under translation inhibition. While under nutrient perturbations the alloca-

tion of resources is balanced between growth and division, under translation inhibition

the balance is broken leading to three distinct cell volume behaviour. Bacteria can in-

crease, decrease or keep their sizes constant under chloramphenicol treatment suggesting

distinct adaptive mechanisms based on the surface-to-volume changes for nutrient influx

promotion or decreased influx of antibiotics.

In Chapter 3, I investigate the shape of the cells in preparation of testing the results for

the three distinct behaviours of the cell size and therefore surface-to-volume ratio under

translation inhibition. I start by introducing a model for bacterial shape regulation which

leads to a universal scaling law between cell surface area and volume in bacterial cells.

This allows us to explain how the cell shape is regulated under nutrient perturbations,

therefore gaining a complete physiological description of the bacterial cells’ behaviour in

different growing media.

In Chapter 4, I study how the cell size and shape are altered by antibiotics and inves-

tigate how cell shape changes promote bacterial fitness to counter the growth inhibitory

action of antibiotics. I compare the theoretical predictions from Chapter 2 to experi-

mental data by simulating the dynamics between translation inhibition antibiotics and

ribosomes. Knowing the size and shape dependency on ribosomes from previous chapters,

we can also look at the dynamics of size and shape and compare their nutrient-dependent

response to different antibiotic concentrations to experimental data.
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In Chapter 5, I present a theoretical model for how bacteria allocate the intake energy

for the main physiological functions in the cell, such as metabolism, growth, division and

maintenance. The model proposed links the proteomic resource allocation strategies

proposed in Chapter 2 to the mechanical components of the cell.

Chapter 6 is the conclusion chapter, where I summarise the main findings of the thesis

and propose ideas for future work.
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Chapter 2

Theory of cell size control in bacteria

Cell size control emerges from a regulated balance between the rates of cell growth

and division. In bacteria, simple quantitative laws connect cellular growth rate to ribo-

some abundance. However, it remains poorly understood how the molecular components

control the cell size. In this Chapter I show how cell size maintenance under nutrient

perturbations emerges from a balanced trade-off between ribosomes and division protein

synthesis. Deviations from this trade-off relationship are predicted under translational

perturbations, leading to distinct modes of cell morphological changes, in agreement with

single-cell experimental data on Escherichia coli.

Part of this chapter is published in Serbanescu, D., Ojkic, N., & Banerjee, S. (2020). Nutrient-

dependent trade-offs between ribosomes and division protein synthesis control bacterial cell size and

growth. Cell reports, 32(12), 108183. [65]
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Cell size maintenance is essential for regulating cell physiology, function and fit-

ness [35]. Maintaining a characteristic cell size necessitates an intricate balance between

cell growth and division rates. How this balance is achieved in different growth condi-

tions remains an outstanding question. As discussed in Chapter 1, bacteria modulate

their growth rate in response to changes in nutrient conditions – the nutrient growth

law (Eq.1.9), while at the single-cell level, cell size homeostasis is achieved via the adder

mechanism, whereby cells add a constant volume between consecutive division events,

irrespective of the cell size at birth [57, 68, 69, 70]. However neither the phenomenological

population level size scaling with nutrient-imposed growth rate nor the single cell size

homeostasis achieved via the adder model reveal a molecular-level understanding of the

mechanism for size control.

Two distinct types of regulatory models have been proposed in recent years for the

control of bacterial cell size – (1) replication-initiation-centric model: cell size control

is set by the time period of chromosome replication and the subsequent cell division

(C + D period) [62, 63, 57], and (2) division-centric model: cell size is regulated by

the accumulation of a threshold amount of cell envelope precursors [71] or division pro-

teins (e.g. FtsZ) [12, 67]. In replication-initiation-centric models, cell size at division

is determined by the C + D period, but it remains poorly understood how C and D

periods are modulated by growth perturbations targeting translation or protein expres-

sion. Recent studies have challenged the replication-initiation-centric models for cell size

control [72, 73, 74, 12], suggesting concurrence of replication initiation and division pro-

cesses [73]. In particular, experiments have demonstrated that replication initiation and

cell division are independently controlled in E. coli and B. subtilis [12], and data support

a model that cell division is triggered by the accumulation of a threshold amount of

division proteins [25, 64]. However, it remains unknown how the synthesis of division

proteins is altered by nutrients or translational perturbations in order to regulate cell

size.

A key component in understanding cell size regulation is the interdependence be-
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tween growth rate and the macromolecular composition of the cell. The nutritional

content of the growth medium sets the specific growth rate [11, 8], which in turn regu-

lates the macromolecular composition of cells [75, 76]. For exponentially growing E.coli

cells, RNA and ribosome abundance increases linearly with increasing the specific growth

rate [77, 78, 79, 80, 81, 39]. This implies an upregulation in translation leading to in-

creased protein production for growth [81, 82, 83] and cell size inflation. While this model

is in agreement with experimental observations for cell size increase with increasing nutri-

ent concentrations, it fails to explain cell size changes under translation inhibition [81, 9].

In particular, it remains unclear whether translation inhibition would lead to an increase

in cell size such that there is a positive correlation between cell size and ribosome abun-

dance, or a decrease in cell size with growth rate reduction. Both these behaviors are

observed in experiments [9]. To explain how translation and nutrient quality regulates

cell morphologies, we develop a whole-cell coarse-grained theory that links ribosomes

with cell geometry, division control and the extracellular environment.

The proposed theoretical framework combines a mechanistic model of cell shape and

division with an extended ribosomal resource allocation model, allowing us to quanti-

tatively predict cell size changes under nutrient shifts and translational perturbations

(Chapter 4. We use ribosome abundance as the one of the key regulatory variables as

approximately 85% of cellular RNA encodes for rRNA that is folded in ribosomes [4, 3].

We also assume that all the nutrients transported from the extracellular medium into

the cell are used in the production of ribosomes and other proteins. This is because over

80% of cell’s energy budget for biomass is spent on rRNA and protein synthesis [84].

Using this framework, we uncover a model for balanced allocation of ribosomal resources

towards cell growth and division. We find that a balanced trade-off between the rates

of cell growth and synthesis of division proteins sets bacterial size under nutrient shifts.

As a result, in nutrient rich media, cells produce division proteins slower than the rate

of cell elongation leading to larger cell sizes.
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2.1 Cell size control emerges from nutrient-dependent trade-off between

rates of cellular growth and division protein synthesis

To understand how bacterial cell size changes with the nutrient specific growth rate,

we develop a model for the allocation of ribosomal resources towards cell growth and

division protein synthesis. During each cell cycle, cells elongate exponentially in volume

(V ) at a rate κ. At steady-state, κ depends linearly on the ribosomal mass fraction ϕR

(≈ RNA/protein ratio), such that

dV

dt
= κ(ϕR)V (t) , (2.1)

where κ(ϕR) = κt(ϕR−ϕmin
R ) [4] (Eq. 1.2). Here, κt can be interpreted as the translational

capacity of the cell, which correlates with the speed of translational elongation [85],

and ϕmin
R is the minimum mass fraction of ribosomes needed for growth (Figure 2.1 C

inset). The value for ϕmin
R is obtained from the intercept of κ as a function of ϕR from

experimental data [10, 9].

We combine this model for growth with a model for the control of cell division (Fig-

ure 2.1 A). The division proteins, X, are synthesised at a rate proportional to the cell

volume and degraded at a rate µ:

dX

dt
= kp(ϕR)V (t)− µX(t) , (2.2)

where kp(ϕR) is the rate of synthesis of division proteins that is assumed to be a function

of the ribosome mass fraction ϕR. Cell division is triggered when a threshold copy number

of division proteins, X0, is accumulated at the mid-plane of the cell (Figure 2.1 B). While

various proteins could be potential candidates for division initiation [86, 87, 88, 89], a

recent study identifies FtsZ as the key initiator protein that assembles a ring-like structure

in the mid-cell region to trigger septation [90]. We therefore suggest that X represents

FtsZ copy number, and assume that its turnover rate in the ring-bound state is much

faster than its rate of synthesis [91]. As a result, all the newly synthesised FtsZ in the

cytoplasm are assumed to be recruited in the ring. We note that the degradation of X

is consistent with reports of active degradation of FtsZ by ClpXP [92, 93, 90].
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Figure 2.1: Cell size control under nutrient perturbations. A. Schematic of

the threshold initiation model. Once a threshold amount of division proteins, X, is

accumulated, cell division is triggered. Division proteins are synthesized at a rate κp per

unit volume. B. Dynamics of cell volume and fraction of division proteins show that

the average added volume between consecutive division events is constant, consistent

with the phenomenological adder model [9]. C. Fitted model for average cell volume as a

function of ribosome mass fraction. Solid line: Full model fit with X protein degradation,

Dashed line: Approximate model with no X degradation (µ = 0). Inset: fitted linear

relationship κ = κt(ϕR − ϕmin
R ) [10]. D. Model prediction for the relationship between

the average volume and growth rate compared against an exponential fit as predicted by

the nutrient growth law [11].
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Figure 2.1: Continued caption. E. Schematic representation of the proteome allocation

model, showing ribsomal tradeoff between cell growth and division protein synthesis for

cells growing in poor and rich nutrient media. F. Negative correlation between the rate of

division protein synthesis and growth rate, as predicted by the model. Experimental data

are obtained from Si et al. [9] and Taheri-Araghi et al. [70]. In the experimental data κp

is estimated from the ratio κ/⟨V ⟩. See Table 7.2 for a complete list of parameter values.

Note: We introduce noise in the division ratio DR such that Vi+1(t = 0) = DRVi(t = τi),

where Vi+1(t = 0) is the volume of the cell in generation i + 1 at birth, Vi(t = τi) is the

volume of the cell in generation i at division, τi is the division time and DR is a Gaussian

random variable with mean 0.5 and standard deviation 0.05.

Solving Eq. (2.1) and Eq. (2.2), we obtain:

X0 = (Vd − Vb2
−µ/κ)kp/(κ+ µ) , (2.3)

where Vb and Vd are the cell volumes at birth and division, respectively. In the limit κ ≫

µ, we get X0 = ∆V kp/κ, where ∆V = Vd − Vb is the added volume per generation. As

X0, kp and κ are constant for a given growth medium, cells add a constant volume ∆V in

each growth generation, consistent with the phenomenological adder model. Conversely,

in the limit k ≪ µ, Vd ≈ X0µ/kp, consistent with data that E. coli deviates from an adder

in slow growing media [57, 90]. Furthermore, for symmetrically dividing bacterium, the

average newborn cell volume, ⟨Vb⟩, asymptotes to ∆V [94]. Therefore, average cell volume

⟨V ⟩ in a given growth medium is given by:

⟨V ⟩ = κ+ µ

κp(2− 2−µ/κ)
, (2.4)

where κp = kp/(2X0 ln 2), is the normalized rate of division protein synthesis. Thus, cell

volume can be modulated by perturbations in translation, as both κ and κp are functions

of the ribosomal mass fraction.

A key proposition for the model is a tradeoff between the ribosomes allocated for
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synthesizing growth and division proteins such that:

κP (ϕR) = κ0
P

(
ϕmax∗

R − ϕR

)
, (2.5)

where κ0
P = mxκt

ρcρ
(ϕmax

R − ϕmin
R ) and ϕmax∗

R =
κnϕmax

R +κtϕmin
R

(κn+κt)
. We interpret κ0

P as the rate of

production of FtsZ per ribosomes, and ϕmax∗
R as the ribosome mass fraction when growth

rate is maximum. Note that the parameter κ0
P can be perturbed by translation, whereas

ϕmax∗
R is regulated by both translational and nutritional capacities of the cell.

By combining the expressions for growth rate and division proteins synthesis rate, we

find:

⟨V ⟩ = κt(ϕR − ϕmin
R ) + µ

κ0
p(ϕ

max∗
R − ϕR)(2− 2−µ/κ(ϕR))

, (2.6)

such that average cell size increases with increasing ribosome abundance. We fit the

expression in Eq. (2.6) to experimental data [9] in order to determine the parameters

κ0
p, µ, and r∗max (Figure 2.1 C, solid line). Importantly, we find that µ = 0.24 h−1,

allowing us to approximate the average volume as the ratio of growth rate to the rate of

division protein synthesis: ⟨V ⟩ ≈ κ/κp =
κt(r−rmin)
κ0
p(r

∗
max−r)

(Figure 2.1 C, dashed line). Thus κp

can be indirectly measured from κ/⟨V ⟩ data across different growth conditions. Direct

measurement of κp would necessitate measuring the rate of change in FtsZ fluorescence

intensity per unit cell volume during cell division cycles.

We can then express the average cell volume as a function of nutrient specific growth

rate, recapitulating Schaecter et al.’s nutrient growth law [11] (Eq. 1.9) that cell size

increases monotonically with increasing growth rate:

⟨V ⟩ = κ

κ0
p(ϕ

max∗
R − ϕmin

R )− κ0
p

κt
κ
. (2.7)

With no further fitting, we directly compare the prediction in Eq. (2.7) with ex-

perimental data for E. coli cell volume under nutrient perturbations (Figure 2.1 D).

The result in Eq. (2.7) deviates from the phenomenological model of exponential de-

pendence between cell size and growth rate, and predicts a maximum growth rate,

κmax = κt(r
∗
max − rmin) ≈ 3.1h−1, when all ribosomal resources are allocated towards
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growth. Our model captures the departure from an exponential relationship between

cell size and growth rate for κ < 0.7 h−1, as recently reported by Zheng et al [13] (Fig-

ure 2.2 A). We also find that a linear relationship between cell size and growth rate does

not accurately capture the cell size data for the range of growth rates studied in this

work.

2.2 Mechanistic origin of ribosomal tradeoff between growth and division.

To understand the mechanistic origin of the ribosomal tradeoff between growth and divi-

sion protein synthesis (Eq. 2.5), we develop a model for allocation of ribosomal resources,

extending the framework of Scott et al [10]. The total protein content of the cell can be

decomposed into four classes (Figure 2.1): ribosome-affiliated proteins (R, mass fraction

ϕR), house-keeping proteins not affected by translation (Q, mass fraction ϕQ), division

proteins (X, mass fraction ϕX), and the rest non-ribosomal proteins that constitute the

metabolic sector (P, mass fraction ϕP ). The mass fractions are constrained by the equa-

tion: ϕR + ϕX + ϕP = 1 − ϕQ = ϕmax
R = constant. For different combinations of the

nutritional and translation capacities of the cell, efficient resource allocation requires

that the abundance of P- and R-class proteins be adjusted so that the rate of nutrient

influx by P matches the rate of protein synthesis achievable by R: κnϕP = κt(ϕR−ϕmin
R ),

where κn is the nutritional capacity of the cell. This results in the following relation

between the mass fractions of ribosomes and division proteins:

ϕR − ϕmin
R

ϕmax
R − ϕR − ϕX

=
κn

κt

, (2.8)

predicting a negative correlation between ϕX and ϕR under nutrient or translational

perturbations (Figure 2.2 C). Using a dynamic proteome sector model we can derive

that the rate of production of division proteins, κp, is proportional to ϕX during steady-

state growth.
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2.3 Dynamic proteome sector model for the rate of production of division

proteins

The total mass of division proteins, MX , increases at a rate proportional to the amount

of actively translating ribosomes, Nactive
R ,

dMX

dt
= afXktN

active
R , (2.9)

where Nactive
R = NR −Nmin

R , NR is the total number of ribosomes, Nmin
R is the number of

ribosomes not participating in protein synthesis, kt is the rate of translation per ribosome,

fX is the fraction of ribosomes devoted to synthesizing X, and a is the concentration of

amino acids. Similarly, dMR/dt = afRktN
active
R , dMP/dt = afPktN

active
R , and dMQ/dt =

afQktN
active
R , where MR, MP and MQ are masses of R, P and Q sector proteins, fP , fR,

and fQ = 1 − fR − fX − fP are the fractions of ribosomes devoted to synthesizing each

of these sectors. Therefore, the total dry mass of the cell, M = MP +MX +MR +MQ,

increases at a rate proportional to the number of active ribosomes,

dM

dt
= aktN

active
R . (2.10)

If mR is the mass of individual ribosomes, we get,

dMX

dt
= afXkt(MR −Mmin

R )/mR . (2.11)

The instantaneous mass fraction of X, ϕX(t) = MX(t)/M(t), then satisfies:

dϕX

dt
+ κϕX =

fXkt
mR

a(ϕR − ϕmin
R ) , (2.12)

where ϕR is the mass of fraction of ribosomes. At steady-state ϕX = fX , using the

relation: κ = kta(ϕR − ϕmin
R )/mR. We can rewrite the above equation in terms of the

concentration of X, cX = ϕXρc/mx, where ρc is the mass density of the cell, and mx is

the mass of an individual X molecule. This gives us,

dcX
dt

+ κcX =
fXktmx

mRρc
a(ϕR − ϕmin

R ) . (2.13)
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Using X = cXV , where X is total amount of division proteins in the cell, we derive

dynamics of division protein accumulation,

dX

dt
=

fXktmx

mRρc
a(ϕR − ϕmin

R )V . (2.14)

The above equation allows us to identify the division protein production rate as,

kp =
fXktmx

mRρc
a(ϕR − ϕmin

R ) . (2.15)

The steady-state concentration of amino acids is determined by the balance between the

rate of nutrient influx by transporters and the rate of translation by active ribosomes [8],

da

dt
= knϕP − aκt(ϕR − ϕmin

R ) , (2.16)

where ϕP is the mass fraction of P-sector metabolic proteins, and κt = ktaρ/mR. At

steady-state, we have a(ϕR − ϕmin
R ) = knϕP/κt. Using ϕX = ϕmax

R − ϕR − ϕP , we obtain

ϕR =
1

κn + κt

(
ϕmax
R κn + κtϕ

min
R − ϕXκn

)
, (2.17)

where κn = kn/a. Therefore, kp ∝ ϕXϕP = ϕX(ϕ
max
R − ϕR − ϕX) ≈ ϕX(ϕ

max
R − (ϕmax

R κn +

κtϕ
min
R )/(κn+κt)), assuming that ϕX occupies a small fraction of the proteome. We thus

get: kp ≈ ϕX(
mx

ρcρ
)κnκt(ϕ

max
R − ϕmin

R )/(κt + κn). In terms of ribosome mass fraction, the

rate of production of division proteins is then given by:

kp =
mxκt

ρcρ
(ϕmax

R − ϕmin
R )

(
κnϕ

max
R + κtϕ

min
R

(κn + κt)
− ϕR

)
, (2.18)

where we identify κ0
p ∝ κt(ϕ

max
R − ϕmin

R ) and ϕmax∗
R = (κnϕ

max
R + κtϕ

min
R )/ρ(κn + κt) from

Eq. 2.5. Thus the tradeoff between ribosomes, growth and division protein synthesis

naturally emerges in an extended proteome allocation model. Growth rate κ decreases

with increased allocation of resources towards division proteins ϕX (Figure 2.1 E-F, and

Figure 2.2 D):

κ =
κnκt

κn + κt

(ϕmax
R − ϕmin

R − ϕX)/ρ . (2.19)
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With all the model parameters inferred from experimental data (Table 1), we can plot

the dependency of κp on κ (Figure 2.1 F), showing the negative correlation between the

division protein synthesis rate and the volumetric growth rate, and directly predict the

dependency of cell volume on growth rate (Figure 2.2 B). Cells growing in poor nutrient

medium allocate a smaller fraction of ribosomes towards growth, resulting in smaller size

on average. However, cells growing in rich nutrients inflate their size by allocating a

larger fraction of ribosomes towards growth (Figure 2.1 E).

2.4 Translation inhibition breaks balanced allocation of ribosomal resources

In a given nutrient medium, κ/κp is maintained at a constant value, indicating a balance

between growth and division protein synthesis. If κ/κp remains invariant under transla-

tion inhibition, we expect cell size to remain unchanged, as previously suggested by Basan

et al. [81]. However, experimental data [9] show that cell size could either increase, de-

crease or remain unchanged when E. coli cells are subjected to varying concentrations

of Chloramphenicol – a ribosome-targeting antibiotic. We therefore hypothesize that

translation inhibition breaks balanced allocation of ribosomal resources towards growth

and division proteins, by differentially reducing the rates κ and κp.

Under translation inhibition, bacteria produce more ribosomes to compensate for the

inactive ribosomes that are bound by antibiotics [4]. By measuring bacterial growth rates

(κ) and ribosome mass fractions (ϕR) for increasing concentrations of Chloramphenicol,

Scott et al. [4] found that κ linearly decreases with ϕR. In the presence of a division

protein sector, the relationship between κ and ϕR is given by:

κ = κn(ϕ
max
R − ϕX − ϕR) , (2.20)

where κn is the nutritional capacity that depends on nutrient quality, ϕmax
R is the maxi-

mum ribosome fraction that cells can produce under translation inhibition. By combining

Eq. (2.5) with Eq. (2.20), we obtain:

κp = κ0
p(κ/κn + δr) (2.21)
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Figure 2.2: Prediction of the proteome allocation theory. A. Cell size versus

growth rate, plotted in semi-log scale. B. Theoretical prediction for cell size using ⟨V ⟩ =

κ/(κ0
p

(
ϕmax∗
R − ϕmin

R

)
− κ0

pκ/κt, where ϕmax∗
R depends on the nutrient specific growth

rate: ϕmax∗
R = (κnϕ

max
R + κtϕ

min
R ) / (κn + κt) C. Dependence of the division protein mass

fraction ϕX on the ribosome mass fraction ϕR. The tradeoff between ϕX and ϕR can be

modeulated by translational (κt)) or nutritional (κn) perturbations. ρ is a conversion

factor between ribosome mass fraction and ribosome concentration (r): ρ ≈ 0.8 [4],

ϕmin
R = ρrmin ≈ 0.08, ϕmax

R = ρrmax ≈ 0.56. D. The same perturbations as in C. showing

the relationship between ϕX and growth rate.

where δr = ϕmax∗
R − ϕmax

R + ϕX can be interpreted as the excess ribosomal mass frac-

tion allocated to division protein synthesis under translation inhibition. By combining
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Eqs. 2.5, 2.8 and 2.20 we obtain a theoretical expression for the excess ribosomal mass

fraction as a function of the growth rate: δr = κn∆r/(κn+κt)−κ(κn+κt)/(κnκt), where

∆r = ϕmax
R − ϕmin

R . Since κn increases with κ (Figure 2.3 C-inset), we predict that δr

increases monotonically with nutrient specific growth rate (Figure 2.3 D, solid line).

Unlike nutrient perturbations, we find that κp and κ are positively correlated under

translation inhibition (Figure 2.3 A), such that they both decrease with increasing an-

tibiotic concentration. Eq. (2.21) can be combined with Eq. (2.4) to determine how cell

volume changes as a function of growth rate under translation inhibition:

⟨V ⟩ =
κ/κ0

p

κ/κn + δr
. (2.22)

Interestingly, the above expression predicts three distinct behaviors for the cell volume

(Figure 2.3 B):


δr > 0 → r∗max + rX > rmax : more ribosomes allocated to division, V decreases

δr = 0 → r∗max + rX = rmax : ribosomes equally shared between growth and division

δr < 0 → r∗max + rX < rmax : excess ribosomes allocated to growth, V increases.

We determine the parameters δr and κn for each growth medium, by fitting Eq. (2.21)

to the experimental data for κp vs cell growth rate κ under Chloramphenicol perturba-

tions [9] (Figure 2.3 C). We find that δr < 0 in poor media, δr > 0 in rich growth

media, whereas δr ≈ 0 for cells growing with medium growth rates (Figure 2.3 D). These

data are consistent with our theoretical result that δr increases linearly with the nu-

trient specific growth rate (Figure 2.3 D-solid line). We interpret the above result as

cells allocating excess ribosomes for growth in poor media, whereas in rich media cells

tend to allocate more ribosomal resources for division protein synthesis. With no further

adjustable parameters, our theory predicts the cell volume curves for each growth condi-

tions, which are in excellent quantitatively agreement with the trend in the experimental

data (Figure 2.3 E).
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Figure 2.3: Cell size control under translation inhibition. A.Model prediction for

the dependence of division protein synthesis rate κp on growth rate κ under translation

inhibition for three values of δr. Decreasing κn corresponds to decreasing the nutrient

quality of the growth medium. B. Model predictions for cell volume versus growth rate

under translation inhibition, capturing three distinct trends in cell size changes depending

on the value of δr. C. Model fit to experimental data for κp in three different nutrient

conditions under translation inhibition. Inset: dependence of nutritional capacity κn

on the growth rate, Solid line is a fit of the form κn = κtκ/ (κm − κ), with the fitting

parameter κm = 2.6. D. Dependence of δr on nutrient-specific growth rate. Solid like

shows the theoretical prediction for the dependence of δr on nutrient-specific growth

rate δr = −κm

κ
+ (ϕmax

R − ϕmin
R ) κ

κm
. E. Cell volume as a function of growth rate under

translation inhibition.
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Figure 2.3: Continued caption. F. Three distinct morphological responses to chloram-

phenicol, depending on the quality of nutrients. Volume and growth rates are normal-

ized by their initial values before chloramphenicol is applied. In nutrient-rich media,

cells allocate more ribosomes to division (dark blue line), thus increasing the surface-to-

volume ratio to promote nutrient influx, whereas in nutrient-poor media they allocate

more ribosome toward growth, inflating the cell size (yellow line) and in turn decrease

the surface-to-volume ratio to reduce the antibiotic influx. See Tables 7.1 and 7.2 for a

complete list of parameter values.

2.5 Discussion

We develop a whole-cell coarse-grained model for bacterial growth dynamics that con-

nects intracellular control of translation, division control and extracellular environment.

This provides a promising theoretical framework that quantitatively captures available

experimental data for bacterial cell size and shape dynamics under nutrient and trans-

lational perturbations. During nutrient shifts, the ribosomal resources are optimally

allocated to maintain a balanced trade-off between the rates of cell growth and division

protein (FtsZ) synthesis. In rich nutrient media, more ribosomes are used for growth than

division protein synthesis, leading to cell size inflation with increasing nutrient quality.

Conversely in nutrient-poor media, cells allocate more ribosomal resources for division

protein synthesis than growth, leading to a reduction in average cell size. This principle

underlies the molecular basis for the celebrated nutrient growth law [11, 9], and can be

interpreted as an optimization principle for cellular economy. Based on this principle,

the resources allocated to a particular proteomic sector are inversely proportional to the

efficiency of that sector [95]. In nutrient-rich media, cells invest more ribosomal resources

to growth in order to compensate for a lower translational capacity. The latter can arise

from an increased dilution rate of ribosomes under fast growth conditions, lowering the

efficiency of protein synthesis. In nutrient-poor media, cells have a lower nutritional ca-

pacity that they compensate by allocating more resources to metabolism and division
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Figure 2.4: Prediction of the proteome allocation theory. Relationship be-

tween cell size, division protein production rate and C+D period. A. Scatter

plot showing the negative correlation between kp and C+D, with data taken from [12].

κp is estimated using the relation κp ≈ κ/V . Dashed line is the best fit of the predicted

relation kappap ∝ (C + D)−1, suggesting that measurements of C + D period could

reliably predict the production rate of the division proteins. B. Estimating κp from

measurements of the C +D period. Dashed line is a fit through the origin as predicted

by [13] and solid line is unconstrained linear fit. For each growth condition we removed

the outliers that are more than three standard deviations away from the mean and then

binned the data. C. Relationship between cell size and κ(C + D). The gray line is a

linear fit to data from Zheng et al. [13]. The red line is an exponential fit to data from

Zheng et al. [13], Zhu et al. [14] and Basan et al. [15]. Data from Si et al. [5] is shown

on y-axis to the right. We observe that a linear fit works well for κ(C +D) < 2.

protein synthesis.

To explain the mechanistic origin of the ribosomal tradeoff between growth and di-

vision protein synthesis, we propose a proteome allocation theory, extending the sector

model introduced by Scott et al. [10]. In particular, we introduce a division protein sector

X in the proteome, and derive a constitutive relation that the mass fraction of X, ϕX , is a

linearly decreasing function of the mass fraction of ribosomes, ϕR. Existing experimental

data support our model, and also falsify other possible models with X in the R-sector or
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the Q-sector. In particular, if X is the R or Q sector we would expect cell size to always

decrease under translation inhibition, a result that is inconsistent with experimental

data [81, 9]. A recent study by Bertaux et al. [96] also incorporated division protein

sector in a proteome model, extending the minimal Promoters-Transporters-Ribosomes

cell model of Pandey and Jain [95]. In contrast to our theory, the authors assumed a

phenomenological form for the dependence of ϕX on ϕP and ϕR: ϕX ∝ ϕα
Pϕ

β
R, where the

exponents α and β are deduced by fitting experimental data. The findings of Bertaux et

al. are consistent with our results for cell size control under nutrient perturbations.

Basan et al. showed that the cell size increases or decreases with growth rate de-

pending on the type of growth limitation [81]. In particular, when E. coli cells synthesize

useless proteins, the cell size increases compared to the wild-type cells growing at sim-

ilar rates. The useless protein over-expression decreases the growth rate by reducing

ϕmax∗
R . Our model can capture the increase in volume if the division protein synthesis

rate κp is reduced more than the growth rate κ, from Eq. 2.6. However, we do not have

experimental data to capture κp or ϕmax∗
R when the useless proteins are over-expressed.

Our model for division control is chromosome agnostic, and is thus inadequate for

capturing the single-cell correlation patterns related to DNA replication initiation and

segregation periods [73, 74]. However, we find that the rate of production of division

proteins, κp, is proportional (C +D)−1 (Figure 2.4 A-B), where C is the duration from

initiation to termination of one round of DNA replication, and D is the time period from

replication termination to cell division. This relationship between adder protein synthesis

and chromosome dynamics emerges from combining the principle of balanced biosynthesis

κp ∝ κ [90] with the relation C + D ∝ κ−1 [97]. The proportionality κp ∝ (C + D)−1

also emerges from the recent model suggested by Zheng et al that cell size is linearly

proportional to κ(C + D) [13]. Using V ∝ κ(C + D) in conjunction with our theory

V ∝ κ/κp also reveals κp ∝ (C+D)−1, consistent with experimental data [90]. However,

we note that a linear relationship between cell size and κ(C + D) does not accurately

describe all available experimental data [81, 98, 9] for cell size (Figure 2.4 C).
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In this chapter I showed how a balanced trade-off between resources allocated for

growth and division captures the cell size and shape dynamics under nutrient perturba-

tions and translation inhibition. Interestingly, we find that under translation inhibition

the balance is broken in a nutrient-dependent manner, with more ribosomes allocated to

division leading to smaller cells in nutrient rich conditions. Conversely, in nutrient-poor

conditions cells allocate more resources to growth thus increasing their size under chlo-

ramphenicol perturbations. The distinct mechanisms suggest that the cell shape plays

an important role in cellular fitness. Bacteria promote nutrient influx by decreasing

the volume or they reduce antibiotic influx by increasing the volume. To explore this

idea, I introduce the cell shape in the next chapter and the morphological changes under

antibiotic perturbations in Chapter 4.
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Chapter 3

Control of bacterial cell shape

Rod-shaped bacterial cells can readily adapt their lengths and widths in response to

environmental changes. While many recent studies have focused on the mechanisms un-

derlying bacterial cell size control, it remains largely unknown how the coupling between

cell length and width results in robust control of rod-like bacterial shapes. We uncover

a conserved surface-to-volume scaling relation in Escherichia coli and other rod-shaped

bacteria, resulting from the preservation of cell aspect ratio. To explain the mechanistic

origin of aspect-ratio control, we propose a quantitative model for the coupling between

bacterial cell elongation and the accumulation of an essential division protein (FtsZ).

This model reveals a mechanism for why bacterial aspect ratio is independent of cell size

and growth conditions.

Part of this chapter is published in Ojkic, N., Serbanescu, D., & Banerjee, S. (2019). Surface-to-

volume scaling and aspect ratio preservation in rod-shaped bacteria. Elife, 8, e47033. [67]

Nikola Ojkic did the shape analysis and the simulations in Figure 3.3 and we collaborated on the theory

in section 3.2.
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Cell morphology is an important adaptive trait that is crucial for bacterial growth,

motility, nutrient uptake, and proliferation [35]. When rod-shaped bacteria grow in

media with different nutrient availability, both cell length and width increase with growth

rate [11, 5]. At the single-cell level, control of cell volume in many rod-shaped cells is

achieved via an adder mechanism [55, 59, 32, 57, 56] or an initiator model as presented

in Chapter 2. A recent study has linked the determination of cell size to a condition-

dependent regulation of cell surface-to-volume ratio [17]. However, it remains largely

unknown how cell length and width are coupled to regulate rod-like bacterial shapes in

diverse growth conditions [99, 100, 101, 102].

3.1 Surface-to-volume scaling and aspect ratio conservation at population

level

Here we investigated the relation between cell surface area (S) and cell volume (V )

for E. coli cells grown under different nutrient conditions, challenged with antibiotics,

protein overexpression or depletion, and single gene deletions [16, 17, 5, 18, 19]. Collected

surface and volume data span two orders of magnitude and exhibit a single power law

in this regime: S = γV 2/3 (Figure. 3.1 A). Specifically, during steady-state growth [5],

γ = 6.24± 0.04, suggesting an elegant geometric relation: S ≈ 2πV 2/3. This surface-to-

volume scaling with a constant prefactor γ is a consequence of tight control of cell aspect

ratio η = L
W

(length/width) (Figure 3.1 D), whose mechanistic origin has been puzzling

for almost half a century [103, 104]. Specifically, for a sphero-cylindrical bacterium,

S = γV 2/3 implies γ = ηπ
(
ηπ
4
− π

12

)−2/3
. A constant γ thus defines a constant aspect ratio

η = 4.14 ± 0.17 (Figure 3.1 B-inset), with a coefficient of variation ≈ 14% (Figure 3.1 B).

The surface-to-volume relation for steady-state growth, S ≈ 2πV 2/3, results in a

simple expression for cell surface-to-volume ratio:

S/V ≈ 2πV −1/3 . (3.1)

Using the phenomenological nutrient growth law V = V0e
ακ [11] (Eq. 1.9), where κ is
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Figure 3.1: Surface-to-volume scaling in E. coli bacteria. A. E. coli cells subjected

to different antibiotics, nutrient conditions, protein overexpression/depletion, and single

gene deletions [16, 5, 17, 18, 19, 20], follow the scaling relation between population-

averaged surface area (S) and volume (V ): S = γV 2/3 (legend on the right, 5011 data

points). Best fit shown in dashed black line for steady-state data from [5] gives γ =

6.24 ± 0.04, and a power law exponent 0.671 ± 0.006. For single deletion Keio set [19],

the best fit curve is S = 5.79V 2/3. B. Aspect-ratio distribution for cells growing in

steady-state, corresponding to the data in A [5]. (Inset) Relationship between γ and

aspect ratio η for a sphero-cylinder (red line). Best fit from A shown with horizontal

green band gives aspect ratio 4.14 ± 0.17. C. S/V vs growth rate. Model line uses

S = 2πV 2/3 and the nutrient growth law (Eq. 1.9). Data from [5].
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Figure 3.1: Continued caption. D. Cell length versus 2(C+D)/τ . Data used from [5]. Here

C is time from initiaton to termination of DNA replication, D is time from termination

of DNA replication to cell division, and τ is doubling time. Green solid line is calculated

assuming S = 2πV 2/3 and dashed black line is best fit curve.
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Figure 3.2: Surface-to-volume scaling in rod-shaped bacteria. A. S-V relation

for various bacterial cell shapes. Black dashed line: Small, medium, and large rod-

shaped cells with a conserved aspect ratio of 4 follow the relation: S = 2πV 2/3. Gray

dashed line: Filamentous cells with constant cell width follow the scaling law: S ∝

V . Red dashed line: Spheres follow S ∝ V 2/3. B. S vs V for 49 different bacterial

species [21, 22, 23, 24, 25, 26, 17, 27, 28, 29, 30, 31, 20], and one rod-shaped Archaea

(H. volcanii). Rod-shaped cells lie on S = 2πV 2/3 line, above the line are Spirochete and

below the line are coccoid. For coccoid S. aureus exposed to different antibiotics best

fit is S = 4.92V 2/3, with preserved aspect ratio η = 1.38 ± 0.18. Red dashed line is for

spheres.

the population growth rate, a negative correlation emerges between S/V and κ:

S/V ≈ 2πV
−1/3
0 e−ακ/3 , (3.2)

with V0 the cell volume at κ = 0, and α is the relative rate of increase in V with κ

(Fig. 3.1C).
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Eq. 3.2 underlies an adaptive feedback response of the cell — at low nutrient con-

ditions, cells increase their surface-to-volume ratio to promote nutrient influx [5, 71].

Prediction from Eq. (3.2) is in excellent agreement with the best fit to the experimental

data. Furthermore, a constant aspect ratio of ≈ 4 implies V ≈
√
8W 3 and S ≈ 4πW 2,

where w is the cell width, suggesting stronger geometric constraints than recently pro-

posed [71, 102]. Thus, knowing cell volume as a function of cell cycle parameters [5]

we can directly predict cell length under changes in growth media, in agreement with

experimental data (Figure 3.1 D). We further analysed cell shape data for 48 rod-shaped

bacteria, 1 rod-shaped Archaea (H. vulcanii), two long spiral Spirochete, and one coccoid

bacteria (Fig. 3.2B). Collected data for all rod-shaped cells follow closely the relationship

S ≈ 2πV 2/3, while the long Spirochetes deviate from this curve (Fig. 3.2A-B). Coccoid

S. aureus also follows the universal scaling relation S = γV 2/3 (with γ = 4.92), but main-

tains a much lower aspect ratio η = 1.38± 0.18 [28] when exposed to different antibiotics

(Fig. 3.2A-B). Therefore, aspect-ratio preservation likely emerges from a mechanism that

is common to diverse rod-shaped and coccoid bacterial species.

3.2 Surface-to-volume scaling and aspect ratio conservation in single cells

To investigate how aspect ratio is regulated at the single cell level we analysed the mor-

phologies of E. coli cells grown in the mother machine [32] (Fig. 3.3 A-B). For five

different growth media, mean volume and surface area of newborn cells also follow the

relationship S = 2πV 2/3, suggesting that a fixed aspect ratio is maintained on average.

In the single-cell data, slight deviation from the 2/3 scaling is a consequence of large fluc-

tuations in newborn cell lengths for a given cell width [67]. Importantly, the probability

distribution of aspect ratio is independent of the growth media (Fig. 3.3 B), implying

that cellular aspect ratio is independent of cell size as well as growth rate.

To explain the origin of aspect ratio homeostasis we developed a quantitative model

for cell shape dynamics that accounts for the coupling between cell elongation and the

accumulation of cell division proteins FtsZ (Figure 3.3 C). The model is thus only appli-

cable to bacteria that divide using the FtsZ machinery. E. coli and other rod-like bacteria
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newborn cell aspect ratio is independent of growth rate, fitted by a log-normal distribution
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Figure 3.3: Continued caption. At birth, cells contain P ∗ molecules in the cytoplasm.

Amount of FtsZ recruited in the ring is Pr. Cells divide when Pr = P0 ∝ W , where W is

the cell with. P vs time and L vs time are reproduced from model simulations. D. Ratio

of added length ∆L and cell width during one cell cycle is constant and independent of

growth rate. Error bars ±1 standard deviation. Note: In simulations, when Pr reaches

the threshold P0, the mother cell divides into two daughter cells whose lengths are 0.5±δ.

Parameter δ is picked from a Gaussian distribution (µ = 0, σ = 0.05).

maintain a constant width during their cell cycle while elongating exponentially in length

L [105, 32]: dL/dt = kL, with k the elongation rate. Note that here k is the elongation

rate whereas κ in Chapter 2 is the volumetric growth rate. Cell division is triggered when

a constant length is added per division cycle — a mechanism that is captured by a model

for threshold accumulation of division initiator proteins, produced at a rate proportional

to cell size [15, 25, 64] - same mechanism as in Chapter 2, with slight variation in the

threshold value which will be explained below. While many molecular candidates have

been suggested as initiators of division [106], a recent study [12] has identified FtsZ as

the key initiator protein that assembles a ring-like structure in the mid-cell region to

trigger septation.

Dynamics of division protein accumulation can be described using a two-component

model. First, a cytoplasmic component with abundance Pc grows in proportion to cell

size (∝ L), as ribosome content increases with cell size [107]. Second, a ring-bound

component, Pr, is assembled from the cytoplasmic pool at a constant rate. Dynamics of

the cytoplasmic and ring-bound FtsZ are given by:

dPc

dt
= −kbPc + kdPr + kPL , (3.3)

dPr

dt
= kbPc − kdPr , (3.4)

where kP is the constant production rate of cytoplasmic FtsZ, kb is the rate of binding

of cytoplasmic FtsZ to the Z-ring, and kd is the rate of disassembly of Z-ring bound
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FtsZ. Note that the division proteins number described by X in Chapter 2 is normalised,

therefore varying from 0 to 1 during the cell cycle whereas here the same division proteins

are described by non-normalized numbers and therefore called P for distinction, with

synthesis rate kp instead of κP .

At the start of the cell cycle, we have Pc = P ∗ (a constant) and Pr = 0. The cell

divides when Pr reaches a threshold amount, P0, required for the completion of ring

assembly. A key ingredient of our model is that P0 scales linearly with the cell circum-

ference, P0 = ρπW , preserving the density ρ of FtsZ in the ring. This is consistent with

experimental findings that the total FtsZ scales with the cell width [108]. Accumulation

of FtsZ proteins, P = Pc + Pr − P ∗, follows the equation: dP/dt = kPL, where kP is

the production rate of division proteins, with P = 0 at the start of the division cycle.

We assume that kb ≫ kd, such that all the newly synthesized cytoplasmic proteins are

recruited to the Z-ring at a rate much faster than growth rate [109]. As a result, cell

division occurs when P = P0 (Fig. 3.3C). Upon division P is reset to 0 for the two

daughter cells. It is reasonable to assume that all the FtsZ proteins are in filamentous

form at cell division, as the concentration of FtsZ in an average E. coli cell is in the range

4− 10µM , much higher than the critical concentration 1µM [110].

From the model it follows that during one division cycle cells grow by adding a length

∆L = P0k/kP , which equals the homeostatic length of newborn cells. Furthermore,

recent experiments suggest that the amount of FtsZ synthesised per unit cell length,

dP/dL, is constant [12]. This implies,

dL

dP
=

k

kP
=

∆L

P0

∝ ∆L

W
= const. (3.5)

Aspect ratio homeostasis is thus achieved via a balance between the rates of cell elon-

gation and division protein production, consistent with observations that FtsZ overex-

pression leads to minicells and FtsZ depletion induces elongated phenotypes [111, 112].

Indeed single cell E. coli data [32] show that ∆L/W is constant on average and indepen-

dent of growth conditions (Figure 3.3 D). Furthermore, added length correlates with cell

width during one cell cycle implying that the cell width is a good predictor for added
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cell length [67].
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Figure 3.4: Aspect ratio preservation during nutrient shifts at the single cell

level. A-C. At time t = 0h cells are exposed to nutrient upshift or downshift. Pop-

ulation average of n = 105 simulated cells. A. Growth rate κ vs time used as input

for simulations. B. Population-averaged cell length and width vs time. C. Population-

averaged aspect ratio of newborn cells vs time. Changes in cell width and length result

in a transient increase in aspect ratio during nutrient downshifts, or a transient decrease

during nutrient upshifts. Note: When Pr reaches the threshold P0, the mother cell di-

vides into two daughter cells whose lengths are 0.5 ± δ. Parameter δ is picked from a

Gaussian distribution (µ = 0, σ = 0.05).

3.3 Aspect ratio is conserved during nutrient shifts

To predict cell-shape dynamics under perturbations to growth conditions we simulated

the single-cell model (Figure 3.4) with an additional equation for cell width derived from

a the model proposed by Harris and Theriot [17]: dS/dt = βV , where β is the rate of

surface area synthesis relative to the volume. This model leads to an equation for the

control of cell width for a sphero-cylinder shaped bacterium, such that W = 4k/β at

steady-state. It then follows from Eq. 3.5 that the added cell length ∆L ∝ k2

kpβ
. Note

that this model is mechanistically different from the one proposed by Harris and Theriot.

In the latter cells accumulate a threshold amount of excess surface area material to
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trigger septation, which does not lead to aspect ratio preservation. By contrast, in the

model proposed here and in [67] cells divide when they accumulate a threshold amount

of division proteins in the Z-ring, proportional to the cell diameter.

We simulated nutrient shift experiments using the coupled equations for cell length,

width and division protein production. When simulated cells are exposed to new nu-

trient conditions, changes in cell width (Figure 3.4 B) result in a transient increase in

aspect ratio (η = L/W ) during nutrient downshift, or a transient decrease in η during

nutrient upshift (Figure 3.4 C). After nutrient shift, aspect ratio reaches its pre-stimulus

homeostatic value over multiple generations. Typical timescale for transition to the new

steady-state is controlled by the growth rate of the new medium (∝ k−1), such that the

cell shape parameters reach a steady state faster in media with higher growth rate. This

result is consistent with the experimental observation that newborn aspect ratio reaches

equilibrium faster in fast growing media [32].In our model, cell shape changes are con-

trolled by two parameters: the ratio k/kp that determines the cell aspect ratio and k/β

that controls the cell width. Nutrient upshifts or downshifts only change the ratio k/β

while keeping the steady state aspect ratio constant.

3.4 Discussion

The conserved surface-to-volume scaling in diverse bacterial species S ∝ V 2/3 is a direct

consequence of aspect-ratio homeostasis at the single-cell level. We present a regulatory

model (Figure 3.3 C) where aspect-ratio control is the consequence of a constant ratio

between the rate of cell elongation (k) and division protein accumulation (kP ). Devia-

tion from the homeostatic aspect ratio is a consequence of altered k/kP , as observed in

filamentous cells, FtsZ or MreB depleted cells ([67]).

These results suggests that cell width is an essential shape parameter for determining

cell length in E. coli. This is to be contrasted with B. subtilis, where cell width stays

approximately constant across different media, while elongating in length [113]. However,

FtsZ recruitment in B. subtilis is additionally controlled by effector UgtP, which localises

to the division site in a nutrient-dependent manner and prevents Z-ring assembly [114]
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[115]. This can be interpreted as a reduction in kP with increasing k, within the frame-

work of our model. As a result, B. subtilis aspect ratio (∝ k/kP ) is predicted to increase

with increasing growth rate.

Aspect ratio control may have several adaptive benefits. For instance, increasing

cell surface-to-volume ratio under low nutrient conditions can result in an increased

nutrient influx to promote cell growth (Figure 3.3 C). Under translation inhibition by

ribosome-targeting antibiotics, bacterial cells increase their volume while preserving as-

pect ratio [17, 5]. This leads to a reduction in surface-to-volume ratio to counter further

antibiotic influx - Chapters 4. Furthermore, recent studies have shown that the efficiency

of swarming bacteria strongly depends on their aspect ratio [116, 117]. The highest for-

aging speed has been observed for aspect ratios in the range 4-6 [116], suggesting that the

maintenance of an optimal aspect ratio may have evolutionary benefits for cell swarmers.
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Chapter 4

Control of bacterial growth and cell

morphology under antibiotic stress

Bacteria have evolved to develop multiple strategies for antibiotic resistance by ef-

fectively reducing intracellular antibiotic concentrations or antibiotic binding affinities,

but the role of cell morphology on antibiotic resistance remains poorly characterized. By

analyzing cell morphological data of different bacterial species under antibiotic stress, we

find that bacterial cells robustly reduce surface-to-volume ratio in response to most types

of antibiotics. Using quantitative modelling we show that by reducing surface-to-volume

ratio, bacteria can effectively reduce intracellular antibiotic concentration by decreas-

ing antibiotic influx. Using the particular example of ribosome-targeting antibiotics, I

present a systems-level model for the regulation of cell shape under antibiotic stress, and

discuss feedback mechanisms that bacteria can harness to increase their fitness in the

presence of antibiotics.

Part of this chapter is published in Serbanescu, D., Ojkic, N., & Banerjee, S. (2020). Nutrient-

dependent trade-offs between ribosomes and division protein synthesis control bacterial cell size and

growth. Cell reports, 32(12), 108183. [65] and in Ojkic, N., Serbanescu, D., & Banerjee, S. (2019).

Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. Elife, 8, e47033. [67]

Nikola Ojkic did the shape analysis in Figure 4.1 and developed the theoretical analysis in section 4.1.
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Antibiotic resistance is one of the major threats to human society. It has been esti-

mated that each year 700,000 people die as a consequence of infections caused by resistant

bacteria, prompting urgent response in order to prevent devastating global effects within

generations [118]. To understand the mechanisms of antibiotic resistance we need to bet-

ter understand how antibiotics physically penetrate bacterial cells, how antibiotics bind

to their targets, what damage antibiotics cause to bacterial physiology and ultimately

how this damage leads to cell death [119, 120]. To become antibiotic resistant, bacteria

have developed multiple strategies. Resistance is commonly attained via a reduction in

the intracellular concentration of the antibiotic or by reducing antibiotic binding affini-

ties to their specific intracellular targets [121]. Various different pathways to antibiotic

resistance have been described [122] including decrease in antibiotic influx by reduction

in porin expression [123], modulation of membrane lipid composition [124], induction of

horizontal gene transfer [125], increase in antibiotic efflux by increasing efflux pump ex-

pression [126], SOS response [127], and direct inactivation of antibiotics [128]. However,

the role of cell size, shape and growth physiology on antibiotic resistance remains poorly

understood.

Recent studies have shown that bacteria undergo a wide variety of cell morphological

changes in response to antibiotics [129, 16, 130, 17, 131, 67, 132]. These morphologi-

cal changes commonly occur via changes in cell size, surface-to-volume ratio or curva-

ture [16, 17, 132]. For instance, Gram-negative E. coli, C. crescentus and Gram-positive

L. monocytogenes decrease their surface-to-volume ratio (S/V ) upon treatment with

ribosome-inhibitory and cell-wall targeting antibiotics [17]. It has also been shown that

the Gram-negative human pathogen P. aeruginosa make a transition from rod-shaped

cells to spherical cells upon treatment with β-lactams [130]. However, it is not clear if

these shape changes represent a passive physiological response to biochemical changes

caused by the antibiotic, or if these are active shape changes that promote bacterial fit-

ness for surviving antibiotic exposure. While the role of cell shape on bacterial growth,

nutrient uptake and motility have been hypothesized [35], the effect of cell shape on an-
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tibiotic resistance remains largely unknown. It remains unclear whether different classes

of antibiotics that target distinct cellular components and physiological processes would

increase or decrease S/V .

4.1 Antibiotic-induced cell shape changes in rod-shaped bacteria

To understand the effect of antibiotics on bacterial cell shape, we first analysed the

morphological data for E. coli cells treated with 42 antibiotics belonging to 5 different

categories based on their binding targets [16]. Surprisingly, all antibiotics decrease S/V

except membrane- and membrane transport-targeting antibiotics that increase S/V . Sim-

ilarly, decrease in S/V was previously observed in cells treated with cell-wall targeting

antibiotics (A22, mecillinam, fosfomycin) [137], and increase in S/V for the membrane

targeting antibiotic cerulenin [18]. The Gram-negative A. baumannii also decreases S/V

for most antibiotics, including the membrane targeting antibiotic triclosan (Figure 4.1B).

For Gram-positive B. subtilis with thick, less plastic cell-envelope [31, 138], S/V decreases

for all groups of antibiotics (Figure 4.1 C) [136]. To understand the implications of these

data, we note that S/V is one of the key physical parameters that regulates nutrient

influx and waste efflux [35], as well as the influx/efflux of antibiotics.

To quantitatively understand the role of S/V in regulating antibiotic flux across the

cell membrane, we developed a mathematical model of antibiotic transport into a rod-

shaped bacterial cell, with binding/unbinding interactions with its specific target [139].

To quantify the effect of S/V reduction on intracellular antibiotic dilution, we introduce

the antibiotic dilution factor δ:

δ ≡ |∆ain|
aout

, (4.1)

defined as the absolute change in the intracellular antibiotic concentration (∆ain) rel-

ative to the extracellular concentration, as S/V is varied between a chosen minimum

((S/V )min) and a maximum value ((S/V )max). The dilution factor is thus dependent on

the variation in S/V , growth rate κ, influx permeability Pin and outflux permeability Pout.

The maximum dilution is obtained for Pout = 0, while a lesser dilution is obtained for a
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Figure 4.1: Changes in cell shape and surface-to-volume ratio of rod-shaped

bacteria under different antibiotics.

76



Figure 4.1: Continued caption. Left: Heatmap of cell surface-to-volume ratio (S/V ) as a

function of cell width and aspect ratio, overlayed with experimental data for population

averaged cell shape under antibiotic treatments targeting different cellular components:

ribosomes, RNA, DNA, cell wall, and membranes. White lines represent constant S/V

corresponding to untreated cells. Right: Typical cell contours for morphological response

to antibiotic treatments. S/V increase shown in red, decrease in blue, and untreated

cells in green. Data are taken from refs [16, 133, 134]. Cell contours are extracted using

ImageJ plugin JFilament [135] . A. S/V for Gram-negative E. coli and A. baumannii

as a function of cell width and cell aspect ratio. E. coli decrease S/V for all antibiotics

apart from membrane targeting ones for which S/V increases. A. baumannii decreases

S/V for all antibiotics apart for ribosome targeting Minocycline for which S/V slightly

increases. B. S/V for gram-positive B. subtilis decreases for all antibiotics [136].

higher Pout. To determine the maximum dilution due to shape variations, we optimize

Pin and κ for Pout = 0:

δmax =

√(
S
V

)
max

−
√(

S
V

)
min√

(SV )max +
√
(SV )min

. (4.2)

Thus, the maximum value of the dilution factor is dependent only on the surface-to-

volume ratios before and after antibiotic application. Eq. 4.2 predicts a maximum

≈ 15% dilution in intracellular antibiotic concentration for cephalexin treated E. coli,

where (S/V )max and (S/V )min are taken to be the surface-to-volume ratios for the un-

treated cell and the antibiotic-treated cell, respectively. Similarly, meropenam treated

A. baumannii cells undergo a maximum of 22% dilution in intracellular antibiotic con-

centration. Antibiotic dilution mediated by changes in S/V could provide a significant

fitness advantage for antibiotics with steep growth-inhibition curves [115, 140], since a

small decrease in antibiotic concentration via shape variation could lead to a significant

increase in the bacterial growth rate.
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4.2 Mechanisms of cell shape changes by antibiotic action

The mechanisms by which antibiotics induce cell shape changes are specific to the type of

antibiotic treatment [16]. While DNA-targeting antibiotics induce SOS response that in

turn inhibits cell division causing cell filamentation [16, 115], cell-wall targeting antibi-

otics such as β-lactams induce various cell shapes and sizes [139] and cell bulging [129].

Ribosome-targeting antibiotics on the other hand induce a less complex variety of shape

changes [5, 17, 132]. Here I specifically focus on the case of ribosome-targeting antibiotics,

for which the biochemical reactions are well characterized [141], in order to elucidate the

dynamic coupling between cell shape, growth rate and antibiotic concentration.

4.3 Model for cell growth and shape dynamics under the action of ribosome-

targeting antibiotics

Under translation inhibition by ribosome-targeting antibiotics, decrease in cell volume in

nutrient-rich media (Chapter 2) is indicative of a higher surface-to-volume ratio that may

increase the influx of nutrients and antibiotics. Conversely, in poor media, increase in cell

volume may be indicative of a lower surface-to-volume ratio that in turn would reduce

antibiotic and nutrient influx (Figure 2.3 F). Therefore, surface-to-volume ratio of a cell

may play a crucial role in controlling cellular adaptive response to growth perturbations,

by modulating the relative contributions of nutrient and antibiotic influx rates. To test

the role of surface-to-volume ratio on bacterial growth, we construct a model coupling

cell growth and geometry to nutrient and antibiotic transport.

Nutrient dynamics – The dynamics of nutrient concentration inside the cell, [n], is

given by:
d[n]

dt
= Jn − κ[n]− κrra (4.3)

where Jn = [next]PinA/V is the nutrient influx, [next] is the nutrient concentration in the

extracellular medium, Pin is the cell envelope permeability and κr is the rate at which

ribosomes are produced from the nutrients. The model for nutrient transport across the

cell membrane is consistent with the one proposed in [95] if we assume that the num-
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ber of metabolic proteins (transporters) scales with the surface area of the cell. The

interplay between nutrients and ribosome synthesis is schematically represented in Fig-

ure 4.2 A. The intracellular concentration of nutrients determines the specific growth

rate as: κspecific = κ0[n]/([n] + n∗) [142] (Eq.1.1), where κ0 is the maximum growth rate

characteristic of the medium, and n∗ is the value of [n] when κspecific/κ0 = 0.5. When the

nutrients inside the cell reach saturation, i.e. d[n]/dt = 0, κ = κspecific.

Antibiotic dynamics – The action of ribosome-targeting antibiotics is illustrated using

the diagram in Figure 4.2A, which consists of two key components: the flux of antibiotics

Ja entering the cell, and the binding of antibiotics to the active pool of ribosomes, ra.

The dynamics are described by the following set of equations, extending the model of Elf

et al. [143] and Greulich et al. [144],
dain/dt = −κain + f(ra, rb, ain) + Ja(aex, ain, A, V ),

dra/dt = −κra + f(ra, rb, ain) + s,

drb/dt = −κrb − f(ra, rb, ain),

(4.4)

where aex is the extracellular antibiotic concentration, ain is the intracellular concentra-

tion of the antibiotic, ra is the concentration of the active pool of ribosomes in the cell,

rb is concentration of the pool of ribosomes bound by the antibiotics, and s is the rate

of synthesis of ribosomes. Unlike previous models [143, 144], here we account for the

dependence of Ja on cell shape as:

Ja(aex, ain, S, V ) = (Pinaex − Poutain)
S

V
, (4.5)

where Pin and Pout are the cell envelope permeabilities in the inward and outward direc-

tions, respectively. The ribosome-antibiotic interactions are defined by: f(ra, rb, ain) =

−konain(ra − rmin) + koffrb, where kon is the rate of binding of antibiotics to ribosomes,

and koff is the rate of unbinding. These rate constants for Chloramphenicol are known

from literature [143, 144]. Furthermore, cells produce more ribosomes to compensate for

the inactive ribosomes bound by antibiotics [10]. This is captured by the source term:
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Figure 4.2: Cell shape control under translational inhibition. A. Schematic illus-

trating nutrient and antibiotic transport across cell surface and antibiotic interactions

inside the cell. B. Model predictions for the surface area synthesis rate (β) as a function

of the growth rate (κ) for varying nutrient conditions, and its inhibition under Chloram-

phenicol perturbations. β is calculated using β = κA/V . C. Single-cell simulations of

growth in response to a step pulse of Chloramphenicol applied at t = 0 h in the extracel-

lular medium. Top to bottom: Dynamics of intracellular antibiotic concentration, growth

rate, cell volume, surface-to-volume ratio, normalized nutrient and antibiotic flux. Both

nutrient and antibiotic fluxes are higher in rich media due to the increase in surface-to-

volume ratio.
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Figure 4.2: Continued caption. D. Model growth inhibition curves fitted to experimental

data [9], in order to deduce the ratio of inward to outward cell-surface permeability.

Data are represented as mean ± SEM. E. Pin/Pout increases with decreasing growth

rate (quality of nutrients). We used an exponential fit to calibrate Pin/Pout for different

nutrient conditions. F-H. Simulation results for the dependence of κp (F), average cell

volume V (G), and average cell surface-to-volume ratio S/V (H) on Chloramphenicol

concentration, plotted against experimental data [9] at three different nutrient conditions.

Data are represented as mean ± SEM. See Tables 1 and 2 for a complete list of parameter

values. Note: We introduce noise in the division ratio DR such that Vi+1(t = 0) =

DRVi(t = τi), where Vi+1(t = 0) is the volume of the cell in generation i + 1 at birth,

Vt(t = τi) is the volume of the cell in generation i at division, τi is the division time and

DR is a Gaussian random variable with mean 0.5 and standard deviation 0.05.

s = κ[rmax − κ∆r(1/κspecific − 1/κt∆r)], where ∆r = rmax − rmin.

Cell shape dynamics – Having described the dynamics of cell volume (Eq. 2.1), division

control (Eq. 2.2), nutrient and antibiotic transport (Eq. 4.3-4.4), we need to additionally

account for cell surface area synthesis to predict cell shape changes. We assume that rate

of synthesis cell surface area is proportional to cell volume [145]:

dS

dt
= βV (t) , (4.6)

where β is the rate of surface area production, which depends on cell shape, growth

rate and division protein synthesis rate. Solving Eq. (2.1) and Eq. (4.6), one obtains

S/V = β/κ, at steady-state [145]. In Chapter 3 we show that E. coli cells obey the

relation: S = νV 2/3, under nutrient and translational perturbations, where ν is a geo-

metric factor related to the cell aspect ratio η as: ν = ηπ(ηπ
4
− π

12
)−2/3. Therefore, surface

area production rate varies non-monotonically with growth rate as: β = νκ(κ/κp)
−1/3

(Figure 4.2 B).

Taken together, the model accounts for the key functions of ribosomes in controlling
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cell growth rate (κ), rate of production of division proteins (κp), and the rate of surface

area synthesis (β). Under translation inhibition, both κ and κp decreases as shown in

Figures 2.3 A and C. Surface area production rate is also impacted by translation in-

hibition, as shown in Figure 4.2 B, albeit in a different manner from the growth rate.

Differential reduction of κ and β under translation inhibition is indicative of changes in

steady-state cell surface-to-volume ratio (∝ β/κ). To test this quantitatively, we simu-

lated the coupled equations (Appendix in Chapter 7) for single-cell growth (Eq. 2.1, 2.2

and 4.6), nutrient (Eq. 4.3) and ribosome-antibiotic dynamics (Eqs. 4.4) under stresses

induced by ribosome-targeting antibiotics (Figure 4.2 C). In response to a step pulse of

antibiotic in a rich nutrient medium at t = 0h, the concentration of antibiotic inside the

cell and the influx increase rapidly. This in turn reduce cell elongation rate as a result of

antibiotic binding to ribosomes, and leads to longer interdivision times, a decreased (in-

creased) average birth volume and a concomitant increase (decrease) in surface-to-volume

ratio for cells growing in rich (poor) nutrients. These results confirm our hypotheses that

in poor media, cells reduce their surface-to-volume ratio to inhibit antibiotic influx, while

in rich media cells increase their surface-to-volume ratio to import more nutrients.

While all the model parameters can be calibrated from available experimental data

(Tables 7.1, 7.2 and 7.3, Methods in Chapter 7), the relative magnitude of the permeabil-

ities, Pin/Pout remains undetermined. To this end, we fit our model to the experimental

growth-inhibition curves [9] in differents nutrient conditions (Figure 4.2 D), treating

Pin/Pout as a fitting parameter. Interestingly, we find that Pin/Pout is nutrient-dependent

and decreases with increasing specific growth rate (Figure 4.2 E). As a result, Jn/Ja is

an increasing function of growth rate, such that nutrient influx dominates over antibiotic

influx in nutrient rich media. Incorporating nutrient-dependent regulation of membrane

permeability, our model predictions capture the experimental data for the decrease in

division protein synthesis rate under Chloramphenicol inhibition (Figure 4.2 F) and the

changes in cell volume (Figure 4.2 G). Consistent with our hypothesis and experimental

data, we find that cell surface-to-volume increases in rich nutrient media (synthetic rich
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in experiments) (Figure 4.2 H). Conversely, in poor nutrient medium (glycerol in experi-

ments), cell surface-to-volume reduces with increasing drug dosage, suggesting that cells

are countering the influx of antibiotics if sufficient nutrients are not available.

Nutrient-dependent regulation membrane permeability to antibiotics (Figure 4.2 E)

can be a result of different metabolic pathways. It has been observed that E.coli cells

have different metabolic pathways for nutrients depending on the growth conditions [146].

Furthermore, if the cells are subjected to a nutrient downshift, the proteome reallocates

such that a larger fraction of proteins is allocated to the sector responsible for carbon

catabolism which in turn reduces the available proteome fraction for other sectors [147,

148]. The transition from one metabolic mechanism to another can be justified using a

proteome allocation model as suggested by Basan et al. [148] and Mori et al. [147], or

by increasing the glucose uptake rates. The drop in cell envelope permeability that we

observe around κ = 0.6 h−1 (Figure 4.2 E) matches the maximum growth rate that E.coli

cells can achieve while staying below the critical limit on energy dissipation [149].

4.4 Role of cell shape bacterial growth inhibition by antibiotics

Our theory predicts that bacterial growth response to translation-inhibitory antibiotics

is governed by nutrient-dependent cell shape changes (Figures 2.3 and 4.2). To systemat-

ically study how bacterial growth inhibition depends on cell shape and nutrient quality,

we simultaneously perturbed cell shape and ribosomal translation in varying growth me-

dia using our computational model. These simulations can be realised experimentally by

simultaneously applying two antibiotics - one that changes cell shapes (e.g. by targeting

the cell wall), while the other affects the translational machinery by inhibiting ribosomal

activity. The resultant effect can be suppressive, antagonistic, or synergistic depending

on what the combined effect of the two drugs is with respect to the individual effect of

each [150, 151].

In simulations we simultaneously applied a surface area modifier and chloramphenicol

to a cell growing at steady-state. To achieve rounder cells, the modifier is a surface area

synthesis inhibitor that decreases the surface production rate β, by decreasing the cell’s
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geometric factor ν (= S/V 2/3), which in turn reduces cellular aspect ratio. By contrast,

long filamentous cells are obtained when a surface area promoter is added (increasing ν),

leading to higher aspect ratio cells.

We investigated the response of growth rate to increasing Chloramphenicol concen-

trations for cells with varying aspect ratios – ranging from η = 1 for coccoidal cells to

η = 10 for filamentous cellsFigure 4.3 A. The response of κ to the concentration of the

applied antibiotic can be characterized by a Hill function of the form [152] (Figure 4.3 A):

κ(aex) =
κspecific

1 + ( aex
IC50

)n
, (4.7)

where IC50 is the half-inhibitory concentration of the antibiotic, and the Hill coefficient n

quantifies the dose-sensitivity of the growth rate to relative changes in drug concentration.

We take IC50 as a measure of drug resistance [152].

For a range of aspect ratios and nutrient conditions, we fitted the growth inhibition

curves to the Hill function in Eq. (4.7), and obtained the values for IC50 (Figure 4.3 B)

and the dose-sensitivity n (Figure 4.3 C). Our model predicts that IC50 (resistance) in-

creases with decreasing aspect ratio in rich-nutrient medium, while being less sensitive

to changes in cell aspect ratio in poor-nutrient medium (Figure 4.3 B). Dose-sensitivity

to changes in drug concentration increases with decreasing aspect ratio and increasing

nutrient quality (Figure 4.3 C), such that dose-sensitivity is positively correlated with

drug resistance (Figure 4.3 D). These results indicate that cellular response to transla-

tion inhibitory antibiotics is sensitive to both the nutrient quality as well as cell shape.

We find that round coccoidal cells are most drug-resistant, while filamentous cells are

least resistant (Figure 4.3 E). Furthermore, depending on nutrient-quality, cellular mor-

phological response to translation inhibitory drugs is different. While cells increase their

surface-to-volume ratio to import more nutrients in nutrient-poor medium, cells prefer

to reduce their surface-to-volume ratio in rich-nutrient medium to inhibit antibiotic in-

flux (Figures 3.3 and 4.2). These findings predict that bacterial growth inhibition can

be maximized by simultaneously inhibiting ribosomal translation and promoting surface

area production in nutrient-poor media.
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Figure 4.3: Cell shape and nutrient quality control bacterial resistance to

ribosome-targeting antibiotics. A. Growth inhibition curves for three different val-

ues of cell aspect ratio in a nutrient-rich medium. Dashed line corresponds to IC50 on

the x-axis, the concentration of antibiotic when the growth rate reduces by half. B.

Heatmap of IC50, a metric for drug resistance, showing the effects of changing aspect

ratio and nutrient quality. Red asterix: Maximally resistant, blue asterix: least resis-

tant. C. Heatmap of drug dose-sensitivity (n), showing the effects of changing cellular

aspect ratio and nutrient quality of the growth medium. D. Correlation between drug

resistance and dose-sensitivity under changes in nutrient quality (κspecific). Inset: Cor-

relation between drug resistance and dose-sensitivity under changes in aspect-ratio. E.

Schematic illustrating fitness value for cell shapes and morphological changes that ac-

company bacterial response to translation inhibition in nutrient-rich and nutrient-poor

growth media. F. Schematic representation of the feedback pathways that connect ribo-

somal translation to bacterial cell shape, growth, nutrient and antibiotic transport. See

Tables 7.1, 7.2 and 7.3 for a complete list of parameter values.
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Figure 4.4: Role of cell shape changes on antibiotic dilution. A. Relative antibi-

otic concentration inside the cell vs time obtained by model simulations for two cases:

(i) S/V = const. = 5µm−1 (red), (ii) S/V decreases from 5 to 3 µm−1 (green) via the

pathway shown in Figure 4.3. Here aout = 5 µM and Pin/Pout = 1. B. Bacterial growth

rate vs time obtained from simulations for two different cases as in panel A. The de-

crease in S/V results in fitness gain. C Heat map of antibiotic dilution factor predicted

from simulations as functions of membrane permeability ratios (Pin/Pout) and the ratio

of antibiotic-ribosome binding and unbinding rates (kon/koff). Antibiotic dilution was

calculated when bacterial S/V was altered from 15 to 3 µm−1.
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Figure 4.4: Continued caption. Membrane permeability ratios shown with horizontal

arrows were estimated (Supplementary material [139]) for growing wild-type, WT (G),

and stationary wild type E. coli cells, WT (S), OmpF porin deficient (∆ompF ) and

efflux-pump deficient (∆tolC ) cells [153]. Experimentally measured kon/koff values for

different ribosome-targeting antibiotics are shown with vertical arrows [154, 155, 156].

4.5 Impact of cell shape changes on antibiotic dilution

We used the whole-cell model for cell growth under antibiotic action to estimate the

amount of antibiotic dilution due to cell shape changes. To this end, I simulated a whole-

cell model of bacterial growth that evolved the dynamics of cell size, shape and protein

synthesis, coupled to the kinetics of antibiotics binding to and unbinding from ribosomes

just as before in the ”Nutrient dynamics” and ”Antibiotic dynamics” sections of this

Chapter (Figure 4.2). Using parameters bench-marked for E. coli cells, under conditions

when S/V remains unchanged, the intracellular antibiotic concentration is higher and

the growth rate is lower compared to the case where S/V spontaneously decreased over

time (Figure 4.4 A-B). The simulations revealed that the maximum antibiotic dilution

was obtained for antibiotics with high affinity constants (kA = kon/koff > 1µM−1) typical

for aminoglycosides: Hygromycin B (kA = 5µM−1), Chloramphenicol (kA = 5.8µM−1),

Streptomycin (kA = 10µM−1), and Paromomycin (kA = 19µM−1). Depending on the

ratio of the membrane permeability constants (Pin/Pout), the antibiotic dilution factor is

non-monotonic and reaches a maximum for Pin/Pout ≈ 1 (Figure 4.4 C). Since Chloram-

phenicol is predominantly transported inside of the cell by OmpF porins, we estimated the

permeability coefficients for fluorescent oflaxacin that is also translocated by OmpF [153].

By analyzing time traces of fluorescent antibiotic accumulation inside of the cell, we esti-

mated that growing E. coli cells readily accumulate antibiotics, Pin/Pout ≈ 0.54, while for

stationary cells Pin/Pout ≈ 0.11. Interestingly, for bacterial cells lacking porins (∆ompF ),

Pin/Pout ≈ 0.18 and for bacteria lacking efflux pumps (∆tolC ), Pin/Pout ≈ 0.66. There-

fore, these results suggest that the antibiotic dilution by changes in S/V could approach

87



the maximum value achieved for Pin ≈ Pout and large kon/koff (Figure 4.4 C).

4.6 Discussion

Comparing our theory to experimental data, we uncover several feedback pathways

among cell shape, growth rate, protein synthesis, and extracellular transport that were

previously unknown (Figure 4.3 F). In particular, we predict that under translation

inhibition, cells break the balanced trade-off between ribosomes and division protein

synthesis, leading to cell size inflation, reduction, or size invariance, in a nutrient-

dependent manner. Our model predictions are in quantitative agreement with exper-

imental data on E. coli cells subjected to chloramphenicol perturbations across various

nutrient conditions[5]. If cells are grown in nutrient-rich media, the excess ribosomes

produced under translation inhibition are allocated toward division, leading to smaller

cell sizes and higher surface-to-volume ratios. This is in agreement with chloramphenicol-

treated E. coli cells grown in synthetic rich medium. Conversely, in nutrient-poor media

cells allocate excess ribosomes toward growth, leading to cell size inflation and lower

surface-to-volume ratios, in agreement with E. coli cell data in glycerol medium.

Our results suggest that changes in cell shape, in response to translation-inhibitory

antibiotics, may confer certain fitness advantages under stress. In nutrient-rich media, it

is more favorable for cells to reduce their surface-to-volume to minimize antibiotic influx.

Whereas in nutrient-poor media, cells adapt to import more nutrients by increasing their

surface-to-volume ratios. To quantitatively test the role of cell shape and nutrient qual-

ity on bacterial growth inhibition under antibiotic stress, we simulated bacterial growth

under simultaneous perturbation of surface area production and translation inhibition in

varying nutrient media (Figure 4.3). From growth-inhibition curves we measured bacte-

rial response to antibiotics by quantifying resistance (half-inhibitory concentration of the

drug) and dose sensitivity to increasing concentration of the drug. Round-shaped cells

are fitter and more drug resistant than higher-aspect-ratio filamentous cells, and dose

sensitivity increases with increasing nutrient quality. These results can be tested exper-

imentally by measuring bacterial growth rates in response to simultaneous application
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of cell-wall targeting and ribosome-targeting antibiotics, in different nutrient concentra-

tions. Interestingly, we predict that bacterial growth-inhibition can be maximized by

simultaneously inhibiting ribosomal translation and promoting surface area production

in nutrient-poor media.

In synergy with shape changes, bacteria can actively regulate the antibiotic concen-

tration inside the cell by controlling porin and efflux pump expression [157, 158]. Cell

wall-targeting antibiotics, such as β-lactams, that disrupt the stability of the peptidogly-

can meshwork are translocated by OmpF porins to induce the envelope stress response

(Cpx) [159]. The activation of the Cpx system decreases ompF expression [160], creating

a negative-feedback loop, resulting in lower porin numbers and lower inward membrane

permeability (Pin). Similarly, when E. coli cells are exposed to DNA-targeting antibi-

otics that are also translocated inside the cell by OmpF, the expression level of ompF

decreases within 30 to 120 min after antibiotic treatment [157]. A reduction in porin

numbers will act in synergy with a reduction of S/V to confer stronger resistance pheno-

types. In addition to controlling antibiotic influx, bacteria can decrease the intercellular

antibiotic concentration through the overexpression of efflux pumps [157, 161, 162]. In

the future, time-lapse experiments are necessary to reveal the time scales associated with

the onset and completion of morphological transformation under antibiotic perturbations

and how these time scales compare with changes in the expression profiles of proteins

responsible for regulating antibiotic influx and efflux. These studies would be essential

to quantify the contributions of the different resistance pathways and their synergistic

effects responsible for increasing bacterial fitness.

A reduction in surface-to-volume ratio not only lowers antibiotic influx, but also leads

to a reduced nutrient influx that may in turn lower cellular metabolic activity. In recent

work, Lopatkin et al. showed that metabolism plays a crucial role in bacterial response

to antibiotics such that cells with decreased metabolic activities are more antibiotic-

resistant [163]. Metabolic mutations in response to antibiotic exposure suggest adaptive

mechanisms in central carbon and energy metabolism. Interestingly, some of the advan-
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tageous metabolic mutations that mitigate antibiotic susceptibility have been identified

in > 3500 clinically relevant pathogenic E. coli [163]. These findings point towards a new

pathway of antibiotic resistance mediated by mutations in the core metabolic genes. Our

findings that bacteria decrease surface-to-volume may act in synergy with the metabolic

slowdown to confer stronger antibiotic resistance.

90



Chapter 5

Energy allocation theory for

bacterial growth and cell shape

control

Efficient allocation of energy resources to the main physiological functions of the cell al-

lows bacteria to grow and thrive in diverse environments and survive under a wide range

of perturbations. To understand how bacteria regulate their growth rate, cell shape and

size in different environmental conditions, resource allocation theories based on proteome

partitioning (Chapter 2) provide a meaningful coarse-grained description of cellular phys-

iology when no mechanistic information is available. However, once the model requires

constraints to be imposed on proteins that are present in relatively small copy numbers,

one needs to introduce a new ”micro-sector” for every new perturbation to the proteome.

This leads to a computationally expensive model and intricate relationships between

different sectors when the perturbations affect multiple protein classes.

To overcome this limitation, we develop a mechanistic model based on the allocation

of cellular energy to key cellular functions: nutrient import into the cell, energy expended

for growth and division, metabolism, shape maintenance and energy loss due to dissipa-

tion. It is important to note that the model is based on allocation of resources rather
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than specific proteins making it versatile in understanding the cellular physiology and

morphology under chemical and mechanical perturbations.

Energy budget models have been previously used to understand ontogenetic growth.

Derived from data from birds and mammals, Hou et al. [164] developed a model pre-

dicting how growing animals allocate food energy between synthesis of new biomass and

maintenance of existing mass. During growth, some fraction of the food is oxidized to

sustain the total metabolic rate and the remaining fraction is synthesised and stored

as biomass. The metabolic rate is then partitioned between the resting metabolic rate

(used as energy for maintenance and the rate of energy for biosynthesis) and the rate

of energy for locomotion and other activities. Combining the model for partitioning of

assimilated energy and resource allocation strategies for bacterial growth, we developed

a mechanistic model based on the budgeting of cellular energy for key physiological unc-

tions in a bacterium: nutrient import, growth, division, metabolism, shape maintenance

and energy loss.

For a given intake energy, we optimize the energy used for cellular growth to derive

the equations governing cell elongation, shape maintenance and protein production. The

resultant model allows us to predict the mechanical and chemical response of the cell

in different environmental conditions and under diverse perturbations. In particular,

by calibrating the model parameters with available experimental data on the model

organism E. coli, we simulate the cellular growth and shape dynamics in response to

dynamic nutrient shifts and osmotic shocks.

5.1 Energy budget model

The energy budget model is based on optimizing the rate of assimilation of physiological

energy in the cell. The energy per cell changes according to:

dEcell

dt
=

dEin

dt
− dEused

dt
(5.1)

where Ein is the energy influx, and Eused is the total energy used for different physio-

logical processes such as metabolism, division, shape maintenance or dissipated as heat
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(Figure 5.1). To build new cellular mass, the energy available via nutrient influx must

be in excess of that needed for metabolism. We thus assume that the excess energy Ecell

is used for growth.

Our key hypothesis is that a growing cell maximizes the rate of energy assimilation,

which is used for growth:
∂Ėcell

∂q̇i
= 0 , (5.2)

where {qi(t)} is the set of variables that describe the non-equilibrium state of the cell. For

rod-shaped bacterial cell, a minimal number of variables representing the physiological

state of the cell could be cell length, radius and protein copy number. Below we describe

the key energy components considered by our theory for cellular functions such as nutrient

uptake, cell division, metabolism, cell mechanics and shape maintenance, and energy loss

due to dissipation.

5.2 Energy components of the cell

The intake energy flux occurs through the cell surface at a rate J per unit surface area

S. Therefore, dEin/dt = JS, with J = dε/dt, such that ε is the energy uptake per unit

surface area of the cell:
dEin

dt
=

dε

dt
S . (5.3)

For division, we consider the energy spent to produce division proteins, rather than

the last stage of division when the cell wall starts constricting. The division energy is

therefore proportional to the number of division proteins:

Ediv = −µX (5.4)

where µ is the chemical potential for division protein synthesis, and X is the division

protein copy number in the cell. Following the threshold initiator model for cell division

control (see Chapter 2), the cells divide upon accumulating a fixed threshold number of

division proteins at the septum. As presented in Chapter 3 and in [67], the threshold

protein copy number is proportional to the cell diameter: X0 = 2πRγ, where γ is the
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Figure 5.1: Model schematic and optimization principle. A. Food from extracel-

lular environment is imported inside the cell via the membrane and represented by the

intake energy (Eintake) which is proportional to the surface area of the cell. Cells elongate

while maintaining a fixed radius (shape maintenance represented in green) by using the

energy for growth (Egrowth). The energy used by the cell during a growth cycle is allo-

cated to different physiological processes such as maintenance of biomass (Emaintenance)

and division (Edivision), but also converted to mechanical energy (Emechanical) to balance

turgor pressure and store stain energy in the cell wall (proxy for crosslinkers and glycan

strands, see main text). We also account for energy loss due to dissipation (Edissipation)

and protein production. B. Energy diagram showing the energy used for growth

Egrowth = Eintake−Eused, where Eused = Edivision+Edissipation+Emechanical+Emaintenance.

Optimizing the rate of assimilation of physiological energy (i.e. dEgrowth/dt = 0) trans-

lates into optimizing the energy for cell growth.
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proportionality constant, and R is the cell radius. Therefore, the energy required to

synthesize the sufficient amount of proteins for cell division is given by: E∗
div = −2µγπR.

The energy for the maintenance of existing biomass is EM = gV ≈ gπR2L, where g

is the maintenance energy per unit volume and V is the cell volume. We thus interpret

dEM/dt is the resting metabolic rate of the cell.

The mechanical energy of the cell envelope is given by the sum of contributions from

the energy required to maintain cell width (Ewidth) and the elastic strain energy in the

cell wall arising from the internal turgor pressure (P ) [165]:

Emech = Ewidth + Estrain (5.5)

where Ewidth = κcπRL
(

1
R
− 1

R0

)2

, where R0 is the reference radius of cross-section and

κc is the rigidity. The elastic strain energy can be expressed/approximated as Es = NgEp

where Ng is the number of glycan strands and Ep is the energy of all the crosslinkers con-

necting two consecutive glycan strands. Under no growth/stretching, the elastic energy

of the peptides balances the turgor pressure, i.e., Ep = PVp where Vp is the volume of the

region enclosed between two consecutive glycan strands. However, as the cell elongates,

the mechanical energy of the peptides is positive: Emech,p = Ep−PVp = Ep−PπR2l > 0:

Emech,p =
1

2
ksρp2πR (l − l0)

2 − PπR2l > 0 (5.6)

where l is the length of a peptide/crosslinker, l0 is the rest length of a peptide/crosslinker.

We assume that mechanical energy of the strained peptides relaxes at a much faster

timescale than the timescale for cellular growth. This assumption allows us to compute

the effective strain energy of the cell envelope by minimizing the mechanical energy of

the peptides ∂Emech,p/∂l = 0, which results in the expression for the length deformation

in terms of pressure: δl = l − l0 = PR/(2ksρp). Therefore, we can rewrite the strain

energy Es = NgEp as follows:

Estrain = Ng
1

2
ksρp2πR

(
PR

2ksρp

)2

= Ngπ
P 2R3

4ksρp
= ρgLπ

P 2R3

4ksρp
= λπR3L

95



where λ = P 2ρg
4ksρp

is a material parameter of the cell, and ρg = Ng/L is the line density of

the glycan strands. From Eq. 5.5 we can derive the total mechanical energy as:

Emech = κcπRL

(
1

R
− 1

R0

)2

+ λπR3L (5.7)

The energy lost as dissipation consists of mechanical and chemical components. Firstly,

the dissipation of mechanical energy corresponds to the amount of work done to the

medium when the shape of the cell deforms at a rate q̇i, where qi ∈ {R,L}. Banerjee et

al. [165] derived the dissipated energy to be D1 =
1
2
Vd

∑
i ηi

(
q̇i
qi

)2

, where Vd = hS is the

volume of dissipation, h is the envelope thickness, S ≈ 2πRL is the area of dissipation,

and ηi ∈ {ηL, ηR} is the viscosity parameter. Secondly, dissipation of chemical energy

is proportional to the rate of production of division proteins Ẋ : D2 = ξ
2V

Ẋ2, where ξ

regulates dissipation rate via protein production. Therefore, the total dissipation rate is

D = D1 + D2:

D =
1

2
Vd

∑
i

ηi

(
q̇i
qi

)2

+
ξ

2V
Ẋ2. (5.8)

By definition, the elongation rate is κL = 1
L

dL
dt
, the radial growth rate is κR = 1

R
dR
dt

and the division protein synthesis rate is kP = 1
L

dX
dt
. Therefore, the dissipation rate

becomes:

D ≈ πRLh
(
ηLκ

2
L + ηRκ

2
R

)
+

ξL

2πR2
k2
P .

Having accounted for the main physiological functions of the cell (i.e. what Eused is

used for), we can re-write the rate of energy assimilation in the cell as:

dEcell

dt
=

dEin

dt
− dEused

dt
= JA−

(
dEdiv

dt
+ D +

dEmech

dt
+

dEM

dt

)
(5.9)

5.3 Equations of motion for cellular variables

To derive the equations of motion governing the dynamics of cellular variables q(t), we

maximize dEcell/dt with respect to the rate of change of q. For a rod-shaped bacterial

cell q is represented by the cell length L, cell radius R, and the copy number of the

division protein X. As a first step, from optimizing Ėcell with respect to Ẋ, the division
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protein number, we can obtain the rate of synthesis of division proteins (κp) as follows:

∂D
∂Ẋ

+ ∂Ediv

∂X
= ξ

V
Ẋ − µ = 0

∴
dX

dt
=

µ

ξ
V = kPL (5.10)

where kP = πR2µ/ξ. By combining Eq. 5.9 and 5.2 we obtain the equations of motion

governing the dynamics of cell length and radius:

(2hηL)
L̇

L
= 2ε− gR− 1

πR

∂Emech

∂L
. (5.11)

(2hηR)
Ṙ

R
= 2(ε− gR)− 1

πL

∂Emech

∂R
. (5.12)

The mechanical energy assumes the scaling form Em(R,L) = πU(R)L so we can

re-write the equations of motion as:

1

L

dL

dt
= µL

(
(2ε− gR)− U(R)

R

)
, (5.13)

1

R

dR

dt
= µR

(
2(ε− gR)− dU

dR

)
, (5.14)

where µL = 2ηLh and µR = 2ηRh. It is evident from Eq. (5.13) that cell length increases

exponentially at a rate κ given by (Figure 5.2 A):

∴ κ = µL(2ε− gR)− µL
U(R)

R
. (5.15)

Cell radius, on the other hand, is constant during cell elongation, and is given by the

minimum of the the effective energy Eeff defined as:

Eeff =

∫ (
2(ϵ− gR)− dU

dR

)
dR = 2ϵR− gR2 − U . (5.16)

Upon a nutrient shift, the landscape for the effective energy changes and cells find a new

radius that minimizes Eeff (Figure 5.2 B). From Eqs. 5.10, 5.13 and 5.14 we can simulate

the dynamics of length, radius and division protein number over multiple generations as

a single cell grows and divides (Figure 5.2 C-D).
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Figure 5.2: Single cell trajectories predicted by the energy budget model. A.

Growth rates (κ) and division protein synthesis rates (κP ) for rich and poor nutrients

in the extracellular medium. B. The minimum of the effective energy Eeff corresponds

to the preferred radius in the respective growth condition. Nutrient shifts correspond

to transitions from one minimum to another. C. Dynamics of length in two nutrient

conditions where cells have the same growth rates as shown in panel A. The length grows

exponentially in time and add a fixed length between birth and division ∆L = Ld−Lb in

agreement to the threshold initiator model and the adder principle. D. Cells accumulate

division proteins as described by dX/dt = kPL and divide upon reaching a threshold

value proportional to the circumference of the cell: X0 = 2γR. The threshold value is

constant for a nutrient condition leading to constant added lengths ∆L (defined in panel

C.).
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Figure 5.2: Continued caption. Note: We introduce noise in the division ratio DR such

that Li+1(t = 0) = DRLi(t = τi), where Li+1(t = 0) is the length of the cell in generation

i+1 at birth, Li(t = τi) is the length of the cell in generation i at division, τi is the division

time and DR is a Gaussian random variable with mean 0.5 and standard deviation 0.05.

5.4 Parameter determination and simulation protocol

The reference radius of cross-section R0 can be fixed to the preferred radius of curvature

for MreB (200− 400nm [166]) which is independent of nutrient conditions. MreB forms

dynamic helical filaments around the periphery of the cell, perpendicular to the long

axis of the cell [167], thus the radius of curvature can be used as a proxy for the radius

of cross section of the whole cell. The material parameter of the cell λ = P 2ρg
4ksρP

can be

estimated from known physical parameters of the cell. The turgor pressure in E. coli cells

is P = 0.3MPa, ks = 0.03MPaµm3 [165], ρg = 1000 and ρp = 25 [168] [100], leading to

λ ≈ 30 (Figure 5.3 A).

The model comes with several other parameters not known apriori: λ, ϵ, g, µL, µR,

and kc. We normalise the parameters as λ̄ = λ/kc, ϵ̄ = ϵ/kc, ḡ = g/kc, µ̄L = kcµL and

µ̄R = kcµR. From experimental data on steady-state exponential growth rate and the

morphology of bacterial cells, we have the initial conditions κ = κspecific and R = R∗.

From Eq. 5.13 we write the first initial condition as:

κspecific = µ̄L(2ϵ̄− ḡR∗)− µ̄L
U(R∗)

R∗ , (5.17)

from which we can determine µ̄L = κ−1
specific

(
−λ̄R∗2 + 2ϵ̄− ḡR∗ − (1/R∗ − 1/R0)

)
. The

second initial condition is that the effective energy Eeff is minimised by the radius (i.e.

dU
dR

= 2(ϵ̄− ḡR) when R = R∗) from which we obtain ϵ̄:

ϵ̄ = ḡR∗ +
3

2
λ̄R∗2 +

1

2

(
1

R∗ − 1

R0

)2

+
R∗ −R0

R0R∗2 . (5.18)

The leftover unknown parameters λ̄ and ḡ are determined by fitting the experimental

data for the dependence of steady-state cell volume on growth rate (Figure 5.3 A-B).

We use the root mean square deviation from the mean as a measure for the goodness of
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Figure 5.3: Dependence of cell morphology on growth rate obtained using the

energy budget model. A. Heatmap of fitting coefficient (S) for different values of λ̄

and ḡ. The fitting coefficient is defined as S =

√∑
(Vexp−Vsim)2

N
, where Vexp is the expected

cell size value from the exponential fit following the nutrient growth law, Vsim is the

average steady state value in simulations and N is the number of points used. Red line

indicates λ̄ ≈ 30, value estimated from literature (see main text) and the star indicates

the minimum value for S for this value that helps set g ≈ 30. Unless otherwise stated,

the parameter values are λ̄ = 30 and ḡ = 30. B-C. Cell size volume and surface area

as a function of growth rate obtained from the model and experimental data. D. Cell

length as a function of growth rate, where we accounted for the pole-to-pole length to

compare to experimental data (inset). E-F. Radius and division protein synthesis rate

(κP = kP/(πR
2)) as a function of growth rate obtained from the model and experimental

data from Taheri et al. [32]. κP is estimated as κ/V from experimental data as in

Chapter 2. Parameters used: η = 3, γ = 100, µ = 1, ξ = 0.0036, kc = 1, µ̄R = 0.1,

h = 0.1 ∗ 10−3, ḡ = 30, λ̄ = 30, R0 = 0.3, σR = 0.0267.
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the fit: s =
√∑

(Vexp − Vsim)
2/N , where Vexp is the expected cell size value from the

nutrient growth law fitted to experimental data (Eq. 1.9), Vsim is the value for the cell

size obtained from simulating single cell growth at steady state and N is the number of

points used to calculate s. The parameter µ̄R controls how fast the cell radius adapts to

a new steady-state value when deviated from the steady-state, but it does not influence

the morphology of the cell at steady state. Below we show how µ̄R and can be calibrated

from experimental data on bacteria growing in non-steady growth conditions, such as

nutrient shifts or antibiotic-induced stresses (Figure 5.5). After finding the best fits for

volume as a function of the growth rate (Figure 5.3 B) and calculating the remaining

free parameters, we can compare without any further fitting the surface-to-volume ratio,

length, radius and division protein synthesis as a function of growth rate obtained from

simulations against experimental data (Figure 5.3 C-F).

5.5 Cellular energy allocation in different nutrient environments

With the free model parameters calibrated using experimental data in Figure 5.3, we

can go back to the theoretical model, and predict how cellular energy is partitioned and

allocated to different physiological functions in different nutrient conditions. In terms of

absolute values, all energies increase as a function of growth rate (Figure 5.4 A), how-

ever when normalized by the intake energy, we observe different behaviours for the energy

fractions allocated to different tasks (Figure 5.4 B): the mechanical energy has a non-

monotonic behaviour while the energy for maintenance and the dissipation rate decrease.

Clustering the energy components into energy for growth, mechanical and metabolic en-

ergies, the theory predicts a decrease in the metabolic energy (Figure 5.4 C), consistent

with metabolic proteins mass fraction decreasing with nutrient quality in proteomics ex-

periments [6]. The final comparison to proteomic components is between the normalised

energy for growth and ribosomal mass fraction ϕR which can be calculated from the

growth rate by using Eq. 1.2. The normalised energy for growth increases with the

ribosome mass fraction, analogous to the bacterial growth law (Figure 5.4 D).
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A B

C D

Figure 5.4: Cellular energy allocation in different nutrient environments. A-

B. The values for the energy components are calculated from theory (summarised in

Table 7.4) and the expression for length and radius as a function of growth rate are ob-

tained from fitting single cell data from [32] (i.e. L = 1.262e0.3288κ and R = 0.1κ+0.195).

C. Combining the energy components into energy for growth, mechanical energy and

metabolism for a qualitative comparison to proteomic data from [6]. D. The normalised

energy for growth increases with ribosome mass fraction.
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5.6 Cellular response to nutrient up- and down- shifts

After calibrating the parameters to steady-state cell size experimental data (Figure 4.1)

and ensuring that the energy components behave in synergy with the proteomic compo-

nents (Figure 4.4), we study cellular response to nutrient shifts.

The change in nutrient quality can be simulated by changing ϵ which controls the

nutrient influx (dEin/dt = Sdϵ/dt) and to represent a gradual response we use a Heaviside

step function ϵ̄ = ϵ̄
(
1 + α(1 + e−hs(t−tshift))−1

)
, where α is the percentage increase in

nutrient quality, hs is the steepness of the function and tshift is the time when the shift is

applied. In Figure 5.5 A the response of ϵ̄ is shown for different values of hs representing

fast and slow changes in the nutrient quality in the extracellular environment.

Furthermore, we can tune the adaptive response of the growth rate via the radial

mobility coefficient µR introduced in Eq. 5.14. The radius does not change as the cell

elongates during the cell cycle for a fixed ϵ (i.e. nutrient environment), but how fast

the radius reaches the new value is dictated by µR (Figure5.5 C). In other words, the

transitions from one energy minimum to another in Figure 5.2 B is given by the radial

mobility coefficient. Interestingly, for slow adaptive response we observe an overshoot in

growth rate and a slow relaxation to the new steady state value, but the length dynamics

does not present any over- or under-shooting (Figure 5.5D). The growth rate response for

a nutrient up- and down-shift can be compared to experimental data [33] (Figure 5.5 E-F)

by fitting α and hs.

While the nutrient upshift can be captured by changing how fast the extracellular

nutrients change (hs) and the intrinsic response of the cell (µ̄R), the nutrient downshift

requires a change in ḡ, the maintenance energy per unit volume. This suggests that

during the transition from one steady state to another following nutrient depletion, cells

invest resources into other physiological functions. Previous work suggested bacterial

cells overexpress proteins to quickly meet demand upon sudden improvement in growth

conditions [169]. Similarly, our results can be interpreted as cells decreasing the energy

for maintenance and investing allocating more resources to growth or metabolic energies
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Figure 5.5: Single-cell nutrient shift simulation using the energy model. A.

The upshift is simulated by increasing ϵ using a Heaviside step function: ϵ̄ = ϵ̄(1+α(1+

e−hs(t−tshift))−1), where α represents the increase (or decrease if α < 0) in nutrient quality

and tshift is the time at which the perturbation is applied. hs describes the steepness

of the function or how fast the nutrient quality is changed: high hs corresponds to a

fast change in nutrient quality, while low hs corresponds to a slow change. B-D. The

response of growth rate κ, radius R and length L of the cell upon a nutrient up-shift

when hs = 1 and the mobility coefficient for three different values of µR corresponding

to slow, medium and fast adaptive response. E-F. Comparison of simulated nutrient

up- and down-shift to experimental data from [33]. Parameters used: η = 3, γ = 30,

µ̄R = 0.1 in panel A and variable in B-D, kc = 1, h = 0.1 ∗ 10−3, ḡ = 30, λ̄ = 30,

R0 = 0.3, σR = 0.0267, α = 0.3, hs variable in panel A and hs = 1 in panels B-D. For

panels E and F we fitted α and hs to capture the nutrient shifts. Note: for the nutrient

downshift we decreased ḡ by 2 ∗ 10−5.
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upon nutrient depletion for a quicker adaptation to the new steady state.

5.7 Discussion

In this Chapter I presented an energy budget model based on allocation cellular energy

to different physiological tasks, where optimizing the cellular energy for growth results

in equation of motion for various cellular variables from an underlying energy function.

One of the advantages of using a physiological-based coarse-graining as opposed to a

proteome partitioning theory (Chapter 2) is that we can investigate the cellular response

to diverse types of perturbations without adding any new protein sectors to the model.

In addition to nutrient perturbations, the model can be used to capture behaviour

observed in osmotic shock experiments [170], which involves changing the osmolarity

of the growth medium, leading to changes in the turgor pressure (λ in our model) of

the cell. Rojas et al. [170] showed that osmotic pressure is not essential for cell-wall

expansion of E. coli cells and that growth is robust to changes in osmotic pressure. In

an initial attempt at simulating the osmotic shock experiments, we altered λ̄ and looked

at the response of growth rate, length and radius in time (Figure 5.6). Using the same

parameters as for nutrient shifts, we notice that for small changes in λ the growth rate

recovers to the pre-shock value.

In the future we plan on using the model, to capture various other physiological per-

turbations, such temperature snd pressure changes in the extracellular environment [171].

The theory is not constrained by the shape of the cells, as Banerjee et al. showed [165],

the equations of motion for the length and radius can also capture the dynamics for the

shape parameters for spherical cells. Therefore, another idea is to apply the model to

other cell shapes, such as flattened bacteria under mechanical stress [172]. Lastly, by look-

ing at the metabolic energy during the cell cycle we can connect it to ATP production.

In recent experiments, Li and Jacobs-Wagner [173] show that the ATP concentration is

non-monotonic between cell birth and division.
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Figure 5.6: Single-cell osmotic shock simulation using the energy model. A.

Growth rate dynamics following a hyperosmotic shock at t = 0 simulated by an in-

stantaneous increase in λ̄ from 30 to 180. B. Length and radius dynamics following a

hyperosmotic shock. The rate of change in length decreases at t = 0 and upon a division

event, the subsequent division and birth lengths decrease with respect to the pre-shock

values C. Growth rate dynamics following a hypoosmotic shock at t = 0 simulated by

an instantaneous decrease in λ̄ from 30 to 15. D. Steady state growth rate after osmotic

shocks for different values of λ̄. A and C indicate the values used in panels A and C.
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Chapter 6

Conclusions, discussions and future

work

One of the central questions of my work has been what is the connection between cell

size and nutrient-imposed growth rate (the nutrient growth law) and how the scaling be-

tween cell size and growth rate arises at the single-cell level via coordination between cell

growth and division. While this question is seemingly simple, it requires a molecular-level

understanding of what sets the adder behaviour in cells and how do bacteria manage to

measure the added size in different growth media. Using a coarse-grained model of cell

growth based on proteome allocation theory, extended to include modules for cell size

and division control, we found out that a balanced allocation of resources sets the size

of bacteria (Figure 6.1 A). Based on this principle, the resources allocated to a partic-

ular proteomic sector are inversely proportional to the efficiency of that sector [95]. In

nutrient-rich media, cells invest more ribosomal resources to growth thus compensating

for a lower translational capacity that can arise from an increased dilution rate of ribo-

somes under fast growth conditions. In nutrient-poor media, cells have a lower nutritional

capacity that they compensate by allocating more resources to metabolism and division

protein synthesis.

Comparing our theory to experimental data, we uncover several feedback pathways
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Figure 6.1: Graphic summary of the work presented in this thesis. A. The

bacterial cell size is determined by a trade-off between resources invested in growth and

division. In nutrient-rich conditions, cells have an increased ribosomal sector mass frac-

tion ϕR which leads to high growth rates and large sizes. Conversely, in nutrient-poor

conditions, cells allocate less resources to the growth rates and increase the division pro-

teins sector mass fraction ϕX which results in smaller cells. B. Cells control their shapes

across growth conditions by maintaining a constant aspect ratio on average (≈ 4 for E.

coli cells) which leads to a conserved scaling relation between cell surface area and volume

S ∝ V 2/3. C. Diagram showing how E. coli cells change morphology under translation in-

hibition induced by Chloramphenicol in a nutrient-dependent manner. Bacteria growing

in nutrient-poor conditions increase the volume to decrease the surface-to-volume ratio

and reduce the intracellular antibiotic concentration, whereas bacteria growing in rich

conditions increase the surface-to-volume ratio to promote nutrient influx. As shown in

Figure 4.1 E. coli cells tend to decrease S/V when treated with a wide variety of cytosolic

antibiotics, and increase S/V when treated with membrane-targeting antibiotics.
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Figure 6.1: Continued caption. D. Feedback diagram showing the surface-to-volume

regulation by growth rate κ and division proteins synthesis rate κP .

between cell shape, growth rate, protein synthesis and extracellular transport that were

previously unknown (Figure 6.1 D). In particular, we predict that under translation in-

hibition, cells break the balanced trade-off between ribosomes and division protein syn-

thesis, leading to cell size inflation, reduction or size invariance, in a nutrient-dependent

manner (Figure 6.1 C). If cells are grown in nutrient-rich media, the excess ribosomes

produced under translation inhibition are allocated towards division, leading to smaller

cell sizes and higher surface-to-volume ratios. Conversely, in nutrient-poor media cells

allocate excess ribosomes towards growth, leading to cell size inflation and lower surface-

to-volume ratios.

To understand the different responses of cell volume under translation inhibition we

studied the behavior of cell surface-to-volume ratio to characterise cell shape. Interest-

ingly, E. coli cells maintain a constant aspect ratio on average (Figure 6.1 B) for a wide

range of perturbations that do not alter the division machinery and therefore conserve

the surface-to-volume scaling S ∝ V 2/3. Our results suggest that cells shape changes

in response to translation-inhibitory antibiotics may confer certain fitness advantages

under stress. In nutrient-rich media it is more favorable for cells to reduce their surface-

to-volume in order to minimize antibiotic influx. However, in nutrient-poor media, cells

adapt to import more nutrients by increasing their surface-to-volume ratios.

Coarse-grained proteome partitioning models [4, 8] come with the challenge of identi-

fying the proteome sector to which the protein of interest belongs or if a new sector has

to be included. In recent work, it has been suggested that the division proteins belong to

the non-ribosomal P -sector [32, 5, 66], while others considered a separate proteome sector

for division proteins [15, 174, 65]. By accounting for a separate division protein sector, we

showed that the division protein sector behaves as a sub-class of P -sector proteins, given

there is a negative correlation between protein mass fractions of X-sector and R-sector
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proteins under nutrient perturbations [65]. Existing data support this model and also

exclude other possible models of division proteins belonging to the R- or Q- sectors. For

instance, if the division molecule is in the R-sector, then we expect κp to be positively

correlated with ribosome mass fraction in all conditions. Therefore, under translation

inhibition we expect κp to increase. Since growth rate decreases under translation inhi-

bition, we would predict cell volume to decrease for all conditions. This is inconsistent

with experimental data [5]. However, if the division proteins are in the Q-sector, then

the invariance of Q-sector with nutrient shifts and translation inhibition would imply a

constant division protein synthesis rate for all conditions. Therefore cell size would al-

ways decrease under translation inhibition, inconsistent with experimental data. Hence

the division protein sector needs to be in the non-ribosomal sector to capture the tradeoff

between the rates of growth and division protein synthesis under nutrient perturbations.

It is important to note that the model presented in Chapter 2 for cell size control is

based on cells grown in a medium where nutrients are readily available and the flux of

nutrients (or equivalently the amino acid concentration inside the cell) is constant. How-

ever this is rarely the case in nature, bacteria constantly compete with other organisms

for resources and the nutrient environments fluctuate. One approach is to think of the

ribosomal and metabolic efficiencies in a dynamic way (i.e. κt = κt(t) and κn = κn(t)) or

as amino-acid concentration dependent [8] to understand the transitions between growth

conditions.

The phenomenological growth laws that allow us to predict how bacterial cells regulate

their grow rates, proteome composition, cell shape and size are formulated for steady-

state growth conditions. We currently have a limited understanding of the dynamics

of cellular state variables in non-steady state conditions. With recent developments in

high-throughput imaging and single-cell studies of bacterial growth, understanding the

cells’ behaviors during transition from one growth condition to another is of great inter-

est [169, 33, 175, 176, 137, 17, 132]. Recent single-cell studies show that during single

nutrient shifts [17, 66] or antibiotic treatments [132] bacterial cells preserve their size

110



control strategies, indicating that the division proteins are actively regulated in changing

environments. When subject to nutrient fluctuations between low and high concentra-

tions of nutrients [177], cells adopt a growth rate that cannot be predicted from the

individual growth rates in poor and rich nutrient conditions as predicted by the Monod’s

law (Eq. 1.1), indicating that the relationship between ribosomes and growth rate does

not hold in non-steady conditions. This adaptive mechanism leads to an interesting hy-

pothesis that has been previously formulated in the context of fast transition to a new

environmental condition. For instance, bacterial cells have a ribosome reserve arising

from the inactive ribosomes that do not participate in translation. This inactive fraction

allows cells to rapidly produce proteins in optimal amounts for the new growth condition

[169, 45]. How resource allocation strategies are achieved during fast changing environ-

ments and whether growth-division tradeoff model still holds for non-steady fluctuating

environments remains an open question.

I would like to highlight some interesting results presented in this thesis that would be

interesting to explore further in theory or test experimentally. We derived the negative

correlation between growth rate and division protein synthesis rate from a molecular

level, by extending the three-component proteome setor model proposed by [4] to a four-

component proteome sector model by including the division protein sector. So far the

synthesis rate of division proteins (FtsZ) has been measured in one growth condition

only [12], but it would be interesting to test the negative correlation with growth rate

across nutrient conditions and the positive correlation under translation inhibition.

In Chapter 4, we fitted the growth inhibition curves (growth rate versus antibiotic

concentration) to obtain the free parameters in the model. As we show in Figure 4.2 D,

the ratio between the inward and outward membrane permeabilities increases with de-

creasing nutrient quality. This suggests that the membrane permeability is nutrient-

dependent. It would be interesting to measure the membrane permeabilities in different

growth conditions as a proxy for the permeability to antibiotics.

The results from Chapter 4 show that cells shape changes in response to translation-
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inhibitory antibiotics may confer certain fitness advantages under stress. In nutrient-rich

media it is more favorable for cells to reduce their surface-to-volume in order to minimize

antibiotic influx. Whereas in nutrient-poor media, cells adapt to import more nutri-

ents by increasing their surface-to-volume ratios. To quantitatively test the role of cell

shape and nutrient quality on bacterial growth inhibition under antibiotic stress, we sim-

ulated bacterial growth under simultaneous perturbation of surface area production and

translation inhibition in varying nutrient media. We find out that that round-shaped

cells are fitter and more drug-resistant than higher aspect ratio filamentous cells, and

that dose-sensitivity increases with increasing nutrient quality. These results can be

tested experimentally by measuring bacterial growth rates in response to simultaneous

application of cell-wall targeting and ribosome-targeting antibiotics, in different nutri-

ent concentrations. Can growth inhibition be maximized by simultaneously inhibiting

ribosomal translation and promoting surface area production in nutrient-poor media?
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Chapter 7

Appendix
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METHOD DETAILS

7.1 Cell growth simulations - Chapter 4

To investigate the dynamic response of cell shape and growth to applied antibiotic and

nutrient shifts, we simulated single-cell growth over multiple generations. We first initi-

ated cells at random stages in their cell cycle, and upon division followed the daughter

cells over a number of generations until steady-state is reached. During each cell gen-

eration i, we evolved the following seven coupled differential equations for cell volume

Vi, division protein abundance Xi, surface area Ai, nutrient concentration inside the

cell [ni], antibiotic concentration inside the cell aiin, active ribosomes ria, and inactive or

antibiotic-bound ribosomes, rib.

dVi

dt
= κ(ria)Vi(t), (7.1)

dXi

dt
= κp(r

i
a)Vi(t)− µXi(t), (7.2)

dAi

dt
= β(ria)Vi(t), (7.3)

d [ni]

dt
= Jn([ni] , Ai, Vi)− κ(ria)[ni]− κrr

i
a, (7.4)

daiin
dt

= −κ(ria)a
i
in + f(aiin, r

i
a, r

i
b) + Ja(a

i
in, [ni] , Ai, Vi), (7.5)

dria
dt

= −κ(ria)r
i
a + f(aiin, r

i
a, r

i
b) + s(ria, [ni]), (7.6)

drib
dt

= −κ(ria)r
i
b − f(aiin, r

i
a, r

i
b). (7.7)

In the above equations, we have (dropping ′i′ for simplicity):

κ(ra) = κt(ra − rmin).

κp(ra) = κ0
p(r

∗
max − ra).

β(ra) = ν[κ(ra)]
2/3[κp(ra)]

1/3.

Jn(A, V, [n]) = [next]Pin([n])A/V , where [next] is the extracellular nutrient concentration,

and Pin([n]) is the nutrient-dependent inward permeability (Figure 3E)

f(ain, ra, rb) = −konain(ra − rmin) + koffrb.
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Ja(ain, [n], A, V ) = (Pin([n])aex − Poutain)A/V .

s(ra, [n])) = κ(ra)(rmax − κ(ra)(rmax − rmin)(κspecific([n])
−1 − κt/(rmax − rmin)).

κspecific([n]) = κ0[n]/([n] + n∗).

For each cell cycle i, Eq. (7.1)-(7.7) are evolved for t ≤ τi, where τi is the interdivision

time for the ith generation. Division is triggered when Xi > X0, with X0 a constant.

Upon division, we set: Vi+1(0) = DRVi(τi), Xi+1(0) = 0, Ai+1(0) = DRAi(τi), [ni+1](0) =

[ni](τi), ai+i
in (0) = aiin(τi), ri+1

a (0) = ria(τi), ri+1
b (0) = rib(τi), where DR is a Gaussian

random variable with mean 0.5 and standard deviation 0.05. We initialize the nutrient

concentration inside the cell ([ni]) close to zero, and calibrate the extracellular nutrient

concentration [next] to reach the growth rate of the medium we choose to simulate. Over

time [ni] reaches the steady-state value n
∗κspecific/(κ0−κspecific), such that κ = κspecific. We

run simulations for additional 5h after the nutrient concentration reaches steady-state,

to record the average values of cell volume, area, and ribosome concentration. Antibiotic

perturbation is applied after 10h from the start of the simulations and continued for

another 20h, when we compute the average values for the various cellular variables.

QUANTIFICATION AND STATISTICAL ANALYSIS

7.2 Parameter determination - Chapters 2 and 4

We extracted the parameters κt and rmin by fitting the equation κ = κt(r − rmin) to the

data for growth rate vs RNA/protein ratio [9] (Table 7.1). Using our theoretical model,

we obtained the expression for cell volume V as a function of r (Eq. (2.6)), which we fitted

to experimental data [9], in order to to extract the parameters κ0
p, r

∗
max and µ (Tables 7.1

and 7.2). For cells under Chloramphenicol stress, the nutrient-dependent parameters κn

and δr were obtained by fitting Eq. (2.20) and Eq. (2.21) to the experimental dataset for

each nutrient condition (Tables 7.1 and 7.2). From experimental data [9], we estimated

the division protein production rate as κp = κ/⟨V ⟩. To determine the permeability of the

cell envelope to nutrient and antibiotic transport, we fitted the growth inhibition curves

resulting from our simulations to the growth inhibition curves from the data in [9], using
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a method of least-squares. We find that Pin/Pout is a function of nutrient quality, and

used that as an input to our model simulations. Tables 7.1, 7.2 and 7.3 list a complete set

of parameter values used in our model simulations. Note that there are free parameters

in the model that are not fixable by fitting experimental data. These include: X0, n
∗

and κ0. We do not use X0 directly, as the value is absorbed in κp by re-normalising

the number of division proteins by X0 i.e. X (t = 0) = 0 and X (t = τ) = X0 = 1. We

determine the nutrient specific growth rate by treating [next]/n
∗ as a fitting parameter.

To this end, we arbitrarily pick the values for n∗ and κ0 and let the nutrients inside the

cell to reach steady-state, d[n]/dt = 0. The steady-state value for [n] depends on [next]

and determines the nutrient-specific growth rate κ = κspecific = κ0 [n] /(n
∗ + [n]). For

each growth medium, we tune the value of [next]/n
∗ such that it results in the value of κ

equal to the growth rate reported in experiments.

7.3 Cell growth simulations - Chapter 5

We pick an arbitrary value of γ to set the threshold X0. Knowing η from experimental

data and the growth rate κ from Eq. (5.13), we can then determine the division protein

synthesis rate kP .

I start with κ0 = 1h−1 the initial growth rate, and L∗ the initial length at birth. I

calculate R∗ ≈ (L∗/η)/2 and the threshold value for division X0 = γ2R. I set a random

value for X = Xbirth such that Xbirth < γ2R. Then from the first initial condition

(Eq. 5.17) I calculate µ̄L and from the second initial condition (Eq. 5.18) I calculate dU

(and ϵ̄). This implies that I already know the following: λ̄, ḡ, µ0, kc, R0, µR.

As long as X(t) < X0, each time step dt I calculate the following:

1. the energies E, U , dU

2. the growth rates κ, κr and κp

3. the changes in length, radius and division protein numbers: dL/dt = κL, dR/dt =

κrR and dX/dt = κpL.

When X > X0, I divide the cell: L = L/2, R = R and X = Xbirth, with some error in

length .
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Nutrient shift - I change ϵ after a division event and carry on with steps 1)-3). Here

I constantly recalculate X0 = γ2R to account for the fact that the radius has not yet

reached the steady state value and the threshold is not fixed.
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Table 7.1: List of parameters used in models of growth perturbations (Fig-

ures 2.1,2.2,2.3,4.2,4.3).

Parameter Value Growth medium Expression/method used Figure number

ϕmin
R 0.1 all

κ = κt(r − rmin) 2.1, 2.2, 2.3, 4.2, 4.3
κt(h

−1) 5.6 all

κ0
p(h

−1µm−3) 2.1 all

Eq. (5)
2.1, 2.2, 2.3, 4.2, 4.3

ϕmax∗
R 0.7 all

µ(h−1) 0.24 all 2.1

ϕmax
R − ϕX

0.76 TSB

κ = κn(rmax − rX − r) 2.3, 4.2, 4.3

0.92 synthetic rich

0.76 glucose + 12a.a.

0.54 casamino acid

0.58 glucose + 6a.a.

0.74 glucose

0.64 glycerol

0.29 sorbitol

0.23 mannose

κn(h
−1)

9.1 TSB

κp =
κ0
p

κn
κ+ κ0

pδr 2.3, 4.2, 4.3

8.9 synthetic rich

3.4 glucose + 12a.a.

3.5 casamino acid

3.4 glucose + 6a.a.

2.2 glucose

1.1 glycerol

1.6 sorbitol

1.4 mannose

118



Table 7.2: List of parameters used in models of growth perturbations (Fig-

ures 1-4).

Parameter Value Growth medium Expression/method used Figure number

δr

0.37 TSB

κp = κ0
p(rmax − rX + δr − r) 2.3, 4.2, 4.3

0.13 synthetic rich

-0.18 glucose + 12a.a.

0.08 casamino acid

-0.04 glucose + 6a.a.

0.07 glucose

-0.1 glycerol

-0.4 sorbitol

-0.43 mannose

κm(h
−1) 2.6 all κn = κt

κ
κm−κ

2.3

κr(h
−1) 0.6 all calibrated 4.2, 4.3

κ0(h
−1) 3 all calibrated 4.2, 4.3
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Table 7.3: List of parameters used in antibiotic simulations (Figures 4.2- 4.3)

Parameter Value Growth medium Expression/method used Figure number

[next]/n
∗

0.2 TSB

Fitting κ = κ0
[n]

[n]+n∗ when d[n]
dt

= 0 4.2, 4.3

0.08 synthetic rich

0.03 glucose + 12a.a.

0.05 casamino acid

0.018 glucose + 6a.a.

0.008 glucose

0.002 glycerol

Pout(h
−1µm−1) 20 all 15− 30 h−1 [144] 4.2, 4.3

Pin/Pout

0.45 TSB

Fitting growth inhibition curves 4.2, 4.3

0.80 synthetic rich

0.88 glucose + 12a.a.

0.80 casamino acid

0.85 glucose + 6a.a.

1.6 glucose

2.1 glycerol

10 sorbitol

15 mannose

kon(µM
−1h−1) 10 all 1.08− 13 µM−1h−1 [144] 4.2, 4.3

kD(µM) 2.5 all 0.5− 5 µM [144] 4.2, 4.3

koff(h
−1) = kDkon 25 all calculated 4.2, 4.3
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Table 7.4: Energy expressions (used in Figure 5.4)

Energy type Equation

intake energy (average) Ein = ϵA

energy dissipated (per cell cycle) Edissip ≈ Dτcyc =
(
πRL (ηLκ

2
L + ηRκ

2
R) +

ξL
2πR2κ

(L)2

P

)
1
κ
log(2)

mechanical energy (average) Emech = kcπRL
(

1
R
− 1

R0

)2

+ λπR3L

maintenance energy (average) EM = gπR2L

division energy (at division) Ediv = −κ
(V )
P ξ2πRγ = −κ

(L)
P

πR2 ξ2πRγ = κ
(L)
P 2ξγ/R

Energy rate Equation

rate of intake energy dEin

dt
=

(
gκRR + 3λκRR

2 + R−R0

R0R2 + κR

RR0
− 2(R−R0)

R0R2 κR

)
A

dissipation rate
dEdissip

dt
= 1

2
hA(ηLκ

2 + ηRκ
2
R) +

ξ
2πR

κ2
Pη

rate of mechanical energy dEmech

dt
= kcπRL

(
1
R
− 1

R0

)2

(κR + κ)− 2kcπLκR

(
1
R
− 1

R0

)
rate of maintenance energy dEM

dt
= πR2L (κ+ 2κR)

rate of division energy dEdiv

dt
= −µκPL

Table 7.5: List of parameters used in Fig. 5.2, 5.3, 5.4

parameter value how it is obtained

λ̄ 30 estimated

ḡ 30 fitted from nutrient growth law

R0 0.3 estimated

µ̄R 0.1 fitted from nutrient growth law, used in Fig. 2-4

µ̄L 0.0807 average value, used in Fig. 4

η 1.5-3 calculated from data
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[109] Bill Söderström, Alexander Badrutdinov, Helena Chan, and Ulf Skoglund. Cell

shape-independent ftsz dynamics in synthetically remodeled bacterial cells. Nature

Communications, 9(1):4323, 2018.

[110] Harold P Erickson, David E Anderson, and Masaki Osawa. Ftsz in bacterial cy-

tokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev.,

74(4):504–528, 2010.

[111] Lakshmi-Prasad Potluri, Miguel A de Pedro, and Kevin D Young. Escherichia coli

low-molecular-weight penicillin-binding proteins help orient septal ftsz, and their

absence leads to asymmetric cell division and branching. Molecular Microbiology,

84(2):203–224, 2012.

[112] Hai Zheng, Po-Yi Ho, Meiling Jiang, Bin Tang, Weirong Liu, Dengjin Li, Xuefeng

Yu, Nancy E Kleckner, Ariel Amir, and Chenli Liu. Interrogating the escherichia

coli cell cycle by cell dimension perturbations. Proceedings of the National Academy

of Sciences, 113(52):15000–15005, 2016.

[113] Michaela E Sharpe, Philippe M Hauser, Robert G Sharpe, and Jeffery Errington.

Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell

length at initiation of dna replication and evidence for active nucleoid partitioning.

Journal of bacteriology, 180(3):547–555, 1998.

[114] Richard B Weart, Amy H Lee, An-Chun Chien, Daniel P Haeusser, Norbert S Hill,

137



and Petra Anne Levin. A metabolic sensor governing cell size in bacteria. Cell, 130

(2):335–347, 2007.

[115] Nikola Ojkic, Elin Lilja, Susana Direito, Angela Dawson, Rosalind J Allen, and

Bartlomiej Waclaw. A roadblock-and-kill mechanism of action model for the dna-

targeting antibiotic ciprofloxacin. Antimicrobial Agents and Chemotherapy, 64(9),

2020.

[116] Bella Ilkanaiv, Daniel B Kearns, Gil Ariel, and Avraham Be’er. Effect of cell aspect

ratio on swarming bacteria. Physical Review Letters, 118(15):158002, 2017.

[117] Hannah Jeckel, Eric Jelli, Raimo Hartmann, Praveen K Singh, Rachel Mok,

Jan Frederik Totz, Lucia Vidakovic, Bruno Eckhardt, Jörn Dunkel, and Knut

Drescher. Learning the space-time phase diagram of bacterial swarm expansion.

Proceedings of the National Academy of Sciences, 116(5):1489–1494, 2019.

[118] WHO. No time to wait: securing the future from drug-resistant infections, 2019.

[119] Michael A Kohanski, Daniel J Dwyer, and James J Collins. How antibiotics kill

bacteria: from targets to networks. Nature Reviews Microbiology, 8(6):423–435,

2010.

[120] Fernando Baquero and Bruce R Levin. Proximate and ultimate causes of the

bactericidal action of antibiotics. Nature Reviews Microbiology, pages 1–10, 2020.

[121] Jessica MA Blair, Mark AWebber, Alison J Baylay, David O Ogbolu, and Laura JV

Piddock. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbi-

ology, 13(1):42–51, 2015.

[122] João Anes, Matthew P McCusker, Séamus Fanning, and Marta Martins. The ins
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