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Abstract

Water erosion can degrade soils and reduce agricultural productivity. Global modelling studies are in-

creasingly used to explore the potential impacts of environmental change, especially climate change, on

crop yields. Despite its impact on crops and its direct link to the climate system, water erosion has not

previously been considered in projections of the impacts of climate change on global crop yields. Sim-

ilarly, global water erosion assessments have not considered how water erosion affects crops, and vice

versa. This thesis identifies a method to estimate global water erosion patterns and evaluates it using a

global database of erosion measurements. It then examines the global potential impacts of erosion on

maize and wheat yields, and explores how these might be affected by climate change in the future.

The Environmental Policy Integrated Climate (EPIC) crop model is used with global datasets on

soil, topography, climate and field management to estimate erosion and its impacts on crop yields. Esti-

mates using weather data for the years 1980–2010 suggest that water erosion reduced maize and wheat

yields by 3% annually in around half of global arable land under current land management regimes. The

estimated annual maize and wheat production losses due to water erosion accounted for less than 1%

of the global production volume. However, water erosion in maize and wheat fields at low latitudes is

likely to increase in the future due to the adverse effects of climate change on both crops.

Uncertainties remain about estimates of water erosion that need to be addressed through better

integration of models and observations. Nevertheless, the integrated biophysical modelling framework

developed in this study can provide a link between robust estimates of water erosion, economics, and

policy making that have so far been lacking in global agricultural assessments.
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Impact statement

It is necessary to improve the quality of indicators on the health of soil resources and to quantify the

current and future impacts of water erosion in agriculture in physical and economic terms (Montanarella,

2007; Montanarella et al., 2016; Nkonya et al., 2011). Although water erosion is considered in numerous

agricultural and environmental policy programs (Alewell et al., 2019), soil information available for

policy formulation is frequently based on studies from the 1990s based on observations made in the

1980s or earlier (Montanarella et al., 2016).

Global gridded crop models (GGCMs), typically combinations of crop or ecosystem models and

global gridded input data infrastructures, have become essential tools for analysing global phenomena,

most notably climate change, that affect agriculture and ecosystems (Mueller et al., 2017). GGCMs have

the capacity to develop large-scale indicators and to inform about agricultural productivity in a trans-

parent and consistent way across large areas (Mueller et al., 2017). Although water erosion plays an

important part in the productivity of cropland and the impact of agriculture on the environment, it is fre-

quently neglected in commonly used GGCMs. Moreover, integrated assessment modelling studies that

aim to assess environmental problems in a holistic way by linking social, economic, and environmental

considerations (Laniak et al., 2013) require data on water erosion impacts on agricultural production

(Porwollik et al., 2019).

The GGCM EPIC-IIASA is used to address the gaps in the literature regarding the links between

water erosion and crop cultivation in various large-scale and global modelling studies to provide insights

into the impact of water erosion in current and future agricultural environments. EPIC-IIASA has been

confirmed as a reliable tool for global crop yield projections and stands out against comparable global

crop models due to its detailed representation of soil processes including water erosion (Folberth et al.,

2019; Balkovič et al., 2014).

By simulating the interactions between crops and water erosion on a global scale, EPIC-IIASA can

provide much-needed indicators on the effects of water erosion on soil quality and productivity, and

analyse patterns of water erosion in response to field management and environmental drivers. Moreover,

by analysing the robustness of global water erosion estimates across different environments, this study

addresses concerns about the uncertainty of large-scale and global water erosion estimates (Evans and

Boardman, 2016b,a). Transparency of the robustness and uncertainty of model outputs is especially

important if they are intended to inform policy programs (Panagos et al., 2016).

Finally, this study contributes to a better understanding of potential future pathways of global cereal

11



production by analysing the combined impact of water erosion and climate change on maize and wheat

yields. Although climate change and water erosion may affect farmers simultaneously, and in combina-

tion can multiply pressures on crops, they are often studied separately (Webb et al., 2017). Both climate

change and water erosion impacts on crop production are spread unevenly around the globe. There-

fore, research on both environmental change topics together will help identify hotspots where maize and

wheat production are at risk from both climate change and water erosion, and thus increase knowledge

of regional differences in the resilience of future crop production.

12



Contents

Declaration of ownership 3

List of Publications 5

Acknowledgements 7

Abstract 9

Impact statement 11

Contents 13

List of Figures 19

List of Tables 23

List of Abbreviations 25

1 Introduction 27

1.1 The pressure on soil resources through the intensification of agriculture . . . . . . . . . 27

1.2 Land degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Land degradation by water erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Processes leading to water erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 The impact of agriculture on water erosion . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 The impact of water erosion on crop productivity . . . . . . . . . . . . . . . . . . . . . 33

1.7 The impact of climate change on water erosion . . . . . . . . . . . . . . . . . . . . . . 34

1.8 The impact of climate change on crops . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 The use of crop models in impact assessments . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 Thesis aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.11 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Literature review of water erosion assessments 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Global land degradation assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13



2.3 Water erosion assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Large-scale water erosion assessments . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Common water erosion modelling techniques . . . . . . . . . . . . . . . . . . . 48

2.3.3 The Universal Soil Loss Equation . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4 Uncertainties in water erosion models . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.5 Common methods for measuring water erosion based on field experiments . . . 53

2.4 Studies on the impact of water erosion on crop yields . . . . . . . . . . . . . . . . . . . 55

2.4.1 Methods to quantify the impact of water erosion on crop yields . . . . . . . . . . 56

2.4.2 Large-scale assessments of the impact of water erosion on crop yields . . . . . . 56

2.5 Studies on the impact of climate change on water erosion . . . . . . . . . . . . . . . . . 57

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.1 Models are the preferred method for assessing water erosion at large scales . . . 60

2.6.2 A better evaluation of the modelled water erosion estimates is needed . . . . . . 60

2.6.3 The impact of water erosion on crops is not adequately quantified . . . . . . . . 61

2.6.4 The impact of climate change on water erosion is unclear . . . . . . . . . . . . . 61

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Literature review of crop models 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Crop model types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Typical crop model routines to simulate crop growth . . . . . . . . . . . . . . . . . . . 67

3.4 Crop models and their applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Global climate change impact assessments using crop models . . . . . . . . . . . . . . . 70

3.6 Uncertainty and limitations of crop models . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Overall methodology 79

4.1 Study framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 The EPIC crop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Crop growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Crop growth constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.4 Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.5 Water erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 EPIC-IIASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Global grids and input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Climate change scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Field management scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14



4.3.4 Baseline field management scenario . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Uncertainty analysis of model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Sensitivity analysis of water erosion simulation . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Evaluation of model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.1 Evaluation of simulated water erosion against field measurements . . . . . . . . 95

4.6.2 Evaluation of simulated crop yields against reported yields . . . . . . . . . . . . 95

4.7 The computation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Uncertainties, sensitivities and robustness of simulated water erosion with EPIC-IIASA 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Summary of methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Aggregation of model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Sources of model uncertainty related to management assumptions and method

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Main drivers of the global erosion model . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Evaluation of simulation results against field data . . . . . . . . . . . . . . . . . 103

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Varying robustness of simulated water erosion in different global regions . . . . 106

5.4.2 Sources of uncertainties in global water erosion estimates . . . . . . . . . . . . 107

5.4.3 The difficulty of evaluating large-scale erosion estimates with field data . . . . . 110

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 The impact of water erosion on global maize and wheat yields 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Summary of methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Aggregation of model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 The impact of water erosion on global maize and wheat yields . . . . . . . . . . 118

6.3.2 Fertiliser use and environmental drivers affect the impacts of water erosion . . . 120

6.3.3 The impact of water erosion on total maize and wheat production . . . . . . . . 122

6.3.4 The relevance of slope and field management assumptions . . . . . . . . . . . . 125

6.3.5 Evaluation of simulated crop yields . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Erosion-induced crop yield losses and fertiliser requirements for compensation . 128

6.4.2 Potential impacts of water erosion on livelihoods . . . . . . . . . . . . . . . . . 130

6.4.3 Uncertainties in water erosion estimates . . . . . . . . . . . . . . . . . . . . . . 130

15



6.4.4 Uncertainties in crop yield estimates . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 The combined effects of climate change and water erosion on global maize and wheat yields135

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Summary of methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.2 Aggregation of model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Regions and countries vulnerable to both climate change and water erosion . . . 138

7.3.2 Interactions between crops and water erosion in response to climate change . . . 142

7.3.3 Global production changes due to climate change and water erosion . . . . . . . 144

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4.1 Factors driving regional differences in climate change and water erosion impacts 147

7.4.2 The effects of precipitation and temperature changes on water erosion . . . . . . 149

7.4.3 Where is water erosion increasing due to climate change? . . . . . . . . . . . . 150

7.4.4 Field management and land use planning will largely influence the future impact

of water erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.5 Measures to reduce the adverse effects of water erosion and climate change can

be combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.6 Uncertainties related to crop yield projections and climate change impacts on

crops and water erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8 Overall summary and future research needs 159

8.1 Summary of insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1.1 Simulation and evaluation of water erosion with EPIC-IIASA . . . . . . . . . . 160

8.1.2 The impact of water erosion on global maize and wheat yields . . . . . . . . . . 160

8.1.3 The impact of climate change and water erosion on maize and wheat yields . . . 161

8.2 Summary of research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.1 The first evaluation of global water erosion estimates from a GGCM . . . . . . . 162

8.2.2 New large-scale water erosion indicators . . . . . . . . . . . . . . . . . . . . . 162

8.2.3 New evidence on regional differences in the impact of water erosion in agriculture163

8.2.4 Improvements in crop yield projections by considering water erosion . . . . . . 164

8.2.5 New insights into the potential impacts of climate change on global water erosion 164

8.2.6 New data on global water erosion rates and impacts on crops . . . . . . . . . . . 165

8.3 Research needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3.1 Most important needs to improve large-scale water erosion estimates . . . . . . . 165

16



8.3.2 Scenarios on future land use and field management changes are needed to esti-

mate future water erosion rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.3.3 The effects of other land degradation processes must be considered . . . . . . . 168

8.4 Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A Chapter 4 - Methodology 171

B Chapter 5 - Uncertainties, sensitivities and robustness of simulated water erosion with

EPIC-IIASA 179

C Chapter 6 - The impact of water erosion on global maize and wheat yields 183

D Chapter 7 - The combined effects of climate change and water erosion on global maize and

wheat yields 191

Bibliography 203

17



18



List of Figures

1.1 Increase in global maize, wheat and total cereal production between the years 1961–2018

and increase in global fertiliser use between the years 1961-2002 . . . . . . . . . . . . . 27

1.2 The main links between climate change, erosion, crops and field management. . . . . . . 35

3.1 AgMIP median yield changes (%) for RCP8.5. . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Scheme of the modelling framework for generating the model outputs and the different

steps for analysing the uncertainties, sensitivities and robustness of the modelling approach 80

4.2 Distribution of selected tillage and cover crop scenarios determined by country-specific

and environmental indicators used for compiling the baseline scenario. . . . . . . . . . . 92

5.1 Soil loss due to water erosion in maize and wheat fields simulated with the baseline

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Water erosion uncertainty due to field management assumptions and water erosion equa-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Prevailing uncertainty due to field management assumptions and water erosion equations. 102

5.4 First-order and total-order Sensitivity indices for slope steepness and precipitation. . . . 104

5.5 Comparison of simulated erosion with measured erosion for different slope and precipi-

tation classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Distribution of low to high slope steepness and annual precipitation in maize and wheat

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Photos of: Sugar cane cultivation on steep slopes in southern China, maize cultivation

on strongly eroded slopes in south-west Uganda, abandoned fields and maize cultivation

on a steep slope in south-west Uganda, degraded and abandoned maize fields on steep

slopes in northern El Salvador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Simulated years left until the whole soil profile is eroded under permanent maize and

wheat cultivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 The impact of water erosion on global maize and wheat yields simulated with the base-

line scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

19



6.2 Maize and wheat yield losses for the 40 most vulnerable countries estimated with the

baseline scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Median maize and wheat yield loss per country plotted against erosion and maize and

wheat yield loss per grid classified by slope steepness and annual precipitation. . . . . . 121

6.4 water erosion vulnerability map for maize and wheat fields. . . . . . . . . . . . . . . . . 122

6.5 The impact of water erosion on global maize and wheat production. . . . . . . . . . . . 123

6.6 Range of simulated maize and wheat yield losses (% yr−1) in Italy simulated with dif-

ferent cropland distribution scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Uncertainty range of the impact of water erosion on maize (a) and wheat (b) yields due

to contrasting management scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Comparison of national maize and wheat yields and production simulated with EPIC and

reported by the FAO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 relative difference between national maize and wheat yields and production simulated

with EPIC and reported by the FAO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Relative reduction of maize yields due to water erosion per grid cell and change of maize

yields due to climate change per latitude in the medium-term and the long-term. . . . . . 140

7.2 Relative reduction of wheat yields due to water erosion per grid cell and change of wheat

yields due to climate change per latitude in the medium-term and the long-term. . . . . . 141

7.3 Relative medium and long-term changes in maize yields due to climate change and water

erosion in major world regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Relative medium and long-term changes in wheat yields due to climate change and water

erosion in major world regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Relative medium and long-term changes in median maize and wheat yields due to climate

change and water erosion per country and RCP. . . . . . . . . . . . . . . . . . . . . . . 145

7.6 Relative change in water erosion and crop yields due to changing precipitation and in-

creasing temperature between the years 2010-2090. . . . . . . . . . . . . . . . . . . . . 146

7.7 Increase in water erosion (%) per 1% increase in precipitation. . . . . . . . . . . . . . . 146

7.8 Changes in global annual average maize and wheat production due to climate change

and water erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1 Global dataset of slope classes that are used to derive the slope steepness per grid cell. . 171

A.2 Nitrogen (N), Phosphorus (P) and Potassium (K) application rates for maize and wheat

on global cropland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.3 Grid cells with irrigated and rainfed wheat and maize cultivation around the year 2000 . 173

A.4 Main climate zones based on the updated Koeppen-Geiger climate classification . . . . . 173

A.5 Relative area covered by the dominant slope and cropland per grid cell. . . . . . . . . . 174

A.6 Locations of water erosion field data from cropland where coordinates were recorded. . . 174

A.7 Distribution of erosion values measured in agricultural fields. . . . . . . . . . . . . . . . 175

20



A.8 Distribution of slope steepness, annual precipitation, and recorded measurement periods

for measured erosion values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.9 Number of measured water erosion records per country. . . . . . . . . . . . . . . . . . . 176

B.1 World regions classified according to the United Nations geo-schema . . . . . . . . . . . 179

B.2 Median deviation between measured and simulated water erosion using the baseline sce-

nario with different water erosion equations. . . . . . . . . . . . . . . . . . . . . . . . . 180

B.3 Distribution of average water erosion values from 1980 – 2010 simulated with the base-

line scenario and weighted for each grid cell. . . . . . . . . . . . . . . . . . . . . . . . 181

B.4 Comparison of slope inputs and simulated water erosion outputs between the cropland

distribution scenario using the most common slopes and the cropland distribution sce-

nario using the flattest terrain available in Italy. . . . . . . . . . . . . . . . . . . . . . . 182

C.1 Maize and wheat yields for each grid cell simulated with the baseline scenario. . . . . . 184

C.2 Maize yield losses due to water erosion (% yr−1) for all countries with significant crop

yield losses due to water erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3 Wheat yield losses due to water erosion (% yr−1) for all countries with significant crop

yield losses due to water erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.4 Yield loss due to water erosion plotted against Nitrogen and Phosphorus fertiliser use

per grid cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.5 Soil organic nitrogen loss with sediment runoff from the topsoil layer simulated for each

grid cell in maize fields and wheat fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C.6 Soil organic carbon loss with sediment runoff from the topsoil layer simulated for each

grid cell in maize fields and wheat fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.1 Relative changes in mean maize yields for the years 2050-2059 and 2090-2099 simulated

with RCP 2.6 and RCP 8.5 compared to mean maize yields of the years 1980-2010

simulated with the AGMERRA climate data. . . . . . . . . . . . . . . . . . . . . . . . 191

D.2 Relative changes in mean wheat yields for the years 2050-2059 and 2090-2099 simulated

with RCP 2.6 and RCP 8.5 compared to mean wheat yields of the years 1980-2010

simulated with the AGMERRA climate data. . . . . . . . . . . . . . . . . . . . . . . . 192

D.3 Regional trends in maize yields 1980 - 2099 simulated with the AGMERRA climate data

and the RCP 2.6 and RCP 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

D.4 Regional trends in wheat yields 1980 - 2099 simulated with the AGMERRA climate data

and the RCP 2.6 and RCP 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

D.5 Regional trends in the relative decrease in maize and wheat yields due to water erosion,

as well as share of grid cells where water erosion reduces crop yields for 2010-2099

simulated with RCP 2.6 and RCP 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.6 Maize and wheat yield reduction due to water erosion for 2090-2099 simulated with

different field management scenarios per world region. . . . . . . . . . . . . . . . . . . 196

21



D.7 Grid cells where maize and wheat yields are reduced due to water erosion per field man-

agement scenario for the years 2090-2099. . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.8 Regional trends in water erosion rates in maize and wheat fields between 2010-2099

simulated with the RCP 2.6 and RCP 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.9 Regional changes in average precipitation plotted against regional changes in average

water erosion between the decade 2010-2019 and the decade 2090-2099 in maize fields. . 199

D.10 Regional changes in average precipitation plotted against regional changes in average

water erosion between the decade 2010-2019 and the decade 2090-2099 in wheat fields. . 200

D.11 Regional gains and losses in annual average maize and wheat production simulated with

the RCP 2.6 and RCP 8.5 scenario for the decade 2090-2099 compared to average pro-

duction for the years 1980-2010 simulated with the AGMERRA climate data. . . . . . . 201

D.12 Global maize and wheat production and production losses due to water erosion per field

management scenario simulated with the RCP 2.6 and RCP 8.5 scenario, calculated for

the decade 2090-2099. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

22



List of Tables

4.1 Equations to calculate the erosivity factor in each water erosion equation available in EPIC. 85

4.2 Set of rules for field size and slope length estimation for each dominant slope class. . . . 88

4.3 Tillage management scenarios for maize and wheat cultivation. . . . . . . . . . . . . . . 90

4.4 Summary of management assumptions and erosion equation selected for the baseline

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 First-order sensitivity indices (SI) ranking for the five most sensitive input parameters

for each water erosion equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Total-order sensitivity indices (SI) ranking for the five most sensitive input parameters

for each water erosion equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 National maize production (FAO, 2020) and absolute and relative maize production

losses for the countries with the highest absolute losses. . . . . . . . . . . . . . . . . . . 124

6.2 National wheat production and absolute and relative wheat production losses for the

countries with the highest absolute losses. . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.1 Input parameters directly connected to the water erosion equations in EPIC. . . . . . . . 177

23



24



List of Abbreviations

• AGMIP: Agricultural Model Intercomparison and Improvement Project

• C: Carbon

• CAP: Common Agricultural Policy

• CN: Curve Number

• DEM: Digital Elevation Model

• EPIC: Environmental Policy Integrated Climate Model

• FAO: Food and Agriculture Organization of the United Nations

• GCM: General Circulation Model

• GGCM: Global Gridded Crop Model

• GLADIS: Global Land Degradation Information System

• GLASOD: Global Assessment of Human-induced Soil Degradation

• IIASA: International Institute for Applied Systems Analysis

• IPBES: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

• IPCC: Intergovernmental Panel on Climate Change

• ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project

• ISRIC: World Soil Information Center

• ITPS: Intergovernmental Technical Panel on Soils

• LDN: Land Degradation Neutrality

• MUSLE: Modified Universal Soil Loss Equation

• N: Nitrogen

• P: Phosphorous

25



• RCP: Representative Concentration Pathway

• RUSLE: Revised Universal Soil Loss Equation

• SDG: Sustainable Development Goals

• SOM: Soil Organic Matter

• UNCCD: United Nations Convention to Combat Desertification

• UNEP: United Nations Environment Programme

• USDA: United States Department of Agriculture

• USLE: Universal Soil Loss Equation

26



Chapter 1

Introduction

1.1 The pressure on soil resources through the intensification of

agriculture

Soil is one of the most important natural resources and essential for agriculture. A healthy soil is crucial

for providing nutrients and water to crops. However, soil resources have become increasingly under

pressure by the intensification of agriculture. The overuse of soil or land can lead to its degradation

and reduces its value for agriculture. Between the 1960s and 2010s, global cereal production nearly

tripled (Figure 1.1a). To sustain the productivity of soil during the ongoing intensification of grain

cultivation, fertiliser use increased in a similar rate in the second half of the 20th century (Figure 1.1b).

The intensification of cereal production in past decades triggered by improved crop varieties, irrigation

technology, heavy machinery and increasing use of fertiliser, herbicides and pesticides resulted in major

environmental impacts negatively affecting biodiversity, water and soil resources (Tilman et al., 2001;

Vitousek et al., 1997).

Figure 1.1: (a) Increase in global maize, wheat and total cereal production between the years 1961–2018
(FAO, 2020). (b) Increase in global fertiliser use between the years 1961-2002 (FAO, 2020).

The intensification of agriculture allowed for an enormous growth in global population, which in-

creased from 2.5 billion in 1950 to 7.8 billion in 2020 (UN, 2020). The raising population in turn resulted

in a raising demand in food and forage leading to further intensification of agriculture and pressure on
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soil resources. This development was accompanied by economic growth leading to a rise in per capita

food consumption. Forecasts for the year 2050 predict that the global population will grow to 9.7 billion,

the world GDP will be 2.5-fold and per capita income 1.8-fold compared to the year 2012 (Melorose

et al., 2015; Alexandratos and Bruinsma, 2012). The United Nations Food and Agriculture Organization

(FAO) estimates an increase in food production of about 40 - 53% by 2050 compared to 2012, with major

differences across regions (FAO, 2018). Whilst future agricultural supply is driven by many factors such

as consumer preferences, intensification of agricultural production, expansion of agricultural land, food

loss and waste; regional differences are largely driven by the uneven spread of population growth (Valin

et al., 2014). Consequently, the increasing pressure on agriculture and soil will vary strongly around the

world. Most of the regions where population growth continues to be fast are those with inadequate food

consumption and high levels of undernourishment (Gerland et al., 2014). Parts of the regions with a pro-

jected high growth in food demand already have low levels of agricultural productivity due to infertile

soils (Montanarella et al., 2016).

1.2 Land degradation

Although soil degradation is estimated to have been ongoing for at least 12,000 years, it increased ex-

ponentially in the last 200 years (Sanderman et al., 2017). Before the invention of synthetic fertiliser

in the early 20th century, it was common practice among farmers to maintain the fertility of soils by

returning nutrients through crop residues and manure and preventing soil erosion. Traces of ancient

farming systems, which were sustainable for hundreds and even thousands of years, can be found on

all continents (Olsson et al., 2019). In modern agriculture, farming practices to maintain the natural

fertility of soils have become less common as the increasing availability of artificial fertiliser allows to

replenish depleted soil nutrients (Erisman et al., 2008). However, availability of fertiliser is spread un-

evenly around the globe. The depletion of soil nutrients in sub-Saharan Africa due to decades of farming

without adequate fertiliser and manure is a primary factor limiting current food production (Sánchez,

2010; Folberth et al., 2013). Whilst access to fertiliser is an important requirement for the intensification

of agriculture, leaching and runoff of excess fertiliser cause various negative impacts around cropland,

which is a common cause of deteriorating environmental quality in developed regions (Montanarella

et al., 2016). Moreover, despite the possibilities to replenish soil nutrients, increasing field management

intensity is associated with deterioration in important soil properties and supporting ecosystem services

(Squire et al., 2015).

The threat of land degradation for both humans and the environment has been recognised by many

governments and international organizations. According to the Science-Policy Platform on Biodiversity

and Ecosystem Services (IPBES) land degradation has negative impacts on at least 3.2 billion people

worldwide leading to various socio-economic implications, such as migration, and the situation is ex-

pected to worsen due to climate change (Montanarella et al., 2018). Land degradation is addressed in

the Sustainable Development Goals (SDGs), which is a roadmap by the United Nations (UN) to move
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towards a more sustainable use of the planet’s resources (Keesstra et al., 2018). Goal 15 is of direct rele-

vance to land degradation, with the objective to protect, restore and promote sustainable use of terrestrial

ecosystems, sustainably manage forests, combat desertification and halt and reverse land degradation and

halt biodiversity loss (Olsson et al., 2019). SDG 15.3 addresses Land Degradation Neutrality (LDN),

which is related to land restoration and halting land degradation. The concept of LDN was introduced by

the United Nations Convention to Combat Desertification (UNCCD) and is defined as ‘a state whereby

the amount and quality of land resources necessary to support ecosystem functions and services and

enhance food security remain stable or increase within specified temporal and spatial scales and ecosys-

tems’ (Cowie et al., 2018). Pursuit of LDN requires effort to avoid further net loss of the land-based

natural capital relative to a reference state, or baseline (Olsson et al., 2019). To reduce land degradation

on arable land, several policy programs encourage sustainable land management practices. The EU’s

Common Agricultural Policy (CAP) ties agricultural subsidies to implementation of best management

practices and environmental protection, for example, by providing crop insurance for lower fertiliser

application rates (Smith et al., 2016). The post-2020 CAP includes as one of its main objectives efficient

soil management, combined with measures to reduce soil erosion and increase soil organic carbon in

European agricultural soils (Sartori et al., 2019). In the USA, the Farm Bill extends soil conservation

compliance requirements in order to qualify for crop insurance subsidy (Islam and Reeder, 2014). Other

examples include the USA’s Conservation Reserve Program (set aside marginal lands, steep slopes);

China’s Conservation Tillage Program; and several policies in Africa for integrated land management to

help protect vulnerable soils (Smith et al., 2016).

1.3 Land degradation by water erosion

Whilst many land degradation processes influence agriculture, water erosion is widely considered as the

most serious threat to global soil resources on arable land and agricultural productivity (Den Biggelaar

et al., 2004a; FAO and ITPS, 2015; Kaiser, 2004; Panagos et al., 2018; UNCCD, 2017).

Water erosion and wind erosion are combined under the term soil erosion, which describes the

removal, transport and deposition of soil particles by water or wind from their original location to another

site. As such, soil erosion impacts the residence time, flux rates, storage and distribution of important

elements in soils that sustain the life-support system of the Earth, including carbon (C), nitrogen (N) and

phosphorus (P) (Cherlet et al., 2018). The removal of topsoil can reduce crop yields due to the loss of

nutrients in the topsoil, degradation of the soil structure, and decreasing plant-available water capacity

(Våje et al., 2005). Soil erosion does not only affect the productivity of agriculture but also leads to

negative off-site effects. The runoff of nutrients, pesticides and organic carbon, which are included in

the topsoil, leads to the pollution of surface waters, eutrophication and the emission of greenhouse gases

(Chappell et al., 2016; Ravishankara et al., 2009; Tilman et al., 2001; Vitousek et al., 1997). Other

off-site effects caused by sediment runoff are the increased sedimentation of lakes and rivers affecting

fisheries, wildlife habitats and biodiversity, increased risk of flooding, damage of recreational activities,
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and destruction of infrastructure such as roads, railways, waterways and harbours (Clark, 1985; Pimentel

et al., 1995; Telles et al., 2011).

The soil degradation assessment in the GLASOD project showed that the vast majority of global

soil degradation originated from soil erosion through wind and water (Oldeman et al., 1991). The latter

has been shown to be responsible for more than half of the world’s soil degradation. In the report on

the Status of the World’s Soil Resources, water erosion was named along the loss of organic carbon and

nutrient imbalances as the most severe threat to soil resources (FAO and ITPS, 2015). In the Guidelines

for Sustainable Soil Management, soil erosion is named as the most significant threat to global soils and

the ecosystems services they provide (FAO, 2017). The threat of soil erosion for society has been recog-

nised by many policy-makers and thus soil erosion is specifically addressed in several environmental

and agricultural policy programs addressing land degradation (Alewell et al., 2019; Panagos et al., 2018;

Sartori et al., 2019).

Regions most vulnerable to water erosion are mountain regions, due to steep slopes, the tropics

and subtropics, due to abundant high energy precipitation, and arid regions, where precipitation events

are rare but often intense and the vegetation cover is sparse. Due to their environmental characteristics,

South America, sub-Saharan Africa, South and East Asia have been identified as the most vulnerable

regions to erosion on agricultural land by several prior studies (Borrelli et al., 2017; Pimentel et al.,

1995).

Water erosion is a natural process, but agricultural intensification and expansion accelerates water

erosion dramatically. It has been estimated that agricultural activities are responsible for 75% of global

soil erosion (Pimentel, 2006). In several regions worldwide, agricultural expansion due to population

pressures and increasing demands for food and fodder led to the cultivation of marginal land susceptible

to water erosion (Turkelboom et al., 2008; Willcocks and Twomlow, 1993) or soils prone to degrada-

tion (Wildemeersch et al., 2015). Although regional examples have also shown that increases in crop

production due to rising population do not necessarily lead to more soil erosion if the land is managed

sustainably (Tiffen et al., 1994), recent estimates suggest that the area of water erosion has increased due

to deforestation and expansion of cropland (Borrelli et al., 2017). However, its actual extent and impact

on crop production and environmental quality is highly uncertain.

1.4 Processes leading to water erosion

Water erosion is controlled by factors influencing the detachment and the transport of soil particles in-

cluding rainfall and water runoff, soil properties, topography and land use. Soil runoff due to water

erosion is initiated as soon as the velocity of water flow is big enough to reach the energy for the detach-

ment of soil material. Subsequently, the dislodged material is transported to another location. During

strong rainfall events the detachment of soil material through the energy of raindrops and the dispersion

of disintegrated soil particles can also cause sealing and crusting of the topsoil (Oldeman, 1994).

Soil runoff due to water erosion can be divided into different stages depending on its severity,
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according to Roose (1996): The initial phase of water erosion is called sheet erosion, which describes the

evenly distributed removal of thin layers of the topsoil by overland flow or raindrop impact. However,

sheet erosion is hardly detectable on a yearly basis, since other processes such as the respiration of

swelling clay soil from rewetting or land management practices like tillage can have a higher impact on

annual variability of topsoil depth. Nevertheless, annual repetition of sheet erosion can contribute to the

removal of most of the surface horizon in a few decades. With ongoing runoff, sheet erosion can combine

with more concentrated water flow along rills and grooves and lead to linear erosion of the topsoil, which

results into the removal of several cm of the topsoil. The formation of rills is controlled by the cohesive

strength of the soil and the shear forces exerted on the soil (Merritt et al., 2003). If the shear stress in a

rill is high enough water flow within a rill may detach significant amounts of soil. Concentrated linear

water erosion can lead to the formation of gullies, which increase the loss of soil up to more than 50 cm.

In contrast to rill erosion, the deep channels caused by gully erosion cannot be obliterated by cultivation

(Merritt et al., 2003).

The properties of the soil material determine the susceptibility of the soil to water erosion. The

different sizes and weight of soil particles lead to a selective removal of soil material through water

(Roose, 1996). As a result, erosion can lead to skeletonization of the soil surface as light material such as

organic matter is removed, whereas heavier material such as sand and gravel is left behind. The selection

process by water flow was described by Hjulstrom (1935), who studied the impact of water flow velocity

and soil grain diameter on deposition, transport and erosion of soil material. With increasing diameter of

the soil particle its weight increases, and thus more water flow velocity is necessary to gain the energy

for the deposition and transport of the soil particle. Hence, coarse material such as gravel is less fragile

to erosion than lighter material like fine sand. However, some material even lighter than sand such as

clay is less susceptible to removal through water and erosion due to its cohesive forces. Cohesive soil

materials have the properties to stick together and thus more energy is needed to detach them from the

surface.

Another important property of soils is their infiltration capacity, which is determined by the density

of soil particles and the available pore space. With increasing infiltration, the amount of water on the

soil surface will be reduced resulting into less runoff. Thus, runoff will increase on soils, which are very

dense on the surface and subsequently more erosion can occur (Favis-Mortlock and Mullan, 2011). The

density of the soil surface can be modified by unsustainable land management with the use of heavy

machinery or high livestock density.

The slope gradient of a field is a key driver for the transformation of rainfall into runoff and thus

water erosion (Garcı́a-Ruiz et al., 2015). With increasing slope steepness, the infiltration rate of the soil

decreases, which increases the amount of water runoff. In addition, increasing slope steepness increases

the volume and speed of water runoff. Similarly, the length of a slope determines volume and speed

of water runoff, but relationships between slope length and runoff energy and capacity can be variable.

Although common empirical erosion models suggest an increase in erosion with increasing slope length

(Liu et al., 2000), experiments found that shortening slope length does not always reduce soil loss as
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soil properties and field management can alter the length effect on soil loss (Bagarello and Ferro, 2010;

Loch, 1996).

Soil surface roughness and soil cover through vegetation and organic matter have a strong impact

on water erosion. A protective layer of plants and organic matter can protect bare soils from incom-

ing rainfall and thus reduce erosion. Moreover, a dense vegetation cover can reduce water erosion by

increasing the soils’ infiltration capacity (Istanbulluoglu and Bras, 2006). In addition, soil coverage in-

creases the surface roughness and thus reduces water runoff. The latter can be also influenced through

tillage management. Generally, the impact of soil roughness and cover on water erosion on cropland is

largely determined by field management.

1.5 The impact of agriculture on water erosion

Naturally, the susceptibility of soil to water erosion depends on the degree of its exposure to water

energy. Agriculture commonly increases the exposure of soil to water energy due to a decline in the

natural vegetation cover. Other forms of land degradation caused by agriculture, such as soil compaction

due to intensive land use by heavy machinery or high livestock density, can exacerbate the erosion

process (Fleige and Horn, 2000). Due to the influence of humans on vegetation cover, soil roughness

and soil permeability, the exposure of soil to water energy has increased in many areas. A review of

soil removal rates from different landscapes illustrates that highest erosion rates are found on arable land

(Montgomery, 2007). The same study also found substantially lower erosion rates in fields where soil

conservation methods are applied in comparison to conventionally managed fields.

Land use decisions by farmers can both increase and decrease the degree of water erosion. More

specifically, the control of soil cover and topsoil characteristics through crop, residue and tillage man-

agement enables farmers to influence the exposure of soil to water erosion. Usually, when growing row

crops such as maize and soybeans, the soil surface between the crop rows is bare, which increases the

vulnerability of soil to water energy (Kort et al., 1998). Monocultures often leave the soil bare during

fallow periods in the winter or in the spring before the vegetation cover of crops is dense enough to pro-

tect the soil from incoming rain. Moreover, organic matter, which stabilises the soil structure, is usually

low in intensive cultivated fields as heavy fertiliser use reduces its significance to sustain soil fertility

(Corsi et al., 2012). Bare soils in general are very susceptible to water energy and should be avoided on

croplands vulnerable to water erosion. During the fallow period cover crops such as grasses or legumes

can be planted to add protection to the soil, and to fixate nutrients and sequester carbon (Alvarez et al.,

2017; Corsi et al., 2012; Poeplau and Don, 2015). Furthermore, row crops can be combined with strips

of other crops or weeds in order to increase the density of the vegetation cover and thus prevent erosion

(Claassen et al., 2018).

Tillage refers to the mechanical treatment of the soil in order to prepare the land for growing crops,

which affects the soil characteristics such as soil moisture, soil temperature, infiltration and evapotran-

spiration processes (Busari et al., 2015). Tillage can be performed in different ways depending on how
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intensive the topsoil is manipulated. Conventional tillage is the most intensive form of soil disturbance

using agricultural machinery such as harrows and ploughs in order to mix harvest residues, organic mat-

ter and nutrients in the topsoil and break down soil aggregates to prepare the seedbed for crop planting

(Claassen et al., 2018). Intensive tillage can accelerate erosion by breaking down soil aggregates through

heavy machinery, which decreases the robustness of the soil (Zheng et al., 2018). In the mid-20th cen-

tury, awareness that conventional tillage methods accelerate erosion increased and thus reduced tillage

and no-tillage methods were tested in agriculture (Montgomery, 2007). With reduced tillage strategies,

often more harvest residues are left on the field, which increases the surface roughness and thus slows

water flow and soil erosion. The lower exposure of soils, as a result of more residues left on the field,

reduces the susceptibility of the topsoil to erosion (Sharratt et al., 2015). In addition, retention of crop

residue protects the soil from direct impact of raindrops and sunlight (Busari et al., 2015). Furthermore,

the lower the depth of tillage the less the soil becomes disturbed, which can help to preserve and enhance

the soils productivity or even restore previously lost productivity of the soil (Corsi et al., 2012). More-

over, the minimisation of soil disturbance enhances soil biological activities, soil air and water movement

(Busari et al., 2015).

As outlined in the previous chapter, environmental characteristics of a field such as soil properties

and topography are important factors for the susceptibility of arable land to water erosion. Farmers

can alter relevant field characteristics and thus influence water erosion. In hilly landscapes, adaptation

measures to reduce the effect of slopes steepness on water erosion can be critical to maintain agricultural

productivity. The most effective anti-erosion measure on slopes is terrace farming, which is the practice

of creating steps of flat areas in hilly landscapes in order to prevent water runoff (Chen et al., 2020).

Another often used anti-erosion measure on hilly cropland is ploughing along the contours of the slope

to break the water flow and thus decrease erosion (Zhang et al., 2004).

1.6 The impact of water erosion on crop productivity

Water erosion affects a variety of soil functions relevant for crop growth such as nutrient levels, pH,

water-holding capacity, texture, infiltration rates and soil organic matter (den Biggelaar et al., 2001).

The most frequently reported causes of yield reductions as a result of water erosion are (i) nutrient

deficit, (ii) water deficit, and (iii) the reduction of soil depth leading to a limitation of root growth by a

clayey subsoil or by a pan or bedrock (Bakker et al., 2004).

The impact of erosion on root growth and crop yields increases with progressing erosion as root

growth becomes increasingly more difficult for the plant. Thus, erosion may not affect crop yields until

an advanced degradation of the soil layer, when continuous soil loss has reduced the soil depth to such an

extent that the development of the root system becomes restricted. Therefore, in some cases the impact

of erosion on crop yields may increase over time with equal erosion rates (Bakker et al., 2004).

Water deficits due to erosion are most likely during droughts. Water availability for crops is affected

by (i) reduced soil water storage capacity due to decreased soil depth, (ii) reduced soil water holding
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capacity due to loss of soil organic matter and soil structure, and (iii) reduced soil moisture availability

due to the transport of clayey soil material to the surface (Bakker et al., 2004).

Important plant nutrients such as nitrogen, phosphorus and potassium are most abundant in the

topsoil and thus are susceptible to surface runoff. Organic matter is an important natural component for

soil fertility, which can be found in a high concentration near the soil surface in form of decaying leaves

and stems. The high susceptibility of soil organic matter availability by soil erosion is demonstrated by

studies, which show that removed soil through wind and water is richer in organic matter than the soil

left behind (Pimentel et al., 1995; Lal, 2002). As eroded soil is often deposited at another field site, soil

is often not lost but moved from one part of the landscape to another (Duan et al., 2016). However, the

deposition of clay on the topsoil due to erosion can also lead to a reduced nutrient availability as clay

particles absorb nutrients (Bakker et al., 2004).

Soil nutrients lost through erosion can be replaced by nutrients from synthetic or organic fertiliser.

Thus, the amount of fertiliser applied to a field influences the impact of water erosion on crop yields.

One study demonstrates that soils with severe erosion may produce 15-30% lower maize yields than

uneroded soils, whereas the reduction ranges from 13 to 19% with fertilisation (Pimentel et al., 1995).

Moreover, the timing of fertiliser application in respect to plant growth stages or rainfall events can be

important in the reduction of water erosion impacts (Luo et al., 2020). The replacement of soil nutrients

with fertiliser can lead to significant economic and environmental costs.

1.7 The impact of climate change on water erosion

Whilst many studies focus on the impact of climate change on crops, the impacts of climate change

on soil resources are hardly explored (Montanarella et al., 2016). In a recent special report on Climate

Change and Land by The Intergovernmental Panel on Climate Change (IPCC), the authors stated that

”climate change exacerbates the rate and magnitude of several ongoing land degradation processes

and introduces new degradation patterns (high confidence)” (Olsson et al., 2019). Water erosion was

named as one of the land degradation processes most directly linked to climate change due to a projected

increased frequency, intensity and/or amount of heavy precipitation. In addition, changes in vegetation

cover and soil properties due to climate change may increase the risk of water erosion (Li and Fang,

2016). Consequently, the loss of soil productivity through water erosion and other land degradation

processes in combination with climate change can multiply threats for natural resource-based livelihoods

(Webb et al., 2017).

The impact of climate change on water erosion is the result of a complex web of relationships

between climate, biomass, soil resources and the way farmers manage their fields (Figure 1.2). Direct

climate change impacts on water erosion are mainly determined by changes in precipitation amount and

intensity (Li and Fang, 2016; Nearing et al., 2004). Increasing rainfall amounts can lead to an increase

in soil moisture and saturation of the soil generating more water runoff and soil loss. Excess runoff

due to soil saturation is common after a long period of low-intensity rainfall, which is often the case in
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Figure 1.2: The main links between climate change, erosion, crops and field management. The diagram
illustrates how climate change affects the interactions between crops and water erosion, and what op-
portunities farmers have to influence these relationships. The plus and minus signs indicate a positive or
negative correlation between the respective components.

humid areas (Smith and Goodrich, 2006). Additional soil removal in saturated soils can be caused by

subsurface runoff transporting soil particles underground (Li and Fang, 2016).

Changes in rainfall intensity generally affect rainfall energy during storm events, which directly

affects the detachment of soil particles via the impact of raindrops (Van Dijk et al., 2002). Moreover,

highly intense rainfall often exceeds the soils infiltration capacity and thus can cause excess runoff and

a much greater transport of suspended sediment load (Mohamadi and Kavian, 2015). These events are

most common in semi-arid and sub-humid zones and were observed in Beijing, the Mediterranean, Iran,

France, and Western USA (Li and Fang, 2016). As changes in rainfall amount and rainfall intensity have

different effects on soils, changes in the degree of both parameters together are likely to have a greater

impact than changes in both separately (Nearing et al., 2004).

Rainfall also influences water erosion indirectly by controlling the availability of water supply for

plants and thus the development and distribution of the soil’s vegetation cover. Other indirect impacts of

precipitation on water erosion are linked to the impact of land use on water erosion, which can be affected

through spatio-temporal shifts in precipitation, which may influence planting dates and the length of the
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growing season. The timing of rainfall events also may have significant impacts on changes in wetting

and drying of soils and thus their infiltration capacity affecting water erosion (Lado et al., 2004). Shifts

in precipitation patterns can also directly affect water erosion if stronger precipitation is occurring at the

beginning of the growing season or winter season, in which soils are less protected by dense vegetation

covers (O’Neal et al., 2005; Leek and Olsen, 2000; Mullan et al., 2012).

The indirect impact of climate change on water erosion through changes in the protective vegetation

cover are strongly influenced by temperature changes and water availability for plants. Projected temper-

ature changes can both increase and decrease the vegetation cover and thus influence water erosion rates

positively and negatively (O’Neal et al., 2005). Moreover, higher temperature can also reduce the time

soils are protected through crop residues, by increasing microbial activity and their decomposition rates,

which can be further accelerated by increases in soil moisture (Nearing et al., 2004). Higher temperatures

can reduce soil protection through snow cover and increase the ratio of rain to snow and snowmelt (Li

and Fang, 2016). Changes in temperature affect evapotranspiration, which influences soil moisture and

infiltration capacity and thus the partitioning of water into surface and subsurface runoff (Nearing et al.,

2004). Changes in solar radiation have similar indirect effects on water erosion as temperature changes,

since solar radiation also affects plant growth, evapotranspiration, soil moisture and other parameters

influenced by surface temperature.

Climate change can reduce water erosion most directly through decreasing precipitation amounts

and intensity (Pruski and Nearing, 2002a). In addition, increased vegetation growth due to changing

precipitation, temperature, solar radiation and CO2 fertilisation can reduce water erosion (Chaplot, 2007;

Olsson et al., 2019). Moreover, temperature increases can decrease soil moisture and thus increase the

soil’s water infiltration capacity.

Simultaneous positive and negative impacts of climate change on water erosion complicate research

on climate change impacts on water erosion. For example, increases in temperature and soil moisture

can lead to increased plant growth and thus soil cover, but also faster rates of residue decomposition due

to an increased microbial activity and thus reduced soil cover (Nearing et al., 2004). Decreasing precip-

itation amounts can lead to lower water runoff but may also decrease the soils vegetation cover and thus

the protection against water erosion (Pruski and Nearing, 2002a). Anthropogenic or socio-economic

factors add further complexity to climate change impacts on water erosion. Climate change may alter

field management such as planting and harvesting dates, type of cultivars, crop rotation and tillage tech-

niques, which can have a significant impact on soil cover and thus water erosion (Nearing et al., 2004).

Although climate change impacts on water erosion can be very variable, numerous studies agreed that

increasing precipitation leads to increasing water erosion (Li and Fang, 2016). Where precipitation de-

creases, changes in interactions of plant biomass, runoff, and water erosion are more complex (Pruski

and Nearing, 2002a).

Due to their complexity, the consequences of climate change on water erosion have not been in-

vestigated in depth. Thus, the impact of climate change on soil functions has been considered to be

the largest source of uncertainty in any projections of the trends in key ecosystem services provided by
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the soil (Montanarella et al., 2016). As the quality of soil resources is one of the main determinants

for agricultural productivity, further research on the links between climate change and soil degradation

processes such as water erosion is necessary to improve the understanding of climate change impacts on

agriculture.

1.8 The impact of climate change on crops

As the indirect effects of climate change on water erosion through changes in land use and vegetation

cover are of great importance, the effects of climate change on crops are relevant for future water erosion.

Observed climate change is already affecting crop production through increasing temperatures,

changing precipitation patterns, and greater frequency of some extreme events (Mbow et al., 2019). Re-

gional effects of climate change are spread unevenly. Observations and projections of climate change im-

pacts on the most important staple crops show that yields in many lower-latitude regions are affected neg-

atively by climate changes, while in many higher-latitude regions, yields are affected positively (Mbow

et al., 2019; Rosenzweig et al., 2014).

Increasing temperature can both increase and decrease crop yields, as these are determined by

a minimum and maximum temperature within which the phenological development of a plant takes

place, as well as by an optimum temperature at which the phenological phases are accelerated. The

development of plants slows as temperature increases above the optimum and ceases when plants are

exposed to their maximum temperature (Hatfield et al., 2011). As average temperatures in many tropical

agricultural regions are already close to the high-temperature thresholds for suitable production of major

staple crops, even moderate temperature increases in lower latitudes can have negative impacts on crop

yields (Rosenzweig et al., 2014). Additionally, air temperature has an important impact on the amount of

suitable days for a crop to grow. The time period of crop growth can be described in thermal time, which

defines the time until a crop reaches maturity after a specific number of ‘growing degree days’ expressed

by the sum of daily temperature values (Su et al., 2013). When daily temperatures increase, the rate of

phenological development increases and the plant reaches maturity earlier, which results into less days

where the plant can intercept light for biomass accumulation and thus yields will decrease (Ritchie and

Nesmith, 1991). The definition of ’growing degree days’ includes a base temperature below which crop

growth does not continue. Consequently, temperature increase can lead to more days suitable for crop

growth and thus create new potential regions where certain crops can grow (Zabel et al., 2014).

Crop cultivation systems are closely linked to hydrological systems through the availability of water

resources, which are strongly dependent on precipitation and evapotranspiration patterns controlled by

the climate system. It is rare that crop growth is limited solely based on heat stress due to high temper-

ature. Crop damage due to increased temperature is rather connected to water stress for crops caused

by increased evapotranspiration, which leads to a reduced availability of soil moisture (Carter et al.,

2016). In addition, too much water as a result of increasing extreme rainfall events can also prevent or

decrease crop growth. Increasing strong rainfall can wash away important nutrients from the topsoil for
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the crop, which limits its growth (Burt et al., 2016). Furthermore, increasing rainfall intensity can lead

to waterlogging or flooding of the soil, which can damage crops due to a lack of oxygen and salinisa-

tion (Saraphirom et al., 2013; Rosenzweig et al., 2002). Therefore, changes in precipitation amounts,

intensity and patterns can affect crops both positively and negatively.

Water availability for a crop can be also influenced through the impact of solar radiation on evapo-

transpiration and thus, changes in the degree of solar radiation affect crop growth (Carter et al., 2016).

An increase in solar radiation will increase the amount of energy to vaporize water, which results into a

loss of water for the plant. Furthermore, the degree of solar radiation influences crop growth through the

availability of light, which is an important component for the plant to gain energy during photosynthe-

sis. Therefore, increasing cloud cover will decrease the amount of solar radiation and thus decrease the

productivity of the plant.

The effect of increasing atmospheric CO2 on crop growth is largely positive. As crops use CO2 as

an input to gain energy during photosynthesis, an increase in the concentration of CO2 in the atmosphere

results in an increase of photosynthesis when other growth factors such as water and light are not lim-

ited. Thus, atmospheric CO2 can have a fertilising effect for crops. Importantly, this effect is different

in plants that differ in their method of carbon fixation during photosynthesis. Experiments have shown

that C3 crops such as wheat increased significantly with increasing CO2 due to increasing photosyn-

thetic activity (Slingo et al., 2005). Crop growth of C4 crops such as maize may not response directly

to increasing atmospheric CO2, but yields might increase indirectly through increasing water use effi-

ciency via reduction in stomatal conductance (Long et al., 2006b). However, recent studies highlight that

although increasing CO2 affects crop growth positively, it may lower concentrations of important nutri-

ents in crops (Myers et al., 2014). More research is needed to fully understand the effect of increasing

atmospheric CO2 on crops and the impact on human nutrition.

Whilst changes in temperature, precipitation, solar radiation and atmospheric CO2 mainly deter-

mine the impact of climate change on crops, changes in other climate parameters such as wind speed,

relative humidity, and atmospheric ozone also influence crops, but are less explored (White et al., 2011).

Moreover, climate change impact on crops are usually complex and are often the result of a combina-

tion of several stress factors. For example, in Malawi, crops drying before maturity and damage due to

floods and watershortages led to food shortages in the 1990s and early 2000s (Mkwambisi et al., 2010).

In Swaziland, changing rainfall patterns led to the spread of the parasitic weed Striga asiatica, which

reduced maize production (Stringer et al., 2007). Excessively wet soil can reduce crop yields through an

increased risk of plant disease and insect infestation or by delaying planting or harvesting due to inability

to operate machinery (Rosenzweig et al., 2002).

1.9 The use of crop models in impact assessments

Given that humans have depended on agriculture for more than 10,000 years, the impact of environmen-

tal change and land management on agricultural production have long been a focus of science. Since the
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1960s, numerical crop models have been used to simulate the complex biological and physical interac-

tions in agricultural systems to understand the impact of environmental drivers and farming techniques

on crop yields (De Wit, 1965; Monteith, 1965). With the emergence of global-scale phenomena that

affect agricultural productivity (most prominently climate change), crop models are increasingly being

applied at the global scale to explore regional variabilities of crop yield changes in response to environ-

mental factors and field management (Mueller et al., 2017). In addition, crop model outputs frequently

contribute to integrated assessment modelling studies. In these studies, models from different disciplines

are combined to address complex global problems, such as the growing population and its demands for

more food, water, and energy in the face of climate change, the limited arable land for expanding food

production, and increasing pressures on natural resources and biodiversity (Jones et al., 2016). More-

over, crop models are a transparent and consistent tool to inform agricultural and environmental policies,

which rely on large-scale indicators to represent administrative units ranging from regional to national

scale.

As such, crop models are an important tool for researching complex global problems. However,

not all biophysical interactions in crop cultivation systems are understood and thus not all processes rel-

evant for crops are considered in crop models. Moreover, the complexity of modelling crop cultivation

systems increases with the spatial focus of a study. Crop modelling studies that assess the impact of en-

vironmental change or management scenarios on agricultural productivity at the regional or global scale

often neglect land degradation processes (Balkovič et al., 2018). Thus, such studies neglect a crucial

driver of long-term agronomic trends. In addition, there is a growing need for large-scale indicators on

land degradation impacts and patterns to inform policy programs (Montanarella et al., 2016). As water

erosion can produce high costs for farmers and negatively affect infrastructure and environmental qual-

ity, many agricultural and environmental policy programs aim to reduce water erosion (Alewell et al.,

2019). Models can help to analyse the effectiveness of field management scenarios to reduce water ero-

sion and to project future water erosion rates and impacts under land use and climate change scenarios

(Borrelli et al., 2020). Whilst there are currently efforts to improve models to monitor water erosion rates

over large scales (Borrelli et al., 2021), more research is necessary to understand interactions between

agriculture and water erosion and their impact on current and future crop production in different global

regions. As agriculture influences human well-being and interacts with environmental quality, under-

standing these relationships and how they are influenced by regional characteristics, will be crucial to

solve many current and future global challenges.

1.10 Thesis aims and objectives

The aim of this thesis is to better understand the effects of water erosion on current and future grain

yields. In addition, this thesis aims to improve the representation of the interactions between water

erosion and crops in large-scale crop modelling studies to improve crop yield projections and water

erosion assessments. The global gridded crop model (GGCM) EPIC-IIASA is used for the analysis.
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This model is used to generate large-scale and global crop yield projections to assess the impact of field

management and climate change scenarios on crop production. Maize and wheat are used to represent

cereal crops affected by water erosion.

The three main objectives of this thesis are to:

1. Analyse the robustness of water erosion rates simulated with EPIC-IIASA on global maize and

wheat croplands.

2. Explore the impact of water erosion on global maize and wheat yields.

3. Explore the combined effects of climate change and water erosion on global maize and wheat

yields.

The first objective aims to develop and test a modelling approach for estimating water erosion rates

on global maize and wheat cultivation areas based on various field management scenarios. This in-

cludes identifying the most sensitive model input parameters controlling the simulation of water erosion,

quantifying the uncertainty of simulated water erosion rates stemming from different field management

scenarios and water erosion estimation methods, and evaluating the agreement of simulated water ero-

sion rates with field data across different environments. The modelling approach evaluated in the first

part of this thesis will be used for the second objective to simulate the impact of water erosion on global

maize and wheat yields using historic climate data. The model outputs will be analysed to explore global

differences in water erosion impacts on maize and wheat yields due to different environmental charac-

teristics and field management. To address the third objective, the previous modelling approach will be

applied with contrasting climate change scenarios. Based on the model outputs, regions where maize

and wheat yields are susceptible to both climate change and water erosion will be identified, and the

impact of climate change on water erosion will be analysed.

1.11 Thesis overview

The thesis is structured as follows. Chapter 2 reviews the literature on water erosion assessments. It

highlights the advantages and disadvantages of common methods to assess water erosion patterns and

impacts. It identifies simple water erosion models as the most suitable method for large-scale water

erosion assessments. Further, it describes knowledge gaps on current and future water erosion patterns

and impacts that can be addressed using the biophysical crop modelling framework developed in this

study.

Chapter 3 reviews the literature on crop models. It provides an overview of the types of crop models

and their applications, and presents the results of previous modelling studies on the impacts of climate

change on crops, including their uncertainties. It finds that soil processes are often neglected in crop

yield projections, although they can significantly influence the impact of climate change on crops and

the effectiveness of climate change adaptation strategies.

Chapter 4 introduces the modelling framework of this study. It describes the relevant equations

40



used in the EPIC model to simulate the interactions between crops and water erosion. Further, it lists

the model inputs used in this thesis and the methods for aggregating, analysing and evaluating the model

outputs.

Chapter 5 - 7 present and discuss the results of this thesis. In Chapter 5 the modelling framework

of this thesis is evaluated by presenting and discussing the uncertainties, sensitivities and robustness of

the simulated water erosion rates using EPIC-IIASA. Chapter 6 looks at the model results on the impact

of water erosion on global maize and wheat yields. It analyses the major determinants influencing water

erosion impacts on maize and wheat yields and draws conclusions on the role of water erosion impacts

for the global production of both crops. Chapter 7 analyses the combined effects of climate change and

water erosion on global maize and wheat yields. It identifies regions where maize and wheat production

is susceptible to both climate change and water erosion and analyses potential changes in future water

erosion due to climate change.

Chapter 8 summarises the thesis results and draws conclusions on the contributions of this thesis to

global water erosion assessments and crop yield projections. It also considers the future research needs

to improve estimates of large-scale water erosion and to account for soil degradation in global crop yield

projections.
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Chapter 2

Literature review of water erosion

assessments

2.1 Introduction

Information on the state of soils is necessary to inform agricultural and environmental policy programs,

such as the European Unions’s Common Agricultural Policy (CAP) (Keesstra et al., 2016; Panagos et al.,

2016). In addition, reducing soil erosion is an important matter for achieving several SDGs (Keesstra

et al., 2016). However, Humphries and Brazier (2018) believe that soil-related policies are currently sec-

ondary, being the result of other environmental objectives. One important reason for this is the difficulty

of assessing the state of soils on a scale that is relevant to policy. The difficulty of this task is shown by

the various attempts to map global land degradation, which led to very different results.

Among the many land degradation processes that are commonly assessed, recent efforts have been

made to improve the assessment of water erosion at regional and global scales using models (Borrelli

et al., 2021). The recent studies have shown that modelling tools can provide information on the status of

soil under different land use and can test the impacts of external factors such as climate and management

on soils on policy-relevant spatial and temporal scales. According to Alewell et al. (2019), the recent

modelling efforts have shown that large-scale modelling is inevitable to increase the social and political

visibility of soil resource issues.

Despite the recent improvements, large-scale assessments on water erosion rates on arable land are

still rare or do not provide detailed information on varying water erosion rates for different crops and

field management strategies. This lack of information on water erosion also makes it difficult to quantify

its impact on crop yields and pollution around croplands on a large scale, and how this might change

in the future due to climate change. There is also a need for large-scale estimates of water erosion in

other soil-related research areas. For example, earth science system models, climate change and carbon

mitigation scenarios, and hydrology and flood forecasting models could be improved if soil erosion were

considered (Alewell et al., 2019).
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This literature review presents existing global assessments of land degradation to illustrate the com-

plexity of evaluating the current state of soil resources on a large scale. Moreover, these assessments

highlight the role of water erosion in global soil degradation. Subsequently, this literature review will

present the latest regional and global water erosion assessments and the advantages and disadvantages of

different methods to explore water erosion rates and impacts. Finally, this literature review presents the

current state of knowledge as well as knowledge gaps regarding the impacts of climate change on water

erosion.

2.2 Global land degradation assessments

Several global assessments suggest that large parts of the earth surface are already affected by land

degradation. However, the degree of global land degradation named by a study strongly depends on the

indicators used to describe land degradation. Commonly used methods to analyse global land degra-

dation are remote sensing, biophysical models, inventories of land use/condition and expert opinions

(Gibbs and Salmon, 2015). Due to the complexity of land degradation a complete assessment cannot be

performed with a single method, but a combination of studies and methods can give an approximation

(Vogt et al., 2011). Various indicators exist to measure the state of soil, vegetation and biomass or poten-

tial land degradation under specific land use and field management (Olsson et al., 2019). It is important

to distinguish between studies monitoring the current state of land degradation and studies analysing

potential land degradation. Studies focusing on land degradation processes often focus on their extent

rather than quantifying their impact, e.g. changes in crop yields due to land degradation.

The Global Assessment of Human-induced Soil Degradation (GLASOD) carried out by the World

Soil Information Center (ISRIC) and the United Nations Environment Program (UNEP) from 1987-1990

was the first major global assessment of land degradation focusing on soil resources (Oldeman et al.,

1991). As that study focused on soil degradation, the loss of vegetation and biodiversity were neglected

in GLASOD. In that project, the degree of soil erosion by wind and water, chemical soil deterioration,

and physical soil deterioration was assessed based on expert judgement by soil scientists on loosely

defined physiographic units on a global scale. The outcome of that study estimated that 38% of global

land was lightly affected by land degradation made by humans, 46% moderately and 15% of global land

was affected in a high degree. The most important degradation process was erosion by water and wind,

which accounted for 84% of degradation. The most degraded area was Europe (25%), followed by Asia

(18%) and Africa (18%) (Nkonya et al., 2011).

The most comprehensive assessment of global land degradation was conducted by the Food and

Agriculture Organization of the United Nations (FAO) in collaboration with the International Institute

for Applied Systems Analysis (IIASA) presented in the Global Land Degradation Information System

(GLADIS). GLADIS gives insights into the global status of land resources and degradation pressures

acting on them derived from a combination of biophysical and socioeconomic determinants (Nachter-

gaele et al., 2011). GLADIS provides classes of land degradation based solely on biophysical indicators,
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which assess the status and degradation of soil, water, biomass and biodiversity. Moreover, the assess-

ment includes past and present trends and thus recognises causes and impacts due to biophysical and

socio-economic factors, and includes a prognosis of future land degradation trends. The results show

that 32% of global land is in areas with high provision of biophysical goods and services, but with

medium to strong degradation processes. Further, 27% of the global population live in areas with a low

provision of biophysical goods and services and a medium to strong degradation (Nachtergaele et al.,

2011). The special definition of the land degradation index adding social and economic indicators to

biophysical factors gives a more comprehensive insight into the impact of land degradation in certain

regions and thus provides a wide range of information. As such, the assessment also indicates that 42%

of the very poor live in degraded areas, as compared with 32% of the moderately poor and 15% of the

non-poor (Nkonya et al., 2011).

In the report on the Status of the World’s Soil Resources by The Intergovernmental Technical Panel

on Soils (ITPS) about 200 soil scientists reviewed the scientific knowledge from more than 2000 peer-

reviewed scientific publications to provide a global perspective on the current state of the soil, its role

in providing ecosystem services, and the threats to its continued contribution to these services (FAO

and ITPS, 2015). The land degradation processes considered in the report are erosion, compaction,

acidification, contamination, sealing, salinisation, waterlogging, nutrient imbalance (i.e., both nutrient

deficiency and nutrient excess), and losses of soil organic carbon and of biodiversity. Soil erosion has

been identified as the most severe land degradation process leading to deteriorating water quality in

developed regions and to lowering of crop yields in many developing regions (Montanarella et al., 2016).

The authors concluded that nitrogen and phosphorus fertiliser use in infertile tropical and semi-tropical

soils – the regions where the most food insecurity among us are found – needs to be increased, while

global use of these products needs to be reduced.

The most recent assessment of global land degradation was carried out by Pravalie et al. (2021)

based on a collection of geospatial data from previous studies on aridity, water erosion, vegetation de-

cline, soil salinisation and soil organic carbon decline. The authors concluded that aridity is by far the

largest singular pressure for agricultural systems, affecting 40% of the arable lands’ area, and that water

erosion is the second major degradation process, affecting 20% of global arable systems. However,

Pravalie et al. (2021) only considered water erosion rates larger than 10 tha−1, which have been consid-

ered as not sustainable to maintain agricultural productivity. Moreover, aridity is usually not considered

in land degradation assessments, as dryness is a climatic impact rather than a land degradation process.

Pravalie et al. (2021) concluded that simultaneous pressure of multiple land degradation processes is

rare. According to their study, the most common combination of aridity and water erosion affect 7% of

cropland.

Despite several attempts at mapping the spatial and temporal scale of degraded land, it remains a

challenging task due to the difficulty of defining land degradation, determining baselines or measuring

relevant processes (Herrick et al., 2019). Therefore, views on assessing land degradation are diverging

and thus no reliable global maps of the extent and severity of land degradation exist. The most promi-
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nent estimates of the global extent of land degradation are very variable, ranging from 1–6 billion ha

of ice-free land surface (up to 66%) (Gibbs and Salmon, 2015). To support the goal of governments

and international organisations of reducing land degradation, it is necessary to improve indicators and

baseline datasets of land degradation at global scale to better monitor progress (Pravalie et al., 2021).

2.3 Water erosion assessments

2.3.1 Large-scale water erosion assessments

First attempts to address water erosion at the global scale were made in the 1930s (Jacks and Whyte,

1939). Since then, many studies estimated the amount of soil loss due to water erosion worldwide

(Garcı́a-Ruiz et al., 2015). The majority of erosion studies is concentrated in North America and Europe.

The earliest estimates of global soil loss are based on extrapolation of erosion plot data to the global scale

or they are derived from sediment yields from rivers (Myers, 1993; Pimentel et al., 1995; Walling and

Webb, 1983). More recent global estimates are derived from models (Borrelli et al., 2017; Doetterl et al.,

2012; Van Oost et al., 2007). Doetterl et al. (2012) summarised existing estimated agricultural soil loss

amounts on a global scale based on both field measurements and model outputs, which range between 24

and 120 Pg yr−1. The wide range of estimates indicates considerable uncertainty in global water erosion

estimates.

Large-scale water erosion assessments based on field experiments

As models have only recently become the preferred method for large-scale water erosion assessments,

most earlier assessments have been based on extrapolation from field experiments, contributing to the

majority of available regional and global water erosion estimates. The most cited value of global soil loss

on arable land is 75 Pg yr−1, which was estimated by Pimentel et al. (1995) based on plot measurements,

but has been criticised repeatedly due to the uncertainty of extrapolating plot measurements to larger

scales (Crosson, 1995). Cerdan et al. (2010) reviewed erosion rates from 81 experimental sites in 19

European countries and estimated a mean annual erosion rate on arable land in Europe of 3.6 t ha−1,

although aggregation of the data by land use showed large variations. Boardman (1998) questioned the

usefulness of an average rate of soil erosion for Europe or other continents as the rates vary too much in

time and space. Further, he suggested that plot experiments are a poor basis for regional generalisation

as they only represent data from a very small area.

Although the usefulness of field data for large-scale water erosion assessments has been criticised,

they are often used to assess the severity of regional soil erosion problems. Several previous researchers

used a collection of field measurements of soil erosion rates to compare them to tolerable soil erosion

rates (Verheijen et al., 2009; Benaud et al., 2020; Montgomery, 2007). Montgomery (2007) collected

field data worldwide derived from various field measurement methods and estimated median and average

water erosion rates of 1.5 and 3.9 mm yr−1 on cropland under conventional agriculture. Assuming

a soil bulk density of 1200 kg m−3 these values equal to median and average water erosion rates of
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18 and 47 t ha−1. These rates exceed suggested tolerable rates of 1 t ha−1 (Benaud et al., 2020) and

previous estimates of average annual soil formation rates of 0.3 t ha−1 – 1.4 t ha−1 (Evans et al., 2019;

Montgomery, 2007; Verheijen et al., 2009). Even the more generous tolerable soil loss rates defined by

the U.S. Department of Agriculture (USDA) of up to 11 t ha−1 (Schertz and Nearing, 2006) are below

the values derived by Montgomery (2007).

Benaud et al. (2020) collected soil erosion measurements across the UK derived from different field

experiment methods and concluded that mean erosion rates are low, while 16% of observations exceed

soil loss rates of 1 t ha−1. Although Benaud et al. (2020) collected a large amount of data from across the

UK, they concluded that understanding whether or not the UK has a soil erosion problem remains unclear

as i) existing studies are skewed towards locations with a known erosion likelihood and ii) the definition

of a tolerable erosion rate remains problematic in the absence of a comprehensive and methodological

consistent national-scale study of historic and current soil erosion rates.

A meta-analysis of more than 4000 erosion measurement sites by Garcı́a-Ruiz et al. (2015) showed

an extraordinarily high variability in erosion rates, with almost any rate possible irrespective of slope,

climate, scale, land use/land cover and other environmental characteristics. Despite a slight positive

correlation between erosion rates and slope and annual precipitation, there is much variability in erosion

measurements that is at least partially related to the experimental conditions. In addition, Cerdan et al.

(2006) noted that large-scale studies based on data from experimental plots tend to estimate higher

amounts of soil loss because the locations of erosion measurements are often biased towards bare soil

cover, steep slopes or extreme precipitation events.

As such, the usefulness of field data to derive conclusions on large-scale erosion rates is ques-

tionable due to their uneven distribution and variable quality. Boardman (2006) concluded that ’for most

areas in the world the erosion data is woefully inadequate’. Stroosnijder (2005) challenged the adequacy

of erosion measurements and warned of a scientific and technical crisis because ’there are insufficient

empirical data of adequate quality, a lack of funds to improve that situation, a lack of development of

new technologies and equipment, and a lack of skilled personnel’. Benaud et al. (2020) concluded that

’existing monitoring approaches have been resource intensive in nature and/or biased towards a single

erosion process, hindering their suitability for future, holistic national-scale monitoring programs.’ The

uneven distribution of erosion measurements for different global regions reduces their usefulness for

robust global erosion estimates.

Large-scale water erosion assessments based on models

Models can be used as a tool to overcome the lack of data coverage to estimate erosion rates and account

for the variability of soil, topography, climate and field management around the world. Model out-

puts overcome the lack of homogeneity in available data and thus can be useful to identify soil erosion

hotspots determined by the combination of erosion controlling factors in a more transparent way.

The Universal Soil Loss Equation (USLE) and its modification have been used with high-resolution

global input data to estimate water erosion (Borrelli et al., 2017; Doetterl et al., 2012; Van Oost et al.,

47



2007). These studies resulted in a range of annual global soil removal estimates and water erosion rates

on cropland of between 13 – 22 Gt and 11 - 13 t ha−1. These estimates are less variable and more closely

compared to field measurements from various sources than earlier estimates, which suggests a higher

robustness.

However, the use of models in large-scale erosion assessments has been criticised heavily (Evans

and Boardman, 2016b). The most commonly used models for large-scale assessments are USLE-type

models due to their simplicity. However, their use is criticised as they are based on plot data and thus

not suitable for extrapolation to large fields. In addition, they were not developed for environmental

conditions different than the United States’ Midwest.

Nevertheless, due to their simplicity and the growing availability of global environmental datasets

that can be used as sources for model input data, USLE-type models are widely seen as the most reliable

tools to derive erosion estimates on large and global scales (Alewell et al., 2019). Moreover, unlike field

observations, models can provide predictive estimates of water erosion and are therefore useful in land

use and climate change impact assessments and scenario analysis.

2.3.2 Common water erosion modelling techniques

Common factors in models used to determine water erosion are land use, slope, precipitation amount

and intensity, runoff and peak runoff rates, runoff shear stress, soil cohesion, and surface roughness

(de Vente and Poesen, 2005). Most models focus on plot to catchment scale and simulate only a se-

lection of erosion processes (sheet-, till-, ephemeral gully erosion), whereas permanent gullies, mass

movements and riverbank erosion are most often not considered (De Vente et al., 2013). Furthermore,

models focus either on simulating single erosion events or on assessing average erosion in hourly, daily,

monthly or annual time-steps (Karydas et al., 2014). As such, water erosion models differ in complexity,

data requirements and equations used to formalise processes and the outputs they provide (Abdelwahab

et al., 2018). Therefore, the choice of model strongly depends on the data and calibration requirements,

temporal and spatial scale and the erosion process considered (De Vente et al., 2013).

Most reviews classify water erosion models into empirical, conceptual and physics-based models

(Merritt et al., 2003; de Vente and Poesen, 2005). Empirical water erosion models delineate a mathemat-

ical algorithm out of the relationship between the confounding measurable parameters, which control

water erosion, and measured eroded sediments (Alewell et al., 2019). Empirical models are the simplest

type of model and thus their computational and data requirements are usually less than for conceptual

and physics-based models (Merritt et al., 2003). However, empirical models are often criticised for ig-

noring the inherent non-linearities in the catchment system (Wheater et al., 1993). The most widespread

empirical water erosion model is the Universal Soil Loss Equation (USLE) (Wischmeier and Smith,

1978).

Conceptual models typically represent a catchment as a series of internal storages and usually incor-

porate the underlying transfer mechanisms of sediment and runoff generation in their structure through

defined flow paths (Merritt et al., 2003). Thus, conceptual models include a general description of
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catchment processes, which distinguishes them from empirical models (Sorooshian, 1991). Often used

conceptual models are SWAT (Neitsch et al., 2011) or ANSWERS (Beasley et al., 1980).

Physics-based models such as the WEPP (Lane et al., 1992) and the EUROSEM (Morgan et al.,

1998) include physical equations describing streamflow and sediment and associated nutrient generation

in a catchment (Merritt et al., 2003). Although parameters used in physical-based models are measurable,

they usually need to be calibrated against observed data due to their large number and the heterogeneity

of important catchment characteristics (Merritt et al., 2003). Although most reviews on water erosion

models classify models into physics-based models, conceptual models, and empirical models, most mod-

els do not fall strictly into one category, as even the physics-based models retain some empirical elements

in the model algorithms (de Vente and Poesen, 2005).

The complexity of a model can be further distinguished between spatially distributed models and

lumped models. Spatially distributed models reflect the spatial variability of processes and outputs and

thus are capable to produce erosion patterns in a single run, whereas lumped models only produce a

single value in a single run (Karydas et al., 2014). The WEPP and EUROSEM models are polygon-based

models adapted to catchment scale and include special elements such as channels and ponds, which

allows to identify potential sources and sinks of water, sediments and associated chemicals within a

catchment (Jetten et al., 2003). USLE-type models are lumped models assuming a spatially homogenous

uniform hillslope, although it is possible to apply them to more complex terrain using a raster approach

to generate spatially distributed outputs (Jetten et al., 2003). Thus, spatially distributed models can

be further distinguished between models based on independent raster, where soil loss is estimated at a

specific location without contribution from a neighbouring location, and pathway type models, where

topological relations are considered (Karydas et al., 2014).

2.3.3 The Universal Soil Loss Equation

The Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) and its modifications are the

most widely known modelling approach to assess soil erosion and have been applied in more than 100

countries (Alewell et al., 2019). USLE was developed with an empirical approach based on a statistical

analysis of more than 10,000 plot-years of soil loss data (Wischmeier and Smith, 1978). USLE simulates

mean annual soil loss due to sheet and rill erosion on hillslopes determined by rainfall erosivity, soil

erodibility, topography, crop system and management practice.

In the 1990s, the USLE was further developed to the Revised Universal Soil Loss Equation

(RUSLE), by updating the main components of the USLE (Renard et al., 1997). A detailed descrip-

tion of the components of the USLE and its modification is included in Chapter 4.2.5. The RUSLE

was further developed to the RUSLE2, which used process-based equations to simulate the detachment,

transport and depositions of soil particles (USDA-ARC, 2013). As USLE and RUSLE were designed to

predict long-term average annual soil loss and do not consider runoff explicitly, its ability to predict event

soil losses is limited (Kinnell, 2010). In a modified version of the USLE (Modified USLE, MUSLE), the

erosivity factor based on rainfall energy was replaced with an erosivity factor based on runoff energy,
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which improves the equations applicability to individual storm events (Williams, 1975).

Alewell et al. (2019) states that the main reasons USLE type modelling is so widely used throughout

the world are i) its high degree of flexibility and data accessibility, ii) a parsimonious parametrisation,

iii) extensive scientific literature and iv) comparability of results allowing to adapt the model to nearly

every kind of condition and region of the world. According to Risse et al. (1993), ’USLE has been used

throughout the world for a variety of purposes and under many different conditions simply because it

seems to meet the need better than any other tool available’. In addition, Renard et al. (1997) stated that

more than four decades of using the USLE has proven that it is valuable as a conservation-planning guide

in the USA, providing farmers and conservation planners with a tool to estimate rates of soil erosion for

different cropping systems and land managements.

2.3.4 Uncertainties in water erosion models

The main causes of uncertainty in water erosion models are: i) low input data quality, ii) incomplete

description of erosion, sediment transport and deposition processes or model structure, and iii) errors in

measured erosion rates for model calibration and evaluation (De Vente et al., 2013).

The significance of uncertain input data for simulating water erosion varies with the model and study

location as they influence the sensitivity and importance of factors describing water erosion. In most

models and locations, slope steepness and length are important factors for determining water erosion.

Thus, the spatial resolution of Digital Elevation Models (DEMs), which are often used to derive slope

information for model inputs, has a strong impact on simulated erosion (Mondal et al., 2017; Liu et al.,

2011). Also, the temporal resolution of climate data such as rainfall intensity, duration and seasonality,

is often named as important input data for the robustness of water erosion estimates (Shen et al., 2012).

Land use information for simulating water erosion can be both difficult to obtain without on-site

observations and difficult to simulate. Although some models simulate crop growth and seasonal differ-

ences in vegetation cover, several erosion models assume constant land use throughout the simulation

period (De Vente et al., 2013; Borrelli et al., 2017). If constant land use is assumed, feedbacks of climate

change to soil cover cannot be considered in water erosion models. In addition, land cover data is often

obtained from regional land use maps, which is not always a good indicator of the soil’s protection from

raindrop impact and surface runoff, which is mainly determined by the percentage soil cover and root

density (De Vente et al., 2013).

Furthermore, data on soil conservation measures and other field management techniques that influ-

ence the soil’s protection are often not readily available. Even if detailed data on farming techniques

is available, explaining the effectiveness of soil conservation measures in reducing soil runoff remains

difficult (Chen et al., 2020).

The requirement for detailed input data is usually highest for process-based models due to their

complexity, which may increase the negative impact of uncertain input data on the robustness of model

results. Moreover, it can be challenging to obtain detailed input data in data scarce study regions or

over large scales (Panagos et al., 2016). For example, polygon-based models such as the WEPP and
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EUROSEM models require detailed data to include special elements such as channels and ponds to iden-

tify potential sources and sinks of water sediments and associated chemicals within a catchment (Jetten

et al., 2003). In addition, detailed field data is needed to evaluate spatial soil erosion and soil deposition

patterns. The evaluation of spatial patterns in models is important for the evaluation of their robustness.

For example, previous studies predicted acceptable soil loss rates but an incorrect pattern of the source

and sink areas and thus they ’predicted the correct result for the wrong reasons’ (Jetten et al., 2003).

However, even when spatial datasets are available, simulated spatial heterogeneity is difficult to evaluate

as the available field data does not always provide the necessary detail and thus spatial relationships in

model structure may increase modelling uncertainty (Brazier et al., 2007).

If all the necessary input data is available, process-based models may simulate a more robust es-

timate of water erosion than less complex model. However, some water erosion processes are hardly

understood and thus their representation in models may reduce the robustness of model outputs (Par-

sons, 2019). Therefore, complex models are exposed to more potential error sources due to their model

structure than simpler models (Brazier et al., 2000).

According to Alewell et al. (2019), the two main problems with complex models are i) the un-

availability of the complex set of input parameters especially at large temporal and spatial scales and

ii) over-parametrisation which results in a non-uniqueness of fit and/or insensitivity of model output to

some of the input parameters. Moreover, several studies concluded that more complex models do not

perform better than the USLE (Alewell et al., 2019; Jetten et al., 2003; Kinnell, 2010). Nevertheless, as

the robustness of complex models is largely determined by the availability of input data, their applica-

bility may improve in the future due to increasing availability of high-resolution data through improving

remote sensing techniques (de Vente and Poesen, 2005).

Although USLE is a simple model it also suffers from errors due to the lack of input data or er-

rors due to unknown water erosion processes. For example, the robustness of the topographic factor

of the USLE has been questioned as the relationship between slope length and soil erosion is not clear

(Bagarello and Ferro, 2010). Also the simplicity of the USLE is repeatedly criticised. Although there is a

lack of measured rainfall intensity and sub-hourly data over long-periods, the simple empirical equation

implemented in USLE, which correlates the rainfall erosivity factor with available daily/monthly/annualy

rainfall, is often criticised (Oliveira et al., 2013). In addition, USLE-type models are often criticised that

they do not include gully erosion, bank erosion and mass movements, despite a potentially large contri-

bution to total sediment yield by these processes (De Vente et al., 2013). Evans and Boardman (2016b)

criticised that USLE is mainly driven by rainfall and slope factors whereas in Britain the occurrence of

erosion is largely determined by soil type and land use. Parsons (2019) mentioned that USLE does not

account for interactions between each factor, although previous observations show that soil erodibility

is not independent of rainfall intensity. He further points out that USLE is developed from plot data

characterised by slopes between 2 – 18 % and fields between 30 to 300 ft (9 – 90 m) long and thus its

application on fields with different characteristics is uncertain. As USLE is based on data from small

plots, several authors criticised the use of USLE on large scales (Evans, 2013; Evans and Boardman,
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2016b). However, this criticism disregards the suggested application of USLE for large-scale applica-

tions by its developers, who proposed to ’break down the drainage area into a series of tracts having

relatively homogeneous land use and treatment. The erosion equation is then used to approximate the

average annual rate of soil movement from each tract’ (Wischmeier and Smith, 1965). However, using

a raster scheme assumes that cells are independent from each other and thus neglects possible sediment

redistribution.

Apart from the RUSLE2 modification, sediment deposition is not considered in USLE-type equa-

tions (Kinnell, 2010). Models that do explicitly simulate sediment transport and deposition are based on

complex interactions between erosion, deposition and topography and thus require very detailed input

data (De Vente et al., 2013). Moreover, modelling sediment redistribution is further complicated as the

process is not fully understood (Trimble and Crosson, 2000). In some cases environmental change is

primarily reflected in reorganisation within the basin rather than in a direct change in sediment yield at

the basin outlet (de Vente and Poesen, 2005). Several studies showed that changes in land use or climate

may alter erosion rates in upslope areas but did not significantly change sediment export at the basin

outlet (Trimble, 1999; Walling, 1999; Prosser et al., 2001). As USLE-type equations do not consider

sediment deposition, they provide gross erosion rates and thus may overestimate the impact of envi-

ronmental changes on erosion. Furthermore, this hampers the evaluation of model outputs with field

measurements, which mostly provide net erosion rates.

As measured water erosion rates are usually used for model calibration and evaluation, their robust-

ness can be crucial for the quality of model outputs. Due to the high heterogeneity of the water erosion

process and experimental setups to measure water erosion, measurements are very prone to errors and

some methods are more uncertain than others (Garcı́a-Ruiz et al., 2015; Rüttimann et al., 1995; Parsons,

2019). Furthermore, the observed data needs to be appropriate for the setup of the modelling study.

Water erosion measurements at specific temporal and spatial scales might not be representative for other

scales. Scaling soil erosion rates up or down may lead to errors as soil erosion processes vary with scale

(Prasuhn et al., 2013). For example, Parsons et al. (2004) argues that the quantity of soil eroded is not

directly proportional to the area over which erosion is measured. The consideration of temporal scales

in measured erosion rates is important as water erosion can be very variable between days, seasons and

years and thus event-based or seasonal measurements are not representative of mean annual water ero-

sion (De Vente et al., 2013). Therefore, it is crucial to select data for model calibration and validation

that correspond to the spatial and temporal scale at which the model is applied (de Vente and Poesen,

2005). Moreover, a direct comparison between simulated erosion rates on fields or larger scales against

erosion assessments based on field studies is difficult as erosion measurements have been often reported

to be skewed to higher risk sites and thus field studies often do not include all erosion risk sites equally

(Benaud et al., 2020; Cerdan et al., 2010).

In general, the large spatial and temporal variability of soil erosion and the uncertainty of input

parameters used in models to predict soil erosion hampers the calibration and validation of soil erosion

models, which will not be solved by constructing even more complete, and therefore more complex,
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models (Jetten et al., 2003). The simplicity of USLE has the advantage of increasing transparency

and objectiveness of model evaluation and thus facilitates the interpretation of model results by policy

makers (Alewell et al., 2019; Panagos et al., 2016). Moreover, modelling studies usually do not focus on

accurately predicting absolute erosion values, but rather to predict relative differences, trends over times

and systems reactions to processes and management practices (Alewell et al., 2019). Despite the existing

uncertainties, models are a useful tool to test hypotheses on process understanding, relative spatial and

temporal variations, scenario development and controlling factors (Oreskes et al., 1994).

2.3.5 Common methods for measuring water erosion based on field experiments

As modelling water erosion can be challenging and includes numerous sources of uncertainty, several

authors prefer field-based water erosion assessment methods over modelling (Evans and Boardman,

2016b,a). However, different methods to measure erosion in the field have advantages and disadvan-

tages, including many different uncertainties. In other words, all water erosion assessment methods are

subject to criticism (Parsons, 2019; Trimble and Crosson, 2000; Parsons and Foster, 2011). Similar to

the varying water erosion estimates generated by different types of models, also the approach chosen

to measure water erosion influences the measurement results strongly. For example, Brazier (2004) ob-

served that different methods to measure erosion yielded different erosion rates at a location. Due to

the complexity of measuring water erosion there is often only a weak correlation between environmental

factors and erosion rates, which hampers the use of observed data in parametrisation and validation of

models (Garcı́a-Ruiz et al., 2015).

The most common methods to measure erosion on cropland are plot experiments, radioisotopic

tracer experiments and volumetric surveys. Other methods such as topographic surveys (e.g. laser

scanning) are used less frequently to assess erosion on arable land as their resolution capability raises

questions about their accuracy to detect finer traces of erosion and erosion on vegetation-covered land

(Hsieh et al., 2009). In addition, this method does not distinguish between ground surface lowering

due to erosion and other potential reasons on cropland such as soil compaction (Parsons, 2019). Other

common methods such as suspended sediment yield measurements and bathymetry do not represent

spatially explicit observations of on-site erosion and may include sediments from various sources such

as bank erosion or road erosion. Thus, they are of limited value for water erosion assessments focusing

only on agricultural land.

Most erosion measurements come from plot experiments introduced in the USA in the 1920s (Hud-

son, 1993). An overview of this method is provided by Cerdan et al. (2010), Hudson (1993), Mutchler

et al. (1994), De Ploey and Gabriels (1980) and Zachar (1982). Soil loss due to water erosion can be

quantified from sediment runoff collected from plots varying in sizes and in experimental design (to-

tal collection of sediment, fractioned collection of sediments using multislott divisors, measurement of

discharge and sediment concentration by tipping buckets and Coshocton wheels). Plot scale studies are

useful to build an empirical understanding of soil erosion under different environmental conditions and

land use. As such, measurements of soil runoff from plots are useful to compare the relative changes
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in erosion under different topographic, climate and controlled field management conditions (Auerswald

et al., 2009; Cerdan et al., 2010). Plot experiments were used for the development of the USLE model

(Brazier, 2004).

However, the accuracy of erosion measurements derived from runoff plots has been questioned

due to the complexity in designing plot experiments and collecting soil runoff data. In addition, the

spatial extent of plot scale studies has a strong impact on measured erosion rates and thus may create

bias (Parsons et al., 2006). In small plots, sediment mobilisation is dominated by rain splash, rill, and

interrill erosion and thus sediment yield is relatively low. On larger areas sediment yields are expected

to increase due to an increase in active erosion processes and flow shear stress due to concentration of

flow (Vandekerckhove et al., 2000). However, with increasing basin areas also sediment storage, e.g. at

footslopes, is expected to increase (de Vente et al., 2007). Cerdan et al. (2010) point out that plot erosion

rates cannot be directly extrapolated to larger areas as plots do not entirely capture the spatial variability

of erosion processes and rates as they occur in the landscape scale. Although the experimental settings

of plots are often very resource intensive, erosion plots can only imitate natural conditions (Boix-Fayos

et al., 2006).

Radioisotopic tracer experiments use the caesium radionuclide (137Cs) released from nuclear

weapon tests and nuclear power plant accidents as a tracer to measure long-term mean soil erosion

rates in the period since the time of 137Cs fallout (mainly in 1960s) until the time of soil sampling for
137Cs determination (Fulajtar et al., 2017; Mabit et al., 2014b; Zapata, 2002). 137Cs radionuclides from

nuclear fallout are deposited in the topsoil and bind to soil colloids, so that they are only moved with the

soil particles by mechanical processes such as soil erosion. Its chemical mobility and uptake by plants

is negligible (Mabit et al., 2014a; Zapata, 2002). If part of the topsoil contaminated by 137Cs is removed

by erosion, the 137Cs concentrations in soil profiles can be used to trace soil movements (Walling et al.,

2014).

The use of radionuclides to assess soil erosion patterns is based on the four main assumptions

that i) the fallout is locally, spatially uniform, ii) the fallout is rapidly and irreversibly fixed onto soil

particles; iii) the subsequent redistribution of fallout is due to the movement of soil particles; and iv)

estimates of soil erosion can be derived from measurements of 137Cs inventories (Walling and Quine,

1992). However, the validity of all four of these assumptions has been questioned (Parsons and Foster,

2011). The objections of Parsons and Foster (2011) were discussed by Mabit et al. (2013). One of the

most important confirmation of the usefulness of the 137Cs method given by Mabit et al. (2013) are the

positive results of a comparison between erosion values obtained with various measurement methods and

erosion values obtained by 137Cs method. Mabit et al. (2013) conclude that the 137Cs method is based

on a set of presumptions, which should be met to produce useful results, and careful interpretation of the

obtained values is needed. If the basic assumptions are met and the methodological recommendations

are followed the 137Cs method is useful to assess erosion on agricultural fields.

A major advantage of the 137Cs method is that it provides long term mean erosion rates (representing

the period since 137Cs fallout in the 1960s until the time of sampling) and overcomes the problem of high
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temporal variability of erosion. Erosion rates from short-term field experiments are stronger influenced

by the high interannual variability of erosion, which can lead to unreliable estimates of erosion rates

(Garcı́a-Ruiz et al., 2015). Furthermore, the erosion rates are determined for a grid of 137Cs sampling

points, which can provide valuable information on the spatial distribution of erosion.

Volumetric measurements of rill erosion are used since approximately the 1940s in the USA (Kaiser,

1978) and the 1950s in Europe (Lobotka, 1955), usually at field scale (Boardman, 1990, 2003; Boardman

and Evans, 2020; Brazier, 2004; Evans, 2002, 2013; Herweg, 1988; Zachar, 1982). The volume of

erosion rills is calculated by multiplying their lengths and profile cross-sectional areas, which are usually

measured along several traverses or estimated from terrestrial and aerial photos (Evans, 1986; Watson

and Evans, 1991). The erosion volume is expressed in volume units (m3 ha−1) but can be converted to

weight units (t ha−1) by multiplying the volume with the soil bulk density. Volumetric measurements

of rill erosion have been considered as a good method to monitor erosion in large fields (Boardman and

Evans, 2020).

The most common criticism against volumetric measurements is that it neglects splash and sheet-

wash erosion as it assumes that rills and gullies are mainly causing soil redistribution within fields (Par-

sons, 2019). Neglecting sheet erosion in volumetric surveys likely leads to an underestimation of erosion

in a field (Parsons, 2019). Erosion rates obtained with 137Cs have been observed to be significantly higher

than erosion rates derived from volumetric surveys, which highlight the significance of quantifying less-

visible erosion processes, such as sheet wash (Benaud et al., 2020). Volumetric surveys have been also

criticised due to their high degree of subjectivity (Panagos et al., 2016). For example, Casali et al. (2006)

reported that the error in measurements of the rill length can be ca. +/- 50 % due to their random irreg-

ularity. Boardman and Evans (2020) reported the difference in rill volumes ranging from -18% to +50%

resulting from different numbers of traverses used for rill cross section measurements. In addition, a

large difference between rill volumes derived from field measurements and rill volumes derived from

photos has been reported (Watson and Evans, 1991). Therefore, volumetric measurements require care-

ful planning and skilled surveyors to reduce the subjectivity and ensure consistency in obtained erosion

estimates. If the robustness of obtained erosion volumes can be ensured, volumetric surveys can be very

useful to monitor erosion over large areas on arable land.

2.4 Studies on the impact of water erosion on crop yields

While there are many studies that look at water erosion rates, there are few studies on the effects of water

erosion on crops. A major reason is that assessing the erosion–productivity relationship is difficult due

to the slow reduction in soil productivity, which may not be recognised until crop production is no longer

economically viable (Bakker et al., 2004). Moreover, improved technology often masks erosion impacts

(Littleboy et al., 1996), which hampers the observation of a decline in soil productivity over multiple

years.
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2.4.1 Methods to quantify the impact of water erosion on crop yields

The impact of soil loss on crop yields can be measured experimentally in the field. Water erosion impacts

on crops are usually reported as absolute or relative reduction of crop yields per soil lost. Common

methods are to artificially remove or add topsoil, comparison of yields in different landscape positions

with different soil depths and comparison of yields in different plots with different degrees of water

erosion (Bakker et al., 2004).

However, by reviewing studies about the relationships between crop productivity and erosion,

Bakker et al. (2004) found a significant variability of the crop productivity response to erosion due

to the choice of experimental methodology. Although many factors affect crop yields significantly, the

most important factor explaining the observed variations between the studies reviewed is the experimen-

tal method used to assess the erosion–productivity relationship. Bakker et al. (2004) identified several

sources of methodological uncertainties in existing studies, which may explain the variability in study

results: Artificial changes in soil depth have a stronger impact on soil properties in comparison to a slow

gradual runoff of soil, which is more common under natural conditions. Moreover, it is challenging to

ensure homogenous conditions in different plots and transects in a comparison of crop yields influenced

by different degrees of water erosion and thus the impact of other factors on crop growth and devel-

opment cannot be excluded easily. In addition, soil depth change in natural environments can be also

caused by other processes and thus it cannot be that easily related to water erosion alone. Bakker et al.

(2004) suggested that the conclusions of past research investigating the relationship between erosion and

crop productivity appear to be inconsistent.

2.4.2 Large-scale assessments of the impact of water erosion on crop yields

Panagos et al. (2018) summarised numerous studies analysing the impact of water erosion on crop pro-

ductivity losses (Bakker et al., 2004, 2007; Den Biggelaar et al., 2004a; van den Born et al., 2000; De

la Rosa et al., 2000; Lal, 1995; Larney et al., 2009; Oyedele and Aina, 1998). Most of these studies are

focused on Northern America and Europe. Although the outcomes of existing studies are very variable,

Panagos et al. (2018) estimated a crop productivity loss of 8% in intensively cultivated agricultural fields

with annual erosion rates higher than 11 t ha−1. Panagos et al. (2018) assumes that impacts of water

erosion below a rate of 11 t ha−1 will be compensated with fertiliser application in Europe based on the

tolerant soil erosion rate suggested by the USDA.

The most comprehensive study on the impact of water erosion on crop productivity was conducted

by Den Biggelaar et al. (2004a). Based on a review of field studies of water erosion impacts on various

crops in 37 countries, from which half the studies were conducted in North America. Den Biggelaar

et al. (2004a) found only minor differences of absolute crop yield declines due to water erosion between

continents. However, in relative terms crop yield declines in Africa, Asia, Australia and Latin America

were two to six times higher compared to Europe and North America. The high average yields in the

most productive regions where mainly responsible for the low impact of water erosion on crops in relative

terms.
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Den Biggelaar et al. (2004b) extrapolated the collected plot data across global soil types and es-

timated an average global annual reduction of 0.3% of yields from maize, millet, potatoes, sorghum,

soybeans and wheat corresponding to an estimated annual loss of USD 523.1 million. However, due to

missing data this estimate does not cover the entire globe. Due to a lack of data and the large variation

of erosion impacts by soil order and crops, Den Biggelaar et al. (2004b) concluded that in general, little

is known about these losses for many important crops in many developing countries. In summary, stud-

ies are too limited to generate a global picture of water erosion impacts on crops and to compare water

erosion impacts across different regions and crops.

2.5 Studies on the impact of climate change on water erosion

Research on the impacts of climate change on water erosion has a long history, dating back to the

1940s, due to the close link of both processes (Li and Fang, 2016). Earlier research was focused on

observed impacts of changing weather parameters (primarily precipitation) on water erosion (Leopold,

1951; Langbein and Schumm, 1958). In the 1990s several studies emerged, in which hypothetical climate

change scenarios are used to simulate the impact of artificially modified climate parameters on water

erosion (Favis-Mortlock et al., 1991; Favis-Mortlock and Boardman, 1995; Lee et al., 1996). With

increasing development of climate and erosion models, the number of studies on the impact of climate

change on water erosion substantially increased since the year 2000 (Li and Fang, 2016). The studies

are primarily focused on the United States, Europe and China.

The most recent research on climate change impacts on water erosion is commonly based on a mod-

elling approach linking water erosion models (e.g., USLE-based models, WEPP), hydrological models

(e.g., SWAT) or crop models (e.g., EPIC) with General Circulation Models (GCMs) (Li and Fang, 2016).

Another common approach is to focus on erosion changes caused by land use changes due to different

driving forces including climate change (Maeda et al., 2010; Paroissien et al., 2015).

In a review of recent assessments of climate change impacts on water erosion, Li and Fang (2016)

concluded that water erosion may both increase or decrease under climate change, depending on geo-

graphic locations, climate scenarios, precipitation patterns, topographic conditions, and land manage-

ment practices. Although, this review found that changes in future water erosion vary widely around

the world, in 136 records collected by Li and Fang (2016) erosion rates increased under future climate

scenarios, while only 55 records showed a decreasing trend and 14 records indicated no change.

Pruski and Nearing (2002a) compared changes of water erosion, simulated with the WEPP model,

with changes in relevant climate parameters at eight locations across the United States. They observed

significant direct impacts of precipitation changes on water erosion, but often the key factor affecting

water erosion were changes in biomass production induced by soil moisture, atmospheric CO2, temper-

ature, and solar radiation. Overall, they concluded that water erosion can be expected to increase where

precipitation increases are significant, but if precipitation decreases, water erosion may both increase

or decrease depending on the complex interactions between plant biomass, runoff, and erosion. In a
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separate study, the same authors simulated the responses of water erosion to precipitation changes using

the WEPP model at three locations across the United States, which suggested that each +1% change in

precipitation can effect a +2% change in runoff and a +1.7% change in erosion, if other factors stay equal

(e.g., temperature, CO2 levels, and solar radiation) (Pruski and Nearing, 2002b). In another study in the

U.S. Midwest, Lee et al. (1996) estimated a similar relative response of water erosion to increasing pre-

cipitation. Their outputs from the EPIC model suggested a relative increase in erosion rates twice that of

precipitation (e.g. 37 % increase in water erosion for 20% in precipitation) for current temperature and

CO2. Using EPIC as well, Favis-Mortlock and Boardman (1995) simulated the impact of precipitation

changes on water erosion in the UK and found an average increase of annual water erosion by about

12% due to an increase of precipitation of 10% and 2°C warming. In a separate study at the same loca-

tions, mean annual water erosion simulated with the EPIC model increased up to 30% under a similar

climate change scenario (Favis-Mortlock et al., 1991). The differences to the prior study are likely due

to changes of hydrological parameters and a different version of EPIC (Favis-Mortlock and Boardman,

1995), which indicates the difficulty of comparing case studies examining water erosion changes due to

climate change.

Several studies have addressed the nonlinearity of changes in surface runoff and water erosion in

response to changing climate parameters when accounting for the interactions of precipitation, temper-

ature, and CO2 concentrations with biomass (e.g., Gautam et al., 2015; Pruski and Nearing, 2002a).

This complexity was comprehensively addressed by Nunes et al. (2013), who used a sequential mod-

elling approach linking a storm-based erosion model and a regional climate change model with SWAT,

to analyse the impact of projected lower rainfall amounts and higher storm intensities in Mediterranean

watersheds with changing vegetation covers. Their results suggest that in many cases an increase in

vegetation cover on cropland through warmer temperatures and CO2 fertilisation is expected to mitigate

the impacts of increased storm rainfall. The significant impact of biomass on water erosion changes was

also considered by O’Neal et al. (2005), who accounted for the role of different field management prac-

tices on climate change impacts on water erosion in the United States. In 10 out of 11 locations water

erosion simulated with the WEPP model under climate change scenarios increased by average 95% due

to average precipitation change of +7%. In comparison to similar studies soil loss changes were greater

and very variable due to the variation in management and planting dates in addition to changing climate

parameters. Increased water erosion was caused sometimes by increased precipitation and sometimes by

decreased crop cover from lowered maize yields due to extreme heat or drought. In other studies based

on the WEPP model, water erosion rates increased even when precipitation decreased due to a drop in

maize yields and soil residue cover caused by climate change (Southworth et al., 2000, 2002b,a). Hence,

reduced rainfall does not necessarily lead to reduced water erosion. On the contrary, adaptation of soil

conservation farming techniques can lead to reduced water erosion even when precipitation increases.

For example, Klik and Eitzinger (2010) used the WEPP model to demonstrate the effectiveness of no-

tillage and grass cover to decrease future water erosion under climate change projections in Austria.

Mullan et al. (2012) point out that the biggest limitations of studies on climate change impacts on
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water erosion are the lack of considering land use and field management, next to the coarse temporal

and spatial scale of climate change data. To address the significance of these limitations, the authors

created different land use, management and rainfall intensity scenarios and simulated water erosion in

Northern Ireland using the WEPP model and sub-daily and spatially downscaled rainfall projections.

Model outputs suggested both a dramatic increase and decrease in future water erosion rates, depending

on the specific scenario. Neglecting sub-daily rainfall and land use management scenarios would lead to

a projected decrease in water erosion rates and thus hide the potential for increased water erosion under

climate change in the study area. Due to the importance of sub-daily rainfall in their analysis, Mullan

et al. (2012) stressed the need to look beyond average annual precipitation amounts to analyse future

rates of soil erosion. Other studies underline this conclusions. For example, Routschek et al. (2014)

suggest that projected changes in precipitation patterns including increasing rainfall intensities will lead

to a significant increase in water erosion by 2050 in Saxony, Germany. Additionally, Zhang and Nearing

(2005) attributed increased soil loss simulated with the WEPP model under selected climate scenarios in

central Oklahoma in the United States to increased frequency of large storms represented by an increased

variability in monthly precipitation. Further, Pruski and Nearing (2002b) addressed the different impacts

of annual precipitation amounts and daily precipitation amounts (representing precipitation intensity) and

suggested that changes in the latter had stronger impacts on water erosion changes. Although changes in

precipitation intensity have been identified as highly relevant for climate change impact studies on water

erosion, few studies include sub-daily rainfall data due to the coarse temporal resolution of projected

climate parameters (Li and Fang, 2016).

In summary, model outputs about interactions between climate change and water erosion are highly

variable between studies. The strongest agreement appears to be on a predicted increase in water erosion

rates when precipitation increases significantly. However, the rate of increase varies between studies.

Due to the many interactions between biomass and water erosion under changing climate parameters,

general conclusions on the impact of climate change on water erosion are challenging to draw from

present modelling studies. In addition, some interactions are neglected due to missing input data or lack

of process representation in the model structure. Common addressed shortcomings are the lack of ac-

counting for gully erosion in models, sub-daily rainfall or for changing rain to snow ratios with changing

temperatures (Li and Fang, 2016). The latter can have a strong impact on the distribution of seasonal

precipitation patterns and thus water erosion rates (Mukundan et al., 2013). In addition, most studies are

based on field management scenarios, which do not account for farmers responses to a changing climate.

As changes in crop cover are often decisive in climate change impacts on water erosion, this leads to

a major uncertainty in predicted water erosion rates. In addition, shortcomings of models to simulate

climate change impacts on crops, including crop responses to extreme heat or rainfall events and CO2

fertilisation, add uncertainty to modelled water erosion rates. General conclusions about climate change

impacts on water erosion are also hampered by the difficulty of comparing study results as often different

models or model parameters are used. Furthermore, conclusions derived from modelled water erosion

changes under climate change are linked to model inputs from a specific location describing environmen-
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tal characteristics and land use. Transferring findings from one study locations to different locations with

different circumstances is difficult as water erosion does not response linear to changing climate param-

eters. Therefore, extrapolating model outputs from field studies to larger scales is uncertain as well. As

most studies were conducted in Europe, China and North America, little is known about climate change

impacts on water erosion outside these regions.

2.6 Discussion

2.6.1 Models are the preferred method for assessing water erosion at large scales

Models are necessary to provide much needed large-scale indicators of water erosion using increasingly

available datasets on topography, soils, climate and land use. Although empirical water erosion models

such as USLE are often criticised as oversimplified models (e.g., Trimble and Crosson, 2000), its sim-

plicity facilitates the application on large scales and data-scarce regions and improves the transparency

of model outputs. Several authors agree that the simplicity of USLE-type models makes them most

suitable for global water erosion assessments (Borrelli et al., 2017; Doetterl et al., 2012; Van Oost et al.,

2007; Alewell et al., 2019).

More complex water erosion models demand detailed input data and calibration of model param-

eters, which becomes increasingly challenging with increasing scale of a study. This complexity is a

major disadvantage for regional or global studies. Furthermore, even complex models with detailed data

cannot fully simulate the real world as some water erosion processes are not fully understood.

Some authors criticise the use of water erosion models on large scales and prefer to use field ex-

periments instead (Evans and Boardman, 2016b). Although field studies have many shortcomings as

well, they may be more reliable to monitor erosion at specific locations if enough resources are avail-

able. However, major drawbacks of field experiments are their subjectivity as field methods are not fully

standardised, as well as their high resource intensity as they demand a large amount of time and knowl-

edge. Thus, they are not suitable to acquire the large amount of data necessary for large-scale and global

assessments (Panagos et al., 2016). Moreover, water erosion models are needed to run scenarios (e.g.

climate change impacts) and can be linked with other models (e.g. crop models) to quantify impacts of

water erosion; thus, they are essential to address many pressing research objectives.

2.6.2 A better evaluation of the modelled water erosion estimates is needed

As USLE-type models are empirical models based on observations from the Midwest United States

global water erosion estimates need to be evaluated. The robustness of USLE-type models decreases

with increasing deviation of environmental characteristics that shaped the data used to develop the model.

Previous studies evaluated their global estimates by comparing it to similar modelling studies or to a

collection of field data derived from a mix of methods. However, previous studies neglected the varying

quality of water erosion estimates for different environments in their evaluations. Therefore, there is a

need for a more detailed robustness analysis of global water erosion estimates, which accounts for the
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impact of different environmental characteristics on model outputs.

Furthermore, model outputs vary between different models as they differ in complexity, structure

and parametrisation. Even the different models from the USLE-family generate different water erosion

estimates. Model intercomparison projects, which have been very useful for the crop and climate mod-

elling community (Rosenzweig et al., 2013, 2014; Mueller et al., 2017), may help to further address and

quantify the uncertainties of water erosion models.

2.6.3 The impact of water erosion on crops is not adequately quantified

Whilst previous studies have focused on improving the spatial and temporal resolution of input data such

as topography or precipitation (Naipal et al., 2015; Panagos et al., 2017), the important impact of farming

techniques and different crops on water erosion rates has been neglected. One reason is that previous

studies used static input data, which does not account for the daily interactions between climate, soil,

crops and their management.

As common modelling methods used in large-scale water erosion assessments do not account for

the daily interactions between crops and water erosion or different field management intensities (e.g.

fertiliser use), they are of limited value to assess water erosion impacts on crop yields. Whilst some field

studies exist, which quantify water erosion impacts on crop yields, large-scale assessments are rare. The

few attempts to estimate water erosion impacts on crops on a continental scale are based on a limited

amount of field experiments (Den Biggelaar et al., 2004a; Panagos et al., 2018).

Field experiments to assess water erosion impacts on crops are highly complex due to the slow

reduction in soil productivity. Furthermore, they are highly subjective as no standardised way exists to

measure this process. As the method used to measure water erosion impacts on crops can be the strongest

driver influencing study results (Bakker et al., 2004), comparing the conclusions of different field studies

or collating data from field studies to generate conclusions on larger scales is highly uncertain. Due

to a lack of data, previous assessments on large-scale water erosion impacts on crops relied on the

limited and very heterogeneous data currently available. However, the importance of the setup of field

experiments can mask the impact of different environmental and management characteristics on water

erosion rates. Moreover, the available data only represents a limited amount of environments, crops and

field management conditions.

As a result, little is known about the effects of water erosion on crop production and its economic

consequences. In addition, sound conclusions on geographically varying water erosion impacts cannot

be drawn from existing studies and thus large-scale indicators to highlight regions most susceptible to

water erosion impacts are lacking. To assess water erosion impacts on crops on a large or global scale a

consistent method is needed to capture the effects of varying site characteristics on water erosion impacts.

2.6.4 The impact of climate change on water erosion is unclear

On smaller scales, process-based crop models are frequently used to analyse the relationship between

climate change and water erosion on cropland. Whilst studies could demonstrate a close link between
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changing climate parameters and water erosion, projecting changes in water erosion rates and impacts

is challenging due to many reasons. Some of the most import reasons are the uncertainty in projected

precipitation changes and their low temporal resolution. Moreover, disentangling the impact of single

climate parameters on water erosion is difficult due to the many complex interactions between climate,

soil and land use. Numerous modelling studies have already addressed these complexities, which led to

important insights on the significance of land use and climate change impacts on crops for projecting

water erosion changes.

As climate change impacts on crops vary around the globe it can be expected that also climate

change impacts on water erosion vary in different global regions. Thus, hotspots should be identified

where the susceptibility of crop production to water erosion may potentially increase due to climate

change to concentrate efforts and research on soil conservation strategies at locations where they are most

needed in the future. However, the conclusions of existing studies are limited to single fields, mostly

located in Europe, China and North America. Moreover, as their study design has an overwhelming

effect on the model outputs (e.g. models used, climate and field management scenarios), the different

studies cannot be directly compared with each other. Thus, using the outcomes of existing studies to

project differences of changing water erosion rates in different regions is limited.

Application of the models used to analyse the links between climate change and water erosion on

larger scales would generate model outputs that describe the impact of climate change on interactions

between crops and water erosion for different regions in a consistent way. This could provide useful

indicators on the geographic variations of climate change impacts on water erosion and their variability

under different climate and management scenarios. In addition, the model outputs can provide another

layer to climate change impact assessments on crops by accounting for water erosion impacts on crops.

This will help to identify regions vulnerable to both climate change and water erosion.

2.7 Conclusion

This literature review addressed several knowledge gaps about i) the uncertainty of water erosion esti-

mates, ii) the impacts of water erosion on crop production, and iii) the impact of climate change on water

erosion and its consequences for crop production. As there is a need for large-scale indicators on water

erosion rates and impacts, and on land degradation more generally, these knowledge gaps need to be

addressed.

Process-based crop models coupled with water erosion models are useful tools to simulate links

between crops and water erosion and thus can address many of the literature gaps. The simplicity of

empirical equations such as USLE-type models facilitates their application on a global scale and their

linkage to process-based crop models.

However, global water erosion estimates based on USLE-type models include many uncertainties,

which need to be addressed more thoroughly. This is considered in the robustness analysis of EPIC-

IIASA’s water erosion estimates, which is carried out as part of the first research objective of this thesis.
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Improving confidence in water erosion estimates simulated using USLE in conjunction with GGCMs

will provide a tool for analysing plant-water erosion interactions on a global scale. This will enable

the simulation of new large-scale water erosion indicators targeted under the second and third research

objectives, including (i) estimates of the impact of water erosion on crops for different global regions;

and (ii) insights into the impacts of climate change on water erosion in different global regions.
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Chapter 3

Literature review of crop models

3.1 Introduction

Crop models are used to simulate crop yields as a function of genotype, soil, weather and management

strategies. Climate change and water erosion have an impact on the interacting processes in crop pro-

duction systems and thus influence crop growth, crop development and crop yields. Crop models are

frequently used to investigate the impacts of climate change on potential crop productivity via pertur-

bations in the mean and variability of climate variables such as temperature and precipitation, as well

as through the impacts of increasing atmospheric CO2 concentration (Ewert et al., 2015; White et al.,

2011). In addition, crop models are used as a tool to explore field management strategies for improving

the resilience of crop production systems to climate change (Matthews et al., 2013; Webber et al., 2014).

As not all interacting processes between the soil, biomass and climate are understood, crop models differ

in their structure and complexity. Uncertainties in crop response to changing temperature, precipitation

and atmospheric CO2 are often discussed in crop modelling studies because of their relevance in climate

change impact studies (e.g., Deryng et al., 2014; Osborne et al., 2013). More complex crop models

also simulate interactions between the plant-soil-system, which are very important for exploring field

management strategies for adapting to climate change.

Given the global importance of climate change and the central interest in agriculture, crop models

are increasingly applied at the global scale (using global gridded input data infrastructures) to assess

the impact of climate change on global crop production (Mueller et al., 2017). In addition, global grid-

ded crop models (GGCMs) are used to address a wide range of questions beyond the impact of climate

change on annual crop yields. For example, they are frequently used to assess weather-induced crop-

yield variability, the impact of extreme weather events on crops, or yield gaps due to water and nutrient

deficiency (e.g., Balkovič et al., 2014; Frieler et al., 2017; Jägermeyr et al., 2016; Leng and Hall, 2019).

Moreover, model outputs of GGCMs are frequently used as inputs for global economic models to ex-

plore wider questions of the impacts of changing crop production in the face of population growth and

economic development (Nelson et al., 2014). As such, GGCMs are an essential tool for addressing many

pressing research questions.
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However, GGCMs are largely driven by variable information on weather and atmospheric CO2 con-

centrations, whereas assumptions on soil properties and/or management systems are usually static; thus,

models do not reproduce all temporal dynamics and spatial patterns of observed crops yields (Mueller

et al., 2017). As the contribution of weather variability to crop variability is lower in low-input systems

than in high-input systems (Ray et al., 2015), negligence of other processes influencing crop yields such

as the impact of pests, diseases, changes in management and soil quality through land degradation, re-

duces the significance of model outputs in some global regions. Accounting for land degradation depend

substantially on soil parameters and soil process parameterisation, i.e. hydrology and nutrient turnover,

which are often neglected domains in GGCMs (Folberth et al., 2019).

This literature review provides an overview of the types and uses of crop models and discusses their

uncertainties. It will outline the focus of the latest large-scale and global climate change impact studies

based on crop models, highlighting frequently neglected topics that need further scrutiny.

3.2 Crop model types

Crop models are mostly deterministic models. They are used to estimate crop yields as a function of

input parameters and initial conditions. Deterministic crop models can be further divided into statistical,

process-based and empirical models.

Statistical models can be used as a simple form of crop model, which are often based on regres-

sion equations. With the help of statistical crop models, the past relationship between changes in crop

yields and determining parameters such as climate conditions can be used to receive estimates for future

yield trends (Lobell et al., 2011). The advantage of this method is that no extensive input data and field

calibration data is required, which can be helpful in regions where data is scarce (Lobell and Burke,

2010). However, predictions from statistical models are limited to the locations the data was derived

from to develop the model (Ritchie and Alagarswamy, 2002). Moreover, statistical models do not pre-

dict responses to nonlinearities and do not explain the reason for certain changes (Jones et al., 2016;

Challinor et al., 2009). Thus, statistical models are restricted to the climates and atmospheric conditions

of today, and generally do not take into account interactions between crop genotype and environmental

and management factors (Rötter et al., 2011). As such, they are of limited use for generating crop yield

projections under different climate change scenarios and for adaptation decisions.

Process-based (or mechanistic) models are the most complex type of model because it is assumed

that the individual parts of a system and their connections are understood and thus they can simulate an

approximation of the real system. In process-based modelling crop yields are determined by equations

representing a crop’s physiological response to environmental variables (Estes et al., 2013). Although

process-based models can simulate processes very close to the real system, they suffer from the major

drawback of requiring a high amount of input data.

Unlike process-based models, empirical models are not based on the assumption that all underlying

biological, physical and chemical processes of a system are understood. Empirical models are based
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on observed relationships among experimental data, which are represented in a model. The simulated

relationships fit the observed relationship and thus allow to predict what will happen in certain circum-

stances that fit the prior observed circumstances (Hudson, 1993). Due to the simulation of relationships

with the help of empirical observations rather than mathematical descriptions, empirical models require

less data to run and are thus easier to use on a wider scale. Common crop models often include both

process-based and empirical elements.

3.3 Typical crop model routines to simulate crop growth

Common process-based crop models share the same fundamental approach of simulating the develop-

ment of crops from germination to harvest as a response to climate, soil, phenological characteristics

and field management. These determinants also influence the timing of different phenological stages

such as flowering, grain-filling and the partitioning of the biomass into grain and other plant parts, which

controls the amount of the yield. The many single factors used in the simulation of crop growth and

yield can be divided into defining factors such as CO2, radiation, temperature, and crop characteristics,

which determine the potential crop production, and factors limiting or reducing crop growth such as nu-

trient and water deficiency and the exposure to pollutants, pests, diseases and weeds (Jones et al., 2016;

Bouman et al., 1996; Rabbinge, 1993). The range of factors involved in the simulation of crop growth

and yields varies between crop models.

The most common way of simulating the development of crops is by calculating the timing of key

phenological stages in the plants life cycle as a function of temperature (degree-days) and daylength

(Boote et al., 2013). The potential rate of development is usually modified by limiting and reducing

factors, which play an important role in delaying or accelerating specific crop development phases (Boote

et al., 2013). Next to capturing the development characteristics of a crop, the final yield also depends

on the separately simulated daily growth rate (Dodds, 2010). A common method to predict biomass

accumulation is based on the work by Monteith (1977), who found a linear relationship between seasonal

aboveground biomass accumulation of C-3 crops grown without stress in Britain, and intercepted solar

radiation. The slope of this relation is the radiation use efficiency (RUE) in gMJ−1, which is used by

crop models as a constant to link plant growth to solar radiation (Boote et al., 2013; Dodds, 2010).

Some crop models alternatively or additionally link plant growth to crop water use by using transpiration

use efficiency (TUE) as a constant, which is the ratio of biomass produced per unit of water transpired

by a crop. This method is based on the work by De Wit (1958) who correlated water use with plant

growth. This relationship has been frequently used and modified, most prominently by adding vapour

pressure deficit (VPD) as an environmental variable, which is addressing the increase in transpiration

of a plant as the vapour pressure deficit of its surrounding air increases (Tanner and Sinclair, 1983).

With the latter modification TUE is measured in gkg−1kPa. Best estimates for crop growth rates can be

achieved by using a combination of both the RUE and TUE methods (Dodds, 2010). Leaf area expansion

plays a crucial part in estimating the interception of solar radiation; thus, this process is an important
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component in the simulation of plant growth rates. However, it is a difficult process to simulate as

it is highly sensitive to temperature, atmospheric CO2 concentration and the availability of water and

nutrients (Boote et al., 2013). Common methods implemented in crop models are to use empirical leaf

area curves specifying the course of growth and senescence of the leaf area during the growing season,

which are influenced by crop development stages and crop stress. The simulation of leaf expansion can

be either independent from the plants growth rate or calculated as a function of biomass accumulation

(Dodds, 2010). Once the end of the growing season is reached a typical method to determine final

yield is to use a prior defined harvest index, which is the ratio of the grain yield to the total above-

ground biomass. Some crop models also simulate individual grains during the growing season in order

to determine the final yield.

More complex crop models also simulate soil processes such as carbon, nutrient and water dynam-

ics in the plant-soil-system and thus can provide outputs of soil components next to crop yield estimates

(Boote et al., 2013). Outputs of those sub-models are further used to derive limiting and reducing factors

to adjust potential biomass to actual biomass. Modelling the outputs and inputs of the water balance

between crops and the soil is necessary in order to calculate important processes for biomass accumula-

tion and crop development such as time-varying availability of water and nutrients for the plant (Jones

et al., 2016). Therefore, most crop models are able to simulate hydrological processes such as infiltra-

tion, percolation, runoff and evapotranspiration, as well as carbon and nitrogen dynamics. In order to

represent these dynamics, the physical and chemical processes in the soil need to be simulated as well as

field management interventions, which have an impact on those processes. The many factors influencing

those dynamics complicate adequate representation of water, carbon and nitrogen flows and thus com-

mon crop models differ in the way they include those processes. Furthermore, some processes such as

responses to phosphorus, potassium, or micronutrients in the plant-soil-system are even more complex

and are thus hardly implemented in crop models. Similar to this, routines to simulate the reduction of

actual biomass due to damages on plants by insects, diseases, weeds and pollutants are absent in most

crop models due to their complexity (Jones et al., 2016).

3.4 Crop models and their applications

The earliest crop growth simulation models were developed in the 1960s (De Wit, 1965; Monteith, 1965).

Today, numerous crop models exist. The selection of crop models for a study depends to a large degree

on the emphasis on different research questions, crops and regions (Ewert et al., 2015). The latter can be

decisive for choosing crop models as models often perform best in regions, where the data was collected

to support the development of the model (Challinor et al., 2017). Some crop models may be more suitable

for climate change impact studies, whereas other models might be a better fit for a study on the impact

of management strategies on soil productivity. For example, the crop models STICS (Brisson et al.,

1998) and HERMES (Kersebaum, 2007) are frequently used to simulate crop N stress. APSIM (Keating

et al., 2003) and DSSAT crop models (Dzotsi et al., 2010) have been proposed as useful crop models to

68



simulate the impact of P deficiency on crops (Ewert et al., 2015). The CROPGO model includes routines

to account for soil salinity impacts on crops (Webber et al., 2010). CERES (Hoogenboom et al., 2019),

EPIC (Sharpley and Williams, 1990) and APSIM (Keating et al., 2003) were the most frequently used

crop models in a review of studies using crop simulation models to investigate different aspects of how

climate change might affect agricultural systems. (White et al., 2011). Few crop models include sub-

models to simulate water erosion and its impact on crops. The most prominent exceptions are EPIC and

APSIM. Other crop models focusing on the sustainable use of soil resources are NRTM (Shaffer et al.,

1983), CENTURY (Parton et al., 1987) and PERFECT (Littleboy et al., 1989), but they are limited in

their ability to address crop management issues and accurate simulation of crop yields and are used less

frequently in crop productivity studies (Keating et al., 2003; White et al., 2011).

Crop models are applied at field, regional and global scales. Most early crop models were developed

for application at plot and field scale; thus, early applications of crop models in climate change impact

studies were mainly site-based (Ewert et al., 2015). Recently, global gridded crop models (GGCMs)

have been developed by combining crop or ecosystem models with global gridded input data infrastruc-

tures to directly use the outputs of global climate models to generate projections of future crop yields

(Challinor et al., 2009). In addition, large-scale model outputs can easier be used as indicators for ad-

ministrative units to inform environmental and agricultural policies (Ewert et al., 2011; Alewell et al.,

2019). A major difference to field-scale model applications is that GGCMs cannot be calibrated and

evaluated against field observations. Usually the evaluation of the performance of large- to global-scale

models is based on a comparison to (sub-) national yield statistics, or to gridded yield data sets that are

based on (sub-)national statistics (Mueller et al., 2017). Today, several prominent crop models are used

next to ecosystems simulation models for climate change impact assessments at regional to global scales.

Commonly used crop and ecosystems simulation models for large-scale climate change impact assess-

ments include EPIC (Balkovič et al., 2014; Liu et al., 2007), DayCent (Stehfest et al., 2007), PEGASUS

(Deryng et al., 2011), DSSAT (Deryng et al., 2014; Schauberger et al., 2017), GLAM (Osborne et al.,

2007), LPJmL (Bondeau et al., 2007) and WOFOST (Boogaard et al., 2013).

Although crop models are now widely used to assess the impacts of climate change, most models

were originally developed to support decisions about field management, such as choice of crop cultivar,

irrigation timing and fertiliser application (Hertel and Lobell, 2014). Hence, crop models are often used

for climate change adaptation studies. According to Matthews et al. (2013), crop models can contribute

to i) determining where and how well crops of the future will grow; ii) crop improvement programmes;

iii) identifying what future crop management practices will be appropriate and iv) assessing risk to

crop production in the face of greater climate variability. The most frequently explored strategies in

climate change adaptation studies based on crop models are changes in planting dates and cropping

systems (cultivars or rotation), whereas new practices (e.g. type and distribution of fertilisers and tillage

practices), interacting practices (e.g. planting dates and irrigation management) and improved crop

characteristics are explored less frequently (White et al., 2011; Ewert et al., 2015). To thoroughly account

for the impacts of different field management strategies on crop yields, models need to simulate the

69



interactions between farming techniques, such as tillage, crop and residue management, and processes

affecting soil quality.

3.5 Global climate change impact assessments using crop models

Knowledge on the magnitude, rate, and pattern of climate change impacts on agricultural productivity

are based on more than two decades of research (Rosenzweig et al., 2014). Common methods to analyse

these impacts are based on GGCMs and statistical analysis of historical data. Studies comparing methods

found that estimated climate change impacts using different methods yield similar results (Lobell and

Asseng, 2017; Liu et al., 2016; Zhao et al., 2017). Crops most considered in climate change impact

assessments are wheat, maize, soybean and rice and the dominant regions studied are the USA and

Europe (White et al., 2011).

The results of GGCMs are compared in the Agricultural Model Intercomparison and Improve-

ment Project (AgMIP) (Rosenzweig et al., 2013) and the Inter-Sectoral Impact Model Intercomparison

Project (ISI-MIP) (Warszawski et al., 2014). Rosenzweig et al. (2014) summarised model outputs of

seven GGCMs participating in AgMIP and indicated strong negative impacts of climate change on crop

production, especially at low latitudes and at higher levels of warming. Model outputs under the RCP

8.5 scenario are summarised in Figure 3.1, which illustrates that highest negative yield changes for fu-

ture maize, wheat, rice and soybean yields are at low latitudes. The contrast of climate change impacts

between high-latitudes and low-latitudes is most pronounced for maize and wheat among the assessed

crops with general agreement among models. Strong negative climate change impacts on crops at low

latitudes can occur at moderate temperature increases (1 to 2 °C) due to the narrow gap between the

high- temperature thresholds for suitable production of crops such as maize and wheat and the present

temperature in tropical climates (Hatfield et al., 2011). This conclusion is confirmed by several other

studies observing highest climate change impacts on major staple crops at low latitudes (e.g., Balkovič

et al., 2014; Zhao et al., 2017). In addition, one study confirms these patterns by suggesting that areas in

Russia, China, and Canada are projected to gain suitable plant growing days (Mora et al., 2015).

Most studies analysing projected climate change impacts on crop yields focus on the impact of

temperature changes on crop yields. In addition, most studies account for future changes in field man-

agement by analysing climate change impacts under different fertilisation and irrigation management

scenarios. Rosenzweig et al. (2014) summarised the simulated yield changes presented in Figure 3.1

based on model outputs with and without explicit nitrogen stress. The former considers current fertiliser

application rates based on observational databases, whereas the latter scenario considers ideal fertiliser

application that completely eliminates nitrogen stress for crops, which considerably reduces negative cli-

mate change impacts. Similarly, Balkovič et al. (2014) explored the impact of climate change on global

wheat production under different irrigation and fertilisation intensification scenarios and concluded that

the negative impacts of climate change can partly be offset by adequate intensification using nutrient

additions and currently existing irrigation infrastructure. Some studies simulate climate change impacts
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Figure 3.1: AgMIP median yield changes (%) for RCP8.5 (2070–2099 in comparison to 1980–2010
baseline) with CO2 effects over all five GCMs x seven GGCMs (6 GGCMs for rice) for rainfed maize
(35 ensemble members), wheat (35 ensemble members), rice (30 ensemble members), and soy (35 en-
semble members). Hatching indicates areas where more than 70% of the ensemble members agree on
the directionality of the impact factor. The bottom 8 panels show the corresponding yield change pat-
terns over all five GCMs x four GGCMs with nitrogen stress (20 ensemble members from EPIC, GEPIC,
pDSSAT, and PEGASUS; except for rice which has 15) (Left); and 3 GGCMs without nitrogen stress
(15 ensemble members from GAEZ-IMAGE, LPJ-GUESS, and LPJmL) (Rosenzweig et al. 2014).

with more sophisticated field management scenarios. For example, Iizumi et al. (2017) addressed re-

sponds of crop yields to global temperature considering agronomic adjustments through socioeconomic

changes by accounting for improved technologies, field management and historical patterns of fertiliser

input in a GGCM. The model outputs show that global mean yields of maize and soybean will decrease

with warming at the end of this century even when agronomic adjustments are considered, whereas

those of rice and wheat increase with warming. However, complex future field management scenarios

are usually highly uncertain. Therefore, some studies choose to present their results based on scenarios

reflecting current conditions. For example, Zhao et al. (2017) used GGCMs, local point-based models,

statistical regressions, and field-warming experiments to demonstrate that without CO2 fertilisation, ef-

fective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature

would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean

by 3.1%.

As indicated in the last example, atmospheric CO2 fertilisation is regularly addressed in climate

change impact studies and was found to be significant for crop yield projections (e.g., Levis et al., 2018;

Ren et al., 2018; Tebaldi and Lobell, 2018). In a review about crop modelling studies that were conducted

from 1995 to 2002, Tubiello and Ewert (2002) found that about half of the studies dealing with climate
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change considered responses to CO2. A more recent review mentioned that most papers ignoring effects

of CO2 were published prior to the year 2000 suggesting an increasing consideration of CO2 fertilisation

in climate change impact studies (White et al., 2011). For example, Levis et al. (2018) analysed the

effects of CO2 fertilisation on C3 and C4 crops using a mechanistic model embedded in an earth system

model, and found that CO2 fertilisation can mitigate yield losses of C3 crops such as wheat, rice and soy-

bean worldwide. This is in line with studies reviewed by the IPCC (IPCC, 2014) and confirmed in recent

studies (e.g., Ren et al., 2018; Reyer et al., 2017; Tebaldi and Lobell, 2018). However, the mitigation

effect of CO2 fertilisation varies for crops and regions. For example, in a regional analysis in the Middle

East and northern Africa, Waha et al. (2017) found a significant correlation between crop yield decrease

(legumes and maize are worst affected) and temperature increase regardless of whether the effects of

CO2 fertilisation or adaptation measures are taken into account. Similarly, Iizumi et al. (2018) compared

outputs from a GGCM running with a factual and a non-warming counterfactual climate scenario as

input respectively and concluded that between 1981 - 2010 climate change has decreased global mean

yields of maize, wheat and soybeans by 4.1, 1.8 and 4.5%, even when CO2 fertilisation and agronomic

adjustments are considered. Rosenzweig et al. (2014) mentioned that CO2 fertilisation does not com-

pensate for increases in water demand and shortening of already-short growing periods for annual C3

crops in the tropics. However, Rosenzweig et al. (2014) also mentioned that responses to climate change

impacts between models are more similar and much more negative across tropical and midlatitude bands

once CO2 effects are removed. However, relative yield changes with and without CO2 effects are much

closer in C4 maize than in the C3 crops indicating the higher significance of CO2 effects for certain

crops. Conclusions from field experiments suggest that the direct fertilisation effect on crop yields in

model projections is overestimated suggesting that crop model parametrisation of CO2 effects remains a

crucial area of research (e.g., Ainsworth et al., 2008; Long et al., 2006b). One study also highlighted that

increasing CO2 lowers concentrations of important nutrients in crops; thus, threatening human nutrition

(Myers et al., 2014).

Whilst changes in precipitation intensity, amounts and patterns are often decisive for observed sea-

sonal crop yield changes (Huntington et al., 2017), they are less suitable to explain projected yield trends.

Often, studies analysing projected climate impacts focus on temperature, which is more important than

precipitation for yield trends, whereas precipitation plays a more important role in year-to-year variabil-

ity of crop production than temperature (Lobell and Burke, 2008; Lobell and Field, 2007). Moreover,

climate models perform the simulation of large-scale patterns of precipitation less well than for surface

temperature (IPCC, 2014). Nevertheless, some studies focus on projected rainfall-related impacts for

agriculture due to crop damage through heavy precipitation and flooding, or due to droughts through

lack of rainfall. The latter is very important on rainfed cropland and is among the most severe climate

related risk for crops (FAO, 2018); thus, it is subject to most studies researching precipitation related

climate change impacts. For example, projected changes in precipitation where used by Al-Bakri et al.

(2010) to asses their impact on rainfed wheat and barley in the Yarmouk basin in Jordan using the crop

simulation model DSSAT. Their model outputs suggested that a reduction of rainfall by 10–20% reduced
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the expected yield by 4–8% for barley and 10–20% for wheat, respectively. An increase in rainfall by

10–20% increased the expected yield by 3–5% for barley and 9–18% for wheat, respectively. The impact

of projected precipitation changes on crop yields were analysed on a larger scale by Leng and Hall (2019)

using a drought index and the outputs of 11 GGCMs participating in the AGMIP and ISI-MIP projects.

They calculated an increase in yield loss risk by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1%

for wheat, maize, rice and soybeans, respectively, in the ten largest producing countries by the end of the

21st century without considering the benefits of CO2 fertilisation and adaptations. Whilst studies often

highlight the positive effects of increasing precipitation on crop yields (e.g., Kang et al., 2009), few stud-

ies focus on the negative impacts of projected precipitation increases on crop yields. Often crop models

fail to capture the negative impacts of heavy rain and extremely wet conditions (Balkovič et al., 2018).

In one notable study based on the application of a modified version of the model CERES-Maize, Rosen-

zweig et al. (2002) estimated a doubling of crop damage within 30 years in the USA from increased

heavy precipitation under climate change causing excess soil moisture and flooding. Rosenzweig et al.

(2002) focused their discussion on crop losses through anoxic conditions, increased risk of plant disease

and insect infestation, or delayed planting or harvesting due to inability to operate machinery caused

by excess soil moisture and flooding. Water erosion impacts on crops are usually neglected in studies

analysing yield changes due to precipitation changes. The relationships between crops, precipitation and

water erosion in response to climate change are highly complex and are thus rather subject to field scale

studies, which focus on disentangling these interactions to derive conclusions on potential changes in

future water erosion rates (e.g., Mullan et al., 2012; Nunes et al., 2013; O’Neal et al., 2005).

In summary, most studies on projected climate change impacts focus on the impact of changes in

temperature, precipitation and atmospheric CO2 on crop yields. Although not all impacts of those chang-

ing climate parameters are considered or their effects are uncertain. Other important climate parameters

are neglected in present studies such as solar radiation, wind speed, relative humidity, and atmospheric

ozone (White et al., 2011). One important reason for their negligence is the low confidence in the pro-

jected changes of these climate parameters (IPCC, 2014).

3.6 Uncertainty and limitations of crop models

Due to uncertainty in certain model input data, model parameters and representation of biophysical

processes, the robustness of model outputs varies for different locations, scales, environments, crops

and scenarios. As all uncertainties cannot be addressed in a complex model study, it is common to

identify and quantify the most important model uncertainties for a specific study (Gabbert et al., 2010).

Uncertainty ranges are commonly determined by varying model outputs simulated with varying input

values for the most sensitive parameters or through outputs simulated with different models. However,

the latter can be challenging due to a wide variety of methodological approaches in different models

(White et al., 2011; Asseng et al., 2013).

As crop model studies are based on numerous methods, model intercomparison projects (MIPs)
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have been established to compare model outputs from different sites, crops and spatial scales and to

develop standard protocols for modelling impacts. Prominent MIPs are AgMIP (Rosenzweig et al.,

2013), ISI-MIP (Warszawski et al., 2014) and Modelling European Agriculture with Climate Change for

Food Security (MACSUR) (Bindi et al., 2015). Additionally, these comparison projects play an important

role in identifying and assessing the most significant uncertainties in crop model outputs (Challinor et al.,

2017; Mueller et al., 2017).

Commonly discussed uncertainties due to limitations of crop models result from the need to

strengthen the physiological assumptions of models (e.g. plant response to temperature), responses

to CO2 and genetic diversity of crop cultivars (White et al., 2011; Boote et al., 2013). Lacking rep-

resentation of extreme weather events in crop models, such as increased frequency and intensity of

extreme heat, drought or heavy rains, could lead to an overestimation of positive climate change impacts

(Balkovič et al., 2018). In addition, several non-weather related processes influencing crop yields are

not considered in most crop models such as impacts of pests, diseases and weeds (White et al., 2011).

Further, very few crop models include effects of frost, snow, hail, flood, wind, and ozone on crop growth

(Ewert et al., 2015). Also, soil degradation and soil microbial processes influencing nutrient cycles and

nutrient availability for plants are often not taken fully into account in most crop models (Folberth et al.,

2014).

These limitation are often the result of a lack of field data to evaluate models. Model outputs are

usually compared against data from field experiments reflecting a wide range of crops and growing con-

ditions defined by varying CO2 and ozone concentrations, drought effects and deficit irrigation (Ewert

et al., 2015; Boote et al., 2013). Global coverage of data from long-term experiments and the representa-

tion of all growing conditions in field experiments need to be improved to comprehensively evaluate crop

model outputs (Ewert et al., 2015; Boote et al., 2013). In addition, model outputs other than crop yields

and biomass, such as the representation of nitrogen cycling or carbon cycling, have not been adequately

evaluated due to a lack of field data (Ewert et al., 2015). This uncertainty results in differences in the

representation of processes between crop models. Generally, the consensus on the nature and magnitude

of essential processes simulated in crop models needs to be improved (Challinor et al., 2017).

Another important source of uncertainty is information on climate and soil, which are often not

available in the necessary spatial detail and thus adds uncertainty to crop model studies at all scales

(Nendel et al., 2013). Climate change impact studies at field scale usually use downscaled climate

change projections (Mullan et al., 2012; Vanuytrecht et al., 2016), adding bias and a significant source

of uncertainty (Challinor et al., 2017). However, Asseng et al. (2013) found a greater uncertainty in

simulating wheat yields under climate change due to variations among crop models than to variations

among downscaled climate models. In large-scale analysis, soil data needs to be aggregated, which

also has a strong effect on model outputs (Hoffmann et al., 2016). Although uncertainty of climate

projections is often described as the major uncertainty in climate change impact studies, Folberth et al.

(2016) found that soil-type-related yield variability can outweigh the simulated inter-annual variability

in yields due to weather and can even determine if climate change impacts on crops are positive or
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negative. Further, the lack of field management data causes uncertainty in global crop modelling studies.

Whilst some spatially explicit dataset on field management and land use exist, such as crop-specific

fertiliser rates (Mueller et al., 2012), planting dates and growing seasons (Sacks et al., 2010), irrigation

area, amount and timing (Siebert et al., 2015), and crop-specific irrigation shares (Portmann et al., 2010),

other management aspects are typically assumed to be static in space and time (Mueller et al., 2017).

In addition, globally gridded datasets on field management and land use are usually simplified. For

example, farmers may chose different crop varieties or sowing dates, which are subject to a number of

weather-induced conditions (e.g., soil wetness, soil temperature) and the timely availability of labour

and machinery (Mueller et al., 2017).

Although adaptation strategies involving tillage and residues management, planting dates, irriga-

tion, crop cultivars and fertiliser are considered in some crop model studies, studies often fail to represent

the broad scope of adaptation strategies present in the real world and are often limited to practices that

can be simulated with confidence (Challinor et al., 2017). Moreover, most global impact studies assume

optimal agronomic management (Rosenzweig et al., 2013), which may only reflect the most intensive

cultivation systems. On the contrary, low input systems, managed by smallholders, are usually not well

represented as common farming techniques such as crop diversification and intercropping are often not

considered (Claessens et al., 2012; Hertel and Lobell, 2014).

Drivers and constraints of field management are highly diverse and complex, which can be influ-

enced by gender, access to capital, access to extension services, access to climate information and water,

tenure security and farming experience (Gbetibouo et al., 2010; Bryan et al., 2009). Therefore, model

assumptions about field management require detailed information on environmental and socio-economic

circumstance at a study location, which are often not available. The complexity of farm management

is an important source of uncertainty in large-scale and global studies, in which farm management and

adaptation can only be simulated in a simplified way and cannot achieve the level of spatial detail neces-

sary to identify the costs and benefits of adaptation measures (Patt et al., 2010). Moreover, crop model

studies often do not consider that farmers react to changing environmental and socio-economic condi-

tions by adapting field management (Below et al., 2012; Quinn et al., 2011). In addition, crop modelling

studies usually fail to account for technological development, which may lead to systematic underesti-

mation of future crop yields (Challinor et al., 2017; Lobell, 2014). The increase of yields in past decades

is largely driven by technological development such as improved crop varieties and increased nutrient

application, particularly in Asia; thus, studies on future climate impact should ideally take such devel-

opments into account (Ewert et al., 2005). To approximate future management, integrated assessment

studies are necessary, in which biophysical models are linked to economic models to account for inter-

actions between socio-economic and biophysical factors (Ewert et al., 2015).

To test the adaptive potential of different farming techniques against climate change impacts, field

management scenarios building on agronomic measures applied today can be created. However, the

effectiveness of climate change adaptation strategies are uncertain without considering soil quality and

soil health factors, which can determine the adaptive potential of farming techniques against climate

75



change impacts (Webb et al., 2017). Moreover, climate change impacts vary across degraded and non-

degraded lands with different levels of nutrient availability, infiltration rates, and soil moisture retention

(Herrick et al., 2013). Although the gap in the investigation of land degradation factors, such as changes

in soil organic carbon, erosion, runoff, and soil humidity, and their interaction with yields has been raised

partly two decades ago (Feddema and Freire, 2001), uncertainties due to the lack of the representation of

land degradation in crop models are still mostly neglected in recent climate change impact assessments.

One notable exception is Balkovič et al. (2018), who used an EPIC-based GGCM to bracket the

uncertainty of climate change impacts on major crops in Europe driven by varying model assumptions

and parameters for simulating land degradation through nutrient depletion. They concluded that in parts

of Eastern Europe where fertiliser use is comparatively low, soil degradation may negatively outweigh

positive impacts of +2 °C warming for certain crops when not prevented by adaptation measures. Since

fertilisation is often the most important factor controlling the vulnerability of yields to degrading soil

nutrients, unclear future fertiliser use due to unknown economic and political constraints contributes

strongly to the uncertainty of crop yield projections. As increasing fertiliser rates is often presented as

an effective measure to reduce climate change impacts (Rosenzweig et al., 2014; Balkovič et al., 2014;

Folberth et al., 2013), neglecting the impact of land degradation processes on soil fertility leads to un-

certainty in climate change impact assessments. Next to fertiliser management, most farming techniques

used to mitigate climate change impacts interact with soil process such as nutrient cycles and degrada-

tion processes. For example, Folberth et al. (2014) projected potential climate change impacts on maize

yields in Africa under different intensification options involving crop rotation options to replenish soil

nutrients, while recognizing the need to account for land degradation processes in their study. Although

Folberth et al. (2014) simulated land degradation processes such as soil erosion, they were not able to

assess the robustness of their model outputs.

3.7 Discussion

Among the different crop model types, process-based models provide the most possibilities to explore

the links between climate change and crop production. Process-based crop models coupled with the out-

puts of climate models can simulate the daily interactions between the growth and development of crops

and changing climate parameters to explore the impact of climate change on crop yields. In addition,

process-based crop models can be used to explore the effectiveness of climate change adaptation strate-

gies, involving the timing and amount of irrigation and fertilisation or planting dates, for maintaining

crop yields. Complex process-based crop models also simulate carbon, nutrient and water dynamics in

the plant-soil-system and thus are useful tools to assess the sustainability of crop production systems.

The main disadvantages of process-based crop models are the substantial data requirement and the com-

plicated parameterisation of the various crop development processes. However, these have been reduced

recently due to increasing availability of global datasets on soil and field management and the growing

efforts to improve the application of models through model intercomparison projects such as AgMIP.
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The robustness and thoroughness of processes considered in crop production systems differs be-

tween models. Whilst numerous crop models exist, only a few models are commonly used in climate

change adaptation or impact assessment studies. The most frequently used models to explore different

links between climate change and crop production are EPIC, APSIM and DSSAT models (White et al.,

2011). These models are also used in recent efforts to assess the impact of climate change on crops on a

global scale (Mueller et al., 2017).

Climate change impact assessments based on GGCMs have provided insights on the effects of

changes of the most important climate parameters on yield changes in different world regions. Crop

models have been used most widely to study the geographic variations of long-term trends of major

staple crops under different projected levels of warming. In addition, crop models have been used to

assess crop yield changes due to increases in atmospheric CO2, changes in precipitation, as well as

extreme rainfall and heat events. However, simulating the impact of varying climate change parameters

on crop yields includes many uncertainties driven by input data or model structures. Whilst some of

these uncertainties are addressed frequently and quantified using uncertainty ranges, others are hardly

addressed.

Often, uncertainty analysis is focused on the response of crops to climate parameters, whereas many

soil processes affected by changes in climate and biomass are neglected. Interactions between soil and

biomass in response to climate influence the availability of nutrients for crops and thus play a crucial

role in projecting crop yields. Moreover, these interactions play an important role in the impact of field

management on crop yields, which is often a major focus in climate change adaptation studies. Without

accounting for relevant soil processes influencing nutrient availability for crops, studies on the potential

of adaptation strategies to maintain or increase projected crop yields are highly uncertain. Therefore,

the integration of processes influencing soil quality in crop modelling studies will be crucial for climate

change adaptation studies to better assess the long-term sustainability of agriculture under different field

management scenarios.

Moreover, accounting for the degradation of soil quality will support the identification of cropland

prone to declining productivity, which is a major objective in climate change impact assessments. As

declining yields are often the consequence of several processes, trying to understand how agricutlural

systems are affected by several stressors simultaneously would be most realistic (Mittler, 2006). Further,

interactions between climate change and land degradation may intensify negative impacts on agriculture

(UNCCD, 2017). Whilst land degradation and climate change have been assessed extensively as sepa-

rate phenomena, less is known about their interactions in different agroecological systems, and how land

users must simultaneously adapt to their impacts (Reed and Stringer, 2016). Thus, climate change im-

pact studies may underestimate a potential decline in crop yields if changes in soil quality in response to

a changing climate are not considered. According to Webb et al. (2017), incorporating land degradation

processes into systems analyses at all scales is needed to assess agroecosystem resilience, the agroeco-

logical and socioeconomic impacts of climate change, and scenarios by which agriculture may adapt to

climate change.

77



Water erosion is among the land degradation processes most closely linked to climate change as it

is directly linked to precipitation. Although water erosion has been addressed in some GGCM studies

(Balkovič et al., 2018; Folberth et al., 2014), it is generally neglected in climate change impact assess-

ment. Models used to simulate crops and water erosion are often similar in structure, and some models,

such as EPIC, are frequently used for both crop and water erosion modelling. Due to the strong focus on

soil processes in EPIC, it is one of the most suitable models among those often used in climate change

impact assessments to simulate crop-water erosion interactions. Furthermore, EPIC has proven to be a

reliable model that can be combined with a global data infrastructure to simulate changes in crop pro-

duction on a global scale. Although these features of EPIC make it a suitable model for this study, there

are many uncertainties and knowledge gaps in water erosion modelling that need to be addressed first

(Chapter 2.3.4).

3.8 Conclusion

This literature review on crop modelling studies identified several knowledge gaps about the impact of

climate change on crop yields. Among the many uncertainties, the lack of consideration of land degrada-

tion and its effects on the robustness of climate change impact and adaptation studies is rarely explored.

This leads to important stress factors for crop yields being ignored. Moreover, the links between land

degradation and climate change may significantly impact crop yields in the future, especially in the case

of water erosion, which is closely linked to the climate system.

A major reason for this neglect is the difficulty of simulating land degradation processes such as

water erosion and their impact on crops at large scale. As such, increasing the robustness of simulated

crop-water erosion interactions to improve large-scale water erosion indicators, as discussed in Chapter

2, will also improve crop yield projections. By improving the representation of water erosion in GGCMs,

the model results can be used to i) identify locations where crop productivity may decline due to the

combined effects of water erosion and climate change, and ii) investigate the links between climate

change and water erosion and their effects on crops. This analysis will be part of the third research

objective of this thesis.

As many process-based crop models can simulate the daily interactions in the plant-soil system,

including the dynamics of carbon, nutrients and water, they are useful tools for studying the effects of

water erosion on crop yields. EPIC is a process-based crop model that has proven useful in both GGCM

and water erosion studies. Thus, the GGCM EPIC-IIASA is suitable to fulfil the research objectives of

this study.

78



Chapter 4

Overall methodology

4.1 Study framework

The framework in Figure 4.1 illustrates the modelling approach used to generate the results for this study,

as well as the different steps to analyse the uncertainties, sensitivities and robustness of this approach.

The input data are used to i) simulate daily maize and wheat growth and water erosion with EPIC and

ii) analyse the sensitivity of the relevant model parameters to simulate global water erosion with all

equations in EPIC. The output data is used to i) generate a baseline scenario for estimating global water

erosion and maize and wheat yields and ii) address the uncertainty of simulated water erosion rates and

impacts. The robustness of the model outputs is analysed using erosion values measured in the field and

crop yields reported by FAOSTAT.
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Figure 4.1: Scheme of the modelling framework for generating the model outputs and the different steps
for analysing the uncertainties, sensitivities and robustness of the modelling approach

4.2 The EPIC crop model

This study uses the Environmental Policy Integrated Climate (EPIC), v. 0810 model. EPIC simulates

the growth of a wide range of crops as a response to crop growing conditions (a combination of cli-

mate, soil and field management) and has a sophisticated representation of carbon, nutrient and water

dynamics as well as a wide variety of possible field management options, including tillage operations

and crop rotations (Izaurralde et al., 2006; Sharpley and Williams, 1990). EPIC operates with a daily

time step and requires detailed input data on weather, topography, soil, crop, and crop management.

Originally EPIC was named Erosion-Productivity Impact Calculator and was developed to determine the

relationship between erosion and soil productivity. Due to its origin, EPIC has several options to sim-

ulate water erosion caused by precipitation, runoff and irrigation (Williams, 1990). Compared to other

commonly used crop models in climate change impact assessments of the agricultural sector, EPIC has

the most detailed representation of soil processes and the interactions between farming techniques and

soil resources (Folberth et al., 2019). In addition to estimates on crop yields, EPIC generates outputs

on nutrient consumption (N, P), components of water and soil organic carbon cycle, sediment loss, and

loss of nutrients and soil organic carbon with sediments. EPIC is regularly used in both assessments of

climate change impacts on global crop production and in assessments of farming techniques on water

erosion rates.
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4.2.1 Crop growth

The following routines are used in the EPIC model and are relevant for interpreting the results presented

in this study. Their description is based on the original documentation of the EPIC model (Sharpley and

Williams, 1990) and on the summary provided by Folberth et al. (2016, 2019).

In EPIC, phenological development of a crop is based on the heat unit (HU) approach. Daily HU

are calculated as

HUk =
Tmax,k +Tmin,k

2
−Tb (4.1)

where HUk are the accumulated HUs, maximum temperature and minimum temperature (°C) on day k,

and Tb is the base temperature (°C) of a specific crop. The base temperature provides a crop-specific

threshold under which no growth occurs. A crop reaches maturity when the sum of daily HU equals

potential HUs (°C), which are based on long-term climate data and reported growing seasons provided

by Sacks et al. (2010).

Daily potential biomass increase is estimated with the equation

∆Bp = 0.001∗BE ∗PAR (4.2)

where ∆Bp (t ha−1) is biomass gain, BE is a crop-specific coefficient for converting energy to biomass

(kg MJ−1) and PAR is intercepted photosynthetic active radiation based on leaf area index (LAI), solar

radiation (MJ m−2) and plant row width. The daily potential biomass is subsequently adjusted to daily

actual biomass by accounting for the maximum stress factor out of nutrient and water deficiency, tem-

perature and aeration stress (further details below). The LAI of wheat and maize is initially zero or close

to zero, increases exponentially during early vegetative growth and decreases after reaching a maximum.

LAI is calculated as a function of heat units, crop stress, and crop development stages.

Total biomass is split between above and below-ground biomass. The fraction of total biomass

partitioned to the root system usually decreases from emergence to maturity, which is simulated as a

linear reduction in EPIC. Rooting depth usually increases rapidly from the seeding depth to a crop-

specific maximum, which is based on heat units, crop-specific parameters and the soil profile depth.

At maturity, crop yield is calculated by multiplying total aboveground biomass with a water stress-

adjusted harvest index (HIa). HIa is estimated from simulated potential HI (HImax; depending on HU

accumulation) and a defined minimum HI (HImin) according to

HIa = (HImax −HImin)∗
WUR

WUR+ exp(6.13−0.0883∗WUR)
+HImin (4.3)

where WUR is the water use ratio. WUR is estimated at harvest as
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WUR = 100∗ ∑
K
i=1 Ui

∑
K
i=1 EPi

(4.4)

where Ui (mm d−1) is the actual and EPi (mm d−1) the potential plant water use rate for day i. K is

the total number of days of the growing season.

4.2.2 Crop growth constraints

Potential crop growth and crop yields are constrained mainly by water, nutrients (N and P), temperature

and aeration stress. The most severe stress factor on a given day limits biomass accumulation, root

growth and yield by a fraction ranging from 0 to 1. The stress factors are calculated as follows.

Water stress is based on water deficit for the crop controlled by water supply and demand, which is

consistent with the concept that drought stress limits biomass accumulation proportional to the transpi-

ration reduction. It is calculated according to

WSk =

M
∑

i=1
ul,k

EPk
(4.5)

where WSk is the amount of water stress on day k, l is a given soil layer, M is the total number of soil

layers, ul,k is the plant available water in layer l on day k (mm), and EPk is the potential ET on day k

(mm).

Temperature stress occurs if the air temperature is above the optimum temperature or below the

base temperature of a specific crop according to

T Sk = sin
(

π

2
∗ T Gk −Tb

To −Tb

)
(4.6)

where T Sk is the plant temperature stress factor on day k, T Gk is the soil surface temperature (°C) on

day k, Tb is the base temperature, and To is the optimal temperature for a specific crop.

The nutrient stresses, Nitrogen (N) and Phosphorus (P) stress, are based on the ratio of accumulated

plant N and P to the optimal values. N and P stress vary nonlinearly from 1 at optimal or excess N and P

supply to 0, when N or P is half the optimal level. As a first step in determining nutrient stress, a scaling

factor is calculated.

SNSk = 2∗
(

UNk

cNBk ∗Bk

)
(4.7)

where SNSk is the scaling factor for calculating N stress on day k, UNk is the N uptake on day k (kg ha−1),

cNBk is the optimum N concentration of the crop on day k (kg ha−1) and Bk is the total plant biomass on
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day k (kg ha−1). The scaling factor is used to calculate actual N stress (NSk) using the equation

NSk =
SNSk

SNSk + exp(3.39−10.93∗SNSk)
(4.8)

The same equations used for the N stress factor apply for the P stress factor.

Aeration stress occurs when soil water content approaches saturation. To estimate the degree of

stress, the water content and pore volume of the top 1 m of soil is considered with the following equation

SATk =
SW1k

PO1k
−CAF (4.9)

where SATk is the saturation factor at day k, SW1k is the water content of the top 1 m of soil (mm) at day

k. PO1k is the porosity of the top 1 m of soil (mm) at day k and CAF is the critical aeration factor for a

specific crop, which can vary between 0 and 1. If SATk>0, aeration stress (AS) is calculated as

ASk = 1− SATk

SATk + exp(−1.291−56.1∗SATk)
(4.10)

Crop growth can be additionally constrained through stresses affecting root development due to soil

strength, aluminium toxicity and temperature stress.

Soil strength depends on bulk density and soil sand content according to

SSl,k = 0.1+
0.9∗BDl,k

BDl,k + exp(bt1 +bt2 ∗BDl,k)
(4.11)

where SSl,k is the soil strength of layer l on day k, BDl,k is the bulk density (g cm−3) of layer l on day k

and bt1 and bt2 are coefficients based on the soils sand content.

Aluminium toxicity stress is estimated if the crop-specific aluminium tolerance is lower than the

amount of dissolved aluminium controlled by the soils pH according to

AT Sk =
100−ALSl,k

100− (10+20∗ (ALT −1))
(4.12)

where AT Sk is aluminium toxicity stress on day k, ALT is a crop-specific aluminium tolerance index

that can vary between 1 (=highly sensitive) and 5 (=very tolerant) and ALSl,k is the amount of dissolved

aluminium in soil layer l on day k.

4.2.3 Soil

The soil organic matter (SOM) model in EPIC is based on the Century model (Izaurralde et al., 2006).

SOM is split into different compartments, which differ in size, function and turnover rates: standing dead

residue and roots, structural and metabolic litter, slow humus and passive humus and microbial biomass.

The coupled organic C and N module in EPIC distributes organic C and N between the different soil

organic matter compartments. The system interacts directly with soil moisture, temperature, erosion,
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tillage, soil density, soil texture, leaching, and translocation functions. Erosion, surface runoff, leaching

and volatilization can lead to the loss of C, N and P from the system.

In EPIC, the main impact of water erosion on crops is driven by nutrient stress through the export of

organic C, organic N and P from the topsoil layer through sediment runoff. The loss of all three nutrients

with sediment runoff is estimated in relation to the eroded soil after a common approach used in SOM

models (Polyakov and Lal, 2004; Sharpley and Williams, 1990).

Mloss = E ∗Msoil ∗ER (4.13)

where Mloss is the runoff loss of either organic C, organic N or P (kg ha−1); E is soil loss (Mg

ha−1); Msoil is the concentration of either organic C, organic N or P in the top soil layer (gt−1); ER

is the enrichment ratio, which is the concentration of either organic C, organic N or P in the sediment

relative to the original soil (dimensionless). The enrichment ratio in sediment is logarithmically related

to sediment loss.

4.2.4 Hydrology

Daily precipitation is split at the surface into runoff and infiltration. Daily runoff Q (mm) is estimated

according to the USDA SCS curve number equation

Q =
(R−0.2s)2

R+0.8s
; i f R > 0.2s (4.14)

where R is precipitation (mm) and s is the retention parameter (mm). If R ≤ 0.2s, no runoff occurs.

Parameter s depends on the curve number (CN) according to

s = 254∗ 100
CN

−1 (4.15)

The CN reflects different types of soils, landuse and management, and are adjusted for slope, sur-

face roughness, and soil humidity in the model. The curve number can be obtained by using the SCS

hydrology handbook (USDA, 1972).

4.2.5 Water erosion

EPIC includes seven empirical equations to calculate water erosion (Wischmeier and Smith, 1978). The

basic equation is:

E = P∗K ∗LS∗C ∗P (4.16)
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where E is soil erosion in Mg ha−1 (mass/area), R is the erosivity factor (erosivity unit/area), K is the

soil erodibility factor in Mg MJ−1 (mass/erosivity unit), LS is the slope length and steepness factor

(dimensionless), C is the soil cover and management factor (dimensionless) and P is the conservation

practices factor (dimensionless).

The main difference between the water erosion equations available in EPIC is their energy compo-

nents used to calculate the erosivity factor. The USLE, RUSLE and RUSLE2 equations use precipitation

intensity as an erosive energy to calculate the detachment of soil particles. The MUSLE equation and

its variations MUST and MUSS use runoff variables to simulate water erosion and sediment yield. The

Onstad-Foster equation combines energy through rainfall and runoff (Table 4.1).

Table 4.1: Equations to calculate the erosivity factor in each water erosion equation available in EPIC.

Erosivity factor Equation

R = EI USLE, RUSLE, RUSLE2 (Renard
et al., 1997; Wischmeier and Smith,
1978; USDA-ARC, 2013)

R = 0.646∗EI +0.45∗ (Q∗Qp)
0.33 Onstad-Foster (Onstad and Foster,

1975)
R = 1.586∗ (Q∗Qp)

0.56 ∗WSA0.12 MUSLE (Williams, 1975)

R = 2.5∗Q∗q0.5
p MUST (Williams, 1995)

R = 0.79∗ (Q∗qp)
0.65 ∗WSA0.009 MUSS (Williams, 1995)

The erosion energy component is calculated as a function of either runoff volume Q (mm), peak

runoff rate qp (mm h−1) and watershed area WSA (ha), or via the rainfall erosivity index EI (MJ ha−1).

The latter determines the detachment of soil particles through the energy of daily precipitation and a

statistical estimate of the daily maximum intensity of precipitation falling within 30 minutes. RUSLE2

is the only equation calculating soil deposition. If the sediment load exceeds the transport capacity,

determined by a function of flow rate and slope steepness, soil is deposited, which is calculated by a

function of flow rate and particle size (USDA-ARC, 2013).

The soil cover and management factor is updated for every day where runoff occurs using a function

of crop residues, biomass cover and surface roughness.

C = FRSD∗FBIO∗FRUF (4.17)

where FRSD is the crop residue factor, FBIO is the growing biomass factor and FRUF is the soil random

roughness factor, which are calculated with the following equations (Wang et al., 2011; Williams et al.,

2012):

FRSD = exp(−P23∗CV RS) (4.18)

FBIO = 1− ST L
(ST L+ exp(SCRP1(23)−SCRP2(23)∗ST L))

∗ exp(−P26∗CPHT ) (4.19)

FRUF = exp(−0.026∗ (RR−6.1)) (4.20)
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where P23 is an exponential coefficient ranging from 0.01-0.5, CV RS is the amount of above ground

crop residue (t ha−1), ST L is the amount of standing live biomass of the crop (t ha−1), SCRP1(23) and

SCRP2(23) are coefficients defining an S-shaped growth curve used to estimate the fraction of the ground

covered by the plant as a function of the Leaf Area Index, P26 is an exponential coefficient ranging from

0.01-0.2, CPHT is the crop height (m) and RR is the soil surface random roughness (mm).

Although the root system of plants is important for erosion through its regulation of soil infiltration

and its stabilising effect on soil structure, it is not directly considered in the erosion calculation in EPIC.

The root system is however included in the calculation of crop growth (Chapter 4.2.1) and soil organic

matter (Chapter 4.2.3) that directly affect erosion.

The impact of soil erodibility on simulated water erosion is calculated for the top-soil layer at

the start of each simulation year. The soil erodibility factor is calculated the same way for the USLE,

Onstad-Foster, MUSLE, MUST and MUSS equation using a function of sand, silt, clay and organic

carbon contents in the soil:

K = X1∗X2∗X3∗X4 (4.21)

X1 = 0.2+0.3∗ exp(−0.0256∗SAND∗ (1−0.01∗SILT )) (4.22)

X2 =

(
SILT

CLAY +SILT

)0.3

(4.23)

X3 =
1−0.25∗OC

OC+ exp(3.718−2.947∗OC)
, IF OC ≤ 5 (4.24)

X3 = 0.75, IF OC > 5 (4.25)

X4 =
1−0.7∗SN1

SN1+ exp(−5.509+22.899∗SN1)
(4.26)

SN1 = 1−0.01∗SAND (4.27)

Where SAND, SILT , CLAY , and OC are the sand, silt, clay, and organic carbon contents of the soil (%).

For the RUSLE and RUSLE2 method soil erodibility is calculated without the organic carbon contents

of the soil using the following equation:

KR = 9.811∗

(
0.0034+0.0405∗ exp

(
−0.5∗

(
Log10(DG)+1.659)

0.7101

)2
))

(4.28)

DG = exp(SUM) (4.29)

SUM =
SAND∗0.0247−SILT ∗3.65−CLAY ∗6.908

100
(4.30)

The topographic factor is calculated the same way for the USLE, Onstad-Foster, MUSLE, MUST and

MUSS equation using a function of slope length and slope steepness:

LS =

(
SLPL

22.127

)XM

∗ (SLP∗ (65.41∗SLP+4.56)+0.065) (4.31)

XM = 0.3∗ SLP
SLP+ exp(−1.47−61.09∗SLP)

+0.2 (4.32)
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Where SLPL is the slope length (m), SLP is the land surface slope (m/m) and XM is an exponent depen-

dent upon slope. The topographic factor for the RUSLE method is calculated using a function of slope

length and slope steepness as well:

LSR = RSF ∗RLF (4.33)

RSF = 10.8∗SLP+0.03, IF SLPL > 4.57 & SLP < 0.09 (4.34)

RSF = 16.8∗SLP−0.5, IF SLPL > 4.57 & SLP > 0.09 (4.35)

RSF = X1, IF SLPL < 4.57 (4.36)

X1 = 3∗SLP0.8 +0.56 (4.37)

RLF =
SLPLRXM

22.127
(4.38)

RXM =
B

1+B
(4.39)

B =
SLP

0.0894∗X1
(4.40)

Where SLPL is slope length (m) and SLP is land surface slope (m/m). The slope steepness factor RSF

is adjusted for different slope steepness and slope length thresholds based on experimental data (Renard

et al., 1997). The slope length factor RLF includes an exponent RXM, which is a function of the ratio

B of rill erosion caused by flow and interill erosion caused by raindrop impact (USDA-ARC, 2013). B

reflects how steepness affects rill erosion differently than it does interrill erosion. Rill erosion is assumed

to vary linearly with steepness. The topographic factor for the RUSLE2 method is calculated the same

way as for the RUSLE equation if the transport capacity determined by a function of flow rate and slope

steepness exceeds sediment load. When sediment load exceeds transport capacity, RUSLE2 computes

deposition. Interrill erosion is assumed to occur even when RUSLE2 computes deposition, which can be

calculated without a distance term as detachment is solely caused by impacting raindrops (USDA-ARC,

2013). Therefore, the slope length factor is not considered in the RUSLE2 equation when deposition

occurs.

The conservation practice factor is included in all equations as a static coefficient ranging between

0 and 1, where 0 represents conservation practices that prevent any erosion and 1 represents no conser-

vation practices. Typical conservation practice factors can be derived from tables, which include values

ranging from 0.01 to 0.35 for terracing strategies and from 0.25 to 0.9 for different contouring practices

(Morgan, 2005; Wischmeier and Smith, 1978). Alternatively, values can be derived from local field stud-

ies and remote sensing (Karydas et al., 2009; Panagos et al., 2015), from equations using topographical

data (Fu et al., 2005; Terranova et al., 2009), or from economic indicators (Scherer and Pfister, 2015).

4.3 EPIC-IIASA

GGCMs are integrated modelling frameworks for process-based crop modelling at large scale. Global

datasets on static (topography, soil texture) and dynamic (climate, crop management, soil nutrient and
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water pools) factors are organised within geographical grids to provide inputs for process-based crop

models to generate spatially-explicit estimates of crop yields over the globe. EPIC-IIASA is a GGCM

based on EPIC, which has been used as a tool for climate change impact studies on food security and the

agricultural sector (Mueller et al., 2017; Balkovič et al., 2018).

4.3.1 Global grids and input data

EPIC-IIASA requires global soil and topography data and daily weather data. The basic spatial resolu-

tion of the model is 5’ x 5’ at which soil and topographic data are provided. These are aggregated to

homogenous units (based on the same topography and soil classes) and further intersected with a 30’

x 30’ climate grid, the resolution at which global gridded climate data are available. This results in a

total of 131,326 grid cells with a spatial resolution ranging between 5’ to 30’ (about 9 km to 56 km near

the equator) depending on landscape heterogeneity (Skalský et al., 2008). Weather parameters for the

simulation period 1980 - 2010 are taken from historic bias-corrected daily weather data combining data

from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), station data, and

remotely-sensed datasets, covering the years 1980 – 2010 (Ruane et al., 2015). Weather parameters for

representative concentration pathways (RCP) are taken from the HadGEM2 RCP 2.6 and 8.5 datasets

covering the years 2005 - 2099 (Hempel et al., 2013). These datasets represent two contrasting climate

scenarios and are used to bracket varying projections of weather parameters. Soil information is taken

from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), and topography

from USGS GTOPO30 (USGS, 1997). Each grid cell is represented by a single field characterized by

the combination of topography and soil conditions prevailing in this landscape unit. Each representative

field has a defined slope length (20 – 200 m) and field size (1 - 10 ha) based on a set of rules for different

slope classes (Table 4.2). The slope of each representative field is determined by the slope class covering

the largest area in each grid cell (Table 4.2). Slope classes are taken from a global terrain slope database

(IIASA/FAO, 2012) and are based on a high-resolution 90 m SRTM digital elevation model (Figure A.1).

Table 4.2: Set of rules for field size and slope length estimation for each dominant slope class.
The area/dominant slope class was assigned to each grid cell from a global slope and terrain dataset
(IIASA/FAO, 2012) providing 3 arc-sec spatial resolution distributions of nine slope gradient classes:
0–0.5%, 0.5–2%, 2–5%, 5–8%, 8–16%, 16–30%, 30–45%, and > 45% interpreted from SRTM eleva-
tion data (CGIAR-CSI, 2006). The mid-interval value of the dominant slope class was used as an input
for each grid cell in EPIC-IIASA.

Dominant slope class Lower value (%) Upper value (%) Mid value (%) Slope length (m) Field size (ha)

1 0 0.5 0.25 200 10
2 0.5 2 1.25 200 10
3 2 5 3.5 200 10
4 5 8 6.5 200 10
5 8 16 12 100 5
6 16 30 18 75 5
7 30 45 35.5 50 1
8 45 100 60 20 1

88



4.3.2 Climate change scenarios

The two contrasting RCPs used for the climate inputs for EPIC-IIASA represent different socio-

economic and emission scenarios and were produced in collaboration between integrated assessment

modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts (van Vuuren

et al., 2011). The scenarios are created to improve the understanding of complex interactions of the cli-

mate system, ecosystems, and human activities and conditions to provide plausible descriptions of how

each of these components might change in the future. However, the goal of scenarios is not to predict

the future, but to better understand uncertainties to reach decisions that are robust under a wide range of

possible futures. As such, these scenarios support the analysis of complex issues such as costs, benefits

and risks of different policy choices and climate and socioeconomic futures (Moss et al., 2010). In total,

a set of four pathways were produced that lead to radiative forcing levels of 8.5, 6, 4.5 and 2.6 W m−2,

by the end of the 21st century (Moss et al., 2010). The radiative forcing levels are used as inputs for cli-

mate models to project daily climate parameters covering the years 2005 - 2099. The RCPs selected for

this study are based on climate data from the HadGEM2-ES model (Collins et al., 2008). The data are

available via the CMIP5 website (https://pcmdi.llnl.gov/mips/cmip5/) and were further bias-corrected

with respect to historical observations by Hempel et al. (2013) in line with the ISI-MIP project.

RCP 2.6 was developed by the IMAGE modelling team of the PBL Netherlands Environmental

Assessment Agency to represent the scenarios that lead to very low greenhouse gas concentration levels

(van Vuuren et al., 2011). The radiative forcing level in RCP 2.6 peaks at a value of around 3.1 W m−2

and a concentration of 490 ppm CO2- equiv. by mid-century, and returns to 2.6 W m−2 by the year

2100; thus, it is referred to as a “peak-and-decline” scenario. To reach such radiative forcing levels,

greenhouse gas emissions (and indirectly emissions of air pollutants) are reduced substantially over time

(van Vuuren et al., 2011).

RCP 8.5 was developed using the MESSAGE model and the IIASA Integrated Assessment Frame-

work (Riahi et al., 2007). The radiative forcing level in the RCP 8.5 reaches more than 8.5 W m−2 and a

concentration of more than 1370 ppm CO2-equiv. in 2100. It represents scenarios for increasing green-

house gas emissions over time leading to the highest greenhouse gas concentration levels (van Vuuren

et al., 2011).

4.3.3 Field management scenarios

Maize and wheat are chosen as two contrasting crop types for analysing water erosion in different cul-

tivation systems. Maize is a row crop with relatively large areas of bare and unprotected soil between

the crop rows. The plant density in wheat fields is much higher, which improves the protection of soils

against water erosion. Growing seasons for maize and wheat in each grid cell are taken from Sacks et al.

(2010), and spatially explicit nitrogen and phosphorus fertiliser application rates are taken from Mueller

et al. (2012).

In the absence of spatial data for crop-specific water application rates at the global level, irrigated

crops are provided with sufficient amounts of water to avoid water stress. Irrigation water is supplied to
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refill soil water content to its field capacity each time the plants are under stress, with an annual limit of

1000 mm per crop (Balkovič et al., 2018).

Field management techniques influencing soil properties and soil cover have a significant impact on

the amount of water erosion. However, these methods vary greatly around the world and data on different

field management techniques is sparse. Therefore, each crop is simulated for six field management

scenarios (three tillage x two cover crop scenarios), each influencing soil properties, water erosion and

plant growth differently. The tillage management scenarios represent conventional, reduced and no-

tillage, which differ by the amount of cultivation operations, tillage depth, mixing efficiency of tillage

and sowing mechanisations, surface roughness and the amount of plant residues left on the field after

crop harvest. Further, runoff curve numbers are altered for each tillage scenario to account for different

runoff intensities for the cover treatment classes presented in Table 4.3. Runoff curve numbers indicate

the runoff potential of a hydrological soil group, land use and treatment class and allow to take the impact

of different tillage practices on the hydrologic balance into account (Chung et al., 1999). The different

tillage intensities account for the impact of gradually changing surface cover and roughness on water

erosion rates. Each tillage scenario is simulated with and without green fallow (grass-type green fallow)

cover in between growing seasons, leading to a total of six field management scenarios.

Table 4.3: Tillage management scenarios for maize and wheat cultivation.

Conventional tillage Reduced tillage No- tillage

total cultivation operations 6-7 4-5 3
max. tillage depth 150 mm 150 mm 40-60 mm
mixing efficiency 99 % 75 % 2 %
max. surface roughness 30-50 mm 20 mm 10 mm
plant residues left 25 % 50 % 75 %
cover treatment class straight contoured contoured & terraced

Irrigation and additional conservation practices in all field management scenarios are based on

the underlying slope class of each grid cell. On slopes steeper than 5%, only rainfed agriculture is

considered, as hilly cropland is irrigated predominantly on terraces that prevent water runoff.

P-factors are used to simulate additional, or more efficient conservation practices. These are static

coefficients ranging between 0 and 1, where 0 represents conservation practices that prevent any ero-

sion and 1 represents no conservation practices. Whilst conservation practices are introduced implicitly

through various crop growth assumptions as presented in Table 4.3, additional erosion control measures

are simulated on slopes > 16% assuming that conservation practices are most likely implemented on

steep slopes. On slopes steeper than 16%, a P-factor of 0.5 is used, and on slopes steeper than 30%, a

P-factor of 0.15 is used to simulate contouring and terracing based on the range of P-values presented in

Morgan (2005).

To determine the impact of water erosion on maize and wheat yields, all field management scenarios

are additionally simulated with no erosion (P=0). The comparison of crop yields simulated with a P-

factor value of zero with crop yields simulated under higher P-factor values can be used to identify grid
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cells where crop yields are reduced by water erosion. The simulation outputs at those grid cells are used

to quantify the reduction of maize and wheat production and the relative reduction of crop yields due to

water erosion.

4.3.4 Baseline field management scenario

The six field management scenarios reflect a range of potential impacts occurring due to different farm-

ing techniques on water erosion rates and erosion–crop yield relationships. To account for geographic

variations in field management while addressing each thesis objective, the model outputs are aggregated

using a baseline scenario determined by climatic and country-specific indicators.

As the only global statistical data on the type of tillage systems are provided for the extent of

Conservation Agriculture area at the national scale (FAO, 2016), only the lowest tillage intensity scenario

is assigned to specific countries in the baseline scenario. Therefore, conventional and reduced tillage are

simulated in each grid cell globally, whereas the additional no-tillage scenario is simulated only for

countries in which at least 5% of cropland is cultivated under conservation agriculture according to

AQUASTAT (2007–2014) (FAO, 2016).

The main Koeppen-Geiger regions (Peel et al., 2007) were used to avoid unsuitable cover crop

options. The off-season green fallow cultivation is not simulated in dry regions due to high competition

for water. In contrast, the off-season green fallow is always considered in tropical areas with high rainfall,

where a year-round growing season is common. In temperate and snow regions, average simulation

results from both cover crop scenarios are used (Figure 4.2).

The MUSS equation is chosen for the baseline scenario as it generates the lowest deviation between

simulated and measured water erosion, which will be discussed in Chapter 5. Table 4.4 summarises the

field management assumptions.
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Figure 4.2: Distribution of selected (a) tillage and (b) cover crop scenarios determined by country-
specific and environmental indicators used for compiling the baseline scenario. In each grid cell, crop
yields are averaged over all selected field management scenarios.
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Table 4.4: Summary of management assumptions and erosion equation selected for the baseline scenario.

Option Baseline

Tillage

• Mix of conventional, reduced and no-tillage in regions where the national
share of conservation agriculture is > 5% according to the latest reported
data in FAO AQUASTAT (2007-2014) (FAO, 2016): Argentina, Australia,
Bolivia, Brazil, Canada, Chile, China, Colombia, Finland, Italy, Kazakhstan,
New Zealand, Paraguay, Spain, USA, Uruguay, Venezuela, Zambia and Zim-
babwe.

• Mix of conventional and reduced tillage in the rest of the world.

Off-season
cover

• Cultivation only with cover crops in tropics according to Koeppen-Geiger re-
gions (Figure A.4) (Peel et al., 2007).

• No cover crops in arid regions.

• Mix of off-season cover with and without cover crops in temperate and snow
zones.

Conservation
Practice

Factor (P)

• P = 1, IF SLOPE < 16%

• P = 0.5, IF SLOPE ≥ 16% & SLOPE < 30%

• P = 0.15, IF SLOPE ≥ 30%

Crop • Model outputs are generated for wheat and maize fields based on the global
crop distribution by MIRCA2000 (Figure A.3) (Portmann et al., 2010).

Irrigation
• irrigation if SLP ≤ 5%.

• Weighted average of irrigated and rainfed cropland based on Portmann et al.
(2010).

Water erosion
equation

• MUSS
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4.4 Uncertainty analysis of model outputs

The large spatial resolution of GGCMs causes uncertainty from various input sources including climate,

soil, field management, distribution of crop cultivars and cropland, irrigation area, growing seasons, as

well as model structure and model parametrisation, most of which have been addressed by prior studies

(Folberth et al., 2016, 2019; Mueller et al., 2017; Porwollik et al., 2017). Since not all uncertainties can

be considered, the most important ones for the simulation of water erosion in EPIC are analysed. This

includes the uncertainties due to different field management scenarios, different water erosion equations,

and slope steepness data.

Field management practices have a major influence on the extent of water erosion. However, their

application is not well known worldwide, which could lead to errors in the model results. Further,

the different water erosion equations in EPIC differ in their parameters and sensitivities, which causes

varying water erosion estimates. To account for both sources of uncertainty, uncertainty ranges are

calculated globally in Chapter 5 based on the varying water erosion estimates with different water erosion

equations and field management scenarios. In addition, uncertainty ranges are calculated globally for the

estimated impacts of water erosion on crops in Chapter 6 based on different field management scenarios.

While the range of slopes and the fraction of cropland in each grid cell is known, it is not possible to

determine how much land in each slope class is cultivated. Therefore, it is assumed that the cropland in

each grid cell is on the slope class that is most common in the grid cell, as this represents the prevailing

topographical conditions. This assumption is likely to introduce spatially-varying uncertainty as the

fraction of each grid cell containing the dominant slope category varies from 20% to 100%, with an

average share of 48%. The share of land covered by cropland in each grid cell also varies greatly, from

1% to 100%, with an average share of 14% (Figure A.5). Therefore, the extrapolation of the simulation

outputs to the entire cultivated area in a grid cell can provide only a rough estimate. The implications of

this assumption are explored in Chapter 5 and Chapter 6 by comparing the simulation results to a second

set of simulation outputs based on an ideal cropland distribution scenario, in which the flattest terrain

available rather than the most common slope in each grid cell is cultivated. This assumes that farmers

would prefer to cultivate flatter land where possible.

The uncertainty from slope steepness data will be addressed in an example region, as this requires a

large number of additional model runs for various combinations of slope assumptions and field manage-

ment scenarios per grid cell. Italy is chosen as an example region, as it is susceptible to water erosion

and includes large and heterogeneous maize and wheat cultivation areas on flat terrain in the north and

mountainous regions in the south.

4.5 Sensitivity analysis of water erosion simulation

The most essential input parameters to the factors in the seven water erosion equations are identified

with a sensitivity analysis in Chapter 5. The Sobol method (Sobol, 1990), a variance-based sensitivity

analysis, is popular in environmental modelling (Nossent et al., 2011). With this method, it is possible to
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quantify the amount of variance that each parameter contributes to the total variance of the model output.

These amounts are expressed as sensitivity indices, which rank the importance of each input parameter

for simulated water erosion. In addition, the sensitivity indices can be used to determine the impact of

parameter interactions on the model output.

The sensitivity analysis is run for 30 parameters directly connected to the water erosion equations in

EPIC. In total, 126,976 random values are assigned to all input parameters along a pre-defined triangular

distribution or a range of discrete values (Table A.1). Water erosion is simulated with EPIC using the

seven available equations for each random input combination at 40 locations where wheat and maize

are cultivated. To represent a heterogeneous distribution of global precipitation regimes, the natural

break optimisation method is used to choose locations based on average annual precipitation amounts

from 1980 to 2010 (Jenks, 1967). For each location and equation, the most sensitive parameters are

ranked. To analyse the impact of precipitation regimes on the sensitivity of each parameter, Spearman

coefficients (ρ) are used to determine if positive or negative relationships exist between each parameter’s

sensitivity and annual precipitation.

4.6 Evaluation of model outputs

4.6.1 Evaluation of simulated water erosion against field measurements

Simulated water erosion rates are compared with 606 soil erosion measurements on arable land from 36

countries representing plot and field scale in Chapter 5. Most of the selected erosion rates are based on

the 137Cs method. In addition, data from erosion plots and volumetric measurements of rills collected

by Auerswald et al. (2009), Benaud et al. (2020) and Garcı́a-Ruiz et al. (2015) are used. In total, 315

records are derived by the 137Cs method, 188 records from runoff plots, and 103 records from volumetric

measurements of rills. An overview of the field data is presented in Figure A.6 - A.9, and the full dataset

is available in Carr et al. (2020).

The overwhelming effect of the experimental methodology on measured erosion rates (Chapter

2.3.5), the lack of sufficient metadata accompanying erosion measurements and the granular spatial

resolution of the simulation setup hinders a direct comparison between simulated and observed water

erosion rates. Instead aggregated simulated and observed erosion values are compared for different

slope and precipitation classes to analyse the robustness of simulated water erosion rates under different

environmental conditions. Therefore, only measurements with recorded slope steepness and annual

precipitation are used. Where annual precipitation is not recorded, it is taken from the WorldClim2

dataset (Fick and Hijmans, 2017).

4.6.2 Evaluation of simulated crop yields against reported yields

Maize and wheat yields simulated under the baseline field management scenario are evaluated against

FAOSTAT reported yields per country in Chapter 6. As simulated crop yields are calculated in t ha−1

dry matter in EPIC, they are converted to fresh matter assuming a net water content of 12% following
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Wirsenius (2000), so that they can be compared with yields reported by FAOSTAT (FAO, 2020). In ad-

dition, calculated total crop production per country are compared against FAOSTAT statistics in Chapter

6. Simulated crop yields and total production per country are compared against FAOSTAT statistics for

the years 1995–2005. The years are chosen based on the years of reported fertiliser application rates

that are used to simulate maize and wheat yields. The agreement between simulated and reported data is

determined by the coefficient of determination (R2) and the relative error (%) between both datasets.

4.7 The computation process

The IIASA computer platform was used to run EPIC-IIASA to simulate water erosion and maize and

wheat for each grid cell and for each combination of climate and field management scenarios. A total of

288 scenarios were created.

Model outputs were aggregated using the programming language R (Version 4.0.5) and RStudio

(Version 1.4.1106). The aggregation method differs for the different results and is explained in the

Methodology section of Chapters 5, 6, and 7.
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Chapter 5

Uncertainties, sensitivities and

robustness of simulated water erosion

with EPIC-IIASA

5.1 Introduction

Water erosion models such as the USLE and the RUSLE have been widely used to estimate global water

erosion (Borrelli et al., 2017; Doetterl et al., 2012; Van Oost et al., 2007). However, a comprehensive

evaluation of erosion estimates is lacking in the previous studies. Because the USLE and its modifica-

tions were developed using field data from the Midwestern United States, their outputs should ideally be

evaluated against soil erosion measurements from other agro-environmental zones when applied in those

environments (Evans and Boardman, 2016b). However, the uneven distribution of field data around the

world, the lack of long-term soil measurements in most global regions, and the great variability of the

designs of erosion rate measurements hamper the evaluation of global soil loss estimates derived from

models (Auerswald et al., 2004; Borrelli et al., 2017; Garcı́a-Ruiz et al., 2015). In addition, model input

data on topography, soil properties and land use are often aggregated over large areas and thus simulation

results cannot be directly compared to single field measurements at specific locations. Thus, evaluating

global erosion models is difficult on a global scale, but improvements are needed due to their widespread

application (Chapter 2.3.1).

Beyond improving the robustness of global erosion models, there is a need to consider water erosion

in GGCMs (Chapter 3.6). Throughout the past decade, GGCMs have become essential tools for climate

change impact assessments, evaluations of agricultural externalities, and as input data providers for agro-

economic models (Mueller et al., 2017). However, few assessments have considered land degradation

processes and found their inclusion and understanding crucial for evaluating climate change mitigation

and adaptation strategies (Balkovič et al., 2018; Chappell et al., 2016).

Moreover, crop models can be used to simulate water erosion in agricultural fields more realistically
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by considering the daily interactions between crops and water erosion. Most global soil removal esti-

mates using water erosion models are based on static observation approaches or on very coarse timescales

that do not fall below annual time steps (Borrelli et al., 2017). Therefore, seasonal patterns of soil cover

and precipitation intensities are neglected even though they are crucial factors for water erosion. The

state of soil and its cover is influenced by land management, such as the choice of crops, planting and

harvest dates, tillage and plant residue management. Accordingly, neglecting the impact of seasonal

changes in vegetation cover and field management practices constitutes large uncertainty in global water

erosion estimates. Crop models usually simulate crop growth on a daily timescale, which allows attached

water erosion models to account for daily changes in weather, soil properties and vegetation cover. How-

ever, uncertainty remains due to the increasing requirement of input data for daily simulations, which is

especially challenging at a global scale (Chapter 2.3.4).

Given the difficulties of simulating water erosion on large scales, this chapter will focus on the un-

certainties, sensitivities and robustness of simulated water erosion in EPIC-IIASA. First, the global water

erosion estimates and their uncertainties due to different estimates under different field management sce-

narios and water erosion equations are presented. The sensitivities of the water erosion equations are then

analysed to discuss the main causes of variability in the simulation results. Finally, the simulated erosion

values will be compared with field data to investigate the robustness of the water erosion estimates in all

global agro-environmental regions simulated with EPIC-IIASA.

5.2 Methodology

5.2.1 Summary of methodology

Water erosion in maize and wheat fields is simulated with seven different empirical erosion equations in

EPIC under different field management scenarios. Global water erosion is estimated from the baseline

field management scenario based on the environmental and country-specific assumptions and indicators

presented in Chapter 4.3.4.

The uncertainties of the estimated water erosion rates due to the different field management scenar-

ios are calculated for each grid using the range between the minimum and maximum water erosion rates

simulated with all field management scenarios. Similarly, the range of uncertainty due to different water

erosion equations per grid is calculated using the minimum and maximum water erosion rates simulated

with all available equations.

The sensitivity of the model to all inputs used in the simulation of water erosion is calculated

using the method presented in Chapter 4.5. Sensitivity indices are used to interpret the variability and

uncertainties of the simulation results and to discuss the differences between the water erosion equations.

To evaluate the robustness of the simulated water erosion rates, they are compared to field measure-

ments for different slope and precipitation classes (Chapter 4.6.1). Due to the non-normal distribution

of the simulated and measured data, the median deviation (MD) is used as a measure to compare the

agreement between aggregated simulated and measured water erosion values.
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5.2.2 Aggregation of model outputs

Simulated water erosion rates are averaged over the historic simulation period (1982 - 2010). Subse-

quently, water erosion rates simulated for irrigated and rainfed maize and wheat fields are averaged per

grid cell and weighted by the area of the respective crop and irrigation scenario (Equation 5.1). Finally,

water erosion rates are presented as median values of all baseline field management scenarios per grid

cell or of all grid cells per country, region or globally.

Ewcgm = Eav(r)cgm ∗A f (r)cg +Eav(i)cgm ∗A f (i)cg (5.1)

Ewcgm is area-weighted mean water erosion (tha−1) for crop c, grid cell g and management scenario

m; Eav is yield averaged over the selected years simulated under rainfed (r) and irrigated (i) conditions;

A f (r) is the rainfed area fraction; and A f (i) is the irrigated area fraction.

5.3 Results

Global median water erosion rates are 7 t ha−1 and 5 t ha−1 in maize and wheat fields, respectively.

The total removal of soil in global maize and wheat fields is estimated to be 5.3 Gt yr−1 and 1.9 Gt

yr−1, respectively. The map in Figure 5.1 illustrates the global distribution of simulated water erosion

rates. Highest water erosion is simulated in mountainous regions and regions with strong precipitation,

especially in tropical climate zones. In Asia, those regions are widespread in the east, south-east and the

Himalaya region. In Africa, similar areas with high water erosion values are spread around the continent

and are most common at the west coast and in East Africa including broad areas in Guinea, Sierra Leone,

Liberia, Ethiopia and Madagascar. In South America, highest water erosion is simulated in the south of

Brazil and regions around the Andes mountain range and the Amazon river basin. The highest water

erosion values on the American continent are simulated in tropical Central America and the Caribbean.

In North America, highest water erosion occurs along the west coast and in the east. Water erosion in

Europe is highest in Mediterranean areas and around the Alps.

Median annual water erosion values for the five largest maize and wheat producing countries

demonstrate the strong impact of climate and topography on simulated water erosion. In Brazil, China

and India, where a large proportion of cropland is in tropical areas, simulated water erosion is relatively

high with annual median values of 10 t ha−1, 6 t ha−1, and 37 t ha−1, respectively. In Russia and the

United States annual median values are much lower with 1 t ha−1, and 2 t ha−1, respectively. Overall,

Figure 5.1 illustrates the large variation in simulated water erosion between tropical climate regions and

regions with a large proportion of flat and dry land.
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Figure 5.1: (a) Soil loss due to water erosion in maize and wheat fields simulated with the baseline
scenario. (b) The bars in the bottom plot illustrate the median, 25th and 75th percentile of simulated soil
loss for major world regions. The classification of world regions is illustrated in Figure B.1. Due to the
large gap between aggregated values, all values in the bottom plot have been log-transformed to improve
the visual presentation.

5.3.1 Sources of model uncertainty related to management assumptions and

method selection

Uncertainty in simulation results due to management scenarios and choice of water erosion equations

is highest in the regions most at risk of water erosion (Figure 5.2). The annual median uncertainty

range at each grid cell due to management is 30 t ha−1. For 97% of grid cells, the lowest erosion rates

are simulated with management scenarios including no-tillage and cover crops. For 86% of grid cells,

maximum erosion rates are simulated under conventional tillage without cover crops. The annual median

uncertainty range at each grid cell due to the choice of erosion equation is 23 t ha−1. In 74% of grid
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cells, the lowest erosion rates are simulated with the MUSS equation. The highest erosion values are

simulated with the RUSLE equation (46%), followed by the USLE equation (25%).

In most locations, uncertainty due to field management exceeds the uncertainty caused by the choice

of erosion equation. For 46% of grid cells, management scenarios cause the prevailing uncertainty, which

is defined as the higher uncertainty range by at least 5 t ha−1. The selected erosion equation causes

higher uncertainty by at least 5 t ha−1 in 14% of grid cells. The map in Figure 5.3 illustrates the global

distribution of prevailing uncertainty sources.

Figure 5.2: Water erosion uncertainty due to (a) field management assumptions and (b) water erosion
equations.

5.3.2 Main drivers of the global erosion model

The sensitivity study is designed to explain the large variability of simulated water erosion rates in

different regions and to discuss the main differences between water erosion equations. Water erosion

is highly sensitive to slope steepness (SLP) for all equations. The first-order sensitivity index of the
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Figure 5.3: Prevailing uncertainty due to field management assumptions and water erosion equations,
defined as the higher uncertainty range by at least 5 t ha−1.

slope parameter indicates that 46–54% of the variance in the model output is attributable to the slope,

without considering interactions between the input parameters (Table 5.1). Daily precipitation (PRCP)

is the second most important parameter for calculating water erosion, with an individual contribution of

around 9–20% to the variance of the output. The remaining parameters contribute together 4–13% to the

output variance.

Table 5.1: First-order sensitivity indices (SI) ranking for the five most sensitive input parameters (PARM)
for each water erosion equation including slope steepness (SLP), daily precipitation (PRCP), soil hydro-
logic group (HSG), land use number (LUN), soil silt content (SILT), soil sand content (SAND), curve
number parameter (S301), maximum air temperature (TMX) and crop residues left after harvest (ORHI).
The sensitivity indices of the remaining parameters are available in Carr et al. (2020).

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE
PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI

1 SLP 0.47 SLP 0.46 SLP 0.46 SLP 0.48 SLP 0.46 SLP 0.5 SLP 0.54
2 PRCP 0.13 PRCP 0.1 PRCP 0.12 PRCP 0.09 PRCP 0.16 PRCP 0.2 PRCP 0.18
3 HSG 0.03 HSG 0.04 HSG 0.05 HSG 0.04 HSG 0.02 SAND 0.05 SILT 0.02
4 SILT 0.02 LUN 0.02 LUN 0.02 LUN 0.02 SAND 0.01 TMX 0.01 TMX 0.01
5 LUN 0.01 SILT 0.02 S301 0.01 SILT 0.02 LUN 0.01 ORHI 0.01 ORHI 0

sum 0.69 sum 0.68 sum 0.71 sum 0.68 sum 0.71 sum 0.78 sum 0.76

The first-order sensitivity indices do not include interactions between input parameters, which leads

to the sum of all first-order sensitivity indices being lower than 1. The total-order sensitivity indices sum

all first-order effects and interactions between parameters, which leads to overlaps in case of interactions

and a sum greater than 1. The differences between the first-order and the total-order indices can be

used as a measure to determine the impact of the interactions between a specific parameter with other

parameters. The total-order sensitivity indices show that slope steepness, including interactions to other

parameters, contributes 63–75% of the output variance from which 18–21% are due to interactive effects

with other parameters (Table 5.2). The total-order sensitivity indices from precipitation range from

21–36%, from which 10–18% is due to interactions with other parameters.
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Table 5.2: Total-order sensitivity indices (SI) ranking for the five most sensitive input parameters
(PARM) for each water erosion equation including slope steepness (SLP), daily precipitation (PRCP),
soil hydrologic group (HSG), land use number (LUN), soil silt content (SILT), soil sand content (SAND),
maximum air temperature (TMX) and crop residues left after harvest (ORHI). The sensitivity indices of
the remaining parameters are available in Carr et al. (2020).

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE
PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI

1 SLP 0.68 SLP 0.68 SLP 0.63 SLP 0.68 SLP 0.66 SLP 0.69 SLP 0.75
2 PRCP 0.28 PRCP 0.23 PRCP 0.22 PRCP 0.21 PRCP 0.32 PRCP 0.36 PRCP 0.36
3 HSG 0.09 HSG 0.12 HSG 0.13 HSG 0.12 HSG 0.08 SAND 0.12 SILT 0.05
4 SILT 0.07 LUN 0.07 LUN 0.07 LUN 0.07 LUN 0.05 TMX 0.02 TMX 0.02
5 LUN 0.05 SILT 0.07 SILT 0.05 SILT 0.07 SAND 0.04 ORHI 0.01 SAND 0.01

sum 1.29 sum 1.3 sum 1.25 sum 1.27 sum 1.34 sum 1.27 sum 1.27

The high sensitivity to slope and precipitation is similar for all equations, but the importance of

the other parameters varies between equations. Equations estimating erosion energy by surface runoff

and the RUSLE2 equation are very sensitive to the hydrological soil group (HSG), which determines the

soils infiltration ability. This parameter is used in the calculation of the curve number, which defines

the partition of precipitation into runoff and infiltration. Also, the land use number (LUN), which is

ranked among the most sensitive input parameters, is used for the calculation of the curve number.

The most sensitive parameters of the USLE and RUSLE equation, following slope inclination and daily

precipitation, are soil texture classes (SAND and SILT) followed by daily temperature changes (TMX).

Crop residues (ORHI) are relatively important for all equations but especially important for equations

based on rainfall-energy. Other parameters relevant for field management, such as surface roughness and

mixing efficiency of the topsoil, have little influence on water erosion.

The sensitivity of slope steepness has a strong positive correlation with the amount of annual pre-

cipitation at each location (ρ = 0.69, p<0.01). The increase in the sensitivity of slope steepness with

increasing annual precipitation is demonstrated in Figure 5.4, which illustrates substantially lower sen-

sitivity indices at dry locations compared to wet locations. In contrast, the sensitivity indices of daily

precipitation are negatively correlated to annual precipitation with moderate strength (ρ = 0.45, p<0.05).

Depending on the equation, strong positive or negative correlations between SIs and annual precipitation

also exist for other parameters such as slope length, soil texture, soil organic carbon, channel length,

channel slope and watershed area.

5.3.3 Evaluation of simulation results against field data

The most recent estimated global water erosion rates on cropland of 11 - 13 t ha−1 derived from a

comparable method (Borrelli et al., 2017; Doetterl et al., 2012; Van Oost et al., 2007) lie above the

simulated median water erosion rates of 7 t ha−1 and 5 t ha−1 for maize and wheat fields, respectively.

Similarly, the global water erosion estimates in maize and wheat fields are lower than the median value

of 9 t ha−1 from 606 water erosion measurements from cropland around the world.

To evaluate the agreement between simulated and observed data, median values between simulated

and measured erosion rates are compared while grouped by precipitation and slope classes, which are
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Figure 5.4: First-order and total-order Sensitivity indices for (a) slope steepness (%) and (b) precipitation
(mm). The dashed vertical line illustrates median annual precipitation at all tested locations (1248 mm).

defined along the whole range of recorded slope inclinations and annual precipitation amounts of the

field data (Figure 5.5a). Although slope and precipitation classes from the field are spread unevenly,

they cover most climatic and topographic characteristics relevant to global agriculture. The comparison

illustrates that the deviation between simulated data and field data is highest for locations with steep

slopes and high annual precipitation. Where slopes are steeper than 8% and annual precipitation is

higher than 1000 mm, the median of simulated water erosion exceeds the median of measured water

erosion in most cases by at least 50 t ha−1. With decreasing slope steepness and annual precipitation,

the median deviation between simulated and measured data is decreasing. Where both slope steepness

is below 8% and annual precipitation is below 1000 mm, the median deviation is lower than 5 t ha−1

in most cases. A comparison of measured and simulated water erosion using other equations with the

baseline scenario can be found in Figure B.2.

The boxplots in Figure 5.5b illustrate the range of water erosion values measured in the field and

simulated with the baseline scenario. The high deviation between observed and simulated values for

grouped locations with slopes steeper than 8% and annual precipitation higher than 1000 mm can also

be observed between the range of simulated and measured water erosion values. Outside locations

combining steep slopes and strong precipitation, median deviation between simulated and measured

data is lower than the variability within the field data. The range of values at locations with lower

precipitation and slope steepness demonstrates that simulated values are mostly below measured values

in those environments.

The uncertainty in the choice of management scenarios and water erosion equations included in

the baseline scenario leads to an uncertainty of the deviation between simulated and measured erosion

values. This uncertainty is demonstrated in Figure 5.5b by additional three bars illustrating the range of

simulated medians due to contrasting tillage management scenarios, cover crop scenarios and different

water erosion equations. At locations with low to moderate slope steepness and annual precipitation, the

measured water erosion values agree best with the simulation values generated under scenarios implying
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larger water erosion, such as high intensity tillage and low soil cover. On the other hand, at locations with

steep slopes and intensive precipitation, the measured values are closer to the simulated values under

scenarios with less intensive tillage and more soil cover. In addition, the varying sensitivities of each

water erosion equation lead to a different magnitude of water erosion values in different environments.

On low to moderate slopes, water erosion simulated with the MUSS equation is lowest, whereas RUSLE

generates the highest values. On steep slopes, the RUSLE equation generates the lowest water erosion

values, which agree best with the measured values. The options to increase and decrease simulated water

erosion with different field management scenarios and water erosion equations creates both uncertainty

in the model results, but also the possibility to closely match field data.

At locations combining steep slopes and intense precipitation, most management scenarios and

equations generate water erosion values that are higher than the measured values. However, those envi-

ronmental conditions cover only a small share of global cropland. Cultivation areas with slopes steeper

than 8% and annual precipitation higher than 1000 mm represent only 7% of global maize and wheat

cropland in the grid cells. The map in Figure 5.6 illustrates that the highest concentration of these areas

is in East and Southeast Asia, followed by Central and South America, and sub-Saharan Africa.

Figure 5.5: Comparison of simulated erosion with measured erosion for different slope and precipitation
classes. a) Median deviation (MD) in t ha−1 between simulated erosion using the baseline scenario
and measured erosion. Simulated and measured data is grouped into precipitation classes and slope
classes used for the simulation setup. b) Distributions of measured erosion rates, erosion rates simulated
with the baseline scenario and uncertainty ranges for management assumptions and erosion equations.
The boxplots are defined by the median, the 25th percentile and the 75th percentile of simulated and
measured erosion rates. Whiskers illustrate the 10th and 90th percentiles. The three bars next to the
boxplots illustrate minimum and maximum median erosion rates calculated with all tillage and cover
crop scenarios and with all water erosion equations. The values have been log-transformed for better
visualisation.
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Figure 5.6: Distribution of low to high slope steepness (SLP) and annual precipitation (PRCP) in maize
and wheat fields. Dark areas illustrate grids where slopes are steeper than 8% and annual precipitation is
above 1000 mm. Correspondingly, blue, red, and grey pixels are below one or both thresholds.

5.4 Discussion

5.4.1 Varying robustness of simulated water erosion in different global regions

Global water erosion estimates generated with EPIC-IIASA and the baseline scenario overlap with ob-

served water erosion values under most of the climatic and topographic environments where maize and

wheat are grown. However, global maize and wheat land include locations where environmental charac-

teristics differ significantly from the Midwestern United States, where the data was collected to develop

the water erosion equations embedded in EPIC. The USLE model and its modification were developed

with data for slopes of up to 20%, which makes model application for steeper slopes uncertain (McCool

et al., 1989; Meyer, 1984). Furthermore, the relations between kinetic energy and rainfall energy in

the American Great Plains differ from other regions in the world (Roose, 1996). Similarly, the runoff

curve number method, which is the key methodology for the calculation of surface runoff, is based on

an empirical analysis in watersheds located in the United States and might be less reliable in different

regions of the world (Rallison, 1980). Due to the high sensitivity of slope steepness and daily precip-

itation for the calculation of water erosion, the reliability of the tested equations decreases in regions

where typical slope and precipitation patterns differ from the Midwestern USA. Although some studies

have successfully used USLE and its modification under a different environmental context (e.g., Alewell

et al., 2019; Almas and Jamal, 2009; Fischer et al., 2018; Sadeghi and Mizuyama, 2007), many studies

have concluded that the accuracy of these models may be reduced outside the environments they were

created without calibration and model adaptation (Cohen et al., 2005; Labrière et al., 2015).

The skewed distribution of simulated water erosion values influenced by extreme soil loss rates in

few fields highly sensitive to water erosion results in a large difference between the global median value

of 6 t ha−1 a−1 and the global average value of 19 t ha−1 a−1 (Figure B.3). Due to the strong influence of

outliers on average values, median values better represent global values and the differences in regional
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water erosion rates in wheat and maize fields. The high sensitivity of the simulation results to slope

inclinations and precipitation suggests that a significant share of the estimated soil removal of 7.2 Gt a−1

originates from small wheat and maize cultivation areas on steep slopes with strong annual precipitation.

5.4.2 Sources of uncertainties in global water erosion estimates

Uncertain land use in mountainous regions

Changing climatic conditions with increasing elevation and the variable soils in mountainous regions

can favour crop cultivation in higher elevations over lower elevations (Romeo et al., 2015). However,

upland farming without soil conservation measures can lead to exhaustive soil erosion and can become

a critical problem for agriculture (Montgomery, 2007). Large areas of land have been abandoned due to

high erosion rates as soils were no longer able to support crops (Figure 5.7) (Romeo et al., 2015). As

mountain agriculture is determined by various environmental and socio-economic factors, the cultivation

of steep slopes can be very variable between regions. Regional erosion assessments in mountainous

cropland suggested that areas with extreme water erosion rates are mainly limited to marginal steep land

cultivated by smallholders (Haile and Fetene, 2012; Long et al., 2006a; Nyssen et al., 2019). In some

mountainous regions, efforts to remove marginal farmlands from agricultural production, and programs

to improve land management on steep slopes have reduced high water erosion rates (Deng et al., 2012;

Nyssen et al., 2015). On the contrary, recent pressure through increasing population and crop production

demands has resulted in re-cultivation of hillslopes and a reduction of fallow periods, which limits the

recovery of eroded soil (Turkelboom et al., 2008; Valentin et al., 2008).

To analyse the sustainability of simulated maize and wheat cultivation systems that are exposed to

high erosion rates, the simulated annual eroded soil depth is compared with a global dataset on modelled

sediment deposition thickness (Pelletier et al., 2016) in Figure 5.8. The comparison shows that at 4% of

grid cells permanent maize and wheat cultivation would not be sustainable as the entire soil profile would

be eroded at the end of the simulation period. Most of the unsustainable agriculture is simulated on steep

slopes. Although conservation techniques and cover crops are considered in the field management sce-

narios, the highly complex cultivation methods, including intercropping and fallow periods, common on

hills that are normally farmed by smallholders, could not be modelled (Turkelboom et al., 2008). More-

over, the modelling approach assumes that the slope class representing the largest area in each grid cell

most likely represents the largest share of arable land. This builds on the idea that a spatially extensive

and diverse landscape can be represented by a single “representative field” characterised by the prevail-

ing topography and soil conditions found in the landscape. On hilly terrain this setup simulates maize

and wheat cultivation on steep slopes and thus mainly represents unsustainable agriculture. Although

unsustainable maize and wheat cultivation can be observed in several mountain regions, cropland is very

heterogeneously distributed in mountains and thus erosion rates from one representative field are highly

uncertain.

The uncertainty in cropland distribution could partly be reduced by developing a higher resolution

global gridded data infrastructure, which is currently not available for EPIC-IIASA. However, due to
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Figure 5.7: (a) Sugar cane cultivation on steep slopes in southern China (Nanning, Guangxi Zhuang
Autonomous Region). The steepest slopes are already abandoned and reforested by eucalyptus trees. (b)
Maize cultivation on strongly eroded slopes (30%–60%) in south-west Uganda (Kigwa, Kabale District).
(c) Abandoned fields and maize cultivation on a steep slope (30%–60%) in south-west Uganda (Kigwa,
Kabale District). (d) Degraded and abandoned maize fields on steep slopes (20%–60%) in northern El
Salvador (San Ignacio, Chalatenango Department) (Carr et al., 2020).

Figure 5.8: Simulated years left until the whole soil profile is eroded under permanent maize and wheat
cultivation. Calculated as a ratio of the sedimentary deposit thickness (m) (Pelletier et al., 2016) and the
eroded soil depth per year (water erosion (t ha−1 a−1) x bulk density (g m−3)).

the large uncertainty in global land cover maps (Fritz et al., 2015; Lesiv et al., 2019), an explicit spatial

link between cropland distribution and the corresponding slope category cannot be established without

on-site observations. The effect of this uncertainty on erosion estimates is analysed for Italy, where large
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maize and wheat growing areas are spread across both flat terrain in the north and mountainous areas in

the south. In an ideal scenario where cropland is limited to flattest land available per grid cell, median

simulated water erosion in Italy would be reduced to tolerable levels below 1 t ha−1. However, in a

scenario, where the most common slopes per grid cell are cultivated, median simulated water erosion

increases to 14 t ha−1 due to high water erosion simulated in Italy’s mountainous regions (Figure B.4).

This suggests a high uncertainty in global water erosion estimates due to uncertain spatial links between

maize and wheat cultivation areas and different slope categories.

Uncertain field management

Simulated water erosion values are highly variable depending on the field management scenario. Sim-

ulating cover crop and no-tillage worldwide results in the lowest global soil removal of 2 Gt a−1 with

median water erosion rates of 1 t ha−1 a−1 and simulating no cover crops and conventional tillage world-

wide results in the highest global soil removal of 13 Gt a−1 with median water erosion rates of 17 t ha−1

a−1. These variations cause further uncertainties in the simulation results.

Indeed, a proper reconstruction of a business-as-usual field management is important to further

narrow down the uncertainty in global crop modelling (Folberth et al., 2019). In this study, the predomi-

nant field management was assigned based on a series of environmental and country-specific indicators,

similar to Porwollik et al. (2019). For example, conservation agriculture was only considered in coun-

tries where this management strategy is likely according to AQUASTAT (FAO, 2016). In addition, by

assuming cover crops between the wheat and maize seasons, more complex cultivation systems were

simulated in the tropics, in which long and year-round vegetation periods and frequent multi- cropping

practices hardly leave the soil uncovered. Bare fallow land was therefore not simulated in the tropics,

as high water erosion values would have been falsely simulated at locations where heavy precipitation

fell on bare ground. In addition, conservation practices such as contouring and terracing are crucial to

reduce the simulation of high water erosion values on steep slopes. These practices were simulated for

specific slope classes under the assumption that farmers around the world uniformly use conservation

practices when cultivating on steep slopes. The most relevant parameters used for tillage scenarios are

related to crop residues left in the field. In addition, equations directly connected to surface runoff are

strongly influenced by the land use number used to determine the impact of cover type and treatment

on soil permeability. While both crop residues and green fallow decrease water erosion significantly,

especially in the tropics, their use varies widely between regions and even farms, based on a complex

web of factors such as institutional factors, farm sizes, risk attitudes, interest rates, access to markets,

farming systems, resource endowments, and farm management skills (Pannell et al., 2014). Also, soil

conservation measures such as terraces or contour farming significantly influence water erosion but are

very heterogeneously used between regions, farming systems and farmers. The baseline scenario is a

very crude representation of the complex patterns of field management around the world, but attempts to

depict these highly influential practices with the limited data available.
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Variable estimates from different water erosion equations

The water erosion equation chosen for the baseline scenario generates the lowest global soil removal

estimate. Different water erosion equations embedded in EPIC estimate a higher global soil removal of

up to 11 Gt a−1 as well as higher median water erosion rates up to 19 t ha−1 a−1. The MUSS water

erosion equation chosen for the baseline scenario generates water erosion rates closest to the field data.

The focus of equations on either rainfall energy or runoff energy is relevant for the different simulation

results under specific environmental conditions. Equations based on rainfall-energy such as RUSLE and

USLE simulate higher water erosion values than the other equations at most locations. However, on steep

slopes they generate the lowest water erosion values as runoff becomes a greater source of energy than

rain with increasing slope steepness (Roose, 1996). Also, the varying sensitivities of other parameters to

the equations such as soil properties and management parameters lead to a varying agreement between

simulated data and field data depending on the equation selection. Detailed field data would facilitate

the choice of an appropriate equation to simulate water erosion worldwide or for a specific region.

5.4.3 The difficulty of evaluating large-scale erosion estimates with field data

The selection of field data for evaluating simulated water erosion was limited by the low availability of

suitable water erosion observations covering the entire globe. The lack of reliable data on water erosion

rates is a severe obstacle for understanding erosion, developing and validating models and implementing

soil conservation (Boardman, 2006; Nearing et al., 2000; Poesen et al., 2003; Trimble and Crosson,

2000). The main reasons for the low availability of suitable data to evaluate simulated water erosion

rates are twofold: i) erosion monitoring is expensive, time consuming and labour demanding; and, ii)

primary data and metadata of measurement sites accompanying final results are often not available and

many older measurements are poorly accessible as they are not available online (Benaud et al., 2020).

A variety of factors influencing water erosion such as climate, field topography, soil properties

and field management need to be considered when modelling water erosion but are often not reported

in available field measurements (Garcı́a-Ruiz et al., 2015). This hampers a direct comparison between

simulated and observed water erosion values. The varying match between measured and simulated wa-

ter erosion on the basis of different tillage and cover crop scenarios was demonstrated in this chapter.

Metadata on field management often only provides the crop cultivated and therefore the conditions under

which erosion was measured in the field are not known sufficiently to evaluate erosion values simulated

under different field management scenarios. Similarly, information on field topography and soil proper-

ties is often not provided with recorded field measurements and thus their use is limited in an evaluation

of water erosion estimates simulated in different global environments. Moreover, most data are con-

centrated in the United States, West Europe and the West Mediterranean (Garcı́a-Ruiz et al., 2015). In

summary, there is a lack of field data representing all needed regions, situations and scenarios (Alewell

et al., 2019).

The appropriate selection of field data to evaluate model outputs needs to be considered as well.

At different spatial scales different erosion processes are dominant and consequently different erosion
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measurement methods are suitable (Boix-Fayos et al., 2006; Stroosnijder, 2005). Most authors use very

heterogeneous data sets to evaluate their models, involving data generated by different methods at vari-

able time and spatial scales and variable quality. For example, Doetterl et al. (2012) used plot data,

suspended sediments from rivers, and data from RUSLE modelling. Borrelli et al. (2017) used soil ero-

sion rates (measurement methods are not specified), remote sensing, vegetation index (NDVI) and results

of RUSLE modelling. In his review on erosion rates under different land use, Montgomery (2007) used

field data derived from erosion plots, field-scale measurements, catchment-scale measurements using

hydrological methods, 137Cs-method, soil profile truncation and elevated cemetery plots.

While all erosion measurement methods can be criticised, only data obtained through field mea-

surements from runoff plots, using the 137Cs-method, and volumetric surveys were used in this study, as

these methods are best suited on the plot, slope and field scales. Geodetic methods such as erosion pins

and laser scanner are also used at plot to field scales, but their accuracy is much lower than the accuracy

of plot measurements and 137Cs-method. Furthermore, erosion pins are mainly suitable for areas with

extreme erosion rates (Hsieh et al., 2009; Hudson, 1993), and laser scanners have difficulties to recognize

vegetation (Hsieh et al., 2009). Other commonly used methods such as hydrological methods (measure-

ments of discharge and suspended sediment load) and bathymetric methods are more suitable for larger

scales and involve a significant portion of channel erosion, which is not related with agricultural land

(Garcı́a-Ruiz et al., 2015). Plot experiments using rainfall simulators have also been neglected as they

are usually performed on small plots with artificially generated rainfalls, which mostly have very low

energies and therefore generate low erosion rates (Boix-Fayos et al., 2006; Garcı́a-Ruiz et al., 2015).

The 137Cs method was criticised by Parsons and Foster (2011), who questioned assumptions about

the 137Cs behaviour in the environment (variability of the 137Cs input by wet fallout, its microspatial

variability at reference sites, its possible mobility in certain soils, the 137Cs uptake by plants and other

aspects of 137Cs behaviour in soil). To confront the criticism against the 137Cs method, Mabit et al.

(2013) discussed all objections raised by Parsons and Foster (2011) and confirmed its accuracy by listing

several studies, in which 137Cs based erosion rates are compared with erosion rates derived from direct

measurements. The 137Cs method is based on a set of presumptions which should be met to produce

useful results and thus careful interpretation of the obtained results is needed (Fulajtar et al., 2017;

Mabit et al., 2014a; Zapata, 2002).

Similarly, erosion rates obtained by volumetric measurements require careful interpretation as they

are exposed to various potential sources of errors and do not account for interill erosion. Although

the latter can be neglected under certain circumstances, studies from Europe and semiarid areas of the

USA have reported that interill erosion contributed significantly to the amount of soil eroded in fields

(Boardman and Evans, 2020; Parsons, 2019). Further, measuring the lengths and cross-sections of rills

during field surveys or on terrestrial and aerial photos can be very subjective (Panagos et al., 2016).

Different approaches used to detect and measure rills in fields can cause variability in calculated erosion

volumes up to a factor of two (Boardman and Evans, 2020; Casali et al., 2006; Watson and Evans, 1991).

In order to obtain soil erosion rates in weight units, soil volumes need to be converted using the soil bulk
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density, which is often based on estimates (Evans and Brazier, 2005).

The shortcomings of erosion plot measurements were discussed by several authors (Auerswald

et al., 2009; Brazier, 2004; Evans, 2002; Loughran et al., 1988). Erosion plots have various sizes and

shapes (few meters to few hundreds of meters) and various approaches of sediment recording are used

(total collection, multislot divisors, tipping buckets, Coshocton wheels), which all involve significant

uncertainties. Although some long-term plot experiments exist, many plot measurements fail to cover

the whole year erosion cycle (Auerswald et al., 2009). Often, they have to be removed during land

management operations such as seeding, ploughing, or they are too expensive and labour demanding.

Despite all the shortcomings of available soil erosion data, most data provide valuable information

(Benaud et al., 2020). The evaluation against field measurements in this study provided a first indication

of the robustness of results under specific topographic and climatic conditions. In most environments

relevant for maize and wheat cultivation the deviation between simulated and measured water erosion

values is lower than the variability within the field data. The mentioned uncertainties cannot be nar-

rowed down further on the basis of the reported data. Although the metadata accompanying the field

measurements includes information on slope steepness and annual precipitation (or geographic coordi-

nates allowing for overlay with climatic data), information on soil types or texture classes, crop type

and tillage system implemented over time are provided only for few points. Also, the various methods

used to measure erosion rates, their complex implementation and the bias of field studies towards loca-

tions sensitive to erosion lead to an uncertain representation of large-scale erosion rates based on field

measurements. To facilitate in-depth evaluation of erosion models across different scales, it is crucial to

provide detailed information on site characteristics and to harmonise approaches to measure erosion in

the field. Moreover, the accessibility of field data should be improved as raw data is often not published

or needs to be collected from numerous publications, grey literature and conference proceedings to ob-

tain the large amount of data necessary for regional or global erosion studies. Recent efforts to compile

erosion measurements and metadata from existing studies on a single platform (Benaud et al., 2020)

will likely increase the availability of field data, which will greatly benefit future modelling studies and

understanding of soil erosion at all levels.

5.5 Conclusion

The simulation of water erosion with GGCMs is largely influenced by the resolution of global datasets

providing topographic, soil, climate, land use and field management data, which is currently not available

at the field scale. Yet, considering water erosion in global crop yield projections can provide useful

outputs to inform assessments of the potential impacts of erosion on global food production and to

identify soil erosion hotspots on cropland for management and policy interventions. To improve the

quality of the estimates and to further develop these models, it is crucial to identify, communicate and

address the existing uncertainties. Increasing the resolution of global soil, topographic and precipitation

data is central for improving global water erosion estimates. In addition, the model results provide
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an insight into the importance of considering field management. The numerous options to simulate

the cultivation of fields result in a large range of possible water erosion values, which can only partly

be narrowed down at a global scale. Further improvement of global water erosion estimates requires

detailed and harmonised field measurements across all environmental conditions to validate and calibrate

simulation outputs. On the basis of existing field data, it was possible to identify specific environments

for which the modelled erosion rates show poor robustness. These are mainly found in the tropics

and mountainous regions due to the high sensitivity of simulated water erosion to slope steepness and

precipitation strength, and the complexity of mountain agriculture. However, these areas represent only

a small fraction of global cropland for maize and wheat. The overlap of simulated and measured water

erosion values in most environments used to produce maize and wheat underlines the robustness of

EPIC-IIASA to simulate the differences in water erosion rates of major global crop production regions.
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Chapter 6

The impact of water erosion on global

maize and wheat yields

6.1 Introduction

The negative effects of land degradation on social and economic wellbeing has been widely recognised.

Yet its present and future impacts are not adequately quantified globally in physical and economic terms

to inform major environmental and agricultural policies (Montanarella, 2007; Nkonya et al., 2011).

Soil loss due to water erosion has been estimated at many sites worldwide and modelled globally

(Borrelli et al., 2017; Doetterl et al., 2012; Garcı́a-Ruiz et al., 2015; Montgomery, 2007). However, from

a food security standpoint, it is more relevant to quantify the impact of water erosion on crop produc-

tivity. There are substantial variations in the estimates of productivity losses from the few studies in the

literature (Bakker et al., 2004, 2007; Den Biggelaar et al., 2004a; van den Born et al., 2000; De la Rosa

et al., 2000; Lal, 1995; Larney et al., 2009; Oyedele and Aina, 1998). This variability is not surprising

as erosion-productivity relationships are difficult to generalise due to the location-specific nature of soil

erosion determined by soil properties, climate and management (Den Biggelaar et al., 2004a). Moreover,

the choice of method to measure water erosion impacts on crops is one of the most important factors ex-

plaining variations between studies (Bakker et al., 2004). Hence, different methodological approaches

in field studies can mask the impact of regional differences on water erosion impacts on crops.

Previous global erosion impact assessments (Pimentel et al., 1995; Sartori et al., 2019) relied on

simple linear assumptions about the impact of water erosion on crop yields, and neglected differences

between crops and regional characteristics (Chapter 2.4). Crop models can facilitate the extrapolation of

experimental and small-scale data across a range of environments and management strategies (Nelson

et al., 1996). Moreover, models are essential to determine long-term effects of degradation processes,

which are challenging to observe in short-term field experiments (Enters, 1998). However, due to the

lack of evaluated global water erosion estimates, GGCM studies have so far neglected soil erosion and

its impact on crop yields and production (Chapter 3.6).
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After confirming in Chapter 5 that EPIC-IIASA can represent the differences in water erosion rates

between major global cropping regions, the simulated water erosion rates are used to quantify their

impact on global maize and wheat yields and production. In addition, regions where crops are most

exposed to the risks of water erosion are identified based on the environmental conditions and the use of

fertilisers. Finally, the uncertainties of the simulated water erosion impacts on crops are addressed.

6.2 Methodology

6.2.1 Summary of methodology

To simulate the impact of water erosion on maize and wheat yields, the same modelling approach as in the

previous chapter is used. As such, the model outputs are based on the baseline field management scenario

presented in Chapter 4.3.4. The range between minimum and maximum water erosion impacts on crops

simulated with all field management scenarios is used to bracket the field management uncertainties for

each grid cell and country.

6.2.2 Aggregation of model outputs

Water erosion impact

Water erosion impacts on maize and wheat yields are calculated for the end of the simulation period

for the years 2001–2010. Crop yields generated with all field management scenarios selected under the

baseline scenario assumptions are averaged over the respective years and weighted by the irrigated and

rainfed cultivation area (Portmann et al., 2010) of the respective crop per grid cell (Equation 6.1). The

difference between average maize and wheat yields, simulated with and without the impact of water

erosion, are used to filter grid cells where water erosion reduces crop yields (i.e. the area where crop

yields are vulnerable to water erosion). Subsequently, the relative reduction of maize and wheat yield

due to water erosion is calculated on grid cell level (Equation 6.2).

Y wcpg = Yav(r)cpg ∗A f (r)cg +Yav(i)cpg ∗A f (i)cg (6.1)

dY relcg =
Y w(e0)cg −Y w(e1)cg

Y w(e0)cg
; i fY w(e0)cg > Y w(e1)cg (6.2)

Y wcpg is area-weighted mean crop fresh matter yield (tha−1) for crop c, P-factor value p and grid

cell g; Yav is yield averaged across the tillage and cover crop scenarios selected in each grid following

the baseline scenario assumptions and for the selected decade simulated under rainfed (r) and irrigated

(i) conditions; A f (r) is the rainfed area fraction; and A f (i) is the irrigated area fraction. dY rel is the

relative loss of the yield of crop c, at grid cell g; Y w is weighted average yield simulated with a P-factor

value of 0 (e0) and a P-factor value greater than 0 (e1).

To calculate the loss of crop production in each country, first, the absolute reduction of crop yields
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is estimated as the difference in the mean yield for the selected decade simulated without and with water

erosion (e0 and e1, respectively) (Equation 6.3). Subsequently, this yield reduction is multiplied by the

total area of rainfed and irrigated cropland of each grid cell in the country (Equation 6.4).

dYabscwg = Yav(e0)cwg −Yav(e1)cwg; i fY w(e0)cpg > Y w(e1)cpg (6.3)

dPlc =
n

∑
g=1

dYabs(i)cg ∗A(i)cg +dYabs(r)cg ∗A(r)cg (6.4)

dYabscwg is the absolute yield loss for crop c, irrigation scenario w and grid cell g; Yav is yield

averaged across the tillage and cover crop scenarios selected in each grid cell following the baseline

scenario assumptions and for the selected decades with P=0 (e0) and P>0 (e1); dPlc is the loss of

production (in tonnes) of crop c in country l; n is the number of grid cells in country l; dYabs(i) is the

absolute decline in irrigated yields and dYabs(r) is the absolute decline in rainfed yields; A(r) is the

rainfed area (in ha); and A(i) is the irrigated area (in ha).

The national market prices of crops taken from the FAOSTAT producer price (average 2013–2018,

or the last five annual records available) is used to calculate the economic maize and wheat production

losses (in USD) due to water erosion per country and globally (FAO, 2020). Two-tailed T-tests are used

to filter countries with significant differences between average yields simulated with and without water

erosion.

Evaluation of simulated crop yields

Simulated maize and wheat yields, which are calculated in t ha−1 dry matter in EPIC, are converted

to fresh matter assuming a net water content of 12% following Wirsenius (2000), so that they can be

compared with yields reported by FAOSTAT (FAO, 2020). Fresh matter crop yields are aggregated

for each country using the same approach as for grid cell-level aggregation in Equation 6.1. Irrigated

and rainfed crop yields (generated with all P-factor values, tillage and cover crop scenarios selected for

the baseline scenario and the years 2001 and 2010) are averaged for each country and weighted by the

cultivated area of the respective irrigated or rainfed crop per country (Portmann et al., 2010) (Equation

6.5). In addition, average maize and wheat yields per grid cell are used to summarise the total maize and

wheat production for each country (Equation 6.6).

Y wcl = Yav(r)cl ∗A f (r)cl +Yav(i)cl ∗A f (i)cl (6.5)

Pcl =
n

∑
g=1

Yav(r)cg ∗A(r)cg +Yav(i)cg ∗A(i)cg (6.6)

Y wcl is weighted yield for crop c in country l; Yav is yield averaged for the years 2001–2010,

with all P-factor values and all tillage and cover crop scenarios selected under the baseline scenario

assumptions simulated under rainfed (r) and irrigated (i) conditions; A f (r) is the rainfed area fraction
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and A f (i) is the irrigated area fraction; Pcl is the total production (in tonnes) of crop c in country l; g is

any grid cell in country l; n is the number of grid cells in country l; A(r) is the rainfed area and A(i) is

the irrigated area in hectares.

6.3 Results

6.3.1 The impact of water erosion on global maize and wheat yields

In the last decade of the 30-year simulation period, the average annual maize and wheat yields are

reduced due to water erosion at 58% and 62% of grids cells, respectively, by a global median of 3% for

each crop. The affected grid cells represent 51% and 46% of global maize and wheat cultivation areas,

respectively. Median annual soil loss at grid cells where crop yields are reduced is 11 t ha−1 and 6 t ha−1

on maize and wheat fields, respectively. The simulated relative reduction of average annual maize and

wheat yields per grid cell at the end of the simulation period is illustrated in Figure 6.1. Most grid cells

where high yield reduction is simulated represent fields with low fertiliser input on steep slopes exposed

to intensive precipitation.

The distribution of annual average crop yield losses for the 40 most vulnerable maize- and wheat-

producing countries is plotted in Figure 6.2. Countries in which the median annual reduction of maize

yields due to water erosion is higher than 5% by the end of the simulation period are most abundant in

sub-Saharan Africa and across Asia. There are similarly high median maize yield losses for countries in

Central America and the Caribbean, but only Chile and Uruguay are badly affected in South America,

and only Albania, Croatia and Greece in Europe. Median wheat yield losses per country are generally

lower than for maize. Countries with median wheat losses higher than 5% are mostly in Asia and

Europe. In Africa, annual median wheat yield losses higher than 5% are simulated in Ethiopia, Uganda

and Tanzania, and in South America in Uruguay, Bolivia and Chile. These crop yield losses are modelled

using the prevailing environment and management conditions in each country. Actual crop yield losses

could only be determined based on an explicit spatial link between the extent of crop cultivation areas

and areas vulnerable to water erosion, which would only be possible with on-site observations.

The distribution of the magnitude of crop yield losses and the share of grid cells affected by water

erosion needs to be considered to assess each countries vulnerability to water erosion. In some large

countries, the majority of cropland is exposed to low water erosion despite extensive vulnerable areas

within the country. For example, large areas in the United States, Brazil, India and China are affected by

water erosion. However, as these areas are only a small part of the entire cropland area, overall median

crop losses are low. On the other hand, in some countries a small number of grid cells with high water

erosion cause high median crop productivity losses. Afghanistan, Pakistan and Iran are ranked among

the most vulnerable countries even though fewer than half of the grid cells are affected by water erosion

under all scenarios.

In several countries, field management scenarios have a significant impact on the area affected by

water erosion and on the magnitude of crop yield losses, as demonstrated by the uncertainty ranges in
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Figure 6.2. In most countries, the median maize and wheat yield losses are lowest with no tillage and

cover crops and highest with conventional or reduced tillage and bare soil fallow. On a global scale,

annual maize and wheat yield losses simulated under all field management scenarios range from 2–5%

and 3–4%, respectively.

Figure 6.1: Maize (a) and wheat (b) yield loss due to water erosion (% yr−1) simulated with the baseline
scenario and averaged for the years 2001 – 2010. Each grid cell is represented by one representative field
capturing the most common site characteristics. Cropland areas are not considered in grid cell size.
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Figure 6.2: Maize (a) and wheat (b) yield losses due to water erosion (% yr-1) for the 40 most vulnerable
countries estimated with the baseline scenario. Countries contributing less than 0.01% to global maize
and wheat production are excluded. The countries are ranked by median crop yield losses. Boxes include
values from the 25th to the 75th percentiles and whiskers bracket values between the 10th and the 90th

percentiles. The points illustrate minimum and maximum median crop yield losses generated from all
field management scenarios. Medians and percentiles are converted to logarithmic scale. Grey barplots
on the right illustrate the share of grid cells affected by water erosion impacts in each country, and
errorbars indicate the variability of affected grid cells due to all management scenarios. The distributions
of all relevant maize and wheat producing countries are provided in Figure C.2 and Figure C.3.

6.3.2 Fertiliser use and environmental drivers affect the impacts of water erosion

The simulated impact of water erosion on crop yields is strongly influenced by fertiliser input and envi-

ronmental drivers in each country such as slope inclination and precipitation amount. Figure 6.3a shows

that median maize and wheat yield losses per country tend to be higher in countries with higher levels

of water erosion. Losses are relatively lower in countries with high rates of fertiliser application, which

replace nutrients lost through soil runoff (Figure C.4). Global median rates of organic nitrogen runoff

from maize and wheat fields are 7 kg ha−1 yr−1 and 5 kg ha−1 yr−1, and the global median rates of soil

organic carbon runoff from maize and wheat fields are 107 kg ha−1 yr−1 and 72 kg ha−1 yr−1 during the

whole simulation period (global maps of nitrogen and carbon runoff are provided in the supplementary

information in Figures C.5 and Figure C.6).

Slope steepness and precipitation strength are the most important environmental drivers influencing

the impact of water erosion on crop yields. Figure 6.3b and 6.3c show how yield losses increase as a
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function of slope classes and rainfall erosivity classes. The distribution of maize and wheat cropland

in the grid cells per slope and rainfall erosivity classes is illustrated by the grey bars in the same plots.

Around 73% of maize and wheat cropland is on slopes whose steepness does not exceed 5%. On those

slopes, median global maize and wheat yield losses range from 0% to 1%. On steeper slopes, median

yield losses range from 3% to 9%. Similarly, 69% of maize and wheat land is exposed to rainfall erosivity

below 3000 MJ mm ha−1 h−1 yr−1, which is the average rainfall erosivity on global cropland. For those

areas, median crop yield losses range from 1% to 2%. Median crop yield losses on fields exposed to

higher rainfall erosivity range from 2% to 4%.

Figure 6.3: (a) Modelled median maize and wheat yield loss plotted against median soil loss through
water erosion for each country. The linear relationship between national soil loss and crop yield loss is
illustrated by the dashed regression line. Colours indicate the rate of fertiliser application per country.
(b,c) Maize and wheat yield losses, respectively, per grid cells classified by slope steepness and rainfall
erosivity. Grey bars illustrate the share of cropland in grid cells summarised for the different slope and
rainfall erosivity classes.

The highest yield losses tend to occur in regions with low fertiliser input and high rates of water

erosion. Figure 6.4 identifies agricultural regions susceptible to water erosion as indicated by overlapping

areas of slope steepness (IIASA/FAO, 2012) and rainfall erosivity (Panagos et al., 2017), and shows the

average fertiliser application rates for maize- and wheat-producing countries (Mueller et al., 2012). Dark

areas highlight most vulnerable locations characterised by high abundance of steep slopes in regions

of high rainfall erosivity. These are most common in South, East and Southeast Asia, sub-Saharan

Africa, and Latin America. The cultivation on steep slopes is a common factor of vulnerability outside

the tropics as well, but rainfall erosivity decreases there, reducing the energy of rainfall to erode soil.

fertiliser application per country varies significantly. In most African countries and in several countries

in Asia and Latin America, the fertiliser use is substantially lower than in the rest of the world.
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Figure 6.4: water erosion vulnerability on global cropland indicated through the most important environ-
mental drivers, rainfall erosivity (MJ mm ha−1 h−1 yr−1) and slope steepness (%), and the average sum
of Nitrogen, Phosphorous and Potassium fertiliser application rates (kg ha−1) per country represented by
the red bars. To improve the overview of the map, fertiliser application from countries contributing less
than 0.1% to global maize and wheat production have been excluded, and fertiliser application from all
relevant EU27 countries has been averaged.

6.3.3 The impact of water erosion on total maize and wheat production

The total annual production losses per country are based on the average absolute yield losses of maize

and wheat, which were extrapolated over the entire irrigated and rainfed cultivation area of each crop in

a grid cell (Figure 6.5). Water erosion reduces the global production of maize and wheat by 9 million

tonnes and 6 million tonnes annually. This accounts for less than 1% of the global average maize and

wheat production of 1,091 million tonnes and 739 million tonnes, respectively, from 2013–2018 reported

by FAOSTAT (FAO, 2020). Market values of the national maize and wheat production losses, derived

by multiplying production losses with the average market prices (USD t−1) in each country, add up to an

annual global loss of approximately USD 2bn in maize production, and USD 1.3bn in wheat production.

Highest production losses in absolute terms are in countries with the largest maize and wheat cultivation

areas rather than in the most vulnerable countries. Tables 6.1 and 6.2 list the 20 countries with the highest

annual reduction in maize and wheat production due to water erosion. These countries account for 84%

and 77% of the global maize and wheat production.

The largest maize production declines are estimated for the most important producers such as Mex-

ico, Brazil, United States, India, China and Indonesia. Nevertheless, losses in the United States and

China are only 0.2% of their national production, but reach 5% of Mexico’s production. Few countries

with the highest absolute losses have low shares of global production (e.g. Guatemala; Nicaragua; Nepal;

Myanmar).

Similarly, the modelled loss of wheat production due to water erosion in absolute terms is highest

for India and China as they produce nearly a third of global wheat, but is less than 1% of their total

production. High production losses in absolute terms for small producers are rarer than for maize.

Countries with lowest production losses in absolute terms are most abundant in Africa, Southeast Asia
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and Latin America.

Figure 6.5: The impact of water erosion on national maize (a) and wheat (b) production based on the
sum of estimated production losses in all grid cells in each country. NA marks countries without maize
or wheat production area. Estimates of production losses in each grid cell assume uniform site charac-
teristics for the entire cropland in each grid cell.
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country prod. (million t) prod. loss (million t) prod. loss (%) prod. loss (million $)

Mexico 25.6 1.3 5.0 264.8
Brazil 81.6 0.8 1.0 157.7
USA 376.7 0.7 0.2 104.9
India 25.6 0.6 2.5 92.0
China 246.7 0.5 0.2 199.8
Indonesia 23.3 0.5 2.1 151.8
Philippines 7.6 0.4 5.2 111.3
Nepal 2.2 0.3 12.5 74.2
Guatemala 1.9 0.2 12.8 37.2
Russia 12.7 0.2 1.5 24.6
Argentina 38.6 0.2 0.5 31.1
Tanzania 6.0 0.2 2.7 29.8
Nigeria 10.2 0.1 1.3 41.2
Myanmar 1.8 0.1 6.5 27.1
Nicaragua 0.4 0.1 27.8 31.9
Romania 12.7 0.1 0.9 20.6
Ukraine 28.6 0.1 0.4 14.8
France 14.4 0.1 0.7 17.9
Ethiopia 7.5 0.1 1.3 20.8
Viet Nam 5.2 0.1 1.7 26.4

World 1091.1 8.9 0.8 1960.7

Table 6.1: National maize production (FAO, 2020) and absolute and relative maize production losses for
the countries with the highest absolute losses.

country prod. (million t) prod. loss (million t) prod. loss (%) prod. loss (million $)

India 94.4 0.7 0.7 137.4
China 130.0 0.6 0.5 213.7
Turkey 21.0 0.5 2.5 139.4
USA 55.1 0.5 0.8 89.4
Russia 67.5 0.4 0.6 60.2
France 37.4 0.3 0.8 56.9
Argentina 13.2 0.2 1.8 56.5
Iran 12.4 0.2 1.6 77.4
United Kingdom 14.6 0.1 1.0 30.1
Italy 7.3 0.1 1.9 32.5
Germany 24.8 0.1 0.5 22.9
Ukraine 25.0 0.1 0.5 17.7
Australia 24.5 0.1 0.4 22.0
Kazakhstan 14.1 0.1 0.6 11.3
Spain 6.9 0.1 1.2 17.9
Syria 2.0 0.1 3.6 9.7
Morocco 6.2 0.1 1.1 19.4
Romania 8.6 0.1 0.8 11.9
Greece 1.5 0.1 4.4 15.8
Ethiopia 4.4 0.1 1.4 23.4

World 739.5 5.6 0.8 1292.5

Table 6.2: National wheat production (FAO, 2020) and absolute and relative wheat production losses for
the countries with the highest absolute losses.
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6.3.4 The relevance of slope and field management assumptions

The impact of the assumption that the most common slope represents the whole grid cell is examined for

Italy in Figure 6.6. The plots compare the distribution of modelled maize and wheat yield losses due to

water erosion for cases in which all cropland is either on the most common slope class or on the flattest

terrain in each grid cell. Median annual maize and wheat yield losses for the flattest terrain assumption

are 0.2% and 1.2%, respectively, leading to annual maize and wheat production losses of 0.01 million

tonnes and 0.04 million tonnes, respectively. For the most common slope scenario, median annual maize

and wheat yield losses are 2.1% and 4.1%, with substantially higher annual maize and wheat production

losses of 0.05 million tonnes and 0.1 million tonnes, respectively.

Figure 6.6: Range of simulated maize and wheat yield losses (% yr−1) in Italy simulated with different
cropland distribution scenarios for maize (a) and wheat (b). Boxes illustrate medians and 25th and 75th

percentiles, whiskers illustrate values between the 10th and the 90th percentiles. Grey bars mark the
baseline scenario used for the main results of this study.

The uncertainty due to lacking field management information varies around the globe and is most

pronounced in erosion-sensitive areas, where soil conservation techniques can reduce extreme water ero-

sion rates considerably. In those areas, contrasting field management scenarios generate a large range of

values with varying degrees of water erosion impacts on crop yields (Figure 6.7). This large uncertainty

range is reduced in the baseline scenario by identifying and removing field management practices that

are unlikely to be used in specific regions. However, due to the multitude of field management practices

around the world, this uncertainty can only be limited in part.

6.3.5 Evaluation of simulated crop yields

To evaluate simulated wheat and maize yields (Figure C.1), national yields reported by FAOSTAT are

compared to national averages of the simulation outputs (Figure 6.8). National maize yields are evaluated

for the most important maize producers, which account for 99.9% of global maize production. Due to the

low agreement between simulated and reported national average maize yields for countries contributing

only a small share to the global production, the smallest maize producing countries have been excluded

to facilitate the evaluation in respect to the global focus of this study. The evaluation of the simulation

of global wheat production is conducted with all countries as small wheat producing countries do not

significantly influence the evaluation results.

With an R2 of 0.58 simulated national maize yields are significantly related to reported values. The

regression intercept of 1.71 and slope of 0.49 indicates overestimated maize yields at low yield levels

and underestimated yields at higher yield levels. Simulated wheat correlates stronger to observed values

than simulated maize yields. The comparison of simulated and observed national wheat yields results in
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Figure 6.7: Uncertainty range of the impact of water erosion on maize (a) and wheat (b) yields due to
contrasting management scenarios.

an R2 of 0.65. The regression intercept of 0.45 and slope of 0.76 indicates overestimated wheat yields

at low yield levels and underestimated yields at higher yield levels, as observed for maize yields but by

a smaller magnitude. National production estimates for both maize and wheat are sufficiently simulated

for most countries with R2 values of 0.85 and 0.95, respectively.

Relative errors between simulated and reported national average maize and wheat yields and pro-

duction are presented in Figure 6.9. Relative errors between ± 30% are defined as acceptable and errors

above a threshold of ± 50% as high. The majority of average simulated maize yields of the 20 most im-

portant maize producing countries lay within an error range of ±30%. High producing countries with a

larger error include Argentina, Ethiopia, Hungary, Mexico and the Philippines. The latter two exceed the

± 50% threshold. The highest occurrence of countries with high errors exceeding ± 50% is in Africa,

followed by Central and South American countries, which is caused mostly due to an overestimation

of simulated maize yields. In the majority of countries in North America and Europe, simulated maize
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Figure 6.8: Comparison of average national maize (a) and wheat (b) yields simulated with EPIC and
reported by the FAO. Comparison of national maize (c) and wheat (d) production simulated with EPIC
and reported by the FAO (FAO, 2020).

yields are below reported yields.

For the majority of the 20 most important wheat producing countries average simulated wheat yields

have an error within the magnitude of ± 30%. Exceptions are average wheat yields in Argentina and

Spain, which have a relative error of 32% and 36%. Generally, most countries have a relative error below

the ± 50% threshold on all continents. The highest proportion of countries with simulated wheat yields

above the ± 50% threshold is in Africa, mostly due to lower simulated values than reported values.

Relative errors between estimated national maize production and reported production for most of

the top-20 maize producers lay within the ± 30% margin defined as the acceptable error range. Relative

errors for the major producers Ethiopia, Mexico, Russia, Philippines and Ukraine are high, exceeding the

± 50% threshold. Countries with high relative errors are most abundant in Africa on a continental level

and on a regional level in Western Asia followed by Central America. The majority of relative errors in

Africa, America and Europe is positive, whereas in Asia the majority of countries has a negative relative

error.

Relative errors of national wheat production estimates are lower than for national maize production

estimates. Relative errors for most of the top-20 wheat producing countries lay within the acceptable ±
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30% margin. Argentina, France, Italy, Spain and United Kingdom have a slightly larger relative error,

without exceeding the ± 50% threshold. Countries exceeding the ±50% threshold are most abundant

in Asia and Africa, mostly due to underestimations. Generally, wheat production on all continents is

underestimated rather than overestimated.

Figure 6.9: relative difference between national maize (a) and wheat (b) yields simulated with EPIC and
reported by the FAO. Relative difference between national maize (c) and wheat (d) production simulated
with EPIC and reported by the FAO (FAO, 2020).

6.4 Discussion

6.4.1 Erosion-induced crop yield losses and fertiliser requirements for compen-

sation

Previous studies suggest that soil loss rates up to 11 t ha−1 are tolerable to maintain crop productivity

for soils in the United States (Schertz and Nearing, 2006) and in Europe (Panagos et al., 2018) based on

the assumption that fertiliser will compensate for nutrient runoff. On fields with higher water erosion

rates, Panagos et al. (2018) assumed that crop productivity would reduce by 8%, based on a review of

relevant studies on erosion-crop productivity relationships. Similarly, the estimates of this study suggest

a median global reduction of maize and wheat yields of 6% for grid cells with water erosion of at least

11 t ha−1. In fields with water erosion below 11 t ha−1 a considerably lower median crop yield reduction

of 1% is simulated. However, large variations in fertiliser input between countries affect the impact of

water erosion on crop yields. If fertiliser were not sufficiently supplied to compensate for nutrient losses

in certain countries, their crop yield losses would likely be higher than in countries with both higher

water erosion and fertiliser application rates (Balkovič et al., 2018). Although synthetic fertilisers can

quickly compensate for nutrient loss, the recovery of lost organic matter and the consequent damage
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to soil structure can take decades (Poulton et al., 2018). Therefore, acceptable soil loss rates should

not consider only the extent to which fertiliser application can replenish soil fertility. An assessment

should also consider soil formation rates and off-site concerns such as the proximity to sensitive areas

(Montgomery, 2007; Schertz and Nearing, 2006).

The additional fertiliser costs to compensate for water erosion can be higher than the loss of income

due to production losses (Graves et al., 2015). Global median nitrogen runoff of 7 kg ha−1 yr−1 in

maize fields and 5 kg ha−1 yr−1 in wheat fields, which are estimated in this study, would cost USD 1.7

ha−1 yr−1 and USD 1.2 ha−1 yr−1 1. The global annual nitrogen fertiliser replacement costs for maize

and wheat fields would be USD 642m and USD 255m, respectively. Although this is lower than the

estimated annual maize and wheat production losses (USD 2.0bn and USD 1.3bn), replacement costs for

lost nutrients would be considerably higher if phosphorus and potassium runoff would be considered.

In addition, carbon runoff of median 107 kg ha−1 yr−1 and 72 kg ha−1 yr−1 in maize and wheat fields

might add additional costs through nutrient replacement efforts such as manure application. On a global

scale, the relative fertiliser replacement costs might be too low to incentivise farmers to introduce soil

conservation measures, but they can be considerably higher for vulnerable areas (Hein, 2007).

For a comprehensive assessment of water erosion impacts, off-site impacts on surrounding environ-

ments such as the pollution of surface water and emission of greenhouse gases also need to be considered

(Chappell et al., 2016; Tilman et al., 2001). Several studies estimate higher costs of off-site impacts due

to erosion than on-site costs through production losses and fertiliser replacement (Görlach et al., 2004;

Graves et al., 2015). In addition, sediment redistribution is not considered in this study as global as-

sessments are currently based on simple water erosion models (Chapter 2.3.4). Topsoil accumulation

in deposition areas may improve nutrient availability and soil properties and could offset the negative

effects on crops in eroded areas (Bakker et al., 2007; Duan et al., 2016).

Due to high fertiliser use in major maize and wheat production areas, which are mostly located on

flat terrain and in regions with lower rainfall erosivity than the global average, water erosion has had a

low impact on annual global production losses in absolute terms. Vulnerable regions with potentially

high crop yield losses are mostly outside major production regions and therefore they hardly affect

changes in global maize and wheat production. Den Biggelaar et al. (2004a) also estimated a low impact

of water erosion on a global scale, and concluded that the small losses would likely be masked over the

short term by market fluctuations, weather, and other environmental perturbations. Furthermore, market

mechanisms such as trade flows can considerably reduce production losses. Sartori et al. (2019) used a

global market simulation model that accounted for market impacts of soil erosion, which reduced direct

production losses by three times. Nevertheless, as erosion impacts are cumulative, they may cause more

serious losses if erosion continues unabated over a long period of time (Den Biggelaar et al., 2004a), and

could ultimately lead to total topsoil loss and the land being abandoned. Moreover, water erosion could

be self-reinforcing, by decreasing the protective cover through reduced crop cover and residues on the

soil surface (Ponzi, 1993).

1based on global urea price for the period 2015–2019 taken from World Bank (2020a).
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Slope inclination and precipitation intensity are the dominant environmental characteristics affect-

ing water erosion (Chapter 5.3.2). Soil types are generally relevant in GGCM crop yield simulations

(Folberth et al., 2016) and for erosion-productivity relationships (den Biggelaar et al., 2001; Lal, 1995),

but on a global scale their impact on water erosion is small compared to slope steepness and precipita-

tion. This means water erosion impacts are highest in hilly areas, in the tropics and in other regions with

heavy precipitation. In countries with diverse environmental conditions, the variation in water erosion

impacts is usually wide ranging and therefore a comparison of the extent of cropland vulnerable to water

erosion should be further analysed on a sub-national scale.

6.4.2 Potential impacts of water erosion on livelihoods

High production losses from water erosion on a national or regional scale can severely impact livelihoods

of farmers (Wynants et al., 2019). The agricultural sector of both sub-Saharan Africa and South Asia con-

tributes roughly 16% to their GDP, compared to a worldwide share of approximately 4% (World Bank,

2020b). Moreover, food security is a pressing issue in those regions (von Grebmer et al., 2012). Whilst

in some of these regions water erosion was recently reduced through programs improving land manage-

ment (Nyssen et al., 2015), increasing crop demand through population growth and market effects led

to re-cultivation of tropical steep slopes (Turkelboom et al., 2008) or soils prone to degradation (Wilde-

meersch et al., 2015). Pressures are likely to increase through climate change impacts on agriculture,

which are projected to decrease agricultural productivity highest in low latitudes (Iizumi et al., 2017;

Rosenzweig et al., 2014), which will likely enhance food security issues (Knox et al., 2012; Wheeler and

Von Braun, 2013). The impact of climate change on water erosion impacts is still unclear but projected

increases in rainfall intensity (Olsson et al., 2019; Wang et al., 2014) and diminishing vegetation cover

through increasing temperature (Zhao et al., 2017) may accelerate water erosion and its impacts on crop

yields (Li and Fang, 2016). The simulation results presented here show that several countries in regions

that are most affected by food security problems today and that are likely to be under high pressure in the

future from population growth and climate change are most affected by high relative production losses

due to water erosion.

6.4.3 Uncertainties in water erosion estimates

Uncertain slopes of modelled fields

Slope data is the most critical parameter for estimating water erosion. However, due to the uncertainty of

the global land use datasets (Fritz et al., 2015; Lesiv et al., 2019), no explicit spatial links between maize

and wheat growing areas and slopes can be established without on-site observations. Instead, the slope

that covers the largest area in a grid cell is used to capture the slope that is most likely covered by most of

the cropland. This approach represents the prevailing topographic differences of global crop production

regions but cannot capture the heterogeneity of fields in certain areas. In an ideal situation where all

cultivated areas are concentrated on the flattest terrain available, simulated water erosion impacts on
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crop yields are reduced substantially. However, the distribution of cropland is based on more factors

than the topography of land, such as the suitability of soil, climate and socio- economic circumstances

or limitations such as land tenure and competing land use (Hazell and Wood, 2008; Nyssen et al., 2019).

Uncertainties in field management

Field management can vary substantially between regions, farming systems and farmers, and is based on

a complex web of factors (Pannell et al., 2014). While the management scenarios bracket the range of

field management intensities and soil surface coverage, the baseline scenario narrows down prevailing

field management by selecting or excluding scenarios based on environmental- and country-specific

indicators. Apart from similar approaches (Porwollik et al., 2019), no detailed representation of the

diversity in global field management currently exists. Moreover, the field management scenarios are

constant for every season and do not account for the farmer’s actions to mitigate soil erosion, which

might significantly reduce water erosion impacts (Tiffen et al., 1994).

However, one advantage of simulating constant field management is that the effects of water ero-

sion on soil resources can be recorded over the long term, which otherwise might have been masked

by technological advances such as higher yielding crop varieties, herbicides, insecticides, new planting

technologies, and increased fertiliser input to compensate for sediment runoff (Littleboy et al., 1996).

Moreover, the potential differences in water erosion impacts with different intensities of field manage-

ment can be addressed, as the model outputs reflect the ability of cover crops, crop residues and low

tillage intensity to decrease water erosion rates and to maintain and replenish soil nutrients. Although

this reduces crop yield losses due to water erosion, it does not necessarily translate into higher crop

yields due to other growth constraints being influenced by the choice of farming techniques. Since field

management practices greatly influence crop yields in general, and water erosion in particular, improving

their representation and understanding the decision processes of farmers responding to changing physi-

cal conditions in their fields would help to improve our understanding of water erosion impacts on crop

yields.

6.4.4 Uncertainties in crop yield estimates

The agreement between simulated and reported yields can be negatively influenced by the lack of rep-

resentation in field management, fertiliser input, irrigation strategies, crop cultivars, and factors influ-

encing crops, such as windstorms, pests, diseases, weeds or freezing of seeds in winter (Balkovič et al.,

2013). Typically, GGCMs underestimate yields in high-yielding countries and overestimate yields in

low-yielding countries (Balkovič et al., 2014; Mueller et al., 2017). This is also indicated by Figure 6.8.

Non-weather-related events, which are not simulated, can be especially important in low-input re-

gions where unsuitable management or pest outbreaks, may contribute substantially to yield variability

(Mueller et al., 2017). In addition, the automatic application of irrigation to effectively minimise daily

water stress, may lead to an overestimation of irrigation efficiency in less intensively managed fields.

Other reasons can be that crop technologies are overestimated in low-yielding countries, whereas in
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highly developed countries, they may be underestimated (Balkovič et al., 2013).

Another important consideration for the robustness of crop yield estimates is that the choice of

model used to simulate crops affects the results due to differences in model sensitivities. As a result, the

simulated impact of soil, weather and management parameters on crop yields varies depending on the

model. For example, variations in crop yields in response to temperature rise could be attributed in large

part to differences in the simulation of this relationship between models (Asseng et al., 2013). A further

discussion of uncertainties in crop models simulating the effects of climate parameters on crops can be

found in Chapter 7.4.6.

Compared to other commonly used GGCMs, EPIC-IIASA repeatedly performs well. In Mueller

et al. (2017) the performance of EPIC-IIASA for simulating maize and wheat was compared against 13

different GGCMs. EPIC-IIASA showed relatively high correlation coefficients with national reported

maize and wheat yields compared to the other GGCMs. Similarly, in Yin and Leng (2021) the cor-

relation of reported and simulated national maize yields using EPIC-IIASA was among the highest of

the eight analysed GGCMs. Folberth et al. (2019) compared the agreement between simulated and

reported maize yields among five different EPIC-based GGCMs. EPIC-IIASA agreed best with na-

tional reported yields among the five tested EPIC-based GGCMs. The robustness of yield estimates in

the EPIC-based GGCMs was highly sensitive to simulated crop management, soil parameters and soil

process reparametrisation, including hydrology and nutrient turnover. The necessary improvements in

model mechanisms, parametrisation and agricultural data for model input and model evaluation to re-

duce errors have been addressed in detail in numerous studies (e.g., Folberth et al., 2019; Mueller et al.,

2017).

6.5 Conclusion

In this chapter, EPIC-IIASA was used to analyse the vulnerability of maize and wheat producing regions

to water erosion. Locations that are highly vulnerable to water erosion are concentrated in regions

combining hilly terrain, strong precipitation and low fertiliser inputs. But water erosion has only a small

impact on global maize and wheat production, because the major maize and wheat production areas are

on relatively flat terrain and nutrient losses through water erosion are offset by high fertiliser applications.

However, this compensation of soil loss with fertilisers to maintain crop yields hides the negative impacts

of water erosion on soil resources and surrounding environments.

The simulation results provide the first globally-consistent and transparent analysis of the effects

of water erosion on maize and wheat production. The most crucial data requirements to improve the

robustness of simulated water erosion impacts on global crops include well-defined field data covering

all global regions to evaluate water erosion estimates, higher-resolution global land use datasets and

detailed information on field management patterns (Chapter 5.4). A better understanding of the soil

protection and erosion control measures that are used in the cultivation of slopes in each region would

make it possible to improve the representation of regions at risk. As these datasets are currently not
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available in higher detail at the global scale, further research on water erosion impacts could focus on

the most vulnerable regions by analysing land use patterns and all environmental circumstances on-site

at a finer resolution. The high vulnerability to water erosion in sub-Saharan Africa, and parts of South

Asia and Latin America, where future changes in population growth and climate could amplify land

degradation processes, should be priorities for further research.
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Chapter 7

The combined effects of climate

change and water erosion on global

maize and wheat yields

7.1 Introduction

Climate change impacts on agriculture include irregular rainfall and prolonged droughts, which are

among the biggest threats for farmers. It has been suggested that interactions between climate change

and land degradation are likely to exacerbate the negative impact on agriculture (Olsson et al., 2019).

Although climate change and land degradation are interacting processes, which may affect farmers si-

multaneously, they have been studied separately in the past (Webb et al., 2017). As these interactions

are highly complex, the impact of climate change on soil functions is seen as the largest source of un-

certainty in any projections of the trends in key ecosystem services provided by the soil (Montanarella

et al., 2016).

Water erosion is influenced directly through changing precipitation amount and intensity and in-

directly through the impact of precipitation, temperature and atmospheric CO2 on vegetation. In addi-

tion, interactions between the climate system, soil hydrology and microbial activity, as well as land use

changes due to climate change may influence future water erosion rates (Nearing et al., 2004). Thus, the

impact of climate change on water erosion is very diverse and can be both positive and negative. Due

to the complex interactions between water erosion and climate change, future changes in water erosion

rates are unclear. In a comprehensive review of studies on the effects of climate change on water ero-

sion by Li and Fang (2016), the authors concluded that in most studies, future water erosion rates are

increasing due to climate change. However, due to different geographic locations, climate scenarios,

precipitation patterns, topographic conditions, and land management scenarios the result of prior studies

on climate change impacts on water erosion are highly variable (Chapter 2.5). One study concluded that

water erosion can be expected to increase where precipitation increases are significant, but if precipi-
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tation decreases, water erosion may both increase or decrease depending on the complex interactions

between plant biomass, runoff, and erosion (Pruski and Nearing, 2002a). Many studies concluded that

field management practices and planting dates are decisive in climate change impacts on water erosion

and may sometimes affect changes in water erosion more than changes in precipitation (O’Neal et al.,

2005; Pruski and Nearing, 2002a; Routschek et al., 2014). Positive climate change impacts on vegeta-

tion cover through warmer temperatures and CO2 fertilisation may even mitigate impacts of increased

precipitation on water runoff (Nunes et al., 2013).

The complex interactions between climate change and water erosion and the high variability of

study results lead to difficulties extrapolating study results to larger scales. As most studies are focused

on the United States, Europe and China (Li and Fang, 2016), direct insights on climate change impacts on

water erosion do not exist in many world regions. Only three studies were found that include estimates

of the impact of climate change on global soil erosion (Ito, 2007; Yang et al., 2003; Borrelli et al., 2020).

These studies focused on estimating future changes in water erosion rates based on current land use and

climate change. Ito (2007) included estimates of changing water erosion impacts on the soil carbon

cycle. However, these studies do not consider interactions between water erosion and crops. As previous

field scale studies have shown, the interactions between soil and biomass are critical to the effects of

changing climate on water erosion.

Field scale studies on climate change impacts on water erosion have often used process-based crop

models such as EPIC (Chapter 2.5). EPIC is also a commonly used model for global climate change im-

pact assessments based on GGCMs (Chapter 3.5). Climate change impact assessments based on GGCMs

are among the most important studies that provide information on the varying resilience of agriculture

to climate change around the world. Although the models used to conduct these studies simulate in-

teractions between soil resources and crop yields, soil degradation processes are not considered as they

are not included in most models or have been neglected due to their complexity and lack of evaluation

(Chapter 2.3.4).

In this chapter, model outputs from EPIC-IIASA generated under different climate change scenarios

are used to link the analysis of climate change and water erosion impacts on maize and wheat. The

modelling approach is similar to that in Chapter 5 and Chapter 6, except that different climate data

are used. The model outputs are first used to identify hotspots where maize and wheat production

is vulnerable to climate change and water erosion due to environmental conditions and geographical

differences in fertiliser use and irrigated cropland. Subsequently, the model outputs are used to show

the interactions between crops and water erosion in response to climate change and to discuss in which

regions water erosion may increase in the future. The final results chapter provides estimates of global

maize and wheat production losses due to water erosion under different climate change scenarios, which

are compared to changes in maize and wheat production due to climate change.
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7.2 Methodology

7.2.1 Summary of methodology

The daily growth of maize and wheat is simulated for the years 2005-2099 with and without consider-

ing water erosion under the two contrasting Representative Concentration Pathways RCP 2.6 and RCP

8.5, as well as different field management scenarios. Water erosion impacts are calculated using the

baseline field management scenario presented in Chapter 4.3.4. The impact of climate change on crops

is calculated without considering water erosion and with a static soil profile, which reinitialises all soil

properties except plant-available nutrients and water at the beginning of each year. This disables the im-

pact of soil degradation processes on crop yields to focus on the impact of changing climate parameters

on crop yields. To further increase the focus on the impact of climate parameters on crops, only the field

management scenario simulating conventional tillage without cover crops is considered to minimise the

impact of different farming techniques on crop yield changes.

7.2.2 Aggregation of model outputs

Water erosion impact

Water erosion impacts on maize and wheat yields are calculated using the model outputs for the years

2050-2059 to estimate medium-term erosion impacts and for the years 2090-2099 to estimate long-term

erosion impacts. The aggregation of the respective model outputs to estimate water erosion impacts on

crops for grid cells, countries and regions follows the same approach as in Chapter 6.2.2.

Climate change impact

Crop yield changes due to climate change are calculated as the relative difference of average crop yields

between the years 1980 - 2010 simulated with the AGMERRA climate data and the years 2050-2059

and 2090-2099 simulated under the RCP 2.6 and the RCP 8.5 scenario (Equation 7.2). Relative crop

yield changes for each decade are based on average crop yields weighted by the irrigated and rainfed

cultivation area (Portmann et al., 2010) of the respective crop per grid cell (Equation 7.1).

Y wcgd = Yav(r)cg ∗A f (r)cg +Yav(i)cg ∗A f (i)cg (7.1)

dY relcgd =
Y wcgd −Y w(d0)cg

Y w(d0)cg
∗100 (7.2)

Y wcgd is area-weighted mean crop yield (tha−1) for crop c, grid cell g and decade d; Yav is yield

averaged for the selected decade simulated under rainfed (r) and irrigated (i) conditions; A f (r) is the

rainfed area fraction; and A f (i) is the irrigated area fraction; dY relcgd is the relative change in area-

weighted mean yields of crop c and grid cell g between the decade d and area-weighted mean crop

yields of the years 1980 - 2010 (d0).
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National crop production losses and gains due to climate change are calculated by first calculating

the difference in crop yields between the selected decades and the years 1980 - 2010 (Equation 7.3), and

subsequently multiplying the difference with the rainfed and irrigated area per crop of each grid cell and

summarising all positive and negative values of all grid cells per country (Equation 7.4).

dYabscwgd = Yavcwgd −Yav(d0)cwg (7.3)

dPlcd =
n

∑
g=1

dYabs(r)cgd ∗A(r)cg +dYabs(i)cgd ∗A(i)cg (7.4)

dYabscwgd is the absolute yield change for crop c, irrigation scenario w and grid cell g and decade

d; Yav is yield averaged across the selected decade d or the years 1980 - 2010 (d0); dPlcd is the change

of production (in tonnes) of crop c in country l and decade d; n is the number of grid cells in country l;

dYabs(r) is the absolute change in rainfed yields and dYabs(i) is the absolute change in irrigated yields;

A(r) is the rainfed area (in ha); and A(i) is the irrigated area (in ha).

7.3 Results

7.3.1 Regions and countries vulnerable to both climate change and water erosion

The impacts of water erosion on maize and wheat yields are shown in Figure 7.1 and Figure 7.2 as

medium-term (2050s) and long-term (2090s) relative declines in crop yields due to water erosion under

the RCP 2.6 and RCP 8.5 scenario, respectively. In addition, regions with negative and positive climate

change impacts on maize and wheat are coloured in the maps. The plots next to the maps illustrate the

median changes in crop yields due to climate change per latitude.

A region’s vulnerability to climate change and water erosion is strongly determined by geographic

differences in environmental characteristics. While topography, precipitation amount and intensity

largely determine the extent of water erosion in a region, the effects of climate change are strongly

dependent on latitude. At low latitudes, defined here as latitudes between ± 30 degrees, negative climate

change impacts dominate for both maize and wheat in both RCP scenarios and both observed time peri-

ods. At mid- to high-latitudes, the distribution between positive and negative climate change impacts is

more variable and depends strongly on the crops and the rate of climate change.

Under the RCP 8.5 scenario, maize yields decline at most latitudes. The decline is most severe

at low latitudes and worsens over the long term. Under the RCP 2.6 scenario, climate change impacts

on maize are less severe and can be both positive and negative at mid- to high-latitudes, but are mostly

negative at lower latitudes. Wheat yields in temperate latitudes in both hemispheres are largely positively

affected by climate change under both RCP scenarios. The negative impacts of climate change on wheat

yields are most severe and widespread at low latitudes, especially in the long term under the RCP 8.5

scenario.

The global patterns of water erosion impacts on maize and wheat yields are similar under both RCP
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scenarios and largely follow the patterns described in Chapter 6. The strongest impacts of water erosion

on maize and wheat are observed in hilly terrain and in regions with heavy precipitation, most commonly

in tropical climates. While the regions most vulnerable to water erosion remain the same over time for

both RCP scenarios, the magnitude of water erosion impacts increases globally over time under both

RCP scenarios.

To illustrate the differences among global regions in their vulnerability to climate change and water

erosion, the medium- and long-term relative changes in maize and wheat yields due to climate change

and water erosion per region are summarised in Figure 7.3 and Figure 7.4. Trends in yield changes due

to climate change and water erosion, as well as areas affected by water erosion over the entire simulation

period, are shown in Figures D.3,D.4,D.5.

The regions with the greatest impact of water erosion on affected maize fields at the end of the

simulation period include Western, Southern and Southeast Asia (16%, 14%, 10% decline in median

maize yields simulated with both RCP scenarios, respectively), Eastern Africa (14%) and Southern Eu-

rope (11%) (Figure 7.3). Unlike water erosion impacts, climate change impacts on maize vary greatly

among RCP scenarios. In all regions, the most negative climate change impacts on maize are projected

for the 2090s under the RCP 8.5 scenario. The most affected regions are Western Africa (61% decline

in median maize yields compared to 1980-2010), Western Europe (44%), Southeast Asia (41%), Eastern

Europe (39%) and Central Asia (38%). The positive effects of climate change on maize at the end of the

simulation period are greatest in the RCP 2.6 scenario. The most positively affected regions are Southern

Africa (14%), Western Asia (3%), Australia and New Zealand (3%), Eastern Asia (3%), and Central Asia

(2%). In some regions, the positive effects of climate change on maize are greatest in the medium term

and decrease in the long term (Northern Europe, Northern Africa, Australia and New Zealand), while in

other regions the positive effects increase over time (Southern Africa, Western Asia, Eastern Asia).

The decline in wheat yields due to climate change in the most affected regions is greatest at the

end of the simulation period and under the RCP 8.5 scenario. Wheat yields are projected to decline the

most in Western Africa (59%), Southeast Asia (58%), Central America (53%), Southern Asia (31%) and

Eastern Africa (27%) (Figure 7.4). The largest positive impacts of climate change on wheat are also

simulated at the end of the simulation and under the RCP 8.5 scenario. The regions with the highest

increase in wheat yields by the 2090s include Western and Central Asia (20% and 17%, respectively),

Northern America (13%), Northern Europe (13%), and Eastern Asia (10%). Similar to maize, positive

climate change impacts on wheat are least likely in sub-Saharan Africa, South and Southeast Asia, and

Central America. Similarly, the largest yield losses in wheat fields due to water erosion are projected

for the same regions as for maize, but to a slightly lesser extent: Western, Southern and Southeast Asia

(9%,7%,14%, respectively), Eastern Africa (8%) and Southern Europe (10%). Water erosion impacts on

maize and wheat and cropland affected by erosion are greatly influenced by the management scenarios

(Figure D.6, D.7).

To narrow down where crop yields are affected by both water erosion and adverse climate change

impacts, Figure 7.5 shows aggregated medium- and long-term relative crop yield changes at the country
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Figure 7.1: Relative reduction of maize yields due to water erosion per grid cell in the medium-term
(2050-2059) and the long-term (2090-2099) simulated with the RCP 2.6 (a-b) and the RCP 8.5 scenario
(c-d). Blue and red grid cells indicate positive and negative climate change impacts (CCI) on maize
yields. The plots on the right to each map indicate median maize yield changes per latitude due to
climate change (e-h). Climate change impacts are calculated by comparing mean maize yields from
2050-2059 and 2090-2099 simulated with the RCP scenarios to mean maize yields from 1980-2010
simulated with the AGMERRA dataset.
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Figure 7.2: Relative reduction of wheat yields due to water erosion per grid cell in the medium-term
(2050-2059) and the long-term (2090-2099) simulated with the RCP 2.6 (a-b) and the RCP 8.5 scenario
(c-d). Blue and red grid cells indicate positive and negative climate change impacts (CCI) on wheat
yields. The plots on the right to each map indicate median wheat yield changes per latitude due to
climate change (e-h). Climate change impacts are calculated by comparing mean wheat yields from
2050-2059 and 2090-2099 simulated with the RCP scenarios to mean wheat yields from 1980-2010
simulated with the AGMERRA dataset.
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level.

In most countries, median maize yield losses in areas affected by water erosion are higher than

the negative medium- and long-term impacts of climate change under the RCP 2.6 scenario. Under

the RCP 8.5 scenario, the negative impacts of climate change on maize increase substantially and thus

outweigh the impacts of water erosion in the long term in most countries. The countries most affected by

both the negative impacts of climate change and water erosion are mostly located in Southern Europe,

sub-Saharan Africa, Central and South America and South and Southeast Asia.

In several countries where water erosion impacts on wheat yields are most severe, climate change

impacts are positive in the RCP 2.6 scenario. Under the RCP 8.5 scenario, both the positive and negative

impacts of climate change on median wheat yields increase in most countries. Countries with greatest

negative impacts of climate change include several countries from Central and South America, South

and Southeast Asia and sub-Saharan Africa that are vulnerable to water erosion. Wheat yields in several

countries with high water erosion risk areas are positively affected by climate change, especially in

Northern America, Europe, and Eastern Asia.

7.3.2 Interactions between crops and water erosion in response to climate change

The impacts of climate change on water erosion and crop yields are shown in Figure 7.6, which plots

relative changes in water erosion rates and crop yields against relative changes in precipitation and

absolute temperature changes. The values shown in Figure 7.6 reflect the relationship between long-

term changes in climate parameters based on the two RCP scenarios and changes in crop yields and

water erosion in the low and mid to high latitudes. In wheat fields, latitude has a notable effect on

the relationships between changing climate parameters, crop yields, and water erosion, while for maize

fields these relationships vary less between latitudes.

At all latitudes, water erosion in maize fields mostly increases with increasing precipitation, while

a strong decline in precipitation results in less water erosion. When precipitation decreases only slightly,

water erosion mostly increases. Decreasing precipitation is causing maize yields to decline at all lati-

tudes. An increase in precipitation reduces maize yields in low latitudes, while maize yields in mid- to

high-latitudes change little. Small temperature increases up to 2 °C hardly affect maize yields, whereas

greater warming reduces maize yields at all latitudes. Water erosion mostly increases with rising tem-

peratures at all latitudes. Despite minor differences at low levels of warming, the relationships between

temperature, maize yields, and water erosion are similar at all latitudes.

Water erosion in wheat fields increases with increasing precipitation and decreases at all latitudes

when precipitation decreases by more than 30%. In most cases, a smaller decrease in precipitation in-

creases water erosion at low latitudes. Wheat yields at low latitudes decrease considerably with both

increasing and decreasing precipitation, while wheat yields at higher latitudes increase with increasing

precipitation. The effects of temperature on wheat also vary greatly depending on latitude. While mid-

and high-latitude wheat yields increase with increasing temperature, they decrease significantly at low

latitudes. Water erosion in wheat fields increases significantly with increasing temperature at low lati-
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Figure 7.3: Relative medium and long-term changes in maize yields due to climate change and water
erosion in major world regions. Boxes illustrate median changes and the range of values between the
25th and 75th percentile. Yield changes are averaged over the RCP 2.6 scenario and the RCP 8.5 scenario.
Black squares indicate the variability of the median changes between both RCP scenarios. Values on the
top right in each plot indicate the share of grid cells per region, where water erosion reduces crop yields.

tudes, while changes in water erosion are smaller at mid- and high-latitudes and vary between positive

and negative changes.

The above relationships illustrate that an increase in precipitation is the most obvious impact of

climate change on water erosion (Figure D.9, D.10). The effects of increasing precipitation on water

erosion vary by crop, field management, RCPs and latitude (Figure 7.7). Water erosion increases most

with increasing precipitation at low latitudes in both RCP scenarios. The most significant difference

is simulated for wheat fields under the RCP 8.5 scenario, where water erosion increases by median

3.5% per 1% increase in precipitation at mid to high latitudes and by median 11.4% per 1% increase in

precipitation at low latitudes. In most cases, water erosion increases more under the RCP 8.5 scenario

than under the RCP 2.6 scenario. Only in wheat fields located in mid to high latitudes, median increase in
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Figure 7.4: Relative medium and long-term changes in wheat yields due to climate change and water
erosion in major world regions. Boxes illustrate median changes and the range of values between the
25th and 75th percentile. Yield changes are averaged over the RCP 2.6 scenario and the RCP 8.5 scenario.
Black squares indicate the variability of the median changes between both RCP scenarios. Values on the
top right in each plot indicate the share of grid cells per region, where water erosion reduces crop yields.

water erosion is slightly lower under the RCP 8.5 scenario than under the RCP 2.6 scenario. The impact

of field management scenarios on precipitation-erosion relationships is indicated by the variability of

median values in Figure 7.7. In most cases, the range between median changes in water erosion simulated

under different field management scenarios is larger than the range between median changes in water

erosion due to different RCP scenarios and latitudes.

7.3.3 Global production changes due to climate change and water erosion

At the global level, annual production losses of maize and wheat due to climate change are strongly

influenced by the RCP scenario and time scale (Figure 7.8). Average annual production losses for maize

due to climate change in the 2090s compared to 1980-2010 are 120 and 290 million tonnes for RCP
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Figure 7.5: Relative medium and long-term changes in median maize and wheat yields due to climate
change and water erosion per country and RCP. Country names mark top five countries per panel with
highest erosion impact and negative climate change impacts. The size of the dots shows the relative
extent of the national cropland affected by water erosion. Smallest maize and wheat producers have
been excluded (<0.001% share of global production).

2.6 and RCP 8.5, respectively, while production gains are 20 and 7 million tonnes, respectively. Wheat

production losses due to climate change in the 2090s are 40 to 80 million tonnes for RCP 2.6 and RCP

8.5, respectively, while production gains are 80 to 100 million tonnes for each. Changes in global maize

and wheat production are mainly driven by the main growing regions in Europe, Asia and North America

(Figure D.11).

Compared to the climate change impacts on maize and wheat production between contrasting RCP

scenarios, the variations in production losses due to water erosion are small. Average annual production

losses for maize due to water erosion in the 2090s are 14 and 11 million tonnes for RCP 2.6 and RCP

8.5, respectively, and production losses for wheat reach 13 million tonnes for both RCPs. Relative to the

global production of maize and wheat reported by FAOSTAT (2013-2018) of 1091 million tonnes and

739 million tonnes, respectively, the production losses of maize and wheat due to water erosion are 1%

and 2%, respectively. While production losses are similar across the different RCP scenarios, production
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Figure 7.6: Relative change in water erosion and crop yields in maize fields (a-d) and wheat fields (e-
h) due to changing precipitation and increasing temperature for the years 2090-2099 compared to the
years 2010-2019 and aggregated for both RCP scenarios. Changes in water erosion and crop yields are
log-transformed. Changes in precipitation are relative, while changes in temperature are absolute. Dots
illustrate median changes and shadows illustrate the range of values between the 25th and 75th percentile.
Blue represents values from mid to high latitudes, red represents values from low latitudes.

Figure 7.7: Increase in water erosion (%) per 1% increase in precipitation for contrasting crops, RCPs
and latitudes for the years 2090-2099 compared to the years 2010-2019. Boxes illustrate medians, 25th

and 75th percentiles. Whiskers mark 10th and 90th percentiles. Points illustrate the variance of the
medians due to different field management scenarios.

losses vary significantly between different field management scenarios (Figure D.12).
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Figure 7.8: Changes in global annual average maize and wheat production due to climate change and
water erosion in the 2050s and the 2090s for RCP 2.6 and RCP 8.5.

7.4 Discussion

The simultaneous effects of climate change and water erosion on maize and wheat yields vary widely

across regions. The factors influencing these differences are diverse and complex, and require detailed

discussion, which will form the first part of this discussion chapter. Potential regional changes in future

water erosion due to climate change are then discussed based on the simulated interactions between

climate parameters, crops, and water erosion. Because the impacts of water erosion and climate change

on crops are strongly influenced by land use and field management, their role in mitigating the negative

impacts is discussed subsequently. The final part of the discussion revolves around model uncertainties

in simulating changes in future crop growth and water erosion.

7.4.1 Factors driving regional differences in climate change and water erosion

impacts

The model outputs suggest that maize and wheat production in sub-Saharan Africa, South and South-

eastern Asia, Central and South America include most regions with highest water erosion impacts and is

overwhelmingly negatively affected by climate change. Although maize and wheat production in other

regions may be also heavily affected by climate change and water erosion, wide areas where both crops

are severely affected by both impacts are less common. Hotspots where crop production is suscepti-

ble to both climate change and water erosion impacts are determined by many factors such as regional

characteristics of climate and topography, as well as farmer’s management of crops, soil, fertiliser and

irrigation.

Environmental factors

The environmental factors that most significantly influence the simulated differences of water erosion

impacts in global regions are slope steepness and precipitation. Therefore, hilly agricultural land exposed

to strong precipitation is most vulnerable to water erosion (in accordance with the results of Chapter 5

and Chapter 6). The impact of other environmental factors on water erosion, most specifically soil

types and soil texture, are not further discussed as the strong sensitivity of slope and precipitation in the

water erosion model used for this study strongly determine regional differences at this scale of analysis
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(Chapter 5.3.2). In addition, global soil datasets are highly uncertain (Folberth et al., 2016).

The energy of precipitation to initiate water erosion can be expressed by the rainfall erosivity factor,

which is strongest in tropical regions (Panagos et al., 2017). In the same climate regions, maize and wheat

are most negatively affected by climate change. Generally, the regional differences in climate change

impacts are strongly influenced by changing climatic conditions along latitudes. The model outputs of

this study confirm previous studies, which suggested that negative climate change impacts on maize and

wheat increase from high to low latitudes (Rosenzweig et al., 2014; Iizumi et al., 2018; Zhao et al., 2017;

Mora et al., 2015).

The spatial differences in climate change impacts can vary significantly between crops. Each crop

has a defined temperature range within which growth occurs and an optimum temperature at which plant

growth progresses fastest (Hatfield et al., 2011). Therefore, warming can both increase and decrease

crop yields by shifting temperature inside or outside the optimum temperature range for the respective

crop. Maize has an optimum temperature range of 18 - 30 °C, which varies depending on the maize

cultivar and differs for individual crop growth stages (Ramirez-Cabral et al., 2017; Sánchez et al., 2014).

The optimum temperature of wheat is more narrow and is generally considered to be between the range

17 – 23 °C over the course of an entire growing season (Porter and Megan, 1999). The hill-shaped

yield-temperature function determines that decreases in yields due to increasing temperatures are larger

the warmer a country is (Lobell and Burke, 2008). In this study, the long-term impacts of increasing

temperatures are most severe for wheat yields at low latitudes, suggesting that warming increases the

mean temperatures above the optimum for wheat. Thus, wheat in warm regions is highly susceptible to

warming. For maize, the contrast in the reduction of crop yields with increasing temperatures between

higher and lower latitudes is visible for small levels of warming, whereas under higher levels of warming,

maize yields are reduced widely in all latitudes.

Next to changes in mean temperature, crop yield changes due to climate change are also deter-

mined by extremes of temperature and precipitation at key stages of crop development (Slingo et al.,

2005). Tolerance to temperature stress and water stress during different crop cycle periods can be very

variable between crops and cultivars and thus the effects of changing weather extremes on crops are

highly complex. For example, strong precipitation events have been observed to reduce crop yields due

to flooding (Rosenzweig et al., 2002). In addition, anomalously low precipitation often reduces crop

yields due to stress effects from droughts, especially during critical crop development stages (Grassini

et al., 2009; Krishna Kumar et al., 2004; Sivakumar et al., 2005; Verdin et al., 2005). The model results

show that wheat at low latitudes is more susceptible to decreasing precipitation than at higher latitudes.

An increased susceptibility of crops to reduced rainfall may be caused by increased evapotranspira-

tion through warming, which can increase drought stress (Carter et al., 2016). Generally, precipitation

changes are an important driver of interannual yield variability, but are less relevant for long-term crop

productivity trends (Lobell and Burke, 2008; Lobell et al., 2011).
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Management factors

Next to environmental conditions, differences in fertilisation and irrigation management determine

global differences of both water erosion and climate change impacts significantly. Mueller et al. (2012)

estimated that 60 - 80 % of global yield variability for most major crops are related to climate, fertiliser

and irrigation. Irrigation and fertiliser use varies extensively around the globe. High fertiliser applica-

tion rates are concentrated in high-income and some rapidly developing countries (Mueller et al., 2012)

(Figure A.2). Irrigation is heavily concentrated in South, West and East Asia, as well as parts of the

United States, where water availability is an important limitation for crop growth (Mueller et al., 2012;

Portmann et al., 2010) (Figure A.3). However, in many developing regions where crops are limited by

water availability, irrigation is lacking, which increases the vulnerability of crops to weather variability

(Rosegrant et al., 2009; Van Ittersum et al., 2013). Sub-Saharan Africa is often named as a large region

where crops suffer nutrient and water deficiencies leading to currently low levels of agricultural produc-

tivity (GYGA, 2015; Sánchez, 2010; Cassman and Grassini, 2013; Folberth et al., 2013). In addition,

outside of the major maize and wheat growing areas, there are large yield gaps due to lack of irrigation

and fertilisation, indicating potential to improve agricultural resilience in many regions vulnerable to

climate change and water erosion (Licker et al., 2010; Mueller et al., 2012; Jägermeyr et al., 2016).

In summary, geographic differences in environmental characteristics and field management prac-

tices result in varying crop vulnerability to climate change and water erosion around the world. The

climatic conditions at low latitudes combine high levels of rainfall erosivity and high susceptibility of

maize and wheat to rising temperatures, two important factors for the adverse effects of climate change

and high rates of water erosion. In addition, low application of fertilisers and lack of irrigation infras-

tructure reduce the resilience of crop production systems to both soil degradation and climate change in

several developing regions. On the contrary, the largest maize and wheat producing regions in Europe,

Asia and North America are predominantly on flat terrain with high fertiliser inputs and often have an

abundant irrigation infrastructure. Hence, resilience to the effects of climate change and water erosion is

higher in these regions.

7.4.2 The effects of precipitation and temperature changes on water erosion

An increase in water erosion with increasing precipitation is the most consistent relationship between

changing climate parameters and water erosion in all regions and for both crops. However, the rate of

increase in water erosion varies widely between regions, RCP scenarios, field management and crops.

Similarly, the impact of changing precipitation amounts on simulated water erosion varies widely in

previous studies, which are based on different land use and climate change assumptions (Chapter 2.5).

According to the model results, the effects of increasing precipitation on water erosion in maize and

wheat fields is strongest under the RCP 8.5 scenario at low latitudes. In addition, water erosion increases

sharply in regions where rising temperatures reduce crop yields. At locations where warming does not

reduce crop yields, water erosion does not change significantly. This suggests that the adverse effects of

climate change on crops, and thus on the protective vegetation layer against rainfall and runoff energy,
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largely contribute to the spatially varying effects of precipitation changes on water erosion. Decreasing

plant cover due to lack of precipitation could also explain the positive correlation between water erosion

and slightly decreasing precipitation at several sites.

As such, the model outputs demonstrate the decisive role of land use in the relationships between

climate change and water erosion. The different relationships between warming and water erosion in

high-latitude maize and wheat fields indicate that the effects of climate change on water erosion can be

mitigated by growing crops that are not negatively affected by warming. In addition, the large variability

in the effects of increasing precipitation on water erosion between different field management scenarios

suggests that the relationship between precipitation and erosion may be predominantly influenced by

field management rather than the magnitude of climate change. This is in line with previous suggestions

that changes in water erosion are primarily due to field management rather than climate change (Olsson

et al., 2019).

Nevertheless, the model outputs from this study demonstrate that changes in precipitation contribute

substantially to changes in water erosion. For example, increasing precipitation largely increases water

erosion in wheat fields despite positive climate change impacts on wheat in mid and high latitudes.

Despite some clear relationships between climate change and water erosion, there is large complexity in

the impacts of climate change on water erosion as some of the interactions between climate, crops and

water erosion are difficult to disentangle. For example, the relationship between decreasing precipitation

amounts and water erosion is very variable as it controls both crop cover and rainfall runoff and can be

both positive and negative. Also, the reasons for the increasing water erosion impacts on crops over time

are difficult to identify. This can be caused by impacts of climate change on water erosion rates, but also

by effects of water erosion on vegetation cover and soil stability, which amplify further water erosion.

7.4.3 Where is water erosion increasing due to climate change?

Spatial uncertainty in precipitation projections makes it difficult to identify regions where water

erosion could increase

The model outputs of this study suggest that water erosion rates increase strongest in Eastern, Southern,

and Southeast Asia throughout the simulation period (Figure D.8). The changes in water erosion are

most directly driven by changes in precipitation, but these are difficult to project (Giorgi and Lionello,

2008).

It is well known that atmospheric moisture increases with warming. However, agreement about the

spatial patterns of precipitation changes among different models is low. The largest regions where most

models agree on an increase in precipitation at the end of the 21st century are in the highest latitudes in-

cluding vast areas in Canada, Northern Europe, and Northern and Central Asia (Trenberth, 2011; Fischer

et al., 2014; Pendergrass et al., 2017). In addition, several models predict an increase in precipitation in

large areas of Eastern, Southern, and Southeast Asia, Eastern Africa and parts of South America, with

moderate agreement between models in these regions. In other regions model agreement is low or mod-

els agree on a reduction of precipitation. The changes in water erosion in regions that are becoming drier
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are difficult to determine, as the model results of this Chapter show.

The agreement in projected increases in heavy precipitation is significantly higher among models

and affects the majority of agricultural regions on all continents (Fischer et al., 2014). Pendergrass

(2018) finds that extreme precipitation events are expected to increase faster than moderate precipitation

events with increasing atmospheric moistening. Several studies already observed the intensification of

precipitation with warming (Guerreiro et al., 2018; Blenkinsop et al., 2018; Liu et al., 2009; Bezak

et al., 2020). Some observations even demonstrated that precipitation intensity can increase at locations

where precipitation amounts decrease (Trenberth, 2011). Based on numerous studies on the relationships

between climate change and precipitation, the IPCC concluded that heavy precipitation events have

increased in frequency, and/or amount since 1950 (likely) and that further changes in this direction are

likely to very likely during the 21st century (Stocker et al., 2013).

However, uncertainty about the spatial patterns of projected extreme precipitation changes remains.

Tabari et al. (2019) showed that the uncertainty of modelled extreme precipitation changes due to vari-

ability between models is highest in tropical regions where rainstorms cannot be adequately represented

by coarse-scale climate models, and where observation networks are sparse on which climate models

can be tuned and improved.

Previous studies on spatial changes in erosion due to precipitation changes used an ensemble of

climate models to capture this uncertainty (Panagos et al., 2022; Borrelli et al., 2020). For example,

using 19 GCMs and three RCPs, Panagos et al. (2022) showed changes in rainfall erosivity by 2050

and 2070 that increased in most parts of the global land surface and were greatest in arid and cold zones.

Rainfall erosivity generally increased with the RCP scenario. Whilst there was a strong agreement on the

future directional trend of rainfall erosivity among the ensemble, the authors concluded that predicting

changes in magnitude are uncertain, especially in low latitudes where the variability between models are

very high.

Negative effects of warming on crops can help identify regions where water erosion could increase

due to climate change

In addition to the direct impact of precipitation on water erosion, the indirect effects of increasing av-

erage temperatures on water erosion due to the decreasing crop cover are important for the localisation

of hotspots of future changes in water erosion. The model outputs of this study demonstrate that in

regions with severe negative climate change impacts on crop yields, water erosion will likely increase.

Consequently, water erosion impacts are more likely to increase at low latitudes where important staple

crops are more negatively affected by climate change. Combined with the expected increase in extreme

rainfall in many tropical regions, this will particularly exacerbate erosion.

While the model results from this study can be used to explore key mechanisms that may lead to

changes in future water erosion in different global regions, it is difficult to predict actual changes due

to the uncertainties in climate change projections. In addition, other links between climate change and

water erosion that were not considered in the analysis of model results must also be taken into account.
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For example, another important impact of climate change on water erosion are temperature impacts on

soil moisture through evapotranspiration, which influences the partitioning of water into surface and

subsurface runoff (Li and Fang, 2016; Nearing et al., 2004). However, soil moisture changes depend

on both temperature and precipitation; thus, they can be very variable around the globe and difficult to

project (Trenberth, 2011). Next to the uncertainties in climate change projections, future land use is

highly uncertain. Future water erosion rates will be strongly influenced through shifts in crop cultivation

areas (Zabel et al., 2014) or changes in field management, which may be influenced by strategies for

adapting to climate change (Borrelli et al., 2020).

7.4.4 Field management and land use planning will largely influence the future

impact of water erosion

The model results show that climate change impacts on maize and wheat yields are strongly affected

by RCPs, whereas water erosion impacts are most affected by field management. Due to the static field

management scenarios and the uncertainties in the cropland distribution within the spatial unit stud-

ied, the modelling approach neglects many opportunities for farmers to reduce water erosion impacts.

Nevertheless, the contrasting field management scenarios show that high production losses due to water

erosion can be substantially reduced with farming techniques, which reduce the erosivity of precipitation

and surface runoff. However, such strategies can limit the overall production volume as there may be a

yield ‘penalty’ from employing Conservation Agriculture practices in the short-term (Giller et al., 2009).

The trade-offs between farming techniques, crops and soil in response to climate change are highly com-

plex; thus, the effectiveness of field management strategies to maintain or increase productivity should

be analysed in areas susceptible to water erosion based on detailed data on environmental conditions and

land use on-site.

Key to directly address water erosion will be to monitor cropland expansion. Increasing crop de-

mand has already led to cultivation of tropical steeplands (Turkelboom et al., 2008) or soils prone to

degradation (Wildemeersch et al., 2015). In many regions of Africa, Asia and Latin America, which are

predicted to be most vulnerable to both climate change and water erosion, population growth and a high

dependence on agriculture may lead to unpredictable impacts of cropland expansion on soil erosion. Due

to the uncertainties in the spatial distribution of cropland in each grid cell in the modelling approach of

this study, the model outputs reflect potential production losses that occur if the susceptibility of land to

water erosion is not considered in the choice of cropland. Given the uncertainties in the distribution of

current and future cropland and its significance on the resilience of agriculture to water erosion, further

research and monitoring programs in the most affected regions are necessary.
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7.4.5 Measures to reduce the adverse effects of water erosion and climate change

can be combined

Since land degradation affects the resilience of agricultural systems to climate change, adaptation plan-

ning must consider the risks associated with ongoing land degradation to increase the effectiveness of

climate change adaptation strategies (Reed and Stringer, 2016). To some extent, anti-erosion measures

are integrated indirectly in climate change adaptation strategies, which maintain or increase crop cover.

The most effective measures to reduce climate change impacts in food insecure regions are likely to

arise from new crop varieties and new technology such as improved irrigation infrastructure (Lobell

et al., 2008). Other adaptations strategies are shifting planting dates, modifying crop rotation and the

up-take of pre-existing crop varieties (Knox et al., 2012), and are already in use to cope with variable

weather conditions and shifting climate (Osbahr et al., 2010). Moreover, certain climate change adap-

tation strategies focus on the protection of soil moisture and soil fertility through increasing amounts of

organic matter in the field, artificial and natural fertiliser application and lowering soil disturbance; thus,

they include similar measures necessary to reduce water erosion impacts (Giller et al., 2015).

Whilst the flexibility of ’Climate-Smart Agriculture’ as an option for addressing both land degra-

dation and climate change has been recognised, the focus on land degradation needs to be increased in

adaptation planning (Webb et al., 2017). A reduction in soil health may limit the adaptive capacity of

farmers by increasing their socio-economic vulnerability and in addition, influences the exposure and

sensitivity of crops to climate change (Webb et al., 2017; Laban et al., 2018). Despite uncertain climate

change impacts, previous authors are confident that negative climate change impacts will be severe for

low resilient agricultural systems in parts of Africa, Asia and South and Central America (Müller et al.,

2011; Knox et al., 2012; Lobell et al., 2008).

7.4.6 Uncertainties related to crop yield projections and climate change impacts

on crops and water erosion

The most important model uncertainties for estimating global water erosion impacts include the pre-

viously discussed uncertain resolution of the model input data (Chapter 6.4.3), global patterns of field

management (Chapter 6.4.3), and the varying performance of the water erosion model in different global

regions (Chapter 5.4). The simulation of crop yield projections in this chapter adds further uncertainty

to the model outputs.

Future changes in field management and technologies have not been considered but will signifi-

cantly influence the resilience of future maize and wheat production to climate change. For example,

negative climate change impacts from warming such as droughts can be reduced through the adaptation

of farming techniques, planting dates or the use of newly developed maize and wheat cultivars (Carr

et al., 2022). Moreover, expansion of irrigation infrastructure or changes in water availability may alter

climate change impacts (Balkovič et al., 2014). In addition, this study did not consider shifts in fu-

ture crop production areas due to geographically changing climatic suitability for maize and wheat (Wu
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et al., 2007). Obviously, these changes will have a significant impact on future maize and wheat yields

and production but are highly uncertain.

Additional important uncertainties include the robustness of RCPs and the simulated impact of

climate parameters on crops, as well as water erosion. As these uncertainties directly affect the model

outputs of this study they are discussed in more detail in the following.

Uncertain climate change scenarios

The RCPs chosen for this study represent two contrasting scenarios of possible future trajectories of

the climate systems and climate change impacts on agriculture. Thus, they capture a wide spectrum of

climate change impact possibilities, which are difficult to narrow down as they depend on future policy

and socio-economic changes.

Under the RCP 2.6 scenario, global warming could be limited to < 2 °C above pre-industrial levels,

which is defined as the long-term temperature target by most countries in the Paris Agreement (Schleuss-

ner et al., 2016). However, the likelihood that the intended national contributions are sufficient to meet

the goals of the Paris Agreement is uncertain (Rogelj et al., 2016; Clark et al., 2020). Gasser et al. (2015)

concluded that negative emissions (through capturing human-produced CO2, direct removal of carbon

dioxide from the atmosphere, or engineered enhancement of natural carbon sinks) are physically needed

to keep global warming below 2 °C even in the case of very high conventional mitigation rates (e.g.

through lower fossil fuel consumption and less CO2 production).

RCP 8.5, which would increase global mean temperatures to approx. 5 °C above preindustrial

levels, is seen as increasingly unlikely. Although the RCP 8.5 is often referred to as the business-

as-usual scenario, it’s assumptions about a fossil-fuel intensive future without considering any climate

mitigation policies are contrary to recent climate policy efforts of most countries (Peters and Hausfather,

2020). Nevertheless, due to unpredictable political circumstances or the uncertainty of climate tipping

points and rapidly increasing greenhouse gas levels through feedback loops (e.g. due to thawing Arctic

permafrost), this is still a valuable worst-case scenario to consider (Tollefson, 2020; Lenton et al., 2019).

Uncertain simulation of climate change impacts on crops

Next to the uncertain trajectories of future greenhouse gas emissions, uncertainties in simulated climate

change impacts on crops also arise from the model structures. Although crop models are usually reli-

able in simulating measured maize and wheat yields under a range of environments, the robustness of

simulated crop response to climate change is often criticised. The simulated relationships between crops

and changes in atmospheric CO2, temperature and precipitation are critical in climate change impact

studies. However, differences in model structure and parametrisation can lead to large differences in the

simulated crop response to changing climate parameters.

Prior studies observed an increasing variability between models with increasing temperatures due

to the difficulty of simulating high-temperature stress impacts on crops (Asseng et al., 2013; Mearns

et al., 1999). Stress for crops due to high temperatures is initiated by enhanced phenology and the
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consequent reduction in time for light interception and photosynthesis, which can result in lower crop

yields. This process involves complex interaction between leaf area expansion and biomass growth with

other processes of the model, which are simulated differently between models (Asseng et al., 2013). In

addition, prior studies concluded that the sharp decline of crop yields exposed to extreme temperatures

(>30 °C) observed in field experiments is not reflected in crop models (Rötter et al., 2011). Thus, the

impact of spatial and temporal changes in temperature extremes due to climate change on crops may not

be captured adequately in the model results.

Although precipitation changes are difficult to project and significantly affect simulated crop yields,

changes in precipitation have been reported to cause less uncertainty in climate change impact studies

than changes in temperature, as the understanding of crop responses to changing precipitation is more

robust than knowledge about crop responses to temperature (Lobell and Burke, 2008). Nevertheless,

as rainfall is important for annual variability of crop yields, the large disagreement of global climate

models on projected precipitation changes plays a crucial part in the uncertainty of climate change im-

pacts. Obviously, robust estimates of water erosion impacts on crops under a changing climate requires

improvements in the quality of precipitation projections.

The representation of the impact of increasing atmospheric CO2 on crops is another major source

of uncertainty. Negative climate change impacts may be offset to some extent by increased CO2 levels,

especially for C3 crops, although the magnitude of these effects are uncertain and the subject of much

debate (Lobell and Field, 2007). In general, there are many uncertainties in our knowledge of the impact

of atmospheric composition on crops (Slingo et al., 2005). In addition, changes in other key climatic

parameters, including solar radiation, wind speed, and relative humidity, are difficult to project.

Uncertain simulation of climate change impacts on water erosion

As crop cover influences water erosion indirectly, the above discussed uncertainties of the impact of

climate parameters on crops result in uncertainties in the impact of climate change on water erosion.

In addition, uncertainty in precipitation projections, their coarse resolution, and the robustness of

the MUSS equation determines the uncertainty of simulated climate change impacts on water erosion di-

rectly. As described in Chapter 5 simulated water erosion tends to exceed water erosion measured in field

experiments in environments with heavy and abundant precipitation. Thus, the decreasing robustness of

simulated water erosion with increasing precipitation may lead to an overestimation of the increase in

water erosion where an increase in precipitation amount and intensity due to climate change is projected.

Moreover, the coarse resolution of global climate models hampers the simulation of climate change

impacts on erosion. As climate parameters are provided on a daily timescale, important variables to

estimate erosion events such as 30-min rainfall intensity are not provided in climate models. Therefore,

statistical relationships are used between monthly and annual precipitation and rainfall erosivity to ex-

plore erosion changes with climate models (Nearing et al., 2004). As single extreme rainfall events can

be responsible for great soil loss, the lack of sub-daily resolution is an important uncertainty in studies

analysing climate change impacts on water erosion (Li and Fang, 2016).
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Assessing the uncertainties of simulated climate change impacts using model ensembles

To cover the range of model-derived uncertainties in climate change impact studies, the results of model

ensembles can be useful. Model ensembles include a range of models that differ in their robustness in

representing different variables and/or regions. The range of results from ensembles can be used to assess

the certainty of the results by identifying consensus between models or large disagreements. While there

are no global ensemble studies that have considered the links between crops and erosion in response to

climate change, there are studies that used ensembles of crop or climate models to individually project

changes in crop yields or water erosion (Borrelli et al., 2020; Jägermeyr et al., 2021; Panagos et al.,

2022). These studies thus provide important insights into the robustness of projected spatially explicit

changes in crop yields or erosion.

Studies based on model ensembles have shown that the projection of erosion changes is highly

uncertain, as erosion changes strongly depend on precipitation changes (Chapter 5.3.2), which are pro-

jected very differently between individual climate models. The limitations of projecting erosion changes

due to a low agreement in precipitation changes between models have been discussed in Chapter 7.4.3.

The latest study on future changes in erosion driven by rainfall concluded that predicting the magnitude

of changes in rainfall erosivity is uncertain, especially at low latitudes where inter-model variability is

very high (Panagos et al., 2022).

The projected temperature changes agree better between climate models, as do the simulated im-

pacts of temperature changes on crops. For example, models agree that the negative effects of climate

change on maize and wheat yields are greater at low latitudes than at higher latitudes (Jägermeyr et al.,

2021). This trend is also in agreement with the crop yield projections presented in this chapter. Building

on this commonly found relationship, the results showed how future erosion changes can be attributed to

the varying effects of temperature changes on plants at different latitudes.

Despite the difficulties in projecting future erosion changes, exploring the differences of climate-

plant-soil relationships between global regions can provide insight into how vulnerable different regions

are to increasing erosion. However, the existing model uncertainties make it difficult to project spatially

explicit erosion changes due to climate change. In future studies, a combination of multiple climate

models and crop models that take into account crop-erosion linkages can help identify erosion-prone

regions where the ensemble finds both declining yields and increasing rainfall.

7.5 Conclusion

In this chapter, water erosion impacts on global maize and wheat yields were explored in the context of

climate change. The results give insight into the complex links between climate change and water erosion

and highlight regions where maize and wheat production is most vulnerable to both water erosion and

climate change impacts. The simulation results show that maize and wheat production at low latitudes

is most negatively affected by climate change and includes the majority of the areas most vulnerable

to water erosion under both analysed climate change scenarios. Moreover, water erosion in maize and
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wheat fields is likely to increase due to diminishing vegetation cover at low latitudes, where substantial

negative impacts of climate change on crops are expected.

The model outputs reflect the influence of geographic variations of environmental characteristics

and field management on climate change and water erosion impacts. Low-latitude regions combine high

precipitation erosivity and high temperatures; thus, they are most susceptible to both water erosion and

climate change impacts on maize and wheat. In addition, the different impacts of climate change and

water erosion across regions are determined by the varying levels of fertiliser application and irrigation.

Thus, the simulation results illustrate the contrast between the effects of climate change and water erosion

on crops between highly developed agricultural regions and regions with abundant smallholders with

typically low volumes and efficiency of inputs. The main determinants of adverse effects from climate

change and water erosion are found in sub-Saharan Africa, South and Southeast Asia, and Central and

South America.

Whilst the relationships between climate change and water erosion are highly complex, there is

a clear positive relationship between increasing precipitation and water erosion. The magnitude of in-

creasing water erosion rates with increasing precipitation significantly depends on crops, warming levels

and field management. The simulation results demonstrate that the impact of increasing precipitation

on water erosion will be stronger with higher levels of climate change. Negative impacts of warming

on crop yields play an important role in increasing water erosion rates with climate change. Thus, cli-

mate resilience of crops will be critical to the impact of climate change on water erosion on cropland.

Moreover, the model outputs illustrate that field management can reduce water erosion impacts on crop

production more than different levels of climate change.

Although identifying future hotspots of water erosion changes is difficult due to the uncertainty

in precipitation projections and future land use, the model results show that climate change impacts

on crops can indicate where crop production is likely to become more vulnerable to water erosion. In

addition, the model results demonstrates the value of field management in controlling future impacts of

water erosion. The adaptation to both climate change and water erosion is likely to become increasingly

important in the most vulnerable regions.
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Chapter 8

Overall summary and future research

needs

8.1 Summary of insights

Water erosion poses a serious threat to soil resources as it removes topsoil, affecting soil fertility and

other soil properties important for plant growth. Therefore, water erosion is an important process to

consider when assessing the productivity and environmental impact of crop production. In addition,

climate change influences water erosion through the various links between water erosion, vegetation and

the climate system.

To understand the state of agriculture today and in the future, it is important to explore how water

erosion affects crop yields and how climate change might influence this. To analyse this on policy-

relevant scales, large-scale or global assessments are necessary. Models can account for the effects of

geographical variations in land use and environmental characteristics on water erosion using a consistent

methodology over large scales.

However, large-scale and global agricultural modelling studies need to be improved in terms of

robustness and representation of plant-soil interactions. Water erosion is an often neglected process in

agricultural assessments. Therefore, there is no consistent information on the impact of water erosion

on agricultural productivity on a large and global scale. In addition, the links between water erosion,

vegetation and the climate system in global agricultural assessments need to be explored in more detail

to provide a more complete picture of the impacts of climate change on agriculture.

This study addressed the need for large-scale indicators on water erosion rates and impacts using the

GGCM EPIC-IIASA. The robustness of the model with respect to simulated water erosion in different

global regions was evaluated using field data. Subsequently, EPIC-IIASA was used to estimate the

impact of water erosion on global maize and wheat yields. The combined impact of climate change and

water erosion on maize and wheat yields, and the potential impact of climate change on water erosion,

were also assessed. This section summarises the findings of the thesis.
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8.1.1 Simulation and evaluation of water erosion with EPIC-IIASA

EPIC-IIASA was used to develop a modelling approach to estimate long-term average water erosion rates

in global maize and wheat fields under different field management scenario (Chapter 5). Simulated water

erosion rates differed greatly between temperate climate regions where crops are grown in lowlands and

tropical regions with abundant hilly farmland. Water erosion rates in maize fields were higher than in

wheat fields. In addition, model results showed that water erosion rates decrease with decreasing tillage

intensity and increasing crop residue cover in many regions of the world.

The robustness of the simulated water erosion rates was confirmed for the major maize and wheat

growing regions by using water erosion measurements from field studies as a comparison. In regions

with steep slopes and heavy precipitation, simulated water erosion rates exceeded field values, reducing

confidence in model results at these locations. However, these sites accounted for only 7% of the world’s

maize and wheat land.

One of the most important challenge to the evaluation of water erosion was the limited amount of

suitable field data in different regions. In addition, field data were highly variable, as assessing water

erosion based on field experiments can be difficult and subject to many uncertainties (Chapter 2.3.5).

To better interpret the robustness of simulated water erosion estimates, an analysis of the sensitivity

and uncertainty of water erosion estimates was conducted in Chapter 5. The sensitivity analysis high-

lighted the high sensitivity of the model to precipitation and slope steepness. The uncertainty analysis

showed a wide range of water erosion estimates with different water erosion equations and field manage-

ment scenarios in regions vulnerable to water erosion. Improving the limited information on global field

management and the spatial resolution of topography and land use data would improve the robustness of

water erosion estimates.

The insights on the varying robustness and uncertainty of simulated water erosion estimates in

Chapter 5 are useful to interpret the robustness and uncertainty of the results in Chapter 6 and Chapter 7.

8.1.2 The impact of water erosion on global maize and wheat yields

The modelling approach evaluated in Chapter 5 was used in Chapter 6 to explore the impact of water

erosion on maize and wheat yields and production. In addition, the model results were used to identify

the fields most at risk of water erosion based on the amount of rainfall, the slope of the fields and the use

of fertilisers.

Model results showed that water erosion will reduce maize and wheat yields on about half of the

world’s cropland by an estimated 3% per year if farmers do not adapt to changing environmental condi-

tions. The areas at risk are located on steep slopes exposed to heavy precipitation and where little fer-

tiliser is available. Fields with these characteristics are found primarily in parts of sub-Saharan Africa,

South Asia, and Latin America. Because the main areas of maize and wheat cultivation are in flat terrain

outside the tropical heavy rainfall areas and are managed with large amounts of inputs such as fertilisers,

they are less affected by water erosion. The model results showed that annual production losses of maize

and wheat due to water erosion are less than 1% of global production volume. In addition, the calculated
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replacement cost of nitrogen fertiliser to offset nutrient runoff was low compared to crop production

value. However, the analysis of water erosion impacts did not include the cost of replacing other plant

nutrients (phosphorus, potassium, carbon), and external costs such as pollution from sediment runoff.

8.1.3 The impact of climate change and water erosion on maize and wheat yields

Chapter 7 extends the analysis of water erosion impacts on maize and wheat yields by using the mod-

elling approach evaluated in Chapter 5 under two contrasting climate change scenarios. In addition to

analysing regional differences in water erosion impacts as in Chapter 6, regional differences were also

analysed for climate change impacts on maize and wheat yields.

The model results showed that low-latitude maize and wheat production are most affected by water

erosion and climate change simultaneously. Climatic conditions at low latitudes include heavy precipita-

tion, resulting in increased water erosion, and higher temperatures, which exacerbate the negative effects

of warming on many crops. In addition, global differences in water erosion and climate change impacts

are due to differences in agricultural intensity and associated differences in the quantity and efficiency

of inputs such as fertilisers and irrigation. Regions most negatively affected by both climate change

and water erosion are most abundant in sub-Saharan Africa, South and Southeast Asia, and Central and

South America.

The model results were further analysed to explore the links between climate change and water

erosion. There was a clear positive relationship between increasing precipitation and water erosion. The

impact of increasing precipitation on water erosion was stronger with higher levels of climate change.

The erosion-precipitation relationship was strongly affected by field management. In addition, the model

results showed that water erosion likely increases where climate change reduces crop yields.

However, identifying regions where water erosion will change in the future has been difficult. This

is primarily because changes in precipitation are most important, but these projections are highly uncer-

tain. Nevertheless, the likelihood of a decline in vegetation cover due to climate change may indicate

where water erosion could increase. Since the greatest negative impacts of climate change on crops

worldwide are in low latitudes, these regions are also most at risk from increased water erosion due to

decreasing vegetation cover.

Finally, the model results showed the strong influence of field management on the effects of climate

change on water erosion. This indicates a huge potential for mitigating the negative effects of climate

change on water erosion and thus crop yields.

8.2 Summary of research contributions

The results of this thesis contribute to a better understanding of regional differences in water erosion

on global croplands and the effects of water erosion and climate change on global cereal production;

thus, providing new insights into the impact of environmental changes on long-term agronomic trends.

Specifically, this thesis addresses i) the need for improved large-scale indicators of water erosion rates
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and water erosion impacts on crops to inform major environmental and agricultural policies (Alewell

et al., 2019; Montanarella, 2007; Nkonya et al., 2011), and ii) the neglect of land degradation processes

in climate change impact assessments using GGCMs (Balkovič et al., 2018; Webb et al., 2017).

8.2.1 The first evaluation of global water erosion estimates from a GGCM

Proper model calibration is needed to match experimental data obtained from the field, foremost for a

complex process such as soil loss due to water erosion (Favis-Mortlock, 1998). However, the evaluation

of global water erosion estimates was lacking in previous global studies.

Whilst previous global erosion estimates lack evaluation, previous global crop yield estimates were

evaluated against regional yield statistics to represent the crop yield patterns across regions and countries

(Mueller et al., 2017). Following the same paradigm, this study evaluated the robustness of a GGCM to

represent regional differences and spatial patterns in water erosion estimates based on the most important

determinants for water erosion. Although the field data used in this study is insufficient to calibrate

EPIC-IIASA to simulate actual erosion events observed in the field, it provides an initial indication of

the robustness of estimated water erosion rates under certain topographical and climatic conditions.

As such, the evaluation against field data confirmed that EPIC-IIASA can be used to analyse global

differences in water erosion rates and impacts between the most important crop production regions.

Therefore, the results of Chapter 5 confirm the usefulness of EPIC-IIASA to address the previously

neglected impact of water erosion in large-scale crop modelling studies and the previously neglected

interactions between crops and water erosion in large-scale water erosion modelling studies.

8.2.2 New large-scale water erosion indicators

Large-scale indicators are necessary to address water erosion in policy programs (Alewell et al., 2019).

To create the needed indicators simple models are required due to the limited availability of global

input and experimental data. Therefore, most authors have recently opted for USLE-based models to

estimate water erosion rates at large scales (Chapter 2.3.1). Since these models generally use static

inputs, biomass-soil interactions in response to weather and field management have been neglected.

Unlike previous studies, the large-scale water erosion estimates in this study are based on USLE-

type models combined with the process-based crop model EPIC. The more complex modelling approach

allowed to simulate the effects of field management strategies on water erosion. As such, modelled global

water erosion rates account for the first time for surface cover of individual crops, timing of planting and

harvest, irrigation, fertilisation, cover crops, intercropping, tillage, and residue management.

The model results thus provide new insights into the variability of water erosion rates based on

these management factors at large spatial scales and improve the availability of large-scale indicators for

important environmental and agricultural policies.
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8.2.3 New evidence on regional differences in the impact of water erosion in agri-

culture

Large-scale water erosion studies have focused primarily on the extent of erosion rather than the impact

on crops. As a result, the large-scale impacts of water erosion have not been adequately quantified in

physical and economic terms. In addition, the limited number of large-scale studies on the effects of

water erosion on crops relied on field experiments based on different methodologies leading to different

estimates, and they do not cover all agricultural areas worldwide (Chapter 2.4). Previous approaches

are less suitable to extrapolate erosion-productivity relationships beyond field scale to compare regional

differences and to derive robust conclusions on water erosion impacts on different crops on large and

global scales.

The results in Chapter 6 provide the first globally consistent estimates of water erosion impacts

on crops using state-of-the-art datasets on climate, soil, topography and management practices. These

results provide the most accurate global assessment of the links between water erosion and crop produc-

tivity that is currently feasible, given data availability.

The globally consistent modelling method made it possible to illustrate the sharp contrast between

the low on-site costs of erosion in the most productive agricultural regions and the significant impact

of water erosion on crop yields in regions with heavy rainfall, hilly croplands, and low fertiliser use.

By identifying agricultural regions most vulnerable to water erosion, the model results can highlight

hotspots where anti-erosion measures are most needed to sustain crop productivity in the long-term.

In addition, the model results allow to question the globally uniform assumption by previous authors

that annual water erosion rates up to 11 tha−1 are sustainable for crop production (Sartori et al., 2019;

Pravalie et al., 2021). Whilst these rates may be sustainable to maintain agricultural productivity in high-

input systems, the results in Chapter 6 demonstrates that lower water erosion rates can have a significant

impact on crops in regions where low fertiliser use is a common limiting factor for crop yields.

Overall, the globally consistent modeling approach developed in this study provides a platform for

assessing water erosion problems in multiple ways to identify risks and hotspots and support policy

actions. For example, shifts in future risks and hotspots can be assessed by integrating models on land

use change (e.g. new crops) and climate change. The latter has been explored in Chapter 7. In addition,

the field management scenarios used for generating all model outputs demonstrate the decisive impact of

farming techniques and soil conservation measures on water erosion rates and water erosion impacts on

crop yields. Previous studies point out that there may be a yield penalty from employing soil conservation

practices in the short-term and a yield gain in the long run (Giller et al., 2009). The model approach

developed here can be used to create large-scale indicators on the trade-offs between lower water erosion

rates due to soil conservation strategies and absolute crop yields to inform policies. In addition, the

model outputs estimate the amount of organic nitrogen and carbon in sediment runoff that can potentially

enter surrounding environments. These estimates can be used to assess off-site costs for different field

management scenarios. Previous studies suggested that off-site impacts are the main concern of erosion

in the highest developed agricultural regions and thus they are targeted by many policy programs (Graves
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et al., 2015; Montanarella et al., 2016).

8.2.4 Improvements in crop yield projections by considering water erosion

Future changes in crop yields are discussed mainly as a result of climate change, while many important

processes that contribute to ongoing soil degradation are neglected (Chapter 3.6). This can lead to

inconsistencies in the validity of model results in a world with different management intensities, as the

influence of weather variability on yield variability decreases with decreasing inputs to farming systems,

while other factors such as soil quality become more important (Ray et al., 2015). Because water erosion

is one of the most common soil degradation process affecting crop yields (Chapter 2.2) and is closely

related to climate (Chapter 2.5), it should be especially considered in crop yield projections.

Model results in Chapter 7 showed that water erosion affects projected crop yields at vulnerable

sites characterised primarily by heavy rainfall, steep slopes, and low fertiliser use. Without accounting

for water erosion, crop yield projections at these sites ignored an important factor that strongly influences

crop productivity, which can lead to overestimation of future crop yields. In addition, model results

showed that the susceptibility of sites to water erosion may change in the future due to the effects of

climate change on vegetation cover and precipitation patterns. By considering water erosion and its link

to climate change, large regions in the lower latitudes have been identified as being at risk of crop yield

losses due to the simultaneous effects of soil erosion and climate change.

Moreover, consideration of water erosion provides greater insight into the effects of different field

management scenarios on crop yields, which is often the subject of climate change impact studies (Chap-

ter 3.5). The analysis of model results has shown that water erosion affects the links between field man-

agement and crops in several ways. These include the impact of water erosion on fertiliser and nutrient

runoff, which affects climate change adaptation strategies that aim to increase fertiliser use (Rosenzweig

et al., 2014; Balkovič et al., 2014) or adopt cropping practices that replenish soil nutrients (Folberth et al.,

2014). In addition, changes in soil quality due to water erosion affect crop sensitivity to climate change

(Laban et al., 2018; Herrick et al., 2013).

By including water erosion in the projection of global maize and wheat yields, the model results

have taken into account another important factor for future changes in crop yields in many regions, in

addition to climate change. This contributes to a more complete picture of the stressors affecting future

cereal production trends. In addition, this improve the usefulness of climate change adaptation studies

by accounting for an important process within the interactions between field management and crops.

8.2.5 New insights into the potential impacts of climate change on global water

erosion

The effects of climate change on water erosion are the result of complex interactions of many factors

including soil, topography, agricultural practices, biomass, and climate. As these factors vary widely

around the world, the effects of climate change on water erosion can vary widely across regions. Because

previous studies of the effects of climate change on water erosion focused on individual fields in various
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regions, they reached very different conclusions (Chapter 2.5). Due to the different modelling approaches

used in previous studies, their results cannot be used to compare the effects of climate change on water

erosion between regions.

The analysis of model results in Chapter 7 showed the interactions in different global regions based

on the impact of varying precipitation changes and vegetation cover changes. While uncertainties in pre-

cipitation projections render them unsuitable for examining regional differences, the higher confidence

in regional differences in future vegetation cover changes could provide insight into potential global

differences in climate change impacts on water erosion.

The globally consistent modelling approach developed in this thesis enabled to analyse the interac-

tions between crops and water erosion in response to climate change for the first time at the global scale.

As such, the results of Chapter 7 contribute to a more comprehensive understanding of the potential

impact of climate change on water erosion in different global regions.

8.2.6 New data on global water erosion rates and impacts on crops

Finally, this study provides novel data including global water erosion estimates for different farming

techniques and crops, and estimates of water erosion impacts on global maize and wheat yields un-

der historic climate and two contrasting climate change scenarios. All estimates are available on grid,

national, regional and global scale.

8.3 Research needs

8.3.1 Most important needs to improve large-scale water erosion estimates

To improve the evaluation of simulated water erosion rates, the amount of appropriate field data needs

to be increased to represent a wider range of global environments and crop management practices. A

major challenge in this study was the collection of useful field data, which is often only published in

aggregated values and needed to be collected from numerous publications, grey literature and conference

proceedings. Moreover, field data is often not freely available (Benaud et al., 2020).

In addition, more data on field management would improve global water erosion estimates. Whilst

information on rainfed and irrigated cropland, crop calendars and crop-specific fertiliser applications

rates are based on spatially explicit datasets, the geographic variations in tillage intensity and soil con-

servation measures are based on rough assumptions in this study. Although they provide insights on the

impact of changing surface cover and roughness on water erosion rates, they hardly capture the actual

regional differences in farming techniques.

Also, a higher spatial resolution is needed for land use data to better approximate actual water

erosion rates and impacts on crops. Improvements in spatial data informing about the distribution of

cropland in mountainous regions is particularly important. Previous field studies identified highest water

erosion rates on marginal cropland and on steep slopes, which also have been targeted by policy mea-

sures to reduce erosion (Long et al., 2006b; Deng et al., 2012). However, the evaluation against field
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data shows that water erosion on fields with steep slopes and strong precipitation is overestimated. The

low confidence in simulated water erosion rates in mountainous regions is partly the result of the hetero-

geneity of upland farming and fields and the missing data on field management, anti-erosion measures

and the low spatial resolution on cropland distribution and topography datasets. In addition, previous

studies suggested that model improvements are needed to improve erosion estimates for locations with

steep slopes and strong precipitation (Naipal et al., 2018; Labrière et al., 2015).

Due to the current uncertainties, global studies cannot replace field-scale assessments based on

precise information on management practices and site characteristics. Due to higher spatial detail, field-

scale assessments can be based on more complex water erosion models, which may include special

elements such as channels and ponds to identify potential sources and sinks of sediments and associated

nutrients within a field (Jetten et al., 2003). By including depositional areas within the spatial unit

studied, positive effects of topsoil accumulation on crop productivity can be considered (Bakker et al.,

2007). In addition, studies based on data with a higher temporal resolution can consider the impact of

individual rainfall events on sediment runoff instead of focusing on average erosion rates as is common

in global studies. In other words, smaller-scale studies can more precisely inform about actual water

erosion impacts on a field to support effective anti-erosion measures on-site.

However, studies on erosion-productivity relationships cannot normally be scaled-up as the robust-

ness of locally observed relationships need to be re-evaluated for different environmental and socioe-

conomic conditions in each location. Given the current lack of consistent field studies representing all

global environments, a bottom-up approach to deliver large-scale indicators on erosion rates and impacts

to inform agricultural and environmental policy programs is not currently feasible (Alewell et al., 2019).

Future global studies on water erosion impacts may benefit from current efforts to compile spatial

data on representative management practices such as tillage systems (Porwollik et al., 2019), and re-

mote sensing products for spatial attribution of field management practices (Hively et al., 2018; Zheng

et al., 2014). In addition, the increasing availability of high-resolution data through improvements in

remote sensing techniques will benefit future global water erosion assessments (Buchhorn et al., 2020).

Moreover, recent efforts to collate erosion measurements and metadata from existing studies in a single

platform may improve the global coverage of appropriate field data in the future (Benaud et al., 2020). In

addition to the need for more spatial data on representative management practices and higher-resolution

datasets on land use patterns and topography, a more consistent approach to field-based data collec-

tion to evaluate model outputs would enable such studies to be used in future large-scale water erosion

assessments.

8.3.2 Scenarios on future land use and field management changes are needed to

estimate future water erosion rates

The main uncertainties in simulating the effects of climate change on water erosion were discussed in

Chapter 7. Among them, uncertainties in precipitation projections and simulated changes in crop cover

due to climate change must be considered to improve estimates of future changes in water erosion rates
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and their regional variations.

However, numerous studies concluded that future water erosion rates may be primarily influenced

by land use change instead of climate change (Li and Fang, 2016). This poses a major challenge for

improving research on future water erosion rates because land use changes are determined not only by

climate, but also by many other factors such as population growth, socioeconomic changes, and policies.

These factors are often difficult to project and can affect land use in ways that both increase and decrease

water erosion.

For example, projected population growth and the associated increase in food demand in many

developing countries may exacerbate water erosion on cropland as agriculture expands and intensifies.

On the other hand, some projections of future agricultural intensification suggest that the impact of water

erosion on crops may be reduced in the future as fertiliser consumption and fertiliser-use efficiency are

projected to rise (FAO, 2006). Whilst this could lead to increased off-site impacts of water erosion, the

impact of water erosion on crops may be less relevant. Moreover, high rates of urbanisation and rural-

urban migration are predicted in many developing countries, which could reduce degradation stemming

from the cultivation of marginal lands and slopes (FAO, 2006). Examples in Europe from the 1950s

onwards and in China more recently showed that urbanisation in conjunction with agricultural policy

programs led to the abandonment of steep slopes and marginal land, which reverted to forest and caused

a reduction in water erosion (Deng et al., 2012; Garcı́a-Ruiz, 2010; Renwick et al., 2013; Tasser et al.,

2007). However, this development may not occur everywhere. In Indonesia, where the rate of population

growth is high, population drift to cities has not significantly reduced the density of rural settlement

(FAO, 2006). Evidence from Southeast Asia show that increasing pressure on food production recently

led to the expansion of cropland to steep slopes (Turkelboom et al., 2008; Valentin et al., 2008).

In addition, it is important to consider future changes in field management to project changes in

water erosion. For example, the cultivation of crops that are more resilient to climate change may

increase in certain areas in the future, reducing the indirect negative effects of climate change on water

erosion. Millet is less susceptible to warming than maize and wheat and thus may be more common in

arid regions in the future (Liu et al., 2008). Moreover, current efforts to shift to more sustainable land

management may decrease future water erosion. Several policies encouraging sustainable management

practices that reduce soil erosion, promote vegetation growth, enhance soil organic carbon and halt land

degradation are already in place on all continents (excluding Antarctica) (Smith et al., 2016). The World

Overview of Conservation Approaches and Technologies (WOCAT) provides an overview of sustainable

measures and has been recently endorsed by the UN (Liniger et al., 2019). In addition, the UN promotes

halting of land degradation and land restoration through several initiatives such as their SDGs (Keesstra

et al., 2018).

In summary, to improve projections of water erosion changes, various field management and land

use scenarios must be considered in addition to climate change scenarios. Future research on modelling

water erosion changes can use existing global land suitability change maps to estimate land use changes

due to climate change (Zabel et al., 2014). Land use change scenarios based on other factors such as
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population growth, policies and socio-economic changes are likely to be made easier on a smaller scale

because of their complexity. Scenarios about future changes in field management may also be easier to

create on a smaller scale. In exploring future scenarios for field management, it is possible to draw on

existing guidelines that have been endorsed by the UN and are likely to be used more frequently in the

future.

8.3.3 The effects of other land degradation processes must be considered

Next to erosion, specific threats to soil function are compaction, acidification, contamination, sealing,

salinisation, waterlogging, nutrient imbalance (i.e., both nutrient deficiency and nutrient excess), and

losses of soil organic carbon and of biodiversity (Montanarella et al., 2016). Similar to water erosion,

the impact of other land degradation process may be low on a global scale but can be high in specific areas

(Pravalie et al., 2021). Due to uneven distribution of dominant land degradation processes globally, it is

important that future research addresses the impact of all land degradation processes on crops to better

assess long-term agronomic trends in different global regions.

Land degradation processes other than water erosion may become more important in certain re-

gions. For example, agricultural intensification is projected to lead to an expansion in irrigated land in

developing countries, which likely does not increase water erosion as irrigated land is generally on flat or

terraced land. However, other land degradation processes such as salinisation may increase as a conse-

quent, especially on arid land (Norse et al., 2001). In addition, climate change may increase the severity

of other land degradation processes through changes in soil organic matter and soil water balances due

to warming and droughts (Olsson et al., 2019).

Several authors state that more policies are required to fully consider the risks associated with

ongoing land degradation, or opportunities arising from restoration of degraded land (Webb et al., 2017;

Pravalie et al., 2021). Soil degradation does not occur because of any lack of knowledge on how to

protect soils, but a lack in policy governance (Alewell et al., 2019; Montanarella et al., 2016; Panagos

et al., 2016). Additional data on global patterns of land degradation and its impacts on agriculture and the

environment will help identify the most vulnerable regions. By identifying the regions most vulnerable

to land degradation worldwide, as has been done with water erosion in this thesis, more knowledge of

land degradation hotspots can be created to know where control measures are most urgent.

8.4 Final conclusion

Knowledge on future pathways of crop production and their environmental impacts is important to pre-

dict potential threats to human well-being and the sustainability of environmental resources. However,

many relationships between biomass, soil and climate in agricultural systems are still not understood.

By developing a modelling approach to explore global water erosion patterns and impacts on maize and

wheat yields in response to historic climate and climate change scenarios, this thesis contributes to an

improved understanding of the links between crop production and environmental change and their role
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in long-term agronomic trends. This thesis improves global water erosion assessments by analysing

both water erosion patterns and water erosion impacts. In addition, this thesis contributes to the further

development of global crop yield projections by addressing the need to integrate land degradation pro-

cesses such as water erosion into large-scale and global impact assessments on climate change in the

agricultural sector. As such, this research improves large-scale indicators to inform environmental and

agricultural policy programs on land degradation and agricultural productivity.

EPIC-IIASA was previously considered to be a reliable tool for depicting the different productivi-

ties between global agricultural regions. This study shows it can also adequately estimate global water

erosion patterns for specific crops and interactions between soil erosion and productivity. Although im-

provements are needed to increase the robustness of estimated water erosion rates in areas most sensitive

to water erosion, the model results can illustrate potential impacts of erosion on global crop production

and identify soil erosion hotspots on global cropland.

The new assessment of water erosion impacts on global maize and wheat yields illustrates the strong

contrast of water erosion impacts between different global regions, which is caused by different envi-

ronmental conditions and agricultural management. Maize and wheat cultivation areas most vulnerable

to water erosion are concentrated in Latin America, sub-Saharan Africa and South and Southeast Asia.

In addition, regions in low latitudes where maize and wheat is grown, are most likely to suffer from in-

creased water erosion impacts in the future due to the negative impacts of climate change on both crops.

The combined effects of water erosion and climate change require farmers to mitigate both stressors,

as land degradation caused by water erosion can reduce the resilience of agricultural systems to climate

change and, conversely, climate change can increase water erosion and thus land degradation. In con-

trast to potentially significant global changes in crop production induced by climate change, the severe

impacts of water erosion on maize and wheat yields are likely to be concentrated in specific regions.

Despite considerable uncertainties, the projections indicated that the impact of water erosion on maize

and wheat production will remain small on a global scale, since the cultivation areas most affected by

water erosion are currently outside the large maize and wheat production regions. The main difficulties

in predicting the effects of water erosion are the uncertainty in projected changes in precipitation and

future land use changes.

Simulated water erosion rates and impacts are strongly driven by land use and field management

assumptions, which can only partly be narrowed down at a global scale. To improve the robustness of

future global studies on water erosion patterns and impacts, more spatial data on representative man-

agement practices and higher-resolution datasets on land use patterns and topography are needed. In

addition, a well-defined field-based data collection to evaluate model outputs will be critical to improve

future large-scale assessments of water erosion.

This study demonstrated that an integrated biophysical modelling framework - considering plant

growth, soil processes and input requirements - can provide a link between land degradation and global

agricultural assessments. The modelling approach developed in this study thus provides a platform for

expanding research on the impacts of soil degradation and climate change on global crop production.
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Whilst maize and wheat are the most important staple crops affected by water erosion, focusing on just

two crops is not sufficient to explore the threats of environmental change to future crop production.

Thus, future research should focus on analysing the susceptibility and resilience of more crops to envi-

ronmental change according to the impact assessment developed in this thesis. In addition, the modelling

framework of this study can be used to incorporate additional climate change scenarios to capture the

full spectrum of potential climate impacts on future crop yields and associated changes in water ero-

sion. As global crop yield projections should ideally take into account all stress factors that affect crop

yields, future research should also consider other land degradation processes. This study has shown that

large-scale land degradation assessments can capture the regionally varying impacts on crop yields and

identify priority areas for supportive management and policy interventions.
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Appendix A

Chapter 4 - Methodology

Figure A.1: Global dataset of slope classes (%) that are used to derive the slope steepness per grid cell
(IIASA/FAO, 2012).
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Figure A.2: Nitrogen (N), Phosphorus (P) and Potassium (K) application rates (kg ha−1 yr−1) for maize
(a) and wheat (b) on global cropland (Mueller et al., 2012).
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Figure A.3: Grid cells with irrigated and rainfed wheat and maize cultivation around the year 2000
(Portmann et al., 2010).

Figure A.4: Main climate zones based on the updated Koeppen-Geiger climate classification (Peel et al.,
2007)
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Figure A.5: Relative area covered by the dominant slope and cropland per grid cell.

Figure A.6: Locations of water erosion field data from cropland where coordinates were recorded
(n=554).
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Figure A.7: Distribution of erosion values (t ha−1) measured in agricultural fields using 137CS method
(n = 315, Mean = 24 t ha−1; Median = 18 t ha−1), runoff and sediment collection (n = 188, Mean = 21 t
ha−1; Median = 4 t ha−1) and volumetric surveys (n = 103, Mean = 2 t ha−1; Median = 0.1 t ha−1).

Figure A.8: (a) Distribution of slope steepness (%) for measured erosion values (n = 606; Mean = 16%;
Median = 11%). (b) Distribution of annual precipitation (mm) for measured erosion values (n = 606;
Mean = 879 mm; Median = 774 mm). (c) Distribution of recorded measurement periods for soil loss
experiments excluding radioisotopic methods (n = 95; Mean = 15 a; Median = 1 a).
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Figure A.9: Number of measured water erosion records (n=606) per country (n=36).
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Table A.1: Input parameters directly connected to the water erosion equations in EPIC. Range of discrete
values or values used to define the triangular distribution to generate random values for each parameter
for the sensitivity analysis.

EPIC Parameter Description Distribution Range

CHL Channel length Triangular 0.2; 0.8; 1.3
CHN Manning N channel Triangular 0.02; 0.1; 0.3
CHS Channel slope Triangular 0; 0.05; 0.3
EMX Mixing efficiency Triangular 0.2; 0.5; 0.8
HSG Soil hydrologic group Discrete 1; 2; 3; 4
LUN Land use number Discrete 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11;

12; 13
OC Organic carbon concentration Triangular 0.001; 0.02; 0.1
OPV5 Plant population at planting Triangular 50; 150; 200
ORHI Crop residues left after harvest Discrete 0; 0.25; 0.5; 0.75; 1
P23 Coefficient in RUSLE C factor

equation
Triangular 0.3; 0.5; 1.5

P26 Coefficient in RUSLE C factor
equation

Triangular 0.01; 0.05; 0.2

P42 Curve number (CN) coeffi-
cient

Triangular 0.5; 1; 1.5

P65 CN coefficient Triangular 0.05; 0.25; 0.5
P73 CN coefficient Triangular 1;1.5;2
P75 CN coefficient Triangular 0; 0.05; 0.3
PRCP Daily rainfall Triangular 0.5; 1; 1.5
RIN Ridge interval Discrete 0.2; 0.4; 0.6; 0.8
ROK Coarse fragment content Triangular 0; 0.05; 0.5
RR Random surface roughness Triangular 10; 20; 50
S18 Soil temperature effect Triangular 0.97; 1; 1.02
S23 Fraction plant ground cover Triangular 0.5; 1; 1.5
S301 CN2 as % of the volume be-

tween FC and WP
Triangular 10; 20; 70

S302 CN3 as % of the volume be-
tween saturation and FC

Triangular 10; 20; 70

SAND Sand content Triangular 0.1; 0.5; 0.8
SILT Silt content Triangular 0.1; 0.3; 0.8
SLP Slope steepness Triangular 0; 0.05; 0.3
SLPL Slope length Triangular 100; 120; 200
SN Surface N channel Triangular 0.02; 0.1; 0.3
TMX Air temperature max Triangular -4; 0; 4
WSX Watershed area Triangular 10; 50; 200
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Appendix B

Chapter 5 - Uncertainties, sensitivities

and robustness of simulated water

erosion with EPIC-IIASA

Figure B.1: World regions classified according to the United Nations geo-schema (UN, 1999) with minor
modifications: Melanesia has been added to Southeast Asia and the Caribbean has been added to Central
America.
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Figure B.2: Median deviation (MD) in t ha−1 between measured and simulated water erosion using
the baseline scenario with different water erosion equations. Measured and simulated medians were
calculated for different slope and precipitation classes.
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Figure B.3: Distribution of average water erosion values from 1980 – 2010 simulated with the baseline
scenario and weighted for each grid cell. The dashed vertical line illustrates the median of the distribu-
tion, which represents global median water erosion of 6 t ha−1 a−1. Average water erosion at each grid
and the global average water erosion of 19 t ha−1 a−1 has been calculated as a weighted average based
on the distribution of irrigated and rainfed maize and wheat acreage (Portmann et al., 2010).
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Figure B.4: Comparison of slope inputs and simulated water erosion outputs between the cropland dis-
tribution scenario using the most common slopes and the cropland distribution scenario using the flattest
terrain available in Italy. (a, b) distribution of the cropland share (Portmann et al., 2010) per slope class.
(c, d) distribution of grid cells per slope class. (e) Simulated water erosion for Italy using both cropland
distribution scenarios. Midlines visualise median values, boxes include values from the 25th to the 75th

percentiles and whiskers bracket values between the 10th and the 90th percentiles.
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Appendix C

Chapter 6 - The impact of water

erosion on global maize and wheat

yields
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Figure C.1: Maize (a) and wheat (b) yields (t ha−1 yr−1) for each grid cell simulated with the baseline
scenario with and without the impact of water erosion, averaged for the years 2001-2010 and weighted
for irrigated and rainfed areas.
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Figure C.2: Maize yield losses due to water erosion (% yr−1) for all countries with significant crop yield
losses due to water erosion. Countries contributing less than 0.01% to global maize production are ex-
cluded. The countries are ranked by median crop yield losses. Boxes include values from the 25th to the
75th percentiles and whiskers bracket values between the 10th and the 90th percentiles. The points illus-
trate minimum and maximum median crop yield losses generated from all field management scenarios.
All values are converted to logarithmic scale. Countries without significant differences between average
yields simulated with and without water erosion are excluded (T-Test, p>0.05). Grey barplots illustrate
the share of grid cells affected by erosion impacts in each country, and errorbars indicate the variability
of affected grid cells due to all management scenarios.
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Figure C.3: Wheat yield losses due to water erosion (% yr−1) for all countries with significant crop yield
losses due to water erosion. Countries contributing less than 0.01% to global maize production are ex-
cluded. The countries are ranked by median crop yield losses. Boxes include values from the 25th to the
75th percentiles and whiskers bracket values between the 10th and the 90th percentiles. The points illus-
trate minimum and maximum median crop yield losses generated from all field management scenarios.
All values are converted to logarithmic scale. Countries without significant differences between average
yields simulated with and without water erosion are excluded (T-Test, p>0.05). Grey barplots illustrate
the share of grid cells affected by erosion impacts in each country, and errorbars indicate the variability
of affected grid cells due to all management scenarios.
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Figure C.4: Yield loss due to water erosion plotted against Nitrogen and Phosphorus fertiliser use per
grid cell. The fertiliser application rates are taken from (Mueller et al., 2012), which have been used to
prepare the model inputs. The linear relationship between crop yield loss and fertiliser application rates
is illustrated by the dashed regression line.
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Figure C.5: Soil organic nitrogen loss with sediment runoff from the topsoil layer (kg ha−1 yr−1) simu-
lated for each grid cell in maize fields (a) and wheat fields (b) averaged for management scenarios and
the simulation period 1980-2010 and weighted for irrigated and rainfed areas.
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Figure C.6: Soil organic carbon loss with sediment runoff from the topsoil layer (kg ha−1 yr−1) simulated
for each grid cell in maize fields (a) and wheat fields (b) averaged for management scenarios and the
simulation period 1980-2010 and weighted for irrigated and rainfed areas.
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Appendix D

Chapter 7 - The combined effects of

climate change and water erosion on

global maize and wheat yields

Figure D.1: Relative changes in mean maize yields for the years 2050-2059 and 2090-2099 simulated
with RCP 2.6 and RCP 8.5 compared to mean maize yields of the years 1980-2010 simulated with the
AGMERRA climate data.
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Figure D.2: Relative changes in mean wheat yields for the years 2050-2059 and 2090-2099 simulated
with RCP 2.6 and RCP 8.5 compared to mean wheat yields of the years 1980-2010 simulated with the
AGMERRA climate data.
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Figure D.3: Regional trends in maize yields 1980 - 2099 expressed as the three-year rolling mean based
on annual average maize yields simulated with the AGMERRA climate data (1980-2010) and the RCP
2.6 and RCP 8.5 (2005-2099). Annual average maize yields are weighted with the rainfed and irrigated
area of the respective region.
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Figure D.4: Regional trends in wheat yields 1980 - 2099 expressed as the three-year rolling mean based
on annual average maize yields simulated with the AGMERRA climate data (1980-2010) and the RCP
2.6 and RCP 8.5 (2005-2099). Annual average wheat yields are weighted with the rainfed and irrigated
area of the respective region.
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Figure D.5: Regional trends in the relative decrease in maize and wheat yields due to water erosion, as
well as share of grid cells where water erosion reduces crop yields for 2010-2099 simulated with RCP
2.6 and RCP 8.5.
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Figure D.6: Maize and wheat yield reduction due to water erosion for 2090-2099 simulated with different
field management scenarios per world region. The boxes represent median values and 25th and 75th

percentiles. Each box per region represents a different field management scenario, including the baseline
scenario and all combinations with the cover crop (cover, mono) and the tillage management scenarios
(conventional (C), reduced (R), no-tillage (N)).
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Figure D.7: Grid cells where maize and wheat yields are reduced due to water erosion per field manage-
ment scenario for the years 2090-2099. The field management scenarios include the baseline scenario
and all combinations with the cover crop (cover, mono) and the tillage management scenarios (conven-
tional (C), reduced (R), no-tillage (N)).

197



Figure D.8: Regional trends in water erosion rates in maize and wheat fields between 2010-2099 simu-
lated with the RCP 2.6 and RCP 8.5. Thick lines represent ten-year rolling means. Thin lines represent
annual average. All values are log-transformed.
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Figure D.9: Regional changes in average precipitation (%) plotted against regional changes in average
water erosion (%) between the decade 2010-2019 and the decade 2090-2099 in maize fields. Both
datasets are log-transformed.
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Figure D.10: Regional changes in average precipitation (%) plotted against regional changes in average
water erosion (%) between the decade 2010-2019 and the decade 2090-2099 in wheat fields. Both
datasets are log-transformed.
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Figure D.11: Regional gains and losses in annual average maize and wheat production (million tonnes)
simulated with the RCP 2.6 and RCP 8.5 scenario for the decade 2090-2099 compared to average produc-
tion for the years 1980-2010 simulated with the AGMERRA climate data. Values are log-transformed.
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Figure D.12: Global maize and wheat production (million tonnes) and production losses (million tonnes)
due to water erosion per field management scenario simulated with the RCP 2.6 and RCP 8.5 scenario,
calculated for the decade 2090-2099. The field management scenarios include the baseline scenario and
all combinations with the cover crop (cover, mono) and the tillage management scenarios (conventional
(C), reduced (R), no-tillage (N)).
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M., Cerdà, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D.,

Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn,

N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., Villuendas, I. L., Li, C., Lombardo, L.,
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Carr, T., Balkovič, J., Dodds, P., Folberth, C., Fulajtar, E., and Skalsky, R. (2020). Uncertainties,

sensitivities and robustness of simulated water erosion in an EPIC-based global-gridded crop model.

Biogeosciences, 17:5263–5283.

Carr, T. W., Mkuhlani, S., Segnon, A. C., Ali, Z., Zougmoré, R., Dangour, A. D., Green, R., and
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