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In multiagent worlds, several decision‑making individuals interact while adhering to the dynamics 
constraints imposed by the environment. These interactions, combined with the potential 
stochasticity of the agents’ dynamic behaviors, make such systems complex and interesting to study 
from a decision‑making perspective. Significant research has been conducted on learning models 
for forward‑direction estimation of agent behaviors, for example, pedestrian predictions used for 
collision‑avoidance in self‑driving cars. In many settings, only sporadic observations of agents may be 
available in a given trajectory sequence. In football, subsets of players may come in and out of view of 
broadcast video footage, while unobserved players continue to interact off‑screen. In this paper, we 
study the problem of multiagent time‑series imputation in the context of human football play, where 
available past and future observations of subsets of agents are used to estimate missing observations 
for other agents. Our approach, called the Graph Imputer, uses past and future information in 
combination with graph networks and variational autoencoders to enable learning of a distribution 
of imputed trajectories. We demonstrate our approach on multiagent settings involving players that 
are partially‑observable, using the Graph Imputer to predict the behaviors of off‑screen players. To 
quantitatively evaluate the approach, we conduct experiments on football matches with ground truth 
trajectory data, using a camera module to simulate the off‑screen player state estimation setting. We 
subsequently use our approach for downstream football analytics under partial observability using 
the well‑established framework of pitch control, which traditionally relies on fully observed data. We 
illustrate that our method outperforms several state‑of‑the‑art approaches, including those hand‑
crafted for football, across all considered metrics.

Predictive modeling of multiagent behaviors has been a topic of considerable interest in machine  learning1–3, 
financial  economics4–6,  robotics7–9, and sports  analytics10–13. In such systems, decision-making agents interact 
within a shared environment, following an underlying dynamical process that may be stochastic and often infea-
sible to characterize analytically due to the complex interactions involved. Learning a dynamical model of such 
systems enables both the understanding and evaluation of agents’ behaviors. Ideally, methods that learn models 
of such coupled dynamical systems should enable the prediction of future behaviors, the retrodiction of past 
behaviors, and ultimately the imputation (i.e., filling-in) of partially-occluded data, while respecting any con-
straints imposed by available observations. In this paper, we introduce such a method for multiagent time-series 
imputation under temporal occlusion, focusing specifically on the setting of prediction of human football play-
ers. In the football domain, off-screen player predictions are crucial for enabling the application of downstream 
analysis techniques such as pitch  control14, which rely on information about positions of all players in the game.

Football is an especially interesting testbed for the multiagent imputation problem as it involves dynamic 
interaction of several individuals and stochasticity due to the human decisions involved. A large corpus of prior 
works have targeted learning models for forward-prediction of multiagent  trajectories10–13,15–19. In these works, 
a stream of observations for all involved entities (e.g., all players and the ball) is assumed to be available for 
some number of timesteps, after which the states of a subset of entities are predicted. However, the availability 
of full tracking information is a restrictive assumption (requiring the use of proprietary sensors from third-party 
providers). In many situations, only partial information about the state of a game is available (e.g., positions of 
only the players visible on broadcast camera), thus requiring imputation of missing data. In contrast to prior 
works, we target this under-explored multiagent imputation regime, wherein we assume available observations 
of on-screen players (e.g., as obtained from a vision-based tracking system), and seek to predict the unobserved 
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states of off-screen players, which can subsequently be used for downstream football analytics. Imputation of 
multivariate time series data involving interacting entities has various practical applications besides football. In 
financial markets, certain foreign exchange quotations are available more frequently than others, yet correlations 
between these financial instruments can be used to impute the missing  data4,5,20. In clinical trials, multi-sensory 
data may be made with irregular measurements or unavailable for some sensors at certain  times21. In natural 
language processing, in-filling of text conditioned on surrounding sentence context is an area of active  research22, 
and can naturally extend to multiagent conversational dialogue in-filling.

The partially-observable multiagent trajectories imputation problem is a new regime, which stands in contrast 
to previous works that only consider forecasting/future-predictions. The key contributions of this paper are as 
follows. First, we introduce a technique for multiagent imputation, which is applicable even under dynamic occlu-
sion of random subsets of agents in a given trajectory sequence. Our model uses a combination of bidirectional 
variational  LSTMs23 and graph  networks24, with elements in place to handle arbitrarily-complex occlusions of 
sensory observations in multiagent settings. Second, we illustrate how our approach can be used to extend exist-
ing football analytics frameworks (namely, pitch  control14) to partially-observable settings. Our experiments 
are conducted on a large suite of 105 full-length real-world football matches, wherein we compare our method 
against a number of existing approaches including Social  LSTMs7 and graph variational RNNs (GVRNNs)3,12. 
To our knowledge, this is the first study of trajectory imputation models in the football regime, and bears the 
potential to unlock the applicability of a vast number of prior analysis techniques (similar to pitch control) to 
football games that have only intermittent or partially-observable player tracking information.

Results
This section provides a high-level overview of the proposed approach and empirical results. Readers are referred 
to the “Methods” section for full technical details of the approach.

Problem formulation. We first define the multiagent time-series imputation problem, with football as the 
motivating example. As shown in Fig. 1a, observations of individual players may be unavailable when they are 
out of the camera frame, and players may disappear and reappear in view multiple times throughout a trajectory 
sequence. Moreover, the role of any individual player may change multiple times throughout a given trajectory 
sequence (e.g., a defender can behave in the manner of a midfielder or forward). This characteristic has been 
well-investigated in prior  works10,12 and ultimately implies that learned models should be invariant to permuta-
tions of player orders within each team. Such models should learn to predict the behavior of players conditioned 
on the game context, rather than purely on the players’ prescribed roles in the team’s formation.

Regarding notation, we henceforth refer to any scalars associated with an agent i at time t using unbolded 
variables, e.g., sit . We use bold notation for vectors (e.g., vit ). The concatenation of scalars or vectors across time 
and/or agent indices is denoted by, respectively, dropping the corresponding subscripts and superscripts (e.g., 
s = s1:N0:T  and st = s

1:N
t ).

We consider a set of N agents I = {1, . . . ,N} . Let xit ∈ R
d denote the d-dimensional observation of the agent 

i ∈ I at time t ∈ T = {0, . . . ,T} . In the football scenario considered in our evaluations, d = 2 , with xit corre-
sponding to the (x, y) position of a player or the ball on the pitch at time t. For simplicity, we henceforth refer 
to xit as the state (rather than observation) of agent i, as it comprises the variable of interest we seek to estimate 
in this work. In the time-series imputation regime, at each time step t ∈ T , observations may be missing for 
any subset of players. Let x = x

1:N
0:T  be observed at the timesteps indicated by an agent-wise masking matrix m 

valued in {0, 1}d , such that a given dimension of mi
t is equal to 1 whenever an observation of agent i is avail-

able at timestep t, and 0 otherwise (see Fig. 1b). In the football context, each player’s on-pitch (x, y) position is 
either fully observed at a given time, or fully unobserved (i.e., mi

t ∈ {(0, 0), (1, 1)} , such that there are no situ-
ations where a player’s x-position is observed while their y-position is not, or vice versa). The objective is then 
to compute estimates x̂ ∈ R

d of all the unobserved agent states at all timesteps. More precisely, the multiagent 

Figure 1.  Stylized visualization of the multiagent time-series imputation setting. (a) Agent trajectories up to 
and including time t. Dark blue indicates trajectory portions that are observed (with light indicating otherwise); 
the camera field of view at the current time t is indicated in grey. (b) Visualization of masks m for all timesteps, 
where mi

t = 1 where dark, and mi
t = 0 where light. The mask at time t, which corresponds to the frame shown 

in (a), is highlighted in grey.
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time-series imputation problem takes the observed states x ⊙m as input, where ⊙ refers to the Hadamard (or 
element-wise) product, and aims to output a full prediction x̂1:N0:T  . We quantify this in our experiments via the 
evaluation loss L2(x̂ ⊙ (1−m), x ⊙ (1−m)).

Workflow. This section provides a high-level overview of the proposed model, called the Graph Imputer. 
For full technical details on the model architecture, hyperparameters, and training, readers are referred to the 
“Methods” section.

Figure 2 provides an overview of our proposed approach. The agents modeled in our domain of interest are 
human football players, who can exhibit stochastic behaviors on-pitch. To enable learning of stochastic predic-
tions given an observation stream, our model learns along two axes: (i) across time via bidirectional LSTMs, 
which autoregressively generate unobserved agent states; and (ii) across agents via a combination of graph net-
works (GraphNets)24 and variational RNNs (VRNNs)23, which model the multiagent interactions involved and 
enable sampling of distributions of imputed trajectories. The forward- and backward-direction imputed states 
are fused at each timestep, thus ensuring that all available temporal and agent-interaction information is used 
throughout the entire generated sequence.

In Fig. 2, we expand the forward-directional update for the agents to provide clearer exposition of the updates 
conducted; the backward-direction update is analogous, as detailed in “Methods”. Given a stream of observa-
tions in each direction, LSTM hidden states are collected across all agents, thus summarizing temporal infor-
mation; in Fig. 2, we refer to the collection of agents’ hidden states as 

→

h t−1 for forward-directional updates. We 
subsequently use GraphNets to conduct inter-agent information sharing, with each graph being composed of 
N nodes corresponding to the number of agents in the system (e.g., N = 23 in football, corresponding to play-
ers from both teams and the ball itself). To estimate the distribution of player behaviors, we use a variational 
approach, relying on a GraphNet encoder, prior, and decoder. The GraphNet encoder and prior take as input the 
agent hidden states, which are used to initialize their node features; as in typical variational training schemes, 
the encoder is also provided access to privileged information available only at training-time (in this case, the 
full ground truth state xt ). The prior, by contrast, does not have access to this information, and is ultimately the 
model used at evaluation-time. Similar to typical variational approaches, we impose a Kullback-Leibler (KL) 
divergence term in our training loss to encourage consistency between the encoder and prior distributions (see 
(15) in our “Methods” section for details).

Following initialization of node features, message passing is conducted within both the GraphNet encoder 
and prior, which output variables parameterizing the latent distribution. In the message passing step, each graph 
node (agent) shares information with all other nodes via the graph edges; all node features are then updated given 
the shared information. Latent distributions are assumed to be Gaussian in our case, as this permits closed-form 
solution of the KL-divergence term in the training loss. Thus, the parameters output from the GraphNet encoder 
and prior correspond to the means and covariances of the latent Gaussian distributions. Latent variables are 
then sampled for each GraphNet node (i.e., agent) from these distributions, which summarize the state of play at 
the particular timestep t; these latent variables are denoted 

→
z t for the forward-directional update in Fig. 2. The 

GraphNet decoder subsequently maps these latent variables to estimates of agents’ relative state changes (e.g., 
�

→̂
x t for forward-direction updates), which are added to the absolute agent states from the previous timestep, 

→
x t−1 , thus resulting in a directional state estimate 

→̂
x t . An analogous approach is used for computing a backward-

directional state estimate, 
←̂
x t . These direction-specific predictions are then fused to compute the final bidirec-

tional updates for the agents, x̂t . In our ablative experiments (in the Supplementary Information), we test two 

Figure 2.  Graph Imputer model. Our model imputes missing information at each timestep using a combination 
of bidirectional LSTMs and graph networks. An exposition of a forward-direction update (corresponding to 
directionalupdate in Algorithm 1 in the “Methods” section) is provided in the left portion of the figure. Dark 
blue boxes indicate trajectory segments that are observed for each agent (with light blue indicating otherwise). 
In each direction, agent-specific temporal context is updated via LSTMs with shared parameters. All agents’ 
LSTM hidden states, 

→

h t−1 , are subsequently used as node features in variational graph networks to ensure 
information-sharing across agents. This enables learning of a distribution over agent state deviations, �

→
x t . The 

process is likewise repeated in the backward-direction (right portion of the figure), with the directional updates 
fused to produce an imputed estimate x̂t at each time t. The dotted line indicates that the Graphnet encoder is 
used only at training time, with the GraphNet prior being used for the final evaluations conducted at test time.
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forms of forward–backward fusion: mean-fusion (simply taking the mean of directional estimates to compute 
the final prediction) and nearest-weighted fusion (weighing each direction according to the nearest ground 
truth observation available in that direction). Both of these fusion modes are detailed in the “Methods” section.

Our overall approach autoregressively estimates agent states, using available information in both directions. 
The model is inherently designed to handle noisy data through two means. First, the bidirectional nature of the 
model helps ensure it uses information available in future timesteps to correct for such noise. Second, the model 
is designed to handle noisy data due to its variational nature; namely, the model itself generates noisy autoregres-
sive predictions during its imputation phase, which capture the distribution over input noise, and can thus lead 
to generation of diverse samples of trajectory outputs. The trajectory sequences generated can subsequently be 
used for downstream football analytics, as illustrated in our experiments.

Evaluation. In this section, we empirically evaluate the Graph Imputer against a range of existing models 
for trajectory prediction.

Dataset. We use a dataset of 105 English Premier League matches, where all on-pitch players and the ball are 
tracked at 25 frames-per-second for each match. We partition the data into trajectory sequences of 240 frames 
(each capturing 9.6s of gameplay), then downsample the data to 6.25 frames-per-second. For training purposes, 
we retain only trajectories with 22 players available in the raw data (such that we can compute losses against all 
players’ ground truth). The data is spatially realigned such that the team in possession always moves towards the 
right of the pitch (as done in prior  works25). Finally, for training and evaluation, we split the resulting data into 
two partitions of 30838 and 4024 trajectories, respectively.

Simulated camera model. We use a simulated camera model to generate an observation mask for the task of 
off-screen player trajectory imputation. The camera model is parameterized by its position and horizontal and 
vertical field of view angles, with the parameters chosen to produce a vantage point similar to a stadium broad-
cast camera. For simplicity, the camera-normal is set to track the ball position at each timestep. By intersecting 
the camera view cone with the pitch plane, we obtain the projected in-frame polygon and mask out-of-frame 
players accordingly (as in Fig. 1). Further details on the camera model and levels of partial observability imposed 
due to it are provided in the “Methods” section.

Baselines. We compare our approach against the following baselines. Spline: Linear, quadratic, and cubic spline 
interpolation of players’ positions from the moment they leave the the camera field of view to the moment they 
return; these approaches are simple, though can exhibit reasonable performance as they ensure the predicted tra-
jectories adhere to the boundary value constraints imposed by the last observation of each player prior to going 
off-screen, and their first observation upon re-emergence on-screen. Autoregressive LSTMs: A simple baseline 
using autoregressive LSTMs, run independently per player for state estimation. Role-invariant VRNNs: A strong 
variational baseline that we hand-craft for the football scenario (i.e., assuming two teams of an equal number 
of players), using VRNNs and a combination of post-processing steps to ensure information-sharing between 
players on each team, and invariance of model outputs to re-ordering of players in inputs. Refer to the Addi-
tional Experiment Details section of the Supplementary Information for further information. Social LSTM7: A 
model that uses ‘social pooling’, which is a technique that pools hidden states of neighboring agents to ensure 
spatially-nearby context is appropriately shared between individual agents. Bidirectional Social LSTMs: We also 
implement a bidirectional Social LSTM variant using a combination of the vanilla Social LSTM updates and the 
fusion Eqs. (1), (2), (13) and (14) detailed in our “Methods” section, which we have not observed being used in 
the literature for our problem regime. GVRNNs12: A model that uses a combination of unidirectional VRNNs 
and Graph Neural Networks (similar in nature to Graph-VRNNs3), but assumes full observability of players for 
a fixed number of timesteps and targets the forward-prediction setting.

Trajectory prediction analysis. Table 1 provides a summary of results for the football off-screen player data 
imputation regime, including ablations over key model features where applicable. Training and hyperparameter 
details are provided in the “Methods” section. As noted earlier, the role-invariant models (listed in the first 
several table rows) are hand-crafted for the football case, and thus are not applicable to general multiagent set-
tings; nonetheless, these models pose a strong evaluation baseline, and outperform several of the more generic 
approaches. Our proposed model, the Graph Imputer, outperforms the baselines both in terms of the mean and 
minimum evaluation loss over prediction samples, including the hand-crafted models.

As evident from Table 1, bidirectionality naturally yields a significant improvement in terms of overall per-
formance across the models, as both past and future information is used in estimating player positions when 
off-screen. This is quantitatively evident even for the linear spline baseline, which is effectively bidirectional as 
it interpolates the last appearance and first reappearance of each player. While quadratic and cubic interpolation 
increase performance compared to the linear baseline, our model outperforms them significantly. Despite the 
additional context provided by past and future observations, such interpolation methods have no understanding 
of the dynamics of the domain (i.e., football in this case). As such, they can particularly suffer from a decrease 
in accuracy in situations where off-screen players behave defensively or offensively, exhibit sudden movements, 
or are off-screen for extended periods of time, which is not well-captured by interpolation. We also anticipate 
that situations with increased partial observability will further compound these issues with standard interpola-
tion techniques. To further investigate the effects of increased partial observability, we generated a new dataset 
to test the sensitivity of the models to such changes (see the Sensitivity to Observability Model section in the 
Supplementary Information for numerical results, which illustrate the robustness of our model to these factors).
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Considering the more complex baselines in Table 1, we note that the unidirectional Social LSTM model is 
outperformed by the strongest-performing GVRNN model (which uses both a skip connection and next-step 
conditioned graph decoder), as observed in earlier literature. However, as the Social LSTM is fundamentally 
deterministic in nature, it cannot be used for sampling multiple viable player trajectories. We additionally observe 
that use of a skip connection from inputs to the decoder results in a significant improvement in results, for all 
variational models considered. While use of a next-step conditioned graph decoder slightly improves results 
for the Graph Imputer, it has a more significant impact on the GVRNN model, which we conjecture is due to 
the former model’s bidirectional nature already providing significant information about future observations.

Figure 3 provides static visualizations of trajectory results for several example sequences, with more exam-
ples included in the Additional Experiment Results section of the Supplementary Information. We recommend 
readers view our animated visualizations on our website (https:// sites. google. com/ view/ imput ation- of- footb all/), 
which also illustrate the simulated camera model. In Fig. 3, observed trajectory segments for the attacking and 
defending team are, respectively, illustrated in dark blue and red, with the ball trajectory indicated in black. In 
the first row of the figure, we illustrate the portion of player trajectories that are unobserved in light blue and pink 
for each team, respectively. Recall that the observations provided to the models are the raw positions available 
for in-camera players, with the camera tracking the ball in each timestep. Well-performing models will, ideally, 
learn the key behavioral characteristics of player interactions and physics (e.g., velocities, constraints on accel-
eration, player turning radii, etc.) given the available positional information to make realistic predictions. The 
subsequent rows illustrate the predictions made by both the GVRNN model and the Graph Imputer, under the 
same observations. Notably, the bidirectional nature of our Graph Imputer approach enables predictions to not 
only more accurately model the flow of movement of players on the pitch, but also to appropriately adhere to the 
boundary value constraints imposed by players when they appear back in the camera view. For additional experi-
ments, including numerous visualizations over baseline models and ablations over the bidirectional fusion modes 
discussed in “Methods”, refer to the Additional Experiment Results section of the Supplementary Information.

Pitch control analysis. A key benefit of our model is that it can enable the downstream use of well-established 
football analytics models that rely on full player tracking information. In situations where this is infeasible (e.g., 
where player tracking information is obtained from broadcast video footage, as opposed to proprietary sensors 
installed in stadiums), such downstream models can no longer be applied. However, through the imputation 
of off-screen player trajectories, our approach enables the applicability of such models. Moreover, due to the 
bidirectional nature of our model, the predicted trajectories are significantly more useful for post-hoc analytics 

Table 1.  Football off-screen player state estimation results. We separate models into two categories: restricted 
models (those that apply only to the football setting, as they process data in a manner explicitly assuming two 
teams of players, along with a ball), and general models (models that apply to general multiagent prediction 
settings). The remaining columns refer to the following: Skip connection indicates whether a skip-connection 
from the input to the decoder is enabled for autoencoder based models. Next-step conditional decoder indicates 
whether decoders in graph network-based models condition on available next-timestep observations, as 
additional context. For each baseline model, we compute the mean evaluation loss, L2(Mean) , compared to 
the ground truth trajectories (over all seeds). For stochastic models, for each evaluation sequence we also take 
6 samples of imputed trajectories, and also report the minimum evaluation loss, L2(Min.) , over all samples, 
averaged over all seeds. Best results are in bold.

Model Skip connection Next-step conditional decoder L2(Mean) L2(Min.)

Restricted

Role-invariant VRNN ✗ − 2.020 2.03 1.960 2.063

Role-invariant VRNN ✓ − 0.958 0.009 0.953 0.009

Bidir. Role-invariant VRNN ✗ − 0.174 0.002 0.160 0.002

Bidir. Role-invariant VRNN ✓ − 0.167 0.002 0.166 0.002

General

Spline (linear) − − 0.658 0.081 −

Spline (Quadratic) − − 0.197 0.023 −

Spline (Cubic) − − 0.193 0.023 −

LSTM − − 1.579 0.019 −

Bidir. LSTM − − 0.350 0.006 −

Social  LSTM7 − − 1.049 0.274 −

Bidir. Social LSTM − − 0.198 0.052 −

GVRNN12 ✗ ✗ 2.243 0.136 1.453 0.073

GVRNN12 ✗ ✓ 2.447 1.197 2.400 1.231

GVRNN12 ✓ ✗ 0.882 0.009 0.874 0.009

GVRNN12 ✓ ✓ 0.865 0.018 0.852 0.017

Graph Imputer (Ours) ✗ ✗ 0.241 0.05 0.224 0.051

Graph Imputer (Ours) ✗ ✓ 0.404 0.102 0.397 0.11

Graph Imputer (Ours) ✓ ✗ 0.165 0.005 0.163 0.005

Graph Imputer (Ours) ✓ ✓ 0.153 0.003 0.151 0.003

https://sites.google.com/view/imputation-of-football/
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in comparison to standard forward-predictive approaches. To illustrate this, here we run experiments evaluating 
the performance of our approach when used to compute pitch  control14, which is a well-known model used for 
trajectory-based football analytics. Pitch Control, at a high-level, is a technique for computing the probability of 
each player (or team) gaining control of the ball were it to be passed to any location on pitch. For details of the 
pitch control model itself, we refer readers to the “Methods” section.

To compare models in terms of application to downstream analytics, we first compute the ground truth 
pitch control without any partial observability for all trajectories in our validation dataset. This results in a pitch 
control field at each timestep of each trajectory, which is a scalar field over the pitch (see examples in Fig. 4—left 
column). We subsequently consider pitch control under partial observability by occluding player positions as in 
our previous experiments, generate imputed trajectories using the various trained models, and compute model-
specific pitch control fields. We then compute the Mean Absolute Error (MAE) between the ground truth and 
predicted Pitch Control fields, averaging spatially (across the pitch) and temporally (along the entire trajectory 
sequence). We report the pitch control MAE across all trajectories in Table 2. Notably, our Graph Imputer model 
yields the lowest error across all baselines. While the Bidirectional Role-invariant VRNN model comes close 
in terms of performance, we note that this was also a model carefully handcrafted by us for the football setting. 
Given its generality, the performance of the Graph Imputer is notable here.

To better understand differences qualitatively, in Fig. 4 we visualize several examples of the predicted and 
ground truth pitch control fields. Each row of the figure corresponds to a distinct game scenario from our valida-
tion dataset. The left column visualizes ground truth player positions for both teams (blue and red points), the 
camera field-of-view (semi-transparent white overlay), and the ground truth pitch control field. The remaining 
columns visualize the absolute error between pitch control fields based on predicted model outputs and ground 
truth. The example in the first row involves a scenario where the majority of players are visible within the camera 
field-of-view. As such, the pitch control predictions from the GVRNN, Bidirectional Social LSTM, and Graph 
Imputer are fairly consistent. Nonetheless, the region of the pitch corresponding to the blue team’s goalkeeper 
(towards the right side of the pitch) has notably higher Pitch control error for the GVRNN compared to the lat-
ter models. Such a mis-estimation can have quite detrimental side-effects if used for tactical decision-making in 
games, especially as determination of pitch control in regions near each goalkeepers is crucial for determining 
goal-scoring opportunities (as illustrated in  Spearman26). The example in the second row involves a larger num-
ber of off-screen players. Here we can see a noticeably high error in the GVRNN model near the bottom-right 
region of the pitch. Moreover, the Bidirectional Social LSTM model also has higher error than ours near the top 

Figure 3.  Trajectory visualizations (best viewed when zoomed in). Each column provides an example trajectory 
sequence, with the first row illustrating the ground truth, and subsequent rows showing results from various 
models, including the Graph Imputer (ours). For all examples, the Graph Imputer trajectories seamlessly adhere 
to the boundary value constraints imposed at the moments of disappearance and reappearance of players.
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region of the pitch. The third example further exacerbates these errors, involving a situation where the camera 
is pointed towards the far left side of the pitch, with half of the players not visible on-screen. Here we see not 
only a high pitch control error for the GVRNN, but even regions with particularly high error within the camera 
field-of-view for the Bidirectional Social LSTM (see regions directly in front of the red goalkeeper). Such levels of 
error in on-screen regions are not prominent in the Graph Imputer model, which instead exhibits slightly larger 
error than the Bidirectional Social LSTM in a small region towards the bottom-right of the pitch. For interested 
readers, we additionally include animated visualizations of Pitch Control fields on our submission website.

Overall, our evaluations are indicative of the Graph Imputer model’s performance not only in terms of raw 
trajectory prediction, but also for downstream use-cases such as pitch control-based analysis.

Table 2.  Predicted vs. ground truth pitch  control14 Mean Average Error (MAE) across models, under partially 
observable settings. Mean and standard deviations are reported over all trajectories in our validation dataset. 
The Graph Imputer model yields the lowest pitch control error across all baselines. Note that the Bidir. Role-
invariant VRNN model, which comes closest to our Graph Imputer model in terms of performance, was 
handcrafted by us specifically for the football domain.

Model Pitch control MAE

Restricted
Role-invariant VRNN 0.0447 ± 0.0204

Bidir. Role-invariant VRNN 0.0209 ± 0.0096

General

LSTM 0.0592 ± 0.0274

Bidir. LSTM 0.0296 ± 0.0139

Social  LSTM7 0.0474 ± 0.0216

Bidir. Social LSTM 0.0219 ± 0.0098

GVRNN12 0.0418 ± 0.0189

Graph Imputer (Ours) 0.0207 ±0.0094

Figure 4.  Pitch control error visualizations. The first column shows the ground truth pitch control field, player 
positions, and the camera field of view. Each remaining column provides a visualization of the absolute error 
between pitch control fields based on predicted model outputs and ground truth.
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Related work
There exist a number of works from various fields of research that are related to our approach. Specifically, a 
number of works from robotics and computer  vision7–9,27, sports  analytics11–13,16,18,  economics4–6 and machine 
 learning1–3 focus on various combinations of missing data imputation and multiagent trajectory predictions. 
Given the broad scope of time series prediction as a research  field28, we focus particularly on models that predict 
human  trajectories9, as they are the most relevant for our problem regime. We also provide a table summarizing 
key similarities and differences of the most-closely related models in the Additional Details on Related Works 
section of the Supplementary Information.

One of the most common applications within human trajectory prediction (albeit not directly related to 
sports), is pedestrian  modeling7,29. More closely related to our work are models that predict the trajectories of 
athletes in a team, such as  basketball16,17,19,30 or  football10–12. Efforts that focus on the latter vary in the way they 
treat the interactions between players. While some models directly use the information about the players as 
conditioning for imitation  learning10,11, others use more complex interaction models such as graph networks 
for forward-prediction3,12. Our approach builds on the related works of Yeh et al.12 and Sun et al.3, which oper-
ate in the regime of predicting forward-rollouts of trajectories. As noted in Yang et al.31 and Shang et al.32, the 
models in Sun et al.3 and Yeh et al.12 are quite similar to one another, combining Graph Networks with VRNNs. 
In our comparisons and baselines table, we cite Yeh et al.12 as we followed their implementation details most 
closely. Nonetheless, the problem setting considered by Sun et al.3 and Yeh et al.12 is quite different from ours. 
They consider settings involving forward-rollouts of agent trajectories (i.e., observations of agents are made for 
some number of timesteps, and forward forecasts are conducted thereafter). Our setting, by contrast, involves 
interacting agents that pop in and out of view sporadically, and bidirectional use of temporal information at 
test-time, which has not been considered in past works to our knowledge. The main limitation of prior works 
in application to this regime is that their forward-rollout predictions deviate over time, and thus do not adhere 
to the constraints imposed by future ground truth observations. An analogous comparison would be Kalman 
Filtering (using only past observations) versus Kalman Smoothing (using both past and future observations); 
these share core similarities, but are both independently useful in entirely different settings.

Mohamed et al.33, Salzmann et al.34 focus on forward-predictions of pedestrian trajectories. Mangalam 
et al.35 also considers future-trajectory prediction, by first learning a distribution of endpoints and subsequently 
sampling from it. Kipf et al.36 focus on forward-predictions of interacting physical systems, while Graber and 
 Schwing37 uses backward-information to update the approximate posterior during training, it still targets the 
forward-prediction regime at test-time (e.g., as noted in Fig. 8 of Graber and  Schwing37). Thus, as mentioned 
earlier, these prior works consider only future predictions and not the imputation regime considered in our paper, 
which we believe is worthy of independent investigation. Finally, despite being framed as a supervised learning 
problem rather than sequence prediction,  Hoshen15 also take into account the interactions between the different 
variables in their multivariate trajectory prediction problem by using interaction networks.

Rather than targeting the forward-prediction regime, the goal of our model is to carry out imputation of 
incomplete time series involving multiple interacting agents. Imputation of sequential data itself can be treated 
as a means to an end for a separate task such as  classification38. Also related to our line of work is prior work on 
a bidirectional model that carries out trajectory  imputation39. Unlike ours, however, their approach does not 
target specifically the multiagent setting, though applies to the regime by essentially treating it as a large single-
agent scenario. Finally, approaches that focus more directly on the imputation task itself include GAN-based 
 models40,41 and bidirectional inference  models42,43.

Conclusion
In this paper, we considered the problem regime of multiagent time-series imputation, which has not been 
formally analyzed in the literature, in contrast to the forward-predictive regime that has been significantly 
studied. Our introduced approach, called the Graph Imputer, uses a combination of bidirectional recurrent 
models to ensure use of all available temporal information, and graph networks to model inter-agent relations. 
Our experiments focused on the football analytics regime to illustrate a practical and intuitive real-world use 
case of such models. We illustrated that our approach outperforms several state-of-the-art methods on a large 
dataset of football tracking data, and qualitatively yields trajectory samples that capture player interactions and 
adhere to the constraints imposed by available observations. We subsequently illustrated how our approach can 
be used for unlocking downstream application of more complex analytical tools, such as Pitch  control14, which 
have traditionally relied on availability of fully-observed data. Empirical results illustrated that our approach 
outperforms strong baselines both in terms of raw trajectory prediction performance, and also in terms of these 
latter football-specific metrics, even outperforming models specifically handcrafted for the football regime.

One of the limitations of our model is that the forward and backward-direction latent vectors, 
→
z  and 

←
z  , are 

sampled independently in our model; sampling these from a joint underlying distribution could significantly 
improve correlations in the directional predictions. Moreover, our model requires observations of each agent 
for at least a single timestep throughout each trajectory. While this is not a major limitation given long enough 
trajectory sequences in practice, investigating a means of enabling the model to seamlessly handle completely 
missing agents would increase its generality. An additional improvement to the model could be incorporation of 
distributional information (namely, the predicted covariance matrices) in the bidirectional fusion methods used, 
leveraging ideas from existing information filtering techniques. Finally, note that the training dataset constructed 
in our approach replicates the setup of related approaches (e.g.12). The diversity of behaviors expressed even 
within a single game makes the prediction problem challenging even with such a dataset split. Nonetheless, it 
may be interesting in future work to consider transfer learning situations (involving training on one set of games, 
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and evaluating on a hold-out set), which are likely to be of interest in situations involving vision-in-the-loop (e.g., 
where camera systems are used to track players with varying uniforms, across different leagues).

Overall, the key benefit of our approach is its generality, in the sense that it permits any subset of agents to be 
unobserved at any timestep, works with temporal occlusions of arbitrary time horizons, and can apply directly 
to general multiagent domains beyond football. Predictive modeling of human trajectories is a complex problem 
with numerous applications, such as sports analytics, pedestrian modeling on roads, and crowd modeling in 
stadia. Given the fairly general nature of our approach, a key avenue of future work will be to apply it to these 
related regimes of predictive modeling.

Methods
This section provides technical details of our approach, called the Graph Imputer. All methods and research 
were performed in accordance with relevant guidelines/regulations of Nature Research journals. Algorithm 1 
provides the associated pseudocode, and Fig. 2 illustrates the approach at a high level. We next define the specific 
components of our model in detail.

Bidirectional autoregression. The key distinction between our problem regime and that of many prior 
multiagent predictive modeling approaches is that we target the more general imputation setting, involving both 
future and past contextual information about subsets of various agents. The temporal backbone of our model is, 
thus, a bidirectional autoregressive LSTM, which leverages all available information at the time of prediction.

Specifically, at each time t, let 
→
x t and 

←
x t denote the forward- and backward-direction inputs to the model. 

These inputs correspond to the combination of ground truth states, xt , for observed agents, and autoregressively-
predicted states, 

→̂
x t and 

←̂
x t (defined below), for unobserved agents, as follows:

We use bidirectional LSTMs to temporally-integrate observation sequences and learn the forward- and 
backward-dynamics involved. Agent-wise hidden states, 

→

h

i

t and 
←

h

i

t , are updated as follows:

where 
→
ω and 

←
ω refer to direction-specific LSTM parameters, which are shared across agents.

We next detail the computation of the autoregressively-predicted states 
→̂
x  and 

←̂
x  appearing in (1), which are 

sampled from a variational graph network capturing multiagent interactions in the system.

Graph networks. We define a graph network consisting of N nodes, each corresponding to an agent or 
entity in the system (e.g., N = 23 in the football domain, capturing the state of the 22 players and the ball). Let vit 
denote the node feature vector associated with an agent i ∈ I , which encodes its spatiotemporal context at time t. 
Likewise, let e(i,j) denote the directed edge feature connecting agent i ∈ I to agent j ∈ I . Graph networks operate 
via rounds of message passing, which update edge and node features to propagate information across the various 
nodes involved. In our instance, the message-passing update is expressed as follows,

(1)→
x t = xt ⊙mt +

→̂
x t ⊙ (1−mt)

←
x t = xt ⊙mt +

←̂
x t ⊙ (1−mt).

(2)
→

h

i

t = LSTM→
ω
(
→
x
i

t ,
→

h

i

t−1)
←

h

i

t = LSTM←
ω
(
←
x
i

t ,
←

h

i

t+1) ∀i ∈ I,

(3)e
′(i,j) = f eθ (v

i , vj) (Update edges from sender nodes i ∈ N−(j) to recipients j ∈ I),
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where N−(j) are in-neighbors of node j, and f eθ  and f vθ  are, respectively, edge and node update functions with 
learned parameters θ . In shorthand, given an initial set of node features v , we refer to the updated features fol-
lowing the message-passing steps in (3) to (5) as v′ = GNθ (v).

Variational updates. At any time t, the history of autoregressively-filled directional inputs, 
→
x <t and 

←
x >t , 

is encoded by the LSTM states 
→

h t−1 and 
←

h t+1 . Conditioned on this context, our model uses variational graph 
networks to enable information-sharing across agents, and learn a distribution over latent random variables 
z and predicted state updates �x̂t . Specifically, the graph imputer learns to approximate the directional prior 
distributions pθ (

→
z
i

t |·) and pθ (
←
z
i

t |·) , posterior distributions qφ(
→
z
i

t |·) and qφ(
←
z
i

t |·) , and decoded output distribu-
tion pθ (�

→̂
x

i

t |·) and pθ (�
←̂
x

i

t |·) , as follows,

In the above, (6) enables sampling of latent variables, 
→
z t and 

←
z t , conditioned on the prior information 

available up to, though not including, the prediction timestep t. Likewise, (7) captures the posterior latent state 
distribution, conditioned on the same information as the prior in addition to the ground truth state xt . Finally, 
(8) enables sampling of a next-state prediction for each direction. As in typical VRNN-based approaches, the 
encoder is used only during training to sample latent states z t , which are used as inputs for the decoder; during 
evaluation, samples z t from the prior are used instead, as the encoder can, naturally, no longer be used due to 
the ground truth state xt being unavailable.

The collection of mean and variance parameters above, µ and σ 2 , parameterize underlying Gaussian dis-
tributions. These parameters simply correspond to node features output by underlying graph networks, which 
exchange information between agents following a message-passing step:

Subsequent to their sampling in (8), the relative (delta) state updates, �x̂t , are accumulated to produce pre-
dictions in absolute-space,

These predicted states 
→̂
x t and 

←̂
x t are then used to autoregressively update the next-timestep inputs using (1). 

The procedure then continues to autoregressively update the states for all timesteps t in each respective direction.

Forward–backward fusion. The final directional outputs from the model are subsequently fused to pro-
duce the bidirectional estimates x̂it for all agents. As in recent works on bidirectional LSTM-based  imputation42, 
one method of fusion is to simply take the mean,

Alternatively, at time t, let 
→
τ
i

t and 
←
τ
i

t denote the number of timesteps until the next ground truth observation 
in each direction, respectively. One can then weigh the contribution of each direction as,

(4)e
′j =

∑

i∈N−(j)

e
′(i,j) (Aggregate incoming edges for all receiver nodes j ∈ I),

(5)v
′j = f vθ (e

′j) (Update all receiver nodes j ∈ I),

(6)pθ (
→
z
i

t |
→
x <t ,

→
z <t) = N

(

→
µ

i

pri,t , (
→
σ
i

pri,t)
2

)

pθ (
←
z
i

t |
←
x >t ,

←
z >t) = N

(

←
µ

i

pri,t , (
←
σ
i

pri,t)
2

)

,

(7)qφ(
→
z
i

t |xt ,
→
x <t ,

→
z <t) = N

(

→
µ

i

enc,t , (
→
σ
i

enc,t)
2

)

qφ(
←
z
i

t |xt ,
←
x >t ,

←
z >t) = N

(

←
µ

i

enc,t , (
←
σ
i

enc,t)
2

)

,

(8)pθ (�
→̂
x

i

t |
→
x <t ,

→
z ≤t) = N

(

→
µ

i

dec,t , (
→
σ
i

dec,t)
2

)

pθ (�
←̂
x

i

t |
←
x >t ,

←
z ≥t) = N

(

←
µ

i

dec,t , (
←
σ
i

dec,t)
2

)

.

(9)
[

→
µ

i

pri,t , (
→
σ
i

pri,t)
2

]

i∈I

= GNpri,θ

(

→

h t−1

) [

←
µ

i

pri,t , (
←
σ
i

pri,t)
2

]

i∈I

= GNpri,θ

(

←

h t+1

)

,

(10)
[

→
µ

i

enc,t , (
→
σ
i

enc,t)
2

]

i∈I

= GNenc,φ

([

xt ,
→

h t−1

]) [

←
µ

i

enc,t , (
←
σ
i

enc,t)
2

]

i∈I

= GNenc,φ

([

xt ,
←

h t+1

])

,

(11)
[

→
µ

i

dec,t , (
→
σ
i

dec,t)
2

]

i∈I

= GNdec,θ

([

→
z t ,

→

h t−1

]) [

←
µ

i

dec,t , (
←
σ
i

dec,t)
2

]

i∈I

= GNdec,θ

([

←
z t ,

←

h t+1

])

.

(12)→̂
x t =

→
x t−1 +�

→̂
x t

←̂
x t =

←
x t+1 +�

←̂
x t .

(13)x̂
i
t = 0.5

(

→̂
x

i

t +
←̂
x

i

t

)

.

(14)x̂
i
t =

(

→
τ
i

t

→̂
x

i

t +
←
τ
i

t

←̂
x

i

t

)(

→
τ
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t +
←
τ
i

t

)−1

.
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This ensures predictions corresponding to the direction with the most recent observation are weighted higher. 
For example, if at prediction timestep t, the nearest ground truth observations in the future and past for agent i 
occur at t + 8 and t − 2 , then 

→
τ
i

t = 8 and 
←
τ
i

t = 2 , such that x̂it = 0.8
→̂
x

i

t + 0.2
←̂
x

i

t.

Training. As in prototypical VAE pipelines, we update model parameters in each iteration of the algorithm 
by maximizing the evidence lower bound (ELBO) over all the agents in each trajectory,

 where β is a weighing term on the VAE KL-regularizer44. For training, we maximize (15) over mini-batches of 
trajectories sampled from our dataset.

In our experiments, we also consider several ablations of the models, including: decoders that take as input 
only the latent states 

→
z t and 

←
z t (i.e., disabling the skip-connection from the LSTM hidden states 

→

h t−1 and 
←

h t+1 
to the decoder in (11)); and next-step conditioned graph-decoders that include nodes with features vi locked to 
agent observations available for the timestep being predicted (i.e., observed decoder nodes with features xit ⊙m

i
t , 

which only send messages during message-passing, and thus do not update their states at prediction timestep t 
as they are observable).

Sweeps and hyperparameters. We conduct a wide hyperparameter sweep and report the results cor-
responding to the best hyperparameters for each model. We train for 105 iterations, with a batch size of 64 tra-
jectories, using the Adam  optimizer45 with a learning rate of 0.001 (and default exponential decay parameters, 
b1 = 0.9 , and b2 = 0.999 ). For LSTM-based models (including the ones used in the Graph Imputer), we use 
2-layer LSTMs with 64 hidden units each. For the graph edge and node update networks, f eθ  and f vθ  , we use 
2-layer MLPs with 64 hidden units each, with internal ReLU  activations46. In the ELBO (15), we anneal β from 
an initial value of 0.1 to final values of 0.01 and 1 in our sweeps. All variational models use 16-dimensional latent 
variables z . For all bidirectional models, we sweep over the two fusion modes specified in (13) and (14). For each 
model, training for each hyperparameter set is conducted and reported over a sweep of 5 random seeds. Addi-
tional hyperparameters and computational resources used are detailed in the Additional Experiment Details 
section of the Supplementary Information.

Camera model details. Given the camera model described in the main text, on average, 12.76± 3.70 play-
ers (out of 22) are in-frame in each sequence, with a consecutive in-frame duration of 4.94s ± 3.49 s. Under this 
camera model, certain players are at times completely out of view for the entire trajectory duration. To provide 
some warm-up context to the models during training, we include an additional 5 frames of observations at the 
beginning and end of all trajectories for all players. In practical evaluation settings involving longer trajectory 
sequences, the camera pans around such that all players are effectively observed at some stage, thus not requir-
ing this.

Pitch control model. Pitch  control14 is a technique for quantifying a football team’s level of ball control, 
throughout the pitch. At a high level, the model takes as input the state of play (i.e., the positions and velocities of 
the players and the ball), and computes the probability of each player being able to gain control of the ball were it 
to be passed to every location on pitch; in practice, the pitch is discretized such that these probabilities are com-
puted over a finite number of locations (we use a 60 × 40 discretization of the pitch in our experiments, as this 
provides a fairly smooth view of the pitch control field without incurring significant computational expense).

In more detail, the pitch control model relies on a physics-based motion model, incorporating factors such 
as ball time-of-flight and player time-to-intercept to compute control probabilities. In our experiments, we use 
a slightly simplified variant, wherein at any given timestep in a trajectory we consider the ball being passed to 
each discrete pitch location under a constant reference speed (as detailed later). Subsequently, each player on 
the pitch is assumed to travel in a straight line to the ball’s target destination at a reference top speed. Following 
these simplifications, we use the model detailed in Spearman et al.14 to compute the player-wise pitch control 
probabilities. Next, to compute team-wise pitch control field, we simply sum up player-wise pitch control per 
team and compute the difference between the resulting scalar fields for home and away team. Both the ball 
and player reference speeds are fit to our data, by first computing all player and ball velocities throughout the 
dataset, and subsequently choosing the 75th percentile speed for each (in practice, we found the Pitch Control 
model to be fairly insensitive to the specific percentile chosen, as long as the ratio between ball and player speeds 
remained similar).

Data availibility
The datasets generated and/or analyzed during the current study are not publicly available due to licensing 
restrictions. However, contact details of the data providers are available from the corresponding authors on 
reasonable request.

(15)

∑
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