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Abstract 

Despite substantial research aiming to elucidate prion disease pathogenesis, the 

underlying mechanisms of cellular toxicity and neurodegeneration remain poorly 

characterized. The human brain comprises numerous cell populations with a 

heterogeneous transcriptional landscape, complicating the interpretation of 

transcriptomic studies. To untangle this complexity, we first established and validated two 

single-nucleus sequencing methodologies and a bioinformatics pipeline for data analysis. 

We then designed a time-course case-control study of RML- and control brain 

homogenate-inoculated FVB mice (N = 95, time points: 20, 40, 80, 120 dpi and disease 

end-stage), and a human case-control study in post-mortem and biopsied brain samples 

(N = 26) and applied our transcriptomics pipeline. We generated 210,000 high-quality cell 

transcriptomes across 5 time points in mice and identified 26 subclusters of cortical 

neurons, interneurons, mature oligodendrocytes, oligodendrocyte precursor cells, 

vascular and leptomeningeal cells, and astrocytes. Glial activation was evident from 80 

dpi, while our data suggested a selective transcriptomic response of individual cell 

clusters to disease. We identified a pattern of neuronal transcriptomic change shortly after 

RML-brain inoculation that quickly resolved, despite rapidly increasing prion titres in the 

brain, only to return at later stages when the neuropathology of prion disease was evident. 

Subsequent pathway analyses identified common perturbed biological pathways 

associated with synaptic dysfunction and ion homeostasis. Our human tissue samples 

did not pass quality control criteria, highlighting the need for different methodologies to 

assay archived samples. Here we provide the first single-cell transcriptomics study of 

prion diseases in mouse which found cell-type and time-specific patterns. Taken together, 

findings suggest that prion replication itself does not produce a transcriptomic signature 

in the brain, rather, a transient pattern of toxicity can be seen immediately following 

inoculation of prion disease brain homogenate, which becomes re-established as prion 

disease neuropathology develops. 
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Impact statement 

Prion diseases are fatal neurodegenerative pathologies affecting humans and animals. 

Sporadic CJD, the most common human prion disease, constitutes 85–90% of all cases 

however has no known cause to date. Despite substantial research aiming to elucidate 

prion disease pathogenesis, the underlying mechanisms of cellular toxicity and 

neurodegeneration are yet to be fully characterised. The transcriptional landscape of the 

prion-infected human brain, including changes in gene expression profiles related to 

tissue degeneration, has not been explored in-depth while confounding effects related to 

cellular heterogeneity have not been accounted for. 

This thesis describes the applicability of single-cell RNA sequencing methodologies in 

human and mouse archived tissue and provides the first look into the single-cell 

transcriptomics of prion disease. It starts with evaluating droplet-based and combinatorial 

indexing-based single-nucleus sequencing methodologies and identifying their strengths 

and weaknesses when used under tightly controlled experimental conditions, especially 

exploring their suitability when used with BSL-3 material and infectious human prions. We 

provide a full working pipeline that includes tissue cutting, nuclei suspension preparation, 

single-cell library preparation, library multiplexing, next-generation sequencing, data 

manipulation, and single-cell analysis pipelines. Additionally, we provide scripts for usual 

exploratory analyses, statistical tests, and complex visualisations of single-cell datasets. 

This information can be of importance when selecting suitable similar methodologies for 

future experiments, saving time and energy, and simplifying data analysis tasks. 

We then performed the first single-cell study of murine prion disease in animal models 

and generated high-quality datasets across 5 time points, characterising the disease from 

its earliest stages up to the end-stage. This rich resource includes numerous data 

visualisations, cell-type information, transcriptomic analyses and gene lists, and 

longitudinal and case-control comparisons coupled with additional modalities including 

information on immunohistochemical observations, prion infectivity, and spatially-

resolved transcript expression. This opens new avenues to be exploited by future 

researchers to provide answers to follow-up scientific questions, facilitate the design of 
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future targeted experiments, act as an example of correctly controlled experimental 

design, and raise subsequent questions and stimulate curiosity. 

Our human experiments, although they did not generate useful datasets, proved that 

different methodologies need to be applied for archived human brain tissue and 

suggested ways of carefully designing and controlling similar experiments, saving time 

and energy from future researchers. In addition, this thesis discusses a plethora of future 

directions for follow-up studies that could contribute to elucidating interesting hypotheses 

generated through our work. 

Through sharing our findings in international conferences, aiming to publish our research 

and make our datasets freely available, we hope that our findings will echo in the scientific 

community and accelerate similar innovative studies in the field of prion diseases, which 

is currently lagging behind other neurodegenerative disorders in terms of transcriptomics 

research. Finally, since common mechanisms are increasingly being identified in prion 

and other neurodegenerative diseases, we are confident that the work described in this 

thesis can have a broad impact on the wider neurodegeneration research field. 
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1 Introduction 

1.1 Prion diseases 

Prion diseases are fatal neurodegenerative pathologies affecting humans and animals. 

They are attributed to a conformational change of the cellular prion protein (PrPC) to 

disease-associated forms, including the protease-resistant PrPSc, which has been 

identified as the causative agent of scrapie (Prusiner, 1982), the first prion disease 

documented in sheep. Other animal prion diseases that have been described include 

Bovine Spongiform Encephalopathy (BSE) in cattle, Transmissible Mink Encephalopathy, 

Feline Spongiform Encephalopathy in cats, Exotic Ungulate Encephalopathy in nyala and 

kudu, Chronic Wasting Disease in cervids and Primate Transmissible Encephalopathy in 

lemurs (Imran & Mahmood, 2011). Human prion diseases include Creutzfeldt-Jakob 

Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), Fatal Familial Insomnia 

(FFI) and kuru (J Collinge, 2001). 

Human prion diseases can be divided into three groups, based on their aetiology: 

inherited, sporadic, and acquired. Inherited, or familial prion diseases are caused by 

mutations in the PRNP gene, which encodes the human prion protein, and include GSS, 

familial CJD, and FFI. However, only a small percentage (10-15%) of prion diseases are 

attributed to genetic mutations with autosomal dominant inheritance pattern (Prusiner & 

Hsiao, 1994). Acquired prion diseases are caused by the transmission of prions through 

surgical procedures and grafts (iatrogenic CJD; iCJD), mortuary feasts (kuru) or 

consumption of BSE-infected food products (variant CJD; vCJD). Sporadic human prion 

diseases have no known cause to date and include sporadic CJD (sCJD), fatal insomnia 

and variably protease-sensitive prionopathy (Imran & Mahmood, 2011). 

Sporadic CJD, the most common human prion disease, constitutes 85–90% of all cases 

(Brown et al., 1994; Masters et al., 1979) with an annual occurrence of 1-2 cases per 

million (Ladogana et al., 2005). It affects both sexes with the same rate and the peak 

onset is between 55 and 75 years. Typical clinical features include dementia, visual 

abnormalities, muscle incoordination and gait and speech abnormalities. Pyramidal and 

extrapyramidal dysfunction and behavioural changes can also develop during the course 

of the disease. Characteristic is the rapid deterioration of the symptoms, while during the 

https://sciwheel.com/work/citation?ids=1206988&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2587129&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8376314&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8552700&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8552700&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2587129&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8579177,1483972&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4225225&pre=&suf=&sa=0&dbf=0
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terminal stages of the disease patients develop a state of akinetic mutism (Belay, 1999). 

While the cause of the disease has not been elucidated yet, one of the hypotheses that 

exist involves the stochastic appearance of a rare somatic mutation that might result in 

the conversion of the normal PrP to a pathogenic isoform. This view is supported by the 

fact that rare mutations can occur in the population at rates comparable to the incidence 

of sporadic CJD (Bomba et al., 2017). Another hypothesis suggests that random 

misfolding of the normal prion protein to the pathogenic isoform can occur in a single 

neuron or a group of cells, possibly during the transcription or translation of the PRNP 

gene and trigger a cascade (Belay, 1999). No consistent risk factors have been reported 

for sCJD, except for age and genetic variation at the human PRNP gene (Simon Mead et 

al., 2012), while a recent Genome-Wide Association Study (GWAS) identified two new 

and replicated risk variants in STX6 and GAL3ST1 and two further unreplicated loci that 

were significant in genome-wide tests (PDIA4, BMERB1) (Jones et al., 2020). Some 

studies have also implicated surgical procedures (Ward et al., 2008) as a possible means 

of contamination, but the evidence remains inconclusive (Hamaguchi et al., 2009; 

Harries‑Jones et al., 1988). 

An interesting phenomenon of prion biology is the existence of different prion strains, 

which are defined as infectious isolates that exhibit distinct disease phenotypes when 

transmitted to identical hosts (Aguzzi et al., 2007). Strain differences can influence 

phenotypic traits, including disease incubation time and distribution of brain lesions, as 

well as the PrPSc biochemical profile (Solforosi et al., 2013). Information relevant to prion 

strain specificity is believed to be encoded at the level of protein conformation, following 

the protein-only hypothesis that dictates that a misfolded prion protein is the essential 

causative agent of prion disease and transmission (Bessen et al., 1995; Tanaka et al., 

2004; Telling et al., 1996). Studies of the strain phenomenon have employed 

experimental animals inoculated with infectious material from various species. Among 

them, mouse models have been particularly useful having been used to study and isolate 

more than 20 different prion strains (Bruce, 1993). Strains RML, ME7, 79A, 22L, 

Chandler, 301V, and 139A are all mouse-adapted scrapie prion strains, while S15 refers 

to the lysate of the SMB-S15 cell line originally established when it was cultured from a 

Chandler isolate-infected mouse brain (Birkett et al., 2001; Bruce, 1993; Chandler, 1961). 

https://sciwheel.com/work/citation?ids=1294354&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3599712&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1294354&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8579284&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8579284&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9758127&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7691552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7697566,7697552&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7697566,7697552&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4233163&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12844416&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1581299,12031810,1278300&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1581299,12031810,1278300&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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These strains present similar biochemical characteristics but can be differentiated when 

inoculated in mice by studying the characteristic profile of brain lesions and disease 

incubation time (Bruce et al., 1991; Fraser & Dickinson, 1973; Legname et al., 2005). In 

addition, it has been shown that different prion strains can elicit a distinct transcriptomic 

response, a phenomenon which, coupled with host genetics, complicates the 

interpretation of transcriptomics studies and highlights the need for tightly-controlled 

experimental conditions (Hwang et al., 2009). 

Genotyping of the PRNP gene is a vital component of describing CJD strains. Of special 

interest is a polymorphism at codon 129 that encodes either a methionine (M) or a valine 

(V) residue and is considered to be an important disease modifier. Methionine 

homozygosity confers increased susceptibility to the sporadic, variant, and iatrogenic 

forms of CJD, while the three possible genotypes are associated with different clinical 

phenotypes (J Collinge et al., 1991; Andrew F Hill et al., 2003; Palmer et al., 1991; 

Zeidler et al., 1997). 

The analysis of PrPSc characteristics after limited proteinase K digestion of infected brain 

homogenates can also be used to study prion strains and is a conventional component 

of CJD classification. Digestion with proteinase K yields three distinct bands when 

electrophoresed that are associated with the three possible degrees of glycosylation of 

the PrP protein: unglycosylated, mono-glycosylated, or di-glycosylated (J Collinge et al., 

1996; Parchi et al., 1996). The codon 129 status and the main PrPSc band patterns after 

PK digestion are used in the two main CJD classification systems, referred here to as the 

“Italian classification system” and the “London classification system”. The Italian system 

refers to “type 1” PrPSc with an unglycosylated band at 21 kDa, and “type 2” PrPSc with 

a band at 19 kDa (Parchi et al., 1996, 1999). In contrast, the London system refers to the 

banding pattern of 21 kDa as “type 2”, the band of 19 kDa as “type 3”, and a band of 21.5 

kDa as “type 1” (J Collinge et al., 1996; Andrew F Hill et al., 2003). The banding patterns 

for vCJD are separately recognised by both systems — “type 2B” in the Italian and “type 

4” in the London system. 

Evidence suggests that a growing number of proteins involved in neurodegeneration 

share certain characteristics with prions. This led to the introduction of the prion paradigm 
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which holds that the fundamental cause of specific neurodegenerative disorders is the 

misfolding and seeded aggregation of certain proteins (Neves, 2019; Safar, 2016; L. C. 

Walker & Jucker, 2015). It is becoming increasingly clear that Alzheimer's disease, 

Parkinson's disease, frontotemporal dementia, and polyglutamine diseases share so-

called prion-like mechanisms, including strain properties (B. Frost & Diamond, 2010; 

Wemheuer et al., 2017). Similar to prionopathies, all of these diseases are associated 

with the accumulation of fibrillar aggregates of proteins (amyloid-β, tau, a-synuclein, and 

polyglutamine proteins). These observations have led some researchers to generalise 

the use of the term “prion” to refer to any alternatively folded protein undergoing self-

propagation and sharing key biophysical and biochemical characteristics with PrP prions, 

categorising progressive supranuclear palsy and multiple system atrophy as prion 

diseases (Woerman et al., 2015). In addition, Jaunmuktane et al. and Purro et al. have 

made a strong case for iatrogenic human transmission of amyloid-β pathology similar to 

prion transmission, with implications for both the treatment and prevention of AD 

(Jaunmuktane et al., 2015; Purro et al., 2018). Overall, these more recent developments 

underline the importance of studying prion diseases and the associated mechanisms as 

our findings can have broader implications in the field of neurodegenerative disorders. 

1.2 Transcriptomics of prion diseases 

1.2.1 Microarray-based studies 

While the genome can provide information about the heritability of a disease, it does not 

capture the dynamics that regulate the balance between normal and pathological states. 

The interplay of gene function through parallel expression measurements of the same 

genetic targets constitutes the core principle of functional genomics. Some of the most 

renowned technologies used to carry out transcriptional profiling are based on DNA 

microarrays. After the description of the DNA double helix structure by Watson and Crick 

in 1953 (Watson & Crick, 1953), scientists soon realised the potential of molecular 

hybridisation. The simple fact that single-stranded DNA binds to complementary DNA and 

the existence of complementary base pairs that form the structure of the two strands of 

DNA laid the foundations for analytical methods of DNA sequencing, including DNA 

microarrays. Grunstein and Hogness produced an early example of what can be broadly 

considered a DNA array by introducing colony hybridisation, a technique that could help 

https://sciwheel.com/work/citation?ids=1197728,12850111,12850110&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1197728,12850111,12850110&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1088,4799709&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1088,4799709&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1243842&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6141583,739176&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1417688&pre=&suf=&sa=0&dbf=0


23 
 

isolate cloned DNA that contains a specific gene (Grunstein & Hogness, 1975). In their 

experiments, they used a nitrocellulose filter to imprint bacterial colonies cultured on a 

plate. The bacteria were then lysed, and their DNA denatured and fixed on the filter in 

situ. The resulting DNA print could then be hybridised to radioactive labelled RNA, 

complementary to the sequence of interest, and the result could be assessed by 

autoradiography. The colonies that contained the gene of interest could be identified and 

then isolated from the original reference plate. During the following decades, further 

technological advancements coupled with the development of robotic technology and an 

increase in automation led to the introduction of the first miniaturised array - the 

“microarray” - in 1995, when Schena et al. measured the expression of 45 Arabidopsis 

genes in parallel in an array prepared by robotic printing of complementary DNA strands 

on glass (Schena et al., 1995). Since then, the fundamentals of microarrays have 

remained the same, while their capacity and efficiency have increased, making them an 

invaluable tool for molecular biology and, more specifically, transcriptomics. 

While the maturation of the microarray sequencing technologies was a key factor that 

catalysed further experiments, of equal importance was the selection of appropriate 

animal models. While many animal models have been used to study animal Transmissible 

Spongiform Encephalopathies, most of the research involved rodent models due to their 

relatively short disease incubation time, easier maintenance than larger animals, 

extensive genetic characterisation, and relatively easy genetic manipulation. In addition, 

the passage and introduction of various goat prion strains in mouse models have allowed 

the investigation of strain biology under tightly controlled experimental settings.  

Many studies have identified sets of perturbed genes during the early or late stages of 

the disease. For example, Booth et al. used cDNA microarrays to query gene expression 

profiles at three time points after inoculation (early, middle/preclinical, and late/clinical) of 

C57BL/6 mice with two mouse-adapted prion strains, ME7 and 79A (Booth et al., 2004). 

Most of the significantly differentially expressed genes (138 upregulated and 20 

downregulated) were found in the clinical stage of the disease. A gene ontology analysis 

revealed that the biological processes involved include cell communication, transport, 

development, cell organisation and biosynthesis and others. Only a smaller set of genes 
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were shown to be dysregulated in the early and middle stages of the disease. 

Interestingly, one set of genes was found to be downregulated in all tested time points, 

including four transcripts of genes related to the haematopoietic system, suggesting that 

haemopoiesis might be involved in the disease process from the early stages. Similar 

findings were reported by Skinner et al. in 2006, where C57BL/10 mice were inoculated 

with three prion strains: ME7, 22L, and Chandler/RML (Skinner et al., 2006). In that study, 

over 400 differentially expressed genes (DEGs) were identified in symptomatic mice, 

while only 22 genes were found to be significantly altered in the pre-symptomatic animals. 

Differences were also evident in the expression profiles of mice inoculated with different 

strains, underlining the heterogeneity of the transcriptomic response to different prion 

strains. These genes implicate cellular processes including protein folding, lysosome 

function, synapse function, metal ion binding, calcium regulation and cytoskeletal 

function. 

As clinical stages of the disease might be dominated by perturbations resulting from the 

extensive pathology, it is crucial to focus on the early disease stages to understand 

disease pathogenesis and develop diagnostic assays. Following this paradigm, Kim et al. 

used Affymetrix microarrays to identify DEGs in the spleen and brain of intracerebrally-

inoculated prion-infected mice during the early stages of the disease (H. O. Kim et al., 

2008). They found 67 upregulated genes in the infected mice, prior to the onset of clinical 

symptoms. These were involved in many biological processes including immunity, the 

endosome/lysosome system, hormone activity and the cytoskeleton. More importantly, 

they identified 14 genes that were shown to be altered in expression in the spleen, before 

the onset of clinical symptoms; four of them (Atp1b1, Gh, Anp32a, and Grn) were altered 

only 46 days post-infection, entertaining the possibility of serving as surrogate markers 

for disease diagnosis. 

A systems approach to studying prion diseases was adopted by Hwang and colleagues 

(Hwang et al., 2009). The researchers postulated that the disease emerges due to the 

perturbation of multiple and interconnected transcriptional targets which form biological 

networks in the brain. They used microarray technology to profile the global gene 

expression in the brains of mice from six different genetic backgrounds (B6, B6.I, FVB) 
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that were inoculated with either one of two different prion strains (RML or 301V). This 

strategy provided data from 8 distinct mouse strain-prion strain combinations at 8-10 time 

points. This comprehensive experimental design allowed the investigation of the effects 

of host genetics, prion strain and PrP concentration on disease incubation time and 

transcriptomics. Subtractive analyses identified 333 DEGs that were commonly 

dysregulated and appeared to be central to the disease (Figure 1.1). The authors then 

integrated gene expression data with information regarding pathology, aggregated PrP 

deposition, gene ontology and protein interactions to generate protein networks that 

seemed to be related to disease pathology. Further grouping of the mice according to 

prion strain and disease incubation time revealed 39 DEGs associated with the RML 

strain, and 55 DEGs associated with short incubation time, respectively. The researchers 

concluded that their research highlights the power of systems approaches and provides 

insights that could potentially shape novel disease diagnosis and treatment approaches. 

 

Figure 1.1: Strategies for the identification of 333 core DEGs in mouse prion diseases. The authors 

used microarray technology to profile the global gene expression in the brains of mice from three different 

genetic backgrounds (B6, B6.I, FVB) that were inoculated with either one of two different prion strains (RML 

or 301V). A subtractive analysis identified 333 DEGs that were commonly dysregulated and appeared to 

be central to the disease. Of those, 161 genes could be mapped to perturbed biological gene networks, 

while 178 were reported for the first time. Figure adapted from Hwang et al. 2009. 
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Another approach to studying prion pathology while controlling for changes due to 

neuroinflammation is based on the use of cuprizone, a prion disease mimetic drug. This 

copper-chelating compound, when given orally for several weeks, causes chronic 

astrocytosis and spongiform changes that qualitatively mimic the cell population changes 

observed in prion diseases. Moody and colleagues used cuprizone-treated animals as 

experimental controls and compared their brain expression profiles to RML-inoculated 

mice in preclinical and clinical time points (Moody et al., 2009). Their study identified 164 

DEGs during prion infection versus non-treated controls, while 307 transcripts were found 

to be differentially regulated in the cuprizone-treated mice versus non-treated controls. 

More importantly, a comparative analysis between the prion-infected and the cuprizone-

treated mice identified 17 transcripts that are not affected by the drug but increase in 

expression from preclinical to clinical prion infection. Nine of these genes (Hsbp1, Socs3, 

Ifi44, D12Ertd647e, Casp4, Agrp, Plce1, Ptpbl and Ddx58) were found to be upregulated 

preclinically and could provide insight into disease progression. 

Except for coding genes, recent studies have established links between micro RNAs 

(miRNAs) and neurodegenerative diseases, including prion diseases. miRNAs are small 

non-coding transcripts that are involved in fine-tuning gene expression by post-

transcriptionally regulating mRNA stability. Saba et al. identified 15 miRNAs that were 

dysregulated in prion-infected mice using microarrays and RT-PCR (Saba et al., 2008). A 

group of 7 miRNAs (miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and 

miR-146a) were shown to be over 2.5-fold upregulated, while another group of 2 miRNAs 

(miR-338-3p and miR-337-3p) were shown to be over 2.5-fold downregulated. 

Computational analyses identified potential gene targets, including 119 genes that have 

previously been reported to be dysregulated in mouse scrapie. These gene targets were 

found to be involved in intracellular protein-degradation pathways and signalling 

pathways related to cell death, synapse function and neurogenesis. More recently, Majer 

et al. used laser capture microdissection to isolate hippocampal CA1 neurons from mice 

infected with the RML prion strain and determine their preclinical transcriptional response 

during infection (Majer et al., 2012). Interestingly, it was found that a major cluster of 

genes was dysregulated in the preclinical disease stage, while expression returned to 

basal levels or was reversed during the clinical stage. Dysregulated miRNAs miR-132-
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3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p exhibited this 

alternating pattern of expression. 

While mouse studies can be pivotal in uncovering the underlying transcriptomic signature 

of the disease, they do have limitations and require a considerable amount of time from 

inoculation to results. To address some of these limitations, researchers have also 

focused on murine cell lines. Murine cells have been shown to propagate prions in vitro 

while providing a tightly controlled setup that allows for more experimental freedom at the 

cost of less generalisable conclusions. Greenwood et al. used Neuroblastoma (N2a) and 

hypothalamic neuronal cells (GT1), which can be persistently infected with mouse scrapie 

prions, to contrast the transcriptional landscape of these cell lines when infected with 

prion strain RML (Greenwood et al., 2005). It was reported that the RNA profiles of the 

infected cells (ScN2a and ScGT1) show differences between them and between gene 

expression changes reported in human microglia and brain studies, while there was some 

overlap. In addition, curing the ScN2a cells with pentosan polysulphate led to the 

reversion of only some differentially expressed genes. The authors argue that this 

evidence supports the hypothesis that the same prion strains might have a different 

transcriptomic impact on different cells. Contradictory evidence was published in the 

same journal by Julius and colleagues 3 years later when the researchers analysed the 

transcriptional response of three murine neural cell lines to persistent prion infection in 

vitro (Julius et al., 2008). The cell lines (N2aPK1, CAD, and GT1) were infected with prion 

strain RML and infectivity was validated by colony spot immunochemistry (64-100% of 

the cells were infected). This study only found the Nav1 gene marginally modulated in 

only one cell line, while no other transcript was significantly altered. The authors attribute 

the results to the experimental stringency of the study, which was designed to minimise 

genetic drift. More recently, Marbiah et al. screened prion-resistant revertant clones, 

isolated from susceptible PK1 cells (Marbiah et al., 2014). Their transcriptomic signature, 

which was associated with susceptibility and differentiation, included several genes that 

encode proteins involved in extracellular matrix remodelling such as fibronectin 1 (Fn1) 

and integrin α8 (Itga8), a cellular component in which disease-related PrP is deposited. 

Finally, silencing nine of these genes was able to increase prion infection susceptibility. 

https://sciwheel.com/work/citation?ids=362028&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8597075&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2793770&pre=&suf=&sa=0&dbf=0


28 
 

Human studies are more limited in number, possibly owing to the low prevalence of the 

disease that limits the number of samples available, the infectious nature of human prions 

that constrains the methodology that can be used, and the more complex experimental 

design due to the inherent variability of human brain tissue. One of the early studies using 

human brain tissue was published in 2005 by Xiang and colleagues and used Affymetrix 

microarrays to compare the transcriptome of the frontal cortex of 15 sCJD patients to 5 

normal controls (Xiang et al., 2005). After stringent quality control, they identified 79 

upregulated and 275 downregulated genes. The upregulated genes were found to be 

coding immune and stress-response factors and elements involved in cell death and cell 

cycle, while the downregulated genes mostly encoded synaptic proteins. Interestingly, the 

degree of increased expression was found to be correlated with the degree of 

neuropathological alterations in particular molecular subtypes of sCJD. Later, Tian and 

colleagues analysed the global expression patterns of the thalamus and parietal cortex 

of three FFI patients (Tian et al., 2013). They found a total of 1314 DEGs in the thalamus 

and 332 in the parietal lobe. 255 of those genes were shown to be modulated in the same 

direction in both regions (99 upregulated and 156 downregulated). The most significantly 

altered molecular functions included transcription and DNA-dependent regulation of 

transcription, RNA splicing, and mitochondrial electron transport. A KEGG pathway 

analysis identified 102 pathways that were changed in both brain areas. A year later, the 

same group published a broader study that included sCJD and AD patients (11 sCJD, 3 

FFI, 3 AD, and 4 normal controls) (Tian et al., 2014). By analysing the overlap of the 

differential expression data in all 3 neurodegenerative disorders, they were able to identify 

common dysregulated biological processes (signal transduction, synaptic transmission, 

and neuropeptide signalling pathway) and pathways (MAPK signalling pathway, 

Parkinson’s disease, and oxidative phosphorylation) (Table 1). 

sCJD1 sCJD2 FFI AD 

Alzheimer’s disease MAPK signalling 
pathway 

MAPK signalling 
pathway 

MAPK signalling 
pathway 

Glutamate metabolism Alzheimer’s disease Regulation of 
autophagy 

Alzheimer’s disease 
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MAPK signalling pathway Parkinson’s disease Epithelial cell 
signalling in 
Helicobacter pylori 
infection 

Parkinson’s disease 

Calcium signalling pathway Oxidative 
phosphorylation 

Parkinson’s disease Oxidative 
phosphorylation 

Oxidative phosphorylation Taurine and 
hypotaurine 
metabolism 

Oxidative 
phosphorylation 

Focal adhesion 

Phosphatidylinositol 
signalling system 

Focal adhesion Reductive carboxylate 
cycle (CO2 fixation) 

Amyotrophic lateral 
sclerosis (ALS) 

Parkinson’s disease Amyotrophic lateral 
sclerosis (ALS) 

Glyoxylate and 
dicarboxylate 
metabolism 

Epithelial cell 
signalling in 
Helicobacter pylori 
infection 

Regulation of actin 
cytoskeleton 

Glutamate 
metabolism 

Focal adhesion Renal cell carcinoma 

Taurine and hypotaurine 
metabolism 

Regulation of actin 
cytoskeleton 

Regulation of actin 
cytoskeleton 

Melanoma 

Citrate cycle T cell receptor 
signalling pathway 

Urea cycle and 
metabolism of amino 
groups 

Calcium signalling 
pathway 

Table 1: Top 10 changed biological pathways in sCJD, FFI and AD identified by Tian et al. 2014. The 

researchers used Affymetrix Human Genome microarrays to profile the transcriptome of 3 FFI, 11 sCJD, 

and 3 AD patients. The sCJD patients were further split into two groups of sCJD1 and sCJD2, with more 

and less PrPSc accumulation, respectively. The pathways Alzheimer’s disease, regulation of actin 

cytoskeleton, and focal adhesion were found to be perturbed in 3 groups, while the pathways MAPK 

signalling, oxidative phosphorylation, and Parkinson’s disease were found to be perturbed in all three 

neurodegenerative diseases. Table adapted from Tian et al. 2014. 

Taking into consideration the aforementioned, it becomes evident that prion diseases are 

associated with transcriptional perturbations; these have been identified from the earliest 

to the latest stages of the disease. Differences in experimental approaches have 

highlighted a multifaceted transcriptional response, where disease stages, host genetics, 

prion strains and experimental models all contribute to transcriptomic variability. Most 

DEGs were identified in the clinical disease stages, possibly stemming from an underlying 

extensive transcriptomic disruption, implicating biological mechanisms associated with 

protein folding and stress responses, lysosomal and immune function, and cell death. 

Numerous studies have tried to identify early perturbations both to facilitate disease 
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diagnosis and pinpoint interesting drug targets. Some of these associated biological 

pathways were found to be associated with lysosomal function, cytoskeleton remodelling 

and iron, steroid, and prostaglandin metabolism. Cell studies have identified the 

extracellular matrix remodelling pathway as a susceptibility signature, while human 

studies have identified perturbations of mechanisms modulating transcription, cell 

signalling and oxidative phosphorylation. Interestingly, it has been suggested that part of 

this modulation might be due to the dysregulation of miRNAs, which have been shown to 

adopt alternating expression patterns during disease progression. While these studies 

were the first to shed light on the complexity of the transcriptomics of prion diseases, their 

insights have, unfortunately, failed to provide concrete evidence concerning disease 

mechanisms. Novel technical approaches, better-controlled experiments, and more 

consistent work with strains would later allow an even deeper exploration of the 

transcriptome, in an effort to identify pieces of the puzzle that microarrays might have 

missed. 

1.2.2 Next-generation sequencing-based studies 

While microarray technology has been in the spotlight for years, technological 

advancements and a reduction of sequencing cost over the last decade have led to a shift 

in transcriptomics from microarray technology, which can only quantify specific and finite 

targets, towards nucleic acid sequencing. DNA sequencing, in general, is the process of 

determining the sequence of nucleotides in a section of DNA. A major difference between 

microarrays and sequencing is that the former can only be used for known, predetermined 

features that need to be printed on the array in advance, while sequencing does not 

require a priori knowledge, allowing the discovery of novel targets. The first generation of 

commercialised DNA sequencing was Sanger sequencing. While being a breakthrough 

of its time, Sanger sequencing offers very low throughput, albeit with high precision. 

Further technological discoveries led to the introduction of a group of techniques that offer 

orders of magnitude higher throughput by sequencing DNA fragments in parallel. These 

technologies are commonly described by the umbrella term “Next-Generation 

Sequencing'' (NGS) and include the next two generations of sequencing methods (i.e. the 

second and third) (Feng et al., 2015; Płoski, 2016). Second-generation instruments 

require clonal amplification of DNA molecules (GS FLX+, SOLiD, Ion, HiSeq etc.), while 
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third-generation technology enables sequencing at the single-molecule level (Helicos and 

Pacific Biosciences instruments). Some argue about the existence of fourth-generation 

sequencing technology, but its definition is not widely accepted yet (Feng et al., 2015; Ke 

et al., 2016; Suzuki, 2020). 

Most relevant to transcriptomic studies is RNA sequencing (RNA-seq), which has become 

an indispensable tool for studying the many distinct aspects of RNA biology, from gene 

expression to translation and structure. Most RNA sequencing approaches use a second-

generation sequencing methodology that involves cDNA synthesis before sequencing 

and are considered NGS. RNA-seq is considered to be more sensitive than microarrays, 

has a broader dynamic range, and can detect splice variants and non-coding RNAs that 

would otherwise be missed (Perkins et al., 2014; S. Zhao et al., 2014). However, that 

does not mean that RNA-seq does not have inherent limitations, which can lead to biases 

and overvaluation of the results (Conesa et al., 2016; Hayer et al., 2015; Lahens et al., 

2014; Swindell et al., 2014). 

One of the first NGS-based transcriptomic studies in prion diseases was carried out by 

Basu and colleagues and used tag profiling Solexa sequencing to compare gene 

expression in bovine medulla tissue between BSE-infected cattle and healthy controls (U. 

Basu et al., 2011). Even though the throughput of this technology was very low compared 

to today’s standards (5-6 million reads generated per sample), the study identified 190 

DEGs. Of these, 73 were found to be upregulated and 117 downregulated, while 16 were 

involved in 38 KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. While 

this number of genes might seem low nowadays, it should be pointed out that databases 

were also much sparser, including a lower number of genes and less thorough 

annotations. Another interesting study on the normal function of PrP was published in the 

same year by Khalifé and colleagues (Khalifé et al., 2011). To assess the involvement of 

PrP in embryogenesis, the group performed a comparative transcriptomic analysis 

between FVB/N Prnp KO mice and FVB/N mice during the early embryonic stages. They 

identified 73 DEGs at development stage E6.5 and 263 DEGs at E7.5, while proteolysis, 

protease inhibition, biological adhesion, nervous system development, apoptosis, cell 

proliferation, and inflammatory and innate immune response were the most represented 
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functional groups. A few years later, Muñoz-Gutiérrez et al. investigated the contribution 

of cellular factors to prion infection (Muñoz‑Gutiérrez et al., 2016). They used two closely 

related ovine microglia clones with no detectable differences in PrPC expression levels, 

but with different prion susceptibility. After inoculation with scrapie positive and negative 

sheep brainstem homogenates and passaging, the cells were sequenced using Illumina 

technology. 22 DEGs were identified, most of which were found to be upregulated in 

poorly permissive microglia (selenoprotein P, endolysosomal proteases, and proteins 

involved in extracellular matrix remodelling). Some of the upregulated transcripts in 

permissive microglia included transforming growth factor beta-induced, retinoic acid 

receptor response 1, and phosphoserine aminotransferase 1. A Gene Set Enrichment 

Analysis (GSEA) identified proteolysis, translation, and mitosis as the most affected 

pathways. 

More recently, Kanata and colleagues profiled the transcriptome and RNA editome of 

humanised transgenic mice (sCJD tg340-PRNP129MM) that recapitulate human disease 

pathology at preclinical and clinical disease stages (Kanata et al., 2019). In the early 

disease stage, 1,356 DEGs were identified while neuronal and synaptic pathways and 

signalling cascades associated with oxidative or ER stress were implicated. In contrast, 

655 DEGs were identified during the clinical disease stage and dysregulated pathways 

included cell survival, proliferation, differentiation, lysosome function, and immune 

system. Interestingly, 58 genes were found to be dysregulated in the same direction at 

both time points. A genome-wide atlas of gene expression, splicing and editing alterations 

during the course of disease in prion-infected mice was generated by Sorce and 

colleagues, aiming to shed light on prion transcriptomics during the disease, including 

time points much earlier than the appearance of clinical symptoms (Sorce et al., 2020). 

The authors underline that prion infection induced changes in mRNA abundance and 

processing well ahead of any neuropathological signs (Figure 1.2). In addition, the gene 

expression patterns were different for microglia-enriched genes, which were found to be 

upregulated simultaneously with the appearance of clinical symptoms, and for neuronal-

enriched transcripts, which remained at the same levels until the end-stage of the 

disease. Thus, they hypothesise that glial pathophysiology represents the final driver of 

disease. 
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Figure 1.2: Identification of DEGs during prion disease progression by Sorce et al. The authors 

designed a time-course experiment, intracerebrally inoculating wild-type C57BL/6J mice with either RML or 

non-infectious brain homogenate. (A) Timeline of prion inoculations and numbers of upregulated and 

downregulated DEGs (|log2FC| > 0.5 and FDR < 0.05). (B) Heatmap displaying the log2FC of 3,723 genes 

that are differentially expressed at least at one time point. Only log2FC values with p < 0.05 are coloured. 

An unsupervised k-means clustering analysis (k = 4 clusters) identified four patterns (c1-c4) of log2FC 

oscillations over time (right sidebar). (C) Circos plot summarizing the cell type-enriched genes within each 



34 
 

cluster. MG: microglia, AS: astrocytes, OL: oligodendrocytes, EC: vascular cells, N: neurons. Figure 

adapted from Sorce et al. 2020. 

The advent of NGS also enabled high-throughput querying of the expression of miRNAs, 

as complementary transcriptional regulators. Gao et al. used deep sequencing to profile 

the expression of miRNAs in mice infected with different scrapie agents (139A, ME7 and 

S15) at the terminal disease stage (Gao et al., 2016). The comparison to age-matched 

normal controls revealed 57, 94 and 135 DE miRNAs in pooled brain samples of 139A-, 

ME7- and S15-infected mice, respectively. Interestingly, 22 and 14 of them were found to 

be commonly upregulated and downregulated, respectively, in all three models, while a 

KEGG pathway analysis highlighted the involvement of 12 similar pathways. A few years 

later, Norsworthy and colleagues published a blood miRNA signature study in sCJD 

patients (Norsworthy et al., 2020). In that study, they profiled miRNA expression from 

blood of 57 sCJD patients and 50 healthy controls and identified 5 DE miRNA transcripts 

(hsa-let-7i-5p, hsa-miR-16-5p, hsa-miR-93-5p, hsa-miR-106b-3p and hsa-let-7d-3p). This 

signature was found to discriminate sCJD from Alzheimer’s disease patients, while the 

rate of decline in miRNA expression significantly correlated with disease progression. The 

authors argue that this novel signature can provide information to facilitate disease 

diagnosis and monitoring in a non-invasive manner. 

NGS made in-depth transcriptomic queries possible and has allowed scientists to 

investigate the role of PrP, identify factors contributing to prion susceptibility and 

characterise novel miRNA signatures and mRNA alterations, ultimately leading to the 

accumulation of knowledge concerning prion diseases. Studies using cell lines identified 

retinoic acid receptor response 1, transforming growth factor β-induced and 

phosphoserine aminotransferase 1 as a permissive prion disease signature, while 

humanised mouse models facilitated the identification of oxidative and ER stress as 

having a central role in the late stages of the disease. Glial pathophysiology has also 

been implicated, while novel blood miRNA signatures might contribute to disease 

diagnosis. However, while these studies generated unprecedented amounts of data, they 

have failed to substantially elucidate the underlying disease mechanisms. Importantly, 

even though many different experimental models have been used - including cattle, cell 

lines and transgenic mice - no NGS information is available regarding the human prion-
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infected brain. Further leaps in our understanding of the underlying complexity of other 

neurodegenerative diseases would be made possible due to the introduction of single-

cell transcriptomics. 

1.3 Single-cell transcriptomics 

1.3.1 The need for single-cell resolution 

As next-generation sequencing technologies matured, they justifiably became the method 

of choice for the majority of transcriptomic studies. Years of development from private 

companies and academic institutions alike led to further optimisation of the chemistry 

involved, new materials were utilised to produce denser substrates, innovations in 

nanotechnology led to the introduction of nanopore-based sequencing and the 

development of new open-source software and algorithms democratised data analysis 

and interpretation. All these discoveries have culminated in an unprecedented increase 

in data throughput, high levels of sensitivity and specificity, the introduction of various 

methods that specifically target different aspects of biology (like splicing, RNA editing, 

RNA methylation or other modifications etc), and most importantly the generation of vast 

amounts of useful data that has been placed in the epicentre regarding the elucidation of 

complex diseases, such as cancer and neurodegeneration. 

However, sequencing approaches that use bulk tissue as input material assume and 

represent all the cells as a homogeneous mixture, while in reality, ex vivo material can 

consist of different cell types which can potentially have dissimilar gene expression 

patterns (Raj & van Oudenaarden, 2008). One of the major arguments against bulk tissue 

sequencing is that it averages the gene expression of all input cells and, thus, all intra-

cellular heterogeneity and population-specific genetic signatures are lost, possibly 

hindering the extraction of meaningful conclusions. 

This notion has been strengthened by the advent of new single-cell RNA sequencing 

(scRNA-seq) technologies that enabled the dissection of gene expression and the 

preservation of valuable information about the cells of origin. Indeed, newer single-cell 

sequencing studies have revealed biologically meaningful and previously underestimated 

intracellular gene expression variability (G. Chen et al., 2016; Jaitin et al., 2014; 

Rosenberg et al., 2018), as well as various previously unidentified cell types (Cao et al., 

https://sciwheel.com/work/citation?ids=171982&pre=&suf=&sa=0&dbf=0
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2017; Grün et al., 2015; Rosenberg et al., 2018). Some representative examples 

worthwhile mentioning include two independent studies by Mathys et al. and Rosenberg 

et al. Mathys and colleagues sequenced 80,660 single nuclei from 48 individuals with 

varying levels of Alzheimer’s disease pathology (Mathys et al., 2019). The data revealed 

that groups of genes, called marker genes, are differentially expressed in specific cell 

populations (Figure 1.3). The authors argue that this selective response to disease can 

provide valuable information and shed light on disease emergence and manifestation, 

highlighting the fact that bulk RNA-seq analysis of the same samples could not uncover 

this heterogeneity. This study is of great interest and relevance to this project and will be 

discussed in more detail in the following sections. In another pivotal study, Rosenberg 

and colleagues used a scRNA-seq technique called SPLiT-seq to analyse 156,049 single-

nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords 

(Rosenberg et al., 2018). They identified 73 distinct clusters when grouping the 

transcriptomes using unsupervised clustering; most of those were neuronal cells (54 

clusters), while the rest were assigned to four astrocyte types, six oligodendrocyte types, 

one oligodendrocyte precursor cell type, two vascular and leptomeningeal cell types, 

endothelial cells, smooth muscle cells, microglia, macrophages, ependymal cells, and 

olfactory ensheathing cells. While this study identified molecular markers for specific cell 

types and identified subtypes for the first time, functional differences of the majority of 

cellular subtypes remain unclear. 

https://sciwheel.com/work/citation?ids=4954361,4076481,656318&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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Figure 1.3: Single-cell sequencing of the prefrontal cortex of Alzheimer’s disease patients uncovers 

heterogeneity in gene expression patterns of different cell populations that cannot be detected by 

bulk RNA sequencing. (a) Comparison of differential expression signature of marker genes in 6 different 

cell types versus global differential expression patterns identified by bulk sequencing. Single-cell analysis 

reveals that these marker genes are selectively dysregulated in specific cell populations, while they show 

little deviation in others. A bulk RNA-seq analysis of the same samples can identify only the strongest 

signatures (the downregulated signature of oligodendrocytes and the upregulated signature of excitatory 

neurons), while population-specific information is lost. Ex: excitatory neurons, In: inhibitory neurons, Ast: 

astrocytes, Oli: oligodendrocytes, Opc: oligodendrocyte precursor cells, Mic: Microglia. (b) scRNA-seq 

identifies opposite differential expression direction of gene APOE in microglia (Mic) and astrocyte (Ast) cell 

populations. APOE was found to be upregulated in microglia while being downregulated in astrocytes. 

Figure adapted from Mathys et al., 2017. 

1.3.2 Single-cell sequencing technologies 

The transcriptome is a major determinant of cell function; distinct gene expression 

programs can regulate both cellular activity and identity (Y. Li et al., 2017; C. Sun et al., 

2018; Zhou et al., 2020). The appeal of single-cell transcriptomics stems from the fact that 

they can be used to characterise and classify cells at the molecular level, offering an 

https://sciwheel.com/work/citation?ids=8693242,5612674,5756279&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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unbiased approach without being constrained to specific features, such as proteomics. 

Even though the field is still in its infancy, the ability to perform high throughput 

sequencing of the transcriptome of a single cell has existed for more than a decade. The 

technique was first introduced by Tang and colleagues in 2009 (F. Tang et al., 2009). By 

leveraging the ability to perform untargeted single-cell mRNA amplification, the 

researchers developed and adapted technologies to incorporate high throughput DNA 

sequencing into the equation and demonstrated the first transcriptome-wide querying of 

the mRNA from a single cell. In their study, they detected the expression of 75% more 

genes than microarray-based techniques had at the time and identified 1,753 previously 

unknown splice junctions in a single mouse blastomere. 

While the first studies were focused on sequencing a few interesting cells with known 

identities (Ramsköld et al., 2012; F. Tang et al., 2010), it soon became clear that larger-

scale studies would require parallel profiling of multiple cells which might not be pre-

sorted. Guo and colleagues' pivotal study demonstrated that cell types of mixed cell 

populations can be identified without pre-sorting, based on their transcriptional patterns 

(Guo et al., 2010). This realisation paved the way for the invention of novel protocols and 

technologies that allowed the exponential scaling of single-cell experiments (Figure 1.4). 

 

Figure 1.4: Scaling of scRNA-seq experiments. a) Key technologies that have led to an increase in 

single-cell experiment throughput. Sample multiplexing was the first approach that allowed the sequencing 

https://sciwheel.com/work/citation?ids=24779&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=24780,663506&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=889005&pre=&suf=&sa=0&dbf=0


39 
 

of hundreds of cells. The design of integrated fluidic circuits and robotics for automation meant that 

thousands of cells could be profiled. Nanodroplets and picowells represent random capture technologies 

that increased the throughput to tens of thousands of cells. Finally, in situ barcoding has allowed the profiling 

of hundreds of thousands of cells, while keeping the cost to a minimum. b) The number of cells assayed 

has followed an exponential increase during the last decade. The graph shows the number of cells reported 

in manuscripts using the different technologies annotated. Figure adapted from Svensson et al., 2018. 

While various scRNA-seq technologies have been developed lately, having different 

strengths and weaknesses (G. Chen et al., 2019; Natarajan et al., 2019; Xiannian Zhang 

et al., 2019; Ziegenhain et al., 2017) and have been applied to a wide array of samples 

(blood cells, solid tissue, frozen or fixed tissue etc.), this thesis will focus mainly on two 

technical approaches that were selected for the purposes of this research project, namely 

droplet-based technologies, and combinatorial indexing techniques. 

Droplet-based technologies utilise microfluidic devices to encapsulate and 

compartmentalise single cells in nanolitre droplets that include cell-specific 

oligonucleotide primers. Simple microchannels introduce immiscible reagents at specific 

rates in chambers of carefully designed geometry allowing the generation of thousands 

of droplets per second. While most of these will be empty, a small percentage will contain 

a single cell and, due to the high droplet generation rates, thousands of cells can be 

encapsulated in just a few minutes. In parallel to the cells, the systems allow co-

encapsulation of specifically designed beads that introduce the necessary primers and 

barcodes. Each droplet acts as a reaction chamber, containing the necessary reagents 

for the first steps of cDNA library preparation. This strategy greatly increases the reaction 

throughput justifying the classification of the methods as “ultra-high-throughput”. In 

addition, the nanolitre scale of the reaction volumes keeps reagent usage low, reducing 

the experimental cost and allowing the profiling of more cells. Currently, the most widely 

adopted droplet-based systems include inDrop (Klein et al., 2015), Drop-seq (Macosko et 

al., 2015) and 10X Genomics Chromium (Zheng et al., 2017). All of these have been 

demonstrated to be robust and efficient in generating single-cell libraries from thousands 

of cells at an acceptable cost; they use similar microfluidics technologies to generate 

droplets, make use of unique molecular identifiers (UMIs) for PCR bias correction, use 

barcoded beads to differentiate between individual cells and involve a final NGS step. 
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inDrop and Drop-seq are open-source protocols that were published in the same issue of 

Cell in 2015 (Klein et al., 2015; Macosko et al., 2015). In contrast, 10X is a proprietary 

technology developed a few months later based on the same principles. Despite their 

similarities, the protocols use different approaches regarding bead manufacturing, single-

cell barcode design and cDNA library generation (Figure 1.5). All systems require the 

manufacturing of specific beads covered with oligonucleotide primers. These nucleotide 

sequences include a PCR handle, a cell barcode, a UMI, and a poly-T region. inDrop 

beads also include a photocleavable region and a T7 promoter. Drop-seq beads are made 

of hard resin, while 10X and inDrop use hydrogel beads. The distinct advantage of using 

deformable hydrogel is that it allows super-Poissonian loading of the beads in the 

droplets, leading to higher percentages of droplet occupation (Abate et al., 2009). 

Loading of droplets with cells for all protocols, and both beads and cells for Drop-seq, 

follows a Poissonian distribution. Encapsulation takes place in specially designed 

microfluidics channels of similar geometry. The reaction buffer incorporated inside each 

droplet includes lysis reagents that cause rupture of the captured cell and release of its 

nucleic acids. Poly-A mRNA can then bind to the poly-T region of the primers before 

reverse transcription. The reaction takes place inside the droplets for inDrop and 10X, 

while Drop-seq requires prior demulsification. After reverse transcription and the 

introduction of a demulsifying agent, a final library preparation step and amplification are 

required to make the products compatible with Illumina sequencing. Here, cDNA is 

fragmented, adapters are ligated, and the products are amplified and purified before 

sequencing. It is worth pointing out that inDrop uses in vitro transcription during this final 

library preparation step, increasing the protocol’s length by 28 hours. Finally, the resulting 

library can be sequenced on Illumina instruments, such as NextSeq and HiSeq. The 

generated data can then be used to demultiplex cell information and quantify transcript 

abundance. 
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Figure 1.5: Comparison of high-throughput droplet-based scRNA sequencing technologies. All three 

technologies use barcoded primer beads to introduce cell-specific barcodes which allow demultiplexing of 

the generated data. The oligonucleotide constructs are specific to each technology but include PCR 

handles, Unique Molecular Identifiers, and poly-T tails for poly-A mRNA capture. Droplet generation and 

cell encapsulation use microfluidic devices of similar geometry. The reactions after droplet formation are 

specific to each protocol and involve cell lysis and mRNA capture, reverse transcription, amplification, and 

Illumina library generation. Drop-seq and 10X protocols can be concluded in under 10 hours, while inDrop 

requires substantially more time due to utilising in vitro transcription for nucleic acid amplification. Figure 

adapted from Xiannian Zhang et al., 2019. 

While droplet-based techniques use nanolitre droplets for compartmentalising different 

cells and introducing cell-specific oligonucleotide barcodes in each reaction chamber, 

combinatorial indexing techniques build upon this logic to take the protocol one step 
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further, abolishing the need for droplet generation and utilising each cell’s body as a 

reaction chamber. At the core of combinatorial indexing approaches are multiple split-

pool barcoding steps. In summary, a large number of entities to be barcoded are split 

across different reactions, each of which will incorporate a specific barcode. Then the 

entities are pooled together and mixed, before being split again in a different batch of 

reactions, where new barcodes will be incorporated. These cycles of split-pooling 

ultimately lead to the tethering of multiple sequential barcodes in each entity. Even though 

each barcode cannot provide enough information for effective demultiplexing in isolation, 

the adapter combination should have a very low probability of being created more than 

once in well-designed experiments and can thus uniquely characterise the entity. 

Early single-molecule combinatorial indexing approaches have been used for de novo 

genome assembly and haplotype-resolved genome sequencing (Adey et al., 2014; Amini 

et al., 2014). The first single-cell applications of this principle were used for profiling 

chromatin accessibility (Cusanovich et al., 2015), genome sequence (Vitak et al., 2017), 

chromosome conformation (Ramani et al., 2017), and DNA methylation (Mulqueen et al., 

2018) in single cells. The first to implement this methodology to uniquely label the 

transcriptomes of single cells were Cao and colleagues in 2017, when they applied their 

protocol, termed sci-RNA-seq, to profile the transcriptome of the whole multicellular 

organism Caenorhabditis elegans at the L2 stage (Cao et al., 2017). Less than a year 

later, Rosenberg and colleagues developed their own version of a split-pool barcoding 

protocol, termed SPLiT-seq (split-pool ligation-based transcriptome sequencing) and 

used it to transcriptionally profile more than a hundred thousand mouse brain and spinal 

cord cells (Rosenberg et al., 2018). Finally, Cao and colleagues improved their protocol 

and introduced sci-RNA-seq3 in 2019, making it the highest-throughput single-cell 

transcriptomics approach to date, capable of profiling more than 2 million cells per 

experiment (Cao et al., 2019). 

A proprietary method based on combinatorial indexing was first made available to the 

research community in 2021. Following their publication in Science in 2018, Rosenberg 

and Roco launched Parse Biosciences, which was successfully funded during the 

following years. Their whole transcriptome kit was launched in February 2021 and is 
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based on the principles of SPLiT-seq. While no peer-reviewed information is available, 

the company claims that extensive optimisation has led to an improved method that offers 

higher sensitivity and throughput, lower doublet rates, and an easier protocol with reduced 

hands-on time. Depending on the number of cells to be sequenced, three products are 

available that can be used for up to 1 million cells. The Evercode™ Whole Transcriptome 

is the medium-sized kit that can be used to profile up to 100,000 cells and 48 samples 

and is the kit that has been used as part of this study. 

All split-pool barcoding techniques follow the same principles, but each protocol has its 

own specificities (Figure 1.6). The protocols start with cell fixation and permeabilization, 

after isolating and dissociating the number of cells that will be used. Careful experimental 

planning allows the calculation of the maximum number of cells based on the accepted 

collision probability, i.e. the maximum accepted probability that two or more cells will have 

the same barcode. It is important that the nucleic acids are fixed inside the cell body to 

prevent diffusion to a neighbouring cell during the split-pool rounds. Then follow several 

split-pool barcoding rounds, the number of which, and the number of compartments used 

for splitting, depends on the protocol used. A higher number of barcoding rounds and 

compartments used for splitting will increase the number of barcode combinations 

possible, which means the experiment’s throughput is crucially dependent on this step. 

The cells or nuclei can then be lysed, and their barcoded nucleic acids purified. 

Subsequent tagmentation reactions introduce the final barcodes and the library is PCR-

amplified before sequencing. The data resulting from sequencing these complex 

constructs are demultiplexed and analysed to generate transcript abundance information. 
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Figure 1.6: Split-pool barcoding schematic used in SPLiT-seq. A) Cells are randomly split into different 

reaction chambers which contain specific barcodes. After the barcodes are incorporated into the cellular 

RNA via Reverse Transcription (RT), the cells are pooled together and mixed. They are then randomly split 

again into a new batch of barcodes, which will be ligated next to the previous ones. At the fourth split, cells 

are lysed, and the final round of barcoding takes place via PCR. B) A schematic representation of the 

construct generated after library preparation (bar length not to scale). The construct contains P5 and P7 

sequencing adapters, R1 and R2 PCR handles, the cDNA captured, and a sequence of four cell-specific 

barcodes (BCs). Figure adapted from Rosenberg et al., 2018. 

1.3.3 Single-nucleus sequencing technologies 

All current scRNA sequencing approaches require that entities to be processed have an 

intact and geometrically uniform external membrane, i.e. the cell membrane. Ruptures in 
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the cell membrane can cause the nucleic acids of the cell to diffuse out and possibly mix 

with those of other cells, essentially making demultiplexing information of origin 

impossible. In addition, all microfluidics and droplet-based approaches, as well as most 

of the other protocols involve steps that make assumptions about cellular geometry. 

Processes such as droplet encapsulation, cell sorting or filtering, as well as all microfluidic 

devices have been designed and optimised on the theoretical grounds of cellular 

uniformity and sphericity. This might explain why a considerable number of single-cell 

studies focus on profiling blood cells (Khan & Kaihara, 2019; Schafflick et al., 2020; 

Szabo et al., 2019; Y. Zhao et al., 2019); these cells have a very spherical geometry and 

can be easily isolated. 

Taking the above into consideration, it becomes evident that solid tissues are much 

harder to sequence at a single cell level due to their tight, coherent structure. Cells are 

embedded in the extracellular matrix and need to be carefully dissociated to create a cell 

suspension while their cell membranes remain intact. The optimisation of the cell 

harvesting protocols and biases that can be introduced have been the main discussion 

point of many studies (Bonnycastle et al., 2020; Denisenko et al., 2019; O’Flanagan et 

al., 2019; S. Zhu et al., 2017). Frozen tissue poses a greater challenge since frozen cell 

membranes tend to fracture (Branton, 2016), making the isolation of viable single cells 

after thawing inefficient. Finally, one of the most informative tissues in neuroscience 

studies is also one of the most challenging ones to be processed: frozen brain tissue is 

of utmost importance to neuroscience research, however, due to the irregular and 

variable shape of the cell populations it consists of, coupled with the fact that it is usually 

frozen, it cannot be efficiently used as input material to any of the single-cell techniques 

developed to date. The variable post-mortem delay before tissue storage and lack of time-

course samples in human disease complicate matters even more. 

To address these limitations several single-nucleus sequencing protocols had been 

developed, which enabled the study of potentially informative archived frozen brain tissue 

and other biological material difficult to dissociate (Grindberg et al., 2013; Habib et al., 

2016; Lacar et al., 2016; Lake et al., 2016). While these protocols could successfully 

provide single-nucleus transcriptomic information, they did rely on technologies that 
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cannot be scaled up efficiently, such as nuclei sorting in 96- or 384-well plates, limiting 

their applicability for large numbers of cells or samples. A major breakthrough that could 

address these shortcomings was made in 2017 when Habib and colleagues combined 

existing knowledge from single-nucleus protocols with the pioneer Drop-seq technology 

(Habib et al., 2017). Their protocol, DroNc-seq, is a massively parallel single-nucleus 

RNA-seq method that combines the advantages of both worlds to provide high-throughput 

nuclei profiling at a low cost. The subsequent split-pool barcoding techniques including 

SPLiT-seq and sci-RNA-seq provide protocols that have been tested with both single cells 

and single nuclei, making them suitable for a larger range of studies. 

Even though single-nucleus approaches are the only option for archived and frozen 

samples, their drawbacks should be considered before selecting them for a specific study. 

First, all single-cell sequencing approaches are able to capture only a small fraction of 

the available RNAs. This is especially true for single-nucleus approaches where the 

amount of RNA available is even lower, which means that the methods’ sensitivity is 

reduced. Deep sequencing of similar cells and nuclei with Drop-seq and DroNc-seq 

detected on average 5,134 and 3,295 transcripts, respectively, indicating the lower 

sensitivity of single-nucleus sequencing (Habib et al., 2017). In addition, qualitative 

differences can be expected. Single nucleus approaches do not sequence mitochondrial 

transcripts from genes that do not reside in the cell’s genome. Also, the nucleus contains 

a lower percentage of mature mRNAs than the cytoplasm, so a higher proportion of the 

data mapping to introns is expected. Indeed, during the same comparison of the two 

methods by Habib and colleagues, while the same percentage of cellular and nuclear 

reads map to the genome, only 9.1% of cellular reads map to introns while this percentage 

is 41.8% for nuclei. Nevertheless, it has been reported that the average expression profile 

of single nuclei correlates well with that of single cells for both Drop-seq/DroNc-seq and 

SPLiT-seq (Habib et al., 2017; Rosenberg et al., 2018). 

1.3.4 Bioinformatics analysis of scRNA-seq data 

RNA sequencing data has existed for years before the introduction of single-cell 

sequencing techniques. Given the widespread use of bulk RNA-seq, many analytical 

pipelines have been tested and gold standards started to emerge in the scientific 
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community (Oshlack et al., 2010). While single-cell RNA sequencing still uses the same 

sequencing technologies as previous approaches, the data generated is much more 

intricate due to the complex structure of the sequenced constructs. Except for RNA 

sequence data, most constructs include additional nucleotide sequences to encode and 

preserve information about the cell and/or transcript of origin and can also incorporate 

protocol-specific barcodes. While existing computational workflows can be adapted for 

single-cell data, its unique computational challenges necessitate the development of 

novel analytical strategies that can fully exploit and interpret the additional information 

available (Stegle et al., 2015).  

As more single-cell sequencing techniques became available, offering increasingly higher 

throughput, the necessity for efficient data analysis became stronger. The great potential 

of these approaches, coupled with increasing amounts of generated data has motivated 

computational biologists to develop novel analytical tools (Rostom et al., 2017). The 

immaturity of the field and the specific requirements of the constantly evolving protocols 

lead to an explosion in the number of available tools (1295 as of July 2022) (Zappia et al., 

2018). This wide variety of experimental protocols and analytical methods makes the 

standardisation of computational workflows a challenging undertaking (Luecken & Theis, 

2019). The following paragraphs give an overview of the general analytical steps that are 

commonly part of single-cell data analysis, without emphasising specific topics relevant 

to each methodology used. 

Raw sequencing data needs to be converted to a count matrix before it can be further 

processed. This pre-processing step is very specific to the exact technology used. In 

summary, gene expression information, as well as information regarding the cell and/or 

molecule of origin, is extracted from the raw sequencing reads and combined in an x 

times y dimensional matrix, where x corresponds to the number of rows or features 

(transcripts) and y to the number of columns or barcodes of origin (ideally each barcode 

of origin should correspond to one cell, however, in practice, barcode collisions are 

expected). This matrix contains counts of molecules (if UMIs are used) or reads (if UMIs 

are not available) and forms the basis for subsequent analyses. Protocol-specific raw 

data processing pipelines such as split-seq-pipeline (SPLiT-seq) (Rosenberg et al., 
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2018), Drop-seq tools (Drop-seq and DroNc-seq) (Macosko et al., 2015) or Cell Ranger 

(10X) (Zheng et al., 2017) can be used to automate this step, offering basic Quality 

Control (QC) options, demultiplexing and genomic alignment. 

For a successful analysis, it must be made sure that the data used originated from healthy 

and viable cells. After pre-processing, the data undergoes a thorough QC analysis to 

identify and discard potential outlier cells of poor quality that can skew the results. Some 

of the common QC metrics include the number of counts per cell, the number of genes 

per cell and the fraction of mitochondrial genes (Griffiths et al., 2018; Ilicic et al., 2016). 

Specific thresholds need to be defined and outliers that surpass them are discarded. Cells 

with a small number of counts and genes and a high percentage of mitochondrial genes 

might correspond to low-quality or dying cells where the cellular membrane is broken and 

RNA has diffused out, while the larger organelles, like mitochondria, remain. In contrast, 

a high number of counts or genes might signify a doublet, where more than one cell 

incorporated the same barcode. Even though there is a rational process behind the 

selection of these thresholds, the exact cut-off values will need to be empirically set and 

are determined by the experimental methods and underlying biology. For example, in an 

experiment with proliferating cells, an increase in transcriptomic reads would be expected 

for the actively dividing cells. In addition, an increase in mitochondrial genes might signify 

that the cell is involved in respiratory processes. Concluding, these covariates should not 

be considered in isolation and the thresholds set should be re-evaluated during the later 

stages of the analysis depending on the preliminary results and combining the knowledge 

of the underlying biology and current hypotheses tested. 

Single-cell RNA-seq data is characterised by high levels of stochasticity. Inherent 

variability in each of the experimental steps will be captured in the expression levels but 

does not necessarily stem from biological differences. In contrast, some of the observed 

variability might arise solely due to technical noise and sampling effects (J. K. Kim et al., 

2015; Kolodziejczyk et al., 2015; Stegle et al., 2015). Data normalisation is used to 

address this issue by appropriately scaling the data to obtain relative gene expression 

abundances between cells. Some of the most frequently used methods use CPM (counts 

per million) normalisation which originated from bulk expression analysis. Due to the 
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heterogeneous nature of single-cell datasets, more complex normalisation approaches 

are usually more appropriate. Scran's pooling‑based size factor estimation method uses 

linear regression over genes to estimate size factors (Lun, Bach, et al., 2016) and has 

been shown to perform better than other algorithms for batch correction and differential 

expression analysis (Büttner et al., 2019; Vallejos et al., 2017). Non-linear normalisation 

methods can account for more complex variation and have been shown to outperform 

global scaling methods in experiments with strong batch effects (Cole et al., 2019). To 

summarise, different normalisation methods perform better for different datasets and tools 

have been developed that can select the most appropriate one (Cole et al., 2019). 

Normalised data is then usually log-transformed. This is important to reduce the 

skewness of the data, as most downstream tools assume normality, to change the 

distances between the expression values to represent log-fold changes, which is usually 

used to measure gene expression, and finally to mitigate the mean-variance relationship 

of the data (Brennecke et al., 2013). 

The data will usually contain thousands of dimensions, even after thorough QC and 

filtering. Most of these are not informative about biology and contain unwanted noise. 

Thus, the next steps include multiple dimensionality reduction approaches to reduce the 

computational burden, remove unwanted noise and visualise the data. Feature selection 

is usually the first step, where the most informative genes are kept, while all the rest are 

discarded. The “informative” genes are usually the most variable ones across the dataset, 

also called Highly Variable Genes (HVGs) (Brennecke et al., 2013). After the selection of 

the HVGs, the dimensionality of the dataset can be further reduced using dedicated 

algorithms that embed the dataset in a low-dimensional space aiming to capture the 

underlying data structure. These techniques are often very effective, as single-cell data 

is inherently low-dimensional and the biological information can be described by much 

fewer dimensions than the number of genes (Heimberg et al., 2016). Data visualisation 

algorithms use two or three dimensions to visually represent the structure of the data and 

cannot be used for downstream analysis. These include Principal Component Analysis 

(PCA) (Hotelling, 1933), t-Stochastic Neighbour Embedding (t-SNE) (Van Der Maaten & 

Hinton, 2008), Uniform Manifold Approximation and Projection (UMAP) (Becht et al., 
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2018), force-directed graphs (Costa et al., 2018) and others. In contrast, data 

summarization algorithms use an arbitrary number of reduced dimensions to describe the 

data where the higher components are less important for describing the variability 

present. They can be used to reduce the data to its essential components and their output 

can be used in downstream workflows. The most commonly used methods include PCA 

and diffusion maps (Coifman et al., 2005).  

Downstream analyses attempt to fit interpretable models to uncover biological insights, 

describe the biological systems and test hypotheses. These can be roughly divided into 

cell-level and gene-level analyses, while there is a substantial overlap of methods in both 

groups. Cell-level analyses focus on the characteristics of each cell, as it is described by 

the ensemble of its transcripts. The most commonly employed ones include clustering 

analysis and annotation (Kiselev et al., 2019) and trajectory inference/pseudotime 

analyses (Saelens et al., 2019). Grouping the cells in clusters is usually the first 

substantial result of the analysis pipeline. Being a classical unsupervised machine 

learning problem, many algorithms have been developed from different scientific fields. 

Systematic evaluation of different algorithms has shown that the Louvain algorithm 

(Blondel et al., 2008), the default method implemented in SCANPY and Seurat analysis 

packages, performs best for scRNA-seq data (Duò et al., 2018; Freytag et al., 2018). 

Common gene-level downstream analyses include differential expression, gene network 

(Ideker et al., 2002) and gene set enrichment analyses (Subramanian et al., 2005). 

Differential expression testing originates from bulk RNA-seq (Scholtens & von 

Heydebreck, 2005) and when used on single-cell data can account for cellular 

heterogeneity and perform comparisons within cell clusters of the same identity. This 

additional information increases the resolution of the analysis which can identify cell-

identity-specific transcriptional perturbations. 

Given the complexity of single-cell data and the richness of the information that can be 

extracted, single-cell transcriptomics data requires an ensemble of analytical tools to be 

manipulated. These independent tools are frequently aggregated in analysis platforms to 

facilitate the flow of information and the construction of efficient workflows. While 

Graphical User Interface platforms exist (Gardeux et al., 2017; Patel, 2018; Rue‑Albrecht 
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et al., 2018), these usually offer limited flexibility while web-based platforms are limited in 

their ability to scale due to computational infrastructure. Command-line platforms are 

much more prominent and have been developed mainly for the R and Python 

programming languages. Among these, Seurat (A. Butler et al., 2018) and Scater 

(McCarthy et al., 2017) are the most popular and comprehensive platforms based on R, 

while SCANPY (Wolf et al., 2018) is based on Python. 

1.4 Single-cell transcriptomics in neurodegenerative diseases 

Single-cell and single-nucleus methods have been particularly useful in profiling 

transcriptional perturbations in various neurodegenerative diseases. The increased 

resolution offered in comparison to bulk sequencing approaches has been pivotal in 

studying the Central Nervous System (CNS), which is known to be composed of very 

heterogeneous cell populations (Habib et al., 2017; Lake et al., 2016; Rosenberg et al., 

2018; Zhong et al., 2018). 

Most of the earlier studies focused mainly on immune cell populations, and more 

specifically microglia, as they are involved in the maintenance and elimination of 

synapses and can act as damage sensors in the CNS (Aguzzi et al., 2013). This choice 

is justified by a large body of evidence from previous studies, where immunological 

mechanisms have been implicated in the pathogenesis of neurodegenerative diseases 

(Gjoneska et al., 2015; Mosher & Wyss‑Coray, 2014; Y. Wang et al., 2015; B. Zhang et 

al., 2013). The most studied diseases are Alzheimer’s disease (AD) and multiple sclerosis 

(MS), while no single-cell study has been published on human or animal prion diseases 

to date. 

In 2017, Mathys and colleagues used single-cell RNA to track microglia activation in a 

time-course experiment using the CK-p25 mouse model of severe neurodegeneration 

(Mathys et al., 2017). This model, while it does not contain any AD-associated mutations, 

has been shown to recapitulate many aspects of disease pathology and allows for precise 

triggering of neurodegeneration. The researchers profiled a total of 1,685 pre-sorted 

hippocampal cells expressing microglia markers from four time points (before 

neurodegeneration triggering, during early and late disease). Their main finding was that 

after neurodegeneration triggering, microglia populations have a quite different 
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transcriptional profile and cluster separately from most cells isolated from the healthy 

brain. These activated microglia were organised in two different subclusters associated 

with disease progression, indicating the existence of an early- and a late-response 

phenotype. Later that year, Keren-Shaul and colleagues published a similar study where 

they identified a novel microglia type associated with neurodegenerative diseases, 

termed DAM (Disease-Associated Microglia) (Keren‑Shaul et al., 2017). The researchers 

sorted and sequenced immune cells from brains of 5XFAD, an AD transgenic mouse 

model that expresses 5 human familial AD mutations. After cell clustering, they identified 

two microglia clusters that represent distinctive states observed in AD but not in the 

controls; these also expressed lower levels of several microglia homeostatic genes. They 

described that DAM activation follows two sequential stages, where the second includes 

induction of lipid metabolism and phagocytic pathways and is Trem2-dependent. Based 

on previous data, the authors hypothesise that this late phenotype could mitigate disease. 

Finally, they identify a similar DAM subpopulation in an ALS mouse model, generalising 

their study and suggesting that this newly identified microglia population might not be 

associated with a specific disease, but rather with general mechanisms involved in 

aggregated protein clearance. 

The year 2019 saw many published studies exploring the immunological component of 

neurodegenerative and neuroinflammatory diseases. Masuda and colleagues combined 

single-cell transcriptomics, single-molecule fluorescence in situ hybridization (FISH) and 

immunohistochemistry to characterise microglial subclasses during development and 

disease (Masuda et al., 2019). Their mouse experiments indicate the presence of time- 

and location-dependent subtypes of microglia during homeostasis. This signature was 

enriched in transcripts such as P2RY12, CX3CR1, TMEM119 and SLC2A5, which are 

known homeostatic genes. In contrast, neurodegenerative disease mouse models 

(cuprizone treatment and unilateral facial nerve axotomy) showed a division of microglia 

in distinct subtypes with different molecular hallmarks. They then extended their study by 

including 1,180 cortical microglia from human brain tissue without evidence of CNS 

pathology and 422 CD45+ cells from brain tissue of five multiple sclerosis patients. After 

clustering and removal of clusters having monocytic and lymphocytic profiles, the 

remaining seven microglial clusters were compared. Three clusters consisted entirely of 
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healthy microglia and showed the highest levels of expression of homeostatic genes. One 

of the clusters consisted of microglia from both patients and controls and showed 

upregulation of chemokine and cytokine genes, which suggests that these microglia were 

pre-activated. One of the clusters was shown to be characterised by increased expression 

of CTSD, APOC1, GPNMB, ANXA2 and LGALS1, and another showed increased 

expression of MHC II genes, suggesting an immunoregulatory role. Finally, the last cluster 

showed increased expression of SPP1, PADI2 and LPL, which correlated with the 

signature of demyelination-associated microglia in mice. 

Another broader study of MS was performed by Schirmer and colleagues (Schirmer et 

al., 2019). The researchers profiled all cell populations from 12 MS human brain tissue 

samples and 9 healthy controls using 10X snRNA-seq. Their experiment yielded 48,919 

single-nucleus profiles, which were organised in 22 clusters. Interestingly, they observed 

a selective reduction of upper-layer excitatory neurons (ENs) in MS, while all other cell 

populations, including intermediate-layer and deep-layer ENs, remained unchanged. A 

trajectory analysis of L2 and L3 ENs identified upregulated Gene Ontology (GO) terms 

relative to oxidative stress, mitochondrial dysfunction, and cell death. Some long-

noncoding RNAs were also found to be upregulated (NORAD and BCYRN1). Their 

findings suggest selective transcriptomic damage of upper-layer ENs in MS. Then, using 

spatial transcriptomics, they mapped glial gene expression in the cortical and subcortical 

lesion and non-lesion areas. Transcriptional perturbations suggesting an activated 

phenotype were identified in microglia, oligodendrocytes and astrocytes located in the rim 

areas of chronically active subcortical lesions. Upregulated genes were associated with 

cell stress, heat-shock response, iron accumulation MHC class I upregulation and protein 

degradation. Furthermore, distinct transcripts were identified for cortical astrocytes and 

subcortical lesion astrocytes, providing another example of spatial diversity in 

neurodegenerative diseases. Interestingly, their single-nucleus approach also identified 

phagocytosing cells based on the identification of transported myelin transcripts into their 

nucleus or perinuclear structures. 

Using the same single-nucleus droplet-based technology, Mathys and colleagues profiled 

80,660 nuclei from the prefrontal cortex of 48 individuals with varying degrees of 
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Alzheimer’s disease pathology, publishing their findings in the same year (Mathys et al., 

2019). Their cell data was organised in 20 clusters, which were annotated to be excitatory 

and inhibitory neurons, astrocytes, oligodendrocytes, microglia, oligodendrocyte 

progenitor cells, endothelial cells and pericytes. Their DE analysis identified a strong 

signature of repression in excitatory and inhibitory neurons, while most transcripts in 

oligodendrocytes, astrocytes and microglia were upregulated. Their findings highlight the 

heterogeneity of cellular response to disease, a recurrent pattern common for all cited 

studies in this section. They then compared the single-nucleus data to bulk RNA-seq data 

of the same samples to underline the fact that information regarding cell-type-specific 

changes is not captured with bulk approaches, especially for DE genes with opposite 

directionality in different cell populations. A comparison of stratified data between early 

and late pathology indicated that transcriptomic perturbations occur before the 

appearance of severe pathological features. While early-pathology transcripts were 

shown to be cell-type specific, late-pathology ones were found to be commonly 

upregulated across cell types. These genes were associated with autophagy, apoptosis, 

and stress response, indicating a general perturbation of the proteostasis network. 

Subclustering of the cell populations showed that specific subpopulations were 

associated with disease pathology, indicating differential responses to disease among the 

same cell type, similar to the observations of both Masuda et al. and Schrimer et al. 

Finally, the observation of robust gender differences at the molecular level in AD patients 

lead the authors to hypothesize that transcriptional response to AD pathology might be 

sex-specific. 

Another study on AD, which was published in the same year, identified the same recurrent 

pattern of heterogeneous cellular response to disease. Grubman and colleagues profiled 

a total of 13,214 single nuclei from the entorhinal cortex of 6 control and 6 AD brains using 

10X technology (Grubman et al., 2019). The transcriptomes were clustered and 

annotated in six groups: microglia, astrocytes, neurons, oligodendrocyte progenitor cells 

(OPCs), oligodendrocytes, and endothelial cells, accounting for “hybrid” cells that 

expressed multiple markers and might represent intermediate cell states. The 

researchers then underline that their transcriptomic perturbations show high concordance 

of effect (>90%) with the previous study by Mathys et al. indicating replicability of single-
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nucleus RNA sequencing experiments. Further analysis showed that astrocytes, 

endothelial cells, and microglia exhibit coordinated gene expression differences, i.e., 

dysregulation is observed in clusters of genes, specific for each cell type; some gene 

clusters were found to be coordinated in multiple cell types, including genes associated 

with cell stress and topologically incorrect protein response. Interestingly, APOE, an 

important AD risk gene, was found to be repressed in astrocytes and oligodendrocyte 

progenitor cells and upregulated in specific microglial subpopulations, mirroring the 

results of the previous study. A subcluster-specific analysis revealed that AD and control 

cells tend to segregate in different subclusters, except in some clusters of neurons, 

suggesting disease-associated transcriptomic perturbations across almost all cell types. 

One of the novelties of the study was the integration of single-cell data with prior 

information from genome-wide association studies (GWAS). The researchers examined 

the cell-type specificity of expression of one thousand GWAS genes for AD and AD-

related traits and identified microglial expression specificity for two of them (RIN3 and 

TBXAS1) with functional roles in endocytosis and vasoconstriction. Furthermore, they 

predicted transcription factors that are driving the dynamic cell state transition towards 

AD. These included AEBP1, SOX10, MYRF and NKX6-2. Finally, they highlight 

transcription factor TFEB, which is shown to regulate ten GWAS targets in astrocytes; 

both the target and the factor were shown to be dysregulated in the same populations, 

establishing a functional link. Their analysed data was made accessible through a public 

web application (http://adsn.ddnetbio.com/) that allows easy exploration and sharing. 

Del-Aguila et al. compared the transcriptional profiles of Mendelian AD versus sporadic 

in single-cell resolution, building upon their previous studies that utilised bulk RNA 

sequencing (Del‑Aguila et al., 2019; Z. Li et al., 2018). They sampled post-mortem 

parietal lobe tissue to extract and profile nuclei from one individual with Mendelian AD 

(PSEN1 p.A79V mutation) and two relatives with sporadic AD, using 10X technology. 

After performing extensive testing of different clustering and data integration techniques 

to reduce biases introduced by batch effects, they annotated six cell types, similarly to 

previous studies (neurons, astrocytes, oligodendrocytes, microglia, oligodendrocyte 

precursor cells, and endothelial cells). Using their high-resolution data, they sought to 

identify cell types similar to the disease-associated microglia (DAM) previously reported 

https://sciwheel.com/work/citation?ids=7306040,8756843&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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in mouse studies (Keren‑Shaul et al., 2017). They detected 79 human homologs of the 

500 known DAM markers, while only five of them were significantly associated with 

microglial cells in all samples (EEF1A1, GLUL, KIAA1217, LDLRAD3, and SPP1), leading 

them to conclude that the number of microglia sequenced was not enough to allow the 

identification of this signature. Finally, they also created a web application 

(http://ngi.pub/snuclRNA-seq/) to make their analysed data publicly explorable. 

More recently, Mendiola and colleagues developed a novel sequencing strategy, termed 

ToxSeq, to characterise the transcriptional landscape of CNS innate immune cells that 

contribute to oxidative injury (Mendiola et al., 2020). Oxidative molecules or reactive 

oxygen species (ROS) have important biological regulatory roles, but dysregulation of 

their homeostatic mechanisms, a common feature linked to neurodegeneration, can lead 

to neurotoxicity. ToxSeq leverages single-cell sequencing technology coupled with cell 

staining and sorting to selectively profile oxidative stress-producing CNS innate immune 

cells. The authors generated the first oxidative stress innate immune cell atlas in 

neuroinflammatory disease, by applying ToxSeq to profile 8,701 CD11b+ cells from spinal 

cords of an experimental autoimmune encephalomyelitis (EAE) mouse model — 

commonly used to recapitulate the pathological hallmarks of MS — and healthy control 

mice. Clustering analysis identified 14 distinct CD11b+ clusters that can be divided into 

three larger groups: healthy and ROS-negative, EAE and ROS-negative and EAE and 

ROS-positive. Interestingly, ROS- cells consisted only of CNS-resident microglia, while 

ROS+ cells included microglia (approximately 15%) and peripheral immune cells 

(approximately 50%), mostly macrophages and monocytes. In addition, no ROS+ cells 

were identified in healthy spinal cord clusters. A differential gene expression analysis 

indicated heterogeneous disease response of the ROS+ cells, a common observation of 

similar studies. Gene ontology (GO) analyses identified a subcluster of activated microglia 

enriched with oxidative stress genes; these microglia showed increased activation of 

pathways relevant to oxidative stress, coagulation and antigen presentation and had the 

lowest expression of homeostatic markers. The authors then developed a fibrin-induced 

high-throughput drug screening assay to query 1,907 compounds that can potentially 

inhibit microglia activation without toxicity. 31 of these showed promising results and were 

included in follow-up studies to investigate their mechanism of action. In silico analyses 

https://sciwheel.com/work/citation?ids=3796408&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8675551&pre=&suf=&sa=0&dbf=0
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identified acivicin as the most promising therapeutic molecule, a drug that inhibits the 

glutathione degrading enzyme GGT. A final experiment using three different 

demyelinating mouse models (relapsing-remitting, chronic and chronic progressive EAE, 

and LPS injection directly into the substantia nigra) indicated that acivicin treatment was 

successful at mitigating the negative effects of neurodegeneration. In summary, this 

important manuscript underlines the potential of novel transcriptomics approaches, when 

combined with complementary assays and powerful bioinformatics algorithms, to not only 

characterise disease mechanisms but also functionally dissect disease pathology and 

fundamentally contribute to rational drug design. 

Single-cell studies have focused on immunological mechanisms and identified interesting 

microglia activation patterns. A common feature of all diseases studied is the 

heterogeneity of cellular response. Microglia have been shown to adopt distinct 

phenotypes in affected tissue; some of the cells assume a homeostatic role, which is 

thought to be beneficial for disease modulation, while others adopt a toxic phenotype that 

is implicated in neurodegeneration and inflammation. Transcriptional perturbations have, 

also, been shown to be cell-population specific in the initial stages of the disease, while 

common pathways were activated during the later stages, associated with stress 

response, autophagy, and apoptosis. While similarities are evident between other 

neurodegenerative diseases, we can only hypothesise that a similar pattern exists in prion 

diseases, since no single-cell data is currently available. 

1.5 Towards a finer resolution in prion transcriptomics 

As described in the previous section, the Alzheimer’s disease field was the first in 

neurodegenerative diseases to investigate specific cell populations with studies by 

Mathys et al. and Keren-Shaul et al. pushing the resolution of transcriptomics and profiling 

sorted microglia in 2017. More high-throughput and cell-type unbiased studies were soon 

to follow in 2019 and 2020, characterising Alzheimer’s disease, multiple sclerosis and 

experimental autoimmune encephalomyelitis and setting the stage for more targeted 

research. It is, thus, enigmatic why a thorough literature review suggests that no 

significant steps towards whole-transcriptome studies at a finer resolution have been 

made in the field of prion diseases, even though excellent models do exist (see section 
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4.1.1 for further information about prion disease mouse models). Some speculations are 

that it could be due to insufficient funding — single-cell experiments are very costly —, 

technical difficulties due to prion infectivity or unavailability of appropriate tissue samples. 

Whatever the reasons might be, the prion field is still lacking behind in the field of single-

cell omics. However, there have been a couple of attempts to target specific cell types, 

either through targeted transcriptomics of a selected cell population or in a genome-wide 

and cell-type-specific manner. 

Some of the cell-population-specific studies focused entirely on astrocytes. Even though 

they are the most abundant glial cells in the CNS and their physiological functions have 

been well characterised, their involvement in neurodegeneration has generally been 

understudied. There has been accumulating evidence that astrocytes have pivotal roles 

in chronic neurodegenerative diseases and acute trauma, while their neuroprotective 

versus neurotoxic potential is heavily debated (Liddelow & Barres, 2017; K. Li et al., 

2019). Recent studies have suggested that activated astrocytes can adopt at least two 

opposing phenotypes, termed A1 and A2 in analogy to the M1 and M2 phenotype 

categories of macrophages (Liddelow et al., 2017). A1 astrocytes are associated with 

neural inflammation and are considered to contribute to neurodegeneration by producing 

neurotoxins such as INF-γ, C1q, and Lcn2, while A2 astrocytes are produced after 

ischemia and have neuroprotective action by releasing neurotrophic factors such as 

BDNF, VEGF, and bFGF. Liddelow et al. demonstrated that it is microglia that induces 

these astrocytic phenotypes and identified a gene panel that includes A1 and A2 markers 

and pan-reactive markers that are common for all activated astrocytes. 

In Alzheimer’s disease, astrocytic activation and dysfunction have been implicated with 

interference with amyloid-beta clearance, calcium excitotoxicity and GABA signalling, and 

the release of pro-inflammatory cytokines (Acosta et al., 2017; Rossi & Volterra, 2009; 

Salminen et al., 2008; Vincent et al., 2010). Reactive astrocytes have also been identified 

in Parkinson’s disease. Evidence suggests astrocytic activation initiates the recruitment 

of microglia and is linked with neuroinflammation, while α-synuclein has been shown to 

accumulate intracellularly, disrupting astrocytic glutamate regulation and the reciprocal 

communication between neurons and astrocytes, which is shown to be of major 

https://sciwheel.com/work/citation?ids=8005331,4075770&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8005331,4075770&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2995676&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2451569,4255440,6483212,22660&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2451569,4255440,6483212,22660&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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importance to neuronal health (Barcia et al., 2012; Gu et al., 2010; Halliday & Stevens, 

2011; Hirsch & Hunot, 2009). In ALS, astrocytes have been shown to contribute to motor 

neuron death with the degree of their reactivity correlating with neurodegeneration (K. Li 

et al., 2019; Pehar et al., 2017). Finally, astrocytes are recognised as key players in MS, 

modulating lesion formation and evolution, and the creation of the glial scar once the 

inflammation has subsided (Ponath et al., 2018). 

While astrogliosis is one of the hallmarks of prion disease pathology, the characterisation 

of the reactivity state of astrocytes in prion mouse models and human prion diseases was 

only recently accomplished by a study published in 2019 (Hartmann et al., 2019). 

Hartmann and colleagues first used immunohistochemistry to demonstrate the 

abundance of A1 activated astrocytes in both RML-infected mouse brain samples and 

human brain samples from sCJD patients. They then used a triple-KO mouse model that 

fails to develop A1 astrocytes and identified a novel astrocytic polarisation profile in 

terminally sick RML-inoculated mice, termed C3+-PrPSc-reactive-astrocytes, which is 

characterised by the expression of only some of the pan-reactive, A1-specific and A2-

specific markers, suggesting a mixed astrocyte activation phenotype. Interestingly, the 

triple-KO mice experience an accelerated disease course with a decreased survival time, 

suggesting a protective role of A1 reactive astrocytes, which might confound, though, by 

an altered microglial response. 

Building upon those findings Ugalde and colleagues investigated the correlation of A1-

specific astrocyte markers with specific molecular subtypes of sCJD (Ugalde et al., 2020). 

For this study, the researchers quantified the expression of two A1 marker genes, C3 and 

GBP2, in the frontal cortex of 35 sCJD patients and 8 healthy controls. They were able to 

confirm that the expression of both genes was elevated in disease, while the levels of C3 

expression stratified to codon 129 genotype with its expression found to be highest in 

homozygous methionine and lowest in homozygous valine patients. Regarding GBP2, 

they observed a positive correlation between the logarithm of its expression and disease 

duration. Overall, their findings highlight the interplay between a spectrum of astrocytic 

activation and patient-specific disease parameters. 

https://sciwheel.com/work/citation?ids=1069609,798633,1601055,12239873&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1069609,798633,1601055,12239873&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10573047,8005331&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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60 
 

Microglia are the resident immune cells of the CNS, they belong to the glial system and 

play important roles in maintaining brain homeostasis, neurodevelopment and learning 

and memory formation, while their impairment has been linked to severe pathological 

outcomes (S.‑K. Chen et al., 2010; Ikegami et al., 2019; Paolicelli et al., 2011; Parkhurst 

et al., 2013). Microglia can act as sensors of brain pathology and can be activated by 

stimuli such as neurodegeneration, trauma or infection, assuming an array of phenotypes 

that can range from pro-inflammatory, characterised by the secretion of cytokines, 

chemokines, and reactive oxygen species, to anti-inflammatory, which can mediate 

beneficial effects and is associated with a release of neurotrophic and anti-inflammatory 

factors (Aguzzi et al., 2013; Cherry et al., 2014). The M1/M2 terminology has been used 

to describe the cytotoxic and neuroprotective phenotypes, respectively, even though it is 

becoming clear that these represent the extremes of a spectrum (Y. Tang & Le, 2016). 

Neuroinflammation and microglial activation have been more extensively studied in the 

context of Alzheimer’s disease, however, evidence suggests the existence of common 

activation pathways in neurodegenerative diseases such as Parkinson’s disease, ALS, 

frontotemporal dementia, Huntington’s disease and prion diseases (Aguzzi & Zhu, 2017; 

Heneka et al., 2014). Microglia-mediated neuroinflammation is an important component 

of PD with M1 activated microglia being identified in close proximity to dopaminergic 

neurons, while little is known regarding the M2 phenotype (Y. Tang & Le, 2016). 

Activation of microglia could be attributed to the accumulation of misfolded proteins, 

environmental factors or pathogens. In AD, studies have shown that microglia adopt 

mixed activation phenotypes and some subpopulations can be neuroprotective by 

degrading and reducing the burden of amyloid-beta plaques, while others release pro-

inflammatory signals and show increased production of ROS (Meyer‑Luehmann et al., 

2008; Y. Tang & Le, 2016; D. G. Walker et al., 2006). Similar observations have been 

made regarding ALS, where microglia subpopulations have been shown to exhibit 

different gene expression signatures involving both protective and detrimental factors. 

Recent studies in ALS, AD, EAE and HD underline the importance of the temporal 

dimension, on top of the spatial, as it is becoming evident that microglia can undergo 

temporal transformations between disparate activation states (Ajami et al., 2018; B. E. 

Clarke & Patani, 2020; Mathys et al., 2017). 
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Microglial activation is a key component of prion diseases and can be easily recapitulated 

in mouse models upon prion infection (Aguzzi et al., 2013). Activated microglia have been 

identified in human patients and mouse models using immunohistochemistry since the 

early nineties, while its activation is observed before the onset of clinical signs and 

neuronal loss, indicating a driving force of neurodegeneration, instead of a secondary 

effect (Betmouni et al., 1996; Giese et al., 1998; Sasaki et al., 1993; Williams et al., 

1994). A comprehensive study of microglial response by Vincenti and colleagues that 

used transcriptomics data to profile prion-infected mouse brains was published in 2015 

(Vincenti et al., 2015). Their analysis of time-course data indicated that the upregulated 

genes during disease are expressed predominately by microglia, while isolated microglia 

from a prion disease mouse model intraperitoneally infected with 79A prions was 

characterised by a pro-inflammatory signature and an upregulation of genes associated 

with metabolism and respiratory stress. The following year, Alibhai et al. reported 

microglial response in prion-infected mouse brain and identified the presence of two 

distinct phenotypes, a homeostatic phenotype identified across all brain regions, and an 

innate immune response that was restricted only to sites of neurodegeneration (Alibhai 

et al., 2016). Overall, microglial response in prion diseases is a complex and dynamic 

process with activated microglia adopting diverse functions. Microglia respond to prion 

deposits during the early stages of the disease adopting a phagocytotic phenotype and 

facilitating PrPSc removal, while the sustained prion accumulation soon overwhelms the 

protein recycling mechanisms of the cells, triggering neuronal damage and supporting a 

microglial switch to a proinflammatory phenotype (Aguzzi & Zhu, 2017). 

The aforementioned studies focused on a specific cell type or used targeted approaches, 

instead of unbiased, whole transcriptome sequencing. The only genome-wide study 

targeting multiple cell populations was published in 2020 by Aguzzi’s group, which looked 

at alterations during prion disease progression in transgenic mice in a cell-type-specific 

manner using translating ribosome affinity purification (TRAP) and ribosome profiling 

(Scheckel et al., 2020). The researchers generated four transgenic mouse lines 

expressing tagged ribosomes regulated by Cre recombinase, which was under the control 

of the Camk2a, Pvalb, Gfap or Cx3cr1 promoters to induce expression specifically in 

excitatory CamKIIa neurons, inhibitory parvalbumin neurons, astrocytes and microglia, 
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respectively. These mice were then inoculated with RML6 prions (passage 6 of RML 

strain mouse-adapted scrapie prions) or control brain homogenate and sacrificed at 6 

time points: 2, 4, 8, 16, 24 weeks post-inoculation, and at the terminal stage of the 

disease. After validating the specificity of expression in each of the cell types, the 

researchers isolated the ribosomes and determined the translation rate of each transcript 

via ribosome profiling. A differential translation analysis comparing the two experimental 

groups at each time point highlighted that cell-type-specific changes become evident only 

at the later stages of the disease. Only 3 transcripts in total were found to be differentially 

translated during the first 4 time points, while more than 250 were identified at 24 weeks 

post-inoculation and more than two thousand at the terminal stage of the disease. 

Interestingly, the authors underline that most of the dysregulated transcripts pertained to 

astrocyte and microglia populations, while both excitatory and inhibitory neurons were 

associated with only a fraction of those dysregulated genes. Finally, it is discussed that 

these transcriptional changes are cell-type specific, with the larger fraction of transcripts 

being uniquely dysregulated in a cell type. This study is the only one to date that has 

approached prion transcriptomics in a cell-type-specific and genome-wide manner, 

although the resolution offered is not fine enough for it to be equated to single-cell 

transcriptomics. A more extensive discussion of these findings along with a comparison 

with our data will follow in section 4.2.4. 

In summary, there have been attempts to study individual cell populations in the field of 

prion diseases. Most studies have focused on astrocytes and microglia and used 

immunohistochemistry or assayed known markers of activation using quantitative PCR. 

The results highlight the existence of a unifying theme that is recurrent in 

neurodegenerative diseases, which are characterised by dynamic spatiotemporal 

activation of astrocytes and microglia, while also underlining the complexity and breadth 

of pathophysiological cellular phenotypes that fall between a range defined by the two 

polar extremes of neuroprotection and neurotoxicity. However, none of the studies 

published has employed unbiased, whole transcriptome approaches like single-cell 

sequencing to transcriptionally profile all cell populations in human or mouse prion 

diseases. This is in contrast to other fields like AD, PD and ALS, where such studies have 

started to uncover interesting and disparate biological functions restricted to specific cell 
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subtypes. It is high time the prion field caught up with innovations in transcriptomics, and 

this is exactly the aim of our research, which will be thoroughly discussed in the following 

section. 

1.6 Hypotheses and aims 

Despite substantial research aiming to elucidate prion disease pathogenesis, the 

underlying mechanisms of cellular toxicity and neurodegeneration are yet to be fully 

characterised. The transcriptional landscape of the prion-infected human brain, including 

changes in gene expression profiles related to tissue degeneration, has not been 

explored in-depth while confounding effects related to cellular heterogeneity have not 

been accounted for. 

Our hypotheses are: 

1. Cellular response to prion infection is heterogeneous, i.e., it involves distinct 

transcriptomic responses from different cell populations and subpopulations, some 

of which are associated with a homeostatic and others with a toxic phenotype. 

2. Prion infection in different systems (cell lines, mouse, human) is associated with 

distinct but overlapping gene expression patterns. We expect to find commonly 

dysregulated pathways in mice and humans, even though they might not include 

the same genes. 

3. Prion infection causes selective toxicity to specific cell subpopulations and leads 

to differences in their abundance.  

To elucidate disease mechanisms, we aim to employ single-nucleus methodologies to 

transcriptionally profile prion-propagating cell lines and prion-infected mouse and human 

brains. For this study to be successful, preliminary work will have to be done to establish 

and validate our snRNA-seq protocols. In more detail, the most promising single-cell 

protocols will be selected by reviewing recent literature. Then, some of the most suitable 

ones for our use case will be thoroughly reviewed before committing to establishing them 

in our Institute. Initial experiments will allow us to compare the methods based on their 

robustness, safety, output, and suitability. We will, finally, select the most optimal 

approach and fine-tune it to perform best in our research environment. In parallel, we aim 
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to establish a single-cell bioinformatics pipeline that will be essential to explore the 

generated data and extract meaningful conclusions. 

Having established the required methodology, we will proceed to transcriptionally profile 

a prion-propagating cell line, which will serve as a reference point for future experiments. 

These experiments will also provide us with valuable experience and allow further 

optimisations. We will then need to validate our protocols using samples processed and 

stored in a similar way to our prion-infected material. This will be done by processing a 

control frozen mouse brain using our experimental and bioinformatics pipelines. 

Confident about using our protocols with infectious and more valuable samples, we then 

aim to single-cell sequence the brain of an RML-prion-infected mouse model. To our 

knowledge, this will be the first time that the brain of a prion mouse model is 

transcriptionally characterised in single-cell resolution. These experiments will generate 

novel insights concerning RML prion disease in mice and will also allow subsequent 

comparison of cell-specific transcriptomic perturbations between mouse and human prion 

diseases. 

Further experiments will involve case-control studies between sCJD patients and non-

neurodegenerative disease controls. We are aiming to transcriptionally characterise 

human brain biopsies and post-mortem brain tissue using scRNA-seq technology to get 

a snapshot of the mechanisms involved in the late stages of sCJD. This will also be the 

first single-cell transcriptomics study of the prion-infected human brain. 

Finally, having generated all the data needed, we are aiming to compare the 

transcriptomic profiles of mouse and human diseases to identify common gene 

expression patterns which might be involved in neurodegeneration in general. 

In summary, this study has the following aims: 

1. Review the literature and establish some of the most promising snRNA-seq 

methodologies in our Institute, validate their performance, and select the most 

optimal one to be used for subsequent experiments. 
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2. Transcriptionally profile prion-propagating cell lines using snRNA-seq approaches 

to identify heterogeneity in prion infection response in vitro. 

3. Validate the snRNA-seq protocols using uninfected frozen brain tissue. 

4. Perform a longitudinal case-control single-cell transcriptomics study of mouse 

prion disease using an RML-infected mouse model to characterise disease 

response heterogeneity in vivo. 

5. Identify sCJD disease mechanisms and transcriptionally characterise human prion 

diseases by performing a case-control study of human brain tissue using sCJD 

brain biopsies and non-neurological control biopsies. 

6. Identify late sCJD disease mechanisms of toxicity by performing a case-control 

study of human prion diseases using post-mortem brain tissue from sCJD patients 

and non-neurological controls. 

7. Compare the transcriptomic profiles of mouse and human prion diseases during 

early and late stages to identify common gene expression patterns. 
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2 Materials and methods 

2.1 Cell lines 

PK1 and iPK1 cells were obtained from Emma Jones and cultured in Opti-MEM (Gibco; 

31985-047) with 10% foetal bovine serum (FBS, Gibco; 41965-039) and 1% penicillin-

streptomycin (Gibco; 15140-122) (complete Opti-MEM). 

2.2 Cell culture 

PK1 and iPK1 cells were cultured in Opti-MEM (Gibco; 31985-047) with 10% Foetal 

Bovine Serum (FBS, Gibco; 41965-039) and 1% penicillin-streptomycin (Gibco; 15140-

122). HEK-293T cells (ATCC; CRL-3216) were cultured in Dulbecco's Modified Eagle 

Medium (Gibco; 41965-039) with 10% FBS and 1% penicillin-streptomycin. Cells were 

cultured in an incubator at 37oC and 5% CO2. Cells were passaged when 80% confluent 

by mechanical dissociation and plated after a 1:10 dilution. 

2.3 Nuclei suspensions preparation 

2.3.1 Nuclei extraction from tissue culture 

10cm tissue culture dishes were removed from the incubator when they reached 70-80% 

confluence. The supernatant was removed and discarded, and cells were washed gently 

twice with 1 mL 1x PBS (Thermo Fisher Scientific; 10010023).2 mL of cold Nuclei EZ prep 

buffer (Sigma-Aldrich; NUC101) was added directly to the cells and cells were scraped 

with a plastic scraper. The resulting suspension was added to a glass 2 mL dounce tissue 

homogenizer (Sigma-Aldrich; D8938-1SET) and treated as frozen mouse brain tissue. 

2.3.2 Nuclei extraction from frozen mouse brain 

Each flash-frozen mouse brain was left to partially thaw. The olfactory bulb was removed, 

and a slice of the frontal lobe was cut and transferred to a glass 2 mL dounce tissue 

homogenizer on ice. All following steps were carried out on the ice and using ice-cold 

solutions. All centrifugation steps were performed at 500 g for 5 minutes at 4oC using a 

pre-chilled centrifuge unless otherwise specified. 2 mL of Nuclei EZ prep was added, and 

tissue was homogenised using 20 strokes of the loose and 20 strokes of the tight pestle. 

The suspension was transferred to a 15 mL tube and 2 mL of Nuclei EZ prep was added. 

The suspension was incubated for 5 minutes and then centrifuged. The supernatant was 



67 
 

discarded, 4 mL of Nuclei EZ prep was added, and the pellet was resuspended using a 

P1000 pipette. The suspension was incubated for 5 minutes and then centrifuged. The 

supernatant was discarded, and the pellet was resuspended in 4 mL Nuclei Suspension 

Buffer (NSB; 1x PBS, 0.01% BSA (Cambridge Bioscience; 227-10210) and 0.1% NxGen 

RNAse inhibitor (Lucigen; 30281-2)). The suspension was centrifuged, the supernatant 

discarded, and the pellet resuspended in 1 mL NSB. The suspension was filtered through 

a 35 um filter (Fisher Scientific; 10585801) and stored on ice. 

If following the DroNc-seq protocol, the suspension was diluted to the final concentration. 

If following the SPLiT-seq protocol, the cells were first fixed and permeabilized and then 

diluted to the final concentration. 

2.3.3 Nuclei extraction from frozen post-mortem human brain and human brain biopsies 

For the post-mortem samples, each human brain was left to partially thaw and removed 

from the storage cassette. A small slice of the superior frontal gyrus (approximately 50-

100 mg) was cut and transferred to a glass 2 mL dounce tissue homogenizer on ice. For 

the human biopsies, no structure was visible, and a small slice (approximately 50-100 

mg) was transferred to a glass 2 mL dounce tissue homogeniser. All following steps were 

carried out on the ice and using ice-cold solutions. All centrifugation steps were performed 

at 500 g for 5 minutes at 4oC using a pre-chilled centrifuge unless otherwise specified. 

1.5 mL of Nuclei EZ prep was added, and tissue was homogenised using 20 strokes of 

the loose and 20 strokes of the tight pestle. The suspension was transferred to a 2 mL 

tube and 0.5 mL of Nuclei EZ prep was added. The suspension was incubated for 5 

minutes and then centrifuged. The supernatant was discarded, 2 mL of Nuclei EZ prep 

were added, and the pellet was resuspended using a P1000 pipette. The suspension was 

incubated for 5 minutes and then centrifuged. The supernatant was discarded, 0.5 mL of 

wash buffer (1x PBS, 1% BSA (15260037; Gibco), 0.2 u/μL SUPERase In (AM2694; 

Invitrogen)) were added without resuspending, and the sample was incubated for 5 min 

to allow buffer interchange. Then 1.5 mL of wash buffer was added, and the sample was 

resuspended. The suspension was centrifuged, the supernatant was discarded, the pellet 

was resuspended in 500 μL wash buffer, and 0.5 mL of 50% OptiPrep Density Gradient 

Medium solution (D1556; Sigma-Aldrich) was added. The suspension was transferred on 
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top of a 1 mL 29% OptiPrep cushion solution in a new tube and centrifuged at 10,000g 

for 30 min at 4oC. The supernatant was discarded, and nuclei were resuspended in 750 

μL Parse Nuclei Buffer (from the Parse Evercode WT kit) + 0.75% Bovine Albumin 

Fraction V (15260037; Gibco). Preparation then proceeded following step 7 of the Parse 

nuclei fixation protocol (page 15 of the protocol; section 7.5.3). 

The following steps were performed using the Parse Evercode nuclei fixation kit (Parse 

Biosciences) according to the manufacturer’s instructions. 

2.3.4 Nuclei fixation and permeabilization for SPLiT-seq 

The following solutions were prepared: 

• 1.33% formalin (360 μL of 37% formaldehyde solution (Sigma-Aldrich; 252549) + 

9.66 ml 1x PBS) 

• 2 mL of 0.5X PBS + 5 μL SUPERase in (Thermo Fisher Scientific; AM2696) + 2.5 

μL NxGen RNase inhibitor 

• 500uL of 5% Triton X-100 (Sigma-Aldrich; T8787) + 2 μL of SUPERase In 

• 1100uL of 100mM Tris pH 8.0 (Thermo Fisher Scientific; AM9855G) + 4 μL 

SUPERase In 

 

3 mL of 1.33% formalin solution were added to the 1 mL of nuclei suspension. The 

suspension was incubated on ice for 10 minutes. 169 μL of 5% Triton-X was added to the 

fixed nuclei, the solution was mixed by pipetting and then incubated on ice for 3 minutes. 

Nuclei were centrifuged at 500g for 5 minutes at 4oC, the supernatant was discarded, and 

the pellet was resuspended in 500 μL cold NSB. 500 μL of cold 100 mM Tris and 20 μL 

of 5% Triton-X were added. Nuclei were centrifuged again under the same conditions; the 

supernatant was discarded, and the pellet was resuspended in 400 μL of cold 0.5X PBS. 

Nuclei were filtered through a 35 um filter and counted. 
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2.3.5 Final dilution for DroNc-seq 

Nuclei were counted using a Neubauer Improved C-Chip Disposable Haemocytometer 

(DHC-N01-50; Cambridge Bioscience) and diluted to a final concentration of 300 

nuclei/μL using cold NSB. The nuclei were kept on ice until loaded into the syringe. 

2.3.6 Final dilution for SPLiT-seq 

Nuclei were counted using a Neubauer-Improved haemocytometer and diluted to a final 

concentration of 2000 nuclei/μL using cold 0.5x PBS supplemented with 0.2 units/μL 

SUPERase In RNAse inhibitor. The nuclei were stored frozen at -80oC until library 

preparation. 

2.3.7 Final dilution for Parse Evercode 

Fixed nuclei were counted using a Neubauer-Improved haemocytometer and diluted to 

variable concentrations calculated using the sample loading table provided using cold 

nuclei suspension buffer provided with the Parse Evercode nuclei fixation kit (Parse 

Biosciences). The nuclei were stored frozen at -80oC until library preparation. 

2.4 DroNc-seq 

For DroNc-seq sequencing, the original protocol was followed (A. Basu et al., 2017; 

Habib et al., 2017). The complete original protocol can be found in the supplementary 

materials, section 7.5.1, while a summary of the methodology including potential 

optimisations is provided below. 

Barcoded beads (Chemgenes; Macosko-2011-10) were counted using a Fuchs-

Rosenthal haemocytometer (Cambridge Bioscience; DHC-F01-50), washed and filtered 

as per protocol instructions, and stored at 4oC. Before each experiment, an aliquot of 

360,000 beads was spun down, the supernatant was removed and the beads were 

resuspended in 1.2 mL Drop-seq Lysis Buffer (DLB; 4 ml of nuclease-free H2O, 3 ml 20% 

Ficoll PM‑400 (Sigma; F5415-50ML), 100 μL 20% Sarkosyl (2B Scientific; 40120977-1), 

400 μL 0.5M EDTA (Thermo Fisher Scientific; AM9260G), 2 ml 1M Tris pH 7.5 (Thermo 

Fisher Scientific; 15567027), and 500 μL 1M DTT (Sigma-Aldrich; 646563-10X.5ML), 

DTT is added fresh before every experiment). The suspension was loaded in a 3 mL 

https://sciwheel.com/work/citation?ids=4114189,8793957&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4114189,8793957&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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syringe (Fisher Scientific; 11303040) including a small stirring magnet (VP Scientific; 

VP772DP-N42-5-2). 

Setup followed the DroNc-seq protocol. In summary, 7 mL of droplet generation oil (Bio-

Rad Laboratories; 1864005) were loaded in a 10 mL syringe (Fisher Scientific; 

15544835). 1.5 mL of cell suspension was loaded in a 3 mL syringe. Syringes were placed 

in syringe pumps (Linton instrumentation; KDS910) and infusion rates were set according 

to the protocol (beads and nuclei at 1.5 mL/h and oil at 16 mL/h). Needles (VWR 

International; 613-5377) and tubing (Scientific Commodities; BB31695-PE/2-100′ Roll) 

were affixed to the syringes and the microfluidic device (FlowJEM; DroNc-seq device) 

and the bead stirrer (VP Scientific, #710D2) was turned on. Nuclei, oil, and beads were 

flown for approximately 22 minutes and monitored for potential clogging of the device. 

Figure 2.1 is a photo of the working setup. 

 

Figure 2.1: Photo of the working DroNc-seq setup. The three computer-controlled syringe pumps (top-

left and right) were connected with tubing to the microfluidic device (centre) that was placed on a brightfield 

inverted microscope. A bead stirrer prevented the sedimentation of the barcoded beads. Flow rates were 

controlled by a computer (not shown), and the resulting emulsion was collected in a conical 15 mL tube. 

The device was constantly monitored for potential clogging. 
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The resulting emulsion was collected in a 50 mL Falcon tube and incubated at room 

temperature for 45 minutes after collection stopped. Droplets were broken after 

introducing 1 ml of 1H,1H,2H,2H-Perfluorooctan-1-ol (Fisher Scientific; 11490701) and 

30 mL 6x SSC (Thermo Fisher Scientific; AM9763) and shaking vigorously. Beads were 

isolated and washed as per protocol instructions. They were then resuspended in 200 μL 

reverse transcription mix (80 μL H2O, 40 μL Maxima 5x RT Buffer, 40 μL 20% Ficoll PM-

400 (Sigma; F5415-50ML), 20 μL 10 mM dNTP (Takara Bio; 639125), 5 μL NxGen RNase 

Inhibitor, 10 μL Maxima H-RT enzyme (Fisher; EP0753), and 5 μL 100 μM Template 

Switch Oligo, AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG (IDT, custom RNA oligo, 

HPLC purification). The beads were incubated on a rotating incubator for 30 minutes at 

room temperature and 1.5 hours at 42oC. 

Beads were washed and treated with exonuclease I (New England Biolabs; M0293L) as 

per protocol instructions. They were then washed, counted, and resuspended in a PCR 

mix (24.6 μL H2O, 0.4 μL 100 μM SMART PCR primer, 

AAGCAGTGGTATCAACGCAGAGT (IDT, custom DNA oligo, standard desalting 

purification), and 25 μL 2x Kapa HiFi Hotstart Readymix (Kapa Biosystems; KK2602)) in 

different wells of a PCR plate, each containing 5,000 beads. Samples were amplified 

using the following PCR programme: 95°C for 3 min; then 4 cycles of 98°C for 20 sec, 

65°C for 45 sec, 72°C for 3 min; then 12 cycles of 98°C for 20 sec, 67°C for 20 sec, 72°C 

for 3 min; and finally, 72°C for 5 min. 

PCR products were cleaned with 0.6X Ampure XP beads (Beckman Coulter; A63881). 

Products were eluted in 15 μL H2O and a pool of 4 wells was used for library preparation. 

The samples were quantified on a TapeStation 2200 (Agilent), using a gDNA tape (Agilent 

Technologies; 5067-5365) and 500-1000 pg of each was used for tagmentation using the 

Nextera XT sample prep kit, 96 samples (Illumina; FC-131-1096), and custom primer, 

AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCA

ACGCAGAGTAC, (IDT, custom DNA oligo, HPLC purification), according to 

manufacturer’s instructions. The resulting libraries were analysed on a TapeStation 2200 

using a high sensitivity D1000 tape (Agilent Technologies; 5067-5582) and the amount of 
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starting material was optimised so that the resulting tagmented library would have a size 

of 500-680 bp. 

The resulting libraries were sequenced on an Illumina NextSeq 500 using a NextSeq 75 

cycle High Output kit (Illumina; 20024911) according to the manufacturer’s instructions. 

The settings used were: paired-end reads, read 1 length: 20 nt, read 2 length: 60 nt, 

Index 1 length: 8 nt, custom read 1 primer: 

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC (IDT, custom DNA oligo, 

standard desalting). 

2.5 SPLiT-seq 

For SPLiT sequencing, the original protocol (version 3) was followed (Rosenberg et al., 

2018). The complete original protocol can be found in the supplementary materials, 

section 7.5.2, while a summary of the methodology and optimisations is given below. 

Barcode plates were ordered from IDT (custom oligos, standard desalting) and stock 

plates were prepared as per protocol instructions. A list of the barcode names and 

corresponding sequences is included in the supplementary materials, section 7.6.1.  

For the reverse transcription, 4 μL of the first 24 wells of Stock plate 1 were transferred 

to a new PCR plate on ice. 8 μL of RT mix (per reaction: 4 μL Maxima 5x RT buffer, 0.124 

μL NxGen RNAse inhibitor, 0.25 μL SUPERase In, 1 μL 10 mM Takara dNTPs, 2 μL 

Maxima H minus enzyme, 0.625 μL H2O) was added to each well and then 8 μL of fixed 

nuclei suspension. The plate was placed in a thermocycler and PCR was carried out as 

per protocol instructions. All wells were then pooled together, Triton-X was added to a 

final concentration of 0.1% and the suspension was centrifuged for 3 minutes at 500g. 

The supernatant was discarded, and nuclei were resuspended in 2 mL 1x NEBuffer 3.1 

(New England Biolabs; B7203S) + 20uL NxGen RNase Inhibitor. 

For ligation round 1, the ligation mix (1337.5 μL water, 500 μL 10x T4 ligase buffer 

(included with ligase enzyme), 100 μL T4 DNA Ligase (New England Biolabs; M0202L), 

100 μL BSA 10 mg/mL, 12.5 SUPERase In, 40 μL NxGen RNAse inhibitor) was added to 

the nuclei suspension and into a basin. 40 μL of the suspension were pipetted in each 

well of the Ligation round 1 barcode plate and the plate was incubated in a plate shaker 

https://sciwheel.com/work/citation?ids=4954361&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4954361&pre=&suf=&sa=0&dbf=0
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at 37oC for 30 minutes and 300 rpm rotation. Then 10 μL of the Ligation Round 1 blocking 

solution (316.8 μL 100 uM BC_0216, 300 μL 10x Ligase buffer, 583.2 μL water) were 

added to each well and the plate was incubated again under the same conditions. 

For ligation round 2, the nuclei suspensions were pooled in a 15 mL Falcon and passed 

through a 40 um strainer to another Falcon. 100 μL T4 DNA ligase was added and the 

mix was transferred to a basin. 50 μL of the mix was added to each well of the Ligation 

Round 2 barcode plate. The plate was incubated as previously. Then 20 μL of the Ligation 

Round 2 blocking solution (369 μL 100 uM BC_0066, 800 μL 0.5 M EDTA, 2031 μL water) 

was added to each well. The wells were pooled in a 15 mL Falcon and passed through a 

40 um strainer into another Falcon. 

70 μL 10% Triton-X was added to the mix and nuclei were centrifuged for 5 minutes at 

1000g. The supernatant was aspirated, and nuclei were washed with 4 mL wash buffer 

(4 mL 1x PBS, 40 μL 10% Triton-X, 10 μL SUPERase In) and centrifuged again under 

the same conditions. The supernatant was aspirated and nuclei were resuspended in 100 

μL 1x PBS + 2 μL SUPERase In. Nuclei were counted using a Neubauer-Improved 

haemocytometer and the desired number of them was aliquoted in each 1.5 mL 

Eppendorf tube. PBS was used to fill each tube up to 50 μL. Each tube is referred to as 

a “sublibrary”. 

For nuclei lysis, 50 μL 2x lysis buffer (final concentrations: 20 mM Tris pH 8, 400 mM 

NaCl, 100 mM EDTA pH 8, 4.4% SDS (Thermo Fisher Scientific; AM9822)) were added 

to each tube followed by 10 μL 20 mg/mL Proteinase K. The mix was incubated at 55oC 

for 2 hours with shaking at 300 rpm. Lysates were frozen at -80oC and processed the 

following day. 

5 μL 100 uM AEBSF (Abcam; ab141403) was used to stop the proteinase reaction. 

Dynabeads MyOne Streptavidin C1 (Thermo Fisher Scientific; 65002) were washed and 

used to bind the barcoded transcripts as per protocol. Beads were resuspended in 200 

μL Template Switch mix (88 μL water, 44 μL 5x Maxima buffer, 44 μL 20% Ficoll PM-400, 

22 μL 10 mM Takara dNTPs, 5.5 μL NxGen RNAse inhibitor, 5.5 μL 100 μM Template 

Switch Oligo, 11 μL Maxima H minus enzyme) and incubated at a rotating incubator at 

room temperature for 30 minutes and 42oC for 1.5 hours. 
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The sample was then washed and resuspended in PCR mix (121 μL 2x Kapa Hifi Master 

Mix, 9.68 μL 10 uM BC_0108, 9.68 μL 10 uM BC_0062, water up to 242 μL) and split 

equally in 4 different wells of a PCR plate. The following PCR programme was then used: 

3 min at 95oC, then 20 s at 98oC, 45 s at 65oC, 3 min at 72oC for a total of 5 cycles, and 

then hold at 4oC. Reactions were combined in a single tube, cleaned with 0.6x AMPure 

XP beads as per manufacturer’s instructions, eluted in 20 μL water, mixed with 180 μL of 

the same PCR mix and split in 4 wells (50 μL per well). 2.5 μL EvaGreen (Biotium; 

#31000) was added to each well and amplification continued in a QuantStudio 12K Flex 

qPCR machine (Thermo Fisher Scientific) until the signal plateaued out of exponential 

amplification using the following programme: 3 min at 95oC, then 20 s at 98oC, 20 s at 

67oC, 3 min at 72oC until signal plateaus out of exponential amplification, then 5 min at 

72oC, hold at 4oC. Reactions were combined in a single tube, cleaned with 0.6x AMPure 

XP beads as per manufacturer’s instructions, eluted in 10 μL water and analysed at 

TapeStation 2200 using a gDNA tape. 

600 pg of each sample was used for tagmentation using the Nextera XT sample prep kit 

using custom primers one of BC_0076-BC_0083 and BC_0118, according to the 

manufacturer’s instructions. The resulting libraries were analysed on a TapeStation 2200 

using a high sensitivity D1000 tape or a high sensitivity D5000 tape. 

The resulting libraries were sequenced on an Illumina NextSeq 500 using a NextSeq 150 

cycle Mid Output kit (Illumina; 20024904) according to the manufacturer’s instructions. 

The settings used were: paired-end reads, read 1 length: 66 nt, read 2 length: 94 nt, and 

index 1 length: 6 nt. 

2.6 Evercode Whole Transcriptome 

Evercode WT (whole transcriptome) is the proprietary and optimised protocol that evolved 

from SPLiT-seq. The methodology is closely related to that of SPLiT-seq, with a few 

differences. The Parse Evercode Whole Transcriptome kit (Parse Biosciences) contains 

all consumables and a detailed protocol that includes all steps from nuclei fixation up to 

sequencing, including catalogue numbers of reagents. All steps were carried out 

according to the protocol, which can be found in the supplementary materials, section 

7.5.3. 
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Suspension preparation and split-pool barcoding were carried out in a BSL-3 laboratory. 

To move the sample to a BSL 2 laboratory, the following prion decontamination procedure 

was followed: at the end of the Parse Evercode WT user manual chapter 3.4, the resulting 

solution was incubated with 3 volumes of TRI-reagent at room temperature for 2 hours 

(R2050-1-50; Zymo Research). The mix was then transferred out of the BSL-3 facilities 

and nucleic acids were purified using the Direct-zol DNA/RNA miniprep kit (R2080; Zymo 

Research). The kit columns were substituted with Zymo-Spin IC Columns (C1004-50; 

Zymo Research) so that smaller elution volumes could be used, following the advice of 

Zymo customer support. 11 μL of the RNA fraction and 10 μL of the DNA fraction were 

eluted in the same tube. The resulting solution of 21 μL was used for the PCRs starting 

at section 3.5 of the Parse Evercode WT user manual. 

2.7 Bulk RNA sequencing of iPK1 and PK1 cells 

Cells were harvested when 80-90% confluent. Cells were washed with 1x PBS twice, 

dissociated by pipetting and pelleted. Pellet was resuspended in PBS and cells were 

counted using a Neubauer-Improved haemocytometer. 1 million cells were aliquoted in a 

separate tube and processed using the Direct-zol RNA Miniprep kit (Zymo Research; 

R2051), according to the manufacturer’s instructions. RNA was analysed at TapeStation 

2200 using an RNA tape (Agilent Technologies; 5067-5576) and then rRNA was removed 

using the RiboZero Gold kit (Illumina; MRZG12324) according to the manufacturer’s 

instructions. RNA was then concentrated using RNA Clean and Concentrator (Zymo 

Research; R1013) and analysed again at TapeStation 2200. Two sequencing libraries 

were prepared using the TruSeq Stranded Total RNA library preparation kit (Illumina; 

20020596) according to the manufacturer’s instructions. Libraries were multiplexed using 

different indices and mixed in equal amounts before sequencing. 

The final product was sequenced on an Illumina NextSeq 500 using a NextSeq 75 cycle 

High Output kit. The settings used were: paired-end reads, read 1 length: 43 nt, read 2 

length: 43 nt, and index 1 length: 6 nt. 

2.8 Data analysis 

The version of R and all R packages used can be found in the supplementary materials, 

section 7.8. R scripts to reproduce the analysis can be found in section 7.7. 
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2.8.1 Sequencing quality control 

Fastq files were subjected to quality control using a dockerised version of FastQC 

(Andrews, 2010) pulled from the repository biocontainers/fastqc:v0.11.9_cv8. The 

generated reports were manually examined for sequencing quality. 

2.8.2 DroNc-seq data to count matrix 

The fastq files were processed with open-source Drop-seq tools 

(https://github.com/broadinstitute/Drop-seq), following the original Drop-seq Alignment 

Cookbook found in the same GitHub repository. A copy of the document can be found in 

the supplementary materials, section 7.5.4. Transcriptomes GRCm38 (mm10) were used 

for aligning mouse data and GRCh38 (hg38) for human data. The count matrix generated 

was used as an input for the subsequent analyses. 

2.8.3 SPLiT-seq data to count matrix 

The fastq files were aligned to the human transcript using the STAR aligner (Dobin et al., 

2013). The resulting sam files were converted to a binary format and were processed by 

the SPLiT-seq bioinformatics open-source tools (https://github.com/yjzhang/split-seq-

pipeline) to generate a count matrix. Transcriptomes GRCm38 (mm10) and GRCm39 

(mm39) were used for aligning mouse data and GRCh38 (hg38) for human data. The 

count matrix generated was used as an input for the subsequent analyses. 

2.8.4 Parse Evercode data to count matrix 

The fastq files were processed using the Parse Biosciences pipeline v0.9.6 to generate 

the count matrix. The pipeline is provided to registered users and requires authentication 

to be accessed, so no direct link is available. Its function and processes are similar to the 

SPLiT-seq open-source tools, and the final output is a count matrix that is used for further 

analyses. 

2.8.5 Single-cell data analysis 

2.8.5.1 Analysis of pilot experiments 

Data analysis followed the best practices of the community as described in the 

Orchestrating Single-Cell Analysis with Bioconductor online book (Amezquita et al., 

2020). A summary of the methodology is provided below. 

https://sciwheel.com/work/citation?ids=12254663&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=49324&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=49324&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7878504&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7878504&pre=&suf=&sa=0&dbf=0
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These steps of the analysis were carried out using the R programming language and 

utilising Bioconductor packages (Gentleman et al., 2004). The count matrix was imported 

into R and used to create the object of class SingleCellExperiment. This object was 

manipulated for Quality Control, where outliers nuclei were filtered out based on the 

number of genes identified, and then R packages Scran (Lun, McCarthy, et al., 2016) and 

Scater (McCarthy et al., 2017) were used to normalise the gene counts and model the 

mean-variance relationship using a zero-inflated negative binomial distribution. Reduced 

dimensions were calculated for Principal Component Analysis (PCA), Uniform Manifold 

Approximation and Projection (UMAP) and t-Stochastic Neighbour Embedding (t-SNE) 

visualisations. All plots were drawn using ggplot2 (Gómez‑Rubio, 2017). Finally, graph-

based clustering was used to separate cell clusters and identify gene markers that drive 

these distinctions. These markers can be used for cell subpopulation and cell cycle 

annotation. We generated lists compatible with package scCATCH, which was used for 

automatic cell annotation (Shao et al., 2020). 

2.8.5.2 Analysis of mouse and human experiments 

For the analysis of mouse and human data, a pipeline based on the Seurat v4 R package 

was employed, following the official vignettes and recommendations (A. Butler et al., 

2018; Hao et al., 2021; Stuart et al., 2019). A summary of the methodology is provided 

below, while the analysis scripts can be found in the supplementary materials, section 

7.5. 

The count matrices generated were first used to create Seurat objects and relevant 

metadata was added. Then Ensembl IDs were converted to gene symbols using EnsDb 

version 104 for both the mouse and human data. 

Quality Control 

For quality control, the cells were filtered on the number of features to exclude low-quality 

cells and possible duplicates with a low threshold of 250 and a high of 2500. The 

percentage of mitochondrial genes was calculated and cells with more than 1% 

mitochondrial genes were discarded. A cell cycling score for the S and G2/M phases was 

assigned using known cell cycling genes (MCM5, PCNA, TYMS, FEN1, MCM7, MCM4, 

RRM1, UNG, GINS2, MCM6, CDCA7, DTL, PRIM1, UHRF1, CENPU, HELLS, RFC2, 

https://sciwheel.com/work/citation?ids=49035&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3436659&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5958802&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8269842&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5027067,7035390,11129215&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5027067,7035390,11129215&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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POLR1B, NASP, RAD51AP1, GMNN, WDR76, SLBP, CCNE2, UBR7, POLD3, MSH2, 

ATAD2, RAD51, RRM2, CDC45, CDC6, EXO1, TIPIN, DSCC1, BLM, CASP8AP2, USP1, 

CLSPN, POLA1, CHAF1B, MRPL36, E2F8 as gene markers for the S phase, and 

HMGB2, CDK1, NUSAP1, UBE2C, BIRC5, TPX2, TOP2A, NDC80, CKS2, NUF2, MKI67, 

CENPF, TACC3, PIMREG, SMC4, CCNB2, CKAP2L, CKAP2, AURKB, BUB1, KIF11, 

ANP32E, TUBB4B, GTSE1, KIF20B, HJURP, CDCA3, JPT1, CDC20, TTK, CDC25C, 

KIF2C, RANGAP1, NCAPD2, DLGAP5, CDCA2, CDCA8, ECT2, KIF23, HMMR, AURKA, 

PSRC1, ANLN, LBR, CKAP5, CENPE, CTCF, NEK2, G2E3, GAS2L3, CBX5, CENPA as 

gene markers for the G2/M phase), and cell separation based on cell cycle was assessed 

by examining the PCA plots. The cell cycle was not regressed. 

Normalisation 

The Seurat object was then split by experimental group (CD1, RML, PBS for the mouse 

experiment, sCJD and Control for the human experiment) and individual objects were 

normalised using SCTransform. The objects were then combined in one integrated object 

by first selecting the integration features and finding integration anchors. The integrated 

object was then annotated using label transfer from an annotated reference dataset. 

Annotation/Label transfer 

For the annotation of the mouse data, the first step was to pre-process the reference data 

to be used for label transfer and cluster annotation. We used the published SPLiT-seq 

mouse data as a reference as it is well annotated and perfectly matches the sequencing 

methodology. Postnatal days 2 and 11 data obtained from mouse brain was downloaded 

from GEO (Sample GSM3017261) and filtered to include only anatomical regions that are 

found in the frontal lobe. We then used Seurat to normalise the datasets using 

SCTransform, select the integration features using the top 3000 variable features and 

prepare the integration anchors. The dataset was integrated, and a Principal Component 

Analysis was used to identify the first 50 PCs. The FindTransferAnchors and 

TransferData functions were used to identify data transfer anchors and transfer cell type 

metadata from the annotated reference to our datasets. The predicted cluster scores and 

mapping scores were visualised by generating histograms and clusters consisting of less 
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than 100 cells were removed. The data was normalised again using SCTransform and 

PCs and UMAP coordinates were calculated. 

The success of the reference data label transfer was assessed by plotting the expression 

of known marker genes in each cell type (Aqp4, Slc1a2, Plpp3, Gja1 for astrocytes; Mbp, 

Plp1 for oligodendrocytes; Vcan, Mbp, Pdgfra for oligodendrocyte precursor cells; Rgs5, 

Flt1, Ly6c1, Pltp for endothelial/smooth muscle cells; Dock2, Dock8, Csf1r, P2ry12 for 

microglia/macrophages; Dnah11 for ependymal cells; Gria1, Snhg11 for neurons), and 

statistics such as the number of cells, the mean of features and the mean of counts in 

each cluster were calculated. 

Cell type proportions 

To investigate changes in cell-type proportions two different approaches were followed. 

One approach was to calculate the percentage of each cell type (numbers of cells in 

specific cell type / total number of cells in time point) and plot the result using ggplot2. 

The other approach was to use scProportionTest, a small library in R that compares cell 

proportions between conditions using a Monte-Carlo permutation test and testing the null 

hypothesis that the difference in cell proportions for each cluster between the two 

conditions is a consequence of random sampling a subset of cells in each condition 

(https://github.com/rpolicastro/scProportionTest; (Miller et al., 2020)). To generate the 

null distribution, it pools the cells of both samples together and then randomly segregates 

the cells back to two conditions while maintaining sample sizes. It then calculates the 

proportional difference between the two conditions and compares it to the observed 

proportional difference for each cluster. This process is repeated 10,000 times and the p-

value is calculated by taking the number of simulations where the proportional difference 

was as or more extreme than the observed one, over the total number of simulations. 

Differential gene expression using Seurat 

Differential gene expression between the same two clusters across different conditions 

was performed using Seurat’s FindMarkers function. The statistical test used was the 

non-parametric Wilcoxon rank-sum test and the adjusted p-value was based on 

https://github.com/rpolicastro/scProportionTest
https://sciwheel.com/work/citation?ids=12482314&pre=&suf=&sa=0&dbf=0
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Bonferroni correction using all features in the dataset. The differentially expressed genes 

were then filtered, keeping the ones that had an adjusted p-value of less than 0.05.   

For the mouse dataset, to generate the differentially expressed gene lists of the RML 

versus CD1 groups, initially, a comparison between CD1 and PBS groups was done to 

identify genes that are shown to be dysregulated but could be due to technical noise or 

relevant to the inoculation with a brain homogenate and not prion specific. From the list 

of those genes, we selected genes that were identified in multiple clusters (more than 5) 

and excluded them from the RML vs CD1 comparison to reduce technical noise. This 

resulted in 7 excluded genes which were: Calm1, Cdk8, Cmss1, Malat1, mt-Rnr1, mt-

Rnr2, and Rn18s. 

For the human dataset, a full comparison of sCJD vs controls was done, without the 

exclusion of any genes. 

Differential gene expression using pseudobulk methods 

To strengthen our findings, we also performed differential gene expression on 

aggregated, pseudobulk data using DESeq2 (Love et al., 2014) and glmGamPoi 

(Ahlmann‑Eltze & Huber, 2021). 

For the mouse dataset, we first subset the data to isolate a specific cell cluster from a 

specific time point. We then summed the gene counts for all cells of the cluster from each 

animal separately. That created bulk-sequencing-like data, where for a specific cell 

cluster we had information on the expression of features from each animal. We then used 

DESeq2 with the experimental design = ~ inocula, or glmGamPoi to fit a Gamma-Poisson 

model and compared the expression between the RML vs CD1 group using the Wald test, 

or a quasi-likelihood ratio test, respectively. Log2-fold change values were shrunk using 

the apeglm function (A. Zhu et al., 2019). p-values were corrected using the Benjamini 

and Hochberg method. The same process was then repeated for each cell cluster at each 

time point separately. The 7 genes previously identified as technical noise (Calm1, Cdk8, 

Cmss1, Malat1, mt-Rnr1, mt-Rnr2, and Rn18s) were also excluded from the final lists. 

Gene Ontology over-representation analysis (ORA) and Gene Set Enrichment 

Analysis (GSEA) 

https://sciwheel.com/work/citation?ids=129353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10144890&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5990844&pre=&suf=&sa=0&dbf=0
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We used clusterProfiler in R for both ORA and GSEA (Wu et al., 2021). For the ORA we 

used the enrichGO function using all the available features in the dataset as the gene 

universe and the filtered differentially expressed genes as the query genes. The adjusted 

p-values were calculated using the Benjamini-Hochberg method. GO terms that were 

supported by less than 3 genes were filtered out. For the mouse dataset, we used the 

AH92582 annotation database, while for the human dataset we used the AH95744 

annotation database. 

For the GSEA we used the gseGO function with the same organism databases and set 

the minimal size of each gene set to 10, the maximal size of genes annotated for testing 

to 500, and the p-value cut-off to 0.05. The adjusted p-values were calculated using the 

Benjamini-Hochberg method. 

2.8.6 Bulk RNA sequencing data analysis 

Bulk RNA sequencing analysis followed the community best practices and recent 

workflow standards using Bioconductor packages (Love et al., 2015). In summary, fastq 

files were aligned to the mouse genome GRCm38 (mm10), with annotations provided, 

using tophat2 (D. Kim et al., 2013). The bam files were sorted and indexed using 

samtools (H. Li et al., 2009). GenomicAlignments (Lawrence et al., 2013) was used for 

read counting and the creation of the SummarizedExperiment object. DESeq2 (Love et 

al., 2014) was used to log-transform, normalise data and produce the normalised counts. 

Due to the availability of only two samples to be compared (PK1 and iPK1 cells), no 

statistical tests were deemed suitable. Thus, the ratio of PK1 over iPK1 normalised counts 

was calculated and a list of the top 2000 genes showing the highest differential 

expression, either upregulation or downregulation, was generated. 

2.8.7 Bulk RNA-seq and SPLiT-seq data correlation 

For the comparison of single-cell and bulk sequencing data to be possible, we generated 

pseudo-bulk data from the single-cell experiment by summing the expression of each 

gene across all cells. The resulting data frame was used to generate a 

SummarizedExperiment object. Bulk sequencing and pseudo-bulk sequencing 

SummarizedExperiments were integrated, and data were log-transformed and 

normalised. The normalised counts of the top 2000 differentially expressed genes (as 

https://sciwheel.com/work/citation?ids=11321768&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1253431&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=396582&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=48787&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=790825&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=129353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=129353&pre=&suf=&sa=0&dbf=0
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selected previously) were extracted and plotted. Finally, the Pearson correlation 

coefficient between normalised bulk counts and normalised single-cell counts was 

calculated. 

2.9 RNA extraction from single nuclei suspensions 

Suspensions of 500,000-800,000 nuclei in total were mixed with 3 volumes of RTI 

Reagent (included in R2063; Zymo Research) and then total RNA was extracted using 

the Direct-zol RNA Microprep kit (R2063; Zymo Research) according to manufacturer’s 

instructions, including the DNase I treatment step. RNA was eluted in 20 μL of H2O, 

visualised for quality control on a 2200 TapeStation (Agilent) using High Sensitivity RNA 

Screen Tapes (5067-5579; Agilent), quantified using the Qubit RNA High Sensitivity 

Assay (Q32852; Invitrogen), and stored at -80oC until further processing. 

RNA extraction was performed with the help of Emmanuelle Vire. 

2.10 Reverse transcription 

200 ng of RNA were processed using the QuantiTect Reverse Transcription Kit (205313; 

Qiagen) in two separate reactions of 100 ng RNA each, according to the manufacturer’s 

instructions. The resulting cDNA of the two reactions (40 μL in total) was pooled together, 

diluted to approximately 250 μL using H2O, and stored at -20oC. 

Reverse transcription was performed by Emmanuelle Vire. 

2.11 Real-time PCR 

Real-time PCR was performed using a protocol based on the Fast SYBR Green reagent 

and following the manufacturer’s instructions. Briefly, a master mix containing 10 μL of 

Fast SYBR Green Master Mix, 2 μL of 10X forward and reverse primer mix (the exact 

concentration of the primers is proprietary. See section 7.6.2 for a list of all primers used), 

and 6 μL of H2O per reaction was prepared and 18 μL were distributed to each well of a 

MicroAmp Fast Optical 96-Well Reaction Plate (4346906; Applied Biosystems). 2 μL of 

cDNA template was added, the plate was sealed using MicroAmp Optical Adhesive Films 

(4311971; Applied Biosystems), vortexed briefly and spun down. Reagents and plates 

were kept on ice. Real-time PCR was performed on a QuantStudio 3 Real-Time PCR 
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System (A28567; Applied Biosystem) operated at Fast mode using the following cycling 

conditions: 20 sec at 95oC; 40 cycles of 3 sec at 95oC, 30 sec at 60oC. 

For data analysis, the Sequence Detection System software was used to automatically 

determine the threshold cycles for the amplification curves (CT), and the relative 

quantification method (comparative or ΔΔCT method) was used to measure gene 

expression of samples of the RML group relative to samples of the CD1 group. Data 

analysis was performed following the guidelines of published literature (S. C. Taylor et al., 

2019). First, the mean of technical replicates was calculated, removing outlier samples. 

Then, the average Ct for the 20 dpi CD1 group was calculated and used to calculate the 

relative difference between the control group and the mean per individual sample (ΔCT). 

The relative quantities were calculated from the ΔCT, assuming a reaction efficiency of 

100% using the formula: RQ = 2^ΔCT. For each inoculum/time point combination, a 

normalization factor is determined from the geometric mean of the 2 endogenous 

controls, Tubb4a and Sdha, selected for their high levels of expression and low variability 

in the snRNA-seq data and constant expression in the real-time PCR data 

(Supplementary Figure 1). The relative normalised expression is then calculated per 

sample by dividing the relative quantity by the normalisation factor. 

Real-time PCRs were performed by Emmanuelle Vire and Tom Trainer. 

2.12 Single-cell transcriptomics of murine prion disease 

2.12.1 Mouse experiment 324 

4–6-week-old female FVB inbred mice were ordered from Envigo (FVB/NHan®Hsd; Order 

code: 862) and left to be acclimatised for one week. The animals were then chipped and 

inoculated when around 6-8 weeks old. 

Inoculations on anaesthetised were conducted intracerebrally in the right parietal lobe 

with 30 μL of one of the following preparations: 

• For the RML group (inoculum code I21742): 1% RML prion-infected brain 

homogenate prepared from 10% I17700 RML stock. 

• For the CD1 group (inoculum code I21744): 1% uninfected CD1 brain homogenate 

prepared from 10% I14040 uninfected CD1 stock. 

https://sciwheel.com/work/citation?ids=6297761&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6297761&pre=&suf=&sa=0&dbf=0
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• For the PBS group (inoculum code I56): 1x sterile DPBS (Gibco; 14190-086) 

The number of mice in each group and time point are given below where rows represent 

the 3 different groups (CD1, RML and PBS-inoculated mice) and columns represent the 

5 time points. The disease end-stage is defined as the day when scrapie sickness is 

confirmed. 

 20 dpi 40 dpi 80 dpi 120 dpi End-stage 

CD1 15 15 15 15 15 

RML 15 15 15 15 15 

PBS 5 5 5 5 5 

 

Mice were monitored daily for neurological signs of the disease and were culled by CO2 

exposure either on schedule for the 20, 40, 80 and 120 dpi time points or at scrapie 

sickness confirmation for the end-stage according to the animal research guidelines. 

Early signs include erect ears, rigid tail, piloerection, ungroomed appearance, slightly 

hunched posture, and clasping of hind limbs when lifted. Scrapie was confirmed when 

signs of ataxia, generalized tremor, loss of righting reflex, or limb paralysis were observed 

(O’Shea et al., 2008). 

When culling, the brain was removed and the left hemisphere was stored in 10% formal 

saline for further histopathological analysis, while the right was snap-frozen and stored at 

-80oC until further processing. Blood was collected and split into two aliquots. One of 

those was stored in PAXgene Blood RNA Tubes (BD biosciences; 762165) and frozen at 

-80oC to be used in future whole-blood transcriptomics studies, and the other aliquot was 

centrifuged, and plasma was collected and stored at -80oC. 

All animal work was performed by staff at the animal facility including Nick Kaye and Craig 

Fitzhugh under approval and license granted by the UK Home Office (Animals (Scientific 

Procedures) Act 1986), which conformed to UCL institutional and Animal Research: 

Reporting of In Vivo Experiments (ARRIVE) guidelines. Experimental design adhered to 

the principles of the 3Rs - Replacement, Reduction and Refinement. Animal ordering was 

mediated by Lucy Draper. 

https://sciwheel.com/work/citation?ids=12259753&pre=&suf=&sa=0&dbf=0
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2.12.2 Immunohistochemistry for prion-related neuropathology 

Immunohistochemistry was performed as previously described with modifications 

(Wadsworth et al., 2021). Briefly, mouse brains were fixed in 10% buffered formal saline 

and paraffin wax embedded. Serial sections of 5 um were taken and deparaffinised. The 

sections were then processed to investigate PrP deposition on a Ventana Discovery XT 

automated IHC staining machine (Roche Tissue Diagnostics) using protocols developed 

on a Ventana Benchmark staining machine (Wadsworth et al., 2017). Sections were 

treated with cell conditioning solution (Discovery CC1; Roche Tissue Diagnostics) at 95°C 

for 60 minutes or with a medium concentration of protease (Protease 1; Roche Tissue 

Diagnostics) for 4 minutes. For PrP deposition anti-PrP monoclonal antibodies ICSM35 

were used in conjunction with biotinylated polyclonal rabbit anti-mouse immunoglobulin 

secondary antibodies (Dako; Agilent) and Ventana proprietary detection reagents utilizing 

3,3′-diaminobenzidine tetrahydrochloride as the chromogen (DAB Map Detection Kit; 

Roche Tissue Diagnostics). 

For haematoxylin and eosin (H&E) staining conventional methods on a Gemini AS 

Automated Slide Stainer (Thermo Fisher Scientific) were used. Positive controls for the 

staining technique were used throughout. All slides were digitally scanned on a 

Hamamatsu NanoZoomer 360 instrument, and images were captured from the 

NDP.serve3 software (NanoZoomer Digital Pathology) and composed with Adobe 

Photoshop. 

Immunohistochemistry was performed by Tamsin Nazari, Florin Pintilli, Conor Preston, 

Fabio Argentina, and Jackie Linehan and analysed by Prof. Sebastian Brandner. 

2.12.3 Brain homogenisation 

2 mL screw-cap tubes with a conical bottom (Alpha Laboratories; CP5932) were filled 

with ribolysing beads (Fisher Scientific; 15515809) to cover the bevelled bottom of the 

tube and weighted. One frozen right mouse brain hemisphere was transferred into each 

tube and tubes were weighed again to calculate the mass of the brain. An appropriate 

volume of PBS was then added (Gibco; 14190-086) to prepare a 20% w/v homogenate 

(x4 the brain mass, assuming that brain tissue density is close to 1). The tubes were then 

tightly screwed, and tissue was homogenised in a Precellys Evolution homogeniser 

https://sciwheel.com/work/citation?ids=10907761&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12260138&pre=&suf=&sa=0&dbf=0
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(Bertin Instruments; P000062-PEVO0-A) operated at 6500 rpm for 45 seconds. The tubes 

were then left at 4oC for 1 h to reduce frothing. 500 μL of homogenate was pipetted out 

and transferred to a new tube, where it was diluted to 10% w/v using PBS. Homogenates 

were stored at -80oC. 

All sample handling procedures took place within a class 1 microbiological safety cabinet. 

2.12.4 Scrapie cell assay 

The scrapie cell assay was performed as previously described, in an automated manner 

(Klöhn et al., 2003). Briefly, the cell lines were seeded at 1.8*104 cells / well in a 96-well 

plate, 24 hours before infection with 10% w/v RML brain homogenate at the following 

dilutions: 3*10-6, 10-6, 3*10-7, 10-7, 3*10-8, 10-8. The cells were then split using an 

automated liquid handling robot (Beckman Coulter; Biomek FX) every three to four days 

and assays after the third and fourth passages. 25,000 cells were plated on ELISpot IP 

Filter Plates (PVDF membrane, 0.45 um, Merck; MSIPN4550) and fixed at 50oC for 1 h 

before treatment with 1 ug/ml proteinase K (Roche; 3115828001) in lysis buffer (50 mM 

Tris HCl pH 8, 150 mM NaCl, 0.5% w/v sodium deoxycholate, 0.5% v/v Triton X-100) at 

40oC for 1 h. Plates were washed and treated with 3M guanidine thiocyanate (Melford; 

G54000) for decontamination and antigen retrieval before blocking with SuperBlock 

blocking buffer (Thermo; 37545). Staining was performed using an anti-PrP antibody 

(clone ICSM18; D-Gen Ltd; Table 2) followed by detection with alkaline-phosphatase-

linked anti-IgG1 antiserum (Southern Biotech; 1070-04). Spots were visualised with 

alkaline phosphatase conjugate substrate (Bio-Rad; 170-6432) and PK-resistant infected 

cells were counted using the Bioreader 5000-Eβ (BioSys Karben, Germany). All assays 

were performed by Christian Schmidt, George Thirlway, and Parvin Ahmed. 

2.12.5 RNAscope 

mRNA was detected as red punctae in coronal FFPE mouse brain sections 

counterstained with haematoxylin using RNAscope® 2.5 VS target probes (Advanced 

Cellular Diagnostics; ACD) against each transcript (Prnp, Cat No. 476619; Gfap, Cat No. 

313249; C3, Cat No. 417849) and an RNAscope® VS universal AP Reagent kit (ACD, 

Cat No. 323250). Probes targeting Ppib (ACD, Cat No. 313919) and DapB (ACD, Cat No. 

312039) mRNA were used as positive and negative controls, respectively. Staining of 

https://sciwheel.com/work/citation?ids=11402887&pre=&suf=&sa=0&dbf=0
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tissue and RNA detection was automated using a Discovery Ultra IHC/ISH staining 

platform (Roche Diagnostics). Briefly, slides were deparaffinised and underwent 

treatment with target retrieval buffers and a protease solution to free RNA from protein 

complexes before being incubated with target probes and sequential rounds of the signal 

amplifying oligonucleotides (all reagents provided by Advanced Cell Diagnostics). 

Whole Slide Images (WSIs) of each section at 40x magnification were obtained using a 

NanoZoomer S360 (Hamamatsu Photonics K.K.). The cortex, hippocampus, thalamus, 

cerebral nuclei, cerebellum, and brainstem were manually annotated in QuPath v0.3.2 

(Bankhead et al., 2017). The positive pixel detection tool in QuPath was used to generate 

RNAscope® positive percentage values by region from which relative changes in 

transcript levels were inferred. 

RNAscope and analysis were performed by Tom Murphy, Tamsin Nazari, and 

Emmanuelle Vire. 

2.13 Single-cell transcriptomics of human prion disease 

2.13.1 Human samples 

We selected 10 individuals from archived tissue collected by the National Prion Clinic and 

stored in our Unit. Our selection criteria included the final diagnosis, which was sporadic 

CJD, availability of frozen frontal cortex samples, storage of samples in histopathology 

cassettes that enable us to identify the different anatomical regions of the frontal cortex 

more easily, and codon 129 methionine homozygous Prnp genotype. For our control 

group, we included frontal cortex samples from individuals with low-level AD pathology or 

pathological ageing provided by the Queen Square Brain Bank. These samples (N = 10) 

were matched for sex (male = 4 sCJD and 5 controls; female = 6 sCJD and 5 controls) 

but not age (mean age for sCJD = 70.4 years, SD = 8.6; mean age for controls = 83.7 

years, SD = 8.6) More information regarding the clinicopathological variables of the 

selected patients can be found in Supplementary Table 1. 

We were also able to source 3 non-dominant frontal lobe biopsy samples from sCJD 

patients. These extremely rare samples have been collected over 20 years by the 

National Prion Clinic because the differential diagnosis of CJD sometimes requires 

https://sciwheel.com/work/citation?ids=4906074&pre=&suf=&sa=0&dbf=0
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excluding neuroinflammatory conditions like primary cerebral vasculitis. Occasionally, this 

can only be determined through histological examination of brain tissue in life. These 

samples offer two main advantages: they are well preserved, and there is no post-mortem 

delay since tissue archiving is fast, usually less than 30 minutes after sample collection. 

The control samples for this group included frontal lobe biopsies from non-

neurodegenerative disease controls with mixed clinical diagnoses and only non-specific 

minor histological changes (pathological non-diagnostic samples), provided by BRAIN 

UK. These samples (N = 3) were sampled similarly to the biopsies and individuals were 

matched for sex (male = 2 sCJD and 2 controls; female = 1 sCJD and 1 control) while the 

age was matched only partially (mean age for sCJD = 56.6, SD = 13.3; mean age for 

controls = 60.6, SD = 3.3). More information regarding the clinicopathological variables 

can be found in Supplementary Table 1. 

2.13.2 DNA extraction from prion-infected frozen brain tissue 

50-100 mg of brain tissue were transferred to a 2 mL screw-cap tube (Alpha Laboratories; 

CP5932). 450 μL ATL lysis buffer (QIAGEN; 939016) and 50 μL proteinase K 20 mg/mL 

(Invitrogen; AM2548) were added, and tubes were left in a Thermomixer Comfort heating 

block (Eppendorf) overnight at 50oC with mixing at 800 rpm. The next day, 500 μL of 

TRIS-equilibrated phenol (Sigma-Aldrich; P4557) were added and mixed by inversion. 

The tubes were centrifuged at 16,000 g for 5 min at room temperature before transferring 

the upper aqueous phase to a fresh tube and discarding the lower organic phase. The 

addition of phenol, centrifugation and keeping of the aqueous phase was repeated. 500 

μL of a 1:1 mix of TRIS-equilibrated phenol and chloroform mixture were added and mixed 

by inversion. After centrifugation, the aqueous phase was transferred to a fresh tube and 

500 μL chloroform was added. After centrifugation, the aqueous phase was transferred 

to a fresh tube and removed from BSL-3 facilities to BSL-2 facilities. 500 μL of 100% cold 

ethanol was added to induce DNA precipitation. The supernatant was then aspirated and 

discarded without disturbing the DNA pellet, which was left to dry for a couple of minutes 

and was then resuspended in water. 
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2.13.3 PRNP codon 129 genotyping 

TaqMan® SNP Genotyping Assays with appropriate probes were used for PRNP codon 

129 genotyping according to the manufacturer’s instructions. Briefly, 5 μL of TaqMan™ 

Genotyping Master Mix (Applied Biosystems; 4371353), 0.5 μL of assay probes (Thermo 

Fisher Scientific; 4351379; assay ID: C___2969398_10), 1 μL DNA and 3.5 μL water 

were added in each well of a MicroAmp™ Fast Optical 96-Well Reaction Plate (Applied 

Biosystems; 4346906). The plate was sealed, vortexed and spun down and then placed 

in a QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific) where the 

following PCR program was run: 1 cycle of 10 min at 95oC, 40 cycles of 15 s at 95oC and 

1 min at 60oC. End-point fluorescence was detected, and the allelic discrimination plots 

were used to identify the sample genotype. MM, MV, VV, and negative controls were 

included in each run. 
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3 Experimental setup and pilot experiments 

3.1 Introduction 

3.1.1 Prion-propagating cell lines 

Cell lines are invaluable experimental models to study prion propagation and biology as 

they allow experimentation under carefully controlled conditions, providing a cost-

effective solution compared to animal studies, with the caveat of a less physiological 

system. Some of the earliest reports of attempts to propagate prions in culture are from 

Clarke and Haig. The authors established a cell line from a prion-infected mouse showing 

clinical signs after inoculation with the Chandler prion strain (M. C. Clarke & Haig, 1970). 

These cells were then passaged up to forty-one times to dilute the original inoculum and 

samples were titrated using mouse bioassays that showed high prion titres. This paper 

also mentions earlier work by Gustafson and Kanitz that observed irregular nuclei in cell 

cultures of prion-infected sheep and mouse brain preparations, published in Slow, Latent, 

and Temperate Virus Infections of the U.S. Department of Health, Education, and Welfare 

in 1965, however, the full text of the original manuscript is not available. 

Fast forward 17 years of relative inactivity in the field and the Chesebro and Prusiner 

groups independently used mouse neuroblastoma cells to successfully propagate murine 

prions (D. A. Butler et al., 1988; R. E. Race et al., 1987, 1988). The researchers followed 

a different approach than previous studies and instead of establishing new cell lines from 

a prion-infected mouse brain, they infected existing cell lines by exposing them to 

infectious brain homogenate. They then had to clone individual cells and characterise the 

new subclones to ascertain the stability of infection. The one clone that could sustain 

prion infectivity was expanded and formed the stock that would extensively be used for 

prion research during the following decades (Solassol et al., 2003). These cells were 

named ScN2a (Scrapie N2a cells, where N2a is the Neuro 2A mouse neural crest-derived 

cell line). 

The general approach of infecting cell lines with prions and subcloning to identify 

susceptible subpopulations can be used to test the propagation of different prion strains 

in different cell lines. For example, it has been shown that rat cells could be infected by 

mouse ME7 and 139A prions, and N2a cells overexpressing PrP with RML, 22L and 139A 

https://sciwheel.com/work/citation?ids=12229046&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12229124,12229126,4853773&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229241&pre=&suf=&sa=0&dbf=0
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prions (Nishida et al., 2000; Rubenstein et al., 1992). Hamster cells have also been 

shown to be susceptible to prion infection, as well as cells derived from elk and deer (Bian 

et al., 2010; Raymond et al., 2006; Taraboulos et al., 1990). By expressing PrP from the 

appropriate species through transfection, a rabbit kidney epithelial cell line — RK13 — 

can support the propagation of sheep, elk, goat, mouse and bank vole prions (Bian et al., 

2010; Courageot et al., 2008; Dassanayake et al., 2016; H.‑J. Kim et al., 2012; Vilette et 

al., 2001). Unfortunately, similar approaches have failed to generate any cell lines that 

can propagate human prions (Krance et al., 2020). The few exceptions where human 

prion propagation has been successful concern models of terminally differentiated cells, 

which necessitate de novo infection for each new experiment, limiting the reproducibility 

of the system and its suitability for phenotypic drug screening (Groveman et al., 2019; 

Hannaoui et al., 2014; Krejciova et al., 2017). 

In addition to the study of the species barriers and transmissibility of prion strains, prion-

propagating cell lines have been extensively used to elucidate the molecular mechanisms 

and cellular events that are implicated in the formation of disease-associated PrP and 

disease progression, to study the pathophysiology of prion disease and to facilitate the 

discovery of novel therapeutics. Cultured cell lines are an especially valuable tool in the 

quest for discovering novel anti-prion compounds as they are easy to manipulate and 

cost-efficient compared to in vivo models, they recapitulate the key molecular events in 

prion disease, are amenable to high-throughput screening and can be used to design 

reproducible experiments that bypass ethical concerns associated with the use of animals 

and human tissue (Krance et al., 2020). While phenotypic screening in mouse cells has 

identified a multitude of small anti-prion molecules that are effective against mouse prions 

in vivo, further studies showed unsatisfactory results when those were tested in 

humanised mice infected with human prions (Berry et al., 2013; Giles et al., 2015, 2016; 

Kawasaki et al., 2007). These studies also indicate that the emergence of drug-resistant 

prions further complicates human prion disease therapeutics. 

Our study used N2aPK1 cells — also referred to as PK1 cells from now on — a highly 

prion-sensitive subclone of N2a cells that were derived during research done by Peter 

Klöhn et al. (Klöhn et al., 2003). These cells were a product of three rounds of subcloning 

https://sciwheel.com/work/citation?ids=12229283,12229284&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229289,12217374,12229290&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229289,12217374,12229290&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229479,12217374,12229481,12229482,12217376&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229479,12217374,12229481,12229482,12217376&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229479,12217374,12229481,12229482,12217376&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229491&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12229499,4560716,10101595&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229499,4560716,10101595&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229491&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12229623,10701000,10584741,12229625&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12229623,10701000,10584741,12229625&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11402887&pre=&suf=&sa=0&dbf=0
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and susceptibility screening (N2a > N2a/Gary > N2aPD88 > N2aPK1), while the scientists 

demonstrated a more than x1000 increase in prion sensitivity compared to the original 

N2a cells used. PK1 cells are also the cell line used for the Scrapie Cell Assay, an in vitro 

cell-based prion infectivity assay that will be discussed in more detail in section 4.1.2. 

3.1.2 Chapter summary 

We selected two high-throughput single-nucleus RNA-seq protocols that can be used with 

frozen tissue samples, namely DroNc-seq and SPLiT-seq, and followed the authors’ 

protocols to set up the equipment in our Biosafety Level 2 laboratories. To validate the 

functionality of our setup, we performed the recommended species-mixing experiments. 

These experiments should be performed with every new setup and aim to assess the 

correct operation of both the equipment and the protocols used. 

The core principle of massive parallel single-cell and single-nucleus protocols is that they 

can provide single-cell resolution by introducing unique barcodes to the transcriptomes 

of each cell or nucleus. However, a small probability remains that two or more nuclei will 

have the same barcode, either due to the stochastic nature of the technique or due to 

protocol execution mistakes. This probability is usually referred to as the “doublet rate” 

for DroNc-seq or the “barcode collision rate” for SPLiT-seq. The species-mixing 

experiments provide a framework to test this rate for both protocols by sequencing a mix 

of human and mouse cells at the same time. Both species have excellent transcriptomic 

annotation that allows demultiplexing the data and identifying the number of transcripts 

that originated from a mouse or a human cell for every unique nucleus barcode. While 

the terms “nucleus” and “nucleus barcode” are usually used interchangeably, it is 

important to underline here that a unique nucleus barcode might not necessarily be 

associated with transcripts from only one unique nucleus, due to doublets/collisions and 

possible incorporation of ambient RNA. 

3.2 Results 

3.2.1 Experimental setup validation and species-mixing experiments 

3.2.1.1 Using DroNc-seq 

Human HEK293T and murine PK1 cells were cultured, and their nuclei were extracted 

and counted. A 50/50 mix of human/murine nuclei suspension was prepared and loaded 
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to the DroNc-seq system as described in the methodology. The emulsion was collected 

for 22 minutes. During this experiment, the microfluidic device clogged once and had to 

be replaced. Previous tests also led to device clogging, highlighting a potential drawback 

of the method.  After droplet lysis, the beads were washed and counted, and 110,000 

beads were finally recovered. Of these, 20,000 beads were used for library preparation 

and sequencing. This library was multiplexed with 2 more DroNc-seq libraries, all used in 

equal amounts. 

Sequencing generated approximately 46,5 million reads associated with this experiment, 

as expected, which were processed with the Drop-seq pipeline and aligned to a combined 

human/mouse annotated transcriptome. Our experiments identified only 102 nuclei 

barcodes that are associated with more than 4000 reads each. While the threshold values 

are chosen arbitrarily, they are usually more stringent in the official protocol than our 

analysis, demonstrating the low output of this specific experiment. Indeed, while 20,000 

beads were used for library preparation, only 102 barcodes were kept after filtering, while 

further relaxation of the filtering criteria introduced an unacceptably high number of 

barcodes containing little information. In our experiment, only a small number of cell 

barcodes was associated with a relatively high fraction of reads, while most of the cell 

barcodes only contained a very small fraction of the reads (Figure 3.1). 
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Figure 3.1: DroNc-seq cell barcodes were characterised by a gradually increasing cumulative 

fraction of reads. The figure shows the top 10,000 barcode sequences containing the most information 

versus the cumulative fraction of reads they are associated with. For most of the barcodes, the curve has 

a very gradual slope, indicating that each barcode was only associated with a very low number of reads. 

There are a few barcodes that are associated with more reads and contain the most information. These are 

characterised by a steeper increase of the curve. 

Recognising a substantial loss of information, we evaluated the efficiency of the technique 

by calculating the number of genes per nucleus identified for human and mouse cells 

using only basic filtering. This number was very low for DroNc-seq, where the median 

number of genes identified was 14 for human and 27 for mouse cells. 

After demultiplexing, reads were assigned to unique barcodes of origin, barcodes with 

fewer than 4000 reads were filtered out and the remainders’ identity was calculated using 

the transcriptomic annotations. Plotting the number of reads and in silico calculated 

species of origin demonstrates our setup’s ability to provide single-nucleus resolution data 

(Figure 3.2). Our approach identified 27 human nuclei (26.5%), 70 murine nuclei (68.6%), 
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and 5 nuclei of mixed origin (4.9%). These doublet rates are in agreement with the 

method’s expected doublet rate, which has been calculated to be approximately 5% 

(Habib et al., 2017). In addition, a closer examination of Figure 3.2 suggests that this 

ambiguity arises mostly for nuclei with a very low number of reads, suggesting that these 

barcodes might correspond to empty droplets carrying high amounts of ambient RNA from 

both species. In contrast, 2 barcodes with a high number of reads could correspond to 

droplets containing both human and mouse cells. Finally, human or mouse barcodes with 

a very high number of reads might also correspond to droplets containing more than one 

nucleus of the same species. 

 

Figure 3.2: DroNc-seq species-mixing experiment discriminates between human and mouse cells. 

Each point represents a unique cell barcode. Most of the barcodes are only associated with one species, 

either mouse (blue) or human (red), while some are associated with reads mapping to both mouse and 

human transcriptomes (green). Most of these mixed barcodes have a small number of reads and might 

correspond to empty droplets containing ambient RNA, while two of them (indicated by arrows) have a high 

number of both mouse and human transcripts and could correspond to co-encapsulations of both human 

and mouse nuclei in a single droplet. Barcodes with a high number of reads from the same species might 

also correspond to multiplets where the co-encapsulated nuclei originated from the same species. 

https://sciwheel.com/work/citation?ids=4114189&pre=&suf=&sa=0&dbf=0
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3.2.1.2 Using SPLiT-seq 

Human HEK293T and murine PK1 cells were cultured, and their nuclei extracted and 

counted. A 50/50 mix of human/murine nuclei suspension was prepared and diluted to 

the starting concentration of SPLiT-seq samples. A total of 40,000 nuclei were used as 

input to the reverse transcription round (10 wells, 4,000 nuclei each). The library 

generated was mixed with two more libraries in equal amounts (approximately 2000 

nuclei each) and the resulting multiplexed library was sequenced. 

Sequencing generated approximately 48.5 million reads associated with this experiment. 

These were pre-processed using the SPLiT-seq-pipeline. After barcode demultiplexing 

and filtering, we recovered 1494 cell barcodes passing the quality control thresholds. 

Their reads were then aligned to a combination of both human and mouse annotated 

transcriptomes and their species of origin were calculated (Figure 3.3). We recovered 453 

human cells (23.7%), 1077 murine cells (72.1%) and 63 cells of mixed origin (4.2%). Most 

of the barcodes associated with both human and mouse transcripts were found to have 

a small number of Unique Molecular Identifiers (UMIs), while some of the barcodes 

associated with a single species and having very high UMI counts might also represent 

barcode collisions of nuclei from the same species. The barcode collision rate was in 

accordance with statistics calculated by the authors and our calculations were based on 

sample load (Rosenberg et al., 2018). This data suggests that SPLiT-seq is capable of 

discriminating between the human and mouse cells, and thus, can provide single-nucleus 

resolution data. 

https://sciwheel.com/work/citation?ids=4954361&pre=&suf=&sa=0&dbf=0
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Figure 3.3: SPLiT-seq species-mixing experiment discriminates between human and mouse cells. 

Each point represents a unique barcode. Axes represent numbers of Unique Molecular Identifier (UMI) 

counts. Most of the human (red) and mouse (blue) barcodes are specific to only one species, while a few 

barcodes are associated with transcripts mapping to both human and mouse transcriptomes (grey). Most 

of the ambiguous barcodes have a low UMI count. Some of the barcodes associated with a single species 

but have a very high UMI count might be caused by a barcode collision of nuclei from the same species. 

We then evaluated the efficiency of the method by calculating the median number of 

genes identified in human and mouse cells, using only basic filtering. We calculated a 

median of 145 and 196 identified genes per nucleus for human and mouse cells, 

respectively. While these numbers are still lower than the statistics published by the 

authors of the technique where 677 genes per nucleus are mentioned, this can be due to 

differences in the sequencing depth. In our case, nuclei were sequenced at a depth 

resulting in approximately 250 UMIs per nucleus, while the original manuscript had a 

much higher sequencing depth resulting in approximately 1000 UMIs per nucleus. More 

importantly, the comparison between the efficiencies of the two protocols and practical 

considerations led us to the decision of using SPLiT-seq for the following experiments 

(see discussion, section 3.3.1). 

3.2.2 Correlation of SPLiT-seq and bulk RNA sequencing data 

Bulk RNA sequencing has long been the gold standard method of transcriptomics. Newer 

single-cell methods are expected to uncover hidden cell-type-specific expression 
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patterns, but their novelty comes with the cost of more limited method validation. To 

assess the concordance between our experimental methodology and a more traditional 

approach, we compared our single-cell data with data generated using an extensively 

validated bulk RNA sequencing protocol. 

We generated bulk and single-nucleus RNA-seq data from the same two cell lines, PK1 

and iPK1 cells, using Illumina’s whole-transcriptome TrueSeq Stranded Total RNA 

solution and SPLiT-seq. We then converted our single-nucleus data to pseudo-bulk by 

summing the expression of each gene across all cells. Finally, we integrated the pseudo-

bulk and bulk datasets and calculated the concordance of expression of the top 2000 

differentially expressed genes between the two cell lines (Figure 3.4). Our results suggest 

high concordance between single-nucleus data generated by SPLiT-seq and bulk RNA-

seq data (Spearman correlation coefficients for PK1 and iPK1 cells were 0.728 and 0.766, 

respectively). Overall, our data recapitulate the findings of previous studies (Collin et al., 

2019; Macosko et al., 2015) and provide additional evidence that validates our 

methodology. 

 

Figure 3.4: SPLiT-seq data show a high correlation with bulk RNA-seq data. PK1 and iPK1 cell lines 

were sequenced using bulk RNA-seq and single-nucleus SPLiT-seq. The single-nucleus data was 

converted to pseudo-bulk by calculating the sum of expression of each gene across all cells. The two 

datasets were integrated and the normalized number of counts from bulk sequencing (y-axis) and single-

cell sequencing (x-axis) was plotted. The Spearman correlation coefficients for iPK1 (left) and PK1 (right) 

cells were 0.766 and 0.728, respectively. A linear model was fitted to visualise the relationship between the 

two datasets (blue line). The dark grey area around the line corresponds to a 0.95 confidence interval. 

https://sciwheel.com/work/citation?ids=179739,6860667&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=179739,6860667&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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3.2.3 PK1 and iPK1 cell lines transcriptomics 

Before moving on to complex brain tissue, we wanted to evaluate and validate our 

methodology using a prion-susceptible neuroblastoma cell line. The PK1 cell line is a 

result of serial sub-cloning of mouse neuroblastoma N2a cells and can propagate RML 

prions in vitro when inoculated with RML-infected mouse brain homogenate. The infected 

cells can chronically sustain prion infection and are referred to as iPK1 (chronically 

infected-PK1 cells). 

We prepared two nuclei suspensions from PK1 and iPK1 cells and processed them using 

SPLiT-seq to generate two multiplexed libraries. We used the same plate for barcoding 

both cell lines to decrease the impact of possible batch effects while using different 

reverse transcription barcodes for each cell line, to enable their identification during the 

in-silico analysis. After sequencing and data pre-processing, we identified 2188 PK1 and 

1662 iPK1 nuclei barcodes with a median of 160 and 232 genes per nucleus, respectively. 

We performed QC filtering to remove cells with less than 100 genes or UMIs and 

recovered 1450 PK1 and 1339 iPK1 high-quality cells with a median of 247.5 and 303 

genes per nucleus, respectively (Figure 3.5). 

 

Figure 3.5: Filtering of low-quality cells. Cells with less than 100 UMI or gene counts were filtered out. 

Horizontal and vertical black lines define the QC thresholds. The number of identified genes increases with 

a higher number of UMIs, as expected. 
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We then proceeded to reduce the dimensions of the dataset using PCA, and then 

visualise it by plotting the first 2 PCs (Figure 3.6), and via t-SNE plots with a range of 

perplexity values calculated on the first 50 PCs (Figure 3.7). Both plots suggest that the 

data is very homogenous. Even though there is some separation between the two 

populations, it would be impossible to separate them without the a priori knowledge of 

their barcodes that was used to overlay them with different colours. Importantly, the first 

and second principal components can only explain 3 and 2 per cent of the data variability, 

a very low number in comparison to scRNA-seq of complex tissues with multiple cell 

types. Overall, this homogeneity is expected from a cell line and highlights the fact that 

more sensitive techniques such as Smart-seq2 (Picelli et al., 2014) may need to be used 

with such populations to be able to identify minute differences in gene expression levels. 

 

Figure 3.6: Plot of the first 2 Principal Components. Cells are coloured based on their cell line of origin. 

Both components explain a low percentage of the variance and there is a substantial overlap between the 

two cell populations, which suggests low heterogeneity of the data. 

https://sciwheel.com/work/citation?ids=349184&pre=&suf=&sa=0&dbf=0
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Figure 3.7: t-SNE plots of PK1 and iPK1 cells using a range of different perplexity values. The 

visualisation suggests that the plot is robust to the choice of perplexity value. Even though the two cell lines 

seem to separate to an extent, there is substantial overlap, making a clear separation of the two populations 

impossible. 

Recognising the homogeneity of the dataset, we proceed with testing different clustering 

algorithms. We used a graph-based clustering approach and evaluated the two most 

commonly used algorithms: the number weighting scheme with the walktrap community 

detection algorithm (recommended default of the Scran package) and the Jaccard 

weighting scheme with the Louvain community detection algorithm (recommended 

default of the Seurat package). We tried three different values for the number of k 

neighbours, 10, 20 and 30. We evaluated the cluster separation plots (data not shown) to 

select the one that showed the best performance. While due to the homogeneity of the 

data none of the approaches led to a good cluster separation, as expected, we selected 

the number/walktrap algorithm with 20 neighbours that performed best and overlaid the 

cluster information on the t-SNE plot to visualise cluster relationships (Figure 3.8). By 

comparing the two plots of cluster information and cell identity, we notice that clusters 2 
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and 4 mostly comprise infected cells, while cluster 3 comprises non-infected cells. Cluster 

1 includes both infected and non-infected cells. 

 

Figure 3.8: t-SNE visualisation of PK1 and iPK1 cells overlaid with cluster information. The algorithm 

selected (number weighting scheme, walktrap community detection, 20 neighbours) identified 4 clusters of 

cells (left). Overlaying the same plot with the a priori information about cell line identity (right) allows us to 

estimate the cell types most associated with each cluster. Clusters 2 and 4 comprise mostly infected cells, 

while cluster 3 of non-infected cells. Cluster 1 includes both infected and non-infected cells. 

To identify functional differences between the clusters, we extracted the upregulated 

marker genes, i.e. genes that show differential expression between clusters, drive cluster 

separation and are characteristic for each cluster. A one-sided pairwise t-test was used 

to compare gene expression between each pair of clusters. Only upregulated genes that 

were differentially expressed with a log-fold change of more than 1 between the current 

group and any other group were included in the final list. Genes were then ranked 

according to their p-values for each cluster separately and the final list contained the top 

5 genes (ranked by significance) from each pairwise comparison. This approach identified 

11 marker genes for cluster 1 (Cdk8, Gm42418, Lars2, Malat1, Gm26917, Comt, Xist, 

Pde1c, Gm20388, Gm48641, Cep112), 10 marker genes for cluster 2 (Cmss1, Gm15564, 

Cdk8, Gm42418, Lars2, Malat1, Gm26917, Map1b, Xist, Comt), 7 for cluster 3 (Malat1, 

Gm26917, Unc5c, Xist, Map1b, Gm48641, Comt), and 7 for cluster 4 (Gm42418, mt-

Rnr1, Lars2, mt-Rnr2, Cmss1, Cd44, Gm15564). We attribute the substantial overlap 

between the markers of all clusters to the homogeneity of the dataset; because no major 

differences between gene expression of each cluster exist, the algorithms include genes 
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with even small fluctuations in their expression. We focused on clusters 2 and 4, which 

are of particular interest because they comprise mostly infected cells. Interestingly, cluster 

2 shows increased expression of a set of genes (Cmss1, Gm15564, Gm42418 and Lars2) 

in comparison to non-infected cell clusters 1 and 3, while the same set of genes is found 

to be even more upregulated in cluster 4 (Figure 3.9). Gm15564 and Gm42418 are 

predicted long non-coding RNAs (lncRNAs), with no known function. Cmss1 encodes the 

Cms1 ribosomal small subunit homolog and Lars2 an Aminoacyl-tRNA synthetase. 

Cluster 4 is also characterised by upregulation of mt-Rnr1 and mt-Rnr2, the 

mitochondrially encoded 12S and 16S rRNAs. These transcripts are not normally found 

in the nucleus, suggesting that some mitochondria might have remained in our nuclei 

preparation. 

 

Figure 3.9: Expression of marker genes of clusters 2 (a) and 4 (b) compared to all other clusters. 

Clusters 2 and 4 comprise mostly infected cells. Cluster 2 shows increased expression of Cmss1, 

Gm15564, Cdk8, Gm42418 and Lars2 compared to clusters 1 and 3 which mostly comprise non-infected 

cells. In addition, cluster 4 shows an even higher expression of these transcripts. 

Due to the identification of many upregulated lncRNAs and mitochondrial transcripts, we 

decided to quantify identified transcript biotypes of the dataset. Our analysis suggested 

that these transcripts only account for a small percentage of the total number of transcripts 

identified (Figure 3.10). The most abundant transcripts were protein-coding genes, as 



104 
 

expected, while mitochondrial transcripts account for less than 1% of the data. This 

evidence suggests that due to the homogeneity of the data, the introduction of even a 

small number of transcripts that deviate from this uniformity can skew the differential 

expression results. 

 

Figure 3.10: Most of the transcripts identified are from protein-coding genes. The frequency of each 

transcript type was quantified, highlighting that protein-coding genes account for most of the data, while 

other transcripts are found in small percentages. Mitochondrial transcripts account for less than 1% of the 

data and their bar is not visible in this graph. 

Overall, our exploratory analysis suggests that no conclusions can be drawn concerning 

differences in the transcriptomic profiles of these two cell lines when using single-nucleus 

approaches. The homogeneity that characterises each cell line does not allow for 

meaningful data clustering or marker gene detection. In addition, very subtle 

transcriptional differences, if they exist, will inadvertently be lost when using single-cell 

approaches, as their sensitivity is much lower than bulk RNA sequencing methods. 

3.2.4 SPLiT-seq validation on frozen mouse brain 

Single-cell approaches are inherently most suitable for profiling heterogeneous 

populations, where transcriptional differences are substantial and can be identified easily, 
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even with less sensitive methods. We decided to validate our protocol using frozen mouse 

brain tissue, a sample that will be used for future experiments and closely resembles 

frozen human brain tissue, which will also be sequenced. 

We prepared a nuclei suspension from a healthy mouse frontal lobe and barcoded it using 

SPLiT-seq to prepare a single library, which was subsequently sequenced. We identified 

13,635 cells, having a median of 603 genes per cell, much higher than in previous 

experiments. More importantly, this high-quality data meant that our QC filtering only 

removed 1 cell which had less than 100 genes identified. The data was normalised and 

log-transformed. The dimensions of the data were then reduced by PCA and the first 8 

PCs were kept, as they explained most of the variability of the data. We visualised the 

data by plotting the first 2 PCs (Figure 3.11) highlighting interesting data variability, as 

expected. 

 

Figure 3.11: A PCA plot suggests data variability in both the first and second principal components 

and separates the cells into three large clusters. 
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We then clustered the data using graph-based clustering and the Jaccard weighting 

scheme and Louvain community detection algorithms and overlaid the cluster information 

on top of a t-SNE plot (Figure 3.12). We identified 17 cell clusters, which were also clearly 

separated in the visualisation. 

 

Figure 3.12: Cluster information is overlaid on a t-SNE plot of the dataset, showing a clear 

separation of the 17 clusters identified (0 to 16). 

To functionally characterise the clusters, we identified their marker genes. Only 

upregulated genes expressed in at least 25% of the cells of each cluster and showing 

differential expression of more than 0.25 log-fold were considered. To examine their 

specificity, we drew a heatmap of the top 5 marker genes of each cluster and their 

expression in all clusters (Figure 3.13). It is evident that these marker genes, whose 

names are shown on the left of the heatmap, are very specific to each cluster, allowing 

us to confidently use them for cluster annotation. 
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Figure 3.13: Heatmap of the top 5 more differentially expressed gene markers of each cluster 

validates their specificity. Each cluster is uniquely characterised by the set of the marker genes identified. 

We used the marker gene list generated previously to identify cell types using the 

scCATCH package. Automatic annotation identified 7 cell clusters: type IC spiral ganglion 

neuron, neuron, quiescent neural stem cell, oligodendrocyte, type II spiral ganglion 

neuron, oligodendrocyte precursor cell, and endothelial cell (Figure 3.14). Of these, the 

broad label ‘neurons’ spans across multiple different clusters, most probably 

corresponding to a multitude of neuronal subtypes. Even though automatic annotation is 

time-efficient and can provide an overview of the identified cell populations, manual 

annotation will be required to increase the resolution of cell populations identified and 
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correctly characterise their subtypes. Overall, our data is in concordance with single-

nucleus studies reviewed in the introduction and suggest that our protocol functions 

correctly when used with frozen mouse brain tissue. 

 

Figure 3.14: Automatic annotation using scCATCH identified 7 cell populations. We used the 

automatic annotation tool scCATCH, which compares the marker genes of each cluster with curated 

databases of cell populations and their markers. While the method does not have enough resolution to 

identify neuronal subpopulations, which are separate in the t-SNE plot, it allows for quick annotation before 

manual curation of the data. 

3.3 Discussion 

3.3.1 Comparison between DroNc-seq and SPLiT-seq 

Single-cell technologies have revolutionised the field of transcriptomics and in a short 

time have become the tools of choice for many cutting-edge studies. Some of the early 

research outputs of a very immature field have already led to novel insights, while the 

promise of increased resolution has attracted the necessary attention leading to a boom 

of published novel methods. While all newer approaches claim substantial improvements 

over older techniques, the actual user experience can differ. In addition, the suitability of 

each methodology will differ based on the research context and should be critically 

evaluated considering the nature of the input material, cost, desired output, and possible 
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constraints relevant to the research environment. Here we aimed to select methodologies 

that can be used to profile prion-infected human brain samples in single-cell resolution 

and evaluate their practicality and performance in our specific context. Our main 

consideration was the nature of our samples, infected with prions which are lethal human 

pathogens and being stored frozen, and led us to select two single-nucleus approaches 

that are compatible with frozen brain tissue and can be implemented safely at a Biosafety 

Level (BSL) 3 laboratory, namely DroNc-seq and SPLiT-seq. 

DroNc-seq is a droplet-based high-throughput snRNA-seq protocol that emerged as a 

complementary approach to Drop-seq for processing frozen brain tissue. At the core of 

the method is a microfluidic device that allows the encapsulation of nuclei and barcoded 

beads in nanolitre droplets. Due to the schematics and protocols being open source, we 

were able to obtain all required equipment, including prefabricated microfluidic devices 

and barcoded beads. We followed the official instructions to build the system in our BSL 

2 laboratories for testing purposes. Our preliminary tests included a species-mixing 

experiment aimed to validate the correct operation of our hardware, its doublet rate and 

throughput, and the bioinformatics pipeline. While we were able to generate single-

nucleus resolution data that could successfully discriminate between mouse and human 

cells, our overall data throughput was not satisfactory compared to other published 

studies reviewed earlier (Habib et al., 2017; Mathys et al., 2019). We speculate that 

further protocol optimisations would be required to maximise data output. In addition, we 

noticed a variable performance of the technique, even under the same experimental 

conditions and high sensitivity to minute details, indicating lower robustness than claimed 

by the authors. For example, our microfluidic devices would exhibit frequent clogging due 

to the high rate of bead flow, which would necessitate their replacement during the 

experiment. Avoidance of dust was also found to be detrimental to the correct operation 

of the devices, as well as the gentle handling of carrier oil. We also noticed that our 

number of beads recovered would also be affected by the exact equipment used, for 

example, the use of specific centrifuges would usually lead to lower percentages of loss. 

Overall, we would be reluctant to use this method with precious human brain biopsy 

samples, where otherwise trivial human error could potentially mean the loss of invaluable 

https://sciwheel.com/work/citation?ids=4114189,6887211&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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material. In addition, some safety concerns were also raised during testing, involving the 

use of needles to affix tubing onto the syringes and the high probability of spillages. 

The alternative technique tested, SPLiT-seq, is based on the principles of combinatorial 

indexing and can be used, with adaptations, to profile both single cells and nuclei. This 

method did not require any special equipment and had a more gradual learning curve, as 

it only required basic liquid handling and common molecular biology techniques, such as 

PCRs and ligations. This reduced complexity also makes the protocols easier to 

troubleshoot and adapt to be used in a BSL-3 environment. Our preliminary species-

mixing experiments validated the single-cell resolution of the protocol and its low barcode 

collision rate. Further optimisations led to the definitive version of the protocol, as 

described in the methods. Overall, we found the method to be robust and performing as 

expected with relative ease, while our data output started as low, but increased to levels 

comparable to the original manuscripts during our last experiment involving mouse brain 

tissue (Rosenberg et al., 2018). 

Based on our first observations, we have ultimately decided to proceed with our study 

using the SPLiT-seq protocol, due to its higher reliability, ease of use and safety. We 

speculate that the protocol can be adjusted to conform to BSL-3 laboratory requirements 

with relative ease, allowing us to process infected human brain tissue. 

3.3.2 Transcriptomic alterations of prion infection in PK1 cells 

While our ultimate aims are to profile prion-infected mouse and human brain tissues, we 

decided to assess our protocols using a mouse cell line that can propagate prions in vitro. 

PK1 cells can be chronically infected with RML prions after inoculation with infected 

mouse brain homogenate. While heterogeneity has already been described in this 

particular cell line (Marbiah et al., 2014), we aimed to identify potential cell subpopulations 

using a single-nucleus sequencing approach. 

Our experiment focused on comparing the transcriptomic profiles of chronically infected 

and uninfected cell lines using SPLiT-seq. The generated dataset had a low median 

number of genes identified resulting in lower-than-usual sensitivity. While we were not 

able to discriminate between infected and uninfected cells without having a priori 

information, our analysis identified clusters of cells exhibiting transcriptomic differences. 

https://sciwheel.com/work/citation?ids=4954361&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2793770&pre=&suf=&sa=0&dbf=0
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By comparing clusters consisting mainly of infected cells to ones consisting mainly of 

uninfected cells we identified increased expression of a set of genes: Cmss1, Gm15564, 

Gm42418 and Lars2. Two of them encode lncRNAs with no known function (Gm15564 

and Gm42418), while the other two are related to protein translation (Cmss1, Lars2). This 

suggests that either an increase in translation might be associated with cell infection, or 

our clustering algorithm separated these clusters as more transcriptionally active. Overall, 

we could not uncover substantial heterogeneity either between the two cell lines or cell 

subpopulations in the same cell line. In addition, existing methodologies do not allow us 

to concurrently titrate the infectivity levels of each cell, meaning that infected cells might 

not be uniformly infected, which could explain the lack of difference between the two 

populations. Our results are not unexpected given the low sensitivity of high-throughput 

single-cell methods in general. Indeed, this challenge becomes more pronounced for 

single nuclei sequencing techniques, where the amount of input RNA is even lower. We 

argue that our single-nucleus methodology is not sensitive enough to identify minute 

transcriptomic changes that could be relevant to prion propagation in an otherwise 

homogeneous cell line, especially when the median number of genes identified is low. 

3.3.3 Validation of SPLiT-seq protocol using frozen mouse brain 

We then proceeded to validate our protocol by processing an inherently heterogeneous 

sample of frozen mouse frontal lobe, which would also allow us to further optimise our 

protocol for input material that closely resembles the frozen human brain. Our latest, 

optimised protocol performed exceptionally well, generating much richer data than 

previously, which mirrored the sensitivity described in the original manuscript (Rosenberg 

et al., 2018). The plethora of different cell populations allowed us to assess bioinformatics 

pipelines based both on the Bioconductor ecosystem and the Seurat toolbox. Overall, we 

identified 17 clusters of cells, prior to any manual curation, and uncovered sets of gene 

markers that uniquely characterise each of them. We then used these markers to identify 

7 broad cell populations: type IC spiral ganglion neurons, neurons, quiescent neural stem 

cells, oligodendrocytes, type II spiral ganglion neurons, oligodendrocyte precursor cells 

and endothelial cells. 
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4 Single-cell transcriptomics of murine prion disease 

4.1 Introduction 

4.1.1 Mouse models of prion disease 

The long incubation times and fatal nature of prion diseases necessitate the use of animal 

models for their study. While some of the TSEs have animals as their primary host, most 

of those - like cattle, sheep and deer - are not suitable for controlled studies due to their 

long lifespan, large size, high cost of maintenance and technical difficulties in their 

scientific manipulation. In addition, primates can still be valuable models, especially for 

studying human prion diseases, and have been used in numerous studies (Comoy et al., 

2013, 2015, 2017; B. Race et al., 2018). However, in addition to the inconveniences of 

maintaining other large animals, there is also the added controversy of using primates for 

scientific investigation. 

Mice and hamsters are the two most widely used animal models for studying prion 

diseases (Watts & Prusiner, 2014). Both animals are small in size, easy to maintain, have 

short generation times and are easy to manipulate. Mice have gradually replaced hamster 

models due to the extensive study of their genome and the plethora of available molecular 

biology techniques that can be used for their genetic manipulation (Sebastian Brandner 

& Jaunmuktane, 2017). 

Animal models are usually employed to recapitulate a specific aspect of the disease or to 

test a hypothesis and are not expected to faithfully recreate human disease, but facilitate 

the elucidation of biological questions. Nonetheless, wild-type and transgenic mice have 

been extensively used in prion research and some scientists have argued that the term 

“model” is inappropriate, as prion-inoculated mice do develop bona fide prion disease and 

recapitulate all biochemical and neuropathological hallmarks of human and animal 

disease (Watts & Prusiner, 2014), making them invaluable for testing new therapeutic 

interventions. This is in contrast to animal models used in other neurodegenerative 

diseases, such as Alzheimer’s disease, where most of the mouse models include 

autosomal-dominant mutations that mimic the familial and not the sporadic type of 

disease or do not model both amyloid-beta aggregation and tau dysfunction (King, 2018), 

or Parkinson’s disease, where none of the available models can perfectly mimic the 

https://sciwheel.com/work/citation?ids=12219148,5406978,10243278,12219150&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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neuropathology (α-synuclein aggregates, dopaminergic neurodegeneration) and recreate 

the clinical syndrome (Konnova & Swanberg, 2018). Remarkably, murine prion disease 

models have been shown to replicate aspects of the transcriptomic response to human 

neurodegenerative diseases (Burns et al., 2015). 

Early experiments in the prion field used mouse models for transmission and adaptation 

studies to investigate prion strains and the species barrier by serially propagating sheep 

scrapie to wild-type mice. The introduction of transgenic mouse models allowed the 

design of more intricate experiments to dissect the species barriers with the use of mice 

expressing hamster PrP being a milestone that demonstrated the importance of the PrP 

amino acid sequence to incubation time, neuropathology and scrapie susceptibility and 

allowed the circumvention of the species barrier for the first time (Scott et al., 1989). Other 

milestones were the first attempt to model an Inherited Prion disease, GSS, by expressing 

the murine equivalent of the human P102L mutation in 1990 (Hsiao et al., 1990), and the 

generation of the first Prnp knock-out mouse in 1992 (Büeler et al., 1992). 

Wild-type inbred mice also offer the advantage of a tightly controlled and consistent 

genetic background and were the first to be used for prion research. The most common 

strains used are C57Bl/6L, C57Bl/6N, C57BL/10, FVB, and 129/Ola (Sebastian Brandner 

& Jaunmuktane, 2017). While most of the research was focused on adapting scrapie 

prions to mice and enabling further propagation, some studies attempted to propagate 

and transmit human prions as well (A F Hill et al., 1997; Kitamoto et al., 1989). The long 

incubation periods and low attack rates underlined the existence of a species barrier and 

highlighted the importance of PrP homology, paving the way for the generation of 

humanised transgenic mice, i.e. mice expressing the human PrP homolog. 

Prnp knock-out mice have also been extensively used in prion research, both directly, for 

studying the function of the cellular prion protein, and indirectly, by enabling the creation 

of transgenic mice devoid of murine PrP expression, which causes interference with the 

transgenes. Importantly, PrP null mice demonstrated the importance of the host PrP for 

the propagation of prions and the development of neuropathology and clinical scrapie 

disease (Sailer et al., 1994). PrP null mice are generated by removing large regions of 

the Prnp open reading frame, which halts the expression of PrPC. While most of the 

https://sciwheel.com/work/citation?ids=6372476&pre=&suf=&sa=0&dbf=0
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models have minor phenotypes, this genetic manipulation has led to confounding and 

unexpected degeneration in a Japanese model, which was later attributed to the 

overproduction of the Dpl gene (R. C. Moore et al., 1999; Sakaguchi et al., 1996). 

Nevertheless, a direct connection to human neurogenerative disease has not been 

established (S Mead et al., 2000). Another confounding factor has been the use of 

embryonic stem cells from the 129Ola mouse strain while crossing with non-129 

backgrounds. To address these shortcomings, a definitive study published in 2016 

generated co-isogenic Prnp null mice on a pure C57BL/6J background that could not 

demonstrate any previously described phenotype, except a chronic demyelinating 

peripheral neuropathy, underlying the involvement of the cellular PrP in myelination and 

stressing the importance of the meticulous engineering of mouse models in general 

(Nuvolone et al., 2016). 

The development of Prnp knock-out mice enabled the generation of humanised mouse 

models by intercrossing PrP null mice with transgenic mice expressing human or chimeric 

PrP. These models allowed researchers to overcome the species barrier and study 

human prion isolates while replicating the disease both biochemically and 

neuropathologically. Further developments introduced transgenic PrP overexpressing 

lines, which offered shorter incubation times, making them invaluable for disease 

modelling and drug discovery, albeit with the caveat that they mirror the human disease 

less faithfully (Sebastian Brandner & Jaunmuktane, 2017). 

For this study, we opted to use wild-type mice, specifically the FVB/N strain. The selection 

of wild-type mice was of great importance as these mice express PrP at physiological 

levels and develop bona fide prion disease after inoculation with RML prions (Sandberg 

et al., 2011). The FVB/N inbred mouse strain originates from outbred NIH General-

purpose Swiss mice established in 1935. Two strains were later selected for resistance 

to the action of histamine following a Bordetella pertussis vaccination. A subgroup of 

sensitive mice in the eighth generation was found to carry the Fv-1b sensitivity allele to 

the B strain of Friend leukaemia virus. These homozygous mice were then inbred and 

designated as the FVB strain (Taketo et al., 1991). 
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FVB/N mice have been routinely used for the study of prion diseases directly, and for the 

generation of FVB-congenic mouse lines (Asante et al., 2002, 2015; Sebastian Brandner 

& Jaunmuktane, 2017). It is a well-characterised mouse model that has, more recently, 

been used to dissect the mechanistic phases of prion propagation and toxicity (Sandberg 

et al., 2011). In this milestone publication, Sandberg et al. demonstrated that prion 

propagation in mouse brain proceeds in two mechanistically distinct phases: the first is 

an exponential phase, which is not rate-limited by PrP concentration and has no clinical 

symptoms, and the second is a plateau phase, which determines the time to clinical onset 

in an inversely proportional manner to PrP concentration. FVB/N wild-type mice with 

physiological PrP expression levels exhibited a mean incubation period of 137 days. In 

their follow-up paper, the authors extensively studied the kinetics of prion infection and 

toxicity and the neuropathology of RML-inoculated FVB/N mice, generating a large 

amount of valuable data that can later be integrated with our newly generated snRNA-

seq data to draw meaningful conclusions (Sandberg et al., 2014). 

4.1.2 Quantifying prion infectivity – The Scrapie Cell Assay 

Quantifying prion infectivity is often essential for prion research as it is necessary for 

assaying the efficiency of purification procedures or the efficacy of treatment; however, it 

can be challenging as it requires a suitable biological system that can effectively 

propagate prions. Early observations that some prions can be propagated in mice led to 

the development of the first end-point titration approaches which were used to estimate 

the infectivity of biological material by assessing the survival of prion-inoculated mice 

(Chandler, 1963). These methods were time-consuming, tedious, and expensive, 

requiring around 12 months and 60 mice to quantify the infectivity of a single sample. The 

long incubation times meant that research would have to be effectively stalled for months 

until results were obtained and used to plan future experiments. In addition, the 

considerable number of animals required and the associated cost for their housing and 

maintenance made running multiple experiments in parallel impractical or impossible. 

One of the first optimisations of the animal-based assays was the introduction of the 

incubation time interval assay where measurements of the intervals between inoculation 

and disease onset and inoculation and death are correlated with the titre of the infectious 

https://sciwheel.com/work/citation?ids=12222472,604834,4387725&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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scrapie agent (Prusiner et al., 1982). The combination of these assays with inocula that 

could produce scrapie in the Syrian hamsters in only around 70 days after intracerebral 

inoculation meant a substantial reduction of the time required to quantify infectious 

samples, from 12 months to just over 2 (Kimberlin & Walker, 1977). Importantly, time 

interval assays require only a fraction of the number of animals, reducing cost and 

increasing the number of experiments that can be run in parallel (Prusiner, 1998). 

The extensive research and long history of animal bioassays make them the gold 

standard for quantifying prion infectivity and incubation time to this day. However, as the 

use of animals is a necessity, they remain relatively time-consuming and expensive, even 

after further optimisation. The appeal of an in vitro system that could partially replace 

animal-based studies led to the development of alternative cell-based and cell-free 

methodologies. These include the protein misfolding cyclic amplification (PMCA) (Saborio 

et al., 2001), the real-time quaking-induced conversion (RT-QuIC) (Atarashi et al., 2008), 

and the scrapie cell assay (SCA) (Klöhn et al., 2003; Mahal et al., 2008). 

PMCA and RT-QuIC are cell-free methods that involve the incubation of an infectious 

seed that contains PrPSc with an appropriate template (brain homogenate that contains 

PrPC / recombinant PrPC) under conversion-enabling conditions. Even though these 

techniques can be used to amplify infectious material (PMCA) and are helpful for the rapid 

diagnosis of clinical samples (RT-QuIC), a key disadvantage is that only indirect 

measurement of infectivity is possible. To address these limitations, the Weissmann 

group developed a cell-based infectivity assay termed standard scrapie cell assay 

(SSCA) or scrapie cell assay (SCA) in 2003 with research led by Peter-Christian Klöhn 

(Klöhn et al., 2003). The researchers first subcloned and then isolated highly susceptible 

neuroblastoma N2a cells, termed N2aPK1 cells, which were then exposed to infectious 

material for 3 days, grown to confluence and split 1:10 three times to remove any 

remaining starting material. The number of PrPSc-containing cells was then quantified 

using automated approaches and used as a proxy to estimate the infectious titre of the 

original sample. The authors claim that this method provides sensitivity comparable to the 

gold standard animal bioassays while reducing the assay time to a few days and the cost 

to only a fraction of the original assays, while the added benefit of easy automation allows 
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experiment parallelisation of unprecedented scale. For applications where maximum 

sensitivity is desired, an end-point titration format of the scrapie cell assay can be used, 

the scrapie cell assay in end point format (SCEPA). 

Although the SCA revolutionised the field of prion infectivity titration, there remain several 

challenges pertaining to the sensitivity to different prion strains, the genetic instability of 

the N2a cells and the introduction of false positives when using steel wires. The original 

assay used N2aPK1 cells, which are highly susceptible to RML prion infection but show 

variable levels of sensitivity to other murine-adapted prion strains. To extend the usability 

of the SCA to more prion strains, the Weissmann group assembled four cell lines (N2a-

PK1, N2a-R33, LD9 and CAD5), subclones of the N2a, CAD5 and L292 cells, and 

quantified their responses to four murine-adapted prion strains (RML, 22L, 301C, and 

Me7) (Mahal et al., 2007). The authors point out the heterogenous response of sibling 

subclones, which highlighted the instability of these cell lines, especially when they 

underwent several serial passages. The genetic instability and variable susceptibility of 

the N2a cell lines were further validated one year later by Chasseigneaux et al. 

(Chasseigneaux et al., 2008), while a specific genetic signature of prion susceptibility 

could not be identified. While the SCA is suitable for murine-adapted prions, there have 

been successful attempts to quantify ovine scrapie (RK-13 cells that express ovine PrPC) 

(Arellano‑Anaya et al., 2011; Courageot et al., 2008; Neale et al., 2010) and Chronic 

Wasting Disease (CWD) (Elk21 cells) (Bian et al., 2010). Unfortunately, no cell systems 

have been developed to date for the propagation of bovine and human prions. Finally, the 

use of steel wires with the SCA has led to the identification of a positive signal in control 

groups that contained only normal brain homogenate (Edgeworth et al., 2010). The 

authors argued that this unexpected false-positive result could be due to a catalytic 

conversion of normal cellular prion protein to prions on the surface of the wires, or 

because of an increase in the concentration of prions that were already present in 

previously unidentifiable amounts. Overall, this issue underlines the importance of 

carefully controlled experiments to minimise false positives that could emerge due to 

background noise. 
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4.1.3 Chapter summary 

In this chapter, we applied the SPLiT-seq methodology to transcriptionally profile murine 

prion disease. We designed a time-course experiment of RML- and control brain 

homogenate-inoculated FVB mice to track the temporal cellular response to prion 

disease. We generated a rich dataset of more than 200,000 high-quality transcriptomes, 

which we then analysed to identify perturbed transcripts and gene networks. We included 

additional modalities to the dataset, including prion infectivity measurements and 

immunohistochemical observations. Finally, we validated some of our findings using real-

time quantitative PCR and RNA in situ hybridisation. 

4.2 Results 

4.2.1 Tissue collection 

We designed a time-course experiment to study RML prion disease in mice under tightly 

controlled experimental settings and at a single-cell level. The experimental design was 

based on previous observations and studies published by groups of our Institute and other 

external research groups (Sandberg et al., 2011, 2014; Scheckel et al., 2020). The RML-

inoculated FVB mouse model was characterised in depth by Sandberg’s studies, 

providing the necessary information to allow us to select 5 different time points when 

samples would be collected (Figure 4.1a). After careful assessment of the prion infectivity 

curves published in the same study, we identified the following time points to be of interest 

as they represent the different stages of prion accumulation and could, thus, be more 

suitable for integrating our transcriptomics data with prion infectivity: 20 dpi and 40 dpi fall 

in the beginning of the exponential phase, temporary closer to inoculation and could be 

used to investigate early disease mechanisms and signatures of vulnerability; 80 dpi 

stands at the end of the exponential phase and the beginning of the plateau phase and 

could provide information to explore the mechanistic shift in prion replication; 120 dpi is 

representative of the plateau phase, before the clinical onset of disease and could be 

important in elucidating early mechanisms of neurotoxicity; finally, disease end-stage is 

defined as the start of clinical signs when scrapie sickness is confirmed, and — although 

it does not coincide with the actual terminal stage of disease due to ethical concerns — 

can provide valuable information regarding mechanisms of toxicity and cell death (Figure 

4.1b). 
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Figure 4.1: Experimental design of mouse transcriptomics study. (a) Two phases of prion propagation 

in vivo, as reported by Sandberg’s study. We are interested in the kinetics of the Prnp+/+ model, designated 

with the grey line since we are using wild-type mice with two copies of the Prnp gene. Adapted from 

Sandberg et al. 2011 (b) Distribution of the 5 time points assessed in our study, compared to prion infectivity 

titre. 20 dpi and 40 dpi time points are located at the beginning of the exponential phase, 80 dpi time point 

is located at the beginning of the plateau phase, 120 dpi time point is located in the plateau phase, before 

the appearance of clinical signs, and end-stage is located at the clinical onset of the disease. Adapted from 

Mok & Mead, 2020. 

Scheckel’s study underlined the importance of time-course data, as transcriptomic 

changes are suggested to be dynamic in the temporal dimension. The study was also 

appropriately controlled, using uninfected brain homogenate for the inoculation of the 

control groups. Since having a tightly controlled study would be of paramount importance 

for the interpretation of future results, we decided to include two control groups in our 

experiment. One of the groups was inoculated with uninfected CD1 brain homogenate to 

control for the RML-inoculated group so that the only variable assessed would be the 

presence of clinical stage brain, presumably containing prions and non-propagating toxic 

materials (Sandberg et al. 2014). The RML brain homogenate is also produced in a CD1 

background and diluted with CD1 brain homogenate to minimise genetic heterogeneity. 

The additional control group was inoculated with PBS only and comparing it to CD1-

inoculated controls could allow us to identify technical noise and transcriptional changes 

caused by the intracerebral introduction of a foreign brain homogenate in a live animal. 

Importantly, to minimise external variability all animals were inoculated at approximately 

the same age (flexibility of up to 2 weeks was allowed for technical reasons), animals at 
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the same time point were inoculated with the same volume of inoculum on the same day 

for all 3 groups, and when a diseased animal was culled, a control animal was also culled 

on the same day. 

By the end of the experiment, 4 mice were either found dead or culled due to health 

concerns (1 from the end-stage CD1 group, 3 from the end-stage RML group), and one 

mouse of the end-stage RML group did not develop scrapie after 213 dpi and was culled. 

These samples were excluded from further analyses (animal IDs: 829979, 829990, 

829991, 829992). Animals from the end-stage RML group developed scrapie symptoms 

at a mean of 168 dpi (SD = 5). 

Brain, blood, and plasma were collected and stored appropriately. The left-brain 

hemisphere was formalin-fixed and processed for immunohistochemistry, while the right 

was snap-frozen and stored at -80oC until used for the preparation of brain homogenate 

for the scrapie cell assay or processed for single-nucleus sequencing. Blood and plasma 

were stored for future studies. 

4.2.2 Pathology and immunohistochemistry 

To ensure that our inoculation experiment was successfully concluded, we performed 

immunohistochemistry analyses on fixed brains from each cull. These brains were stained 

with the anti-PrP antibody ICSM35 and visualised under a microscope to assess 

abnormal PrP deposition and spongiform changes (Figure 4.2). Localised diffuse synaptic 

deposition of abnormal prion protein was evident at 40dpi in the cortex, hippocampus, 

and thalamus, which became more evident in the cortex, thalamus, midbrain, and 

brainstem at 80dpi, and increased throughout the course of the disease. Mild spongiosis 

in the hippocampus and thalamus was evident as early as 80 dpi and became more 

pronounced as the disease progressed. 
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Figure 4.2: Time course of abnormal prion protein accumulation in the brain of FVB mice inoculated 

with RML. FVB mice were intracerebrally inoculated with RML prions and groups of mice were culled at 4 

defined time points (20-120 dpi) and the onset of clinical prion disease (EP). Formalin-fixed brains from 

each time point were analysed for abnormal PrP deposition and spongiosis. The bright-field microscope 

images (A-J) show the abnormal PrP deposition in the cortex and thalamus using the ICSM35 antibody for 

staining. (K) PrP deposition became evident at 80 dpi (images E, F) and became more pronounced as the 

disease progressed. The schematic is an overview of the distribution of prion protein deposits, where 

graded red shades reflect the intensity of prion protein deposits. (L) Mild spongiosis in the hippocampus 

and thalamus was evident in 9/10 animals at 80 dpi and became more pronounced in 10/10 animals as the 

disease progressed. The schematic is an overview of the distribution of vacuoles, where graded purple 

shades reflect the intensity of spongiosis. The hippocampus has not been assessed for neuronal loss. EP: 

disease endpoint. 

Regarding the presence of residual inoculum in the early time points, a proportion of the 

brains (4/15) at time point 20 dpi, inoculated with RML, showed immunopositive material 

located at the fringe between hippocampus and corpus callosum. This material appears 

K 

250μm 

L 
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as small, solid, and densely immunoreactive. Occasionally, there are processes, 

presumably from astrocytes of the hippocampus, which also show weak immunolabelling. 

The interpretation of this finding is that the deposits represent residual inoculum, and we 

interpret the presence of immunoreactive material in astrocytes processes as an early 

uptake. 

A similar finding in 2/15 animals of the 40 dpi RML group is observed, but in addition, 

there is also fine granular immunopositive material, more in keeping with incipient, de 

novo production of the abnormal prion protein. In the subsequent time points (80, 120 dpi, 

and endpoint) no such “residual inoculum” is identified. There is widespread de novo 

deposition of abnormal prion protein as expected in these time culls. No immunoreactive 

material is seen in the 2 control groups (normal brain homogenate and PBS). 

4.2.3 Prion infectivity titration 

We used the automated scrapie cell assay to titrate the prion infectivity of the mouse brain 

samples. 3 right-brain samples from each time point of the CD1 and RML groups, 30 

samples in total, were separately homogenised and used to infect susceptible PK1 cells, 

as previously described. The PrPSc spot count was quantified after the 2nd and 3rd splits 

of the bioassay cells. All samples except one were assayed on the same SCA experiment 

due to space constraints. The last sample (RML group, end-stage time point) was 

assayed in a separate experiment. One CD1 control sample showed low levels of 

infectivity, which was suspected to be an artefact due to cross-contamination and was 

assayed 3 more times in a separate experiment, which all gave negative results 

confirming our suspicions; the original, low-infectivity value has been replaced with zero. 

One sample showed a low level of infectivity at 20 dpi, two samples showed higher levels 

of infectivity at 40 dpi, while infectivity plateaued at 80 dpi with all three samples showing 

high infectivity levels, which remained until the end-stage (Figure 4.3). A closer inspection 

of the plot suggests that the exponential phase spans the 20-80 dpi time frame, when the 

plateau phase begins, validating the effective selection of the 5 time points and agreeing 

with the findings of previous studies. Supplementary Table 2 contains the raw and log-

transformed infectious units of all samples assayed at the end of the 3rd split. 



123 
 

 

Figure 4.3: The scrapie cell assay validates the effective selection of the 5 time points for the mouse 

transcriptomics study. (a) Log-transformed infectious units from 3 individual samples are plotted on a 

linear y-axis. Each colour represents a biological replicate (b) The mean of infectious units from the same 

samples (n = 3) is plotted on a logarithmic y-axis. Error bars indicate the standard deviation. TCIU: tissue 

culture infectious units, referred to as infectious units in the text. 

4.2.4 Single-nucleus RNA sequencing 

Nuclei extraction, library preparation, and sequencing 

We performed single-nucleus RNA sequencing on the mouse brain tissue using the 

SPLiT-seq protocol, which showed favourable results as discussed in the previous 

chapter. As a first step, the frontal lobes of the mouse brains were dissected and 

processed to prepare nuclei suspensions, which were then fixed and stored. All 

suspensions were examined under the microscope for quality assurance. We noticed the 

presence of more cellular debris in some suspensions, but the amount was not quantified. 

Due to earlier test runs, the suspensions of the 20 dpi time point had been thawed and 

frozen twice, while for all other time points they had only thawed once when used for the 

library preparation. We then attempted to quantify the infectivity using the SCA as 

previously described (section 4.2.3), however, the fixed nuclei suspensions showed no 

infectivity, hindering the integration of infectivity data from each sample with the 

transcriptomic information. 

When all samples for a specific time point were ready, a single plate including all 3 groups 

of samples was prepared and processed through the SPLiT-seq library preparation 

protocol. Supplementary Figure 2 shows a representative image of the layout of a loaded 
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SPLiT-seq 96-well plate. At the end of the split-pool barcoding rounds, the number of 

nuclei recovered was quantified and the yield was calculated to be as expected for all 

time points, except from the 20 dpi, which had lower starting sample concentrations 

(Table 2). The rest of the protocol was then followed with the next possible quality control 

steps after cDNA amplification and after library tagmentation. Supplementary Figure 3 

shows representative TapeStation traces after the aforementioned steps. Parts of the 

protocol had been repeated until all libraries generated TapeStation traces that had the 

expected size distribution. 

 
Starting sample 
concentration 
(nuclei / μL) 

Final yield 
(nuclei) 

Percentage 
recovery 

Number of 
sublibraries 

prepared 

Number of nuclei 
per sublibrary 

20 dpi 1200 33000 6.37% 3 9500-10000 

40 dpi 2000 100300 13% 6 15000 

80 dpi 2000 82600 10.70% 6 15000 

120 dpi 2000 142800 18.60% 6 15000 

end-stage 2000 113050 14.70% 6 15000 

Table 2: Final yield and single nuclei recovery after split-pool barcoding rounds. For the 20 dpi, nuclei 

suspensions were prepared at a lower concentration, leading to a lower yield, a smaller number of 

sublibraries prepared, and a lower number of nuclei per sublibrary. For all other time points, the yield was 

higher, and 6 libraries were prepared, all of 15,000 nuclei. 

Three of the final, tagmented libraries from each time point were then pooled and 

sequenced during a total of 5 sequencing runs, one for each time point, yielding an 

expected number of nuclei sequenced around 45 thousand per time point, or 225 

thousand in total. Sequencing generated approximately 2,085 million reads in total (Table 

3). The quality of sequencing was then assessed by running FastQC on the resulting fastq 

files and examining the summary statistics of the reports (External Supplementary File 

1). After making sure that all libraries were adequately sequenced and high quality, the 

fastq files were processed using the SPLiT-seq bioinformatics pipeline to demultiplex the 

biological samples and generate the count matrices, which were loaded into Seurat for 

further analysis. 

Time point Library number Sequencing reads (in millions) 

20 dpi 1 139.5 

20 dpi 2 110.5 



125 
 

20 dpi 3 128.3 

40 dpi 1 213.1 

40 dpi 2 178.3 

40 dpi 3 187.4 

80 dpi 1 118 

80 dpi 2 117.5 

80 dpi 3 96.7 

120 dpi 1 124.4 

120 dpi 2 120.2 

120 dpi 3 142.9 

end-stage 1 129.1 

end-stage 2 140.8 

end-stage 3 138.1  
Total 2084.8 

Table 3: Sequencing generated a total of 2085 million reads across all libraries. 

Quality control in Seurat 

We filtered cells based on their feature count (features are equivalent to genes in the 

context of the analysis, and the two terms will be used interchangeably) and the 

percentage of mitochondrial genes expressed. Cells with a low feature count are less 

informative and might represent background noise, while cells with a very high feature 

count might correspond to multiplets. Cut-off values were set to between 250 and 2500 

features based on published literature (Mathys et al., 2019; Rosenberg et al., 2018) and 

previous tests. Regarding mitochondrial transcripts, for single-cell methods they are 

indicative of mitochondrial rupture and cell death, however since we are using a single-

nucleus method where mitochondria should have been removed during suspension 

preparation, a high percentage would indicate a serious failure of the technique. Thus, 

the acceptable threshold was intentionally set very low, to less than 1%. 

More than half a million cells were identified prior to quality control, while the number was 

reduced to 210,710 when the filters were applied (Figure 4.4 and Table 4). The 20 dpi 

time point showed the highest difference between the unfiltered and filtered data, and this 

was attributed to the way the cell identification algorithm of the split-seq toolkit works and 

will be further discussed later. Importantly, by setting our manual filtering criteria any 

discrepancies between the different libraries can be removed, resulting in 210 thousand 

high-quality cell transcriptomes. All time points have been successfully sequenced 

https://sciwheel.com/work/citation?ids=6887211,4954361&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0


126 
 

resulting in 36 to 51 thousand high-quality transcriptomes each after filtering (M = 1050 

features per nucleus, SD = 565). Samples from both RML and CD1 groups had a similar 

number of identified cells, while samples from the PBS group comprised fewer cells 

(Figure 4.5). This was expected and part of the experimental design since all PBS 

samples included cells from 2 wells of a 96-well plate, while RML and CD1 groups 

included cells from 2 or 3 wells of the plate (visualised in the layout of a SPLiT-seq plate 

in Supplementary Figure 2). There was one outlier sample (from mouse #828719) which 

only contributed 61 cells in the 20 dpi dataset after filtering. This sample was located in 

the last two wells of the 96-well plate and the small number of cells could be attributed to 

the exhaustion of the reverse transcription master mix. All subsequent analyses were 

performed both including and excluding the spurious sample and produced comparable 

results, so we decided not to filter it out. Supplementary Figure 4 includes more detailed 

violin plots of the number of features for each biological sample before and after filtering, 

as well as correlation plots between the numbers of counts and features. Supplementary 

Table 3 includes detailed numbers of cells identified from each biological replicate. 

 

Figure 4.4: The analysis identified more than half a million cells before quality control and 

approximately 200 thousand cells after filtering. While filtering removed only a small fraction of cells for 
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most time points, there was a substantial reduction when the 20 dpi dataset was filtered. This was attributed 

to the automatic setting of a less stringent threshold of the cell identification algorithm and was easily 

rectified when applying our custom filtering criteria. 

 

Figure 4.5: Samples from both RML and CD1 groups had a similar number of identified cells, while 

samples from the PBS group comprised fewer cells, as expected from the experimental design. The 

box and whisker charts show the distribution of the number of cells identified per biological sample into 

quartiles, highlighting the mean (x symbol), median (horizontal line), and outliers (coloured dots). Sample 

828719 is the RML outlier with the lowest number of identified cells. 

 
20 dpi 40 dpi 80 dpi 120 dpi End-stage Total 

Before QC 327017 41756 41750 40461 55986 506970 

After QC 46582 37355 39158 36392 51223 210710 

Table 4: The analysis identified 210 thousand high-quality transcriptomes across all time points. 

Complete removal of mitochondrial and rRNA genes, as well as regressing them were 

also attempted, however, neither had any impact on the conclusions of downstream 

analyses and we decided to proceed with the fewest data modifications possible, 

including all genes. In addition, no bias was evident in the distributions of transcript 

lengths or chromosomes of the identified features (Supplementary Figure 5). 

The effects of the cell cycle were also assessed. It is known that differences in the cell 

cycle stages can introduce variability in the data and drive cluster separation. We 

assessed the effect of the cell cycle in our dataset by scoring each cell individually and 
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annotating the most probable phase using known marker genes. PCA plots computed 

specifically on cell cycle features for each time point suggested that cell cycle effects are 

modest (Supplementary Figure 6). In addition, variability introduced by cell cycle 

differences is not detrimental to downstream analyses and is relevant to the underlying 

biology. Since the cell cycle effects were not very pronounced, we decided not to regress 

out the cell cycle genes and preserve this additional information. 

Clustering and cluster annotation 

Since our dataset consisted of multiple time points that were individually sequenced and 

processed separately, we needed to perform clustering and annotation in a way that 

allows reproducibility across all time points and minimizes subjective decisions, which —

even though are important for judging the results of analyses and making sure that 

algorithms operate as expected — often introduce variability and hinder comparisons 

across separate experiments. We decided to adopt a relatively novel approach of using 

an annotated dataset as a reference and transferring the annotation labels on the query 

datasets. This technique, introduced in the v3 version of Seurat, offers a data-driven 

approach to clustering and annotation (Stuart et al., 2019). 

For the label transfer to be accurate, a suitable annotated reference dataset needs to be 

used. We used the single-nucleus dataset from the original SPLiT-seq manuscript, which 

was generated using the same protocol from the control mouse brain, after removing 

clusters of cells not present in the frontal lobe to increase specificity. The resulting 

annotated datasets are multi-dimensional hindering the conception of the underlying 

biology. After removing clusters of less than 100 cells, we performed dimensionality 

reduction using the UMAP algorithm to visualise cluster identities in a two-dimensional 

space (Figure 4.6). Cell identities are coloured on top of the visualisation and are not 

considered when calculating UMAP coordinates. Most cells that cluster together are also 

part of the same annotated cluster, confirming the success of the label transfer approach. 

A careful examination of the plots suggests that most of the cells identified are assigned 

to clusters of cortical neurons, while large clusters of medium spiny neurons are present, 

followed by clusters of migrating interneurons. Regarding the glial cells, astrocytes are 

the most abundant, while oligodendrocytes are also identified in large numbers. Smaller 

https://sciwheel.com/work/citation?ids=7035390&pre=&suf=&sa=0&dbf=0
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clusters of oligodendrocyte precursor cells are also visible. Microglia clusters could be 

identified in only the last two time points (120 dpi, end-stage), while for the other datasets 

they have not passed the filtering criteria of consisting of more than 100 cells and have 

been excluded. Other small clusters of cells are also visible in some datasets, including 

endothelial cells, ependymal cells, and vascular and leptomeningeal cells. 

 

a 
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Figure 4.6: Annotated UMAP plots of the 5 datasets show the relationship of the 26 identified 

clusters in low-dimensional space. Label transfer and filtering were performed for each dataset 

separately. After dimensionality reduction using the UMAP algorithm, cell clusters can be visualised in the 

two-dimensional space. Each plot contains cells from one time point (a: 20 dpi, b: 40 dpi, c: 80 dpi, d: 120 

dpi, e: end-stage) and all three experimental groups (RML, PBS, CD1). Each dot on the plot represents a 

d 

e 
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single cell, with its location defined by the two UMAP coordinates. Cells that cluster together share more 

similar gene expression patterns than cells further apart. Cell identities are coloured on top of the 

visualisation and are not considered during the calculation of UMAP coordinates. Most cells that cluster 

together are also part of the same annotated cluster, confirming the success of the label transfer approach. 

Cluster names consist of a number, which was maintained from the original dataset as a reference system, 

then the cluster name (e.g., Migrating Int, OPC, CTX), and an optional anatomical location (e.g., PyrL5) 

and/or an optional cluster-specific transcription factor (e.g., Slc6a13, Rorb). Pyr: pyramidal; L2/L3/L4 etc.: 

layer 2,3,4 etc.; CTX: cortex/cortical; CLAU: claustrum; Int: interneurons; MOL: mature oligodendrocytes; 

OPC: oligodendrocyte precursor cells; VLMC: vascular and leptomeningeal cells; Astro: astrocytes. 

While these visualisations are helpful for giving an overview of the datasets, they include 

cells from all experimental groups drawn together on a single plot, making group-wise 

comparisons impossible. To get an estimated visual overview of the impact of the disease 

on different cell types we used the same dimensionality reduction technique, but split 

each UMAP plot into three, one plot for each experimental group. Upon careful 

examination of the resulting plots, we can identify some interesting shifts in gene 

expression patterns of specific cell types: the first three time points do not show any 

striking differences, however, there are notable differences in the astrocytic population at 

120 dpi, and at the astrocytes (clusters 66 and 68), the medium spiny neurons (cluster 

4), and some subpopulations of cortical neurons (clusters 7 and 9) at the end-stage 

(Figure 4.7). There might be, of course, more subtle changes, but these will be identified 

by the gene expression analyses that will follow. 



133 
 

 

 

a 

b 



134 
 

 

 

c 

d 



135 
 

 

Figure 4.7: UMAP plots split by experimental group suggest transcriptomic differences in neuronal 

and astrocytic populations at the last two time points. The first three time points (a to c) do not show 

pronounced differences between the CD1 and RML plots. In (d) there is an observable shift of astrocytic 

populations (clusters 68 and 69; indicated by arrow F). In (e) there is a more pronounced shift of astrocytic 

populations (clusters 68 and 69; indicated by arrows G and H), while there are differences in the medium 

spiny neurons (cluster 4; indicated by arrow I) and subpopulations of cortical neurons (clusters 7 and 9; 

indicated by arrow J). Abbreviations are the same as in Figure 4.6. 

In total, 26 different cell populations that passed filtering criteria were annotated. 

Reassuringly, the number of cells in each population was similar across the 5 datasets 

(Table 5). We kept the numbering system of those populations as the original dataset 

published by Rosenberg et al. to facilitate comparisons between time points and 

experiments by having a common reference. The numbers are not continuous, since 

some of the original clusters were not relevant to the mouse frontal lobe and have been 

excluded before label transfer. Full cluster names consist of a number, which was 

maintained from the original dataset as a reference system, then the cluster name (e.g., 

Migrating Int, OPC, CTX), and an optional anatomical location (e.g., PyrL5) and/or an 

optional cluster-specific transcription factor (e.g., Slc6a13, Rorb). Other abbreviations 

include: Pyr: pyramidal; L2/L3/L4 etc.: layer 2,3,4 etc.; CTX: cortex/cortical; CLAU: 

e 
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claustrum; Int: interneurons; MOL: mature oligodendrocytes; OPC: oligodendrocyte 

precursor cells; VLMC: vascular and leptomeningeal cells; Astro: astrocytes. Cluster 

names and numbers will be used interchangeably, and their relationship will be constant 

as described in Table 5 throughout the whole chapter and the discussion that follows. 

More cluster metrics can be found in Supplementary Table 4. 

Cluster 
number 

Cluster name Cluster group Number of cells 

20 
dpi 

40 
dpi 

80 dpi 120 
dpi 

end-
stage 

4 Medium Spiny Neurons Medium Spiny 
Neurons 

9546 9977 11238 9111 14999 

7 CTX PyrL2/L3 Met Cortical neurons 1590 1165 1776 1561 816 

9 CTX PyrL2/L3/L4 Mef2c Cortical neurons 7758 7016 7424 6406 8786 

10 CTX PyrL4 Rorb Cortical neurons 581 425 212 471 667 

11 CTX PyrL4/L5 Cortical neurons 3033 2558 2349 2478 3131 

12 CTX PyrL5 Itgb3 Cortical neurons 124 N/A 116 119 113 

13 CTX PyrL5 Fezf2 Cortical neurons 413 293 395 371 412 

14 CTX PyrL6a Cortical neurons 2288 1827 1960 2228 3034 

15 CTX PyrL5/L6 Sulf1 Cortical neurons 405 392 451 450 644 

17 CTX PyrL6 Cortical neurons 3401 2920 3094 3126 3988 

18 CLAU Pyr Cortical neurons 225 184 342 235 470 

44 Migrating Int Lhx6 Migrating 
interneurons 

2780 2198 2679 2447 3375 

46 Migrating Int Cpa6 Migrating 
interneurons 

3437 1052 492 880 347 

47 Migrating Int Foxp2 Migrating 
interneurons 

409 267 431 408 675 

48 Migrating Int Pbx3 Migrating 
interneurons 

356 200 N/A N/A 114 

49 Migrating Int Lgr6 Migrating 
interneurons 

433 162 N/A 155 104 

50 Migrating Int Adarb2 Migrating 
interneurons 

598 409 564 622 736 

56 Oligo MFOL1 Oligodendrocytes N/A 188 N/A N/A N/A 

57 Oligo MOL Oligodendrocytes 1268 1539 885 918 1752 

61 OPC Oligodendrocyte 
precursors 

641 460 570 457 708 

63 Microglia Immune N/A N/A N/A 171 238 

64 Endothelia Vascular 229 152 118 N/A 152 
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66 VLMC Slc6a13 VLMC 333 262 178 210 242 

68 Astro Slc7a10 Astrocytes 122 119 104 138 130 

69 Astro Prdm16 Astrocytes 2781 1917 2127 2134 3103 

72 Ependyma Ependymal N/A 157 112 N/A 120 

Table 5: Number of cells identified per time point dataset across the 26 clusters. A similar number of 

cells were identified in each cluster across the different time points, highlighting the advantage and 

reproducibility of the label transfer approach. Cluster numbers are included as a reference system and will 

correspond to the same cluster name across the chapter and discussion. N/A values represent clusters that 

did not pass filtering as they had less than 100 cells, but not necessarily zero. 

We ensured that label transfer was successful by visualising the expression of a set of 

marker genes in each cluster. We selected a set of genes from the available literature, 

including the adolescent mouse brain atlas from the Linnarsson Lab and the SPLiT-seq 

manuscript (Rosenberg et al., 2018; Zeisel et al., 2018). The expression of these marker 

genes corroborated cluster identities. 

 

a (20 dpi) 

https://sciwheel.com/work/citation?ids=5639332,4954361&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0


138 
 

 

 

b (40 dpi) 

c (80 dpi) 
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d (120 dpi) 
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Figure 4.8: The expression of known marker genes corroborates cluster identities. Violin plots of the 

expression of known marker genes across the identified clusters in 5 time points. Marker genes used: Gria1 

and Snhg11 for neurons; Mbp and Plp1 for oligodendrocytes; Vcan for oligodendrocyte precursor cells; 

Dock8 for microglia; Flt1 for endothelia; Slc1a2 and Plpp3 for astrocytes; Dnah11 for Ependyma. The 

expression level corresponds to the sctransform normalised expression values of the dataset. 

Cell-type proportions – Selective toxicity 

Having annotated the datasets, we then quantified differences between cell-type 

proportions to investigate the effect of prion disease on the abundance of different cell 

types and investigate selective cell toxicity. We grouped the cell clusters in 10 groups 

(migrating interneurons, cortical neurons, medium spiny neurons, astrocytes, OPCs, 

oligodendrocytes, VLMCs, ependymal, immune, and vascular cells) and quantified the 

relative proportions in all experimental groups across the 5 time points. A visual 

comparison between the CD1 and RML stacked bar plots suggests an increase of 

astrocytic populations at the 120 dpi time point and a decrease of cortical neurons and 

e (end-stage) 
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migrating interneurons, and an increase of medium spiny neurons and immune 

populations at the end-stage (Figure 4.9). 

 

Figure 4.9: Cell-type proportions of the three experimental groups across the 5 time points. A visual 

examination of the plots suggests an increase of astrocytic populations at the 120 dpi time point and a 

decrease of cortical neurons and migrating interneurons, and an increase of medium spiny neurons and 

immune populations at the end-stage when CD1 and RML groups are compared. Proportions are calculated 

based on the total number of cells in each time point separately. The proportions of the PBS group are 

more variable, probably owing to the smaller number of total cells, and appear to be visually different in the 
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first three time points, while it mirrors more closely the CD1 group for the 120 dpi time point, and the RML 

group at the end-stage. Ependymal, vascular and VLMC cells are identified in minute proportions and are 

not clearly visible on the plots. 

While a simple calculation of the cell-type proportions can give a rough estimation of the 

population shifts, the results are inherently biased due to sampling differences and 

differences in the total number of cells identified, as it is highlighted by the variation that 

the PBS group exhibits. To begin to investigate the selective toxicity question, a more 

statistically rigorous approach was considered to be necessary. Although a plethora of 

bioinformatics packages have increasingly become available, we decided to employ a 

simple tool that is based on permutation testing and evaluates the null hypothesis that the 

difference in cell proportions for each cluster between the two conditions is a 

consequence of random sampling a subset of cells in each condition. This method, called 

scProportionTest, produced interesting results, especially for the first and last time points. 

At 20 dpi the analysis suggested a decrease of migrating interneurons, VLMCs, 

astrocytes, and OPCs and an increase in medium spiny neurons; at 40 dpi there was a 

small increase in the numbers of oligodendrocytes; at 80 dpi there were no changes 

reported; at 120 dpi an increase of astrocytes and microglia is observed; finally, at the 

end-stage, we observed a decrease in VLMCs and vascular cells, OPCs and mature 

oligodendrocytes, and migrating interneurons, while there was a small increase of 

medium spiny neurons and a considerable increase of microglia populations (Figure 

4.10). Interestingly, some aspects of the 20 dpi plot are also present in the end-stage plot, 

i.e., the decrease in migrating interneurons, VLMCs, OPCs and the decrease in the 

medium spiny neurons. In addition, a more abundant immune population is suggested by 

the last two time points. Some of those findings are in accordance with our current 

understanding of prion disease pathophysiology (such as an increase of immune 

populations during the later stages of the disease), while others come in strong contrast 

(such as the increase of neuronal populations at the end-stage). 
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Figure 4.10: A permutation test identified differences in cell-type abundance, which were more 

pronounced at the first and last time points. At 20 dpi the analysis suggested a decrease of migrating 

interneurons, VLMCs, astrocytes, and OPCs and an increase in medium spiny neurons; at 40 dpi there was 

a small increase in the numbers of oligodendrocytes; at 80 dpi there were no changes reported; at 120 dpi 
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an increase of astrocytes and microglia is observed; finally, at the end-stage, we observed a decrease in 

VLMCs and vascular cells, OPCs and mature oligodendrocytes, and migrating interneurons, while there 

was a small increase of medium spiny neurons and a considerable increase of microglial populations. 

Dashed lines indicate the cut-off values for the difference in the cell numbers to be acceptable; the threshold 

has been set to an absolute log2-fold difference greater than 0.26, which corresponds to a 20% difference 

in cell numbers. Dots represent the mean of the calculated cell number differences. Vertical lines represent 

the 95% confidence interval of the mean. Coloured dots represent acceptable cell number differences, 

where both the magnitude of change criterion has been met and the calculated false discovery rate is lower 

than 0.05. Grey dots represent non-significant results. N.s: non-significant; FDR: False discovery rate; abs: 

absolute. For a detailed explanation of the methods used refer to the methodology section 1.3.4. 

The existence of the additional PBS inoculated group allowed us to assess the efficacy 

of the permutation test approach by comparing the cell numbers between the two control 

groups (CD1 vs PBS). The PBS-inoculated mouse samples were used as the reference 

baseline and the comparison identified an increase in multiple populations at the 20 dpi 

time point (oligodendrocytes, OPCs, migrating interneurons, vascular and VLMCs, and 

astrocytes) and a decrease in the number of medium spiny neurons; a small decrease in 

cortical neurons and a small increase in medium spiny neurons, OPCs, astrocytes and 

ependymal cells at 40 dpi; an increase in medium spiny neurons at 80 dpi; no differences 

at 120 dpi; and a decrease in ependymal cells and medium spiny neurons, and an 

increase in migrating interneurons and OPCs at the end-stage (Figure 4.11). The shift in 

population abundance during the first time point could be relevant to the introduction of 

external brain homogenate eliciting an immune response, as the data corroborates the 

existence of neuroinflammation (higher abundance of OPCs, oligodendrocytes and 

astrocytes; differences in vascular and leptomeningeal cells), while only small changes 

are suggested for the other four time points. 
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Figure 4.11: A permutation test between the two control groups identified changes in cell-type 

abundance, especially at the first time point. The comparison between CD1 and PBS control groups 

identified an increase in multiple populations at the 20 dpi time point (oligodendrocytes, OPCs, migrating 

interneurons, vascular and VLMCs, and astrocytes) and a decrease in the number of medium spiny 
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neurons; a small decrease in cortical neurons and a small increase in medium spiny neurons, OPCs, 

astrocytes and ependymal cells at 40 dpi; an increase in medium spiny neurons at 80 dpi; no differences 

at 120 dpi; and a decrease in ependymal cells and medium spiny neurons, and an increase in migrating 

interneurons and OPCs at the end-stage. The PBS group is used as the baseline reference. Plot elements 

are the same as described in Figure 4.10. 

We then focused on the most diverse cell type and the most relevant to 

neurodegenerative diseases, neurons. We subset our datasets to include only the 

migrating interneurons, cortical neurons and medium spiny neurons and performed the 

same permutation tests for each neuronal cluster separately. We observed that most of 

the neuronal populations seem to decrease in numbers across all time points, while the 

medium spiny neurons were more abundant in the first and last time points, as expected 

by the results of the previous plots. In accordance with the previous findings, most of the 

differences in neuronal populations are found at the first and last time points, 20 dpi and 

end-stage (Figure 4.12). Clusters of cortical neurons 10 and 13 exhibit a fluctuating 

pattern, where they are found to be more abundant in some time points and less in others. 

Migrating interneurons cluster 46 is shown to be less abundant in all time points, except 

from 80 dpi. Migrating interneurons cluster 50 and claustrum neurons of cluster 18 are 

less abundant during the first and last time points. 
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Figure 4.12: A permutation test of the neuronal populations suggests a reduction of cell numbers 

for most of the neuronal clusters, which is more pronounced at the first and last time points. Clusters 

of cortical neurons 10 and 13 exhibit a fluctuating pattern, where they are found to be more abundant in 

some time points and less in others. Migrating interneurons cluster 46 is shown to be less abundant in all 
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time points, except from 80 dpi. Migrating interneurons cluster 50 and claustrum neurons of cluster 18 are 

less abundant during the first and last time points. Plot elements are the same as described in Figure 4.10. 

Overall, while the permutation tests suggest that there are differences in the abundance 

of some cell types, these are of small magnitude and with large confidence intervals. 

Some of the evidence is in accordance with known pathophysiological changes in prion 

diseases, mainly the increase of immune and astrocyte populations during the later 

stages of the disease, while we could not observe consistent differences in the numbers 

of different clusters of neurons, even though a trend towards a lower abundance of 

specific populations can be identified especially at the 20 dpi and end-stage. No 

significant claims regarding selective toxicity can be made based on our findings. 

Differential gene expression analysis 

We performed a differential gene expression analysis to identify transcriptomic 

differences between cell clusters and investigate the fluctuation of the transcriptomic 

landscape that follows disease progression. 

We first started by comparing the two sets of controls, each cluster of the CD1 group with 

the same cluster of the PBS group, to identify differences in gene expression that can be 

attributed to technical noise or are not specific to prion infection. From the 331 genes 

identified with an adjusted p-value less than 0.05, the vast majority were only found to be 

differentially expressed (DE) in one cluster of one time point and were therefore not 

excluded from the analysis (Supplementary Figure 7 and External Supplementary Table 

1). However, there was a small set of genes that were found to be DE in more clusters 

and across many time points, their lack of specificity indicating that these genes were 

possible artefacts of the methodology. Setting a threshold of more than 5 occurrences 

allowed us to identify a set of 7 DE genes that were flagged for removal (Calm1, Cdk8, 

Cmss1, Malat1, mt-Rnr1, mt-Rnr2, and Rn18s). Their number of occurrences deviated 

substantially from 1 which was the case for the majority of genes, with Rn18s being 

identified 37 individual times (Calm1: 6 times, mt-Rnr1 and mt-Rnr2: 10 times, Malat1: 14 

times, Cmss1: 23 times, Cdk8: 31 times). The observation that most of those genes 

encode ribosomal RNAs or protein (Cmss1, Rn18s), are of mitochondrial origin (mt-Rnr1, 

mt-Rnr2), or are highly expressed in brain tissue (Malat1, Calm1) strengthens our 
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hypothesis that they are indeed methodological artefacts introduced due to their high 

abundance or due to library contamination from mitochondrial RNA. 

We then proceeded to compare the RML-prion brain homogenate inoculated group to the 

uninfected CD1 brain homogenate group to identify transcriptomic differences that are 

specific to prion disease. We identified approximately 8 thousand differentially expressed 

genes (DEGs) using the default settings of the FindMarkers function of Seurat (log2-fold 

change higher than 0.25, only testing genes that are expressed in at least 10% of cells in 

either group, using the Wilcoxon rank-sum test) (Table 6). These results were further 

filtered to keep DEGs with a Bonferroni-corrected p-value of less than 0.05. Finally, we 

removed the set of 7 spurious genes that were previously identified from the comparison 

between the two controls. This resulted in a total of 928 DEGs, most of those identified at 

the last time point, followed by the 120 and 20 dpi time points. A very low number of genes 

was identified for the 40 and 80 dpi time points. No bias was identified regarding the 

transcript lengths or chromosomes of the DEGs, and no outlier samples were found to 

drive the differences in gene expression (Supplementary Figure 8). External 

Supplementary Table 2 includes detailed information regarding all identified genes. 

Time 
point 

DEGs before 
filtering 

DEGs after p-value 
filtering 

DEGs after removal of spurious 
transcripts 

20 dpi 820 127 60 

40 dpi 979 22 6 

80 dpi 1091 12 5 

120 dpi 1876 228 174 

end-stage 3260 758 683 

Total 8026 1147 928 

Table 6: A comparison between the RML and CD1 groups identified 928 differentially expressed 

genes in total after filtering. Approximately 8 thousand genes were initially identified. These were filtered 

by adjusted p-value keeping the ones that do not pass the threshold of 0.05. The 7 flagged genes from the 

comparison between controls were then excluded from the analysis, resulting in the final number of 928 

genes in total. Most of the DEGs are identified at the disease end-stage. The 120 and 20 dpi time points 

follow in numbers, while only a handful of genes were identified for the 40 and 80 dpi time points. 

Before moving forward with the rest of the analysis we decided to employ a different 

methodology to assess the robustness of the differential gene expression analysis. We 

transformed the data to generate pseudo-bulk transcript counts by summing the identified 
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transcripts across cells of the same cluster and time point. This resulted in 5 datasets that 

resembled bulk sequencing experiments with 8 samples per experimental group (8 RML 

and 8 CD1 samples). We were then able to employ more traditional DE analysis tools, 

namely two pipelines, one based on the well-established DESeq2, and another based on 

the newer glmGamPoi. This approach allows us to include sample-to-sample 

heterogeneity information in the calculation of the relevant statistics, which is lost when 

using Seurat (Seurat and other single-cell specific tools treat each cell individually, 

regardless of the biological sample of origin). DESeq2 employs a different statistical test, 

the Wald test, for hypothesis testing when comparing the two groups, and the calculation 

of the false discovery rate (FDR) is done using the Benjamini–Hochberg procedure. 

glmGamPoi fits a Gamma-Poisson Generalised Linear Model on the data and employs 

quasi-likelihood ratio testing to identify differentially expressed genes. Overall, the use of 

a different methodology can contribute additional support regarding the validity of our 

results if the new data corroborates the previous findings. 

Both pseudo-bulk methods identified approximately 5 thousand DE genes in total, highly 

exceeding the number of genes identified by Seurat, even though pseudo-bulk 

approaches are considered more conservative. Reassuringly, the pattern of differential 

gene expression did follow previous findings, i.e., most of the DE genes were identified 

at the last two time points, with the end-stage having the highest number, then a smaller 

set of genes was reported to be DE at 20 dpi, while only a handful of genes were identified 

at 40 and 80 dpi (Table 7). 

Time point DEGs after p-
val. filtering 

(DESeq2) 

DEGs after removal 
of spurious 

transcripts (DESeq2) 

DEGs after p-
val. filtering 
(glmGamPoi) 

DEGs after removal of 
spurious transcripts 

(glmGamPoi) 

20 dpi 148 137 98 73 

40 dpi 2 2 3 3 

80 dpi 1 1 3 2 

120 dpi 598 560 359 316 

end-stage 4870 4811 4582 4517 

Total 5619 5511 5045 4911 

Table 7: A comparison between the RML and CD1 groups identified more than 5 thousand genes in 

total when using the pseudo-bulk approach. The number of DE genes reported by DESeq2 and 

glmGamPoi using a pseudo-bulk approach follows the same trend as the ones reported by Seurat: most 
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DE genes were identified at the last two time points, while a smaller number was reported for the 20 dpi 

time point. Just one or two genes were reported for the 40 and 80 dpi time points. The p-value filtering 

criterion was a BH-adjusted p-value of less than 0.05. Spurious transcripts refer to the set of 7 genes 

identified from the comparison of the two control groups. 

To visualise the number of DEGs across all time points we plotted heatmaps for each of 

the 3 DE analysis methods (Figure 4.13). The plots of the pseudo-bulk approaches 

(Figure 4.13b and Figure 4.13c) are more similar to each other, with most identified DE 

genes belonging to the same clusters. Clusters of cortical neurons 9, 14 and 17 show the 

highest number of DEGs, cluster 4 of medium spiny neurons is also shown to be 

dysregulated, astrocytes and to a lesser degree oligodendrocytes show a high number of 

DEGs, especially in the last two time points. When we compare the pseudo-bulk methods 

with Seurat, some overall trends seem to be characteristic for all three plots. Clusters of 

cortical neurons 9, 14, and 17 are shown to have a high number of DEGs, while Seurat 

also identified the additional clusters 7, 10, 11 and 14 with a high number of DEGs at the 

end-stage. Perturbations in astrocytes, mature oligodendrocytes, and to a lesser degree 

oligodendrocyte precursor cells are also commonly identified, especially at the end-stage.  

Focusing on the 20 dpi time point only (so that the scale is shorter and small differences 

are more obvious), the 20 dpi signature of astrocytes and oligodendrocytes identified by 

Seurat is not identified when using the pseudo-bulk methods (Figure 4.13d). In contrast, 

the 20 dpi signature of cortical neurons does seem to be concordant, which is especially 

evident for clusters 7 and 11. Interestingly, cluster 9 is identified to have the highest 

number of DEGs by DESeq2 and a high number by glmGamPoi, however, the signature 

is not as pronounced when using Seurat for the analysis. Results are more ambiguous 

regarding the three clusters of migrating interneurons, where Seurat reports a low number 

of genes, while DESeq2 identified more DEGs for clusters 46 and 48, and glmGamPoi 

only for cluster 44. 
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Figure 4.13: Seurat and pseudo-bulk approaches based on DESeq2 and glmGamPoi identify the 

same patterns of gene expression across the 5 time points. (a) Heatmap of the number of DEGs 

identified in each time point (x-axis) and cluster (y-axis) when using Seurat for the DE analysis. (b) Heatmap 

of the number of DEGs identified in each time point and cluster when using pseudo-bulk data with DESeq2. 

(c) Heatmap of the number of DEGs identified in each time point and cluster when using pseudo-bulk data 

with glmGamPoi. The separate column on the right of each heatmap shows the number of cells that each 

cluster comprises. A visual comparison of the number of DEGs and cells of a cluster suggests that clusters 

with higher numbers of cells also tend to have higher numbers of DEGs. The counts of differentially 

expressed genes and the counts of the cells in each cluster use different scales, which are denoted using 

c 

d 
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two different colours. (d) Heatmap of the number of DEGs identified using the 3 different methods (x-axis), 

only for the 20 dpi time point. The information of this plot is included in plots a, b, and c, however, it is 

shown here using a different scale to allow easier visual comparison. 

Figure 4.13 also includes a small heatmap of the number of cells in each cluster. A visual 

comparison of the number of DEGs and cells in a cluster suggests that clusters with 

higher numbers of cells are also associated with a higher number of DEGs. This trend is 

especially evident when considering the pseudo-bulk methods, while it is not as 

pronounced for clusters 7, 10, 17, 57, and 69 when using Seurat. A further investigation 

of this relationship between DEGs and numbers of cells also confirmed a positive 

correlation between the two variables with correlation coefficients being 0.28 for Seurat, 

0.78 for DESeq2 and 0.78 for glmGamPoi (Supplementary Figure 9). This positive 

correlation is to be expected since having a larger sample allows the DE genes to pass 

the statistical thresholds and be included in the final results. It also highlights the fact that 

low numbers of DE genes in clusters with low numbers of cells can be attributed to 

shallower sampling and not a lack of differential expression. In our case, we are mostly 

concerned with tracking the dynamic changes of DE in the same clusters across different 

time points (which have similar numbers of cells as we have previously demonstrated). 

However, we do need to point out that we cannot make strong claims regarding the lack 

of DE in clusters with low numbers of cells. 

We then investigated the concordance between the genes identified by Seurat and the 

pseudobulk methods and found that the pseudo-bulk methods agreed with the results of 

Seurat more at the last two time points, while the agreement was lower for the 20 dpi time 

point (Figure 4.14). We did not consider the 40 and 80 dpi time points, as all three 

methods identified only a handful of genes for those. This higher replication by pseudo-

bulk methods of DEGs identified by Seurat could be attributed to the higher numbers of 

DEGs identified by both DESeq2 and glmGamPoi at 120 dpi and the end-stage, which 

were an order of magnitude more than the DEGs identified by Seurat. 
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Figure 4.14: Pseudo-bulk analysis methods show higher concordance with Seurat at the last two 

time points. The plot shows the proportion of the DEGs identified by Seurat that were also identified by 

glmGamPoi or DESeq2 in the same time point, or in the same time point and same cluster. glmGamPoi 

shows higher concordance with Seurat results than DESeq2 for the 20 dpi time point, while this is reversed 

for the 120 dpi and end-stage time point, where DESeq2 identified more of the DEGs identified by Seurat. 

For both 40 and 80 dpi time points, only a handful of genes were identified by any of the three approaches, 

so these proportions are not as relevant. 

Overall, a purely single-cell-based DE analysis based on Seurat Wilcoxon rank-sum test 

produced results that were partially concordant with pseudo-bulk approaches based on 

the DESeq2 Wald test and the glmGamPoi quasi-likelihood ratio test. All approaches 

produced a similar pattern of differential gene expression where less than a hundred 

genes were identified at the first time point (20 dpi), then practically no differential 

expression was evident at 40 and 80 dpi, followed by an increase of DE genes identified 

at 120 dpi, which was then amplified at the end-stage. While all tools identified a similar 

number of genes for the 20 dpi, Seurat was shown to be more stringent at the last two 

time points, identifying an order of magnitude fewer genes than the pseudo-bulk tools. 

Regarding the genes identified, the pseudo-bulk approaches identified a concordant 

perturbation signature in various clusters of neurons, while the astrocytic and 

oligodendrocyte signatures were not identified at 20 dpi. Most of the genes identified by 

Seurat were concordant with the pseudo-bulk dataset at the last two time points. Taking 
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all this information into account, we decided to proceed with the analysis focusing on the 

DE gene lists generated by Seurat, which was shown to be more stringent and more 

integrated into the analysis pipeline. However, the results from all these methods provided 

useful insight which will be invaluable in guiding us through further exploration of the data. 

Having the DE gene lists from all 5 time points, we proceeded with identifying common 

gene dysregulation patterns during the disease (Figure 4.15). One-third of the DEGs at 

20 dpi were unique to this time point. Interestingly, the other two-thirds of the DEGs, 25 

in total, were found to be dysregulated at 20 dpi, and then showed up again in our analysis 

at the last two time points (indicated by black arrows in Figure 4.15, Table 8). 

Approximately half of those were found to be DE again at 120 dpi and the end-stage, 

while the other half were only identified again at the end-stage. Moving on to the 120 dpi 

time point, 31 of those genes were uniquely DE during this time point only, while 93 

started being DE at 120 dpi and continued being DE at the end-stage. Finally, the end-

stage had the highest number of uniquely DE genes, 267 DEGs that were not reported at 

any other time point. Lists of all possible intersections are provided in External 

Supplementary Table 5. 
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Figure 4.15: The intersection of DEGs during the course of the disease reveals interesting patterns 

of gene expression perturbations. The UpSet plot offers an overview of the intersections between DE 

gene sets across all time points. The horizontal bar plot on the left shows the number of DEGs at each time 

point. The matrix in the centre-bottom of the plot shows all possible combinations of unique gene sets with 

at least one gene. Each set intersection is defined by vertical black lines that connect two or more dots, 

each dot representing the time point defined on the y-axis of the matrix. The bar plot on top of the matrix 

shows the number of members of each intersection defined in the matrix below (for example the second 

vertical bar indicates that the intersection between the 120 dpi gene set and the end-stage gene set consists 

of 93 genes). A set of 25 genes were found to be DE at the early and then the late stages of the disease 

(indicated by the black arrows). 13, 31 and 267 genes were only found to be DE at 20 dpi, 120 dpi and the 

end-stage, respectively. 93 genes were found to be DE at 120 dpi and then continued being DE at the end-

stage of the disease. 

Based on the gene set intersections and DE patterns, we separated the genes into two 

groups: the early/late set consisting of those genes that exhibit the DE pattern 20 dpi – 

120 dpi – end-stage or 20 dpi – end-stage, and the late set consisting of genes DE at 120 

dpi or end-stage or exhibiting the pattern 120 dpi – end-stage (Table 8 and Table 9). 

Importantly, these two groups do not intersect, i.e., genes that exhibit the early/late 

pattern will not be included in the set of late genes. 
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A consequent validation by RT-qPCR of the expression signature of 6 selected genes 

from the first set that were shown to be DE by Seurat and pseudo-bulk approaches 

(Ndst4, Gphn, Pde10a, Abi3bp, Il31ra, Auts2) confirmed a statistically significant 

differential expression in the early or late time points for 2 genes (Abi3bp, Auts2), while 4 

genes could not be validated (Supplementary Figure 10). Further validation of 5 genes 

from the late set (Apoe, Grin2a, Nrp1, Ptk2, Rph3a) confirmed a statistically significant 

differential expression in the late time points of 2 genes (Apoe, Grin2a) (Supplementary 

Figure 11). In both cases the starting material was bulk brain nuclei suspension, so the 

effect of specific cell populations could have been diluted in the bulk material. 

Early/late DEGs 

Abi3bp Gphn Lrrtm4 Pde10a Tafa1 

Adarb2 Grm8 Lsamp Pdzrn4 Tenm3 

Auts2 Il31ra Meg3 Phactr1 Tnik 

Dlgap1 Kcnb2 Mgat4c Prkg1 Xylt1 

Ext1 Kcnc2 Ndst4 Rora Zfp804b 
Table 8: A set of 25 genes were found to exhibit an early and late signature of differential expression. 

The DE pattern of these genes was either 20 dpi – 120 dpi – end-stage or 20 dpi – end-stage. These genes 

are not included in the late set. Double underlined are the genes with expression patterns validated by real-

time PCR analysis, while single underlined are the ones with expression patterns that could not be 

validated. 

Late DEGs 

4930488L21Rik Clstn2 Gabbr2 Lrfn5 Pde8b Slc24a2 

5031425E22Rik Clu Gabrb1 Lrrc4c Pdzrn3 Slc24a3 

9330162G02Rik Cntnap2 Gabrg3 Lrrk2 Penk Slc2a13 

A230001M10Rik Cntnap4 Galntl6 Lrrtm3 Pex5l Slc35f1 

A230057D06Rik Cntnap5c Garnl3 Luzp2 Phlpp1 Slc8a1 

A330015K06Rik Cobl Gjc3 Magi2 Pid1 Slco1c1 

Abca1 Col19a1 Gli2 Maml2 Pitpnc1 Slit2 

Ablim1 Crtac1 Gm16168 Maml3 Pitpnm2 Slit3 

Abr Csgalnact1 Gm26871 Mapk4 Pknox2 Smarca2 

Actb Csmd1 Gm28905 Mast3 Plcb1 Snap25 

Adcy2 Csmd2 Gm30382 Mast4 Plce1 Sorbs1 

Adgrb3 Cst3 Gm3764 Mbp Plp1 Sorbs2 

Adgrl3 Ctnna2 Gnao1 Mdga2 Plxdc2 Sorcs2 

Afap1 Ctnnd2 Gng12 Mef2c Plxna4 Sorcs3 

Aig1 D430041D05Rik Gpc5 Meis2 Ppm1l Sox2ot 
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Ak5 Dab1 Gpc6 Mertk Ppme1 Sox5 

Alk Dcc Gpm6a Mgat5 Ppp2r2b Sox6 

Ankrd33b Dclk1 Gpm6b Mical2 Prex2 Spock1 

Anks1b Ddx5 Gria4 Mir9-3hg Prickle1 Spock3 

Ano4 Dennd1a Grid2 Mir99ahg Prkag2 Srgap3 

Aopep Dgkb Grik3 Mobp Prkca Srrm2 

Apc Dgki Grin2a Msi2 Prkcb St18 

Apod Dip2a Grip1 Mtcl1 Psd3 St6galnac3 

Apoe Dlgap2 Grm1 Ncam1 Ptk2 St6galnac5 

Appl2 Dlx1as Grm3 Nckap5 Ptn Stox2 

Arhgef4 Dlx6os1 Grm5 Nebl Ptprj Stxbp6 

Arpp21 Dmd Hcn1 Nedd4l Ptprm Syt1 

Asap1 Dnajc6 Hdac4 Negr1 Ptprt Tenm4 

Asic2 Dnm3 Hdac9 Neto1 Qk Thrb 

Astn1 Dock10 Hecw1 Nfia R3hdm1 Thsd7b 

Astn2 Dock4 Hivep2 Nhsl1 R3hdm2 Tmeff2 

Atg4a Dpp10 Homer1 Nkain2 Rapgef2 Tmem108 

Atp1a2 Dscam Hs3st2 Nlgn1 Rarb Tmem132d 

Atp1b2 Dscaml1 Hs3st4 Nlk Rasal2 Tmem178 

Atp2b2 Dst Hs6st3 Nol4 Rasgrf1 Tmtc1 

Atp8a2 Dtna Hsp90aa1 Nos1ap Rbfox1 Tmtc2 

Atrnl1 Edil3 Hspa12a Npas3 Rbms3 Tnr 

Atxn1 Elavl2 Htr2c Npsr1 Rfx3 Tox 

B3galt1 Eml5 Igfbp5 Nrg1 Rgs20 Trf 

Brinp3 Enox1 Igsf21 Nrg3 Rgs6 Trhde 

C4b Enpp2 Igsf9b Nrp1 Rgs7 Trim9 

Cacna1a Epha6 Iqgap2 Nrxn1 Rgs9 Trpm3 

Cacna1e Ephb1 Iqsec1 Ntm Rims1 Trps1 

Cacna2d1 Epn2 Jazf1 Ntrk2 Rnf220 Tshz2 

Cacna2d3 Eps8 Kcnab1 Ntrk3 Robo1 Tspan5 

Cacnb2 Erbb4 Kcnd2 Numb Rock2 Tspan7 

Cacng3 Etl4 Kcnd3 Nwd2 Rorb Ugt8a 

Cadm1 Exph5 Kcnh1 Nxph1 Rph3a Unc13a 

Cadm2 Fam13c Kcnh7 Osbp2 Rps6ka2 Unc13c 

Caln1 Fam155a Kcnip1 Osbpl8 Ryr2 Unc5c 

Camk1d Fam189a1 Kcnip4 Otud7a Scd2 Unc5d 

Camk2a Fam20a Kcnj3 Oxr1 Scube1 Unc80 

Camta1 Fars2 Kcnj6 Pacrg Sema5a Utrn 

Cap2 Fat3 Kcnma1 Pak5 Sema6d Vav3 

Car10 Fgf12 Kcnmb2 Pard3 Septin7 Vmp1 

Cdc42bpa Fgf13 Kcnn2 Pbx1 Setbp1 Vsnl1 
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Cdh12 Fgf14 Kcnq3 Pcdh11x Sgcd Wdr17 

Cdh13 Fgfr2 Kctd16 Pcdh7 Sgcz Xist 

Cdh18 Fhod3 Kirrel3 Pcsk2 Sgip1 Ypel2 

Cdh20 Fmn1 Ldb2 Pde1a Shisa6 Zbtb20 

Cdh4 Fnbp1 Ldlrad4 Pde4a Shisa9 Zdhhc14 

Cdyl2 Frmd4a Lhfpl3 Pde4b Shtn1 Zeb1 

Cemip Frmd5 Lingo1 Pde4d Sik2 Zfp385b 

Chrm2 Frmpd4 Lingo2 Pde7b Sipa1l1 Zfp536 

Chsy3 Fstl4 Lrfn2 Pde8a Slc1a2 Zfp804a 

     Zswim6 
Table 9: A set of 391 genes were identified to be DE at the last two time points of our experiment. 

These genes were DE at 120 dpi only, at the end-stage only, or both at 120 dpi and end-stage. Genes that 

belong to the early/late set are not included in this set. Double underlined are the genes with expression 

patterns validated by real-time PCR analysis, while single underlined are the ones with expression patterns 

that could not be validated. 

Enrichment analyses 

A common approach to analysing gene expression profiles in disease is to identify 

interesting biological functions of gene sets and select gene-members of interest. One of 

the ways to uncover perturbed biological processes based on the DE gene lists is to 

perform enrichment analyses. Here we selected two well-documented and long-standing 

methodologies, namely the over-representation analysis (ORA) and the gene-set 

enrichment analysis (GSEA). 

The ORA is a widely used approach to determine if known biological processes or 

functions are over-represented in an experimentally derived gene list (Boyle et al., 2004). 

It can identify groups of interesting genes when the differential expression is substantial, 

however it can miss subtle signatures with small differences in expression that are 

evidenced in a coordinated way in a set of related genes. While the ORA uses only the 

set of DEGs, an alternative approach, the GSEA, can be used with all genes, even the 

ones with slight changes in expression. This allows the method to identify situations 

where all genes in a predefined set change in small but coordinated ways (Subramanian 

et al., 2005). 

In both cases, the genes need to be mapped to pre-defined gene sets. For our analysis, 

we used the Gene Ontology (GO) classification which defines concepts and classes to 

https://sciwheel.com/work/citation?ids=956080&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=49078&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=49078&pre=&suf=&sa=0&dbf=0
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describe gene functions and the relationship between them (Ashburner et al., 2000). GO 

classifies genes based on the following three aspects: Molecular Function (MF), based 

on the molecular activity of gene products, Biological Process (BP), based on larger 

processes and pathways consisting of multiple gene products, and Cellular Component 

(CC), based on the cellular location where a gene product is active. 

We used the DEGs from Seurat with clusterProfiler, a utility that facilitates enrichment 

analyses, to uncover perturbed biological functions and classify them based on the BP, 

CC, and MF systems. The ORA was performed for each cluster individually and identified 

enriched pathways at the 20 dpi, 120 dpi and end-stage time points (Figure 4.16). All GO 

terms of the 20 dpi time point were associated with only one cluster —cluster 11 of cortical 

neurons— which was also the cluster with the highest number of DEGs (Figure 4.16a). 

The BP classification identified terms related to the metabolism of glycosylated proteins, 

while the MF classification included relevant functions of transferases in general, 

including enzymes that direct oligosaccharide processing. No enriched terms were 

identified for the CC classification. No enrichment was observed for the 40 dpi and 80 dpi 

time points since the number of DEGs was very low. Cluster 69 of astrocytes was the 

only cluster with enriched GO terms at 120 dpi (Figure 4.16b). The BP and CC 

classifications pointed to synaptic dysregulation, especially of the glutamatergic system, 

while the MF classification identified perturbations in cell adhesion and regulation of 

nucleoside-triphosphatases. A plethora of GO terms was found to be enriched at the end-

stage, involving most clusters of neurons, oligodendrocytes, OPCs, and astrocytes 

(Figure 4.16c). The biological processes identified suggest a global dysregulation of 

synaptic function across all cell types; the “synapse organization” pathway was the most 

prevalent in all clusters, while more than 10 synapse-related pathways were dysregulated 

in different degrees. We attempted to validate these findings by performing real-time 

quantitative PCR on bulk brain nuclei suspensions and could identify 2 genes (Apoe and 

Grin2a) that showed statistically significant differential expression in the last time point 

out of a selection of 5 assayed genes involved in the synapse organisation pathway 

(Apoe, Grin2a, Nrp1, Ptk2, Rph3a) (Supplementary Figure 11). Interestingly, the 

migrating interneurons showed a diverging dysregulation profile, with most of the 

dysregulated terms being relevant to development and differentiation. Additional terms 

https://sciwheel.com/work/citation?ids=48995&pre=&suf=&sa=0&dbf=0
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were identified for Oligodendrocytes and OPCs relevant to myelination, axon 

ensheathment and cell adhesion. A trend was also evident regarding the CC 

classification, which recapitulated the BP pathways and identified the synapse as the 

location of the perturbations for most cell clusters, except the migrating interneurons 

which had lower associated p-values. The terms identified by the MF classification were 

not as universal and included fewer genes with lower p-values. Of note are the terms 

relevant to cell adhesion and syntaxin binding identified in the OPC cluster, and ion 

regulation, voltage-gated channels, and phosphodiesterase activity identified in clusters 

of cortical neurons. External Supplementary Table 6 includes all identified GO terms of 

the ORA that passed the filtering criteria. 
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Figure 4.16: An over-representation analysis identified enriched GO terms at 20 dpi, 120 dpi and 

end-stage and global synaptic perturbations during the late stages of the disease. We used 

clusterProfiler to uncover perturbed biological functions and classify them based on the BP, CC, and MF 

systems. The ORA was performed for each cluster individually and identified enriched pathways at the 20 

dpi (a), 120 dpi (b) and end-stage time points (c). (a) All GO terms of the 20 dpi time point were associated 

with cluster 11 of cortical neurons. The BP classification identified terms related to the metabolism of 

glycosylated proteins, while the MF classification included functions of transferases in general, including 

enzymes that direct oligosaccharide processing. No enriched terms were identified for the CC classification. 

(b) Cluster 69 of astrocytes was the only cluster with enriched GO terms at 120 dpi. The BP and CC 
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classifications pointed to synaptic dysregulation, especially of the glutamatergic system, while the MF 

classification identified perturbations in cell adhesion and regulation of nucleoside-triphosphatases. (c) A 

plethora of GO terms was found to be enriched at the end-stage, involving most clusters of neurons, 

oligodendrocytes, OPCs, and astrocytes. The biological processes identified suggest a global dysregulation 

of synaptic function across all cell types. The migrating interneurons showed a diverging dysregulation 

profile, with most of the dysregulated terms being relevant to development and differentiation. Additional 

terms were identified for Oligodendrocytes and OPCs relevant to myelination, axon ensheathment and cell 

adhesion. A universal trend was also evident regarding the CC classification, which recapitulated the BP 

pathways and identified the synapse as the location of the perturbations for most cell clusters, except the 

migrating interneurons which had lower associated p-values. The terms identified by the MF classification 

were not as universal and included fewer genes with lower p-values. Of note are the terms relevant to cell 

adhesion and syntaxin binding identified in the OPC cluster, and ion regulation, voltage-gated channels, 

and phosphodiesterase activity identified in clusters of cortical neurons. No enrichment was observed for 

the 40 dpi and 80 dpi time points. Circle size corresponds to the gene ratio (the ratio of the intersection of 

DE genes in our data with the GO gene set over the intersection of DE genes in our data with all the genes 

of the GO collection). The colour of the circles corresponds to the Benjamini-Hochberg adjusted p-value. 

Missing combinations of time points and classifications mean that no enriched pathways were identified (20 

dpi – CC, all classifications for 40 and 80 dpi). 

The GSEA is a method that determines whether a pre-defined gene set is differentially 

enriched between two biological states, in our case disease and controls. The GSEA 

calculates the enrichment statistic by walking down a ranked list of genes and increasing 

a running-sum statistic when a gene is in the gene set and decreasing it when it is not. It 

can identify smaller biological differences as it compares the expression of all genes 

sequenced and does not rely on arbitrary criteria of differential expression. We used 

clusterProfiler to perform a GSEA across all clusters at each time point and identify 

globally affected biological processes. We observed a global downregulation of all 

identified GO gene sets across all time points at 20, 80, 120 dpi and end-stage, while 

there were no enriched terms at 40 dpi (Figure 4.17). The analysis identified synaptic and 

cell adhesion dysregulation as early as the 20 dpi (Figure 4.17a - BP) and localisation of 

gene products in the synapses and ion channel complexes (Figure 4.17a - CC). No 

enriched gene sets were identified for the 40 dpi time point, which was in agreement with 

the previous ORA. In contrast with previous results, the GSEA did identify synaptic 

perturbations at the 80 dpi time point, possibly due to the higher sensitivity of the analysis 

(Figure 4.17b). The same pathways relevant to synaptic function and cell adhesion were 
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also found to be dysregulated at the last two time points (Figure 4.17 c and d). The MF 

classification corroborated the results of the ORA, identifying perturbations in systems of 

ion homeostasis. 
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Figure 4.17: A gene set enrichment analysis suggests global downregulation of all identified GO 

gene sets across all time points at 20, 80, 120 dpi and end-stage, while there were no enriched terms 

at 40 dpi. The ridge plots show the distribution of the expression of genes (x-axis) associated with a 

particular GO term (y-axis). Negative values of the enrichment distribution signify a downregulation of 

associated genes. The analysis identified synaptic and cell adhesion dysregulation as early as the 20 dpi 

(a – BP), and localisation of gene products in the synapses and ion channel complexes (a - CC). (b) 

Synaptic perturbations were identified as early as the 80 dpi time point, possibly due to the higher sensitivity 

of the analysis. (c and d) Similar pathways relevant to synaptic function and cell adhesion were also found 

to be dysregulated at the last two time points. The MF classification corroborated the results of the ORA, 

identifying perturbations in systems of ion homeostasis. No enriched gene sets were identified for the 40 

dpi time point. The colour of each ridge plot represents the BH-adjusted p-value. 

A close examination of the previous plots (Figure 4.17) revealed gene sets that were 

dysregulated in more than one time point. Since the ridge plots allow us to track the 

magnitude of expression of gene sets, we investigated whether there were gene sets that 
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become increasingly dysregulated following disease progression. We highlight 8 

pathways from the BP classification and 2 pathways from the CC and MF classifications 

that showed progressive dysregulation, with gene expression becoming increasingly 

downregulated approaching the disease end-stage (Figure 4.18). Focusing on the BP 

classification (Figure 4.18a), synapse assembly and organisation pathways, also 

underlined by previous analyses, were found to be progressively downregulated. The 

same trend followed the cell adhesion, cell junction and cation transmembrane transport 

gene sets. Interestingly, a similar pattern was observed for some of those gene sets, 

where there was enrichment at 20 dpi, which was followed by no enrichment at 40 dpi, 

then the gene set was enriched again at 80 dpi with an enrichment distribution similar to 

that of the 20 dpi time point before the distribution shifted to the left at 120 dpi and even 

further at the end-stage. Shifting our focus to the CC classification (Figure 4.18b), we 

highlight two closely related gene sets relevant to the potassium channel complex that 

exhibited the same interesting pattern of progressive downregulation, which was even 

more substantial than the previous examples. Finally, we highlight two gene sets of the 

MF classification (cell adhesion molecule binding and channel regulator activity) which 

showed progressive downregulation at the later time points only (Figure 4.18c). 
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Figure 4.18: Synapse, cell junction, cell adhesion, and ion homeostasis GO gene sets exhibited 

gradual dysregulation that follows disease progression. Combining the ridge plots from multiple time 

points in a single plot allows us to visualise the gradual downregulation of specific gene sets using the (a) 

BP, (b) CC, and (c) MF classification. (a) Synapse assembly and organisation pathways, also underlined 

by previous analyses, were found to be progressively downregulated. The same trend followed the cell 

adhesion, cell junction and cation transmembrane transport gene sets. Interestingly, a similar pattern was 

observed for some of those gene sets, where there was enrichment at 20 dpi, which was followed by no 

enrichment at 40 dpi, then the gene set was enriched again at 80 dpi with an enrichment distribution similar 

c 
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to that of the 20 dpi time point before the distribution shifted to the left at 120 dpi and even further at the 

end-stage. (b) Two closely related gene sets relevant to the potassium channel complex exhibited the same 

interesting pattern of progressive downregulation under the CC classification. (c) Two gene sets of the MF 

classification showed progressive downregulation at the later time points only. Each plot represents a single 

GO term. The x-axis represents disease progression (left to right). Time points without plots indicate that 

the specific GO term was not enriched at that specific time point. 

Overall, gene enrichment analyses allowed us to get an overview of dysregulated 

biological processes, as well as their cellular location and associated molecular functions. 

Initially, an over-representation analysis identified a global dysregulation of synaptic 

pathways, especially at the later time points. Cell adhesion and myelination pathways 

were found to be dysregulated in mature oligodendrocytes and oligodendrocyte precursor 

cells. In addition, we identified dysregulation in systems responsible for the homeostasis 

and transport of ions. The subsequent gene set enrichment analysis strengthened these 

findings and suggested synaptic dysregulation as early as 80 dpi. Importantly, the data 

suggest the existence of an early/late dysregulation signature that is manifested by 

enriched gene sets at 20 dpi, then disappears at 40 dpi, and then re-emerges at 80 or 

120 dpi and becomes stronger at the end-stage. 

The differential expression patterns and the enrichment analyses suggest a diverging 

transcriptomics profile between clusters of neurons, oligodendrocytes, and astrocytes. 

The following three sections will focus exclusively on these three broad cell types, aiming 

to dissect the transcriptomics of each population more finely. 

4.2.5 Transcriptomics of neurons 

Neurons represented the largest identified population in all our datasets, while they were 

also associated with the highest number of DEGs. Given that prion disease is a 

neurodegenerative disorder, we decided to first focus on the transcriptomics of neurons. 

Based on the previous data, we decided to investigate the direction of differential 

expression of neuronal genes. Heatmap plots corroborated the findings of the enrichment 

analyses and suggested that most DEGs of neuronal clusters were, indeed, 

downregulated in disease (Figure 4.19). Starting at 20 dpi, we observed a diffuse pattern 

of differential expression characterised by small numbers of DEGs without obvious 
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polarisation between up and downregulation in all neuronal clusters, except cortical 

neurons cluster 11, which showed a higher number of downregulated genes. As 

previously underlined, the 40 and 80 dpi time points had very small numbers of DEGs. 

Moving on to the 120 dpi time point, we saw an increase of downregulated DEGs, while 

the numbers of the upregulated DEGs remained low. Finally, at the end-stage, we 

observed a jump in the numbers of downregulated DEGs accompanied by a minute 

increase of upregulated genes. This discrepancy was so pronounced that for some 

clusters the numbers of downregulated genes were more than ten times higher than those 

of the upregulated genes. Interesting patterns also emerged when we tracked the 

trajectories of specific clusters throughout disease progression. Clusters 12, 13, 15, 18, 

46, 47, and 50 consistently showed little evidence of dysregulation across all time points, 

which could be attributed to low numbers of cells and insufficient power of the analysis. 

Most clusters that displayed a strong DE signature at the end-stage, such as clusters 7, 

9, 10, 14, 17, and 44, exhibited a gradual increase of downregulated DEGs which started 

from the 120 dpi time point. Some clusters showed a more abrupt increase in the numbers 

of DEGs at the end-stage, such as clusters 4 and 11. Interestingly, cluster 11, which had 

the higher number of DEGs at 20 dpi, did not exhibit substantial dysregulation until the 

end-stage. In addition, clusters 7 and 10 with relatively few cells had the highest number 

of DEGs at the end-stage, suggesting that the analysis is powered enough to identify 

these changes, and the lack of DEGs in other clusters with few cells might not be as a 

result of an underpowered study, and could instead reflect the underlying biology. 
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Figure 4.19: Heatmap plots corroborated the findings of the previous enrichment analyses 

suggesting a downregulatory disease signature in most neuronal clusters. We observed a diffuse 

pattern of differential expression at 20 dpi characterised by small numbers of DEGs without obvious 

polarisation between up and downregulation in all neuronal clusters, except cortical neurons cluster 11, 

which showed a higher number of downregulated genes. The 40 and 80 dpi time points had very small 

numbers of DEGs. We saw an increase of downregulated DEGs at the 120 dpi time point, while the numbers 

of the upregulated DEGs remained low. Finally, at the end-stage, we observed a jump in the numbers of 

downregulated DEGs accompanied by a minute increase of upregulated genes. 
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We then investigated the sample distances in the two-dimensional space. We used the 

per-sample aggregated counts data to perform a PCA analysis of each neuronal cluster 

separately. We observed substantial differences between the patterns arising suggesting 

selective transcriptomic perturbation of neuronal subtypes (Figure 4.20). For some 

clusters, such as clusters 10, 12, and 13 we observed a tight clustering of all samples 

with no discrimination between the CD1 and RML groups. These clusters seem to not be 

affected transcriptionally by the disease. In contrast, the cluster of medium spiny neurons 

(cluster 4), clusters 9, 11, 14, and 17 of cortical neurons, and, to a lesser extent, cluster 

44 of migrating interneurons all exhibited a pattern that allowed visual discrimination 

between disease and controls. Upon closer inspection of the plots for clusters 4, 9, 11, 

14, 17, and 44 we identified an interesting and recurring pattern where while the samples 

associated with the RML group were spread out (teal points), the end-stage samples (teal 

triangles) were positioned the furthest away from the CD1 controls (red points). There 

was no evident discrimination between the 20 dpi (teal squares) and 120 dpi (teal circles) 

samples. 
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Figure 4.20: Segregation patterns of PCA plots of 20 and 120 dpi and end-stage samples suggest 

selective transcriptomic perturbation of specific neuronal subtypes. The plots visualise the first two 

principal components of a PCA performed on the per-sample aggregated counts of each neuronal cluster 
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separately. 40 dpi and 80 dpi time points are not shown due to a lack of interesting transcriptomic 

differences. A tight clustering of all samples with no discrimination between the CD1 and RML groups was 

observed for some clusters, such as clusters 10, 12, and 13. In contrast, the cluster of medium spiny 

neurons (cluster 4), clusters 9, 11, 14, and 17 of cortical neurons, and, to a lesser extent, cluster 44 of 

migrating interneurons all exhibited a pattern that allowed visual discrimination between disease and 

controls. An interesting and recurring pattern was identified when examining the plots of clusters 4, 9, 11, 

14, 17, and 44 where while the samples associated with the RML group were spread out (teal points), the 

end-stage samples (teal triangles) were positioned the furthest away from the CD1 controls (red points). 

There was no evident discrimination between the 20 dpi (teal squares) and 120 dpi (teal circles) samples. 

The spurious sample originating from mouse 828719 has been removed from the plots because it was 

found to be at large distances from all other samples and changed the scale of the plots. 

4.2.6 Transcriptomics of astrocytes 

Astrocytes also exhibited interesting transcriptional patterns and were one of the 

populations that were studied in more detail. Even though there were two astrocytic 

clusters, one of those, cluster 69, was much more abundant in cell numbers and showed 

interesting gene expression perturbations (Figure 4.21). When studying the direction of 

differential expression of the astrocytic clusters we observed a higher number of 

upregulated genes at the 20 dpi time point (5 upregulated genes versus 1 

downregulated), then 1 and 4 upregulated genes at the 40 and 80 dpi time points, 

respectively, followed by an abrupt increase in the numbers of downregulated genes at 

the last two time points. At 120 dpi there was a sudden downregulation of 73 genes, while 

at the end-stage this number increased slightly to 91. At the same time, the number of 

upregulated genes remained approximately the same (16 at 120 dpi and 17 at the end-

stage). These numbers were only relevant to cluster 69, while only one downregulated 

gene was associated with cluster 68. 
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Figure 4.21: A small number of astrocytic genes were upregulated at the early time points, while a 

strong downregulation of gene expression was observed at the last two time points of the 

experiment. Cluster 69 of astrocytes was the most abundant in cell numbers and showed evidence of 

transcriptomic dysregulation, while cluster 68 only had 1 associated DEG at the end-stage. At 20 dpi only 

6 genes were found to be DE, 1 being downregulated and 5 with increased levels. Then 1 and 4 genes 

were found to be upregulated at 40 and 80 dpi, respectively. A substantial down-regulatory trend was 

observed at the last two time points, with 73 and 91 genes exhibiting reduced levels of expression at 120 

dpi and the end-stage, respectively. The number of upregulated genes remained approximately the same 

(16 at 120 dpi and 17 at the end-stage). 

We then generated per-sample aggregated datasets of the two clusters of astrocytes to 

investigate sample distances in the two-dimensional space. Following a PCA, the 

visualisations of the first two principal components suggest a diverging transcriptomic 

profile associated with astrocytes of cluster 69, while sample distances were short 

regarding cluster 68, apart from one outlier sample (Figure 4.22). Focusing on cluster 69, 
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the first principal component nicely separated the CD1 and RML groups for the 120 dpi 

and end-stage time points. Interestingly, the right panel of Figure 4.22 suggests a gradual 

change in the transcriptomic landscape. Samples of the RML group and 20 dpi time point 

(teal squares) are separated from the control group (red points) by the second principal 

component, however, they are in similar positions on the x-axis (first principal 

component). Following disease progression, we observed a gradual shift of the RML 

samples towards the right of the x-axis with the samples at 120 dpi (teal circles) being 

further apart than the controls, and the samples at the experimental end-stage (teal 

triangles) exhibiting even larger distances from the CD1 group, suggesting an 

amplification of the transcriptomic perturbations. 

 

 

Figure 4.22: A PCA plot of astrocyte cluster 69 suggests a gradual transcriptomic dysregulation 

during the last two time points, while cluster 68 astrocytes from both RML and CD1 groups cluster 

together. The plots show the first 2 principal components of PCA performed on the per-sample aggregated 

gene counts. Most of the samples associated with cluster 68 cluster together in the low-dimensional space 

suggesting little transcriptomic difference, apart from one outlier sample. Astrocytes belonging to cluster 69 

exhibited an interesting pattern of gradual perturbations in gene expression during the disease progression. 

While samples from the RML 20 dpi time point (teal squares) were localised in similar coordinates on the 

x-axis as the control samples (red points), there was a noticeable shift towards the higher values of the x-

axis associated with the samples of the 120 dpi time point (teal circles), which was further amplified at the 

end-stage (teal triangles), suggesting a continuum of transcriptomic dysregulation that follows disease 

progression. The spurious sample originating from mouse 828719 has been removed from the plots 

because it was found to be at large distances from all other samples and changed the scale of the plots. 
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To identify activated astrocyte populations and classify them based on the A1/A2 

classification, we performed real-time quantitative PCR analysis on N = 4 biologically 

independent samples per time point and inoculum. The material used was bulk brain 

nuclei suspension, which included astrocytes among other cell populations. We assayed 

5 A1 signature (C3, Fkbp5, Gbp2, Ggta1, Serping1), 3 A2 signature (Cd109, S100a10, 

Tm4sf1) and 2 pan-astrocytic activation genes (Hspb1, Vim). Both pan-astrocyte 

signature genes were found to be significantly upregulated in the last time point and Vim 

was also found to be significantly upregulated at 20 dpi, suggesting astrocyte activation. 

2/5 A1 signature genes were significantly upregulated at the last time point (Fkbp5, 

Ggta1), suggesting the existence of A1 astrocytes. Cd109 A2 signature gene was 

significantly upregulated at the disease end-stage, while Tm4sf1 was significantly 

downregulated at 80 dpi and the end-stage (Supplementary Figure 12). 

Another classical marker that can be used to quantify the presence of astrocytes is Gfap 

(Yang & Wang, 2015). We quantified astrogliosis by performing RNAscope on fixed 

mouse brain slices to visualise Gfap expression in all brain regions throughout disease 

progression. Our differential expression analysis had already identified Gfap to be one of 

the transcripts with the highest increase in expression in disease, and RNAscope data 

confirmed this finding (Figure 4.23 and Figure 4.24). Gfap levels were found not to 

increase in control (CD1-inoculated) mice during ageing, while there was a statistically 

significant decrease of Gfap expression in the hippocampus (N = 3 independent biological 

replicates per time point; two-way ANOVA; Sidak's multiple comparisons test). In contrast, 

its levels were visually elevated starting at 80 dpi, increasingly affecting all brain regions 

throughout disease progression. Quantification of the percentage of positive pixels in 

each anatomical area which corresponds to transcript expression suggested a statistically 

significant increase of Gfap expression in all brain regions at 120 dpi and the end-stage 

in RML-inoculated animals, compared to the first two time points, 20 and 40 dpi (N = 3 

independent biological replicates per time point; two-way ANOVA; Sidak's multiple 

comparisons test). For the hippocampus, thalamus and brain stem, this significant 

increase was evident as early as 80 dpi. These results suggest generalised astrogliosis 

and are in accordance with our transcriptomic findings and published literature 

(Manuelidis et al., 1987). 

https://sciwheel.com/work/citation?ids=761898&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13212751&pre=&suf=&sa=0&dbf=0
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Figure 4.23: Representative images of stained mouse brains using RNAscope showing increased 

Gfap expression in RML-inoculated mice during the later time points. Fixed mouse brains were sliced, 

processed using the RNAscope protocol and probed for Gfap expression. Each column corresponds to a 

different experimental group (left: CD1-inoculated mice, right: RML-inoculated mice), while each row 

corresponds to a different time point. Gfap transcript abundance is depicted in red, while nuclei are depicted 

in blue. Red staining at the edges of the tissue is a known artefact of the methodology and does not 

correspond to gene transcripts. Gfap levels were shown not to increase in control (CD1-inoculated) mice 

during ageing. In contrast, Gfap levels were visually elevated starting at 80 dpi, increasingly affecting all 

brain regions throughout disease progression. The black scale bars correspond to a length of 2.5 mm. 
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Figure 4.24: Quantification of the RNAscope signal suggested an increase of Gfap expression in all 

brain regions throughout disease progression in RML-inoculated mice. Gfap levels were shown to 

remain stable in control mice, except in the hippocampus, where Gfap levels decreased with ageing. In 

contrast, all brain regions of the CD1-inoculated mice showed a statistically significant increase of Gfap 

expression in the later time points (120 dpi and end-stage, and 80 dpi for the areas of the hippocampus, 

thalamus, and brain stem), compared to the first two (20 and 40 dpi). A Shapiro-Wilks Normality Test was 

performed to ensure normality before calculating p-values using a two-way ANOVA. P-values were 

corrected using Sidak's multiple comparisons test. Numbers on top of the bars represent the calculated p-

values. N = 3 independent biological replicates per inoculum per time point. Points represent biological 

replicates. 

4.2.7 Transcriptomics of mature oligodendrocytes and oligodendrocyte precursor cells 

The two final cell populations that were studied in more detail comprised mature 

oligodendrocytes and oligodendrocyte precursor cells. Transcriptomic perturbations of 

OPCs (cluster 61) were only evident during the last two time points (Figure 4.25). 

Interestingly, at 120 dpi, most of the DEGs associated with OPCs were upregulated (11 

upregulated versus 1 downregulated), while this trend was reversed at the last time point, 

where only 7 genes were found to be upregulated and 31 downregulated. OPCs did not 

have a strong signature of differential expression at the 20 dpi time point, as only one 

DEG was identified. In contrast, transcriptomic differences were observed in mature 

oligodendrocytes as early as 20 dpi. 8 of the DEGs were found to be downregulated, 

while 4 upregulated. This signature was lost at 40 and 80 dpi and re-emerged at 120 dpi, 

where 15 genes were found to be differentially expressed, with most of them being 

downregulated. The trend continued until the end-stage when 41 DEGs were 

downregulated and 12 upregulated. 
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Figure 4.25: Transcriptomic perturbations associated with mature oligodendrocytes became 

evident as early as 20 dpi, while the transcriptomic landscape of OPCs only began to change at 120 

dpi. Mature oligodendrocytes exhibited a downregulatory signature at 20 dpi, which was then absent at 40 

and 80 dpi and re-emerged at 120 dpi and was amplified at the end-stage. 11 upregulated genes were 

associated with OPCs at the 120 dpi time point, while the trend reversed at the end-stage with most DEGs 

being downregulated. The 80 dpi time point is not present in this figure because no DEGs existed for these 

cell populations. 

We then assayed the distances between biological samples in the low-dimensional space 

by performing a PCA on the per-sample aggregated gene counts. Only small segregation 

of the samples from the two experimental groups was observed for the mature 

oligodendrocytes, which was evident only for the 120 dpi and end-stage and was based 

on the first principal component (Figure 4.26). Regarding the OPCs, there was no clear 

separation, with most of the samples occupying the same area in the two-dimensional 

space. Overall, the PCA plots suggest more pronounced transcriptomic differences 

associated with the mature oligodendrocytes at the 120 dpi and end-stage time points. 
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Figure 4.26: A PCA of the per-sample aggregated counts suggested only small transcriptomic 

differences between all the OPC samples, while more pronounced perturbations were associated 

with the mature oligodendrocytes at the 120 dpi and end-stage time points. 

4.3 Discussion 

4.3.1 Experimental design and pathophysiological characterisation of animal samples 

Following the successful validation of our experimental protocol as described in the 

previous chapter, we proceeded to study murine prion disease under tightly controlled 

experimental settings. Prion disease is associated with a progressing pathology and most 

scientific studies have focused on the later stages of its course. This rapid nature of the 

disease could reflect underlying transcriptomic dynamicity, which would only be 

observable by monitoring the experimental model through time. In addition, pivotal work 

by Sandberg and colleagues suggested the existence of two distinct mechanisms of prion 

propagation that manifest during the early and late stages of the disease (Sandberg et 

al., 2011). We designed a time-course experiment that would allow us to investigate 

transcriptomic alterations during the mechanistic shift of prion propagation and query the 

earliest stages of the disease. In addition, the nature of our study would require a system 

that can faithfully and accurately recapitulate previous findings, so that we minimise the 

uncertainty associated with the pathophysiology and natural history of the model and 

focus on transcriptomics instead. Finally, the model selected would have to be devoid of 

genetic manipulation that can introduce artefacts and hinder the interpretation and 

generalisation of the results. After careful consideration of those factors we decided to 

https://sciwheel.com/work/citation?ids=2297006&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2297006&pre=&suf=&sa=0&dbf=0
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proceed with a model system that comprised wild-type FVB mice inoculated with RML 

prions; a system that had been extensively studied in the past and was well-characterised 

and suitable for the needs of our study (Sandberg et al., 2011, 2014). Further discussions 

with M. Sandberg led to the selection of 5 time points when samples would be collected. 

The selection was purposefully made to include representative samples from the different 

mechanistic stages of the disease: the 20 dpi time point would provide insight into the 

earliest disease state when infectivity is low, the 40 dpi time point would be located in the 

exponential phase, the 80 dpi time point would be located just after the mechanistic shift, 

at the beginning of the plateau phase, followed by the 120 dpi time point in the plateau 

phase before the onset of symptoms. The last time point would be at the onset of 

symptoms when scrapie sickness was confirmed and would designate the disease end-

stage. Since adequate controlling of the experiment is of paramount importance, we 

decided to include two control groups. One of the groups of mice would be inoculated 

with sterile PBS only, and the other with uninfected CD1 brain homogenate, which is also 

the same homogenate used to dilute the RML inoculum. The main comparison would be 

performed between the RML and CD1 groups, however, a comparison between CD1 and 

PBS groups could also be used to identify technical noise or transcriptomic variation 

relevant to the introduction of external brain homogenate and the process of the 

intracerebral inoculation, which could later be removed from the data. To exclude 

variation relevant to the normal ageing of the mice, we inoculated mice of approximately 

the same age and cullings from each group were performed on the same day. The 

experimental groups would include 15 mice for the RML and CD1 groups so that enough 

mice would survive to the experimental end-stage and enough samples would be 

available for the assays planned (snRNA-seq, IHC, infectivity titration etc.). The PBS 

group would be smaller comprising 5 mice since inoculum toxicity was expected to be low 

and fewer samples would be required from this group (only for snRNA-seq). Overall, the 

number of time points and mice in each time point was selected as a balance between 

collecting the appropriate number of samples to reliably generate adequate datasets 

based on previous studies, and the need to reduce the number of laboratory animals used 

and align with the ethical principles of the 3Rs (Replace, Reduce, Refine). 

https://sciwheel.com/work/citation?ids=2297006,7149481&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Subsequent to the conclusion of the animal experiments, brain samples were assayed to 

ensure disease progression and prion infectivity were comparable to previous studies and 

selected time points corresponded to the theoretical disease course. To that end, we 

performed immunohistochemical analyses (standard pathology staining with H&E and 

anti-PrP antibodies) and infectivity titration using the SCA. Expert review of the ICH 

staining confirmed a match to expected disease progression, while the infectivity plots 

recapitulated the two phases of infectivity. All evidence suggested that time point 

selection had been successful and did satisfy our experimental design criteria, so we 

shifted our focus to the transcriptomic studies. 

4.3.2 Single-cell transcriptomics of murine prion disease 

We set out to perform an unbiased whole-transcriptome single-cell study of murine prion 

disease using the previously generated brain samples. We decided to only focus on a 

specific anatomical area to minimise tissue heterogeneity and selected the frontal lobe as 

it is heavily affected in disease. For the selection of the number of nuclei to be sequenced, 

we based our calculations on previous studies (Mathys et al., 2019; Rosenberg et al., 

2018) and a consideration of the balance between the number of nuclei sequenced and 

the depth of sequencing of each nucleus. Taking into consideration the technical 

limitations of the SPLiT-seq protocol and the results of preliminary test experiments, we 

aimed at sequencing 45,000 nuclei per time point, for a total of 225,000 total nuclei 

sequenced across all samples. The distribution of samples in each time point was 

designed to prioritise the RML and CD1 groups (N = 8 per group), which would the main 

comparison, versus the PBS group (N = 3), which would only be used as an additional 

control. The experimental design also mandated the parallel processing and sequencing 

of the RML and CD1 groups of each time point to minimise batch effects. 

We generated nuclei suspensions from 95 samples in total and sequenced the 5 time 

points in 5 separate batches. The 20 dpi time point was the first one sequenced and 

included fewer cells in the final library due to an unexpected nuclei loss. Nevertheless, all 

libraries resulted in similar numbers of sequencing reads and following pre-processing, 

and a similar number of identified nuclei. Sequencing quality was consistently high for all 

libraries and no filtering of the raw sequencing data was deemed necessary. In contrast, 

https://sciwheel.com/work/citation?ids=6887211,4954361&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6887211,4954361&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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stringent filtering of two stages was applied to the feature count matrices. In the first 

instance, the splitseq-tools algorithm automatically identified and discarded cells with a 

low amount of information associated with background noise resulting from ambient RNA. 

This is usually performed by identifying the negative concavity coordinates, or “knees”, of 

a “knee plot”, which represents the sorted number of cell barcodes (x-axis) vs the number 

of UMI counts detected per cell barcode (y-axis). The plot is expected to contain two such 

knees, and the mid-point of the first knee is usually used as a cut-off to differentiate real 

cells from the background. In some cases, when the slope is not pronounced enough, the 

algorithm can omit the first knee of the plot and identify the second one, substantially 

inflating the number of identified cells and decreasing the mean number of UMIs per cell 

(representative examples can be found in Supplementary Figure 13). This was the case 

with the 20 dpi time point data, where the number of cells identified far exceeded the 

number of cells in the input material. These numbers included low-quality nuclei that 

contained high proportions of background noise (ambient RNA) due to the failure of the 

algorithm in some samples. Fortunately, our second filtering round could easily remedy 

this phenomenon, as the filtering criteria were manually selected and were equal for all 

datasets. We based our filtering on published studies and empirical data and decided to 

be as stringent as possible, sacrificing some of the available information for a higher-

quality dataset overall. This resulted in approximately 200,000 transcriptomes after 

filtering with a median of 943 and a mean of 1050 features/nucleus, which is not as high 

as typical single-cell high-throughput sequencing (usually a mean of around 2,000-3,000 

features/cell for commercial methods), however, this is justified because of the nature of 

the starting material. Here we have used single-nucleus sequencing (instead of single-

cell); the nuclei include much lower amounts of available RNA and single-nucleus 

methods typically generate less than 2,000 features/nucleus, even on commercial 

platforms. Interestingly, our dataset was more information-rich than the original SPLiT-

seq study (Mdn = 677 features/nucleus for Rosenberg et al., 2018), or some studies using 

commercial solutions (Thrupp et al., 2020 identified a mean of 879 features/nucleus using 

the 10X Genomics single-cell gene expression v2 kit) while being comparable to or lower 

than other studies (Nagy et al., 2020 had a mean of 2,144 features in neurons and 1,144 

https://sciwheel.com/work/citation?ids=4954361&pre=&suf=&sa=0&dbf=0
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features in glia). Overall, the dataset quality was on par with published research and as 

expected by the methodology used. 

The next step in our analysis pipeline was to annotate cell identities, which usually 

requires prior unsupervised clustering. While clustering is of paramount importance for 

single-cell studies as it is used to identify putative cell types, it poses significant technical, 

biological, and computational challenges, while no consensus exists in the scientific 

community regarding standard methodological practices (Kiselev et al., 2019). The 

infancy of the single-cell transcriptomics field combined with the plethora of laboratory 

protocols, computational tools, and algorithms complicates the selection of appropriate 

approaches and makes the matter more of a subjective choice based on previous 

experience or adequately satisfying results. The broad aim of clustering is to discover the 

natural groupings of objects, and, when applied to transcriptomic studies, provide an 

unbiased approach that can — in theory — categorise different cell types based on their 

gene expression profile (Jain, 2010). In reality, technical (low initial amounts of RNA which 

leads to a high dropout rate, batch effects, the presence of ambient RNA or cell doublets), 

biological (tissue heterogeneity, transient biological states), and computational 

challenges (high levels of dropout and noise, increasing scale of transcriptomic data, 

manual selection of algorithm parameters) can hinder biological interpretation. At the 

same time, cell-type annotation would still require manual review of highly expressed 

transcripts the matching of this information to previous studies and published literature, a 

subjective process that requires decision making, therefore impeding automation, and 

lowering reproducibility. Nevertheless, the process has become more efficient with the 

introduction of new tools that can streamline data analysis and the availability of 

accumulated knowledge in the form of cell atlases. 

Our study is characterised by additional complexity as it included multiple time points 

which were sequenced independently and essentially constitute individual sub-datasets. 

The first apparent challenge was related to the size of the combined dataset, which made 

a collective analysis impractical. Additionally, each time point was expected to represent 

a different stage in the disease, so biological heterogeneity was anticipated. Finally, to 

track the disease transcriptomics between different time points, cell clustering and 

https://sciwheel.com/work/citation?ids=6246285&pre=&suf=&sa=0&dbf=0
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annotation would have to be consistent in all sub-datasets, which severely limited the 

suitability of manual methods. Even though we tried using the more traditional approach 

of unsupervised cell clustering specifying a range of different parameters to the clustering 

algorithms of Seurat, and then manually attempting to annotate the data based on the 

expression of the most characteristic genes for each cluster and using reference cell 

atlases, we quickly realised that this method was impossible to automate and reliably 

reproduce the same clusters across all time points to facilitate data interpretation and 

comparisons (data not shown). In order to overcome these difficulties, we decided to 

proceed with a data-driven approach of cluster annotation which was first introduced in 

version 3 of Seurat (Stuart et al., 2019). This strategy based on “anchoring” datasets 

together allowed us to collectively analyse diseased and control biological states, transfer 

cluster labels from thoroughly annotated reference datasets, and more importantly, 

enabled the comparison of all time points cluster-by-cluster, as it minimised subjective 

decisions regarding cluster annotation, ultimately leading to increased reproducibility and 

automation. Cluster annotation was based on a label transfer algorithm that can 

effectively match query populations to annotated reference datasets. Since this matching 

is based on transcriptomic information, the algorithm can perform best when the reference 

and query datasets contain the same cell populations and are generated in the same 

manner. We selected the mouse brain dataset generated by Rosenberg et al. (2018) to 

be used as a reference since it was produced using the same single-nucleus method 

(SPLiT-seq), it included the same tissue, and it was thoroughly annotated. A caveat of 

this approach was that the reference data was generated from very young mice (postnatal 

days 2 and 11), compared to our adult mice; however, we could not find evidence that 

this negatively affected the downstream analysis. Some preprocessing of the dataset was 

essential to increase the concordance between the two datasets, such as keeping only 

the cells from the frontal lobe and olfactory bulb (in case it was not completely removed 

during dissection) and merging the data from the postnatal day 2 and 11. After label 

transfer, the few cells putatively originating from the olfactory bulb were filtered out, while 

after discussions with external advisors we decided not to set any additional filters. 

Dimensionality reduction was performed independently from annotation (which was 

conducted on a per-cell level), and UMAP plots layered with transferred cluster 

https://sciwheel.com/work/citation?ids=7035390&pre=&suf=&sa=0&dbf=0
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information and labels reassuringly demonstrated that cluster identities corresponded 

well with the visual separation of clusters. Finally, another line of reassuring evidence was 

provided by quantifying the expression levels of known marker genes for broad cell types 

which corroborated cluster identities. 

This data-driven approach identified a maximum of 25 different clusters (some time points 

had a lower number) that mostly comprised neuronal sub-clusters, astrocytes, and 

oligodendrocytes. Clusters of ependymal, endothelial, vascular, and leptomeningeal cells 

included only small numbers of cells (as expected) and did not show any interesting 

transcriptomic differences, possibly due to their low abundance, so they were not the 

focus of this study. Microglia, even though their relevance to disease is appreciated, are 

commonly found in small numbers in the brain, and were identified in only the last two 

time points in small numbers, so no meaningful information could be extracted (although 

this could indicate that their numbers are increased in the later stages of the disease. 

However, this hypothesis was not further investigated). In addition, evidence suggests 

that single-nucleus studies are not well suited for the investigation of microglia 

transcriptomics in disease, since technical bias leads to depletion of a small set of genes 

that are enriched for microglial activation markers (Thrupp et al., 2020). Studies focusing 

on microglia necessitate the use of population enrichment protocols and single-cell 

sequencing. 

Following consistent cell annotation across all time points, we set out to investigate the 

hypothesis that specific neuronal sub-clusters are more vulnerable to the toxic effects of 

the disease (selective toxicity) leading to a more pronounced decrease in their numbers. 

Neurons are the only cells that are known to be led to cell death due to prion infection, 

while glial cells might replicate prions but do not suffer toxicity (Krejciova et al., 2017; 

Lakkaraju et al., 2021; Prinz et al., 2004). The pathophysiological hallmarks of prion 

disease include neuronal loss and gliosis, so we expected to see a decrease in the 

number of neurons and an increase in the abundance of astrocytes, oligodendrocytes, 

and microglia (even though microglia numbers were too low to provide sufficient 

information, as previously discussed). To get an overview of the behaviour of broadly 

defined populations, we grouped cells into 10 broad groups (migrating interneurons, 

https://sciwheel.com/work/citation?ids=9750024&pre=&suf=&sa=0&dbf=0
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cortical neurons, medium spiny neurons, astrocytes, OPCs, oligodendrocytes, VLMCs, 

ependymal, immune, and vascular cells) and calculated their relative proportions in each 

of the 5 time points. This approach precludes the use of canonical statistical tests, such 

as the t-test, since they are not designed for relative proportion data, and, more 

importantly, does not consider the effects of sampling variation between the different 

biological replicates (Aitchison, 2008). Therefore, we employed a permutation test to 

calculate p-values for each cluster and confidence intervals for the magnitude of the 

difference via bootstrapping. This analysis gave inconsistent results, with numbers of 

migrating interneurons increasing and medium spiny neurons increasing at the 20 dpi 

time point. The same picture was evident at the last time point (end-stage). 

Oligodendrocytes were found to be reduced at the last time point only, while OPCs were 

reduced at the first and last time points. Astrocytes were found to be reduced at the first 

time point and then increased at 120 dpi, with their levels not affected at the end-stage 

(even though astrocytosis is expected in prion disease). Immune cells (microglia) 

displayed a more consistent trajectory, being increased in numbers in the last two time 

points. 

Next, we focused specifically on neurons, where the changes in cell proportions were 

relatively small. Most neuronal clusters showed to be reduced in numbers, however, this 

reduction was evident from the first time point, after which the abundance of neuronal cell 

types became comparable again between disease and controls. A more pronounced 

decrease in numbers was once more evident at the end-stage. Interestingly, the 20 dpi 

and end-stage time points were similar in both broad populations and neuronal sub-

clusters, while neuronal cell reduction was not validated at 20 dpi by histopathology. This 

suggested that identified differences in the cell populations are more likely attributed to 

underlying transcriptomic changes that affect cell cluster determination. The number of 

cells in each cluster requires a prior cluster annotation, which can be inconsistent 

between time points, even when automated data-driven approaches are used. The 

existence of multiple time points hinders data interpretation since it complicates 

consistent cluster identity assignment. Overall, even though we observed a reduction in 

some neuronal clusters at the end-stage of the disease, our results were inconsistent 

when all time points were concerned so no conclusions regarding selective neuronal 

https://sciwheel.com/work/citation?ids=12484005&pre=&suf=&sa=0&dbf=0
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toxicity can be drawn. Our observations highlight the importance of the use of alternative 

techniques that do not rely on transcriptomic changes, such as cell sorting based on 

specific markers, for more reliable quantification of cell numbers and investigation of 

selective toxicity in complicated time-course experiments. 

The abundance of RNA species informs on and determines the state of cells and tissues, 

and the quantification of mRNA transcripts opens a window to the underlying molecular 

processes. Differential gene expression analyses aim to identify quantitative differences 

in transcript abundance between two biological states and, even though they constitute 

an integral part of RNA-seq data analysis, accurate detection of DE genes has proved to 

be a challenging task when single-cell sequencing experiments are concerned. Due to 

the nature of single-cell methodologies, scRNA-seq datasets are highly heterogeneous 

and have a higher level of noise due to biological and technical reasons, requiring, thus, 

specifically designed statistical approaches that can efficiently handle the zero-inflated 

distribution of the gene counts and the sparsity of the data (Mou et al., 2019; T. Wang et 

al., 2019). The most widely used methods employ the Wilcoxon rank-sum test, which has 

become the de facto statistical method for single-cell studies and the default option of 

many analytical pipelines, including the popular Seurat toolkit. In fact, a recent study by 

(Squair et al., 2021) suggested that the Wilcoxon rank-sum test has been used to such 

an extent that it accounted for as many recent single-cell studies as all other statistical 

methods combined. The same study, though, also underlined the poor performance and 

high false-positive rate of the Wilcoxon rank-sum test and similar methods that do not 

account for variation between biological replicates (cells from the same sample are not 

independent replicates), while highlighting the importance of per-sample data 

aggregation and the use of pseudo-bulk analyses. 

Since a robust DE analysis is of paramount importance and the central focus of our study, 

we opted to employ three different approaches and compare the results: the widely-used 

—though criticised— Wilcoxon rank-sum test, as well as two alternative pseudo-bulk 

approaches based on the Wald test and the quasi-likelihood ratio test. The Wilcoxon test 

is the default and recommended test of the Seurat toolkit, which meant that the analysis 

was easy and seamless to perform, while we opted to use DESeq2 and glmGamPoi for 

https://sciwheel.com/work/citation?ids=6323394,8212412&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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the pseudo-bulk approaches, which necessitated data wrangling to manually aggregate 

and prepare the gene counts in the appropriate formats. We opted not to perform 

imputation of missing single-cell data, since it has shown that it does not improve the 

performance of downstream analyses (Hou et al., 2020). 

Our differential gene expression analysis between the RML and CD1 groups identified 

around 1000 genes when using Seurat, while, surprisingly, the pseudo-bulk methods 

identified around 5000 DEGs. This comes in contrast to previous observations that 

considered pseudo-bulk approaches as more conservative (Squair et al., 2021; T. Wang 

et al., 2019). Reassuringly, when we tested the concordance between Seurat and the 

pseudo-bulk approaches, we found that Seurat hits are mostly replicated by both DESeq2 

and glmGamPoi, however, the agreement was much lower for the 20 dpi time point, where 

Seurat identified perturbations in few clusters of cortical neurons, while DESeq2 also 

identified clusters of migrating interneurons as being dysregulated. GlmGamPoi only 

identified DEGs associated with most of the clusters of cortical neurons. Perturbations in 

oligodendrocytes and astrocytes were only suggested by Seurat and were not replicable 

by any other method. These differences were expected since comprehensive studies 

have highlighted that agreement between different analysis methods is generally low 

(Soneson & Robinson, 2018; T. Wang et al., 2019). 

When correlating the number of cells per cluster with the number of DEGs identified, we 

uncovered a very high positive correlation associated with the pseudo-bulk methods only, 

suggesting that the abundance of identified DEGs is mostly driven by cluster size, 

complicating the biological interpretation of the results. This was not true for Seurat, which 

also identified a smaller number of dysregulated transcripts. These were the main 

reasons that guided our decision to proceed with downstream analyses focusing on the 

gene lists generated by Seurat, as they appeared to be more stringent, they were not 

extensively affected by cluster size, and they included high percentages of genes that 

were also deemed DE by the pseudo-bulk approaches. 

Regardless of the methodology used, our data suggested a selective transcriptomic 

response of individual cell clusters to disease, only partially attributed to differences in 

cluster size. More interestingly, we were able to identify a pattern of oscillating 

https://sciwheel.com/work/citation?ids=9545325&pre=&suf=&sa=0&dbf=0
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transcriptomic perturbations commencing at 20 dpi, when infectivity was low, then 

subsiding at 40 and 80 dpi even though infectivity proceeded exponentially, before re-

emerging during the infectivity plateau at 120 dpi and being amplified at the end-stage. 

Additionally, the majority of DEGs at the 20 dpi time point (25 out of 42 unique genes) 

also exhibited this oscillating pattern of early/late dysregulation indicating an early 

transcriptomic response to toxicity which is reinstated in the late stages of the disease. 

The DEG heatmaps suggest the existence of three phases: the first one includes the 20 

dpi time point, where some transcriptomic perturbations were identified, the second is a 

phase of transcriptomic silence that spans the 40 and 80 dpi time points, while the third 

phase starts at 120 dpi and proceeds until the disease end-stage. In contrast, the 

infectivity assays demonstrate the existence of two mechanistic phases of prion 

propagation, as described by previous thorough studies of the RML-FVB mouse model 

(Sandberg et al., 2011). Taken together, our findings demonstrated that prion infectivity 

does not elicit a transcriptomic response in vivo, which is supported by previous studies 

that demonstrated that infectious prions are not directly toxic (Benilova et al., 2020). 

We hypothesise that the three transcriptomic phases correspond to fluctuations in the 

concentration of a toxic PrP species. The notion of the existence of such a protein, which 

has been named PrPL (PrP lethal), was first formulated by (A F Hill et al., 2000), and 

further discussed when more supporting evidence was collected by (Sandberg et al., 

2011). This hypothesis suggests that neurotoxicity is mediated by PrPL, which is a 

separate entity from PrPSc, however, its formation is catalysed by it (Andrew F Hill & 

Collinge, 2003; A F Hill et al., 2000). The model specifies that toxicity becomes evident 

only when the concentration of PrPL surpasses a local threshold (John Collinge & Clarke, 

2007). Nevertheless, its existence is debated, and alternative hypotheses suggest that 

toxicity could be caused by PrPSc (Aguzzi & Falsig, 2012; Chakrabarti & Hegde, 2009; 

Kristiansen et al., 2007; Moreno et al., 2012; Solomon et al., 2010). Since the existence 

of PrPL and its characterisation is not an object of our study, we will use the general term 

“toxic PrP species” to uncouple prion infectivity and toxicity.  

We attribute the triphasic DGE pattern to an underlying mechanism of toxic PrP species 

clearance following the external introduction of toxic material where a subset of more 
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vulnerable cells responds more aggressively, and clearance mechanisms are activated. 

Toxic species from the inoculum (which is prepared from an end-stage mouse brain) are 

introduced intracerebrally at inoculation and elicit a transcriptomic response. Our data 

from the 20 dpi time point could represent the tail of this response, which might have been 

even stronger earlier than that. Unfortunately, we did not have earlier time points to 

evaluate this hypothesis. Following inoculation, clearance mechanisms are activated, and 

the toxic species are gradually depleted, while the infectious species are either not 

affected or quickly replaced by replication. Transcriptomic alterations remain minimal at 

40 and 80 dpi, even though the production of the infectious prion species increases 

exponentially, until reaching the second mechanistic phase which catalyses the 

production of the toxic species once again. When a critical concentration is reached, cell 

clearance mechanisms are overwhelmed, and toxic pathways are irreversibly triggered 

(120 dpi and end-stage). Some cell types were shown to respond more aggressively, with 

more pronounced changes in their transcriptomic profiles. This hypothesis of selective 

toxicity is further substantiated by the observation that cell clusters that responded early 

to toxicity also showed a stronger DE signature at 120 dpi and the end-stage. 

We argue that the transcriptomic signature at 20dpi and 120dpi/end-stage are caused by 

the same toxic PrP species and represent similar responses, but with substantially 

different amplitudes. The titre of toxic PrP species is expected to be low at 20dpi since 

the RML inoculum used only contained 30 μL of a 1% dilution of the end-stage brain. In 

addition, sampling at 20 dpi might not represent the peak of the transcriptomic response, 

especially since brain homogenate has been shown to be cleared out between 4 days to 

2 weeks post-inoculation (Büeler et al., 1993). The low titres and quick clearance would 

suggest that the transcriptomic response might have been even stronger at earlier time 

points and may have had more common genes with the end-stage. In contrast, the last 

two time points are associated with high titres of toxic PrP species and sustained 

exposure to the toxic agent. This would dictate a more pronounced transcriptomic 

response, especially since cell clearance mechanisms are expected to be saturated 

(Goold et al., 2015; López‑Pérez et al., 2020; Mays & Soto, 2016; McKinnon et al., 

2016). Further evidence from our study that supports this hypothesis is the existence of 

the early/late oscillating gene signature. Approximately half of the DEGs at the 20 dpi time 

https://sciwheel.com/work/citation?ids=385704&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12552584,2296846,1304005,1396465&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12552584,2296846,1304005,1396465&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0


215 
 

point (25 out of 42 unique genes) reappear at the 120 dpi and end-stage time points. 

However, an RT-qPCR experiment was able to validate this signature for only 2 out of 6 

genes assayed, underlying the fact that these transcriptomic differences are subtle and 

traditional validation approaches might not be statistically powerful enough when used 

with small sample sizes, like the one we used for validation (N = 4 biological replicates). 

We also investigated the existence of common genes between our study and two pivotal 

studies in the field by Hwang et al., 2009 and Scheckel et al., 2020, which were 

thoroughly discussed in the introduction. We started by intersecting our sets of DEGs with 

the “prion signature” of 333 DEGs mentioned in Hwang et al., 2009. We were only able to 

identify 8 common genes, which were nevertheless associated with multiple clusters 

(Gfap, Hexb, C4b, Clu, Plce1, Abca1, Pbxip1, Apod). Hexb was the only gene identified 

at the 20 and 40 dpi time points. Gfap and Hexb were identified at the 80 dpi time point. 

Gfap, Clu, C4b, and Hexb were identified at the 120 dpi time point. Finally, the same 

genes were identified at the end-stage, with the addition of Plce1, Abca1, Pbxip1, and 

Apod. Even though the concordance between the two datasets is very low, this can 

partially be explained by the differences in the experimental and analytical methodology 

used. The 2009 study used microarray technology to analyse whole mouse brains, while 

our data was generated using protocols based on next-generation sequencing and only 

profiled the frontal cortex. In addition, the different analytical pipelines that the raw data 

was subjected to could also introduce bias. However, studies have shown that 

concordance between microarray and next-generation sequencing technology is usually 

high, so these differences might be attributed to the experimental design —the 333 DEGs 

reported by Hwang et al. are found at the intersection of multiple mouse and prion 

strains— or the lower sensitivity of snRNA-seq (Rao et al., 2018; S. Zhao et al., 2014). 

When we compared our main findings with the more recent and more similar time-course 

experiment by (Scheckel et al., 2020) we identified similar and contrasting results. The 

major difference was that our study suggested that clusters of cortical neurons were 

associated with the highest number of DEGs, followed by medium spiny neurons and 

migrating interneurons of the neuronal clusters, and astrocytes, oligodendrocytes and 

OPCs of the glial clusters, while the study from Aguzzi’s group identified minimal changes 
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in the expression levels of neuronal transcripts. Furthermore, we identified a signature of 

toxicity as early as 20 dpi, which is absent from the previous study. Both studies agree 

on the extensive glial involvement in the end-stage of the disease and have identified 

numerous common genes being differentially expressed (Figure 4.27). When we 

compared the lists of DEGs we identified common patterns between the two studies —

most DEGs were found at the end-stage; there were numerous DEGs common between 

the last two time points — and 134 shared dysregulated genes. These represented 

approximately 30% of the total unique genes identified in our study (134 shared genes / 

438 total unique genes across all time points) and were mostly found to be dysregulated 

at the last two time points. Differences between the two studies could be attributed to the 

different methodology used (ribosome profiling versus snRNA-seq) and the experimental 

design (transgenic mouse model on a C57BL/6 background versus wild-type FVB mice). 
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Figure 4.27: Relationship of gene sets between our study and the study by Scheckel et al. (2020). 

We identified common patterns and shared genes between the two studies. Both studies identified the 

highest number of dysregulated genes at the last time point followed by the second to last. In addition, there 

were shared genes between the last two time points in each study independently. 134 genes were shared 

between the two studies across all time points. Gene lists were downloaded from the supplementary 

material of the online eLife publication. Genes were filtered based on criteria selected by the authors to 

include only those that were deemed to be differentially translated (|log2FC| > 1 and FDR < 0.05) and 

different cell types were then aggregated per time point. Labels “Our” and “Aguzzi” on the vertical axis 

represent gene sets of our study and the study by Aguzzi’s group, respectively. Wpi: weeks post-

inoculation. 

Zooming out of the lists of individual genes, we employed a gene set enrichment analysis 

(GSEA) to identify perturbed biological processes. The main advantage of our approach 

is that it can identify perturbed gene networks even when each gene might not be 

significantly differentially expressed. For this type of analysis, we aggregated the 

expression data of all genes across all cell types at each time point. Expectedly, most of 

the enriched terms were associated with synaptic processes. Previous studies have 
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consistently highlighted the central role of synaptic dysfunction in prion diseases, as well 

as other protein misfolding neurodegenerative disorders (Mallucci, 2009; Soto & Satani, 

2011). It is widely accepted that synaptic perturbation precedes cell death, and the two 

processes are separately regulated. Since our experiment is terminated when scrapie 

sickness is confirmed, which is earlier than the disease end-stage if mice were allowed 

to reach their end of life, the alterations that become apparent are likely to reflect the 

mechanisms of synaptotoxicity, while cell death processes might not have been activated 

yet. Indeed, we encountered no evidence of activated molecular mechanisms of cell 

death and were able to isolate similar numbers of nuclei when preparing nuclear 

suspensions from all time points (even though the number of nuclei isolated for a given 

volume of brain sample was not formally quantified). Furthermore, we observed an 

enrichment of pathways associated with ion homeostasis, and, more specifically, the 

regulation of potassium channels, which is a common feature of neurodegenerative 

diseases and neurological disorders, especially in astrocytes and neurons (Kumar et al., 

2016; Lee et al., 2022; S. Wang et al., 2022; Xiao Zhang et al., 2018). Most of those 

processes were found to be dysregulated at the 20 dpi time point and the last two or three 

time points, without being enriched at the 40 dpi time point. The GSEA, which uses a 

different analytical methodology and does not rely on the list of DEGs, provides additional 

support for our three phases hypothesis and evidence that the system can indeed recover 

transcriptionally when the externally introduced toxic species have been cleared. 

Of interest was also the identification of one gene, Hexb, which was the only found to be 

consistently differentially expressed across all time points, and consistently upregulated 

in 19 clusters in total. Hexb encodes the beta subunit of two related enzymes, the beta-

hexosaminidases A and B. These enzymes are mainly found within lysosomes and are 

involved in the catabolism of sphingolipids, oligosaccharides, and glycoproteins. Loss-of-

function mutations cause Tay-Sachs and Sandhoff diseases in humans which are 

metabolic disorders associated with neurodegeneration and motor regression due to the 

accumulation of GM2 ganglioside in neurons (Mahdieh et al., 2018; Maier et al., 2003; 

Myerowitz et al., 2002). Upregulation of Hexb has been reported by previous studies in 

prion diseases and provides more evidence to the hypothesis of an activated clearance 

mechanism and the involvement of sphingolipid metabolism and lysosomal pathways in 
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disease pathogenesis (Carroll et al., 2020; de Melo et al., 2021; Hwang et al., 2009; H. 

O. Kim et al., 2008; Mahfoud et al., 2002; D. R. Taylor & Hooper, 2006). 

We will now focus on the three populations of interest separately and discuss changes in 

their transcriptomic landscape as well as the results of the over-representation analyses. 

4.3.3 Transcriptomics of neurons 

Neurons are the only cell type that is known to suffer the ill effects of prion infection and 

prion neurotoxicity is cell-autonomous, i.e., the expression of normal host prion protein is 

essential for the manifestation of toxicity (S Brandner et al., 1996). For these reasons, 

studying the transcriptomic perturbations in neurons is essential. However, given the fact 

that we are only able to assay living cells, a caveat of our approach is that it is possible 

that highly affected neurons are lost before sample collection and therefore not included 

in the dataset which would then be enriched with resilient populations that have survived. 

This effect might be especially true for the later time points, where vacuolation and 

neuronal loss is evident from the histopathological analysis. Still, this phenomenon might 

not be as profound since no major differences were identified in the cell proportions as 

discussed in the previous section. 

Keeping this potential caveat under consideration, we examined the DGE lists for all 

neuronal populations identified. Firstly, we identified numerous neuronal populations that 

behaved differently throughout the course of the disease, highlighting that changes in 

gene expression can be conditional on cell type. Most of the DEGs were found in the last 

two time points, while the dysregulation pattern of three phases is only evident in two 

clusters (7 and 11), which represent cortical neurons that show perturbations at 20 dpi 

which are reversed at 40 and 80 dpi, before becoming evident again at 120 dpi and 

amplified at the last time point. Overall, most of the DEGs were found to be 

downregulated, with a universal suppression of transcription especially apparent at the 

disease end-stage. 

The cell-specific response to disease is further demonstrated when looking at the 

segregation patterns of the different cell clusters in the low-dimensional space, where we 

observed that transcriptomic response is not only cell-type-specific but also cell-

subpopulation-specific, with neuronal subpopulations showing distinct grouping patterns. 
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The medium spiny neurons and some of the subpopulations of cortical neurons were 

found to be more affected by the disease with clear separation of cell clusters originating 

from RML-inoculated and CD1-inoculated mice, while the effect was less pronounced for 

the migrating interneurons. In contrast, some subpopulations of cortical neurons and 

migrating interneurons were shown to not be affected by the disease, with all samples 

clustering tightly together. These results once again highlighted the importance of single-

cell resolution transcriptomics. 

When reviewing the list of DEGs, we observed that the gene Maml3 is downregulated at 

120 dpi and end-stage in neuronal clusters only. In addition, the percentage of cells 

expressing the gene was found to be reduced. These results were concordant with the 

pseudobulk analysis, with p-values among the lowest in each cell cluster. The levels of 

Maml3 follow a downward curve with expression being suppressed following disease 

progression during the last two time points. These observations led us to investigate the 

involvement of the Notch signalling pathway, where Maml3, the Mastermind Like 

Transcriptional Coactivator 3, is a transcriptional coactivator. In addition, Maml3 is linked 

with positive regulation of transcription by RNA polymerase II creating a connection 

between the decreased levels of its expression and the generalised transcriptional 

suppression that we observed. The Notch pathway is important in development but has 

also been implicated in neurodegenerative and other diseases that cause cognitive 

impairment, notably Alzheimer's disease, multiple sclerosis, and amyotrophic lateral 

sclerosis (Ables et al., 2011; Ho et al., 2020). Previous studies have also identified links 

between the Notch pathway and prion diseases. A 2005 study showed that Notch-1 

expression was higher in RML-inoculated mice compared to healthy controls, with 

expression levels increasing concomitantly with PrPSc, while the levels of the Notch 

intracellular domain transcription factor (NICD), a cleavage product, were also higher in 

prion-infected ScN2a cells compared to uninfected N2a cells (Ishikura et al., 2005). A few 

years later it was demonstrated that inhibition of the Notch pathway and introduction of 

quinacrine that inhibits the formation of PrPSc in cultured cells can diminish PrPSc levels 

in the brains of RML-inoculated mice (Spilman et al., 2008). While the published literature 

suggests an increase in expression of Notch in prion disease, our data demonstrated the 

opposite trend. In addition, no other gene of the Notch pathway was found to be DE, 
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indicating that the dysregulation of Maml3 could be an independent event that could affect 

Malm3 target genes, but does not necessarily prove the downregulation of the complex 

Notch pathway. 

In addition, we identified transcriptomic changes in groups of genes encoding 

phosphodiesterases. These enzymes hydrolyse cyclic nucleotides, regulating the levels 

of the second messengers cAMP and cGMP and, thus, cell function (Boswell‑Smith et al., 

2006). These did not exhibit a uniform change in expression: Pde7b was found to be 

downregulated at 120dpi and end-stage, Pde10a upregulated at 20dpi and 

downregulated at 120dpi and end-stage, and Pde4a and Pde4b downregulated at the 

end-stage only. This irregular pattern suggests that these perturbations likely represent 

secondary effects and compensation to prior dysfunction, as supported by the literature 

(Bollen & Prickaerts, 2012). 

Finally, Sox5 and Sox6, two genes of the SoxD family, were found to be downregulated 

in neurons at the disease end-stage. This gene family called SoxD is important for neural 

development, while Sox5 has also been implicated in schizophrenia in human single-cell 

transcriptomics studies (Ruzicka et al., 2020). 

We then focused on interpreting the results of the over-representation analysis, which 

provided information about perturbed gene networks in each neuronal subcluster. Cluster 

11 of cortical neurons was the only cell cluster that had associated pathways at 20 dpi (it 

was also the cluster with the higher number of DEGs). The ORA identified terms related 

to the metabolism of glycosylated proteins, and the function of transferases, including 

enzymes that direct oligosaccharide processing. No neuronal clusters were identified by 

the ORA for the time points from 40 dpi to 120 dpi, however, in the disease end-stage, 

the majority of the perturbed clusters were of the neuronal type (29/37 clusters in total in 

MF, CC, and BP classifications), which is due to the allocation of numerous neuronal 

subclusters, but also highlighting the fact that prion disease disproportionally impacts 

neuronal populations. Even though the dysregulation profiles were different for distinct 

neuronal types (e.g., cortical neurons versus migrating interneurons), the most perturbed 

pathways were relevant to synaptic function (see also discussion in the previous section 

https://sciwheel.com/work/citation?ids=2000671&pre=&suf=&sa=0&dbf=0
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4.2.4). Finally, we were still not able to identify pathways related to cell death, highlighting 

that synaptic perturbations and cell death are two, separately regulated processes. 

We proceeded to validate our findings by quantifying the levels of genes associated with 

synaptic pathways using a quantitative real-time PCR assay, however, we were only able 

to validate a similar pattern for only 2 out of 5 genes assayed. We argued that the gene 

expression changes were small and the real-time PCR methods might not have enough 

statistical power to distinguish them when used with such small sample sizes (N = 4), 

especially since suspensions of mixed cell populations were used, where neurons were 

only a subset and transcriptomic changes were expected to be diluted. 

We suggest that future experiments planned to validate these transcriptomic changes 

specifically in neurons could be based on single-population sequencing. In short, 

populations of neurons could be isolated, then lysed and the RNA could be extracted. 

Library preparation and sequencing would then be possible following well-established 

bulk sequencing methods. These techniques are expected to have enough power to 

identify very small changes in gene expression. More details regarding future experiments 

will be discussed in section 6.2. 

4.3.4 Transcriptomics of astrocytes 

The role of astrocytes in prion disease has long been debated. Early studies had shown 

that mice with astrocyte-specific PrP expression could develop prion disease after 

inoculation with infectious material (Jeffrey et al., 2004; Raeber et al., 1997). However, 

future work questioned these findings, highlighting that the transgene constructs used 

had some activity in neurons as well (Marino et al., 2000). Further studies demonstrated 

that astrocytes can, indeed, replicate prions, however, they do not suffer from prion 

toxicity, and glial activation is non-autonomous (i.e., it requires neuronal PrP, not glial) 

(Krejciova et al., 2017; Lakkaraju et al., 2021). 

In our data, the astrocytes cluster 69 was the cluster with the higher number of identified 

differentially expressed genes — cluster 68 had a small number of cells and did not show 

interesting transcriptomic variation, so we will focus on cluster 69. Like the neuronal 

signature, most of the astrocyte-related genes were found to be suppressed during the 

disease end-stage. In addition, a PCA analysis of the different biological samples 
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indicated that transcriptomic changes in astrocytes followed disease progression during 

the last two time points. The ORA identified astrocytes as the only population with 

perturbed biological pathways at 120 dpi, while these perturbations were amplified in the 

end-stage. The affected pathways pertained to synaptic function, cell junctions, and cell 

adhesion. 

Indeed, astrocytic dysfunction has been implicated in prion disease through the activation 

of the unfolded protein response (UPR), while astrocytes have synaptogenic functions 

and there is evidence that astrocytes take an active part in the synapse as a third member 

— abnormal astrocytic function can cause or contribute to synaptic imbalances and 

cognitive impairment (Santello et al., 2019; Smith et al., 2020). Furthermore, the cellular 

component classification indicated the involvement of specifically glutamatergic synapse 

pathways at both 120 dpi and disease end-stage. Glutamate homeostasis is one of the 

fundamental functions of astrocytes, essential to protecting neuronal cells from glutamate 

build-up and excitotoxicity (Chung et al., 2015; Mahmoud et al., 2019). Our data indicated 

that all 20 genes that are involved in the glutamatergic synapse pathway (Nrxn1, Grm3, 

Plcb1, Dgkb, Cadm1, Gpm6a, Mdga2, Gpc6, Nlgn1, Rgs7, Adgrl3, Grid2, Magi2, Eps8, 

Dlgap1, Ncam1, Abr, Shisa9, Tnik, Ephb1) were downregulated at both 120 dpi and end-

stage, suggesting suppression of glutamate reuptake in prion disease and pointing 

towards reported mechanisms of neuronal toxicity (Goniotaki et al., 2017; Khosravani et 

al., 2008). 

Gap junctions allow astrocytes to form dynamic networks and, even though their exact 

role has not been extensively studied, there is evidence that they are essential for 

modulating inflammatory response, buffering ions and neurotransmitters, and distributing 

energetic substrates throughout the brain (Santello et al., 2019; Wallraff et al., 2004). 

Their malfunction has been implicated in numerous diseases and neurological disorders, 

including Charcot-Marie-Tooth disease, hereditary deafness, and uncorrelated motor 

neuron firing (Dong et al., 2018). It would, thus, be safe to assume that these networks 

could be affected in prion diseases, without it being clear, though, whether their role is 

causal or a secondary response to disease. 
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The Molecular Function classification identified cell adhesion as the top pathway for both 

120 dpi and end-stage time points. Cell adhesion molecules (CAMs), a subset of cell 

surface proteins involved in the binding of cells with the extracellular matrix or other cells, 

have previously been implicated in prion disease. Studies have shown that CAMs can 

bind PrPC, and stipulate that the function of normal PrP is related to the recruitment of 

signalling molecules that control the stability of the adhesion complexes on the plasma 

membrane (Martins et al., 2010; Petit et al., 2013; Schmitt‑Ulms et al., 2001). 

Furthermore, more recent transcriptomic studies have shown that cell adhesion and 

extracellular matrix organisation genes were enriched among astrocyte-specific genes 

(Scheckel et al., 2020). Nevertheless, the exact interplay between cell adhesion 

molecules and prion disease remains elusive. 

While astrocytes are indispensable to the maintenance and integrity of the central 

nervous system, certain conditions can cause a phenotypic shift, making these cells 

assume toxic phenotypes that contribute to neurotoxicity (Liddelow et al., 2017). This 

activation is mediated by the microglia and can have different outcomes in 

neurodegenerative conditions, leading to a crude separation of two astrocytic 

phenotypes: A1, the neurotoxic astrocytes induced by neuroinflammation, and A2, the 

neuroprotective astrocytes induced by ischemia. Even though we were interested in 

assaying the phenotype that astrocytes in our dataset assume, our attempt to quantify 

the A1 and A2 signatures using the single-cell RNA-seq data was hindered due to low 

sequencing sensitivity. We noticed that most of the A1/A2 gene sets were missing from 

our data, hindering the extraction of meaningful conclusions. This prompted us to use 

quantitative real-time PCR to assay these specific genes in nuclei suspensions. We found 

evidence of astrocytic activation in the disease end-stage, while the exact phenotype of 

those astrocytes was not clear (2/5 A1 genes were upregulated, A2 genes were up, and 

downregulated). These experiments highlight the need for more sensitive approaches, 

such as single-population sequencing or low-throughput high-sensitivity single-cell 

sequencing of sorted astrocytes (such as Smart-seq2). 

To address this limitation of our dataset, we used a different approach to identify the 

presence of astrocytes and quantify astrogliosis in the mouse brain. We performed 
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RNAscope, a special genomics technique based on in situ hybridisation for the detection 

of target RNA molecules of interest. We probed the mouse brain for Gfap mRNA, which 

is considered to be a highly specific marker for astroglia. Even though more recent studies 

have identified lower Gfap expression in neurons in the human hippocampus (Hol et al., 

2003), its expression is expected to be much higher in astrocytes and by comparing the 

two experimental groups we were able to quantify gliosis in mouse prion disease. Our 

findings demonstrated astrocytic involvement initiating as early as 80 dpi, which mirrored 

the transcriptomic results. Interestingly, Gfap was found to be elevated as early as 80 dpi 

in the hippocampus, thalamus and the brainstem, while its levels in the cortex (which was 

the tissue used for the transcriptomic study) remained lower until the 120 dpi time point. 

These results suggest that the astrocytic activation might have been even more 

pronounced had another anatomical region been used for single-cell RNA sequencing. 

Finally, no evidence of any effect of the residual inoculum in the activation pattern of the 

astrocytes was found, as Gfap was found to be increased in expression in regions further 

away from the inoculation site. 

4.3.5 Transcriptomics of oligodendrocyte precursor cells and mature oligodendrocytes 

The final populations on which we focused were the oligodendrocyte precursor cells 

(OPCs) and mature oligodendrocytes (MOLs). Oligodendrocytes are the myelinating glia 

of the central nervous system and there is evidence that they are incapable of replicating 

prions (Prinz et al., 2004). Even though demyelination is a common hallmark of 

neurodegenerative diseases such as multiple sclerosis or prion disease, these cells are 

generally understudied, and little is known in the context of prion diseases (Domingues 

et al., 2016). Rodent models lacking PrPC expression have been shown to develop a 

chronic demyelinating phenotype, highlighting the importance of axonal prion protein to 

peripheral myelin maintenance (Bremer et al., 2010; Nishida et al., 1999); however, these 

results could not be reproduced in non-rodent mammalian models (Richt et al., 2007; Yu 

et al., 2009). 

Our transcriptomic analysis identified an increased expression of C4b in MOLs in disease 

during the last two time points. C4b is part of the complement system, a system of plasma 

proteins and part of the immune system that is activated by pathogens or pathogen-bound 

https://sciwheel.com/work/citation?ids=5402557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5402557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12482438&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2252971&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2252971&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13225439,1016124&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9156268,13225440&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9156268,13225440&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0


226 
 

antibodies (Charles A Janeway et al., 2001). These results indicate that at least a 

proportion of the MOLs in our study could be activated. Indeed, there is evidence 

suggesting that oligodendroglial cells may be a source of complement proteins in the 

brain, contributing to the pathogenesis of inflammatory and neurodegenerative diseases 

such as Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease (Hosokawa et 

al., 2003; Rus & Niculescu, 2001). C4d-immunoreactive complement-activated 

oligodendrocytes have been described in progressive supranuclear palsy, multiple 

system atrophy, amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, 

and multiple sclerosis (Schwab & McGeer, 2002; Yamada et al., 1990, 1991). 

Another interesting, overexpressed gene identified in MOLs was Apod. The gene 

encodes apolipoprotein D (apoD), a lipocalin with antioxidant and neuroprotective 

functions (Dassati et al., 2014; He et al., 2009). ApoD has been shown to be upregulated 

in astrocytes during ageing and in neurological disorders including bipolar disorder, 

schizophrenia, Alzheimer’s disease, and Parkinson’s disease (Bhatia et al., 2013; de 

Magalhães et al., 2009; Glöckner & Ohm, 2003; Loerch et al., 2008; Mahadik et al., 

2002; Ordoñez et al., 2006; Thomas et al., 2001). In normal conditions, ApoD is 

expressed in low levels by the myelinating glia and its expression is rapidly increased in 

response to trauma or neurodegeneration. Evidence suggests that the increased 

production of ApoD constitutes an endogenous mechanism of protection 

(Corraliza‑Gomez et al., 2019; Dassati et al., 2014). In summary, our data suggested that 

homeostatic mechanisms could be activated as a response to prion disease and 

neurodegeneration, an observation that is further supported by studies in the prion field 

that have identified increased levels of Apod expression (Hwang et al., 2009; R. A. Moore 

et al., 2014; Scheckel et al., 2020). 

Turning to the ORA, we identified a suppressed cell adhesion pathway in OPCs: 7 out of 

8 genes associated with the pathway were found to be downregulated at the disease end-

stage (Nrxn1, Dscam, Ptprt, Dscaml1, Tnr, Ctnnd2, Nlgn1). We interpreted this finding as 

a possible sign of increased OPC mobility as a response to disease, however little is 

known regarding these migratory mechanisms (Fok‑Seang et al., 1995). 
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The biological process classification uncovered perturbed myelination and neuronal 

ensheathment pathways in MOL populations, an expected result in prion disease 

characterised by demyelination, as previously discussed. 

Due to the small numbers of MOLs, validation of gene signatures was not attempted, as 

the effects were expected to be diluted in the nuclei suspensions. Future validation of 

perturbed biological networks could be possible in sorted glial populations, using single-

population sequencing approaches. 
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5 Single-cell transcriptomics of human prion disease 

5.1 Introduction 

5.1.1 Chapter summary 

Following the successful mouse experiments, we decided to apply the same methodology 

to profile human prion diseases, specifically sporadic CJD. We designed a case-control 

study which included post-mortem and biopsy brain samples of sCJD patients and 

controls. Our results indicated that RNA quality and quantity in these samples were not 

sufficient for single-cell sequencing using high-throughput methods. We explore the 

reasons that this might be the case and suggest alternative approaches for future 

experiments. 

5.2 Results 

Nuclei extraction, library preparation, and sequencing 

We performed single-nucleus RNA sequencing on the post-mortem and biopsy frozen 

brain samples using the Parse Evercode WT protocol, a commercialised and improved 

version of the SPLiT-seq protocol that was used for the mouse samples. Human cortex 

samples were left to thaw and the grey matter of the superior frontal gyrus was hand-

dissected and dissociated (see chapter 2.13.1 for sample selection criteria). Nuclei 

suspensions were fixed and examined under the microscope for quality assurance. The 

modified protocol that included density gradient centrifugation remarkably improved the 

quality of the resulting suspensions, substantially reducing the amount of visible debris 

(data not shown). 

When all nuclei suspensions from all 26 samples were prepared, the samples were 

diluted and loaded on a single 96-well plate for the following split-pool barcoding rounds. 

Post-mortem sCJD samples, sCJD biopsies, control post-mortem samples and control 

biopsies were loaded on the same plate and processed in the same batch, in order to 

reduce possible batch effects. At the end of the barcoding protocol, we recovered a total 

of approximately 60,000 nuclei that were separated into 6 sub-libraries. Sub-libraries 1-5 

included approximately 9,000 nuclei, and sub-library 6 included approximately 5,000 – 
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7,000 nuclei. The resulting sub-libraries were processed in parallel for the preparation of 

sequencing libraries. 

Sequencing libraries were pooled in pairs and sequenced on the NextSeq 500 (Illumina) 

for a total of 3 high output sequencing runs, yielding approximately 50,000 expected 

transcriptomes. Sequencing generated approximately 850 million reads in total. The 

quality of the sequencing runs was assessed by running FastQC on the resulting fastq 

files and examining the statistics (External Supplementary File 2). After ensuring that 

sequencing was of adequate quality, the files were processed using the Parse pipeline to 

generate the count matrices, which were loaded into Seurat for further analysis. 

Quality control in Seurat 

We followed the same filtering criteria as previously and filtered cells based on their 

feature count and the percentage of mitochondrial genes. Cells with a feature count 

between 250 and 2500 and a percentage of mitochondrial genes < 1% were retained. 

This filtering removed the majority of the data and impacted each group of samples 

differently (Table 10 and Figure 5.1 a, b). For the human biopsies, only 28% and 27% of 

the data passed the filtering criteria for the controls and disease, respectively. In regards 

to the post-mortem samples, 50% of the data generated from the post-mortem controls 

passed filtering criteria, while only 0.98% of the data associated with the post-mortem 

sCJD samples were of high enough quality.  

Sample group No. of cells before 
QC 

No. of cells after QC Percentage of cells 
passing filters 

CJD biopsy 8536 2294 26.9% 

Control biopsy 5845 1611 27.6% 

CJD post-mortem 16916 158 0.9% 

Control post-mortem 13420 6341 47.3% 
Table 10: Filtering the human data removed a large percentage of low-quality transcriptomes. No.: 

number, QC: quality control. 

The number of features per nucleus was also found to be lower than in previous 

experiments (for the mouse data: M = 1050 features per nucleus, SD = 565; for the human 

data: M = 758 features per nucleus, SD = 496), even when only considering the cells that 

passed QC for the calculation of the means (Figure 5.1 c, d). 
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Based on the quality and the abundance of the data we decided to only proceed with 

analysing the groups of CJD and control biopsies since the post-mortem CJD samples 

were not usable after the extensive filtering. As part of the quality control process, we 

then clustered the 6 biopsy samples and generated a UMAP plot to assess sample 

distances in a low-dimensional space (Figure 5.2). We identified an underlying batch 

effect that drove cluster separation based on the sample identity and not cell type. Cells 

of each of the CJD biopsy samples mostly clustered together, with sample 16602 

clustering further away from all other samples. The same phenomenon was evident to a 

lesser degree for the other two CJD biopsy samples (12499 and 21843) which did not 

seem to occupy the same space on the UMAP plot. This result highlighted the existence 

of some underlying technical bias with an effect strong enough to prohibit cluster 

separation due to biologically meaningful transcriptomic variation. The effect could also 

have been amplified due to the low depth of the transcriptomic data available and the 

small number of cells retained in the dataset after quality control. 
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Figure 5.1: A quality control step filters out most of the sequenced transcriptomes, highlighting the 

poor quality of the starting material. (a, b) Bar plot of the number of cells identified per sample before 

and after quality control, respectively. While the filtering step removed a substantial percentage of cells 

from all samples, the filtering effect was more dramatic for the post-mortem sCJD brain samples, where 

only a very small number of cells passed the filtering criteria, rendering these samples unusable. In contrast, 

the post-mortem control brain samples were found to be of higher quality. Regarding the biopsy samples, 

both disease and control samples behaved similarly with approximately half of their transcriptomes passing 

the filtering criteria. (c, d) Violin plots show the distribution of the number of features per cell for each sample 

before and after quality control, respectively. The post-mortem control samples were found to have the 

c 

d 
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highest number of genes per nucleus, a measure of the quality of the original sample. The biopsies and 

post-mortem sCJD samples have a lower number of features per nucleus. The violin plots of the post-

mortem sCJD samples in d appear irregular due to the small number of cells per sample. 

 

Figure 5.2: A UMAP plot of the remaining biopsy samples visualises a non-uniform distribution of 

the cells. The transcriptomes of the biopsy samples were visualised in the two-dimensional space using a 

UMAP plot. While cell clustering was expected to be driven by different cell types, we instead identified a 

pattern where cell clusters mostly comprise cells of the same sample. This is most evident in sample 16602, 

which clusters separately from all other samples, but can also be seen for CJD samples 21843 and 12499, 

or controls 67460 and 47461 which occupy different places on the UMAP plot even though they belong to 

the same experimental group. This clustering pattern indicates a strong transcriptomic bias which hinders 

further analysis. 

We decided not to proceed with the rest of the analysis, as any results generated would 

be biased and uninterpretable. 

5.3 Discussion 

Having concluded the mouse study, our subsequent scientific questions required the 

generation of similar single-cell RNA seq. datasets from human samples. We aimed to 

examine how previous findings in mouse models could also be relevant to human disease 

and identify similarities and differences and investigate human prion diseases in single-

cell resolution for the first time. 
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The first challenge was faced when selecting the experimental cases and controls to be 

included in the study. We decided to introduce as few variables as possible, so we 

decided to only include codon 129 methionine homozygous cases of sporadic CJD. In 

addition, we decided to only focus on the frontal cortex, and more specifically the superior 

frontal gyrus, and only kept cases with samples stored in tissue cassettes. This last 

decision was important since tissue cassettes preserved the anatomy of the tissue slices 

and allowed us to easily identify the cortical region to be sampled. These cases had PrP 

type 2 or 3 (London classification), and we decided not to limit the selection to only one 

PrP type as this would decrease the number of available samples. 

This stringent selection process narrowed down the possible samples to 10 sCJD cases 

with frozen samples that fitted all criteria. We were then able to request non-prion control 

samples kindly provided by the Queen Square Brain Bank, that matched the gender and 

anatomical region of our cases. However, we were not able to match the age between 

two groups, with controls having a mean age of 13.3 years higher than the cases. 

Neuropathological investigations revealed mild pathological ageing in most of the 

samples of both groups, however these were deemed to be non-contributory to the main 

cause of death. 20 post-mortem samples in total were used for this study. 

In addition, we were expecting that the long post-mortem delays until sample collection 

could mean that transcriptomic information might be lost or altered, as RNA degradation 

and expression of ischemia-related gene patterns have previously been underlined 

(Ferreira et al., 2018; Heng et al., 2021; Highet et al., 2021). Indeed, the average post-

mortem interval from death to sample collection was 4.7 days across all samples. To 

address this limitation, we designed a parallel study of non-dominant lobe biopsy material 

that had been acquired by the National Prion Clinic and archived in our Unit. Brain 

biopsies have a much smaller and less variable interval from sample collection to storage 

usually less than 30 minutes. We were able to source 3 precious biopsy samples with 

enough material to be used in our transcriptomics study. Accepting that biopsies of 

healthy individuals would be difficult to find, and post-mortem samples would not be an 

ideal control for these samples, we decided to use frontal lobe biopsies from non-

neurodegenerative disease controls with mixed clinical diagnoses as the control group. 

https://sciwheel.com/work/citation?ids=12206765,4837574,10157408&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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These 3 samples were kindly provided by BRAIN UK and included tissue with only non-

specific minor histological changes (pathological non-diagnostic samples), sampled 

similarly to the biopsies. Exact age matching was not possible for these samples, however 

the difference in the means of ages between the two groups was small: the mean age of 

the controls was 4 years higher than the cases. 

At the beginning of this research project, we selected SPLiT-seq on the basis that it can 

be used for infectious material and is compatible with BSL-3 procedures and working 

conditions. Indeed, we successfully applied this methodology for the mouse study, 

however by the time the human study was to commence, an updated and optimised 

commercial version of the sequencing pipeline was available. This recent version 

produced by Parse Biosciences promised higher sensitivity and eliminated the need to 

source all reagents separately, streamlining the library generation protocols. Since both 

methods were fundamentally similar, we decided to proceed with the optimised protocol 

and the Parse Evercode WT kit, to harness the increased sensitivity that is claimed to 

offer. 

Nuclei suspensions and sequencing libraries were prepared in a BSL-3 laboratory as they 

contained human prions. Importantly, control and case samples were processed in pairs 

in parallel to minimise batch effects. A decontamination step was introduced to eliminate 

prion infectivity in all samples (including controls), and final libraries underwent quality 

control steps and were deemed to be of high quality before sequencing. Cases and 

controls were sequenced in the same run. Sequencing generated lower output than 

expected from high-output kits, which was attributed to a lower number of amplifiable 

molecules in each library. Nevertheless, the total number of reads was satisfactory for the 

projected number of cells sequenced. 

Initial quality control metrics on the raw sequencing data were satisfactory, however, 

when the data were demultiplexed and loaded into Seurat for quality control, it became 

evident that the quality of the dataset was lower than the previous mouse study. We 

decided not to relax our filtering criteria in order to keep the high-quality transcriptomes. 

We noticed that filtering affected differently the sample groups. Approximately half of the 
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cells originating from biopsy samples were excluded, while approximately all cells from 

the CJD group were deemed to be of unsuitable quality based on our filtering criteria. 

The decontamination step could have uniformly reduced the number of transcripts 

available for sequencing but could not explain the specific reduction in the number of 

high-quality transcriptomes of the sCJD samples. In addition, CJD samples and controls 

were processed in parallel, so we could exclude batch effects arising due to sample 

handling. 

A possible explanation for this discrepancy could be that the post-mortem delay was 

significantly longer for CJD patients compared to the non-prion controls (p-value = 0.0094; 

unpaired two-tailed t-test). While the mean post-mortem delay was approximately 6.5 

days for our sCJD samples, it was only 3 days for the non-prion controls, a difference in 

means of 3.5 days. 

Another possibility was that RNA quality was affected by prion disease. Studies have 

shown that total RNA quality was lower in the post-mortem AD human brain, and this 

affected mRNA quantification; however, this was not true for Parkinson’s disease or 

Huntington’s disease cases (Highet et al., 2021). In addition, a careful observation of the 

RIN values of samples from the Norsworthy et al. study reveals that RIN numbers for 

blood RNA from sCJD patients is consistently lower than age-matched controls (discovery 

phase RIN: sCJD samples = 5.6, SD = 1.3; control samples = 6.5, SD = 1.2. Replication 

phase RIN: sCJD samples = 5.8, SD = 1.8; control samples = 6.8, SD = 1) (Norsworthy 

et al., 2020). This evidence is not conclusive since there could be multiple confounding 

factors like differences in handling control and CJD samples, however, the possibility that 

the lower sample quality is a result of prion disease needs to be entertained. 

This lack of well-preserved samples might be one of the factors that hindered the 

generation of high-quality single-cell datasets in human prion diseases and could partially 

explain the lack of relevant publications among other factors such as sample scarcity and 

human prion infectivity. In contrast, there have been single-cell studies on other human 

neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease (Agarwal et 

al., 2020; Bryois et al., 2020; Mathys et al., 2019), indicating that single-nucleus 

sequencing of the post-mortem human brain is achievable. These studies used droplet-

https://sciwheel.com/work/citation?ids=12206765&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12160891&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12160891&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6887211,9511484,8789943&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6887211,9511484,8789943&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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based approaches for library preparation raising the possibility that our methodology 

might have exacerbated existing sample quality differences. These studies did not 

provide information regarding RIN numbers for the samples used. 

Since the data generated from the sCJD samples were of unusable quality, we decided 

to proceed with the analysis of the biopsies only. However, when we performed 

dimensionality reduction and drew the UMAP plots we identified a strong bias in the cell 

transcriptomes. Cells were clustering together not based on their cell type, but based on 

their biological sample of origin, indicating the existence of some strong transcriptomic 

bias that drives cell clustering. This phenomenon was especially evident for one of the 

biopsy samples, which occupied space further away from all other samples. We 

interpreted this finding considering the tissue quality when dissecting to prepare the 

suspensions. Samples originating from these human brain biopsies had no visible grey 

matter areas, instead, they consisted mostly of fat and white matter. Since the amount of 

sample used was small and biopsy samples could not have been collected from the same 

brain regions, we attributed the UMAP representation to sampling bias. This spurious 

sample was ultimately removed from the dataset. 

Based on these preliminary results we decided not to proceed with further analysis and 

interpretation of our data. The small number of samples and cells remaining — 2 sCJD 

and 3 control biopsies and fewer than 3000 cells — combined with an overall biased 

dataset would prohibit the interpretation of the data and could lead to erroneous 

conclusions. Based on these experiments, we believe that the way forward with human 

post-mortem sCJD brain samples necessitates more sensitive single-nucleus sequencing 

protocols, or even single-population or bulk sequencing approaches. 
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6 Conclusions and future directions 

6.1 Conclusions 

This thesis set forth to profile the transcriptional landscape of prion disease in three 

different systems — cell lines, mouse and human brain — dissecting disease progression 

and aiming to characterise the heterogeneity of cellular response to prion infection, 

assess overlapping gene expression patterns in different organisms, and uncover 

biological mechanisms of prion toxicity. Previous studies in neurodegenerative diseases 

suggested that cellular response to disease is, indeed, heterogeneous, with each cell type 

— and their subtypes — assuming distinct phenotypes the function and impact of which 

we have just started to understand. 

To address the limitations of previous transcriptomics studies, we investigated the 

suitability of contemporary single-cell and single-nucleus sequencing approaches. We 

established two fundamentally different methodologies in our Unit, based on droplet 

encapsulation and split-pool barcoding of single nuclei. Along with the practical 

experiments, we also developed and tested in silico analytical pipelines that harnessed 

the power of our Unit’s computational infrastructure to deliver reproducible results and 

software to allow us to explore, visualise, and query sizable scRNA-seq datasets to 

answer our scientific questions. 

We put our physical and computational methods to the test by profiling uninfected and 

chronically prion-infected cell lines. Even though we were not able to identify any 

transcriptomic effects of prion infection, these preliminary experiments allowed us to 

assess the suitability of the methodologies for future studies. We concluded that SPLiT-

seq was more suitable for use with infectious material and compatible with BSL-3 working 

practices, while it also allowed the processing of multiple frozen samples in parallel. 

We then designed a tightly controlled time-course mouse experiment and applied our 

previous knowledge to transcriptionally profile the frontal lobe of 95 mice in single-cell 

resolution. This was the first single-cell transcriptomics study of RML prions in rodent 

models and generated a breadth of information that can be used as a reference for future 
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experiments. We found evidence supporting our hypothesis that cellular response to 

disease is heterogenous and identified cell populations that differently respond to 

inoculation with infectious material and prion propagation. We did not find evidence of 

selective toxicity contemplating that single-cell studies might not be the most sensitive 

tool for the quantification of small fluctuations in the numbers of cell populations. In 

accordance with previous research and published data, we were able to identify activated 

glial populations and an especially strong astrocytic signature, as well as activated 

homeostatic mechanisms, especially at the disease end-stage. 

Some of our more interesting and unexpected findings included the observation that prion 

infectivity does not elicit a transcriptomic response in vivo, which supports the hypothesis 

that the infectious and the toxic prion species are different entities. In our rodent model, 

we described a triphasic transcriptomic response to prion infection where the early 

disease stages mirrored the response of the end-stage in lower amplitude, suggesting 

that the system could recover after the external introduction of toxic species until these 

species replicated and reached the threshold titres where cellular response became 

evident once again (at 80 and 120 dpi). 

Our pathway analyses uncovered biological pathways perturbed across different cell 

types, with synaptic perturbations being the hallmark of cellular response to prion infection 

and toxicity. In addition, we identified dysregulated mechanisms of cell junction formation, 

ion transport, cell adhesion and pathways of excitotoxicity, while we did not find evidence 

of cell death. 

We proceeded to apply our methodology to further characterise human prion disease, 

with, however, limited success. We tapped into our Unit’s resources and collaborators to 

acquire the best-kept post-mortem sporadic CJD brain samples and age and gender-

matched controls, in an experiment carefully designed to control variables such as the 

Prnp genotype, sample handling batch effects, and brain region sampling differences. 

The highlight of the human study was the use of extremely precious archived sCJD 

human brain biopsies and non-neurological control brain biopsies. Even though we were 

not able to generate useful transcriptomic information, we did demonstrate that different 
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methodological approaches are needed to assay these archived human brain samples 

and special considerations must be made to ensure sample quality. 

Overall, we generated a rich and novel resource that includes transcriptomic and 

histopathological information which will be available to the scientific community. It is our 

hope that it will be further explored and utilised to provide answers to scientific questions, 

facilitate the design of future targeted experiments, act as an example of correctly 

controlled experimental design, and, more importantly, raise subsequent questions and 

stimulate curiosity in the exciting field of prion and prion-like diseases. 

6.2 Future directions 

As expected from novel, unbiased studies, our research has probably raised more 

questions than the ones it set out to answer. Our datasets can be used as a starting point 

for further exploration and the generation of interesting hypotheses that would require 

additional experimentation to be evaluated. 

One of the points that became increasingly clear throughout our research was that frozen 

nuclei from archived brain tissue do not contain RNA of high enough quantity and quality 

to provide deep insights into biological mechanisms that involve genes expressed in lower 

levels. An interesting — although technologically challenging — follow-up of our work 

would be the deep sequencing of sorted single populations. One of the caveats is the 

successful dissociation of the frozen tissue to release nuclei without damaging their 

structure and nucleic acids, as well as the selection of protein markers for flow-cytometry-

based cell sorting, especially when dealing with nuclei instead of whole cells. The ideal 

experiment would involve a freshly isolated mouse brain that is enzymatically and 

mechanically dissociated to get single live cells (not nuclei) that can then be sequenced 

in depth using sensitive, low-throughput protocols, like Smart-seq2. Unfortunately, the 

logistics of processing multiple samples as quickly as possible make these experiments 

complicated, while this methodology would not apply to any archived (i.e., frozen) brain 

tissue, excluding, thus, the use of human samples. 

An alternative approach that could eliminate the need of using human brain tissue, while 

also providing a suitable model to study prion diseases would be the use of human brain 

organoids. Brain organoids are three-dimensional tissues generated from human 
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embryonic stem cells that can recapitulate aspects of the in vivo physiology and 

architecture of the human brain (N. Sun et al., 2021). They can act as a useful tool to 

provide non-invasive access to patient-derived human tissue and enable studies of 

human brain development, brain cancer and neurodegenerative diseases. Proof-of-

principle studies have demonstrated their utility in studying Alzheimer’s and Parkinson’s 

diseases and ALS (Choi et al., 2020; H. Kim et al., 2019; Osaki et al., 2018). In addition, 

some progress has also been made in the field of prion diseases, where human organoids 

have been shown to become infected with and accumulate human prions (Groveman et 

al., 2021). While caveats need to be taken into account (heterogeneity of the models, 

absence of non-neuronal linage cells, size constraints), infecting with prions and single-

cell sequencing these models might provide a powerful alternative to profiling archived 

human brain tissue, especially important in rare diseases, such as sCJD. 

Based on our quality control assays, the only feasible way to generate sequencing 

libraries from the archived human sCJD brain samples would be to perform bulk 

sequencing of specific anatomical regions of the brain, such as the superior frontal gyrus 

of the cortex. Even though such methods are unable to provide data at single-cell 

resolution, the gentler processing of the samples (no dissociation required) and the 

simultaneous sequencing of the RNA content of tens of millions of cells would probably 

allow the preparation of higher-quality sequencing libraries. Then, one could envisage 

those specific genes of interest identified in the mouse study relevant to specific cell 

populations could be examined in the bulk dataset, allowing to make some inferences 

regarding cell population behaviour. Furthermore, no next-generation sequencing data is 

available for the prion-infected human brain. 

A caveat for all possible experiments discussed would be that they need to include ways 

to mitigate human prion infectivity. As we have found, decontamination methods are 

usually not compatible with sequencing protocols and health and safety guidelines do 

restrict the experimental freedom that is taken for granted in other neurodegenerative 

diseases. 

Focusing on mouse experiments, which are easier to control and do not require BSL-3 

work, one of the more interesting experiments would aim to transcriptionally characterise 

https://sciwheel.com/work/citation?ids=11005062&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5898962,6662386,8194876&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13307718&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13307718&pre=&suf=&sa=0&dbf=0
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the activation state of microglia in RML-infected mice. Due to their small numbers, 

microglia were not detectable in our study, however, their percentage can be increased 

with fluorescence-activated or magnetic sorting methods. Then the enriched population 

can be sequenced either in bulk or using sensitive single-cell methods as discussed in 

(H. Wang, 2021) for Alzheimer’s disease. 

In addition, another option to study the effect of disease in a controlled way would be to 

assay cellular response in regions of the mouse brain that are more and less affected by 

the disease. As discussed in section 4.2.2, prion pathology spreads gradually throughout 

the mouse brain, so, especially at time points around 120 dpi, some brain regions are 

expected to have extensive abnormal PrP deposition and vacuolation, while others will 

be less affected. Microdissection of these regions and following dissociation and 

sequencing using bulk or single-cell methods could provide insights into early disease 

mechanisms and biological pathways that control cell susceptibility to prion disease. 

Similar studies in AD have identified differences in the phenotype and number of 

astrocytes around amyloid plaques (G. R. Frost & Li, 2017; Perez‑Nievas & Serrano-

Pozo, 2018). 

Another way to assess prion spread in the mouse brain and accompanying transcriptomic 

response would be to perform spatially resolved transcriptomics (Nature method of the 

year 2020) (“Method of the Year 2020: spatially resolved transcriptomics.,” 2021). These 

ground-breaking methods that empower large consortia such as the Human Cell Atlas 

allow capturing of both transcriptomic and anatomical information and, when coupled with 

immunohistochemical staining, could be used to investigate the cellular response to prion 

infection in multiple brain regions, and, possibly, the correlation of gene expression 

patterns with prion pathology across the whole mouse brain. One of the caveats of these 

methods is that the sensitivity is usually lower than single-cell approaches, so fewer 

transcripts may be identified. 

Prion biology is further complicated due to the existence of multiple prion strains. In this 

thesis, we only focused on the RML murine prion strain to minimise the variables 

considered in our experiments, however, similar research could be performed for different 

mouse strains. These experiments could highlight the specificity of cellular response to 

https://sciwheel.com/work/citation?ids=12234066&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4625029,5282722&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4625029,5282722&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10257857&pre=&suf=&sa=0&dbf=0
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each prion strain; however, the transcriptomic perturbations identified may be evident of 

a general response to neurodegenerative disease and not relevant to the RML prion 

strain. In addition, previous work has shown that the inflammatory response is similar in 

3 murine prion strains (Carroll et al., 2015, 2016). 

One of the central findings of our research was that transcriptomic perturbations proceed 

in three phases: they become evident early after inoculation, then follows a period of 

transcriptomic silence, before increasing again at 120 dpi and becoming more 

pronounced at the end-stage. Based on the infectivity data, we hypothesised that prion 

infectivity does not elicit a widespread transcriptomic response, which is caused by a toxic 

prion species. To assess whether this pattern is dependent on the host PrP levels, our 

time-course experiments could be replicated in PrP-overexpressing mouse lines. If these 

perturbations are caused by a toxic prion species we would expect these changes to 

appear more quickly, based on the research by (Sandberg et al., 2014). In addition, 

recent efforts in our Unit are expected to lead to the isolation of the lethal PrP species, 

termed PrPL. An interesting experiment would involve direct intracerebral inoculation of 

mice with this purified lethal species in order to assay the transcriptomic response. These 

experiments could allow the discrimination between prion-specific transcriptomic 

perturbations and changes relevant to global neuroinflammation. A similar experiment 

that could help dissect mechanisms of toxicity would be to study the cellular response of 

Prnp-null mice to RML inoculation. Activated gene networks could also shed some light 

on prion clearance mechanisms, potentially contributing to the search for disease-

modifying drugs. 

Finally, some technological advances would be required to assay the correlation between 

single-cell transcriptomics and prion infectivity. As we demonstrated in our study, prion 

infectivity is lost when nucleus suspensions are prepared. Future experiments with fresh 

mouse brain tissue which can be more easily dissociated to prepare single-cell 

suspensions (not nucleus) could allow us to assay the prion infectivity of each sample. 

This would be especially interesting in single populations which could be sorted based on 

the surface PrP expression of each cell. A comparison of the PrP-rich and PrP-poor cell 

populations could uncover gene expression changes relevant to PrP expression. A more 

https://sciwheel.com/work/citation?ids=13244348,3424879&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7149481&pre=&suf=&sa=0&dbf=0
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ambitious experiment could involve methodologies that allow assaying two modalities in 

single-cell resolution, namely infectivity and gene expression. A protocol that can 

generate transcriptomic and prion infectivity information for each cell in parallel is being 

developed in our Unit, and we are excited to explore all the different experimental 

possibilities that would be unlocked when this system is operational. 
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7 Supplementary materials 

7.1 Figures 
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Supplementary Figure 1: Sdha and Tubb4a were selected as internal reference genes for the 

normalisation of the real-time PCR data. Raw Ct values were plotted for the two endogenous control 

genes. Ν = 4 biologically independent samples in each time point/inoculum combination. 

 

Supplementary Figure 2: A representative image of the layout of a loaded SPLiT-seq 96-well plate 

used for the 1st round of barcoding. The colours represent samples of different experimental groups: 

green for PBS, blue for CD1, and red for RML. The numbers correspond to sample IDs (from the end-stage 

mice in this case). 
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Supplementary Figure 3: Representative TapeStation traces of (a) a library after the first PCR 

amplification and (b) after tagmentation. Samples were run on (a) a gDNA or (b) an HSD5000 tape. The 

x-axis represents the molecular weights of analysed nucleic acids and the y-axis the fluorescence intensity, 

which corresponds to the mass of nucleic acids assayed. The “Lower” and “Upper” peaks correspond to 

internal standards included in the loading buffer, essential for accurate molecular weight estimation and 

quantification. 
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Supplementary Figure 4: Filtering of the mouse transcriptomics data. (a) The number of features 

(genes) identified before data filtering. (b) Correlation between the number of counts and features before 

data filtering. (c) The number of features identified after filtering out cells with fewer than 250 or more than 

2500 features or a mitochondrial gene percentage of more than 1%. (d) Correlation between the number 

of counts and features after data filtering. Each violin represents a biological sample, colours represent the 

experimental groups. 
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Supplementary Figure 5: No bias was identified regarding the transcript lengths or chromosomes 

of the identified features. (a) Histograms of the chromosomes where identified features reside. (b) 

Histograms of the transcript lengths of identified features. All identified features from each time point were 

used for these plots. Transcript length in nucleotides. 

b 
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Supplementary Figure 6: PCA plots of cell cycle genes suggest modest cell cycle effects. Clusters 

of cells are not separated in the two-dimensional space of the first two principal components based on the 

cell cycle. The cell cycle genes used for the computation of the PCs are listed in the methods section. 
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Supplementary Figure 7: The majority of differentially expressed genes between the two control 

groups are identified only once across all cell clusters and time points. The histogram shows the 

frequency that a gene was identified to be differentially expressed across all time points and cell clusters. 

After setting an occurrence threshold of 5, we identified a set of 7 genes that strongly deviated from the rest 

(Calm1, Cdk8, Cmss1, Malat1, mt-Rnr1, mt-Rnr2, and Rn18s) and were subsequently flagged for removal. 
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Supplementary Figure 8: No bias was identified regarding the transcript length and chromosomes 

of differentially expressed genes and no outlier samples were found to drive differences in gene 

expression. (a) The histogram shows the distribution of chromosomes that DEGs reside. (b) The histogram 

shows the transcript lengths of identified DEGs. Transcript length in nucleotides. (c) Representative plots 

of the expression of reported DEGs between different samples. While single-cell data is sparse and there 

is variability in the gene expression of some samples, there were no specific sample outliers that drove the 

results of the differential expression analysis. 

End-stage 
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Supplementary Figure 9: There is a positive correlation between the number of DEGs identified and 

the numbers of cells in each cluster when using any of the three DE approaches. The three plots 

show the total number of DE genes identified in each cluster across all time points (y-axis) versus the total 

number of cells in the same cluster (x-axis) for DE analyses performed using Seurat, DESeq2 or 

glmGamPoi. The correlation coefficients were calculated to be 0.28 for Seurat, 0.78 for DESeq2 and 0.78 

for glmGamPoi. Annotation labels correspond to cluster numbers. 
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Supplementary Figure 10: Real-time quantitative PCR expression data for 6 genes that were found 

to be differentially expressed in early and late time points. Only 2 of the genes (Abi3bp and Auts2) 

were found to be significantly differentially expressed in the last time point. Statistical test: Wilcoxon rank-

sum test. * represents a p-value < 0.05. Each point represents a biologically independent sample. The 
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starting material was bulk brain nuclei suspension, so the effect of specific cell populations could have been 

diluted in the bulk material. 
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Supplementary Figure 11: Real-time quantitative PCR expression data for 5 genes that were found 

to be differentially expressed in late time points and are also part of the synapse organisation Gene 

Ontology pathway. Only 2 of the genes (Apoe and Grin2a) were found to be significantly differentially 

expressed in the last time point. Statistical test: Wilcoxon rank-sum test. * represents a p-value < 0.05. 

Each point represents a biologically independent sample. The starting material was bulk brain nuclei 

suspension, so the effect of specific cell populations could have been diluted in the bulk material. 
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Supplementary Figure 12: Real-time quantitative PCR expression data of Pan (Hspb1, Vim), A1 (C3, 

Fkbp5, Gbp2, Ggta1, Serping1), and A2 (Cd109, S100a10, Tm4sf1) astrocyte signature genes. Both 

pan-astrocyte signature genes were found to be significantly upregulated in the last time point and Vim was 

also found to be significantly upregulated at 20 dpi, suggesting astrocyte activation. 2/5 A1 signature genes 

were significantly upregulated at the last time point, suggesting the existence of A1 astrocytes. Cd109 A2 
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signature gene was significantly upregulated at the disease end-stage, while Tm4sf1 was significantly 

downregulated at 80 dpi and the end-stage. Statistical test: Wilcoxon rank-sum test. * represents a p-value 

< 0.05. Each point represents a biologically independent sample. The starting material was bulk brain nuclei 

suspension, so the effect of specific cell populations could have been diluted in the bulk material. 

  

Supplementary Figure 13: Representative knee plots from two samples of the 20 dpi time point 

where the cell identification threshold has been set (a) correctly and (b) incorrectly. The knee plots 

represent the sorted number of cell barcodes (x-axis) versus the number of UMI counts detected per cell 

barcode (y-axis). The plots are expected to contain two such knees, and the mid-point of the first knee is 

usually used as a cut-off to differentiate real cells from the background. (a) The splitseq-tools algorithm has 

successfully identified the knee of the plot and set a threshold of 380 reads per nucleus. (b) In some cases, 

when the slope is not pronounced enough, the algorithm can omit the first knee of the plot and identify the 

second one, substantially inflating the number of identified cells and decreasing the mean number of UMIs 

per cell. Here the algorithm has selected a threshold of only 8 reads per nucleus. 

a b 
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7.2 Tables 
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Supplementary Table 1: Tables of demographic and clinicopathological information of patients 

included in the human transcriptomics study. PDG: sample identifier, Patient ID: patient identifier, PM 

No: post-mortem examination identifier, PMI: post-mortem interval between death and sample archiving, 

PrP type: the PrP type (London classification) evaluated using Western Blotting of proteinase-K-digested 

frontal cortex brain sample, Codon 129: aminoacid sequence of the PrP protein at codon 129 (MM: 

methionine homozygous, MV: methionine/Valine heterozygous, VV: Valine homozygous), Clinical duration: 

disease duration from the first symptoms until death (y: year(s), m: month(s)), N/A: not available/not 

applicable. 

 

Time point Group TCIU Log (TCIU) 

20 dpi CD1 N/A N/A 

20 dpi CD1 N/A N/A 

20 dpi CD1 N/A N/A 

20 dpi RML N/A N/A 

20 dpi RML 21423.51435 4.330890715 

20 dpi RML N/A N/A 

40 dpi CD1 N/A N/A 

40 dpi CD1 N/A N/A 

40 dpi CD1 N/A N/A 

40 dpi RML N/A N/A 

40 dpi RML 8028564.047 6.904637876 

40 dpi RML 16991086.98 7.230221163 

80 dpi CD1 N/A N/A 

80 dpi CD1 N/A N/A 

80 dpi CD1 N/A N/A 

80 dpi RML 60898895.24 7.784609414 

80 dpi RML 61275399.84 7.787286154 

80 dpi RML 398107170.6 8.6 

120 dpi CD1 N/A N/A 

120 dpi CD1 N/A N/A 

120 dpi CD1 N/A N/A 

120 dpi RML 68058767.02 7.832884077 

120 dpi RML 398107170.6 8.6 

120 dpi RML 501187233.6 8.7 

end-stage CD1 N/A N/A 

end-stage CD1 N/A N/A 

end-stage CD1 N/A N/A 

end-stage RML 51708664.68 7.713563323 

end-stage RML 46211264.52 7.664747853 

end-stage RML 79421324.62 7.899937126 

Supplementary Table 2: Infectivity values of mouse brain homogenates from the mouse 

transcriptomics study. Values were calculated using the scrapie cell assay and reported after the 3rd cell 
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passage. TCIU: tissue culture infectious units, Log (TCIU): base-10 logarithm of the tissue culture infectious 

units. N/A values represent zero infectivity. 

 

Time 
point 

Animal 
number 

Group 
Number of 

cells 
Time 
point 

Animal 
number 

Group 
Number of 

cells 

20dpi 828690 PBS 1153 80dpi 829369 RML 1630 

20dpi 828692 PBS 2021 80dpi 829370 RML 2959 

20dpi 828693 PBS 2201 80dpi 829371 RML 2267 

20dpi 828695 CD1 3448 80dpi 829373 CD1 1792 

20dpi 828696 CD1 4948 80dpi 829375 CD1 1926 

20dpi 828698 CD1 2357 80dpi 829380 RML 1864 

20dpi 828699 CD1 2710 80dpi 829381 RML 1848 

20dpi 828700 CD1 1984 80dpi 829382 RML 1339 

20dpi 828701 CD1 1631 80dpi 829387 RML 1283 

20dpi 828702 CD1 1374 120dpi 829389 PBS 1207 

20dpi 828703 CD1 3316 120dpi 829390 PBS 1512 

20dpi 828709 RML 4136 120dpi 829392 PBS 1508 

20dpi 828710 RML 2104 120dpi 829395 CD1 1307 

20dpi 828712 RML 2502 120dpi 829396 CD1 1997 

20dpi 828713 RML 1970 120dpi 829398 CD1 1964 

20dpi 828715 RML 1834 120dpi 829399 CD1 2112 

20dpi 828717 RML 2057 120dpi 829400 CD1 2244 

20dpi 828718 RML 944 120dpi 829401 CD1 1342 

20dpi 828719 RML 61 120dpi 829402 CD1 1305 

40dpi 828725 PBS 1389 120dpi 829407 CD1 1760 

40dpi 828727 PBS 1165 120dpi 829408 RML 2306 

40dpi 828728 PBS 1390 120dpi 829409 RML 1681 

40dpi 828732 CD1 2554 120dpi 829410 RML 2188 

40dpi 828735 CD1 2551 120dpi 829411 RML 2352 

40dpi 828737 CD1 1974 120dpi 829414 RML 3390 

40dpi 828738 CD1 2325 120dpi 829415 RML 1732 

40dpi 828740 CD1 2418 120dpi 829417 RML 1751 

40dpi 828741 CD1 1495 120dpi 829420 RML 1438 

40dpi 828742 CD1 1738 end 829972 PBS 2262 

40dpi 828743 CD1 1446 end 829973 PBS 1888 

40dpi 828746 RML 1915 end 829974 PBS 1783 

40dpi 828747 RML 2875 end 829980 CD1 3245 

40dpi 828748 RML 2016 end 829981 CD1 2902 

40dpi 828750 RML 1883 end 829982 CD1 1929 
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40dpi 828751 RML 1476 end 829985 CD1 3361 

40dpi 828752 RML 1429 end 829986 CD1 2978 

40dpi 828756 RML 1283 end 829987 CD1 1938 

40dpi 828757 RML 2517 end 829988 CD1 2338 

80dpi 829354 PBS 1915 end 829989 CD1 2225 

80dpi 829355 PBS 1316 end 829993 RML 3360 

80dpi 829356 PBS 1763 end 829994 RML 3698 

80dpi 829359 CD1 2015 end 829995 RML 2575 

80dpi 829360 CD1 2228 end 829996 RML 1867 

80dpi 829362 CD1 2674 end 829997 RML 2247 

80dpi 829364 CD1 2376 end 829998 RML 1086 

80dpi 829365 CD1 2154 end 829999 RML 4537 

80dpi 829367 CD1 1381 end 830003 RML 2637 

80dpi 829368 RML 2887         

Supplementary Table 3: Numbers of cells identified from each biological sample. 

 

 Cluster name 
Counts 
mean 

Counts 
median 

Counts 
SD 

Features 
mean 

Features 
median 

Features 
SD 

2
0

 d
p

i 

61 OPC 809 555 665 564 432 349 

68 Astro Slc7a10 805 563 687 560 427 368 

69 Astro Prdm16 932 605 856 626 459 437 

46 Migrating Int Cpa6 1106 685 1060 672 488 475 

48 Migrating Int Pbx3 1115 687 1113 687 509 495 

66 VLMC Slc6a13 1147 687 1060 740 536 519 

49 Migrating Int Lgr6 1165 732 1082 717 534 488 

57 Oligo MOL 1325 793 1236 800 569.5 575 

47 Migrating Int Foxp2 1148 854 935 709 575 425 

64 Endothelia 1518 1122 1201 946 781 596 

13 CTX PyrL5 Fezf2 1554 1230 1111 906 791 471 

4 Medium Spiny Neurons 1683 1301 1243 941 811 524 

50 Migrating Int Adarb2 1873 1484 1228 1007 897.5 503 

10 CTX PyrL4 Rorb 1852 1546 1174 1015 927 476 

17 CTX PyrL6 2033 1633 1354 1075 962 534 

44 Migrating Int Lhx6 2065 1715 1344 1119 1019.5 553 

11 CTX PyrL4/L5 2169 1815 1444 1120 1034 557 

14 CTX PyrL6a 2217 1911.5 1409 1141 1072.5 541 

9 CTX PyrL2/L3/L4 Mef2c 2363 2051 1523 1195 1137 575 

7 CTX PyrL2/L3 Met 2443 2275 1237 1241 1212.5 461 

15 CTX PyrL5/L6 Sulf1 2584 2292 1463 1278 1205 548 

18 CLAU Pyr 2667 2525 1380 1308 1308 493 
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12 CTX PyrL5 Itgb3 2971 2805.5 1549 1386 1361 521 
        

4
0

 d
p

i 

68 Astro Slc7a10 869 546 758 577 403 389 

61 OPC 1037 689 926 670 496 455 

69 Astro Prdm16 1073 714 908 693 518 456 

46 Migrating Int Cpa6 1397 819 1337 786 557 563 

49 Migrating Int Lgr6 1319 870.5 1107 788 610 513 

47 Migrating Int Foxp2 1323 897 1102 761 591 467 

72 Ependyma 1383 920 1131 881 651 578 

66 VLMC Slc6a13 1507 944.5 1341 900 678.5 608 

48 Migrating Int Pbx3 1414 945 1140 826 648 508 

57 Oligo MOL 1673 1146 1370 972 811 608 

10 CTX PyrL4 Rorb 1664 1315 1180 911 792 479 

4 Medium Spiny Neurons 1928 1513 1385 1019 889 552 

13 CTX PyrL5 Fezf2 1869 1581 1135 1024 946 465 

64 Endothelia 1883 1607 1291 1130 1069.5 624 

56 Oligo MFOL1 2089 1661.5 1420 1132 1047.5 601 

50 Migrating Int Adarb2 2132 1716 1447 1060 937 538 

17 CTX PyrL6 2103 1741 1429 1081 978.5 552 

9 CTX PyrL2/L3/L4 Mef2c 2244 1824 1600 1123 1036.5 586 

44 Migrating Int Lhx6 2204 1852.5 1427 1140 1052.5 557 

11 CTX PyrL4/L5 2300 1946.5 1551 1151 1078.5 573 

7 CTX PyrL2/L3 Met 2465 2185 1441 1209 1167 515 

14 CTX PyrL6a 2599 2322 1542 1252 1212 544 

18 CLAU Pyr 2969 2717.5 1569 1387 1376.5 555 

15 CTX PyrL5/L6 Sulf1 3118 2984.5 1649 1425 1416.5 571 
        

8
0

 d
p

i 

68 Astro Slc7a10 710 500.5 630 490 377.5 322 

61 OPC 782 540.5 688 537 412 349 

69 Astro Prdm16 783 560 654 536 415 343 

66 VLMC Slc6a13 935 567.5 1000 620 451 474 

57 Oligo MOL 1111 645 1061 693 476 500 

46 Migrating Int Cpa6 976 656 858 609 475.5 400 

72 Ependyma 1146 716 963 756 541 496 

64 Endothelia 1179 836 955 769 595.5 500 

47 Migrating Int Foxp2 1180 857 987 717 584 435 

4 Medium Spiny Neurons 1808 1435 1286 977 869 513 

50 Migrating Int Adarb2 1902 1559 1237 1003 912 475 

10 CTX PyrL4 Rorb 1780 1559.5 987 983 919.5 401 

13 CTX PyrL5 Fezf2 1861 1567 1157 1032 956 468 

17 CTX PyrL6 2120 1754.5 1378 1097 1011 522 
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44 Migrating Int Lhx6 2111 1787 1352 1123 1032 537 

9 CTX PyrL2/L3/L4 Mef2c 2296 1920.5 1523 1163 1092 558 

11 CTX PyrL4/L5 2377 2016 1551 1177 1116 554 

14 CTX PyrL6a 2444 2110.5 1474 1215 1152.5 524 

7 CTX PyrL2/L3 Met 2649 2390.5 1387 1308 1266 485 

15 CTX PyrL5/L6 Sulf1 2662 2446 1494 1283 1257 540 

18 CLAU Pyr 2873 2525.5 1525 1387 1323.5 536 

12 CTX PyrL5 Itgb3 3300 3308.5 1548 1474 1497 493 
        

1
2

0
 d

p
i 

63 Microglia 878 555 851 622 459 438 

68 Astro Slc7a10 930 638 824 619 470 416 

61 OPC 956 694 794 632 507 384 

46 Migrating Int Cpa6 1110 696.5 1044 666 492 452 

66 VLMC Slc6a13 1164 747.5 1113 745 563.5 505 

69 Astro Prdm16 1043 756.5 858 670 535 415 

57 Oligo MOL 1426 825.5 1329 839 592.5 585 

49 Migrating Int Lgr6 1403 909 1166 830 630 523 

47 Migrating Int Foxp2 1490 1141 1085 857 727 454 

4 Medium Spiny Neurons 2119 1776 1369 1102 1014 526 

13 CTX PyrL5 Fezf2 2211 1880 1233 1181 1096 473 

10 CTX PyrL4 Rorb 2255 2000 1272 1162 1094 471 

50 Migrating Int Adarb2 2349 2028.5 1465 1169 1106 537 

44 Migrating Int Lhx6 2491 2168 1460 1265 1194 549 

17 CTX PyrL6 2523 2243 1487 1243 1199 535 

9 CTX PyrL2/L3/L4 Mef2c 2766 2463 1692 1320 1305 584 

14 CTX PyrL6a 2761 2545.5 1626 1323 1309.5 567 

7 CTX PyrL2/L3 Met 2814 2559 1533 1349 1323 519 

11 CTX PyrL4/L5 2888 2630.5 1640 1362 1334.5 555 

12 CTX PyrL5 Itgb3 3340 2955 1906 1493 1494 586 

15 CTX PyrL5/L6 Sulf1 3294 3139.5 1601 1485 1486.5 530 

18 CLAU Pyr 3336 3141 1595 1521 1500 503 
        

En
d

-s
ta

ge
 

63 Microglia 751 497 704 559 415.5 390 

68 Astro Slc7a10 631 516.5 517 450 378 247 

49 Migrating Int Lgr6 845 584.5 726 566 434.5 352 

61 OPC 863 596.5 774 583 456 378 

48 Migrating Int Pbx3 1054 649.5 945 674 500 456 

66 VLMC Slc6a13 1080 650 980 711 499.5 490 

69 Astro Prdm16 1044 691 937 662 494 451 

46 Migrating Int Cpa6 1148 725 1063 675 499 455 

57 Oligo MOL 1333 794 1226 802 581.5 558 
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64 Endothelia 1414 913 1208 880 634.5 587 

47 Migrating Int Foxp2 1373 962 1088 810 653 467 

72 Ependyma 1370 985.5 1039 887 705.5 537 

4 Medium Spiny Neurons 1755 1363 1261 968 845 508 

13 CTX PyrL5 Fezf2 1722 1427 1144 987 892.5 461 

10 CTX PyrL4 Rorb 1806 1511 1157 1010 930 470 

50 Migrating Int Adarb2 2020 1675 1325 1061 983 514 

17 CTX PyrL6 2106 1722 1370 1105 1010 517 

9 CTX PyrL2/L3/L4 Mef2c 2271 1846.5 1549 1159 1074 561 

44 Migrating Int Lhx6 2234 1862 1439 1181 1092 559 

7 CTX PyrL2/L3 Met 2293 1975 1457 1183 1130 534 

14 CTX PyrL6a 2328 1988.5 1457 1192 1133 535 

11 CTX PyrL4/L5 2566 2218 1595 1251 1203 550 

18 CLAU Pyr 2721 2357.5 1508 1343 1287.5 522 

15 CTX PyrL5/L6 Sulf1 2931 2679 1565 1385 1334 533 

12 CTX PyrL5 Itgb3 3333 3307 1732 1478 1512 543 
Supplementary Table 4: Additional metrics of the cell clusters from the mouse transcriptomics 

study. SD: standard deviation. Mean and standard deviation have been rounded to the nearest integer. 

7.3 External Tables 

External Supplementary Table 1: Differentially expressed genes identified from the 

comparison between the two controls (CD1 vs PBS) using Seurat. The tables include 

genes with an adjusted p-value of less than 0.05. p_val: the p-value of the Wilcoxon rank-

sum test; pct1: the percentage of cells in the CD1 group that express the gene; pct2: the 

percentage of cells in the PBS group that express the gene; avg_log2FC: average log2-

fold change of gene expression between groups; p_val_adj: Bonferroni-corrected 

adjusted p-value. Document worksheets correspond to the 5 time points. 

External Supplementary Table 2: Differentially expressed genes identified from the 

comparison between RML and CD1 groups using Seurat. The tables include genes 

that passed the filtering criteria (adjusted p-value of less than 0.05 and not part of the set 

of 7 spurious genes identified by the comparison of the two controls). p_val: the p-value 

of the Wilcoxon rank-sum test; pct1: the percentage of cells in the RML group that express 

the gene; pct2: the percentage of cells in the CD1 group that express the gene; 

avg_log2FC: average log2-fold change of gene expression between groups; p_val_adj: 

Bonferroni- corrected adjusted p-value; gene_unique: set to TRUE if the gene has been 

found only in a specific cluster of a time point; in_glmGamPoi: set to TRUE if the gene 
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has been identified in the same time point using glmGamPoi for the analysis; 

in_glmGamPoi_same_cluster: set to TRUE if the gene has been identified in the same 

time point and cluster using glmGamPoi for the analysis; in_DESeq2: set to TRUE if the 

gene has been identified in the same time point using DESeq2 for the analysis; 

in_DESeq2_same_cluster: set to TRUE if the gene has been identified in the same time 

point and cluster using DESeq2 for the analysis. Document worksheets correspond to the 

5 time points. 

External Supplementary Table 3: Differentially expressed genes identified from the 

comparison between RML and CD1 groups using DESeq2. The tables include genes 

that passed the filtering criteria (adjusted p-value of less than 0.05 and not part of the set 

of 7 spurious genes identified by the comparison of the two controls). log2FoldChange: 

average log2-fold change of gene expression between groups; pval: the p-values of the 

Wald test; padj: Benjamini–Hochberg corrected adjusted p-value; baseMean: average of 

the normalized count values divided by size factors, calculated over all samples; lfcSE: 

standard error of the log-fold change. 

External Supplementary Table 4: Differentially expressed genes identified from the 

comparison between RML and CD1 groups using glmGamPoi. The tables include 

genes that passed the filtering criteria (adjusted p-value of less than 0.05 and not part of 

the set of 7 spurious genes identified by the comparison of the two controls). pval: the p-

values of the quasi-likelihood ratio test; adj_pval: Benjamini–Hochberg corrected adjusted 

p-value; f_statistic: statistic of the F-test of overall significance, which indicates whether 

the linear regression model provides a better fit to the data than a model that contains no 

independent variables; df1: the degrees of freedom of the test; df2: the degrees of 

freedom of the test; lfc: average log2-fold change of gene expression between groups. 

External Supplementary Table 5: All set intersections between DEGs across all 

time points. Each worksheet is named after the groups that are intersected, for example, 

worksheet 20dpi_120dpi_end includes genes that were found to be DE at 20 dpi, 120 dpi 

and end-stage. 

External Supplementary Table 6: All identified gene ontology terms from the over-

representation analysis. An over-representation analysis using clusterProfiler identified 
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perturbed biological pathways in the 20 and 120 dpi time points and the end-stage. No 

enriched pathways were identified for the 40 or 80 dpi time points. Each worksheet 

corresponds to a GO classification: BP: biological process, CC: cellular component, MF: 

molecular function. Cluster: the cell cluster identified from the single-cell analysis; ID: the 

GO identifier of the relevant gene set; Description: a short description of the GO gene set; 

GeneRatio: the ratio of the intersection of DE genes in our data with the GO gene set 

over the intersection of DE genes in our data with all the genes of the GO collection; 

BgRatio: the ratio of the size of the GO gene set over the size of all identified genes in 

our analysis (the gene universe), pvalue: the p-value of a one-sided Fisher’s exact test; 

p.adjust: the Benjamini-Hochberg adjusted p-value; qvalue: p-value that has been 

adjusted for the False Discovery Rate (FDR); geneID: gene symbols of the DE genes in 

our dataset that are part of the GO gene set; Count: number of the DE genes in our 

dataset that are part of the GO gene set. 

External Supplementary Table 7: All identified gene ontology terms from the gene 

set enrichment analysis. A GSEA using clusterProfiler identified perturbed biological 

pathways in the 20, 80, 120 dpi and end-stage time points. Each worksheet corresponds 

to a GO classification: BP: biological process, CC: cellular component, MF: molecular 

function. ID: the GO identifier of the enriched term; Description: a short description of the 

GO term; setSize: the number of genes associated with the GO term; enrichmentScore: 

the primary result of the analysis, which reflects the degree to which a gene set is 

overrepresented at the top or bottom of a ranked list of genes; NES: the normalised 

enrichment score which accounts for differences in gene set size and correlations 

between gene sets and the expression dataset; p.adjust: the Benjamini-Hochberg 

adjusted p-value; qvalues: p-values that have been adjusted for the False Discovery Rate 

(FDR); rank: the rank of the gene in the sorted gene list when the maximum enrichment 

score is encountered for a specific gene set; core_enrichment: genes of the leading-edge 

subset within the gene set. These are the genes that contribute most to the enrichment 

result. 
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7.4 External Files 

External Supplementary File 1: FastQC reports from sequenced libraries of the 

mouse experiment. The file includes reports generated from FastQC for each of the 3 

libraries sequenced at each time point. File names ending in _R1 represent the first 

sequenced read of the pair which contains the gene expression information. File names 

ending in _R2 represent the second sequenced read of the pair which contains the 

barcode information for demultiplexing the data and identifying the cell of origin. A more 

detailed description of the sequencing quality report and more information regarding the 

interpretation of the plots can be found on the author’s website (Andrews, 2010). 

External Supplementary File 2: FastQC reports from sequenced libraries of the 

human experiment. The file includes reports generated from FastQC for each of the 6 

libraries sequenced. File names ending in _R1 represent the first sequenced read of the 

pair which contains the gene expression information. File names ending in _R2 represent 

the second sequenced read of the pair which contains the barcode information for 

demultiplexing the data and identifying the cell of origin. A more detailed description of 

the sequencing quality report and more information regarding the interpretation of the 

plots can be found on the author’s website (Andrews, 2010). 

  

https://sciwheel.com/work/citation?ids=12254663&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12254663&pre=&suf=&sa=0&dbf=0
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7.5 Protocols 

7.5.1 DroNc-seq 

The DroNc-seq protocol was downloaded from Protocol Exchange on the 28th of April 

2020 (A. Basu et al., 2017). 

https://sciwheel.com/work/citation?ids=8793957&pre=&suf=&sa=0&dbf=0
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7.5.2 SPLiT-seq 

The SPLiT-seq protocol v3 was downloaded from 

https://sites.google.com/uw.edu/splitseq/protocol on the 28th of April 2020. Available at 

https://www.seeliglab.org/tools.html as of the 11th of January 2022. 

https://www.seeliglab.org/tools.html


335 
 



336 
 



337 
 



338 
 



339 
 



340 
 



341 
 



342 
 



343 
 



344 
 



345 
 



346 
 



347 
 

 



348 
 

7.5.3 Evercode Whole Transcriptome 

Evercode cell fixation and single-cell whole-transcriptome kit protocols. Protocols were 

downloaded from the Parse Biosciences user portal on the 11th of January 2022. 
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7.5.4 Drop-seq alignment cookbook 

The Drop-seq Alignment Cookbook was downloaded from 

https://github.com/broadinstitute/Drop-seq on the 28th of April 2020. 
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7.6 Oligonucleotides 

7.6.1 SPLiT-seq barcodes 

The SPLiT-seq barcodes were downloaded from 

https://sites.google.com/uw.edu/splitseq/protocol on the 28th of April 2020. Available on 

https://www.seeliglab.org/tools.html as of the 5th of July 2022. 
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7.6.2 Real-time PCR primers 

Gene Company Product name GeneGlobe Id 
Catalog 
Number 

Gfap Qiagen Mm_Gfap_1_SG QuantiTect Primer Assay QT00101143 249900 

Aldh1 Qiagen Mm_Aldh1l1_va.1_SG QuantiTect Primer Assay QT01565382 249900 

Rbfox3 Qiagen Mm_Rbfox3_1_SG QuantiTect Primer Assay QT01054326 249900 

Pdgfra Qiagen Mm_Pdgfra_1_SG QuantiTect Primer Assay QT00140021 249900 

Ywhaz Qiagen Mm_Ywhaz_1_SG QuantiTect Primer Assay QT00105350 249900 

Tubb4a Qiagen Mm_Tubb4a_1_SG QuantiTect Primer Assay QT00251664 249900 

Sdha Qiagen Mm_Sdha_1_SG QuantiTect Primer Assay QT00265237 249900 

Abi3bp Qiagen Mm_Abi3bp_1_SG QuantiTect Primer Assay QT01074199 249900 

Auts2 Qiagen Mm_Auts2_1_SG QuantiTect Primer Assay QT00147000 249900 

Gphn Qiagen Mm_Gphn_1_SG QuantiTect Primer Assay QT00170275 249900 

Il31ra Qiagen Mm_Il31ra_1_SG QuantiTect Primer Assay QT00144382 249900 

Ndst4 Qiagen Mm_Ndst4_1_SG QuantiTect Primer Assay QT01066268 249900 

Pde10a Qiagen Mm_Pde10a_1_SG QuantiTect Primer Assay QT00151151 249900 

Pdzrn4 Qiagen Mm_Pdzrn4_1_SG QuantiTect Primer Assay QT00299467 249900 

Rora Qiagen Mm_Rora_1_SG QuantiTect Primer Assay QT00158053 249900 

Plp1 Qiagen Mm_Plp1_1_SG QuantiTect Primer Assay QT00096096 249900 

Ptn Qiagen Mm_Ptn_1_SG QuantiTect Primer Assay QT00167076 249900 

Trf Qiagen Mm_Trf_1_SG QuantiTect Primer Assay QT00198072 249900 

Pard3 Qiagen Mm_Pard3_1_SG QuantiTect Primer Assay QT00161875 249900 

Gjc3 Qiagen Mm_Gjc3_1_SG QuantiTect Primer Assay QT00168581 249900 

Rph3a Qiagen Mm_Rph3a_1_SG QuantiTect Primer Assay QT00135695 249900 

Nrp1 Qiagen Mm_Nrp1_1_SG QuantiTect Primer Assay QT00157381 249900 

Igsf9b Qiagen Mm_Igsf9b_1_SG QuantiTect Primer Assay QT01050567 249900 

Homer1 Qiagen Mm_Homer1_1_SG QuantiTect Primer Assay QT00129983 249900 

Ptk2 Qiagen Mm_Ptk2_1_SG QuantiTect Primer Assay QT01059891 249900 

Grin2a Qiagen Mm_Grin2a_1_SG QuantiTect Primer Assay QT00093562 249900 

Apoe Qiagen Mm_Apoe_1_SG QuantiTect Primer Assay QT01043889 249900 

Mef2c Qiagen Mm_Mef2c_1_SG QuantiTect Primer Assay QT00103733 249900 

Lcn2 Qiagen Mm_Lcn2_1_SG QuantiTect Primer Assay QT00113407 249900 

Hspb1 Qiagen Mm_Hspb1_1_SG QuantiTect Primer Assay QT00100632 249900 

Vim Qiagen Mm_Vim_1_SG QuantiTect Primer Assay QT00159670 249900 

Osmr Qiagen Mm_Osmr_1_SG QuantiTect Primer Assay QT00104433 249900 

Serping1 Qiagen Mm_Serping1_1_SG QuantiTect Primer Assay QT00126252 249900 

Fkbp5 Qiagen Mm_Fkbp5_1_SG QuantiTect Primer Assay QT00166390 249900 

Ggta1 Qiagen Mm_Ggta1_1_SG QuantiTect Primer Assay QT00165788 249900 

Srgn Qiagen Mm_Srgn_1_SG QuantiTect Primer Assay QT01064273 249900 

C3 Qiagen Mm_C3_1_SG QuantiTect Primer Assay QT00109270 249900 

Gbp2 Qiagen Mm_Gbp2_1_SG QuantiTect Primer Assay QT00106050 249900 
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Ptx3 Qiagen Mm_Ptx3_1_SG QuantiTect Primer Assay QT01063587 249900 

S100a10 Qiagen Mm_S100a10_1_SG QuantiTect Primer Assay QT00103894 249900 

Cd109 Qiagen Mm_Cd109_1_SG QuantiTect Primer Assay QT00127638 249900 

Emp1 Qiagen Mm_Emp1_1_SG QuantiTect Primer Assay QT00137774 249900 

Slc10a6 Qiagen Mm_Slc10a6_va.1_SG QuantiTect Primer Assay QT01548750 249900 

Tm4sf1 Qiagen Mm_Tm4sf1_1_SG QuantiTect Primer Assay QT00097076 249900 

 

QuantiTect lyophilized primers were reconstituted in 1.1 mL of TE, pH 8.0, to prepare 

QuantiTect Primer Assays at 10X stock concentration. The exact concentration of the 

primers is proprietary. 
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7.7 Scripts 

7.7.1 Count matrices to Seurat objects 

1. # Load packages 
2. library("Seurat") 
3. library("openxlsx") 
4.   
5. # Samples info 
6. samples <- read.xlsx("samples.xlsx", detectDates = T) 
7.   
8. # Create the directory for the Seurat objects 
9. dir.create('./seurat_objects', showWarnings = F) 
10.   
11. # Function to create the Seurat objects and add metadata 
12. create_seurat_object <- function(samples) { 
13.   timepoint <- samples[1] 
14.   animal <- samples[2] 
15.   inocula <- samples[3] 
16.   date <- samples[4] 
17.    
18.   project_folder <- paste0("mice_", timepoint) 
19.   sample_folder <- paste0(animal, '_DGE_filtered') 
20.   dge_path <- file.path('..',project_folder, 'splitseq_pipeline', 'libs_merged', 

sample_folder) 
21.    
22.   # Read the 3 files as a sparse matrix 
23.   sr.data <- Seurat::ReadMtx( 
24.     mtx = file.path(dge_path, "DGE.mtx"), 
25.     cells = file.path(dge_path, "cell_metadata.csv"), 
26.     features = file.path(dge_path, "genes.csv"), 
27.     feature.column = 2, 
28.     cell.sep = ",", 
29.     feature.sep = ",", 
30.     mtx.transpose = T, 
31.     skip.cell = 1, 
32.     skip.feature = 1 
33.   ) 
34.    
35.   # Create the Seurat object 
36.   sr <- CreateSeuratObject(counts = sr.data, project = "mouse_sc", min.cells = 3) 
37.    
38.   # Add metadata 
39.   sr[["timepoint"]] <- timepoint 
40.   sr[["animal"]] <- animal 
41.   sr[["inocula"]] <- inocula 
42.   sr[["date"]] <- date 
43.    
44.   # Set identities for each cell 
45.   Idents(sr) <- paste(timepoint, inocula, animal, sep = "_") 
46.    
47.   # Save the object 
48.   saveRDS(sr, file.path("seurat_objects", paste0(animal, ".rds"))) 
49.    
50.   # Return the object to be saved in a list 
51.   sr 
52. } 
53.   
54. # Run the function to save the objects in the directory 
55. sr_objects <- apply(samples, 1, create_seurat_object) 
56.   
57. # Now we need to merge the objects in a new object 
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58. sr_merged <- merge(x = sr_objects[[1]], y = sr_objects[-1]) 
59.   
60. # Save the merged object 
61. saveRDS(sr_merged, "./seurat_objects/sr_merged.rds") 

7.7.2 Reference dataset pre-processing in Seurat 

1. # Load libraries 
2. library("Seurat") 
3. library("dplyr") 
4. library("ggplot2") 
5. library("R.matlab") 
6. library("openxlsx") 
7.   
8. # Load Matlab object 
9. data <- readMat("./GSM3017261_150000_CNS_nuclei.mat") 
10.   
11. # Keep the matrix that contains the expression values 
12. expression.mat <- t(data$DGE) 
13.   
14. # Rename the clusters to remove trailing space 
15. cluster.assignment <- sapply(data$cluster.assignment[,1], trimws) 
16. organ <- sapply(data$sample.type[,1], trimws) 
17. barcode <- paste0("Cell-", data$barcodes[1,]) 
18.   
19. # Prepare the cell metadata 
20. coldata <- data.frame(barcode = barcode, organ = organ, cluster_full_name = 

cluster.assignment) 
21. coldata$cluster_number <- unlist(lapply(sapply(coldata$cluster_full_name, strsplit, split = 

" ", fixed = T), function(x) as.integer(x[1]))) 
22.   
23. # Add extra info to the coldata object 
24. extra.info <- read.xlsx("./splitseq_clusters_no_unknown.xlsx") 
25. extra.info$cluster_full_name <- NULL 
26. coldata <- coldata %>% left_join(extra.info, by = "cluster_number") 
27. row.names(coldata) <- coldata$barcode 
28.   
29. # Prepare the genes 
30. genes <- sapply(data$genes[,1], trimws) 
31.   
32. # Add info to matrix 
33. colnames(expression.mat) <- coldata$barcode 
34. rownames(expression.mat) <- genes 
35.   
36. # Create Seurat object 
37. sr <- CreateSeuratObject(counts = expression.mat, project = "splitseq_paper", min.cells = 3) 
38. sr <- AddMetaData(sr, coldata) 
39.   
40. # Cleanup 
41. rm(coldata, data, expression.mat, extra.info, cluster.assignment, genes, organ, barcode) 
42.   
43. # Remove clusters from tissue not relevant to my study 
44. sr <- subset(sr, subset = keep == "yes") 
45. sr$keep <- NULL 
46.   
47. # Split the object and keep the P2 and P11 brain only 
48. sr.p2 <- subset(sr, subset = organ == "p2_brain") 
49. sr.p11 <- subset(sr, subset = organ == "p11_brain") 
50. sr.list <- list(sr.p2, sr.p11) 
51.   
52. # Cleanup 
53. rm(sr, sr.p2, sr.p11) 
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54.   
55. # Normalize datasets individually by SCTransform() 
56. sr.list <- lapply(X = sr.list, FUN = SCTransform, method = "glmGamPoi") 
57.   
58. # Select the integration features 
59. features <- SelectIntegrationFeatures(object.list = sr.list, nfeatures = 3000) 
60.   
61. # Run the PrepSCTIntegration() function prior to identifying anchors 
62. sr.list <- PrepSCTIntegration(object.list = sr.list, anchor.features = features) 
63.   
64. # When running FindIntegrationAnchors(), and IntegrateData(), 
65. # set the normalization.method parameter to the value SCT. 
66. int.anchors <- FindIntegrationAnchors( 
67.   object.list = sr.list, 
68.   normalization.method = "SCT", 
69.   anchor.features = features) 
70.   
71. sr_integrated <- IntegrateData( 
72.   anchorset = int.anchors, 
73.   normalization.method = "SCT") 
74.   
75. # Cleanup 
76. sr_ref <- sr_integrated 
77. rm(sr.list, features, int.anchors, sr_integrated) 
78.   
79. # Run PCA and UMAP on the data 
80. sr_ref <- sr_ref %>% 
81.   RunPCA() %>% 
82.   RunUMAP(dims = 1:30, return.model = TRUE) 
83.   
84. # Save the pre-processed integrated reference 
85. saveRDS(sr_ref, "./sr_integrated_reference.rds") 

7.7.3 Main analysis in Seurat 

1. # Load packages 
2. library("Seurat") 
3. library("openxlsx") 
4. library("ggplot2") 
5. library("ggrepel") 
6. library("RColorBrewer") 
7. library("tidyverse") 
8. library("ensembldb") 
9. library("AnnotationHub") 
10. library("scProportionTest") 
11. library("clusterProfiler") 
12. library("cowplot") 
13.   
14. # Set the time point for the whole script 
15. TIMEPOINT <- "20dpi" 
16.   
17. #### Create Seurat object #### 
18.   
19. # Samples info 
20. samples <- read.xlsx("samples.xlsx", detectDates = T) 
21.   
22. # Subset the samples 
23. samples <- subset(samples, subset = timepoint == TIMEPOINT) 
24.   
25. # Function to load the Seurat objects and add metadata 
26. load_seurat_object <- function(samples) { 
27.   timepoint <- samples[1] 
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28.   animal <- samples[2] 
29.   inocula <- samples[3] 
30.   date <- samples[4] 
31.    
32.   # Create the Seurat object 
33.   sr <- readRDS(paste0("./seurat_objects/", animal, ".rds")) 
34.    
35.   # Add metadata 
36.   sr[["timepoint"]] <- timepoint 
37.   sr[["animal"]] <- animal 
38.   sr[["inocula"]] <- inocula 
39.   sr[["date"]] <- date 
40.    
41.   # Set identities for each cell 
42.   Idents(sr) <- paste(timepoint, inocula, animal, sep = "_") 
43.    
44.   # Return the object to be saved in a list 
45.   sr 
46. } 
47.   
48. # Run the function to save the objects in the directory 
49. sr_objects <- apply(samples, 1, load_seurat_object) 
50.   
51. # Now we need to merge the objects in a new object 
52. sr_merged <- merge(x = sr_objects[[1]], y = sr_objects[-1]) 
53.   
54. # Cleanup 
55. sr <- sr_merged 
56. rm(samples, load_seurat_object, sr_objects, sr_merged) 
57.   
58.   
59. #### Rename features #### 
60.   
61. ## Load the annotation resource. 
62. ah <- AnnotationHub() 
63.   
64. # fetch one of the databases 
65. # ahDb <- query(ah, pattern = c("Mus musculus", "EnsDb", 104)) 
66. ahEdb <- ah[["AH95775"]] 
67.   
68. # Create one vector with the Ensembl IDs of all the genes from the experiment 
69. ensembl.genes <- row.names(sr[["RNA"]]) 
70.   
71. # Convert the Ensembl IDs to Gene symbols 
72. gene_ids <- ensembldb::select(ahEdb, keys= ensembl.genes, keytype = "GENEID", columns = 

c("SYMBOL","GENEID")) 
73.   
74. # Some Ensembl IDs don't have corresponding gene symbols and will be removed 
75. empty_genes <- which(gene_ids$SYMBOL == "") 
76. gene_ids <- gene_ids[-empty_genes,] 
77. sr <- sr[-empty_genes,] 
78.   
79. # There might be duplicate names in the symbols. Add a suffix to make them unique 
80. unique_gene_ids <- make.unique(gene_ids$SYMBOL) 
81.   
82. # Replace underscores with dashes because underscores are not allowed in Seurat 
83. unique_gene_ids <- gsub("_", "-", unique_gene_ids, fixed = T, ) 
84.   
85. # Function to remove rows that could not be matched and rename 
86. # the RNA assay slot of the Seurat object 
87. RenameGenesSeurat <- function(obj, newnames) { 
88.   RNA <- obj@assays$RNA 
89.    
90.   if (nrow(RNA) == length(newnames)) { 
91.      
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92.     # Rename features 
93.     if (length(RNA@counts)) RNA@counts@Dimnames[[1]]            <- newnames 
94.     if (length(RNA@data)) RNA@data@Dimnames[[1]]                <- newnames 
95.      
96.   } else { 
97.     stop("Unequal gene sets: nrow(RNA) != nrow(newnames)") 
98.   } 
99.   obj@assays$RNA <- RNA 
100.    
101.   # Fix the row.names in meta.features 
102.   row.names(obj[["RNA"]]@meta.features) <- row.names(obj[["RNA"]]) 
103.   return(obj) 
104. } 
105.   
106. # Prepare the renamed object 
107. sr_renamed <- RenameGenesSeurat(sr, unique_gene_ids) 
108.   
109. # Save 
110. saveRDS(sr_renamed, paste0("./seurat_objects/", TIMEPOINT, "_sr_renamed.rds")) 
111.   
112. # Cleanup 
113. sr <- sr_renamed 
114. rm(ah, ahDb, ahEdb, gene_ids, empty_genes, ensembl.genes, unique_gene_ids, 

RenameGenesSeurat, sr_renamed) 
115.   
116. #### QC #### 
117.   
118. # Plot number of features and counts 
119. VlnPlot(sr, features = c("nFeature_RNA", "nCount_RNA"), pt.size = 0) 
120.   
121. # Calculate mitochondrial genes percentage 
122. sr[["percent.mt"]] <- PercentageFeatureSet(sr, pattern = "^mt-") 
123.   
124. # Filter cells with fewer than 200 expressed genes or more than 2500 
125. # Filter cells that have >1% mitochondrial counts 
126. sr_qc <- subset(sr, subset = nFeature_RNA > 250 & nFeature_RNA < 2500 & percent.mt < 1) 
127.   
128. # Add cell cycle genes information 
129. # Basic function to convert human to mouse gene names 
130. convert_genes_human_to_mouse <- function(x){ 
131.   human = useMart("ensembl", dataset = "hsapiens_gene_ensembl") 
132.   mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl") 
133.   genesV2 = getLDS(attributes = c("hgnc_symbol"), filters = "hgnc_symbol", values = x , 

mart = human, attributesL = c("mgi_symbol"), martL = mouse, uniqueRows=T) 
134.   mouse_genes <- unique(genesV2[, 2]) 
135.   # Print the first 6 genes found to the screen 
136.   print(head(mouse_genes)) 
137.    
138.   mouse_genes 
139. } 
140.   
141. s.genes <- convert_genes_human_to_mouse(cc.genes.updated.2019$s.genes) 
142. g2m.genes <- convert_genes_human_to_mouse(cc.genes.updated.2019$g2m.genes) 
143.   
144. # Check if cells separate by cell cycle phase 
145. dir.create("plots/cell_cycle", recursive = T, showWarnings = F) 
146.   
147. sr_phase <- sr_qc 
148. sr_phase <- CellCycleScoring(sr_phase, s.features = s.genes, g2m.features = g2m.genes, 

set.ident = TRUE) 
149. sr_phase <- NormalizeData(sr_phase) 
150. sr_phase <- FindVariableFeatures(sr_phase) 
151. sr_phase <- ScaleData(sr_phase, features = rownames(sr_phase)) 
152. sr_phase <- RunPCA(sr_phase, features = c(s.genes, g2m.genes)) 
153. DimPlot(sr_phase, shuffle = TRUE) + 
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154.   ggtitle(paste0(TIMEPOINT, " cell cycle PCA")) 
155. ggsave(paste0("plots/cell_cycle/", TIMEPOINT, "_PCA.png"), width = 8, height = 4) 
156.   
157. # Assign cell cycle scores 
158. sr_qc <- CellCycleScoring(sr_qc, s.features = s.genes, g2m.features = g2m.genes) 
159.   
160. # Plot number of features and counts 
161. VlnPlot(sr_qc, features = c("nFeature_RNA", "nCount_RNA"), pt.size = 0) 
162.   
163. # Save 
164. saveRDS(sr_qc, paste0("./seurat_objects/", TIMEPOINT, "_sr_renamed_qc.rds")) 
165.   
166. # Cleanup 
167. sr <- sr_qc 
168. rm(sr_qc, s.genes, g2m.genes, sr_phase, convert_genes_human_to_mouse) 
169.   
170.   
171. #### Integrate datasets #### 
172.   
173. # Split the dataset into a list of two seurat objects based on inocula 
174. sr.list <- SplitObject(sr, split.by = "inocula") 
175.   
176. # Remove the PBS group 
177. #sr.list <- sr.list[-1] 
178.   
179. # Normalize datasets individually by SCTransform() 
180. sr.list <- lapply(X = sr.list, FUN = SCTransform, method = "glmGamPoi") 
181.   
182. # Select the integration features 
183. features <- SelectIntegrationFeatures(object.list = sr.list, nfeatures = 3000) 
184.   
185. # Run the PrepSCTIntegration() function prior to identifying anchors 
186. sr.list <- PrepSCTIntegration(object.list = sr.list, anchor.features = features) 
187.   
188. # When running FindIntegrationAnchors(), and IntegrateData(), 
189. # set the normalization.method parameter to the value SCT. 
190. int.anchors <- FindIntegrationAnchors( 
191.   object.list = sr.list, 
192.   normalization.method = "SCT", 
193.   anchor.features = features) 
194.   
195. sr_integrated <- IntegrateData( 
196.   anchorset = int.anchors, 
197.   normalization.method = "SCT") 
198.   
199. # Save 
200. saveRDS(sr_integrated, paste0("./seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated.rds")) 
201.   
202. # Cleanup 
203. sr <- sr_integrated 
204. rm(sr.list, features, int.anchors, sr_integrated) 
205.   
206. #### Annotation (reference integration) #### 
207.   
208. # Load pre-processed reference 
209. sr_ref <- readRDS("../splitseq_paper_reference/sr_integrated_reference.rds") 
210.   
211. query <- sr 
212. rm(sr) 
213.   
214. # Find the transfer anchors between the two datasets 
215. query.anchors <- FindTransferAnchors( 
216.   reference = sr_ref, 
217.   query = query, 
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218.   dims = 1:50, 
219.   reference.reduction = "pca", 
220.   normalization.method = "SCT" 
221. ) 
222.   
223. # Make a vector with the metadata to transfer from the reference to the query 
224. labels_to_transfer <- list( 
225.   cluster_number = "cluster_number" 
226. ) 
227.   
228. # Do the transfer 
229. query <- TransferData( 
230.   reference = sr_ref, 
231.   query = query, 
232.   anchorset = query.anchors, 
233.   refdata = labels_to_transfer, 
234.   dims = 1:50 
235. ) 
236.   
237. # Add extra info to the coldata object 
238. extra.info <- read.xlsx("../splitseq_paper_reference/splitseq_clusters.xlsx") 
239.   
240. df <- data.frame(cluster_number = as.integer(query$predicted.cluster_number)) %>% 
241.   left_join(extra.info, by = "cluster_number") 
242.   
243. df$cluster_number <- NULL 
244. df$keep <- NULL 
245.   
246. row.names(df) <- colnames(query) 
247.   
248. query <- AddMetaData(query, df) 
249.   
250. # Calculate mapping score and add to metadata 
251. query <- AddMetaData( 
252.   object = query, 
253.   metadata = MappingScore(anchors = query.anchors), 
254.   col.name = "mapping.score" 
255. ) 
256.   
257. # Cleanup 
258. rm(df, extra.info, labels_to_transfer, query.anchors) 
259.   
260. # Assess the score of the predictions 
261. ggplot() + aes(query$predicted.cluster_number.score) + geom_histogram() 
262. ggplot() + aes(query$mapping.score) + geom_histogram() 
263.   
264. # Filter the query object based on label transfer quality 
265. query.filt <- subset(query, region != "Olfactory Bulb") 
266.   
267. # Number of cells in each cluster 
268. cells_per_cluster <- query.filt@meta.data %>% 
269.   group_by(cluster_full_name) %>% 
270.   count() %>% 
271.   arrange(n) 
272.   
273. # Select the clusters with fewer than 100 cells 
274. clusters_to_keep <- cells_per_cluster[cells_per_cluster$n > 100,] 
275. clusters_to_keep <- clusters_to_keep$cluster_full_name 
276.   
277. # Filter query to remove clusters with fewer than 100 cells 
278. query.filt <- subset(query.filt, subset = cluster_full_name %in% clusters_to_keep) 
279.   
280. # Re-cluster the query 
281. query.filt <- query.filt %>% 
282.   SCTransform(method = "glmGamPoi") %>% 
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283.   RunPCA() %>% 
284.   RunUMAP(dims = 1:30) 
285.   
286. # Save 
287. saveRDS(query, paste0("./seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated_annotated.rds")) 
288. saveRDS(query.filt, paste0("./seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated_annotated_filtered.rds")) 
289.   
290.   
291. # Cleanup 
292. sr <- query.filt 
293. rm(query, query.filt, clusters_to_keep) 
294.   
295. # Sanity check after annotation 
296. # Check that the annotated clusters use the gene markers 
297. dir.create("plots/marker_genes", showWarnings = F, recursive = T) 
298.   
299. # Relevel clusters by cluster id so that the plots are nicer 
300. sr$cluster_full_name <- factor(sr$cluster_full_name, 
301.                                levels = 

unique(sr$cluster_full_name)[order(as.integer(str_extract(unique(sr$cluster_full_name), 
"^\\d+")), 

302.                                                                            decreasing = 
T)]) 

303.   
304. VlnPlot(sr, features = c("Gria1", "Snhg11", "Mbp", "Plp1", "Vcan", "Dock8", "Flt1", 

"Slc1a2", "Plpp3", "Dnah11"), 
305.         pt.size = 0, stack = T, group.by = "cluster_full_name") 
306.   
307. ggsave(paste0("plots/marker_genes/", TIMEPOINT, "_marker_genes.png"), width = 12, height = 

8) 
308.   
309. # Astro: Aqp4, Slc1a2, Plpp3, Gja1 
310. # Oligodendrocytes: Mbp, Plp1 
311. # Oligodendrocyte Precursor Cells: Vcan & Mbp, Pdgfra 
312. # Endothelial/smooth muscle Cells: Rgs5, Flt1, Ly6c1, Pltp 
313. # Microglia/macrophages: Dock2, Dock8, Csf1r, P2ry12 
314. # Ependymal cells: Dnah11 
315. # Neurons: Gria1, Snhg11? 
316.   
317. dir.create("./cluster_metrics", showWarnings = F) 
318.   
319. # Number of cells in each cluster 
320. cells_per_cluster <- sr@meta.data %>% 
321.   group_by(cluster_full_name) %>% 
322.   count() %>% 
323.   arrange(n) 
324. write.table(cells_per_cluster, paste0("./cluster_metrics/", TIMEPOINT, 

"_cells_per_cluster.tsv")) 
325.   
326. # Number of cells in each group 
327. cells_per_group <- data.frame(table(sr$group, sr$inocula, sr$animal)) 
328. names(cells_per_group) <- c("group", "inocula", "animal", "n_cells") 
329. write.table(cells_per_group, paste0("./cluster_metrics/", TIMEPOINT, 

"_cells_per_group.tsv")) 
330.   
331. # Calculate mean and sd of number of features per cluster 
332. nFeatures_per_cluster <- sr@meta.data %>% 
333.   group_by(cluster_full_name) %>% 
334.   summarise_at(vars(nFeature_RNA ),list(mean = ~round(mean(.),0), median = median, sd = 

~round(sd(.),0))) %>% 
335.   arrange(median) 
336.   
337. # Calculate number of counts per cluster 
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338. nCounts_per_cluster <- sr@meta.data %>% 
339.   group_by(cluster_full_name) %>% 
340.   summarise_at(vars(nCount_RNA ),list(mean = ~round(mean(.),0), median = median, sd = 

~round(sd(.),0))) %>% 
341.   arrange(median) 
342.   
343. extra_metrics <- nCounts_per_cluster %>% 
344.   left_join(nFeatures_per_cluster, by = "cluster_full_name") 
345. colnames(extra_metrics) <- c("Cluster name", "Counts mean", "Counts median", "Counts SD", 
346.                              "Features mean", "Features median", "Features SD") 
347. write.xlsx(extra_metrics, paste0("./cluster_metrics/", TIMEPOINT, "_extra_metrics.xlsx"), 

overwrite = T) 
348.   
349. # Plots 
350. dir.create("./plots/reduced_dimensions", showWarnings = F, recursive = T) 
351.   
352. DimPlot(sr, group.by = "cluster_full_name", label = T, repel = T) + 
353.   ggtitle(TIMEPOINT) 
354. ggsave(paste0("./plots/reduced_dimensions/", TIMEPOINT, "_UMAP.png"), width = 16, height = 

10) 
355.   
356. DimPlot(sr, group.by = "cluster_full_name", split.by = "inocula") + 
357.   ggtitle(TIMEPOINT) 
358. ggsave(paste0("./plots/reduced_dimensions/", TIMEPOINT, "_split_inocula_UMAP.png"), width 

= 16, height = 10) 
359.   
360.   
361. #### Cell type proportions #### 
362.   
363. pt <- table(sr$group, sr$inocula) 
364. pt <- as.data.frame(pt) 
365. colnames(pt) <- c("Cell type", "Experimental group", "Frequency") 
366. pt$`Cell type` <- as.character(pt$`Cell type`) 
367.   
368. dir.create("./plots/celltype_proportions", showWarnings = F, recursive = T) 
369.   
370. myColors <- brewer.pal(10, "Set3") 
371. names(myColors) <- c("Migrating Interneurons", 
372.                      "Cortical Neurons", 
373.                      "Medium Spiny Neurons", 
374.                      "Astrocytes", 
375.                      "OPC", 
376.                      "Oligodendrocytes", 
377.                      "VLMC", 
378.                      "Ependymal", 
379.                      "Immune", 
380.                      "Vascular") 
381.   
382. ggplot(pt, aes(x = `Experimental group`, y = Frequency, fill = `Cell type`)) + 
383.   geom_col(position = "fill", width = 0.5) + 
384.   scale_fill_manual(name = "Cell type", values = myColors) + 
385.   ylab("Proportion") + 
386.   ggtitle(TIMEPOINT) 
387. ggsave(paste0("./plots/celltype_proportions/", TIMEPOINT, "_cell_proportions.png"), width 

= 8, height = 4) 
388.   
389. ## Plots using the permutation test 
390. prop_test <- sc_utils(sr) 
391. prop_test <- permutation_test( 
392.   prop_test, 
393.   cluster_identity = "group", 
394.   sample_1 = "CD1", 
395.   sample_2 = "RML", 
396.   sample_identity = "inocula" 
397. ) 



476 
 

398. permutation_plot(prop_test, log2FD_threshold = log2(1.2)) + 
399.   ylab("Log2-fold difference in cell numbers") + 
400.   xlab("Cell type") + 
401.   ggtitle(TIMEPOINT) 
402. ggsave(paste0("./plots/celltype_proportions/", TIMEPOINT, 

"_cell_proportions_scPropTest.png"), width = 8, height = 4) 
403.   
404. # Repeat for CD1 vs PBS 
405. prop_test <- sc_utils(sr) 
406. prop_test <- permutation_test( 
407.   prop_test, 
408.   cluster_identity = "group", 
409.   sample_1 = "PBS", 
410.   sample_2 = "CD1", 
411.   sample_identity = "inocula" 
412. ) 
413. permutation_plot(prop_test, log2FD_threshold = log2(1.2)) + 
414.   ylab("Log2-fold difference in cell numbers") + 
415.   xlab("Cell type") + 
416.   ggtitle(TIMEPOINT) 
417. ggsave(paste0("./plots/celltype_proportions/", TIMEPOINT, 

"_PBS_vs_CD1_cell_proportions_scPropTest.png"), width = 8, height = 4) 
418.   
419. # Test only groups of neurons 
420. sr_neurons <- subset(sr, subset = group %in% c("Medium Spiny Neurons", "Cortical Neurons", 

"Migrating Interneurons")) 
421.   
422. prop_test <- sc_utils(sr_neurons) 
423. prop_test <- permutation_test( 
424.   prop_test, 
425.   cluster_identity = "cluster_full_name", 
426.   sample_1 = "CD1", 
427.   sample_2 = "RML", 
428.   sample_identity = "inocula" 
429. ) 
430. # Reorder the data to have the clusters in order for the plot 
431. prop_test@results$permutation$clusters <-  
432.   factor(prop_test@results$permutation$clusters, 
433.          levels = 

prop_test@results$permutation$clusters[order(as.integer(str_extract(prop_test@results$permut
ation$clusters, "^\\d+")), decreasing = T)]) 

434.   
435. permutation_plot(prop_test, log2FD_threshold = log2(1.2), order_clusters = F) + 
436.   ylab("Log2-fold difference in cell numbers") + 
437.   xlab("Cell cluster") + 
438.   ggtitle(TIMEPOINT) 
439. ggsave(paste0("./plots/celltype_proportions/", TIMEPOINT, 

"_neurons_cell_proportions_scPropTest.png"), width = 8, height = 4) 
440.   
441. rm(prop_test, pt, myColors, sr_neurons) 
442.   
443. #### DGE #### 
444. # Function to perform DGE between clusters and two conditions 
445. get_DEGs <- function(cluster, condition1, condition2, seurat_obj){ 
446.   genes <- tryCatch( 
447.     { 
448.       FindMarkers(seurat_obj, 
449.                        ident.1 = paste0(cluster, "_", condition1), 
450.                        ident.2 = paste0(cluster, "_", condition2)) %>% 
451.       rownames_to_column(var = "gene") 
452.     }, error = function(cond) return (NULL)) 
453.    
454.   if(!is.null(genes) && nrow(genes) > 0) { 
455.     cbind(cluster = cluster, genes) 
456.   } 
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457. } 
458.   
459. # Prepare a vector of all all cluster names 
460. all_clusters <- unique(as.character(sr$cluster_full_name)) 
461.   
462. # Add new Idents to Seurat object 
463. Idents(sr) <- paste0(sr$cluster_full_name, "_", sr$inocula) 
464.   
465. # Run DGE on all clusters 
466. degs <- map_dfr(all_clusters, get_DEGs, condition1 = "RML", condition2 = "CD1", seurat_obj 

= sr) 
467.   
468. # Plot the distribution of the p-values 
469. ggplot(degs, aes(p_val_adj)) + geom_histogram() 
470.   
471. # Keep DEGs with adjusted p-values < 0.05 
472. degs.filtered <- subset(degs, subset = p_val_adj < 0.05) 
473.   
474. # Add info if DEG is unique in each cluster 
475. add_unique_info <- function(row, degs.filtered) { 
476.   current_cluster <- row["cluster"] 
477.   genes <- subset(degs.filtered, subset = cluster != current_cluster)[, "gene"] 
478.   gene <- row["gene"] 
479.    
480.   return(!gene %in% genes) 
481. } 
482. degs.filtered$gene_unique <- apply(degs.filtered, 1, add_unique_info, degs.filtered = 

degs.filtered) 
483.   
484. # Number of DEGs in each cluster 
485. table(degs.filtered$cluster) 
486.   
487. # Bar chart to visualize the number of DEGs in each cluster 
488. dir.create("./plots/DGE", showWarnings = F, recursive = T) 
489. ggplot(as.data.frame(table(degs.filtered$cluster)), aes(Var1, Freq)) + geom_col() + 

coord_flip() + 
490.   xlab("Clusters") + ylab("Number of DEGs") + ggtitle(paste0(TIMEPOINT, " number of DEGs 

(adj_p_val < 0.05)")) 
491. ggsave(paste0("./plots/DGE/", TIMEPOINT, "_number_of_DEGs_by_cluster.png"), width = 12, 

height = 8) 
492.   
493.   
494. # Plot number of DEGs vs number of cells in cluster 
495. tb <- cells_per_cluster %>% right_join(as.data.frame(table(degs.filtered$cluster)), by = 

c("cluster_full_name" = "Var1")) 
496.   
497. ggplot(tb, aes(n, Freq, label=cluster_full_name)) + 
498.   geom_point() + 
499.   xlab("number of cells") + 
500.   ylab("number of DEGs") + 
501.   geom_text_repel(max.overlaps = 20) 
502. ggsave(paste0("./plots/DGE/", TIMEPOINT, "_number_of_DEGs_vs_cells.png"), width = 12, 

height = 12) 
503.   
504. # Save gene list 
505. dir.create("./DGE_gene_lists", showWarnings = F, recursive = T) 
506. write.xlsx(degs.filtered, paste0("./DGE_gene_lists/", TIMEPOINT, "_DEGs_by_cluster.xlsx"), 

overwrite = T) 
507.   
508. # Compare CD1 vs PBS 
509. degs_contr <- map_dfr(all_clusters, get_DEGs, condition1 = "CD1", condition2 = "PBS", 

seurat_obj = sr) 
510. degs.filtered_contr <- subset(degs_contr, subset = p_val_adj < 0.05) 
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511. write.xlsx(degs.filtered_contr, paste0("./DGE_gene_lists/", TIMEPOINT, 
"_CD1_vs_PBS_DEGs_by_cluster.xlsx"), overwrite = T) 

7.7.4 Pseudobulk differential gene expression 

1. # Load libraries 
2. library("Seurat") 
3. library("ggplot2") 
4. library("tidyverse") 
5. library("openxlsx") 
6. library("SingleCellExperiment") 
7. library("DESeq2") 
8.   
9. #### Pseudobulk analysis #### 
10. timepoints <- c("20dpi", "40dpi", "80dpi", "120dpi", "end") 
11.   
12. degs_list <- list() 
13.   
14. for (i in seq_along(timepoints)) { 
15.   
16.   # Set the timepoint variable 
17.   TIMEPOINT <- timepoints[i] 
18.    
19.   # Load the Seurat file for the timepoint 
20.   sr <- readRDS(paste0("../seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated_annotated_filtered.rds")) 
21.    
22.   # Keep only the CD1 and RML samples 
23.   sr_RML_CD1 <- subset(sr, subset = inocula %in% c("RML", "CD1")) 
24.    
25.   # Cleanup 
26.   rm(sr) 
27.    
28.   # Function to run DESeq2 for each cluster and generate 
29.   # relevant plots 
30.   run_DESeq <- function(current_cluster, seurat_obj) { 
31.      
32.     print(paste0("Working on cluster: ", current_cluster)) 
33.      
34.     # Subset again to select the cluster of interest 
35.     sr_cluster <- subset(seurat_obj, subset = cluster_full_name == current_cluster) 
36.      
37.     # Convert Seurat object to SingleCellExperiment 
38.     sce <- as.SingleCellExperiment(sr_cluster) 
39.      
40.     # Convert characters to factors 
41.     sce$animal <- factor(sce$animal) 
42.     sce$inocula <- factor(sce$inocula, levels = c("CD1", "RML")) 
43.      
44.     # Count aggregation to sample level 
45.     sce_agg <- Matrix.utils::aggregate.Matrix(t(counts(sce)),  
46.                            groupings = sce$animal, 
47.                            fun = "sum")  
48.      
49.     # Transpose the matrix 
50.     sce_agg <- t(sce_agg) 
51.      
52.     # Prepare the metadata 
53.     sce_metadata <- data.frame(animal = as.numeric(colnames(sce_agg))) %>% 
54.       left_join(read.xlsx("../samples.xlsx"), by = "animal") %>% 
55.       column_to_rownames("animal") 
56.      
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57.     # Build the DESeq2 object 
58.     dds <- DESeqDataSetFromMatrix(sce_agg,  
59.                                   colData = sce_metadata,  
60.                                   design = ~ inocula) 
61.      
62.      
63.     # Transform counts for data visualization 
64.     rld <- rlog(dds, blind=TRUE) 
65.      
66.     # Plot PCA 
67.     dir.create("PCA_plots", showWarnings = F) 
68.      
69.     pca_plot <- DESeq2::plotPCA(rld, intgroup = "inocula") 
70.     ggsave(paste0("./PCA_plots/", TIMEPOINT, "_", gsub("/", "-", current_cluster, fixed = 

T), ".png"), pca_plot, width = 10, height = 10) 
71.      
72.     # Run the DESeq2 pipeline 
73.     dds <- DESeq(dds) 
74.      
75.     # Get the results 
76.     res <- results(dds,  
77.                    contrast = c("inocula", "RML", "CD1"), 
78.                    alpha = 0.05) 
79.      
80.     # Shrink lfc 
81.     res <- lfcShrink(dds,  
82.                      coef = "inocula_RML_vs_CD1", 
83.                      res = res) 
84.      
85.     # Significant DE genes 
86.     res_sig <- data.frame(res) %>% 
87.       filter(padj < 0.05) %>% 
88.       arrange(padj) %>% 
89.       rownames_to_column("gene") 
90.      
91.      
92.     # Heatmap of the significant genes 
93.     if (nrow(res_sig) >= 2) { 
94.       save_pheatmap_png <- function(x, filename, width=1200, height=1000, res = 150) { 
95.         png(filename, width = width, height = height, res = res) 
96.         grid::grid.newpage() 
97.         grid::grid.draw(x$gtable) 
98.         dev.off() 
99.       } 
100.        
101.       dir.create("DEGs_heatmaps", showWarnings = F) 
102.        
103.       # Extract normalized counts for only the significant genes 
104.       sig_norm <- data.frame(counts(dds, normalized = TRUE)) %>% 
105.         rownames_to_column(var = "gene") %>% 
106.         dplyr::filter(gene %in% res_sig$gene) %>% 
107.         select(-gene) 
108.        
109.       hm_anno <- sce_metadata[,"inocula", drop = F] 
110.       row.names(hm_anno) <- colnames(sig_norm) 
111.        
112.       # Run pheatmap using the metadata data frame for the annotation 
113.       hm <- pheatmap::pheatmap(sig_norm,  
114.                color = RColorBrewer::brewer.pal(6, "YlOrRd"), 
115.                border_color = NA, 
116.                cluster_rows = T,  
117.                show_rownames = F, 
118.                annotation = hm_anno,  
119.                scale = "row")    
120.        
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121.       save_pheatmap_png(hm, paste0("./DEGs_heatmaps/", TIMEPOINT, "_", gsub("/", "-", 
current_cluster, fixed = T), ".png")) 

122.     } 
123.      
124.     # Return the results 
125.     if(!is.null(res_sig) && nrow(res_sig) > 0) { 
126.       cbind(cluster = current_cluster, res_sig) 
127.     } 
128.   } 
129.    
130.   # Run DGE on all clusters 
131.   all_clusters <- unique(sr_RML_CD1$cluster_full_name) 
132.   degs <- map_dfr(all_clusters, run_DESeq, seurat_obj = sr_RML_CD1) 
133.    
134.   degs_list[[TIMEPOINT]] <- degs 
135. } 
136.   
137. # Cleanup 
138. rm(i, degs, sr_RML_CD1) 
139.   
140. # Filter out CD1 vs PBS genes 
141. genes_to_exclude <- c("Calm1", "Cdk8", "Cmss1", "Malat1", "mt-Rnr1", "mt-Rnr2", "Rn18s") 
142. list_subt <- lapply(degs_list, function(x) x[!x$gene %in% genes_to_exclude,]) 
143.   
144. names(list_subt) <- timepoints 
145.   
146. # Save as xlsx 
147. write.xlsx(degs_list, "DEGs_DESeq2.xlsx", overwrite = TRUE) 
148. write.xlsx(list_subt, "DEGs_DESeq2_subtracted_v2.xlsx", overwrite = TRUE) 
149.   
150. #### PCA plots accross all time points #### 
151.   
152. dir.create("PCA_plots/all_timepoints", showWarnings = F, recursive = T) 
153.   
154. timepoints <- c("20dpi", "40dpi", "80dpi", "120dpi", "end") 
155.   
156. load_sr_objects <- function(TIMEPOINT) { 
157.    
158.   # Load the Seurat file for the timepoint 
159.   sr <- readRDS(paste0("../seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated_annotated_filtered.rds")) 
160.    
161.   # Keep only the CD1 and RML samples 
162.   sr_RML_CD1 <- subset(sr, subset = inocula %in% c("RML", "CD1")) 
163.    
164.   # Cleanup 
165.   rm(sr) 
166.    
167.   return(sr_RML_CD1) 
168. } 
169.   
170. # Load all time points in memory 
171. srs <- sapply(timepoints, load_sr_objects) 
172.   
173. # Merge to create a combined object 
174. sr_merged <- merge(srs[[1]], y = srs[-1], project = "mouse_sc") 
175.   
176. # Remove assays and save the merged 
177. DefaultAssay(sr_merged) <- "RNA" 
178. sr_merged[["SCT"]] <- NULL 
179. sr_merged[["integrated"]] <- NULL 
180. sr_merged[["prediction.score.cluster_number"]] <- NULL 
181.   
182. # Remove spurious sample 828719 
183. sr_merged <- subset(sr_merged, subset = animal != "828719") 
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184. # Remove 40 and 80 dpi because there are no interesting transcriptomic changes 
185. sr_merged <- subset(sr_merged, subset = timepoint %in% c("20dpi", "120dpi", "end")) 
186. saveRDS(sr_merged, "sr_merged_for_PCA_plots.rds") 
187.   
188. # Cleanup 
189. rm(srs, load_sr_objects) 
190.   
191. # Load the file for future use 
192. #sr_merged <- readRDS("sr_merged_for_PCA_plots.rds") 
193.   
194. # Prepare a vector with all clusters 
195. all_clusters <- unique(sr_merged$cluster_full_name) 
196.   
197. # Modified function from the DESeq2 visualisation functions 
198. # to allow specification of different labeling for the timepoints 
199. # adapted from https://github.com/mikelove/DESeq2/blob/master/R/plots.R 
200. plotPCA_custom <- function(object, ntop=500, returnData=FALSE) { 
201.   # calculate the variance for each gene 
202.   rv <- rowVars(assay(object)) 
203.    
204.   # select the ntop genes by variance 
205.   select <- order(rv, decreasing=TRUE)[seq_len(min(ntop, length(rv)))] 
206.    
207.   # perform a PCA on the data in assay(x) for the selected genes 
208.   pca <- prcomp(t(assay(object)[select,])) 
209.    
210.   # the contribution to the total variance for each component 
211.   percentVar <- pca$sdev^2 / sum( pca$sdev^2 ) 
212.    
213.   intgroup.df <- as.data.frame(colData(object)[, c("inocula", "timepoint"), drop=FALSE]) 
214.   intgroup.df$animal <- row.names(colData(object)) 
215.   intgroup.df$inocula <- factor(intgroup.df$inocula, levels = c("CD1", "RML")) 
216.   intgroup.df$timepoint <- factor(intgroup.df$timepoint, levels = timepoints) 
217.    
218.   # assembly the data for the plot 
219.   d <- data.frame(PC1=pca$x[,1], PC2=pca$x[,2], intgroup.df, name=colnames(object)) 
220.    
221.   if (returnData) { 
222.     attr(d, "percentVar") <- percentVar[1:2] 
223.     return(d) 
224.   } 
225.    
226.   # Set custom shapes 
227.   custom_shapes <- c("20dpi" = 15, "120dpi" = 16, "end" = 17) 
228.    
229.   ggplot(data=d, aes_string(x="PC1", y="PC2", color="inocula", shape = "timepoint", 

label="animal")) + 
230.     geom_point(size=3) + 
231.     #geom_text_repel(max.overlaps = 20) + 
232.     scale_shape_manual(values = custom_shapes) + 
233.     xlab(paste0("PC1: ",round(percentVar[1] * 100),"% variance")) + 
234.     ylab(paste0("PC2: ",round(percentVar[2] * 100),"% variance")) + 
235.     coord_fixed() 
236. } 
237.   
238. # Function to run DESeq2 for each cluster and generate 
239. # relevant plots 
240. generate_PCA_plot <- function(current_cluster, seurat_obj) { 
241.    
242.   print(paste0("Working on cluster: ", current_cluster)) 
243.    
244.   # Subset to select the cluster of interest 
245.   sr_cluster <- subset(seurat_obj, subset = cluster_full_name == current_cluster) 
246.    
247.   # Convert Seurat object to SingleCellExperiment 
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248.   sce <- as.SingleCellExperiment(sr_cluster) 
249.    
250.   # Convert characters to factors 
251.   sce$animal <- factor(sce$animal) 
252.    
253.   # Count aggregation to sample level 
254.   sce_agg <- Matrix.utils::aggregate.Matrix(t(counts(sce)),  
255.                                             groupings = sce$animal, 
256.                                             fun = "sum")  
257.    
258.   # Transpose the matrix 
259.   sce_agg <- t(sce_agg) 
260.    
261.   # Prepare the metadata 
262.   sce_metadata <- data.frame(animal = as.numeric(colnames(sce_agg))) %>% 
263.     left_join(read.xlsx("../samples.xlsx"), by = "animal") %>% 
264.     column_to_rownames("animal") 
265.    
266.   # Build the DESeq2 object 
267.   dds <- DESeqDataSetFromMatrix(sce_agg,  
268.                                 colData = sce_metadata,  
269.                                 design = ~ inocula) 
270.    
271.   # Transform counts for data visualization 
272.   rld <- tryCatch({ 
273.     vst(dds) 
274.   }, error = function(cond) varianceStabilizingTransformation(dds)) 
275.    
276.   # Plot PCA 
277.   pca_plot <- plotPCA_custom(rld) + ggtitle(current_cluster) 
278.   ggsave(paste0("PCA_plots/all_timepoints/", gsub("/", "-", current_cluster, fixed = T), 

".png"), width = 6, height = 4) 
279. } 
280.   
281. sapply(all_clusters, generate_PCA_plot, seurat_obj = sr_merged) 

7.7.5 Gene Set Enrichment Analysis and Gene Ontology Over-representation Analysis 

1. # Load packages 
2. library("Seurat") 
3. library("openxlsx") 
4. library("ggplot2") 
5. library("ggrepel") 
6. library("RColorBrewer") 
7. library("tidyverse") 
8. library("ensembldb") 
9. library("AnnotationHub") 
10. library("clusterProfiler") 
11.   
12. # Load the Seurat object 
13. TIMEPOINT <- "20dpi" 
14. sr <- readRDS(paste0("./seurat_objects/", TIMEPOINT, 

"_sr_renamed_qc_integrated_annotated_filtered.rds")) 
15.   
16. # Load the annotation resource. 
17. ah <- AnnotationHub() 
18.   
19. # fetch one of the databases 
20. ahOrgDb <- ah[["AH92582"]] 
21.   
22. # Prepare a vector of all all cluster names 
23. all_clusters <- unique(as.character(sr$cluster_full_name)) 
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24.   
25. ## ORA - Over-Representation Analysis 
26.   
27. # Create directory 
28. dir.create("cluster_profiler/ORA", showWarnings = F, recursive = T) 
29.   
30. run_ORA <- function(cluster_, degs.filtered, seurat_obj, ontology){ 
31.   genes <- subset(degs.filtered, subset = cluster == cluster_)$gene 
32.   if (length(genes) == 0) { 
33.     return() 
34.   } 
35.   print(paste0("working on cluster: ", cluster_)) 
36.   ego <- enrichGO(gene          = genes, 
37.                   universe      = row.names(seurat_obj), 
38.                   OrgDb         = ahOrgDb, 
39.                   keyType       = "SYMBOL", 
40.                   ont           = ontology, 
41.                   pAdjustMethod = "BH") 
42.   ego <- head(ego) 
43.    
44.   if(!is.null(ego) && nrow(ego) > 0) { 
45.     cbind(cluster = cluster_, ego) 
46.   } 
47. } 
48. run_ORA_list <- function(cluster_, degs.filtered, seurat_obj, ontology, count_cutoff){ 
49.   genes <- subset(degs.filtered, subset = cluster == cluster_)$gene 
50.   if (length(genes) == 0) { 
51.     return() 
52.   } 
53.   print(paste0("working on cluster: ", cluster_)) 
54.   ego <- enrichGO(gene          = genes, 
55.                   universe      = row.names(seurat_obj), 
56.                   OrgDb         = ahOrgDb, 
57.                   keyType       = "SYMBOL", 
58.                   ont           = ontology, 
59.                   pAdjustMethod = "BH") 
60.   if(!is.null(ego)) { 
61.     ego@result <- ego@result[ego@result$Count >= count_cutoff,] 
62.     return(ego) 
63.   } 
64. } 
65.   
66. ora.BP_list <- lapply(all_clusters, 
67.                  run_ORA_list, 
68.                 degs.filtered = degs.filtered, 
69.                 seurat_obj = sr, 
70.                 ontology = "BP", 
71.                 count_cutoff = 3) 
72. names(ora.BP_list) <- all_clusters 
73. dotplot(merge_result(ora.BP_list), font.size = 12, title = paste0("ORA - BP - ", TIMEPOINT)) 

+ 
74.   theme(axis.text.x = element_text(angle = 45, hjust=1)) 
75. ggsave(paste0("cluster_profiler/ORA/", "ORA_BP_", TIMEPOINT, ".png"), width = 8, height = 6) 
76.   
77. ora.CC_list <- lapply(all_clusters, 
78.                       run_ORA_list, 
79.                       degs.filtered = degs.filtered, 
80.                       seurat_obj = sr, 
81.                       ontology = "CC", 
82.                       count_cutoff = 3) 
83. names(ora.CC_list) <- all_clusters 
84. dotplot(merge_result(ora.CC_list), font.size = 12, title = paste0("ORA - CC - ", TIMEPOINT)) 

+ 
85.   theme(axis.text.x = element_text(angle = 45, hjust=1)) 
86. ggsave(paste0("cluster_profiler/ORA/", "ORA_CC_", TIMEPOINT, ".png"), width = 8, height = 6) 
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87.   
88. ora.MF_list <- lapply(all_clusters, 
89.                       run_ORA_list, 
90.                       degs.filtered = degs.filtered, 
91.                       seurat_obj = sr, 
92.                       ontology = "MF", 
93.                       count_cutoff = 3) 
94. names(ora.MF_list) <- all_clusters 
95. dotplot(merge_result(ora.MF_list), font.size = 12, title = paste0("ORA - MF - ", TIMEPOINT)) 

+ 
96.   theme(axis.text.x = element_text(angle = 45, hjust=1)) 
97. ggsave(paste0("cluster_profiler/ORA/", "ORA_MF_", TIMEPOINT, ".png"), width = 8, height = 6) 
98.   
99. ora.BP <- map_dfr(all_clusters, 
100.                     run_ORA, 
101.                     degs.filtered = degs.filtered, 
102.                     seurat_obj = sr, 
103.                     ontology = "BP") 
104. ora.CC <- map_dfr(all_clusters, 
105.                     run_ORA, 
106.                     degs.filtered = degs.filtered, 
107.                     seurat_obj = sr, 
108.                     ontology = "CC") 
109. ora.MF <- map_dfr(all_clusters, 
110.                     run_ORA, 
111.                     degs.filtered = degs.filtered, 
112.                     seurat_obj = sr, 
113.                     ontology = "MF") 
114.   
115. worksheets <- list(BP = ora.BP, CC = ora.CC, MF = ora.MF) 
116. write.xlsx(worksheets, paste0("cluster_profiler/ORA/", "ORA_", TIMEPOINT, ".xlsx"), 

overwrite = T) 
117.   
118. ## GSEA - Gene Set Enrichment Analysis 
119.   
120. # Create directory 
121. dir.create("cluster_profiler/GSEA", showWarnings = F, recursive = T) 
122.   
123. # Run GSEA for each cluster separately 
124.   
125. run_GSEA_list <- function(cluster_, seurat_obj, ontology){ 
126.   print(paste0("working on cluster: ", cluster_)) 
127.   
128.   # Subset the Seurat object to keep cluster of interest and only RML and CD1 groups 
129.   srTmp <- subset(seurat_obj, subset = cluster_full_name == cluster_ & inocula %in% 

c("RML", "CD1")) 
130.   
131.   # Perform a fast Wilcoxon rank sum test using presto 
132.   gsea.genes <- presto::wilcoxauc(srTmp, group_by = 'inocula') 
133.   gsea.genes <- gsea.genes[which(gsea.genes$group == "RML"),] 
134.   
135.   geneList <- gsea.genes$logFC 
136.   names(geneList) <- gsea.genes$feature 
137.   geneList <- sort(geneList, decreasing = TRUE) 
138.   
139.   ego <- tryCatch({ 
140.     gseGO(geneList     = geneList, 
141.           OrgDb        = ahOrgDb, 
142.           ont          = ontology, 
143.           keyType       = "SYMBOL", 
144.           minGSSize    = 10, 
145.           maxGSSize    = 500, 
146.           pvalueCutoff = 0.05) 
147.   }, 
148.   error = function(cond) NULL) 
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149.   
150.   if(!is.null(ego) && nrow(ego) > 0) { 
151.     return(ego@result) 
152.   } 
153. } 
154.   
155. gsea.BP <- lapply(all_clusters, 
156.                   run_GSEA_list, 
157.                   seurat_obj = sr, 
158.                   ontology = "BP") 
159. names(gsea.BP) <- all_clusters 
160.   
161. gsea.MF <- lapply(all_clusters, 
162.                   run_GSEA_list, 
163.                   seurat_obj = sr, 
164.                   ontology = "MF") 
165. names(gsea.MF) <- all_clusters 
166.   
167. gsea.CC <- lapply(all_clusters, 
168.                   run_GSEA_list, 
169.                   seurat_obj = sr, 
170.                   ontology = "CC") 
171. names(gsea.CC) <- all_clusters 
172.   
173. # Save the results 
174. worksheets <- list(BP = bind_rows(gsea.BP, .id = "cluster"), 
175.                    CC = bind_rows(gsea.CC, .id = "cluster"), 
176.                    MF = bind_rows(gsea.MF, .id = "cluster")) 
177. write.xlsx(worksheets, paste0("cluster_profiler/GSEA/", "GSEA_", TIMEPOINT, 

"_per_cluster.xlsx"), overwrite = T) 
178.   
179. # Run GSEA for all cells of all clusters 
180. gsea.genes <- presto::wilcoxauc(subset(sr, subset = inocula %in% c("RML", "CD1")), 
181.                               group_by = 'inocula') 
182. gsea.genes <- gsea.genes[which(gsea.genes$group == "RML"),] 
183.   
184. geneList <- gsea.genes$logFC 
185. names(geneList) <- gsea.genes$feature 
186. geneList <- sort(geneList, decreasing = TRUE) 
187.   
188. run_GSEA_all_clusters <- function(ontology) { 
189.   gsea <- gseGO(geneList = geneList, 
190.                    OrgDb = ahOrgDb, 
191.                    ont = ontology, 
192.                    keyType = "SYMBOL", 
193.                    minGSSize = 10, 
194.                    maxGSSize = 500, 
195.                    pvalueCutoff = 0.05) 
196.   godata <- GOSemSim::godata('org.Mm.eg.db', ont = ontology) 
197.   gsea <- enrichplot::pairwise_termsim(gsea, method="Wang", semData = godata) 
198.   return(gsea) 
199. } 
200.   
201. gsea.BP <- run_GSEA_all_clusters(ontology = "BP") 
202. gsea.CC <- run_GSEA_all_clusters(ontology = "CC") 
203. gsea.MF <- run_GSEA_all_clusters(ontology = "MF") 
204.   
205. # Save results 
206. worksheets <- list(BP = gsea.BP, CC = gsea.CC, MF = gsea.MF) 
207. write.xlsx(worksheets, paste0("cluster_profiler/GSEA/", "GSEA_", TIMEPOINT, 

"_all_clusters.xlsx"), overwrite = T) 
208.   
209. # Save gseaResult objects for the generation of plots 
210. saveRDS(gsea.BP, paste0("cluster_profiler/GSEA/", "gseaResult_BP_", TIMEPOINT, ".rds")) 
211. saveRDS(gsea.CC, paste0("cluster_profiler/GSEA/", "gseaResult_CC_", TIMEPOINT, ".rds")) 
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212. saveRDS(gsea.MF, paste0("cluster_profiler/GSEA/", "gseaResult_MF_", TIMEPOINT, ".rds")) 
213.   
214. # Plot 
215. ridgeplot(gsea.BP) + 
216.   labs(x = "enrichment distribution", y = "GO terms") + 
217.   ggtitle(paste0("GSEA - BP - ", TIMEPOINT)) 
218. ggsave(paste0("cluster_profiler/GSEA/GSEA_BP_", TIMEPOINT, ".png"), width = 10, height = 

10) 
219.   
220. ridgeplot(gsea.CC) + 
221.   labs(x = "enrichment distribution", y = "GO terms") + 
222.   ggtitle(paste0("GSEA - CC - ", TIMEPOINT)) 
223. ggsave(paste0("cluster_profiler/GSEA/GSEA_CC_", TIMEPOINT, ".png"), width = 10, height = 

14) 
224.   
225. ridgeplot(gsea.MF) + 
226.   labs(x = "enrichment distribution", y = "GO terms") + 
227.   ggtitle(paste0("GSEA - MF - ", TIMEPOINT)) 
228. ggsave(paste0("cluster_profiler/GSEA/GSEA_MF_", TIMEPOINT, ".png"), width = 10, height = 

10) 
229.   
230.   
231. # Cleanup 
232. rm(ah, gse.BP, gse.CC, gse.MF, ora.BP, ora.CC, ora.MF, 
233.    worksheets, ahOrgDb, run_GSEA, run_ORA, all_clusters, 
234.    godata_MF, godata_CC, godata_BP) 
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7.8 R session information 

1. > sessionInfo() 
2. R version 4.1.1 (2021-08-10) 
3. Platform: x86_64-pc-linux-gnu (64-bit) 
4. Running under: Ubuntu 20.04.3 LTS 
5.   
6. Matrix products: default 
7. BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so 
8.   
9. locale: 
10.  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        
11.  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C              
12.  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C               
13. [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C        
14.   
15. attached base packages: 
16. [1] stats4    stats     graphics  grDevices utils     datasets  methods   base      
17.   
18. other attached packages: 
19.  [1] UpSetR_1.4.0                DESeq2_1.32.0               SingleCellExperiment_1.14.1 
20.  [4] SummarizedExperiment_1.24.0 MatrixGenerics_1.6.0        matrixStats_0.61.0          
21.  [7] R.matlab_3.6.2              cowplot_1.1.1               clusterProfiler_4.0.5       
22. [10] scProportionTest_0.0.0.9000 AnnotationHub_3.0.2         BiocFileCache_2.0.0         
23. [13] dbplyr_2.1.1                ensembldb_2.16.4            AnnotationFilter_1.16.0     
24. [16] GenomicFeatures_1.44.2      AnnotationDbi_1.56.2        Biobase_2.54.0              
25. [19] GenomicRanges_1.46.1        GenomeInfoDb_1.30.0         IRanges_2.28.0              
26. [22] S4Vectors_0.32.3            BiocGenerics_0.40.0         forcats_0.5.1               
27. [25] stringr_1.4.0               dplyr_1.0.7                 purrr_0.3.4                 
28. [28] readr_2.1.1                 tidyr_1.1.4                 tibble_3.1.6                
29. [31] tidyverse_1.3.1             RColorBrewer_1.1-2          ggrepel_0.9.1               
30. [34] ggplot2_3.3.5               openxlsx_4.2.4              SeuratObject_4.0.4          
31. [37] Seurat_4.0.5                
32.   
33. loaded via a namespace (and not attached): 
34.   [1] rappdirs_0.3.3                rtracklayer_1.52.1            
35.   [3] scattermore_0.7               R.methodsS3_1.8.1             
36.   [5] bit64_4.0.5                   R.utils_2.11.0                
37.   [7] irlba_2.3.5                   DelayedArray_0.20.0           
38.   [9] data.table_1.14.2             rpart_4.1-15                  
39.  [11] KEGGREST_1.34.0               RCurl_1.98-1.5                
40.  [13] generics_0.1.1                RSQLite_2.2.9                 
41.  [15] shadowtext_0.0.9              RANN_2.6.1                    
42.  [17] future_1.23.0                 bit_4.0.4                     
43.  [19] tzdb_0.2.0                    enrichplot_1.12.3             
44.  [21] spatstat.data_2.1-0           xml2_1.3.3                    
45.  [23] lubridate_1.8.0               httpuv_1.6.3                  
46.  [25] assertthat_0.2.1              viridis_0.6.2                 
47.  [27] hms_1.1.1                     promises_1.2.0.1              
48.  [29] fansi_0.5.0                   restfulr_0.0.13               
49.  [31] progress_1.2.2                readxl_1.3.1                  
50.  [33] igraph_1.2.9                  DBI_1.1.1                     
51.  [35] geneplotter_1.70.0            htmlwidgets_1.5.4             
52.  [37] spatstat.geom_2.3-0           ellipsis_0.3.2                
53.  [39] backports_1.4.0               annotate_1.72.0               
54.  [41] biomaRt_2.48.3                deldir_1.0-6                  
55.  [43] vctrs_0.3.8                   ROCR_1.0-11                   
56.  [45] abind_1.4-5                   cachem_1.0.6                  
57.  [47] withr_2.4.3                   ggforce_0.3.3                 
58.  [49] grr_0.9.5                     sctransform_0.3.2             
59.  [51] treeio_1.16.2                 GenomicAlignments_1.28.0      
60.  [53] prettyunits_1.1.1             goftest_1.2-3                 
61.  [55] cluster_2.1.2                 DOSE_3.18.3                   
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62.  [57] ape_5.5                       lazyeval_0.2.2                
63.  [59] crayon_1.4.2                  genefilter_1.74.1             
64.  [61] pkgconfig_2.0.3               tweenr_1.0.2                  
65.  [63] nlme_3.1-153                  ProtGenerics_1.24.0           
66.  [65] rlang_0.4.12                  globals_0.14.0                
67.  [67] lifecycle_1.0.1               miniUI_0.1.1.1                
68.  [69] downloader_0.4                filelock_1.0.2                
69.  [71] modelr_0.1.8                  cellranger_1.1.0              
70.  [73] polyclip_1.10-0               lmtest_0.9-39                 
71.  [75] Matrix_1.4-0                  aplot_0.1.1                   
72.  [77] zoo_1.8-9                     Matrix.utils_0.9.8            
73.  [79] reprex_2.0.1                  ggridges_0.5.3                
74.  [81] pheatmap_1.0.12               png_0.1-7                     
75.  [83] viridisLite_0.4.0             rjson_0.2.20                  
76.  [85] bitops_1.0-7                  R.oo_1.24.0                   
77.  [87] KernSmooth_2.23-20            Biostrings_2.62.0             
78.  [89] blob_1.2.2                    qvalue_2.24.0                 
79.  [91] parallelly_1.29.0             gridGraphics_0.5-1            
80.  [93] scales_1.1.1                  memoise_2.0.1                 
81.  [95] magrittr_2.0.1                plyr_1.8.6                    
82.  [97] ica_1.0-2                     zlibbioc_1.40.0               
83.  [99] scatterpie_0.1.7              compiler_4.1.1                
84. [101] BiocIO_1.2.0                  fitdistrplus_1.1-6            
85. [103] Rsamtools_2.8.0               cli_3.1.0                     
86. [105] XVector_0.34.0                listenv_0.8.0                 
87. [107] patchwork_1.1.1               pbapply_1.5-0                 
88. [109] MASS_7.3-54                   mgcv_1.8-38                   
89. [111] tidyselect_1.1.1              stringi_1.7.6                 
90. [113] yaml_2.2.1                    GOSemSim_2.18.1               
91. [115] locfit_1.5-9.4                grid_4.1.1                    
92. [117] fastmatch_1.1-3               tools_4.1.1                   
93. [119] future.apply_1.8.1            parallel_4.1.1                
94. [121] rstudioapi_0.13               gridExtra_2.3                 
95. [123] farver_2.1.0                  Rtsne_0.15                    
96. [125] ggraph_2.0.5                  digest_0.6.29                 
97. [127] BiocManager_1.30.16           shiny_1.7.1                   
98. [129] Rcpp_1.0.7                    broom_0.7.10                  
99. [131] BiocVersion_3.13.1            later_1.3.0                   
100. [133] RcppAnnoy_0.0.19              httr_1.4.2                    
101. [135] colorspace_2.0-2              rvest_1.0.2                   
102. [137] XML_3.99-0.8                  fs_1.5.2                      
103. [139] tensor_1.5                    reticulate_1.22               
104. [141] splines_4.1.1                 yulab.utils_0.0.4             
105. [143] uwot_0.1.11                   tidytree_0.3.6                
106. [145] spatstat.utils_2.2-0          graphlayouts_0.7.2            
107. [147] ggplotify_0.1.0               plotly_4.10.0                 
108. [149] xtable_1.8-4                  jsonlite_1.7.2                
109. [151] ggtree_3.0.4                  tidygraph_1.2.0               
110. [153] ggfun_0.0.4                   R6_2.5.1                      
111. [155] pillar_1.6.4                  htmltools_0.5.2               
112. [157] mime_0.12                     glue_1.5.1                    
113. [159] fastmap_1.1.0                 BiocParallel_1.26.2           
114. [161] interactiveDisplayBase_1.30.0 codetools_0.2-18              
115. [163] fgsea_1.18.0                  utf8_1.2.2                    
116. [165] lattice_0.20-45               spatstat.sparse_2.0-0         
117. [167] curl_4.3.2                    leiden_0.3.9                  
118. [169] gtools_3.9.2                  zip_2.2.0                     
119. [171] GO.db_3.13.0                  survival_3.2-13               
120. [173] munsell_0.5.0                 DO.db_2.9                     
121. [175] GenomeInfoDbData_1.2.7        haven_2.4.3                   
122. [177] reshape2_1.4.4                gtable_0.3.0                  
123. [179] spatstat.core_2.3-2  

 


