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Abstract — The uncertainty attributed by discrepant data in AI-enabled decisions is a critical challenge in 
highly regulated domains such as health care and finance. Ambiguity and incompleteness due to missing 
values in output and input attributes, respectively, is ubiquitous in these domains. It could have an adverse 
impact on a certain unrepresented set of people in the training data without a developer’s intention to 
discriminate. The inherently non-numerical nature of categorical attributes than numerical attributes and 
the presence of incomplete and ambiguous categorical attributes in a dataset increases the uncertainty in 
decision-making. This paper addresses the challenges in handling categorical attributes as it is not addressed 
comprehensively in previous research. Three sources of uncertainties in categorical attributes are recognised 
in this research. The informational uncertainty, unforeseeable uncertainty in the decision task environment, 
and the uncertainty due to lack of pre-modelling explainability in categorical attributes are addressed in the 
proposed methodology on maximum likelihood evidential reasoning (MAKER). It can transform and impute 
incomplete and ambiguous categorical attributes into interpretable numerical features. It utilises a notion of 
weight and reliability to include subjective expert preference over a piece of evidence and the quality of 
evidence in a categorical attribute, respectively. The MAKER framework strives to integrate the recognised 
uncertainties in the transformed input data that allow a model to perceive data limitations during the training 
regime and acknowledge doubtful predictions by supporting trustworthy pre-modelling and post modelling 
explainability. The ability to handle uncertainty and its impact on explainability is demonstrated on a real-
world healthcare and finance data for different missing data scenarios in three types of AI algorithms: deep-
learning, tree-based, and rule-based model. 

Keywords—categorical, uncertainty, decision-making, evidential reasoning, trustworthy 

1. Introduction 

Data preprocessing is a crucial step towards the achievement of high-quality data. The perfection in the sense of 
completeness, lack of ambiguity, meaningfulness, and correctness (Wand & Wang, 1996) in high-quality data 
promote trustworthy and reliable insights from data-driven decision-making systems. The preprocessing of 
categorical attributes is much more challenging than numerical attributes in a dataset. Missing data imputation 
techniques and data-driven models can process data only in a numerical format. Therefore, categorical attributes are 
first transformed into numbers. The techniques applied for preprocessing the input data can have a significant impact 
on model performance and explainability. Primarily, the explainability of a data-driven autonomous system has two 
stages: pre-modelling explainability to gain an understanding of the data imputed in a decision-making system and 
post-modelling to understand the reasoning behind a decision generated by a system (Sachan, Yang, & Xu, 2020). 
Pre-modelling explainability is in demand due to a rise in ethical concerns regarding the justification and legitimacy 
of the data used in the model. 

The challenge to overcome uncertainty is critical in a decision-making system enabled by artificial intelligence 
or machine learning (AI/ML) techniques. The presence of uncertainty is ubiquitous in a realistic setting and is critical 
in highly regulated domains, such as finance, insurance, healthcare, and medical science. All uncertainties cannot 
be eliminated; however, it cannot be fully ignored. It constrains the sustainability of AI/ML decision-making 
applications (Walker, Haasnoot, & Kwakkel, 2013). Three sources of uncertainties - incomplete information, 
inadequate understanding, and undifferentiated alternatives in decision-making were identified by Lipshitz & 
Strauss (Lipshitz & Strauss, 1997). A review on informational, environmental, and intentional uncertainty in AI-
enabled decision-making was conducted by Wu and Shang  (Wu & Shang, 2020) . The uncertainty is mostly 
associated with incomplete information (Milliken, 1987). In AI-enabled algorithms, the incompleteness of 
information points to missing values and the lack of sufficient instances in a dataset. A paper has presented an 
adaptive algorithm to find an optimal imputation method for an AI/ML classifier based on missing data 
characteristics (Sim, Kwon, & Lee, 2016). Previous research in different areas has investigated techniques to treat 
missing data, such as healthcare (Masconi, Matsha, Echouffo-Tcheugui, Erasmus, & Kengne, 2015), financial credit 



 3

scoring (Lan, Xu, Ma, & Li, 2020), customer satisfaction (Maddulapallia, Yang, & Xu, 2012), diagnostic and 
prognostic (Razavi-Far, Chakrabarti, Saif, & Zio, 2019) and psychology (Roth, 1994) and for multiple types of data, 
for instance, survey data (Wang & Wang, 2009) and longitudinal data (Huque, Carlin, Simpson, & Lee, 2018). The 
presence of categorical attributes increases the information uncertainty (Qin, Xia, & Prabhakar, 2011). Dealing with 
numerical data is often easier than categorical data as the semantics pertaining to each categorical value in a 
categorical attribute does not require transformation to a numerical format. The uncertainties incurred due to 
incompleteness and ambiguity in categorical attributes have not been addressed adequately in previous research. It 
is valuable to develop techniques to handle uncertain categorical attributes that reduce vulnerability towards a 
plausible future which demands trustworthy decisions.     

The categorical attributes in real-world data are usually missing and have inherently non-numerical nature, which 
present challenges in the development of AI/ML models. A dataset can have three types of missing and non-missing 
patterns: complete, incomplete, and ambiguous (Sachan S. , Yang, Xu, Benavides, & Li, 2020). A complete dataset 
has full records of all input and output attributes. An incomplete dataset has missing records in input attributes. An 
ambiguous dataset has missing records in an output attribute. Data can be called unambiguous if all outputs are 
available. A dataset is incomplete and ambiguous if it has missing values in both input and output attributes. The 
missing and non-missing patterns are shown in Figure 1. The incomplete dataset (only input attributes missing) can 
have three types of missing mechanisms: missing completely at random (MCAR), missing at random (MAR) and 
missing not at random (MNAR) (Rubin, 1976). The missing mechanism by MCAR is independent of observed and 
unobserved data, whereas the missing mechanism by MAR is independent of unobserved data and dependent on 
observed data. The missing mechanism by MNAR is only dependent on unobserved data. The sensitivity analysis 
to assess the robustness of the assumptions for multiple imputation techniques for MCAR, MAR, and MNAR types 
of missing data is demonstrated in (Sidi & Harel, 2018). The case-wise deletion, also known as the list-wise deletion 
(Briggs, Clark, Wolstenholme, & Clarke, 2003), and the imputation of missing values are two conventional methods 
to handle missing values. The case-wise deletion utilizes samples or cases with no missing values in all the attributes 
of a dataset. The practice of complete-case analysis could result in a significant loss of information (Jamshidian & 
Mata, 2007). The missing values imputation method estimates a set of plausible values for the missing values using 
the distribution of the observed data. The exclusion of incomplete cases by a deletion method is not always possible 
for most use cases in different domains as it could result in biased inference due to poor representation of the entire 
data by complete cases (Brown, 1994) (Graham, Hofer, & MacKinnon, 1996). For instance, electoral registration 
plays a vital role in credit evaluation and address checks for loan and credit card applications in the United Kingdom. 
However, customers cannot be turned down if their electoral information is unavailable for their current and previous 
addresses in historical credit data. Similarly, symptoms of diseases or conditions and the medical history of patients 
are recorded based on the list of questionnaires that consist of multiple-choice options and Likert scale questions. 
Such dataset could gather incomplete information when specific questions do not apply to a respondent. This may 
be because the respondent does not want to disclose private information or is merely uncertain and incapable of 
answering the questions. Such circumstances present a challenge to leverage AI/ML to foster domain expertise 
because there will always be a situation where data is incomplete and ambiguous. Most AI/ML models cannot work 
with missing values in the datasets. Various missing data imputation techniques are developed to handle this issue. 
The existing missing data imputation techniques are discussed in Section 2, literature review. The basic idea is to 
replace the missing values with the predicted values obtained from the observation data. 
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Figure 1. Missing and non-missing pattern  

2. Literature Review 

 2.1 Data imputation and transformation techniques  

An instance contains a piece of evidence for each attribute. A decision-making system provides a decision for an 
instance by analysing the pieces of evidence. In a tabular dataset, a row represents an instance, and a column 
represents an attribute. The issue of missing values in all instances must be resolved before sending to an automated 
decision-making system. The imputed missing value should be meaningful for subsequent analysis by the system. 
Most missing value imputation techniques resolve this task by analysing only complete cases. The complete cases 
are obtained by removing instances with one or more missing values of attributes. However, discarding incomplete 
information may result in loss of information, and it could introduce biases if missing data is not random. The 
quantification of the loss of information was demonstrated by Richman, Trafalis, and Adrianto (2009) in an example 
where a dataset with 100 instances had 1% chance of missing the values in each attribute independently. The 

expected proportion of complete cases would be 0.99 = 0.366, which retains only . 366
. 99 ≅ 36.9% of the 

data. The loss of information decreases the accuracy due to an increase in variance in the data. 

Most prevalent techniques for the imputation of missing values are Multivariate Imputation by Chained 
Equations (MICE), expectation-maximization (EM) algorithm, K-nearest neighbour (KNN) algorithm, missForest 
based on random forest algorithm, and other supervised machine learning algorithms, such as an artificial neural 
network (ANN) and support vector machine (SVM). In MICE, the initial values in attributes are imputed simply by 
its mean or frequency. They are then replaced by values predicted by a linear regression model between a dependent 
attribute with missing values and independent attributes with complete cases (Azur, Stuart, Frangakis, & Leaf, 
2011). The MICE runs a series of regression models for each attribute with missing values and works under the 
assumption that data is missing due to the MAR and MCAR mechanism. The regularised regression model can be 
used to minimise the loss of function by imposing some penalties. This technique is called MICE by regularised 
regression. The superiority of different regularised regression models, such as lasso, elastic net, and adaptive lasso 
in terms of biases in imputed missing values in high-dimensional data is presented in (Deng, Chang, Ido, & Long, 

2016). The expectation-maximisation (EM) algorithm works under the assumption that the model’s parameters 
are known (Briggs, Clark, Wolstenholme, & Clarke, 2003). It initially fills missing values with the best guess 
under the initial estimate of the unknown parameters. The EM algorithm iterates in two cycles: the expectation step 
(E-step) and the maximisation step (M-step). In E-step, missing values are estimated by log-likelihood of complete 
data with respect to incomplete data or missing values. The model parameters are maximised in M-step by utilising 
data updated in E-step (Dempster, Laird, & Rubin, 1977). The parameters are re-estimated from the updated 
complete dataset. The EM algorithm was proposed as an iterative regression approach to converge with an 
appropriate imputation value (Meng & Rubin, 1991). The missing values imputed by iterative regression-based 
methods can be explained by coefficients (parameters) of the independent attributes.  

The advancement in non-linear learning algorithms and computation power of computers has redirected the 
missing data imputation approach to machine learning algorithms. The missing data imputation by KNN, an 
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unsupervised learning algorithm, was presented in (Troyanskaya, et al., 2001). It can handle missing instances in 
multiple attributes without a need for the creation of a separate predictive model for each attribute. However, it 
suffers from the curse of dimensionality and could be computationally expensive as it searches for similar instances 
in the entire dataset. Moreover, its hyper-parameter, the number of required clusters, could impact the result. For 
example, a small number of clusters can provide biased results due to the overemphasis of dominant instances. The 
imputation of missing values by missForest, a technique based on a random forest algorithm, was proposed by 
(Stekhoven & Bühlmann, 2012). The researchers chose random forest because it can perform very well under barren 
conditions such as high dimensions, complex interactions and non-linear data structures. It averages the multiple 
imputed unpruned classifications or regression trees and estimates the imputation error by built-in out-of-bag error 
estimates of random forest. A comparative study demonstrated that missForest has a less biased estimate and a 
narrower confidence interval compared to MICE (Shah, Bartlett, Carpenter, Nicholas, & Hemingway, 2014). A 
study compared the performance of mean imputation, linear regression, case-wise deletion with ANN, and SVM 
(Richman, Trafalis, & Adrianto, 2009). This study concludes that case-wise deletion and mean imputation had the 
largest errors, the performance of linear regression was slightly better than case-wise deletion and mean imputation, 
and ANN and SVM were the best. The ANN approach was adopted to impute the missing values in attention-deficit 
hyperactivity disorder data (Cheng, Tseng, Chang, Chang, & Gau, 2020). The results indicated that ANN has higher 
accuracy and robustness than interpolate imputation, mean imputation, and multiple imputation techniques. The 
high-performance data imputation techniques based on a machine learning algorithm are black-box in nature. 
Therefore, the reasoning behind the predicted missing value cannot be explained. The black-box models can be 
explained by model-agnostic and model-specific techniques (Adadi & Berrada, 2018). 

The categorical (qualitative) attributes are transformed into numerical features by encoding techniques, such as 
one-hot, label, hash, and target encoding. Classical encoding methods assume that categorical attributes are 
complete; there are no missing values. Therefore, missing values in categorical attributes are imputed before 
transformation to a required numerical format (discrete labels {1,2,3, . . . } or a one-hot encode {0,1}). The missForest 
technique can impute and encode missing categorical attributes into discrete labels. It can be retransformed to a one-
hot encode and belief-distribution after imputation if the data is used as an input in ANN and belief-rule-based 
models (BRB, a type of expert system) (Yang, Liu, Wang, Sii, & Wang, 2006), respectively. The one-hot encode is 
the most widely used scheme for the numerical representation of categorical attributes (Alkharusi, 2012). Each 
category of a categorical attribute represents an independent feature, which results in orthogonal vector space 
equidistance from each other (Cerda, Varoquaux, & Kégl, 2018). A categorical attribute with cardinality 𝑑  is 
transformed into 𝑑 – dimensional vector. The implementation of a one-hot encode in supervised ML methods is 
easy. It allows learning of each category as a separate parameter in a separate dimension. However, this method is 
cumbersome when categorical attributes have high cardinality (a large number of categories). It produces a sparse 
input matrix of numerical data and results in expansion to feature space. The expanded features are problematic for 
the model training due to long processing time, large space and memory.    Additionally, a small or unique number 
of categories affect performance due to overfitting.   

Label encoding is another classical categorical data-encoding technique. It assigns a positive integer to each 
category of a categorical attribute (Von Eye & Clogg, 1996). Unlike, one-hot encode, it transforms a 1-D vector of 
a categorical attribute to a 1-D numerical vector. It does not have a dimensionality issue; however, it induces 
misunderstanding in the learning process of an ML algorithm, especially in the neural network. It assigns higher 
weight to a larger number and less weight to a small number which skews the model and leads to inaccurate results. 
This method suits a decision tree and tree-based ensemble methods to find optimal split levels. 

Hash encoding is an alternative method to encode categorical data specifically with high cardinality. The basic 
idea is to assign an integer value to categories and then map integers to another number by a hash function 
(Weinberger, Dasgupta, Langford, Smola, & Attenberg, 2009). Hashing allows the reduction of dimensionality by 
a hash function. However, dimensionality reduction causes hash collisions which result in potential loss of 
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information and creation of uninterpretable features. Target encoding methods have received a lot of attention in 
data science competitions. They map each category in a categorical attribute by the corresponding statistics of its 
output attribute. The categories are replaced by observed frequency and a mean and estimated probability. However, 
encoding categories simply by these statistics cause data leakage, which leads to the overfitting of the training set 
and the poor generation of ML models, primarily due to the presence of a tiny sample of some of the categories. 
The blend of posterior probability and prior probability as a baseline probability was proposed to mitigate the effect 
of uncertainty due to the presence of less frequent categories (Micci-Barreca, 2001). 

2.2 Review on Evidential Reasoning  

The evidential reasoning (ER) approach (Yang & Xu, 2002) is based on Dempster–Shafer's theory of evidence 
(Dempster A. , 2008). The ER approach can deal with the uncertainties such as ambiguities, fuzziness and ignorance 
in data-driven decision-making. It can provide a decision by combining multiple pieces of independent evidence. A 
set of continuous numbers representing high-density peak points, an upper and a lower bound in continuous likelihood 
density function, and a set of categories are set of pieces of evidence in a numerical and a categorical attribute, 
respectively. The ER approach only considers the weights of evidence. It was extended to ER rule to include the 
concept of weight and reliability of evidence (Yang & Xu, 2013). The ER rule can combine multiple pieces of 
independent and highly conflicting evidence with different weight and reliability. It has rigorous and rational 
probabilistic reasoning process compared to other evidence conjunctive combination rules such as Yager's rule 
(Yager, 1987), Smets’ rule (Smets & Kennes, 1994), Dubois and Prade's rule (Dubois & Prade, 1988), Dempster's 
rule (Dempster A. , 2008), and proportional conflict redistribution rule (PCR) (Smarandache, Dezert, & Tacnet, 
2010).      

The concept of reliability of a piece of evidence is used to quantify the quality of information. For decision-
making, it is defined as the ability of a piece of evidence from an information source to point correctly to a decision 
(Smarandache, Dezert, & Tacnet, 2010). Weight of evidence refers to the importance of the evidence which could be 
subjective in nature to incorporate the decision makerʼs preferences over a set of the pieces of evidence. The reliability 
and weight of evidence have different specificity; therefore, they are handled differently in ER rule. It is proven that 
ER approach and Dempsterʼs rule are a special case of the ER rule, when the reliability of evidence is equal to its 
weight and when each piece of evidence is fully reliable, respectively (Yang & Xu, 2013). The inferred outcome by 
ER rule is profiled over subsets in the power set of the frame of discernment. The frame of discernment is a set of 
mutually exclusive and collectively exhaustive decisions. The inference process implemented in the ER rule has been 
extended using hybrid models to cover various methods, including the belief rule-based system inference using the 
ER rule (RIMER) (Almaghrabi, Xu, & Yang, 2019) and a group-oriented paper recommendation method based on 
probabilistic matrix factorization and evidential reasoning (GPMF_ER) (Wang, Zhang, Wang, Chu, & Shao, 2021). 
Moreover, the ER rule has been implemented for inference from imperfect data in various applications, such as safety 
assessments for complex systems (Tang S. W., Zhou, Hu, Zhao, & Cao, 2020), road safety evaluation (Ganji, Abbas 
Rassafi, & Jamshidi Bandari, 2020), and environmental investment prediction (Yang, et al., 2021). However, it works 
under the assumption that attributes are independent of each other. The ER rule was extended to maximum likelihood 
evidential reasoning (MAKER) rule to consider the interrelation between evidence in the input attributes and between 
the input and output attributes (Yang & Xu, 2017). The interrelation among pair of evidence is measured by marginal 
and joint probability. The notion of weight and reliability of evidence is identical in both ER and MAKER. However, 
in MAKER the weight and reliability of each evidence pointing to each subset of propositions in a power set of a 
frame of discernment. The ER rule considers overall weight and reliability of the evidence; they are considered 
distinctly for each proposition in a power set of a frame of the discernment. The joint probability mass of joint 
evidence is obtained from maximum likelihood evidence reasoning (MAKER). The MAKER framework was 
proposed for inference from ambiguous categorical data (Yang & Xu, 2017) (Liu, Sachan, Yang, & Xu, 2019). It was 
utilized for the transformation of input data and fusion of attributes for an explainable loan underwriting system based 
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on belief-rule-based (Sachan S. , Yang, Xu, Benavides, & Li, 2020). The fusion of attributes by MAKER rule reduces 
the number of rules in rule-based systems.     

In this paper, MAKER rule is applied for the numerical transformation of an individual incomplete and ambiguous 
categorical attribute. It is applied to combine two or more categorical attribute to reduce the dimensionality of 
transformed numerical features. It is especially beneficial for rule-based methods where the number of rules increases 
exponentially due to a large number of evidence in the attributes. The numerically transformed features can be used 
as input data in different types of AI/ML models such as tree-based, black box models like ANN, and rule-based 
models such as BRB. 

3. Contribution 

The development of an automated decision-making system is challenging, and it heavily relies on the credibility 
of the data. The data used in these systems are extraction from multiple sources. The informational uncertainty in 
categorical attributes is much higher than numerical attributes (Qin, Xia, & Prabhakar, 2011). The first step to 
engender human trust in an automated decision-making system demands consideration of uncertainty due to missing 
values in data and a firm understanding of input data pre-processed by data imputation techniques. The uncertainty 
challenge by categorical data has not been addressed comprehensively in previous research. This paper attempts to 
answer the following questions: 

Question 1: What are the possible sources of uncertainty in categorical attributes? 

Question 2: How does an inadequate understanding of predicted imputed values in categorical attributes affect 
pre-modelling and post-modelling explainability? 

Question 3: How can a missing categorical data imputation technique examine ignorance due to the absence of 
class labels in an output attribute? 

Question 4: How can a missing categorical data imputation technique incorporate subjective human expert 
opinion?  

In this paper, question 1 and question 2 are acknowledged in Section 4, and they are discussed through an 
application on real data in Section 7.4. Section 4 presents the informational uncertainty, unforeseeable uncertainty 
in the decision task environment, and the uncertainty due to lack of pre-modelling explainability in categorical data. 
Missing values in input attributes and output attributes introduce uncertainty in the predicted decisions. Section 5 of 
this paper presents the maximum likelihood evidential reasoning (MAKER) rule to pre-process the incomplete and 
ambiguous categorical data. This methodology addresses question 3. A brief review on evidential reasoning is 
presented in Section 2.2. The MAKER rule presented in Section 5.1 is applied to impute and transform incomplete 
and ambiguous pieces of evidence in an individual categorical attribute into interpretable, numerical features. The 
conjunctive MAKER rule presented in Section 5.2 is applied to impute missing values, transform categorical 
attributes to interpretable, numerical features, and fuse multiple categorical attributes. It can combine multiple pieces 
of evidence in two or more attributes for dimensionality reduction of numerically transformed features for AI/ML 
models developed for highly regulated domains. The MAKER for individual attributes and conjunctive MAKER to 
combine multiple categorical attributes is called I-MAKER and C-MAKER, respectively. MAKER rule 
methodology can provide reasoning behind predicted missing values, which impart a clear understanding of the 
input data. This technique is based on the general framework of Dempster Shafter’s (DS) theory to consider 
uncertainty and ignorance caused by incomplete and ambiguous data. The MAKER rule covers the uncertainty in 
data by considering local ignorance when each evidence in a categorical attribute points to two or more decisions 
and global ignorance when each evidence in a categorical attribute does not point to any decision; the evidence state 
is entirely unknown. Due to the absence of class labels, local and global ignorance is considered by profiling the 
outcome over the power set of the frame of discernment. The uncertainty caused by the importance of the evidence 
and the sufficiency of the evidence is incorporated in MAKER through the evidence’s weight and reliability, 



 8

respectively. Both I-MAKER and C-MAKER addresses question 4 by demonstrating their ability to assign expert 
judgment as a subjective weight to each piece of evidence (category) in a categorical attribute. If the subjective 
weight from experts is not available, then they are trained by the data. The reliability of the evidence is another 
important parameter in this methodology.  

This paper demonstrates the significance of trust in transformed data to obtain explainable and trustworthy 
decisions. The applicability of the proposed technique is demonstrated in two real datasets on early asthma 
symptoms and mortgage loans. The performance of three AI models based on ANN (deep learning model), decision 
tree (tree-based model), and BRB (rule-based model) is compared against a different set of data obtained by the 
treatment and transformation by I-MAKER and C-MAKER with four other commonly used data imputation 
techniques. A numerical example in Section 6 demonstrates the step-by-step method to combine two attributes in 
early asthma symptoms data. Section 7 presents the results and discussion of two case studies on healthcare (based 
on early asthma symptoms) and finance (based on mortgage loans). The paper concludes in Section 8 presents the 
advantages of MAKER, the future direction of research, and potential application areas. There are three Appendix. 
Appendix A shows the algorithmic steps for MAKER for an individual categorical attribute (I-MAKER) and 
multiple categorical attributes (C-MAKER). Appendix A has additional results from the numerical example 
presented in Section 6. Appendix C has hyper-parameters of deep-learning and tree-based model and structure of 
the rule-based system. 

 
4. Uncertainty in Decision-Making by Categorical Data    

4.1 Informational uncertainty 

The informational uncertainty arises due to diversity in information (Iselin, 1989), lack of information due to 
insufficient instances, information loss due to missing values in the data, information representability, and the 
information source (Wu & Shang, 2020). A categorical attribute can be binary, ordinal, interval or nominal. Lack of 
information due to insufficient instances, low sample categories in categorical attributes, missing categories in input 
attributes (incomplete) and missing categories in an output attribute (ambiguity) are the source of informational 
uncertainty in categorical data. The missing data imputation techniques are based on complete case analysis 
techniques. The incomplete cases may contain a large amount of information, especially when the number of 
incomplete cases is relatively larger in comparison to the fully observed cases (Hughes, Heron, Sterne, & Tilling, 
2019). The output attribute points specifically to an expected decision for each instance (also called a class label) 
from a set of possible decisions. A supervised learning system learns from labelled decisions. The unavailability of 
class labels in an output attribute in a dataset represents the ignorance of pieces of evidence in each attribute to point 
specifically to a decision. The data imputation techniques fail to consider the ignorance introduced by an output 
attribute (Baneshi & Talei, 2011) (Baneshi & Talei, 2012). Additionally, in a natural setting, it is presumed that the 
categories in a categorical attribute are mutually exclusive; that is, there is no overlap between the sets of categories. 
Poor-quality data could have the problem of overlapping categories. It results in high cardinality and multicollinearity 
in numerically transformed data. Moreover, categories in an attribute are required to be exhaustive to cover an entire 
set of possibilities (Micci-Barreca, 2001).  

4.2 Unforeseeable uncertainty in a decision task environment  

The decision-makers currently face the problem of estimating future uncertainties in data used to train AI-enabled 
systems. The decision given by an AI system subsists in a specific environment. In the real world, the decision task 
environment is volatile, which implies that it is continuously changing (Bourgeois III, 1980) (Wu & Shang, 2020). 
For instance, changes in social trends in marketing data (Ducange, Pecori, & Mezzina, 2018), climate-related changes 
in disease (Redshaw, Stahl-Timmins, & Fleming, 2013), and policy-related changes in loan lending (Sachan S. , 
Yang, Xu, Benavides, & Li, 2020). Many attributes in these datasets are categorical to represent sets of evidence. In 
some applications, numerical attributes are mapped into a certain set of categories (Sachan S. , Yang, Xu, Benavides, 
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& Li, 2020) (Almaghrabi, Xu, & Yang, 2020). For example, in credit data, the number of defaults or the income is 
grouped into certain categories to represent a policy or rule within an organisation.  

Some of the categories in an attribute do not exist in the collected data and would arrive at some point in the future 
after the deployment of a decision-making system. The system will fail if the newly arrived category does not exist 
in a numerically transformed feature space of the categorical attribute. For example, the set categories for attribute 
𝐴  is {𝐴 , 𝐴 , 𝐴 }. It can be transformed into a 3-D vector {[1,0,0], [0,1,0], [0,0,1]} by a one-hot encode. The AI/ML 
algorithm trained on three features for attribute 𝐴  expects the arrival of one of the three categories in the future. The 
appearance of a new category would be unknown for the trained model. It can be accommodated by superseding a 3-
D vector by one-hot encode with a 4-D vector in numerical transformed data. The algorithm parameters should be 
retrained with the new data with an extra feature. The problem of the arrival of a new category is not limited to 
numerical representation by one-hot encoding. It exists in all numerical transformation techniques. Some of the 
expected unforeseeable uncertainties in categorical attributes could be due to fundamental mismatch between the 
values predicted for missing data by complete case analysis and a predicted decision by the system in the light of new 
categories (new evidence), increase number of low sample categories (or unique categories) in the future, and a 
decrease in high sample categories in the future. Hence, soliciting advice from domain experts in each step for the 
development of an AI-enabled decision-making system would provide essential knowledge in estimating the future 
uncertainties for better adaptation in an evolving decision task environment (Bogosian, 2017).  

 

4.3 Uncertainty due to lack of pre-modelling explainability 

The automated decision-making systems enabled by an AI/ML algorithm learn hidden patterns in the features within 
a dataset, which are obscure for humans. The potential users and developers must understand the input data utilised for 
automating the decisions. Understanding input data includes the ability to apprehend missing imputed values predicted 
by imputation techniques. Some commonly used data imputation techniques are missForest, MICE, EM, and KNN. 
Among all the techniques, missForest based on random forest algorithm was found most efficient (Stekhoven & 
Bühlmann, 2012) (Waljee A. , et al., 2013). The deep learning approach based on the ANN algorithm was 
implemented for missing data imputation (Cheng, Tseng, Chang, Chang, & Gau, 2020) (Richman, Trafalis, & 
Adrianto, 2009). The results indicated that deep learning provides higher accuracy than tradition statistical imputation 
methods. Both ANN and random forest are black-box in nature. The predicted missing values by these models cannot 
be explained directly unless a model agnostic method to leverage an inherently interpretable surrogate model or a 
model-specific method is used to explain the outcome (Kelly L. , et al., 2020). All missing data imputation techniques 
predict missing values by analysing complete cases and avoiding incomplete cases. The predicted missing values by 
these techniques could be probabilistic; for example, 0.60 for category 𝐴  and 0.40 for category 𝐴  in attribute 𝐴 . 
It could be a continuous value; for example, an imputed missing value 1.4 points 60% towards category 𝐴 = 1  and 
40% towards category 𝐴 = 2 in an attribute 𝐴 . The predicted category is naturally converted into a numerical 
value; however, it may not point to a concrete category. It could point to a specific category if the predicted value is 
rounded to a nearest integer, which points to a category in a categorical attribute. Therefore, the inexplicability of 
missing imputed data and the inability to estimate a definite category are two main issues of high-performance 
machine learning-based missing data imputation techniques. Human understanding for a decision (output) given by 
the system is dependent on the initial understanding of the input data because a decision by AI/ML model is explained 
in terms of contribution of the features in the data. The inability to explain how a missing value was predicted in an 
attribute and to which category the predicted value explicitly points to would provide an unreliable explanation of the 
decision. The pre-modelling explainability of the data is important for trustworthy post modelling explainability of 
the decisions. It is dangerous to allow AI to take charge until an adequate understanding of the contextual structure 
decision process is accomplished by human experts. A recent article in Harvard Business Review has stressed the 
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importance of understanding input data (Agrawal, Gans, & Goldfarb, 2020). Figure 2 illustrates how a lack of 
understanding of the input data affects the explainability of a decision in the post-modelling stage. 

 

 

Figure 2. Uncertainty due to lack of pre-modelling explainability in missing categorical data 

 

5. Methodology 

5.1 I-MAKER: MAKER Rule to Pre-Process Individual Categorical Attribute 

Let a dataset be denoted by 𝒟. It can have both numerical and categorical attributes. For simplicity, let’s assume 
that 𝒟 has 𝑞 ∈ {1, … , 𝑄} number of categorical attributes and 𝑣 ∈ {1, … , 𝑉 } number of categories in each attribute. 

An output attribute is denoted by 𝜃. The frame of discernment is given by Θ = {𝜃 , … , 𝜃 , … , 𝜃 , 𝑧 ∈ {1, … , 𝑍}}. It 
is a mutually exclusive and collectively exhaustive set containing all possible class labels in output attributes. A class 
label represents an expected decision from a model. Therefore, a set of class labels in an output attribute can also be 
called a set of decisions. A dataset 𝒟 is shown in Table 1. For simplicity, it is assumed that dataset (𝒟) contains only 
categorical attributes.  
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The power set of the frame of discernment (Θ) consists of 2  subsets of Θ. It is denoted by 2  or 𝑃(Θ). It can be 
written as: 

2 = 𝑃(Θ) = {∅, {𝜃 }, … , {𝜃 }, {𝜃 , 𝜃 }, … , {𝜃 , 𝜃 } … , {𝜃 , … , 𝜃 }, Θ}                        (1)                            

The classes of the output attribute in a classification algorithm are deterministic as the number of the classes in a 
model is known in advance. The missing class labels can be measured as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = Θ = {𝜃 , … , 𝜃 , … , 𝜃 , 𝑧 ∈

{1, … , 𝑍}}, which shows that the missing label could belong to any class in the set Θ. A set of class labels represents 
a set of possible decisions. This method maps data into numerical features representing singleton (set with exactly 
one element) subsets {𝜃 }, … , {𝜃 } in power set. The remaining subsets of power set are empty (∅) because usually, 
an 𝑖  instance (a row in dataset 𝒟) does not point to two or more than two classes in an output attribute. Therefore, 
the power set 𝑃(Θ) for MAKER can be rewritten as follows: 

𝑃(Θ) = {{𝜃 }, … {𝜃 }, … , {𝜃 }, Θ}                                                    (2) 

Similarly, the missing values in input attributes can be marked as ‘Unknown’ where ‘Unknown’ is a mutually 
exclusive and collectively exhaustive set of all deterministic categories (i.e. existing known categories). If categories 
are not exhaustive (in other words non-deterministic), then the missing antecedent attributes can still be marked as 
‘Unknown’. However, in this case, it will be a mutually exclusive and collectively exhaustive set of existing known 
and future unknown categories. For example, a categorical attribute 𝐴  has three known categories and some missing 

values. The set of possible categories in 𝐴  could be  𝔸 = {𝐴 , 𝐴 , 𝐴 , 𝑈𝑛𝑘𝑛𝑜𝑤𝑛}. In this set 𝐴 , 𝐴 , and 𝐴  are 
known categories. The missing values is represented by 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 = {𝐴 , 𝐴 , 𝐴 } if set of known categories are 

deterministic and 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 = {𝐴 , 𝐴 , 𝐴 , 𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠} if known categories are non-deterministic. In Table 1, 
the missing values in input attribute (𝐴 ) and an output attribute (𝜃) are marked as ‘Unknown’.  

 Definition of evidence: Evidence is denoted by 𝑒 in general. The 𝑣  evidence from the 𝑞  attribute is denoted 

by 𝑒 , , representing that the 𝑞  attribute takes the value of its 𝑣  category.  

Imprecision in classification occurs due to uncertainty caused by the fact that all samples for a piece of evidence 
do not point to a specific class (or decision). For example, Figure 3 there are 30 samples for category 

 𝐴  where, twenty samples are pointing to class 𝜃 , ten samples are pointing to class 𝜃 , and there are zero samples 
for unknown values, Θ = ∅ . The uncertainty is measured by number of samples which support a class. The extent of 
support is called belief, obtained from estimating probability mass for each evidence for a given class. Evidence 𝑒 ,  

can be represented as belief-distribution as follows (Yang & Xu, 2017): 

𝑒 , = 𝑒 , , , 𝑚 , , , ∀𝜃 ∈ 𝑃(Θ)                                                     (3) 

∑ 𝑚 , ,∈ ( ) = 1                                                             (4) 

Table 1: Data (𝓓) 
𝑑𝑎𝑡𝑎 
𝑝𝑜𝑖𝑛𝑡 

𝑨𝟏 ⋯ 𝑨𝒒 ⋯ 𝑨𝑸 𝜽 

1 𝐴   𝐴   𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝜃  
⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 
𝑖 𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝐴   𝐴  𝑢𝑛𝑘𝑛𝑜𝑤𝑛 
⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 
𝐼 𝐴   𝐴   𝐴  𝜃  
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In Expression (3) and (4), 𝑒 , ,  represents a 𝑣  category of an 𝑞  attribute points to a class 𝜃 and 𝑚 , ,  is the 

normalised probability mass for the 𝑣  category in an 𝑞  attribute points to a class 𝜃. The probability mass of 
category for a given class is obtained by considering the weight, reliability, and basic probability of evidence for a 
given class.    Basic probability is obtained by first generating a contingency table. A contingency table is a frequency 
distribution table, as example is shown in Figure 3. A division operation in each cell of the contingency table by its 
sum of rows is performed to obtain the likelihood of each evidence in an attribute for a given class. The likelihood of 

observing the 𝑣  category of the 𝑞  categorical attribute for a given class 𝜃 is denoted by 𝐿 , , . Basic probability 

𝑝 , ,  is calculated by normalising likelihood for all classes 𝜃 ∈ 𝑃(Θ) as follows (Yang & Xu, 2017): 

𝑝 , , =
, ,

∑ , ,∈ ( )
, ∀𝜃 ∈ 𝑃(Θ)                                                            (5) 

 

 

Figure 3. An example of a contingency table 

 

The weighted basic probability is referred to as probability mass, denoted by 𝑚 , , . In ER rule, the non-

normalised probability mass is discounted by the weight of the evidence (𝑤 , ) (Yang & Xu, 2013). In MAKER rule, 

the non-normalised is discounted by the weight of the evidence for a given class 𝜃 (𝑤 , , ) (Yang & Xu, 2017). It is 

the measure of a degree of support for evidence 𝑒 ,  for a class 𝜃, given as follows: 

𝑚 , , = 𝑤 , ,  𝑝 , ,                                                                        (6) 

 Definition of weight of the evidence: The weight of evidence (𝑤 , , ) is the relative importance of evidence 

in comparison with other evidence. It could be a subjective judgment of experts. If the expert’s opinion is 
not available, then it could be treated as a parameter which could be trained by data-driven optimisation. 

 Definition of reliability of the evidence: The reliability of evidence (𝑟 , , ) is the ability of evidence to 

point correctly to a class. It is the classification ability of a category in an attribute. A piece of evidence 
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(𝑒 , ) from an attribute 𝐴  is most reliable when it has the most samples for a particular class (𝜃). The 

reliability of a piece of evidence is 1 if all (100%) samples point towards a particular class (𝜃). The 
reliability of a category in an attribute can be calculated by (Xu, Zheng, Yang, Xu, & Chen, 2017): 

𝑟 , , =
# , ,

∈ ( )# , ,
 ,   ∀𝜃 ∈ 𝑃(Θ)                                                      (7)  

where #𝑒 , ,  is the number of samples available for evidence 𝑒 ,  for class 𝜃. An evidence is most reliable for a 

class 𝜃 if, 𝑟 , , = 1. The reliability of evidence pointing to other classes is relative. Figure 3 demonstrates the number 

of samples in each category {𝐴 , 𝐴 , 𝐴 , 𝑈𝑛𝑘𝑛𝑜𝑤𝑛} of input attribute 𝐴  for all class 𝜃 ∈ 𝑃(Θ)  where,𝑃(Θ) =

{{𝜃 }, {𝜃 }, Θ}. A dark colour in a column represents the class for which a piece of given evidence is most reliable, 
and a dark colour in a row represents the most reliable evidence for a given class. The probability mass (𝑚 , , ) is 

normalised by weight and reliability as follows:   

𝑚 , , =

0                          𝜃 = ∅ 
𝑐 , , 𝑚 , ,           𝜃 ⊆ Θ, 𝜃 ≠  ∅      

𝑐 , , 1 − 𝑟 , ,         𝜃 = 𝑃(Θ)           

                                            (8) 

In Expression (8), the probability mass is normalised by factor 𝑐 , , = 1/(1 + 𝑤 , , − 𝑟 , , ) and ∑ 𝑚 , ,∈ ( ) +

𝑚 ( ), , = 1 . The unreliability of evidence is residual support  1 − 𝑟 , , . It is earmarked to the powerset 

consisting of subsets of the frame of discernment, instead of assigning it to the entire frame of discernment. If 𝑤 , , =

𝑤 ,  and 𝑟 , , =  𝑟 ,  then it reduces to ER rule (Yang & Xu, 2013). 

The weight of the evidence for a given class is trained if a subjective judgment by domain experts is not available.  
Before training, the initial weight can be set equal to its reliability (𝑤 , , = 𝑟 , , ). The training can be avoided for 

fast pre-processing of incomplete and ambiguous categorical data if it is assumed that evidence with the highest 
reliability could have relatively high importance compared to other evidence. The objective function for training of 
weight for each piece of evidence for a class (𝑤 , , ) is: 

: , ,  ∑ ∑ ( , , )∈ ( )

:  , ,  
                                              (9) 

where 𝑖 ∈ {1, … , 𝐼} is an instance in a dataset 𝒟. The observed probability for an instance 𝑖 is denoted by 𝑚  and 
𝑚(𝑤 , , ) is the estimated normalised probability mass. 

 The table for normalised probability mass (𝑚 , , )  is used to map a categorical attribute into  𝑍  or 𝑍 + 1 

dimensional numerical feature space when an output attribute has complete or missing classes, respectively. Each 
column of a categorical attribute in a dataset 𝒟 is transformed into 𝑍 or 𝑍 + 1  number of columns. Each column of 
the numerically transformed feature of a categorical attribute represents the subsets in power set 𝑃(Θ) shown in 
Equation (2). Naturally, if classes in the output attribute are not missing or are complete, then 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 = Θ = ∅. 
Each row represents the probability mass for a category in a categorical attribute distributed over subsets in power 
set 𝑃(Θ) (representation of a piece of evidence in the form of distribution by Expression (3) and (4)). Figure 4 
demonstrates the mapping of each category to the corresponding estimated probability mass for attribute 𝐴  in a 

dataset 𝒟. The estimated probability mass for each category {𝐴 , 𝐴 , 𝐴 , 𝑈𝑛𝑘𝑛𝑜𝑤𝑛} for a given proposition in 𝑃(Θ) 
is shown in Table A, Figure 4. The data in Table B in Figure 4 represents the categories for each instance for the 
attribute 𝐴 , and these categories are mapped to the corresponding estimated probability mass from Table A. The 
resulting transformed data does not lose interpretation as each row in Table B in Figure 4 represents the probability 
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mass for a missing or non-missing category. The estimated probability mass can be explained in terms of two 
parameters, reliability and weight of a category (a piece of evidence) for a given outcome 𝜃 ∈ 𝑃(Θ).  

 

 

Figure 4. An example of interpretable transformation of attribute 𝐴  by I-MAKER 

 

The MAKER rule is beneficial in pre-processing incomplete and ambiguous data. It can transform categories in 
an attribute into interpretable numerical features by considering ignorance due to missing values in input and output 
attributes. It is a type of interpretable machine learning algorithm. The missing value prediction by a machine learning 
model has a tendency for data leakage (Schelter, et al., 2020). It leads to overfitting of training data and a poor fit of 
validation data, which confirms poor generalisation of an AI-enabled decision-making system. It can leak information 
from an output attribute (𝜃) to numerically transformed categorical attributes (𝐴 ). The 𝑘-fold cross-validation can 
be used for regularisation to suppress data leakage and overfitting. The less frequent categories get more randomised 
compared to the most frequent categories. For 𝑘-fold regularisation of the MAKER pre-processing method, the 
randomly permuted sample of data is split into two parts, cross-validation (CV) set and validation set. The proportion 
of data in cross-validation set depends on the size of the data. The CV set is split into 𝐾 equal parts (also called folds). 
The probability mass 𝑚 , ,  is calculated for all 𝐴  (𝑞 ∈ {1, … , 𝑄})  categorical attributes in each 𝐾 − 1  folds, 

excluding one-fold for testing. The average probability mass calculated from 𝐾 different samples is used to transform 
the categorical attribute in the test fold. The prior is used as an independent piece of evidence in MAKER. It is used 

to update the probability mass of missing values in attributes labelled as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝐴 , … , 𝐴 , … , 𝐴 . The 

probability mass of 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 can be adjusted by combining the posterior with the prior. Dirichlet smoothing is 
widely used to overcome the under-sampling problem (Han, Jiao, & Weissman, 2015). The posterior probability mass 
of 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 pointing to a class 𝜃 and prior pointing to a class 𝜃 are combined together by Dirichlet smoothing 
(Micci-Barreca, 2001) (Simonoff, 1995). The posterior probability can be written as 𝑚 , ,  , ∀𝜃 ∈ 𝑃(Θ) and 

the prior can be written as 𝑃𝑟𝑖𝑜𝑟 , . The prior for a category for a given class 𝜃 is the proportion of the number for 
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samples for the categories pointing to 𝜃 by the total number samples in a dataset 𝒟. The total number of samples in 
a dataset is equal to the number of instances (𝐼). The prior is given as:   

𝑃𝑟𝑖𝑜𝑟 , =
# ( )

, ∀𝜃 ∈ 𝑃(Θ)                                                     (10) 

where #𝑒 (𝜃) is all categories in an attribute 𝑞 pointing to 𝜃, ∀𝜃 ∈ 𝑃(Θ). The ability of the posterior to predict the 

specific class for a missing value is found by its accuracy. The accuracy of 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 to point to a class 𝜃 (𝜃 ∈ 𝑃(Θ)) 
is denoted by 𝜆 , . The prior and posterior can be combined by Dirichlet smoothing by the following equation (Micci-

Barreca, 2001): 

𝑚 , , = 𝜆 ,  𝑚 , , + (1 − 𝜆 , ) 𝑃𝑟𝑖𝑜𝑟 ,                           (11) 

A probability mass (𝑚 , , ) converges towards prior if the accuracy of the posterior is very poor and vice 

versa. The probability mass of 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 is adjusted by Equation (11). It is important to note that if categories in a 
categorical attribute are non-deterministic (non-exhaustive) and future categories are independent of existing 
categories, then only prior probability must be used for missing values. The steps to pre-process categorical attributes 
by the MAKER framework for the transformation of an individual categorical attribute is shown in Table 16, 
Appendix A. The MAKER framework for an individual categorical attribute is denoted as I-MAKER. 

 

5.2 C-MAKER: Conjunctive MAKER to Pre-Process and Combine Multiple Categorical Attributes 
 

5.2.1 Sufficent Statistics to Combine Attributes 

Two or more attributes can be combined when evidence (categories) in attributes are interdependent and enough 
data is available to generate joint probability mass. The Chi-square test for a contingency table could be used to check 
the dependency in the joint pieces of evidence. However, some of the joint pieces of evidence may not be available 
in real-world datasets. The Chi-square test requires at least five samples at each cell in the contingency table 
(Goodman, 1971) (Fisher, 1992). The Chi-square test is irrelevant for cells with small or no values. The Fisher exact 
test is from the family of Chi-square tests. Like the Chi-square test, it can examine the association between two 
different elements in rows and columns of a contingency table. It is based on hypergeometric distribution, and there 
is no lower limit for the number of samples in each cell of the contingency table (Fleiss, Levin, & Paik, 2013). It is 
computationally expensive for a large contingency table and is commonly applied to a 2 × 2 sized contingency table.  

This section presents an alternative approach, based on the interdependence index and the evidence sparsity index, 
to estimate the potential of combining two or more attributes in a dataset (𝒟). These tests are performed on small (≥
2) to large numbers of attributes. If there are 𝑄 number of categorical attributes, then tests can be performed to check 
the potential of combining 𝑔 (𝑔 ∈ {2 𝑡𝑜 𝐺}) number of categorical attributes into a single attribute. A small set of 
attributes that satisfy interrelation conditions are fused together. Suppose, 𝐺 is the maximum number of attributes 
that are potentially combined into a single attribute (𝐺 < 𝑄). If 𝐺 = 𝑄, then the MAKER framework could be used 
for inference, like any other machine learning model. The inference refers to the process of training and prediction. 
In this research, it is adopted for transformation and fusion of input data for AI/ML algorithms such as rule-based, 
deep-learning, and tree-based. The potential of combining two attributes (𝑔 = 2)  is tested first 
{𝐴 , 𝐴 }, {𝐴 , 𝐴 }, … , {𝐴 , 𝐴 }, …,  {𝐴 , 𝐴 } , then three (𝑔 = 3)  attributes {𝐴 , 𝐴 , 𝐴 }, …  , {𝐴 , 𝐴 , 𝐴  
}, … , {𝐴 , 𝐴 , 𝐴 } as so on. The total number of combinations that can be created from the attributes is given by: 

Ω = ∑
!

! ( )!
                                                                                 (12) 
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In expression (12), Ω (upper case omega) represents the total number of combinations of the attributes, such that 𝜔 =

1 to Ω. Following are two types of tests – interrelation index and evidence sparse index - to evaluate the suitability 
of combining two or more categorical attributes by conjunctive MAKER. The conjunctive MAKER can transform 
and fuse categorical attributes into numerical features. It can impute and transform missing values by analysing entire 
data which considers the uncertainty induced due to incomplete & ambiguous data. Feasible combinations of 
categorical attributes have a high interrelation index and a high sparse index. The set of feasible combinations of 

attributes is represented by Ω, where the cardinality of set Ω is less than Ω and each combination in this set contains 
attributes without duplication. For example, suppose a dataset has 𝑄 = 13 number of categorical attributes and the 
potential of combining a maximum of 𝐺 = 3 number of categorical attributes is tested. Then, the total number of 
combinations of all 𝑄 = 13 attributes in a group containing a minimum of 𝑔 = 2 and a maximum of 𝐺 = 3 attributes 
would be 78 and 286, respectively. Therefore, the total number of combinations would be Ω = 364. For instance, 
through the sufficient statistics tests, it is found that there are three most feasible combinations of categorical attributes 

out of Ω = 364 combinations: Ω = {{𝐴 , 𝐴 }, {{𝐴 , 𝐴 }, {𝐴 , 𝐴 , 𝐴 }}. The attributes selected for the fusion by 
conjunctive MAKER could be suggested by the experts or reflect the prevalent domain practices. If domain 
knowledge is not available, then a set of attributes can be combined by following the interrelation index and sparse 
index tests. 

5.2.1.1 Interrelation Index (𝝍): The interrelation between two pieces of evidence from two different attributes 
is obtained through their single and joint probability for a given class 𝜃 , where 𝜃 ∈ 𝑃(𝛩). Suppose, a set of 
evidences (or categories) in attribute 𝐴  and 𝐴  is 𝔸 = {{𝐴 }, {𝐴 }, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} and 𝔸 = {{𝐴 }, {𝐴 }, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛}, 

respectively. The 𝑣  evidence in 𝔸  and the 𝑣  evidence in 𝔸  are 𝑣 ∈ {1, … , 𝑉 = 3} and 𝑣 ∈ {1, … , 𝑉 = 3}, 
respectively. The missing values 𝐴  and 𝐴  are represented by 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = {𝐴 , 𝐴 } and 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = {𝐴 , 𝐴 }, 
respectively. Similarly, missing values in an output attribute are represented as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = {𝜃 , 𝜃 } , here 
{𝜃 , 𝜃 } ∈ 𝑃(𝛩).   

 The interrelation index between two pieces of evidence is obtained from joint basic probability between two 
pieces of  evidence and singleton probability of each evidence. The basic probability of evidences in individual 
attributes 𝐴 , 𝐴  and both attributes 𝐴  𝑎𝑛𝑑 𝐴  pointing to a class (𝜃, ∀𝜃 ∈ 𝑃(𝛩)) is denoted by 𝑝 , , , 𝑝 , , , and 

𝑝 , , , respectively. The basic probability is the normalised likelihood, which is obtained from the contingency 

table for pieces of evidence in attribute 𝐴 , 𝐴 , and both attributes 𝐴  𝑎𝑛𝑑 𝐴  for its corresponding class (𝜃) from 
complete cases in dataset 𝒟, demonstrated in Figure 4. A complete dataset is denoted by 𝒟 , and 𝒟 =  𝒟 when 
input attributes in dataset 𝒟 have no missing values. The number of joint evidences of multiple attributes is equal 
to the cartesian product of the number of categories (or single evidences) in all 𝑄  number of categorical attributes. 

𝑐 = ∏ 𝑉                                                                          (13)                 

The basic probabilities are calculated using Equation (5). The interrelation index between two evidences 𝑒 ,  

and 𝑒 ,  pointing to class 𝜃  and 𝜃 , with 𝜃 ∩ 𝜃 = 𝜃, ∀𝜃 ∈ 𝑃(𝛩), respectively, is given as follows: 

𝜓 , , ′ =

0      𝑖𝑓  𝑝 , , = 0 𝑜𝑟 𝑝 , , = 0

, ,

, ,    , ,

         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
                                                  (14a) 

where, 𝜓 , ,  is the interrelation index of a joint evidence 𝑒 ,  pointing to a class 𝜃, ∀𝜃 ∈ 𝑃(Θ). The interrelation 

index is considered not defined, if individual probabilities are 𝑝 , , = 0 and 𝑝 , ,  = 0. The interrelation index 

has the following property: 
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𝜓 , , =
0,            𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡
1,   𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

                                                           (14b) 

Two evidences are interrelated when  𝜓 , , ≠ 1. In Equation (14b), the disjoint evidences are always dependent. 

The disjoint is extreme dependence, where the occurrence of one evidence for a class 𝜃 conveys information that 
other evidence will not occur in an identical class 𝜃.  

The interrelation between two pieces of evidence in two attributes can be represented by the table shown in Figure 
6. The cells in an interrelation index table can have three types of values. A cell may not have an interrelation index 
𝜓 = 𝑛𝑢𝑙𝑙 due to an absence of instances for joint pieces of evidence in the contingency table obtained from  𝒟 . 
For example, there are zero samples for joint pieces of evidence for 𝐴  and 𝐴  for 𝜃  in contingency table 3 in Figure 
5. A cell in an interrelation table can have interrelated pieces of evidence when 𝜓 ≠ 1 and 𝜓 = 0. It can have 
independent pieces of evidence when 𝜓 = 1. The number of columns and type of joint evidences in a contingency 
table between different attributes vary due to the existence of different types of evidence in these attributes. The 
degree of interrelation between evidences in multiple interrelation tables can be compared by the proportion of 
interrelated evidences. The proportion of interrelated pieces of evidence in two attributes {𝐴 , 𝐴 } is given by: 

𝜓𝑝
, =

, ,

∏
                                                                          (15) 

where, 𝜓𝑝 denotes the proportion of interrelated evidences in attributes {𝐴 , 𝐴 }, 𝜓 , ,  is the number of evidences 

having an interrelation index not equal to one and equal to zero (𝜓 ≠ 1 𝑎𝑛𝑑 𝜓 = 0), and ∏ 𝑉  is the number of 

joint evidences (Equation (13)). If all evidences are dependent, then 𝜓 , , = ∏ 𝑉  and 𝜓𝑝
, = 1. The empty 

cell in the contingency table will have the value 𝜓 , , = 𝑛𝑢𝑙𝑙; a high sparsity in the contingency table would 

result in a small value of 𝜓𝑝
, .  

Each column represents a joint piece of evidence such as contingency table 3 in Figure 5 and the interrelation 
index table in Figure 6.  Two or more pieces of evidence in two or more attributes can be combined by conjunctive 
MAKER. For example, if there are three attributes, then any two attributes are combined together before combining 
them with third attribute. It is an iterative process, will be explained in detail in the next section. Furthermore, the 
highest joint probability of a joint piece of evidence pointing towards a specific class (𝜃 ∈ 𝑃(𝛩)) indicates high 
density towards it, instead of scattered density towards all classes that does not point specifically towards any 
particular outcome with confidence. Therefore, potentially attributes can be combined when average of all maximum 

joint probability for joint pieces of evidence towards a class 𝜃 ∈ 𝑃(Θ)  in interrelated evidences (𝜓 , , ≠ 1 or =

0) has a high value. The average of the maximum joint probability of joint pieces of evidence towards a class is 
denoted by 𝜇(𝑝|𝜓). 
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Figure 5. An example of subsets of complete data from an incomplete and ambiguous dataset 

 

 

Figure 6. Interrelation  

 

5.2.1.2 Evidence Sparse Index:  

The columns of a contingency table of combined attributes represent joint pieces of evidence and rows represents 
classes 𝜃 such that 𝜃 ∈ 𝑃(𝛩). Suppose, there are two attributes 𝐴  and 𝐴 . The contingency table for both attributes 
is shown in Figure 7. Each column of the contingency table represents joint pieces of evidence from attribute 𝐴  
and 𝐴 , for example, the first column represents joint evidence {𝐴 , 𝐴 }. Each row of the contingency table 
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represents the subset of the power set 𝑃(Θ) = { 𝜃 }, { 𝜃 }, 𝛩 = { 𝜃 ,  𝜃 } . Each cell of the contingency table 

represents the number of instances for a joint piece of evidence for a given class 𝜃. 

Ideally, all data points (instances) for a piece of evidence are required in one of the cells to point correctly to a 
class. The reliability of evidence generated from a contingency table depends on its ability to point correctly to a 
class 𝜃. A good piece of evidence in an attribute would have a high density (or most of its samples) for a specific 
class. An empty column (joint evidence) indicates zero instance for any class. Real-world data usually does not have 
instances for all joint pieces of evidence in a dataset, which results in empty columns. 

A dataset could be imbalanced or balanced due to a very small or almost equal number of instances for each class 
(or singleton subset). The zero number of instances in a row for a class is not sufficient to generate joint probability 
mass of multiple pieces of evidence in combined attributes. Furthermore, the proportion of the number of instances 
in a contingency table of joint pieces of evidence compared to the total number of instances (𝐼) in a dataset 𝒟 reflects 
the amount of statistical evidence. Suppose, the contingency table of two attributes 𝐴  and 𝐴  shown in Figure 7 has 
284 available instances out of 2000 total number of instances in a dataset 𝒟. The total number of instances or rows 
in a dataset is denoted by 𝐼. It shows that 14.2% of instances are in joint evidence space, and the remaining are 
missing. It suggests that two or more than two incomplete and ambiguous attributes can be combined by conjunctive 
MAKER when their contingency table does not have a large number of empty columns due to absence of the certain 
joint pieces of evidence for all classes, there are no empty rows due to absence of instances for a class or a singleton 
subset, and a sufficient number of instances exist in joint evidence space. 

 

 
Figure 7. Sparse index for contingency table of joint pieces of evidence in 𝐴  and 𝐴  

These conditions are combined together by sparse index. It is denoted by 𝒮. In the sparse index, the proportion 
of the number of non-empty columns for joint evidence denoted by 𝒞; the indication of zero or non-zero instances 

for singleton subsets in the power set { 𝜃 }, … { 𝜃 }, … , { 𝜃 } , 𝑧 ∈ {1, . . , . 𝑧, … , 𝑍} denoted by ℛ; and the proportion 

of data in the joint contingency table denoted by 𝒯. The value of ℛ = 0 if, one of the singleton subsets represented 
by the row in contingency table has zero number of samples, otherwise ℛ = 1. The sparse index is given by: 

𝒮 =
𝒞ℛ𝒯

𝒞𝒯 ℛ𝒯 𝒞ℛ
                                                                                 (16) 
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In Equation (16), 𝒞ϵ[0,1], ℛϵ{0,1} and 𝒯ϵ[0,1]. The sparse index has values between zero and one, 𝒮ϵ [0,1]. The 
sparse index is zero if any row except of missing labels (𝛩) has zero instances and if all the columns are empty. The 
value of 𝒯 is 1 if the input data has no missing values, 𝒟 =  𝒟. 

5.2.2 Combine and Transform Interrelated Categorical Attributes 

5.2.2.1 Combine Evidences in Two Attributes 

The normalised joint probability mass for combined pieces of evidence in categorical attributes 𝐴  and 𝐴  is 

denoted by 𝑚 , , , where 𝑣 ∈ 𝑉  and 𝑣 ∈ 𝑉  are 𝑣  and 𝑣  evidence in 𝐴  and 𝐴 , respectively. The joint 

probability mass (𝑚 , , ) that class 𝜃 is supported by evidence 𝑒 ,  and 𝑒 ,  is given by: 

𝑚 , , ′ =

0                             𝜃 = ∅
, ,

∑
, ,∈ ( )  

( ), ,

 ∀𝜃 ∈ 𝑃(𝛩), 𝜃 ≠ ∅                                        (17a) 

𝑚 , , ′ = (1 −  𝑟 , 𝑚 , , + (1 − 𝑟 , ) 𝑚 , , ] + ∑ 𝛾 , , ,  𝜓 , , ,∩  𝑚 , ,  𝑚 , ,   (17b) 

The residual support (𝑚 ( ), , ) in Equation (17a) is earmarked to the power set as given by: 

𝑚 ( ), , = 𝑚 , ,  𝑚 , ,                                                  (17c) 

The Equation (17a) is the normalised joint probability mass obtained from Equations (17b) and (17c). In Equation 
(17b), 𝑚 , ,  and 𝑚 , ,  are the probability masses of single evidence in attributes 𝐴  and 𝐴 , respectively. It is 
obtained by Equation (7), which consists of weight of evidence (𝑤 , , )  and basic probability  (𝑝 , , ) . The 
reliability (𝑟 , , ) of 𝑣  evidence in 𝑞  categorical attribute pointing to a class 𝜃 is obtained by Equation (7). The 
overall reliability of evidence  (𝑟 , ) is the sum of the products of 𝑟 , ,  and 𝑝 , ,  for all 𝜃 ∈ 𝑃(𝛩). The reliability 
of evidence of a 𝑣  evidence in a 𝑞  evidence is given by: 

𝑟 , =  ∑ 𝑟 , ,   𝑝 , ,∈ ( )                                                            (18) 

The parameter 𝛾 , , ,  is called the reliability ratio. It is the ratio of the joint reliability of the two pieces of 

evidence and the product of their individual reliabilities. The weight of evidence and reliability ratio can be trained 
by data-driven optimisation. The initial weight of evidence can be assumed equal to reliability (𝑤 , , = 𝑟 , , ).  

5.2.2.2 Combine Evidences in Multiple Attributes  

This framework can combine evidences in multiple attributes. The multiple attributes are combined in an iterative 
manner, i.e. first, the evidences in two individual attributes are combined, then these two combined attributes are 
combined with the third attribute. This process continues until a group of interrelated attributes are combined. This 
group of interrelated attributes would have a size greater than or equal to two. The technique to find interrelated 
attributes based on interrelation index and sparse index is demonstrated in Section 5.2.1. Suppose we want to 

combine 𝑄′ categorical attributes 𝐴 , … , 𝐴 , … , 𝐴
′

 each with 𝑉  pieces of evidences. Single and joint probability 

are obtained from Equation (5),  𝑝 , , ,…, 𝑝 , , ,…, 𝑝 , , ′ and 𝑝 , , ,…, 𝑝 , ,…, ,…, 𝑝 , ,…, ′ such that 𝑣 ∈

1, … , 𝑉 , ∀𝜃 ∈ 𝑃(𝛩). The interrelation between evidence, i.e. 𝜓 , , ,…, 𝜓 , ,…, ,…, 𝜓 , ,…, ′  , is obtained 

from Equations (14a) and (14b). Single probability mass, i.e. 𝑚 , , , … , 𝑚 , , , … , 𝑚 , , ′  is obtained from 

Equation (6). Combined probability mass is calculated iteratively once single probability, joint probability, and 
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interrelation are calculated from the data. The degree of the combined support 𝑚 , ,  for joint evidence 𝑒 ,  and 

𝑒 ,  for attribute 𝐴  and 𝐴 , respectively pointing towards proposition 𝜃, 𝜃 ∈ 𝑃(𝛩) is given by: 

𝑚 , , = (1 −  𝑟 , 𝑚 , , + (1 − 𝑟 , ) 𝑚 , , ] +  ∑ 𝛾 , , ,  𝜓 , , ,∩  𝑚 , ,  𝑚 , ,        (19) 

The degree of the combined support from evidence 𝑒 ,  obtained from Equation (20) and evidence 𝑒 ,  in 

attribute 𝐴  pointing to preposition 𝜃 is given by: 

𝑚 , , , = (1 −  𝑟 , 𝑚 , , + 𝑚 ( ), ,  𝑚 , , ] + ∑ 𝛾 , , , ,  𝜓 , , , ,∩  𝑚 , ,  𝑚 , ,     (20) 

The above process is repeated until all 𝑄′ number of attributes are combined to generate the degree of the 
combined support 𝑚 , ,…, ′ . It is then normalised by using Equation (17a) to obtain the combined probability 

mass 𝑚 , ,…, ′ . The combined probability mass 𝑚 , ,…, ′ pointing to proposition 𝜃 is given by: 

𝑚 , ,…, ′ = (1 −  𝑟 , ′ 𝑚 , ,…, ′ + 𝑚 ( ), ,…, ′ 𝑚 , , ′] +

∑ 𝛾 , , ,…, ′  𝜓 , , ,…, ′∩  𝑚 , ,…, ′  𝑚 , , ′                     (21a) 

The combined probability mass left for the power set 𝑚 ( ), ,…, ′  is given by: 

𝑚 ( ), ,…, ′ = 𝑚 ( ), ,…, ′   𝑚 ( ), , ′                                                  (21b) 

The combined probability 𝑚 , ,…, ′ after normalisation of combined probability mass is: 

𝑚 , ,…, ′ = , ,…, ′

∑
, ,…, ′∈ ( )    

( ), ,…, ′
 ∀𝜃 ∈ 𝑃(𝛩)  and  𝑚 ( ), ,…, ′ =

( ), ,…, ′

∑
, ,…, ′    

( ), ,…, ′∈ ( )
          (21c) 

The MAKER framework has two types of parameters – weight and reliability ratio. The parameters are optimised 
by maximising the likelihood of the true state. 

Minimise:𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) =   ∑ ∑ 𝑚 − 𝑚(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)∈ ( )                   (22) 

where, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
: 𝓌 , , ,…,𝓌 , , ,…,𝓌 , , ,𝓌 , , ,…,𝓌 , ,..,

 : , , , ,…, , , ,…,
 

The algorithmic steps to combine multiple categorical attribute by conjunctive MAKER are shown in Table 17, 
Appendix A. The conjunctive MAKER algorithm to combine and transform multiple incomplete and ambiguous 
categorical attribute is denoted as C-MAKER.   

5.3  Computational complexity of I-MAKER and C-MAKER  

The main computation cost of MAKER is in training (optimization) of the parameters and repetition of this 
process to conduct k-fold regularisation to suppress data leakage, overfitting, and smoothing to overcome the 
problem of under-sampling. The parameters include the weight and reliability of each evidence in both I-MAKER 
and C-MAKER and an additional parameter: the reliability ratio in C-MAKER. A fast pre-processing of incomplete 
and ambiguous categorical attributes can be achieved by assuming that the evidence with the highest reliability 
could have relatively high importance compared to other evidence. It suggests that the training time can be reduced 
significantly by concluding that the reliability of evidence is equivalent to its weight. 
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The iterations for k-fold regularisation to estimate the probability mass of evidence in the attributes in a dataset 
are independent of each other. Therefore, a feasible runtime for pre-processing a dataset by I-MAKER and C-
MAKER can be achieved by parallel implementations. The execution time of the tasks in an algorithm is defined 
by Big O notation, which stands for “order of magnitude”. Both algorithms, for I-MAKER shown in Table 16 and 
C-MAKER shown in Table 17, have a non-linear computational complexity that can be roughly estimated as 

𝑂(𝑄) × 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)  and 𝑂 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 Ω × 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) , respectively. In estimated time 

complexity, 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the complexity of optimization, or training of parameters, in the MAKER, 𝑄 is the 

number of categorical attributes, 𝐾 is the number of folds for the regularisation, and 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 Ω represents 

the number of feasible combinations of attributes in the set Ω. The first Big O, 𝑂(𝑄) and 𝑂 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 Ω  for 

I-MAKER and C-MAKER, respectively, represents the computational cost of the first for-loop in the algorithm. 

Similarly, the second Big O, 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) , represents the computational cost of the second for-loop in the 

algorithm. There is a one-time computational cost of training and regularisation for estimation of the probability 

mass, 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) , before the deployment of an AI/ML model. The newly arrived data will be transformed 

based on previously estimated probability mass. The probability mass can be updated regularly when an adequate 
amount of new data is available. 

 

6. Numerical Example 

The numerical example in this section demonstrates the steps to combine two interrelated attributes in early 
asthma signs and symptoms dataset. The two attributes, the physical exercise (E) and peak expiratory rate (PE) have 
the highest number of interrelated evidences with the highest joint probability towards a specific class in 𝑃(Θ) 
(Power set shown in Equation (2). The concluded results of interrelation test on asthma data is shown in Table 27 
in Appendix C. The asthma data obtained from the National Health Services (NHS) in the UK has four attributes. 
This dataset will be discussed further in the case study in Section 7. The dataset has 4827 cases. A small percentage 
of samples are kept aside for validation and the rest of the samples are split into five cross-validation sets to obtain 
the combined probability mass for each set. The cross-validation data is partitioned into 3474 samples for three sets 
and 3475 samples for the other two sets. The frame of discernment in this example is 𝛩 = {𝐸𝑅, 𝑁}, where 𝐸𝑅 
represents an early sign and 𝑁 represents no sign. The power set is 𝑃(Θ) = {𝐸𝑅, 𝑁, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} where 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 =

 Θ = {𝐸𝑅, 𝑁} . The sets {𝐸1, 𝐸2, 𝐸3}  and {𝑃𝐸𝑅1, 𝑃𝐸𝑅2, 𝑃𝐸𝑅3}  contain evidences (which can also be called 
referential values or categories) in the attributes E and PE, respectively. Following are the steps to fuse two 
interrelated attributes by joining the evidences to obtain the combined probability mass for numerical data 
transformation. The following steps are shown for one cross-validation set. These sets are performed for all five 
cross-validation sets of both attributes. The average combined probability mass of all five cross-validation sets is 
used for data transformation of joint evidences. The set of joint evidences in both attributes can be written as 
{(𝐸1, 𝑃𝐸𝑅1), (𝐸2, 𝑃𝐸𝑅1), (𝐸3, 𝑃𝐸𝑅1), (𝐸1, 𝑃𝐸𝑅2), (𝐸2, 𝑃𝐸𝑅2), (𝐸3, 𝑃𝐸𝑅2), (𝐸1, 𝑃𝐸𝑅3), (𝐸2, 𝑃𝐸𝑅3), (𝐸3, 𝑃𝐸𝑅3)}.   

STEP 1: Contingency table  

The contingency tables containing the number of samples for single evidence in E and PE and joint evidences in 
both attributes are shown in Table 2 and Table 3. In Table 3, some of the joint evidences have zero samples due to 
the unavailability of those cases in the dataset. The likelihood and basic probability are obtained from the 
contingency tables. 

Table 2: Contingency table of an attribute 

Physical exercise 
(E) 

E1 E2 E3  Peak expiration 
(PE) 

PER1 PER2 PER3 

Early Diagnosis   Early Diagnosis  

UNKNOWN (𝛩) 12 0 1  UNKNOWN (𝛩) 4 8 1 
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ER 333 245 7  ER 483 88 14 

N 1127 932 31  N 19 2065 6 

 
 

Table 3: Contingency table of the two attributes 
Physical exercise 

(E) 
E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    

UNKNOWN (𝛩) 4 7 1 0 0 0 0 1 0 

ER 276 47 10 202 40 3 5 1 1 
N 16 1107 4 3 927 2 0 31 0 

 

STEP 2: Likelihood of singleton and joint evidences  

The likelihood (𝐿 , , ) is obtained from contingency tables by performing a division operation in each row by 

its sum. The likelihood of singleton and joint evidences in E and PE is shown in Table 18 and 19 in Appendix B. 

STEP 3: Basic probability of singleton and joint evidences  

The basic probability is obtained from the likelihood. The basic probability for singleton and joint evidences in 
both the attributes is obtained from Equation (5). The following Tables 4 and 5 shows the singleton and joint basic 
probability of evidences pointing towards 𝑃(Θ) in attributes E and PE, respectively. 

 
Table 4: Basic probability of E and PE 

Physical 
exercise (E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.440 0.064 0.706  𝛩 0.328 0.319 0.701 

ER 0.292 0.446 0.110  ER 0.665 0.086 0.268 

N 0.268 0.490 0.185  N 0.007 0.596 0.031 

 
Table 5: Joint probability of evidences in E and PE 

Physical 
exercise (E) 

E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    
𝛩 0.391 0.469 0.802 0.000 0.000 0.000 0.000 0.823 0.000 

ER 0.599 0.070 0.178 0.996 0.134 0.843 1.000 0.018 1.000 

N 0.010 0.461 0.020 0.004 0.866 0.157 0.000 0.159 0.000 

 

STEP 4: Interrelation index 

After the single and joint basic probability have been acquired, the Interrelation index between two pieces of 
evidence is calculated through Equations (14a) and (14b). Table 6 shows the interrelation between each two pieces 
of evidence in E and PE. 
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Table 6: Interrelation index 
Physical 

exercise (E) 
E1 E2 E3 

Peak 
expiration 

(PE) 
PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early 
Diagnosis    

𝛩 2.71 3.34 2.60 0.00 0.00 0.00 0.00 3.66 0.00 
ER 3.09 2.80 2.28 3.36 3.50 7.05 13.72 1.95 34.04 
N 5.26 2.89 2.40 1.23 2.97 10.37 0.00 1.44 0.00 

 

STEP 5: Reliability of the evidence  

The reliability of the evidence is defined in Section 5.1. It is the ability of evidence (both single and joint) to 
point correctly to a class in 𝑃(Θ) = {𝐸𝑅, 𝑁, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛}. The reliability of the evidence pointing to a class is obtained 
from Equation (7) and the overall reliability of the evidence weighted by basic probability is obtained from Equation 
(18). The reliability of single and joint evidence is shown in Table 20 and 21 in Appendix B, respectively.     

STEP 6: Set initial values for parameters 

The weight of the evidence and the reliability ratio are two parameters in the MAKER framework. Initially, the 
weight of the evidence is assumed equal to the reliability of the evidence obtained in the previous step. All initial 
values of the reliability ratio are assumed to be equal to 1. The initial values of the weight of the evidences is shown 
in Table 20 and 21 in Appendix B. The initial reliability ratio of the evidences are shown in Table 22 in Appendix 
B.  

STEP 7: Initial probability mass of single attributes (uncombine) 

The probability mass is obtained by Equation (6). It is the multiplication of the basic probability and the weight 
of the evidence. The probability mass for uncombine evidences in the attributes E and PE is obtained first, then the 
combined probability mass is obtained in the next step. 

 
Table 7: Initial probability mass for attribute E and PE 

Physical exercise 
(E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early Diagnosis 
  

Early 
Diagnosis  

UNKNOWN (𝛩) 0.011 0.000 0.091  𝛩 0.005 0.000 0.131 
ER 0.320 0.252 0.114  ER 0.995 0.006 0.833 
N 0.669 0.748 0.795  N 0.000 0.994 0.037 

 

STEP 8: Combined probability mass before training 

 The combined probability mass (𝑚 , , ′ ) is obtained from the Equations (17a) to (17c). Equations (17b) and 

(17c) calculate probability mass and residual support, respectively. The combined probability mass is then 
normalised by the sum of the probability mass and residual support for the joint evidence by Equation (17a). The 
combined probability mass before training of parameters is shown in Table 8. Equations (21a) to (21b) are used if 
evidences in more than two attributes are combined.  
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Table 8: Estimated combined probability: before training 
Physical 

exercise (E) 
E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    

𝛩 0.146 0.198 0.361 0.000 0.000 0.000 0.000 0.439 0.000 

ER 0.672 0.184 0.411 0.890 0.311 0.459 1.000 0.109 1.000 
N 0.182 0.618 0.227 0.110 0.689 0.541 0.000 0.453 0.000 

 

STEP 9: Combined probability mass after training 

Table 9 shows the combined probability after training of the weight and residual support of the evidence. Table 
10 shows the probability mass of evidences in individual attributes. The value of trained parameters is shown in 
Tables 23 to 25 in Appendix B. The joint probability of some of the pieces of evidence in Table 5 is zero, due to 
missing values in the contingency table (Table 3). After optimisation, the combined probability mass of support for 
each state is predicted. 
 

Table 9: Estimated combined probability: after training 
Physical 

exercise (E) 
E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    

𝛩 0.045 0.030 0.343 0.011 0.006 0.001 0.010 0.075 0.007 

ER 0.913 0.049 0.434 0.928 0.031 0.358 0.987 0.087 0.991 
N 0.041 0.921 0.224 0.060 0.963 0.641 0.003 0.839 0.002 

 

Table 10: Updated probability of E and PE 

Physical 
exercise (E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.012 0.000 0.079  𝛩 0.005 0.000 0.197 
ER 0.343 0.369 0.230  ER 0.995 0.006 0.738 
N 0.645 0.631 0.691  N 0.000 0.994 0.065 

 

STEP 10: Average probability mass  

Step 1 to Step 9 in this example, demonstrate the methodology used to obtain the combined probability mass 
from data in the first fold. The average of combined and single probability mass of evidences from all five folds in 
this numerical example is used for data transformation of joint pieces of evidence in E and PE is shown in following 
Tables 11 and 12. 

Table 11: Average estimated combined probability 
Physical 

exercise (E) 
E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    

𝛩 0.035 0.08 0.356 0.021 0.07 0.008 0.01 0.075 0.009 

ER 0.914 0.08 0.42 0.91 0.03 0.36 0.987 0.087 0.99 
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N 0.041 0.84 0.224 0.07 0.9 0.631 0.003 0.839 0.008 

 

Table 12: Average updated probability of E and PE 

Physical 
exercise (E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.012 0.000 0.079  𝛩 0.038 0.089 0.177 
ER 0.353 0.349 0.330  ER 0.897 0.013 0.738 
N 0.635 0.651 0.600  N 0.064 0.900 0.075 

 

STEP 11: Data fusion and transformation  

The combined probability mass obtained from the MAKER framework is used to fuse and transform two or more 
attributes into 𝑍 or 𝑍 + 1 dimensional numerical features. Each feature represents a possible outcome or state 𝜃 ∈
𝑃(𝛩). Table 13 demonstrates the example of fused and transformed data in attributes E and PE into 3-dimensional 
numerical feature using the probability mass in Tables 11 and 12. The first-dimension feature labelled as unknown 
covers uncertainty due to ambiguity in the dataset. The second and third dimension represent early signs of asthma 
and no signs of asthma, respectively. In Table 13, if only one asthma symptom is available (other symptom is 
missing) then probability mass of single evidence is referred from Table 12, if both symptoms are available then 
Table 11 is used for data transformation. The example of the data transformation of all the attributes in the asthma 
data is demonstrated in Table 26 in Appendix B. The interrelation tests demonstrated in Section 5.2.1 for both 
datasets are presented in Tables 27 and 28 in Appendix C.  
 

Table 13: An example of data fusion and interpretable transformation by C-MAKER 
 Attribute 1 Attribute 2  Transformed data 

# data 
points 

Physical 
exercise (E) 

Peak 
expiration 
(PE) 

 
 
 
 
 
 
 

Unknown
(𝛩) 

Early 
sign 
(ER) 

No signs 
(N) 

1 E1 PER1 0.035 0.914 0.041 
2  PER3 0.177 0.738 0.075 
3 E2 PER1 0.021 0.91 0.07 
4 E2  0.00 0.349 0.651 
5 E2 PER2 0.07 0.03 0.90 
6 E3 PER2 0.075 0.087 0.839 
7  PER3 0.177 0.738 0.075 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

 

7. Case Study on Asthma and Mortgage Loan  

7.1 Approach for Performance and Sensitivity Analysis 

Two real-world data were selected to demonstrate the performance and uncertainty management of MAKER for 
the interpretable transformation of incomplete and ambiguous categorical attributes. The proposed methodology 
applies to individual or multiple categorical attributes. The methodology for an individual attribute is called I-
MAKER and for multiple attributes is called C-MAKER. The application of both methods is demonstrated in 
healthcare and finance data. The healthcare data is about early asthma symptoms in children. It is incomplete and 
ambiguous data (missing values in both the input and output attributes). The finance data is about mortgage loans. 
It is incomplete and unambiguous data; only values in the input attributes are missing. Both domains are highly 
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regulated. Decision-making by manual, semi-automated or solely automated system has high stakes in both domains. 
Therefore, data pre-processing steps require awareness about existing uncertainty in the data and flexibility to 
include expert judgment. 

The performance of I-MAKER and C-MAKER were compared with missForest, MICE, EM, and KNN. These 
four techniques are the most commonly used for data imputation. Studies have (Stekhoven & Bühlmann, 2012) 
(Waljee A. , et al., 2013) shown that among all methods, missForest is the most efficient, in terms of accuracy and 
imputation error of prediction models. Three types of AI models- ANN, decision tree, and BRB were selected for 
performance and sensitivity analyses of asthma and loan data for three different missing data scenarios. An ANN is 
a deep learning model, a decision tree is a tree-based model, and a BRB is a rule-based model. BRB is an extension 
from the IF THEN rule-based system that enables the application of belief distribution in presenting the relationship 
between predictors and outcomes in a transparent and interpretable way (Yang, Liu, Wang, Sii, & Wang, 2006). It 
can have hierarchical and non- hierarchical structure.  

 In scenario I, all six methods (I-MAKER and C-MAKER with four other data imputation methods) were tested 
using original data with the three ML algorithms. In scenario II, 20% of the data were randomly removed from the 
original dataset by adding 20% auxiliary missingness to the original data. Therefore, the total proportion of 
missingness in scenario II was the original data missing % + 20%. Similarly, in scenario III, 35% of the data were 
randomly removed from the original dataset. Then, data was split into two parts: training (80%) and validation 
(20%). Both the training and validation sets were stratified on the output attribute to balance the distribution of all 
classes, 𝜃 ∈ 𝑃(Θ). The validation data samples were not part of the training data; they were solely used to assess 
the performance and sensitivity of data imputed by six different imputation methods on neural network, decision 
tree, and belief-rule-base models. Both I-MAKER and C-MAKER were trained separately for each five-fold 
stratified cross-validation sets to randomise the less frequent evidence. The average probability mass of evidence 
(or categories) obtained from the five training folds was used to transform the categorical attributes. In I-MAKER 
and C-MAKER, uncertainty due to missingness in the output attribute is considered in the estimation of probability 
mass for all possible states in a power set. Other data imputation methods cannot consider such uncertainty; 
therefore, such samples are thoroughly ignored in these methods. 

All nominal categorical attributes (no intrinsic order) were transformed into dummy variables {0,1}, and all 
ordinal categorical attributes (intrinsic order) were transformed into unique integers {1,2,3, … } using label encoding 
technique. The missing values imputed in a categorical attribute by missForest, MICE, EM, and KNN were rounded 
to the nearest integer value that belonged to the set of integers used to label that attribute. For instance, in numerical 
example in Section 6, the attribute peak expiration rate (PER) in the asthma dataset has three levels, from lowest to 
highest {PER1, PER2, PER3}. These three levels can be transformed into a numerical attribute using the label 
encoding technique  {PER1 = 1, PER2 = 2, PER3 = 3}. Suppose, a missing value 2.3 is predicted by the data 
imputation technique missForest, then, this value would be rounded to the closest integer (discrete) 2, to point clearly 
to the category PER2 = 2 . The AI/ML models can process both discrete and continuous data. However, the 
approximation of a continuous number to a discrete number for a categorical attribute would be a vital step if a 
model-agnostic or model-specific method were used to explain the decisions by a black-box model. The 
explainability and uncertainty management of MAKER will be discussed in Section 7.4. Depending on the type of 
AI/ML model, the imputed input data can be encoded into the most preferred format, such as one-hot encoding for 
ANN, label encoding for decision-tree, and belief-distribution for BRB. 

 
7.2 Results: Early Asthma Symptoms  

 The early asthma symptoms data in children was obtained from NHS Digital in the UK. Children’s asthma is the 
third highest medical condition in the UK and the most common reason for urgent admission to hospitals. The dataset 
was utilised to detect early asthma signs and symptoms in children. It has four categorical attributes: sleep disturbance 
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(S), a nocturnal symptom; the existence of daytime (DT) symptoms; peak expiratory rate (PER), the measure of the 
maximum amount of air that can be exhaled from the lungs; and triggers by physical exercise or activity (E). The 
dataset has 4827 cases. The missing values exist in all four input attributes for asthma symptoms and output attribute 
for asthma diagnosis. In total, 10.99% of the data is missing. The record of asthma diagnosis has two outcomes 
(decisions); the set of outcomes can be written as 𝛩 = {𝑒𝑎𝑟𝑙𝑦 𝑠𝑖𝑔𝑛, 𝑛𝑜 𝑠𝑖𝑔𝑛}. The power set of all possible states is 
𝑃(𝛩) = {{𝑒𝑎𝑟𝑙𝑦 𝑠𝑖𝑔𝑛}, {𝑛𝑜 𝑠𝑖𝑔𝑛}, 𝛩 = {𝑒𝑎𝑟𝑙𝑦 𝑠𝑖𝑔𝑛, 𝑛𝑜 𝑠𝑖𝑔𝑛}}. The probability mass for all evidence in the data 
by I-MAKER and C-MAKER was estimated for all states in 𝑃(𝛩). The proportion of missingness in each attribute 
can be seen in Figure 8.   

 

Figure 8. The proportion of missing values in early asthma symptoms data 

 

The performance and sensitivity of I-MAKER and C-MAKER compared to other data imputation methods for 
incomplete and ambiguous asthma data was analysed through three different scenarios for three AI models. The 
hyper-parameters of ANN, decision tree, the BRB structure for individual attributes transformed by I-MAKER, and 
combined by C-MAKER is shown in Table 29, Table 31, Figure 15, and Figure 16, respectively. The first layer (𝐿 ) 
in an ANN is the input layer. In Table 29, it can be seen that the input data transformed by C-MAKER and I-MAKER 
in the third scenario has only 9 and 18 transformed features, respectively, compared to 14 features from other 
imputation methods for ANN models. In the asthma data, two sets of attributes {𝐸, 𝑃𝐸 } and {𝑆, 𝐷𝑇 } were combined 
by the C-MAKER rule. Table 27 in Appendix C shows the proportion of interrelated evidence, joint probability, and 
sparse index. The set {𝐸, 𝑃𝐸} has a high proportion of interrelated evidence, 𝜓 = 1.0; a high joint probability, 
𝜇(𝑝|𝜓) = 0.79; and a good sparse index, 𝒮 = 0.909. The set {𝑆, 𝐷𝑇 } has a proportion of interrelated evidence of 
𝜓 = 0.916, a joint probability of 𝜇(𝑝|𝜓) = 0.58, and a good sparse index of 𝒮 = 0.915. 

 The incompleteness of data was simulated by varying the proportion of missingness. Table 14 demonstrates the 
area under the ROC curve (AUC) score of ANN, decision tree, and BRB for missing data imputed by six different 
methods under three missing data scenarios: 10.99%, 30.99% (10.99%+20%), and 45.99% (10.99%+35%). The 
increase in missingness proportion in the data results in a loss of information. The best performance can be seen in 
the scenario I and the worst in scenario III. The missingness decreased the abstraction capacity of any learning 
algorithm; however, the inclusion of uncertainty in the data controls biases and errors. In scenario I, most of the 
performance of data transformed by I-MAKER and C-MAKER is very close to the performance of data imputed by 
missForest. For all three models under all three different scenarios, missForest performed better than MICE. The 
performance gap between I-MAKER and C-MAKER with other data imputation techniques increased as the missing 
proportion increased. In scenario II, I-MAKER and C-MAKER had relatively similar performances, and both 
performed considerably better than data imputation techniques. In scenario III, C-MAKER did not perform well when 
compared to I-MAKER for all three models, due to insufficient samples when fusing two or more pieces of evidence 
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in the combined evidence space. The relatively common order of AUC from the highest for scenario III, which has 
45.99% of data missing, was I-MAKER ≈ C-MAKER > missForest > MICE > EM > KNN.  

 

Table 14: AUC Performance comparison for asthma symptoms data   

 

Scenario I 

Original data missing proportion = 10.99% 

I-MAKER C-MAKER missForest MICE EM KNN 

ANN 0.959 0.962 0.962 0.960 0.958 0.959 

Decision 
tree 

0.963 0.959 0.963 0.901 0.899 0.962 

BRB 0.961 0.965 0.945 0.943 0.952 0.956 

Scenario II 

Missing proportional: original data % + 20% = 30.99% 

ANN 0.830 0.834 0.829 0.804 0.791 0.782 

Decision 
tree 0.816 0.813 0.780 0.740 0.618 0.795 

BRB 0.868 0.838 0.820 0.800 0.766 0.770 

Scenario III 

Missing proportional: original data % + 35% = 45.99% 

ANN 0.744 0.710 0.609 0.593 0.511 0.520 

Decision 
tree 0.745 0.732 0.540 0.532 0.515 0.500 

BRB 0.733 0.690 0.599 0.592 0.509 0.576 

 

7.3 Results: Mortgage Loan  

The mortgage loan data was obtained from Together Financial Services, a mortgage lending firm in the UK. The 
attributes of the loan data relate to affordability, unsecured loans, secured loans, bankruptcy and payday, debit and 
debit searches, credit score, loan criteria, property valuation, and property value. There are 18 attributes, named 
sequentially from 𝐴1 to 𝐴18. Only attributes related to credit score are quantitative; all other attributes are categorical 
in nature. The credit score is a continuous attribute. Missing values were filled with an extreme negative value (Saar-
Tsechansky & Provost, 2007).  The mortgage loan data is incomplete and unambiguous since it has missing values 
in the attributes of input data and no missing class labels. The percentage of missingness in each attribute can be seen 
in Figure 9. In a BRB model, the referential values of quantitative attributes are trained. The trained referential values 
of credit score for BRB model are {−99.0,0.0,256.31,410.56,600}; here -99 is the lower bound, which refers to an 
unknown credit score for a customer, and 600 is the upper bound of the credit score. The loan data consists of 
historical credit data from a credit bureau and features extracted from electronic loan applications. The columns in 
the dataset were aggregated using average, maximum, minimum, and sum operations. For example, data for the rule 
‘worst status of secured loans in the last 12 months’ would represent the maximum of worst status columns for the 
current address, previous address, and linking address. Likewise, data for the rule ‘number of bankruptcies in the last 
six years’ is the sum of the columns for the number of satisfied and unsatisfied bankruptcies in the last six years. The 
explainable system based on BRB was developed to automate the mortgage loan application process (Sachan S. , 
Yang, Xu, Benavides, & Li, 2020). A detailed description of this data and the methodology for data treatment can be 



 30

seen in the aforementioned paper. The loan dataset has 3498 cases. In total, 6.55% of the data is missing and only 
attributes 𝐴1, 𝐴3, 𝐴10, 𝐴12, 𝐴13, and 𝐴16 have missing values. Attribute A16 for property valuation has the highest 
number of missing values (≅ 72.06%). The set of decisions in loan data is Θ = {fund, reject}. The power set of all 
possible states is P(Θ) = {{fund}, {reject}, Θ = ∅}.  

 

 

Figure 9. The proportion of missing values in mortgage loan dataset 

 

The probability mass for all evidence in the data is estimated for all states in 𝑃(𝛩) in order to implement I-
MAKER and C-MAKER. The procedure to analyse the performance and sensitivity of I-MAKER and C-MAKER 
with other data imputation methods was similar to that of the asthma data. The data imputed by six different methods 
were analysed for three different missing data scenarios in three types of machine learning models. The hyper-
parameters of ANN, decision tree, the BRB structure for individual attributes transformed by I-MAKER, and 
combined by C-MAKER is shown in Table 30, Table 32, Figure 17, and Figure 18, respectively. All attributes were 
fused into six groups by C-MAKER and I-MAKER transformed individual attributes without data fusion, can be seen 
in Figure 17 and 18, respectively. Table 28 in Appendix C shows the proportion of interrelated evidence, joint 
probability, and sparse index for each group for data fused by C-MAKER. Table 30 shows that the input data 
transformed for the ANN by C-MAKER has 17 × 2 = 34 and I-MAKER has 6 × 2 = 12 transformed features 
compared to 60 for other methods in scenario I. For scenarios II and III, the input data transformed for ANN by C-
MAKER has 17 × 3 = 54  and I-MAKER has 6 × 3 = 18  transformed features compared to 60 for the other 
methods.          

The AUC score of ANN, decision tree, and BRB for missing data imputed by six different methods under three 
missing data scenarios: 6.55%, 26.55% (6.55%+20%), and 41.55% (6.55%+35%) are shown in Table 15. The 
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proportion of missingness in the data increased from scenario I to scenario II, which reduced the abstraction capacity 
of all the models. For all three scenarios, the performance of C-MAKER was best. Its performance was close to either 
missForest or I-MAKER in all scenarios. It is interesting to observe that in the asthma data, the performance of I-
MAKER was better than other methods, especially C-MAKER, due to high sparsity in the join evidence when the 
pieces of evidence in two or more attributes were combined. However, in the mortgage loan data, C-MAKER is 
mostly better or very close to I-MAKER. One possible explanation for this outcome is that there are some attributes 
in the model that strongly influenced the prediction, so the loss of information of other attributes did not affect the 
result. In scenarios II and III, I-MAKER and C-MAKER have relatively similar performances. The relatively 
common order of AUC for scenario III, in which 45.99% of data was missing, is  
C-MAKER > I-MAKER > missForest > MICE > EM > KNN. 

 

Table 15: AUC Performance comparison for mortgage loan data   

 

Scenario I 

Original data missing proportion = 6.55% 

I-MAKER C- MAKER missForest MICE EM KNN 

ANN 0.951 0.956 0.953 0.946 0.940 0.941 

Decision 
tree 

0.867 0.861 0.878 0.852 0.843 0.851 

BRB 0.929 0.966 0.900 0.981 0.902 0.921 

Scenario II 

Missing proportional: original data% + 20% = 26.55% 

ANN 0.856 0.858 0.794 0.780 0.712 0.701 

Decision 
tree 0.780 0.790 0.730 0.757 0.751 0.752 

BRB 0.863 0.869 0.741 0.711 0.7 0.853 

Scenario III 

Missing proportional: original data% + 35% = 41.55% 

ANN 0.686 0.686 0.581 0.541 0.507 0.478 

Decision 
tree 0.601 0.603 0.490 0.512 0.549 0.422 

BRB 0.660 0.612 0.578 0.571 0.576 0.424 

 

 

7.4 Discussion 

7.4.1 Uncertainty Management 

The results of both case studies demonstrate that I-MAKER, C-MAKER, and missForest has relatively close 
performance for three types of AI algorithms compared to other data imputation techniques. MissForest have been 
implemented widely and proven to be robust due to its ability to handle various types of data and less requirement of 
tuning (Waljee A. K., et al., 2013). There is no doubt that data imputation technique such as missForest based on 
random forest algorithm and any other ML algorithm for missing data imputation would provide a close cut 
performance. However, trust in transformed data is equally essential due to the rise in ethical concerns around data 
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and computerized decisions by data-driven systems. It is found and argued that naturally meaningful features in 
structured data extracted by following a standard knowledge discovery process would not exhibit a significant 
difference in the performance of complex algorithms and simple algorithms after preprocessing (Rudin, 2019). This 
implies that features fed in the AI system should be relevant and trustworthy to strike a balance between model 
performance and overall explainability of an AI system. The role of transformed data in the explainability of AI 
models will be discussed in detail in the next section.  

Missing values in input attributes and output attribute introduce uncertainty in the predicted decisions. The 
multiple pieces of evidence in an input attribute is mapped into output attribute space by MAKER rule. Similarly, 
multiple pieces of joint evidence in a combined attributes are mapped into output attribute space by conjunctive 
MAKER. Both techniques are based on DS theory. It is has an excellent ability to consider uncertainty and ignorance. 
It can cover uncertainty in decisions by local and global ignorance represented by subsets of singleton decisions and 
universal set of decisions, shown in Figure 10. Local ignorance refers to the cases where the evidence points to two 
or more decisions. In other words, they are partial states of the system. For example, experts would prefer to provide 
a subjective assessment for a subset of decisions than for one single decision (Xu, Yang, & Wang, 2006). Global 
ignorance refers to the cases where the evidence state (or possible outcome) is entirely unknown. In MAKER rule, 
the outcome is profiled over the subset of the power set, which represents the dimensions in output attribute space. 
The uncertainty in the evidence at an input attribute is reflected in uncertainty in the output profiled over the power 
set. In a practical system, evidence point to singleton decision and universal set of decisions (global ignorance). It is 
rare to find a dataset where an instance point to a subset of decisions (local ignorance). For example, if there are four 
stages of an illness. Then, symptoms in the dataset could point to early two stages or two later stages. Such dataset 
could exist when the data is labelled or annotated by the experts. In the case study, it is assumed that the evidence 
points to a singleton set of decisions and a universal set of decisions. Both methods can be used if the evidence point 
to subset of decisions. The uncertainty caused by importance of the evidence and sufficiency of the evidence is 
incorporated in MAKER through evidence weight and reliability, respectively. The weight of evidence can be trained 
or can be obtained by the subjective judgment by the domain experts.  

 

 

Figure 10. Local and global uncertainty  

 

The EM data imputation techniques do not consider uncertainty (Baneshi & Talei, 2012), whereas MICE, KNN, 
and missForest can consider uncertainty by introducing a random component in the estimated values (Baneshi & 
Talei, 2011). These techniques cannot estimate the uncertainty of incomplete and ambiguous data, where both input 
and output attributes have missing values. The missing data is imputed in a cyclic fashion for each attribute in both 
MICE and missForest by predicting the missing values with only the complete instances in the dataset. In MAKER, 
the interrelation and basic probability are estimated with the complete case data; however, probability mass is 
estimated by both complete and incomplete data (entire dataset). It takes advantage of DS uncertainty principles. 

7.4.2 Impact of Data Transformation on Explainability of Decisions  

AI algorithms can parse a large amount of data into intelligent insights and predictions. These algorithms have 
efficient optimizers and have huge parametric space which results in complex black-box models which produce non-
traceable decisions. Despite the unlimited potential of these algorithms, humans are still baffled how a black-box 
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algorithm arrives at a particular decision. This question often raises concern about the reliability of autonomous 
decision-making systems. Explanation based on logical reasoning behind a decision is critical for domains like 
healthcare and finance where automated decisions have a high impact on human life. The explainability of AI/ML 
system has two stages: pre-modelling and post modelling. The pre-modelling explainability demands an in-depth 
understanding of data in a domain. The post-modelling explainability requires reasoning behind local (single 
decision) decisions and global understanding of the model. The simple approximation of decision boundaries of a 
black-box model by probing a trained AI/ML model with test dataset is a common strategy to understand a local 
decision by techniques like Local Interpretable Model Agnostic Explanations (LIME) (Ribeiro, Singh, & Guestrin, 
2016) and Shapley (Lundberg & Lee, 2017). The explanation for local decisions and global understanding of the 
model can be approximated by model specific and model agnostic techniques (Adadi & Berrada, 2018). The pros and 
cons of these techniques can be seen in (Kelly L. , et al., 2020) (Adadi & Berrada, 2018) . The white-box models are 
inherently interpretable such as rule-based, decision tree, and linear regression.  

The algorithm follows the data. It learns biases and unknown uncertainty in from incomplete training data 
reflecting historical discrepancies, which could result in untrustworthy outcomes for a certain group of people. It 
could have an adverse impact on groups which are unrepresented in the training data without a developer’s intention 
to discriminate. The group of people in the case study are asthma patients and loan customers. Therefore, it is essential 
to control and understand the uncertainty in incomplete and ambiguous data. This paper addresses the concerns in 
handling uncertainty in incomplete and ambiguous categorical attributes. Before predicting missing values, data 
imputation methods transform categorical attributes into numerical features containing discrete values ({1,2,3, . . . } 
or {0,1}). Similarly, AI/ML algorithm expects discrete values for a categorical attribute. However, the missing values 
predicted by data imputation methods are continuous. A discrete value points to a specific category in an attribute, 
whereas continuous value does not point to a specific category. A continuous value for a category can be perceived 
as a value which could belong to two categories with varying degree. For example, the categories in attribute 𝑃𝐸𝑅 in 
asthma data encoded as {𝑃𝐸𝑅1 = 1, 𝑃𝐸𝑅2 = 2, 𝑃𝐸𝑅3 = 3}. A predicted value 2.4 points 60% towards a category 
𝑃𝐸𝑅2 and 40% towards category  𝑃𝐸𝑅3. The continuous values are rounded to nearest discrete value to point 
specifically to a category for deep learning and tree-based models. This practice is helpful in post-modelling 
explainability stage. Also, for the transformation of data to a required format, for example, one-hot encoding for deep-
learning models, and label encoding for tree-based models.  

The reasoning behind the predicted values provides a clear understanding of the input data. It is an initial step to 
achieve the explainable system. Among all techniques, missForest has demonstrated relatively good performance 
compared to other methods (Stekhoven & Bühlmann, 2012) (Waljee A. , et al., 2013). It is based on the random-
forest algorithm, which is not inherently interpretable; therefore, reasoning behind the imputation of missing values 
can only be explained by external methods. Similarly, KNN is not sufficiently interpretable as each cluster is defined 
by mean and covariance parameters. The distance from centroid or boundary of each cluster is usually used to 
determine the degree of membership for a given instance. However, it is not easy to understand the contribution of 
relevant features in the decision-making process, especially when the data has a large number of dimensions. The 
MICE imputation method implements an appropriate regression method for different types of attributes such as linear 

regression, logistic regression, multinomial log‐linear models, or Poisson regression (Gelman, Van Mechelen, 

Verbeke, Heitjan, & Meulders, 2005). A predicted missing value by the regression model could be explained by 
multiplying the weight of feature or coefficient with the dependent values (known/non-missing features). The Figure 
11 and Figure 12 demonstrates the explainability of a probabilistic decision {(𝐸𝑅, 0.80), (𝑁, 0.20)}  and 
{(𝐸𝑅, 0.88), (𝑁, 0.12)} given by ANN for an instance by feature importance obtained from model-agnostic method 
LIME, respectively. The missing data in both the cases are predicted by missForest, therefore the pre-modelling 
explainability would be very explicit. It is hard to understand how and why these values are predicted. The importance 
of explainability is described simply on asthma data for due to small attributes compared to mortgage loan.   
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Figure 11. Explainability by feature importance for an instance when imputed data is rounded   

 

 

Figure 12. Explainability by feature importance for an instance when imputed data is not rounded   

 

In Figure 11, the predicted missing values were approximated (or rounded) to create discrete input data to point 
explicitly to the categories in the data. It provides better support in the post-modelling explainability stage. In Figure 
12, the predicted missing values in the input data (all four attributes in asthma data) were not approximated to a 
nearest discrete value. The input data in such case cannot be decoded back to the original categories, and model-
agnostic method assumes that all four variables are continuous. It is difficult to debate about the input data 
requirements for post-modelling explainability. The discrete data can point specifically to a category, thus can provide 
explainability in terms of contribution by each attribute towards a decision which point to a specific category, whereas 
continuous data is real predicted value and can provide contributions towards a decision by the attributes which falls 
in a certain range for each instance. Figure 13 demonstrate the explainability of a probabilistic decision 
{(𝐸𝑅, 0.728), (𝑁, 0.272)}  given by ANN for an instance by feature importance obtained from model-agnostic 
method LIME. The table in shown in Figure 13 is the input data transformed by MAKER. Here, a decision for an 
instance can be broken down into the contribution of each feature towards {𝐸𝑅, 𝑁, 𝛩 = {𝐸𝑅, 𝑁}}, where 𝛩 represent 
uncertainty. The simplified explanation for the decision for I-MAKER data is shown in Figure 14. The visualization 
of the importance of the features by C-MAKER would be same as I-MAKER. 
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Figure 13. Explainability by feature importance for an instance when data is imputed by I-MAKER 

 

Figure 14. Simplified explanation by feature importance for an instance when data is imputed by I-MAKER 

 

8 Conclusion 

Automated decision-making systems cannot anticipate every circumstance due to uncertainty induced by 
incomplete and ambiguous training data reflecting historical discrepancies and imperfections in the data collection 
process. A meaningful trusted relationship between humans and decision-making systems is critical for successful 
adoption of these systems to provide automated decisions in highly regulated domains. Missing data has a ubiquitous 
presence in a realistic setting. The first step to engender human trust demands consideration of uncertainty due to 
missing information and a firm understanding of input data pre-processed by imputation and transformation 
techniques. An inadequate understanding of input data by humans prevents the achievement of a safe and trustworthy 
decision-making process. 

This paper comprehensively addresses the issue of uncertainty in decision-making due to categorical attributes. 
The categorical attributes have inherently non-numerical nature compared to numerical or continuous attributes. The 
inherent non-numerical nature and presence of incomplete and ambiguous values in categorical attributes increase 
the uncertainty in decision-making. This paper has recognised three sources of uncertainties in categorical attributes. 
The informational uncertainty, unforeseeable uncertainty in the decision task environment, and the uncertainty due 
to lack of pre-modelling explainability in categorical attributes are addressed in the proposed methodology in this 
paper.      
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The MAKER rule is proposed for an interpretable numerical transformation and imputation of incomplete and 
ambiguous categorical attributes. It integrates the recognised uncertainties in the transformed input data that allow a 
model to perceive data limitations and acknowledge doubtful predictions during the training regime. MAKER can be 
implemented on individual categorical attributes and can combine two or more attributes to reduce the dimensionality 
of transformed numerical features. It does not discard instances with missing values for complete-case analysis like 
most data imputation techniques. It imputes missing values and numerically transforms categorical attributes by 
analysing all complete and incomplete instances to incorporate uncertainty. This paper has demonstrated that the 
uncertainty management and interpretable transformation of categorical attributes by MAKER provide support for 
trustworthy pre-modelling and post-modelling explainability to understand the input data and reasoning behind a 
decision, respectively. Additionally, it has a notion of weight and reliability of evidence for each outcome to include 
the subjective preference of an expert over a piece of evidence and the quality of the evidence in a categorical attribute, 
respectively. MAKER rule in this paper has not addressed the approach to combine subjective judgment of multiple 
human experts at different levels of expertise in a domain. It expects an expert to provide crisp numerical judgment 
on the weight of the evidence between [0,1]. However, the subjective judgment from an expert may not be reasonable. 
Another disadvantage of MAKER is that it can either utilize evidence weight as a subjective judgment from an expert 
or be treated as a parameter trained by data-driven optimization. The weight of evidence is trained if subjective 
judgments are not available. It does not provide a reasonable proposition to choose the weight of evidence if both are 
subjective judgments and the ability to train is available. It neither provides the ability to combine both sources of 
information. In the future, MAKER can be extended to address the ambiguity in judgment by multiple human experts. 
Its scope can be broadened by expanding it to pre-process both categorical and continuous data.  

The practicality of the proposed methodology is demonstrated on paediatric asthma symptoms data collected from 
National Health Services in the UK and mortgage loan data obtained from a lending firm in the UK. The MAKER 
for an individual attribute (I-MAKER) and for the fusion of a group of attributes (C-MAKER) were compared with 
four widely implemented data imputation techniques: missForest, MICE, EM, and KNN. The performance and 
sensitivity of these methods were analysed on asthma and loan data for three different missing data scenarios by three 
types of AI models- artificial neural network (deep-learning), decision-tree (tree-based), and belief-rule-base (rule-
based). The experimental results demonstrated that the proposed methods outperformed other data imputation 
techniques in most scenarios for different AI models. Among the various scenarios and AI models, C-MAKER 
achieved the highest AUC value in the mortgage loan data and I-MAKER in the paediatric asthma data. 

This research would enable developers to design AI-enabled decision-making systems that can integrate 
uncertainty in decision-making and support the explainability of decisions by black-box and white-box models. The 
understanding of the limitations of data by uncertainty management allows the generation of smarter and reliable 
computerised decisions for highly regulated domains in high-risk situations.  
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Appendix A. Algorithmic Steps  

Table 16: MAKER Algorithm to Pre-Process Individual Categorical Attributes 

I-MAKER Algorithm: MAKER to Pre-Process Individual Categorical Attributes 

1 Random stratified split of a dataset 𝒟 into cross validation 𝒟  and validation set 𝒟  
 

2 Split 𝒟  into 𝐾 equal folds  
3 Create 𝐾 different training set 𝒟 ,  and test set 𝒟 ,  from 𝐾 folds  
4 𝑃 ⟵  𝜙  //Initialize empty list of probability mass// 

5 For 𝑞 = 1 to 𝑄 do: 
6 𝑃 ⟵  𝜙  //Initialize temporary list for probability mass// 

7 For 𝑘 = 0 to 𝐾 do: //Each 𝑘  training and test set// 
8 Create Contingency table from 𝒟 ,   
9 Compute Likelihood 
10 Compute basic probability //Equation (5)// 
11 Compute prior probability //Equation (10)// 
12 Compute reliability of evidence pointing to class 𝑃(Θ) //Equation (7)// 
13 Assume initial weight = reliability  
14 Compute initial probability mass //Equation (6)// 
15 Update probability mass of  𝑈𝑛𝑘𝑛𝑜𝑤𝑛 = 𝐴 , … 𝐴 , … 𝐴  //Equation (11)// 

  a) Test classification accuracy of 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 and find 𝜆 ,  for 𝒟 ,   

  b) Adjust probability mass of 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 pointing to class 𝜃  
 

16 Optimize weight of evidence by finding 𝑚(𝑤) by iterating overstep (8) and (10) //This step 
can be avoided to save pre-training time// 
 

17 𝑃  ⟵ [𝑚 , , ] //Store probability mass of all evidence in 𝑞  attribute obtained from 

𝑘  set// 
18 End For  
19 𝑃 ⟵ [𝑚 , , ] //Store average probability mass// 

20 End For 
21 Numerical transformation of all 𝑞  (𝑞 ∈ {1, … , 𝑄}) categorical attributes in 𝒟 and 𝒟  
 

Time complexity = 𝑂(𝑄) × 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)   
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Table 17: Conjunctive MAKER Algorithm to Pre-Process and Combine Multiple Categorical Attributes 

C-MAKER Algorithm: Conjunctive MAKER to Pre-Process and Combine Multiple Categorical 
Attributes 

C-MAKER can combine into a maximum 𝑮 number of categorical attributes in a dataset containing a 
total 𝑸 number of categorical attributes, such that 𝑮 < 𝑸. The 𝑮 number of attributes can be combined in 
𝛀 number of ways (Equation (12)). A set of the most feasible combinations with high interrelation and 
evidence sparse index is 𝛀 = {{𝑨𝒒 , 𝑨𝒒 𝟏}, … , {𝑨𝟏, … , 𝑨𝒒, … , 𝑨𝑸 }}; here cardinality of set 𝛀 is less 
than 𝛀.  
 
1 Random stratified split of a dataset 𝒟 into cross validation 𝒟  and validation set 𝒟  

2 Split 𝒟  into 𝐾 equal folds 

3 Create 𝐾 different training set 𝒟 ,  and test set 𝒟 ,  from 𝐾 folds  

4 Suppose, C-MAKER process a combination 𝑨𝟏, … , 𝑨 , … , 𝑨𝑸  out of Ω number of combinations in 

the following loop.   

For 𝜔 = 1 𝑡𝑜 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝛀 )  do: //Loop process combinations feasible in set 𝛀 // 

5 Create a set of sets of singleton and sequential cumulative set of 𝑸  attributes 

𝔾 = 𝑨𝟏 , … , {𝑨𝒒}, … , 𝑨𝑸 , … , 𝑨𝟏, 𝑨𝟐 , … , 𝑨𝟏, 𝑨𝒒 , … , {𝑨𝟏, 𝑨𝟐, 𝑨𝟑}}, … , {𝑨𝟏, … , 𝑨𝒒, … , 𝑨𝑸 }     

6 𝑃 ⟵  𝜙  //Initialize empty list of probability mass// 

7 For 𝑘 = 1 to 𝐾 do: 

8 𝑃 ⟵  𝜙  //Initialize temporary list for probability mass// 

9 Extract complete data samples (𝒟 ) for all set of attributes in 𝔾 

10 //Find missingness in the data // 

If  𝒟 = 𝒟 ,  then: //if complete data for a set of attributes in 𝔾 is equal data in 
𝒟 ,  //  

No missing data   
Else: 

missing data  
11 Create Contingency table //Created from 𝒟  data// 
12 Compute Likelihood  
13 Compute basic probability //Equation (5)// 
14 Compute Interrelation //Equation (14a)// 
15 Compute reliability of evidence pointing to class 𝑃(Θ) //Equation (7)// 
16 Compute reliability of evidence //Equation (18)// 
17 Assume initial weight = reliability 
18 Compute initial probability mass for singleton attributes in 𝔾 from 𝒟 ,  data //Equation 

(6)// 
20 Calculate combine probability mass //Equation (17a)-(17c)// 
21 Optimize weight and reliability ratio by iterating overstep (17)  
22 𝑃  ⟵ [𝑚 , ,…,  ] //Store probability mass of all evidence in 𝑞  attribute obtained 

from 𝑘  set // 
23 End For  
24 𝑃 ⟵ [𝑚 , ,…,  ] //Store average probability mass// 

25 End For 
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Table 17: Conjunctive MAKER Algorithm to Pre-Process and Combine Multiple Categorical Attributes 

C-MAKER Algorithm: Conjunctive MAKER to Pre-Process and Combine Multiple Categorical 
Attributes 

C-MAKER can combine into a maximum 𝑮 number of categorical attributes in a dataset containing a 
total 𝑸 number of categorical attributes, such that 𝑮 < 𝑸. The 𝑮 number of attributes can be combined in 
𝛀 number of ways (Equation (12)). A set of the most feasible combinations with high interrelation and 
evidence sparse index is 𝛀 = {{𝑨𝒒 , 𝑨𝒒 𝟏}, … , {𝑨𝟏, … , 𝑨𝒒, … , 𝑨𝑸 }}; here cardinality of set 𝛀 is less 
than 𝛀.  
 
26 Numerically transform and fuse all 𝜔 = 1 to 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝛀) number of combinations of 

categorical attributes into 𝑍 or 𝑍 + 1 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 numerical features. 
 

Time complexity = 𝑂 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 Ω × 𝑂 𝐾 × 𝑂(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)  

 

Appendix B. Numerical Example on Real Data  

 

Table 18: Likelihood of E and PE 

Physical 
exercise (E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.882 0.059 0.059  𝛩 0.412 0.529 0.059 

ER 0.584 0.406 0.009  ER 0.835 0.142 0.023 

N 0.538 0.447 0.015  N 0.009 0.989 0.003 

 
 

Table 19: Likelihood of joint evidences in E and PE 
Physical 

exercise (E) 
E1 E2 E3 

Peak expiration 
(PE) 

PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early Diagnosis    

𝛩 0.308 0.538 0.077 0.000 0.000 0.000 0.000 0.077 0.000 

ER 0.472 0.080 0.017 0.345 0.068 0.005 0.009 0.002 0.002 
N 0.008 0.530 0.002 0.001 0.444 0.001 0.000 0.015 0.000 

  

Table 20: Reliability of evidences in E and PE (Initial weight of evidences in E and PE) 

Physical 
exercise (E) E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.01 0.00 0.03  𝛩 0.01 0.00 0.06 
ER 0.44 0.37 0.24  ER 1.00 0.04 1.00 
N 1.00 1.00 1.00  N 0.03 1.00 0.38 
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Table 21: Reliability of joint evidences in E and PE (Initial weight of joint evidences in E and PE) 
Physical 

exercise (E) 
E1 E2 E3 

Peak 
expiration 

(PE) 
PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early 
Diagnosis    

𝛩 0.014 0.006 0.100 0.000 0.000 0.000 0. 000   0.032 0.000 
ER 1.000 0.042 1.000 1.000 0.043 1.000 1.000 0.032 1.000 
N 0.058 1.000 0.400 0.015 1.000 0.667 0.000 1.000 0.000 

  

Table 22: Initial reliability ratio of joint evidences in E and PE 
Physical 

exercise (E) 
E1 E2 E3 

Peak 
expiration 

(PE) 
PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early 
Diagnosis    

𝛩 1 1 1 1 1 1 1 1 1 
ER 1 1 1 1 1 1 1 1 1 
N 1 1 1 1 1 1 1 1 1 

 
 

Table 23: Trained weight of evidences in E and PE 

Physical 
exercise 

(E) 
E1 E2 E3 

 Peak 
expiration 

(PE) 
PER1 PER2 PER3 

Early 
Diagnosis   

Early 
Diagnosis  

𝛩 0.01 0 0.03  𝛩 0.01 0 0.09 
ER 0.44 0.56 0.56  ER 0.98 0.04 0.88 
N 0.9 0.87 1  N 0.03 0.89 0.67 

 

Table 24: Trained weight of joint evidences in E and PE 
Physical 

exercise (E) 
E1 E2 E3 

Peak 
expiration 

(PE) 
PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early 
Diagnosis    

𝛩 0.90 0.70 0.91 1.00 0.90 0.91 0.90 0.98 0.90 
ER 0.98 0.36 0.90 1.00 0.18 1.00 0.90 0.88 0.98 
N 0.59 0.97 0.93 0.79 0.98 0.98 1.00 1.00 0.97 

 

Table 25: Trained reliability ratio of joint evidences in E and PE 
Physical 

exercise (E) 
E1 E2 E3 
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Peak 
expiration 

(PE) 
PER1 PER2 PER3 PER1 PER2 PER3 PER1 PER2 PER3 

Early 
Diagnosis    

𝛩 0.90 1 0.98 0.99 0.99 1 1 1 1 
ER 1 1 0.96 1 0.99 0.98 0.97 0.98 0.99 
N 0.80 0.99 1 1 1 1 1 1 0.99 

 
 

Table 26: Example of data fusion and transformation by MAKER 
      Transformed data E&PE Transformed data S&DT 
# data 
points 

E PE S DT  MK1_ 𝛩 MK1_ER MK1_N MK2_ 𝛩 MK2_ER MK2_N 

1 E1 PER1 S2 DT1 0.035 0.914 0.041 0.10 0.781 0.119 

2  PER3  DT1 0.177 0.738 0.075 0.012 0.80 0.188 

3 E2 PER1 S2  0.021 0.91 0.07 0.016 0.365 0.619 

4 E2  S1  0.00 0.349 0.651 0.15 0.831 0.019 

5 E2 PER2  DT2 0.07 0.03 0.90 0.177 0.301 0.522 

6 E3 PER2 S2 DT1 0.075 0.087 0.839 0.10 0.781 0.119 

7  PER3 S1 DT2 0.177 0.738 0.075 0.15 0.781 0.069 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 
 

Appendix C. Case Study 

Table 27: Interrelation Tests for Asthma Data 
Combination of 
two attributes 
(𝐚𝐭 𝒈 = 𝟐) 

Proportion of 
interrelated 
evidences (𝝍𝒑) 

Average of highest 
joint probability   

𝝁(𝒑|𝝍) 

sparse index 
𝓢 

{𝐷𝑇, 𝐸} 1.0 0.62 0.896 
{𝐷𝑇, 𝑆} 0.916 0.58 0.915 

{𝐷𝑇, 𝑃𝐸} 1.0 0.69 0.928 
{𝐸, 𝑆} 0.916 0.63 0.925 

{𝐸, 𝑃𝐸} 1.0 0.79 0.909 
{𝑆, 𝑃𝐸} 0.916 0.77 0.928 

 
 

Table 28: Interrelation Tests for Mortgage Loan 
Combination of 
two attributes  

Proportion of 
interrelated 
evidences (𝝍𝒑) 

Average of highest 
joint probability   

𝝁(𝒑|𝝍) 

sparse index 
𝓢 

{𝐴1, 𝐴2, 𝐴3, 𝐴4} 0.81 0.72 0.81 
{𝐴5, 𝐴6} 0.89 0.78 1.0 

{𝐴7, 𝐴8, 𝐴9, 𝐴10} 0.78 0.93 0.98 
{𝐴11, 𝐴12} 0.88 0.78 0.77 
{𝐴13, 𝐴14} 0.94 0.93 0.93 

{𝐴15, 𝐴16, 𝐴17} 0.78 0.91 0.40 

 

Table 29: Hyper-parameters of ANN for Early Asthma Symptoms Data 

 Early Asthma Symptoms Data 

Parameters Scenario I Scenario II Scenario III 
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Missing proportion = 
10.99% 

Missing proportion = 
30.99% 

Missing proportion = 
45.99% 

Number of hidden 
layers (𝐿) 

ER 3 ER 4 ER 4 
MAKER 3 MAKER 4 MAKER 4 
missForest 3 missForest 4 missForest 4 
MICE 3 MICE 4 MICE 4 
EM 3 EM 4 EM 4 
KNN 3 KNN 4 KNN 4 

Number of units per 
layer 

ER {𝐿 𝑡𝑜 𝐿
= 12, 𝐿
=  2} 

ER {𝐿 𝑡𝑜 𝐿
= 18, 𝐿 =  2} 

ER {𝐿 𝑡𝑜 𝐿 = 18, 𝐿
=  2} 

MAKER {𝐿 𝑡𝑜 𝐿
= 9, 𝐿 =  2} 

MAKER {𝐿 𝑡𝑜 𝐿
= 9, 𝐿 =  2} 

MAKER {𝐿 𝑡𝑜 𝐿 = 9, 𝐿
=  2} 

missForest {𝐿 𝑡𝑜 𝐿
= 14, 𝐿
=  2} 

missForest {𝐿 𝑡𝑜 𝐿
= 14, 𝐿 =  2} 

missForest {𝐿 𝑡𝑜 𝐿 = 14, 𝐿
=  2} 

MICE {𝐿 𝑡𝑜 𝐿
= 14, 𝐿
=  2} 

MICE {𝐿 𝑡𝑜 𝐿
= 14, 𝐿 =  2} 

MICE {𝐿 𝑡𝑜 𝐿 = 14, 𝐿
=  2} 

EM {𝐿 𝑡𝑜 𝐿
= 14, 𝐿
=  2} 

EM {𝐿 𝑡𝑜 𝐿
= 14, 𝐿 =  2} 

EM {𝐿 𝑡𝑜 𝐿 = 14, 𝐿
=  2} 

KNN {𝐿 𝑡𝑜 𝐿
= 14, 𝐿
=  2} 

KNN {𝐿 𝑡𝑜 𝐿
= 14, 𝐿 =  2} 

KNN {𝐿 𝑡𝑜 𝐿 = 14, 𝐿
=  2} 

Activation function ReLu: 𝐿 𝑡𝑜 𝐿  
SoftMax: 𝐿  

ReLu: 𝐿 𝑡𝑜 𝐿  
SoftMax: 𝐿  

ReLu: 𝐿 𝑡𝑜 𝐿  
SoftMax: 𝐿  

Dropout rate 20% at 𝐿  20% at 𝐿  10% at 𝐿  
Batch size 100 100 100 
Epoch  100 100 100 
Regularization 
strength  

𝐿 regularization 
strength = 0.01 in each 
layer  

𝐿 regularization strength 
= 0.01 in each layer 

𝐿 regularization strength = 
0.01 in each layer 

Learning rate 0.01 0.001 .001 
*Layer (𝐿 ) is input layer and number of units in first layer represents number of numerically transformed 
features. The data after imputation from missForest, MICE, EM, and KNN are transformed by to one-hot 
encode. 

 

Table 30: Hyper-parameters of ANN for Mortgage Loan Data 

 Mortgage Loan Data 

Parameters Scenario I 
Missing proportion = 
6.55% 

Scenario II 
Missing proportion = 
26.55% 

Scenario III 
Missing proportion = 
41.55% 

Number of hidden 
layers (𝐿) 

ER 4 ER 5 ER 5 
MAKER 4 MAKER 5 MAKER 5 
missForest 4 missForest 5 missForest 6 
MICE 4 MICE 5 MICE 6 
EM 4 EM 5 EM 6 
KNN 4 KNN 5 KNN 6 

Number of units per 
layer 

ER {𝐿 = 34, 
𝐿  𝑡𝑜 𝐿
= 76, 𝐿
=  2} 

ER {𝐿 = 51, 
𝐿  𝑡𝑜 𝐿
= 76, 𝐿 =  2} 

ER {𝐿 = 51, 
𝐿  𝑡𝑜 𝐿 = 76, 𝐿
=  2} 

MAKER {𝐿 = 12, 
𝐿  𝑡𝑜 𝐿
= 25, 𝐿
=  2} 

MAKER {𝐿 = 18, 
𝐿  𝑡𝑜 𝐿
= 30, 𝐿
= 25, 𝐿 =  2} 

MAKER {𝐿 = 18, 
𝐿  𝑡𝑜 𝐿 = 35, 𝐿
=  2} 

missForest {𝐿 = 60, missForest {𝐿 = 60, missForest {𝐿 = 60, 
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𝐿  𝑡𝑜 𝐿
= 80, 𝐿
=  2} 

𝐿  𝑡𝑜 𝐿
= 80, 𝐿 =  2} 

𝐿  𝑡𝑜 𝐿
= 80, 𝐿 =  70, 𝐿
=  2} 

MICE {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 80, 𝐿
=  2} 

MICE {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 85, 𝐿 =  2} 

MICE {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 80, 𝐿 =  75, 𝐿
=  2} 

EM {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 75, 𝐿
=  2} 

EM {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 80, 𝐿 =  2} 

EM {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 90, 𝐿 =  70, 𝐿
=  2} 

KNN {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 75, 𝐿
=  2} 

KNN {𝐿 = 60 
𝐿  𝑡𝑜 𝐿
= 80, 𝐿 =  2} 

KNN {𝐿 = 60, 
𝐿  𝑡𝑜 𝐿
= 85, 𝐿 =  70, 𝐿
=  2} 

Activation function -ReLu: 𝐿 𝑡𝑜 𝐿  
-SoftMax in output 
layer 

-ReLu: 𝐿 𝑡𝑜 𝐿   
-SoftMax in output layer 

- ReLu: 𝐿 𝑡𝑜 𝐿  for ER and 
MAKER. 𝐿 𝑡𝑜 𝐿  for other 
data imputation methods 
- SoftMax in output layer 

Dropout rate 10% at 𝐿  10% at 𝐿  25% at 𝐿  
Batch size 100 100 100 
Epoch  100 100 100 
Regularization 
strength  

𝐿 regularization 
strength = 0.01 in each 
layer  

𝐿 regularization strength 
= 0.01 in each layer 

𝐿 regularization strength = 
0.01 in each layer 

Learning rate 0.001 0.001 .002 
*Layer (𝐿 ) is input layer and number of units in first layer represents number of numerically transformed 
features. The data after imputation from missForest, MICE, EM, and KNN are transformed by to one-hot 
encode.  

 
 
 
 

Table 31: Hyper-parameters of Decision Tree for Early Asthma Symptoms Data 

 Early Asthma Symptoms Data 

Parameters Scenario I 
Missing proportion = 
10.99% 

Scenario II 
Missing proportion = 
30.99% 

Scenario III 
Missing proportion = 
45.99% 

Maximum depth of 
the tree 

ER 5 ER 7 ER 7 
MAKER 5 MAKER 7 MAKER 9 
missForest 7 missForest 8 missForest 9 
MICE 8 MICE 8 MICE 8 
EM 8 EM 9 EM 11 
KNN 8 KNN 9 KNN 9 

measure the quality of 
a split 
 

ER gini ER gini ER gini 
MAKER gini MAKER entropy MAKER entropy 
missForest gini missForest gini missForest gini 
MICE  entropy MICE entropy MICE entropy 
EM gini EM gini EM entropy 
KNN entropy KNN gini KNN gini 

minimum number of 
samples to split node 
 

2 2 2 

*default values were set for other parameters 
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Table 32: Hyper-parameters of Decision Tree for Mortgage Loan Data 

 Mortgage Loan Data 

Parameters Scenario I 
Missing proportion = 
6.55% 

Scenario II 
Missing proportion = 
26.55% 

Scenario III 
Missing proportion = 
41.55% 

Maximum depth of 
the tree 

ER 7 ER 9 ER 11 
MAKER 7 MAKER 8 MAKER 11 
missForest 8 missForest 11 missForest 13 
MICE 9 MICE 12 MICE 13 
EM 9 EM 13 EM 14 
KNN 9 KNN 12 KNN 13 

measure the quality of 
a split 
 

ER gini ER gini ER entropy 
MAKER gini MAKER gini MAKER gini 
missForest gini missForest gini missForest gini 
MICE  gini MICE entropy MICE entropy 
EM gini EM gini EM entropy 
KNN entropy KNN gini KNN gini 

minimum number of 
samples to split node 
 

2 2 2 

*default values were set for other parameters 
 
 

 

 
Figure 15. BRB structure for asthma symptoms, individual input attributes are transformed by I-MAKER 

 
 
 

 
Figure 16. BRB structure for asthma symptoms, input attributes are combined and transformed by C-MAKER 
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Figure 17. BRB structure for mortgage loan, individual input attributes are transformed by I-MAKER 
 
 

 
Figure 18. BRB structure for mortgage loan, input attributes are combined and transformed by C-MAKER 

 
 
 
 
 
 
 


