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Abstract

Networks can be found in our every day life and they can range from physical trans-

portation networks to virtual social networks. A key characteristic of such networks is

their dynamicity, in other words, the changes in their structure. The algorithmic theory

of dynamic networks is tasked with investigating such networks and devise algorithms

that are tailor-made for these highly dynamic settings.

In this thesis, we are interested in studying actively dynamic networks, which are

networks where the changes in the structure are controlled by the algorithm that runs on

the network. In doing so, we introduce new models and investigate existing frameworks

for both centralized and distributed cases. Our goal is to explore the capabilities of

such networks and find out which tasks can be solved in these settings. When possible,

we provide algorithms that solve these tasks.

In Chapter 2, we introduce a new model where the entities of the network can

activate new connections with other entities that are “close” or deactivate pre-existing

connections. Our goal is to exploit the ability of the entities to activate new connections

in order to efficiently solve some distributed tasks, such as leader election. We show that

there is a very simple procedure that achieves this but it requires a large amount of edge

activations which is an unrealistic assumption for standard networks. To quantify this

cost of activating edges, we introduce different edge complexity measures and provide

efficient algorithms that reconfigure the networks in order to minimize the running time

required to solve the distributed task while also minimizing the cost introduced by the

edge complexity measures.

In Chapter 3, we also introduce a new model where the entities of the network have

the unique ability to generate new entities. Once generated, new entities can activate

new connections based on their distance from other entities. We investigate the task of

constructing a target network G starting from a single entity and we provide centralized

algorithms for constructing different classes of networks. We note that apart from the

question of whether a network G can be constructed at all, there seems to be a trade

off between how fast one can construct network G and how many excess connections

need to be activated.

ix



In Chapter 4, we investigate an existing framework where the entities of the network

are placed on a 2-dimensional grid. We study whether an initial shape A can transform

to some target shape B by a sequence of movements, called rotation and sliding. In

the beginning, we only focus on the case where rotation is available to the entities and

afterwards we study the case in which both rotation and sliding are available. In both

cases, we provide feasibility results.

x



Acknowledgements

I am very lucky to have Othon as my supervisor. He was the first person to inspire me

to do research and he has guided me so far throughout my whole career and I could

not be more grateful for that. Had it not been for you, I do not think that I would be

doing so well in my career and life. I hope that I can also do my part and transmit

the knowledge and passion that you gave to me to other young researchers as well. I

would also like to thank Paul for always pushing me to do more and helping me when

I struggled, and Leszek for guiding me through my first years as a PhD student.

Many thanks to my academic advisors Igor Potapov and Kostantinos Tsakalidis

for assessing my progress every year and giving me advice on how to improve my

presentation skills. I would also like to thank all of the people I had the honor of

working with: Othon, Paul, Michael Theofilatos, Argyrios Deligkas, Edward Eiben and

George Mertzios. I learned a lot of things from them which helped me grow as a person

and researcher.

I would also like to thank the people from the Networks and Distributed Computing

group for showing me how academia works and introducing to many different topics.

Furthermore, I would like to thank the University of Liverpool for the financial support

that made my Ph.D. studies possible and gave me the privilege to meet and work with

all these great people.

Finally, I would like to mention all the people that went through this period with me.

I did not think that moving to a new country could ever be easy to do but they actually

made it an unbelievably wonderful experience for me. Thank you Michali, Katerina,

Argy, Katerina, Ari, Elektra, Eleni, Themi, Mano, Nico, Eleni, Fonta, Matina, Alkmini,

Dimitri, Katerina, Tobenna, Tonia, Valia. I would also like to thank my friends in

Greece, and most importantly, my family: Marella, Stathis and Fiorella for encouraging

me to get out there and succeed in what I enjoy. I am not sure I could have done this

without them.

xi





Chapter 1

Introduction

1.1 Actively Dynamic Networks

The algorithmic theory of dynamic networks is a research area in the field of theoretical

computer science tasked with investigating the algorithmic and structural properties of

networked systems whose structure changes over time.

This area has risen in popularity which is partly due to the multitude of motivating

systems that exist for such frameworks. One example includes wireless systems such as

peer-to-peer or ad hoc networks. Due to the low cost wireless systems that currently

exist and the limitations of communication via physical means such as cables, there is

an increasing demand for wireless communication systems. Such networks are inher-

ently dynamic and their structure is ever changing. Dynamic networks can be classified

into different categories based on multiple properties. One of the most important ones,

and one that is of vital importance to the present thesis, is based on who controls the

dynamics. In passively dynamic networks the changes are external to the algorithm,

in the sense that the algorithm has no control over them. Such dynamics are usually

modeled by sequences of events determined by an adversarial scheduler. Therefore,

the algorithm running on the network must account for the changes that are out of

its control. There are many models that try to encapsulate the properties of different

passively dynamic networks that exist. One of the earliest bodies of work [1, 2], as-

sumed that an initial dynamic graph would, at some point, stabilize and changes in the

structure would halt. Other models include the population protocol model introduced

by Angluin et al. [3] where the structure of the network is fully dynamic and only one

connection between the entities of the network is activated by an adversarial scheduler

per round, and the model introduced by Kuhn et al. [4], where multiple connections

can be active per round but again there is an adversarial scheduler that controls them.

In other applications, the entities can actively control the dynamics of their net-

work. Many examples are apparent, such as social networks where the user decides the

1
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connections she/he can have with other users, wireless communication networks [5] and

peer-to-peer systems [6] where the software decides the connections between endpoints

in order to optimize some useful properties needed, transportation networks [7] where

new routes can be introduced in the system or old ones can be discarded and recon-

figurable robotics [8, 9] where the robots move around to change the overall structure.

We must also point out that actively dynamic networks are, in general more powerful

than static ones. This is due to the fact that actively dynamic networks can reconfig-

ure in a more optimal structure depending on the task at hand that they are trying

to accomplish. Therefore, if we consider a standard problem in static networks, such

as leader election, the same problem in an actively dynamic network is quite different

and we must devise new algorithms in order to take advantage of the new potential

that is introduced. There is also a surge of bio-inspired systems. Driven by the real-

ization of the fact that many natural processes are essentially algorithmic and by the

advent of some low-cost and accessible technologies for programming and controlling

various forms of matter, there is a growing interest in abstracting biological processes

and formalizing their algorithmic principles [10–12] and in inventing new algorithmic

techniques suitable for the existing technologies. The above fact combined with the on-

going effort to set the algorithmic foundations of dynamic networks has urged scientists

to develop models that try to mimic biological systems.

We can surmise that actively dynamic networks are evident in real-life systems and

we should strive to increase our understanding of their capabilities and limitations. It

is also important to devise new algorithms that are tailor-made for such systems since

it also seems that previous algorithms that were implemented for passively dynamic

networks are very inefficient. Passively dynamic networks have to account for the

changing structure of the system for which the algorithm running on the network has

no control over, whereas in actively dynamic networks, the algorithm has complete

control over the network and solving tasks can become more efficient.

Dynamic networks are usually modelled using graph theory where the network is

represented by a graph and the nodes represent the entities of the network and the

edges represent the connections between the entities. The dynamicity of the network

usually arises from two changes: (i) new entities may appear in the system or existing

entities may disappear and (ii) pre-existing connections may become unavailable or new

connections might be established. Every model provided in this thesis can be described

as a dynamic/temporal graph that changes over time.

A static graph G is a pair (V,E), where V is a finite set of vertices or nodes

(usually denoted u or v), and E is a set of edges, each being an unordered pair uw

of distinct nodes. In a dynamic graph G, either set V , or E, or both change with

time/rounds. A snapshot of a dynamic graphG at round t, denotedGt, can be described

as Gt = (V (t), E(t)) where set V (t) contains the nodes and E(t) contains the edges
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that are active at round t. We define the lifetime of a dynamic graph to be equal to

the number of rounds for which the dynamic graph exists. Therefore, if we consider r

to be the lifetime of a graph , the dynamic graph G can be defined as the union of all

graphs Gt, G = (G1∪G2,∪ . . . ,∪Gt), for t = 1, 2, . . . , r. The size of the graph (number

of distinct nodes) is denoted as n. Since each of the chapters studies a different model,

we will give a more detailed description at the beginning of each chapter.

An important classification for such models comes from who controls the algorithm.

This gives rise to two main families of models. One is fully centralized, in which a

central controller has global view of the system. In case of active network dynamics,

the centralized algorithm typically reconfigures a dynamic network by exploiting its

full knowledge about the system in a way that aims to optimize some given objective

function. Similar objectives hold for the fully distributed case, in which every node in

the network is an independent computing entity, like an automaton or Turing machine,

typically equipped with computation and communication capabilities, and in the case of

active dynamics, with the additional capability to locally modify the network structure.

Based on the motivating factors previously mentioned in this chapter, the distributed

case is closer to the real-life applications but the centralized model also plays an impor-

tant role for two reason: (i) as a precursor to the distributed case, since the centralized

model can give unique insight the intricacies of the distributed case and, (ii) as its own

application since there are many real-life systems where the control is centralized, such

as transportation networks. We are going to explore both settings.

1.2 Roadmap

In this thesis, we study different models of actively dynamic networks. Our goal is to

study real-life systems that are not yet very well explored in the literature. In doing

so, we investigate existing frameworks or introduce new models and we study their

capabilities and limitations depending on the constraints imposed by each model. In

Chapter 2, we introduce a new model with dynamic connections and distributed control

where the nodes of the network can manipulate their connections. The nodes are able

to activate new connections with their neighbors or deactivate part of their current

connections. The goal is to reconfigure any initial network into a target network with

small diameter under some constraints based on the number of connections activated

throughout the execution of the algorithm. In Chapter 3, we introduce a model where

nodes are equipped with the ability to generate (give birth) new nodes in the network

and newly generated nodes can activate new connections with their neighbors at the

time of their birth. The goal is to generate a target network, starting from the singleton

network G0 that contains a single node. In Chapter 4, we investigate a variation of

an existing programmable matter model [13] where nodes reside on a 2D lattice grid.
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The nodes are allowed to execute one or both of two following movements: (i) rotation

and (ii) sliding. Given the above movement restriction, we investigate reconfiguration

problems pertaining to transforming any initial network A to a target networks B.

In the following sections of the Introduction we give a brief overview of models and

the results of each part of the thesis. The detailed analysis, related work and results

for each model are presented in the corresponding chapter.

1.3 Distributed Computation and Reconfiguration

In Chapter 2, we consider an actively dynamic and fully distributed system where

we have a static set of entities and a dynamic set of connections. The motivation of

this model stems from wireless networks. We want to introduce a model for wireless

communication where the connections between the entities are limited by their distance

but the algorithm is able to manipulate the connections. By reconfiguring the network,

we are able to develop a “better” structure for the network that allows the entities to

coordinate in a timely manner to compute otherwise difficult or impossible tasks.

In the model introduced in chapter 2, there are n computing entities starting from

an initial connected network drawn from a family of initial networks. The entities

are typically equipped with unique IDs, can compute locally, can communicate with

neighboring entities, and can activate connections to new neighbors locally or eliminate

some of their existing connections. All these take place in lock step through a standard

synchronous message passing model, extended to include the additional operations of

edge activations and deactivations within each round. The goal is, generally speaking,

to program all the entities with a distributed algorithm that can transform the initial

network Gs into a target network Gf with small diameter. A small diameter would

guarantee that the network is compact and coordination can happen very efficiently

due to the small distance between any two nodes. As such, disseminating information

throughout the network can happen very fast. Note that there is a trivial process that

can transform any initial network into a clique graph. But we mentioned that our

model is inspired from systems that have limitations on their structure, it is naive to

think that a clique network would ever be possible in a real system. Therefore, we try

to capture the cost incurred by activating and maintaining connections, by adding edge

complexity measures related to the edges and the degree of each node.

1.4 Growing Graphs

In the past century, and quite naturally, computing research has primarily concerned

itself with understanding the fundamental principles of numerical computation. This
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has led to the development of a beautiful theory of computation and its various subtheo-

ries including complexity theory, distributed computing, algorithmic theories of graphs,

learning, and games. Driven by the realization of the fact that many natural processes

are essentially algorithmic and by the advent of some low-cost and accessible technolo-

gies for programming and controlling various forms of matter, there is a growing interest

in abstracting biological processes and formalizing their algorithmic principles and in

inventing new algorithmic techniques suitable for the existing technologies. Biological

systems have a unique ability to multiply into large structures starting from single cells

through the process called embryogenesis. The information for this process exists in

the genetic code of each cell and it contains the construction program for this complex

cellular division that includes controlled tissue growth. Motivated by this progress and

by the algorithmic principles of biological development, our goal here is to study an

abstraction of networked systems which, starting from a single entity, can grow into

well-defined global networks and structures.

In chapter 3, a growing graph is modeled as an undirected dynamic graph Gt =

(Vt, Et) for t = 1, 2, . . . , k. The initial graphG0 consists only of a single node (singleton),

called the initiator. During the execution, the graph is gradually changing through the

addition of nodes and edges and/or deletion of edges. Every node u (parent) has the

capability of generating a new node v (child). Each newly generated child w is initially

connected (by default) to its parent, and can additionally activate some edges, only at

the the time of its birth t, with any node v such that the distance between w and v, at

the time of the birth, is at most d. We call d the edge-activation distance. We only allow

nodes to activate edges at the time of their birth because we want to model biological

systems, where entities cannot receive large amounts of information to establish new

connections but each entity can receive the information its parent has (via replication at

the moment of its birth). If we assumed that every entity can establish new connections

with other entities in close proximity, allowing edge activations at any point would mean

that the network is somehow becoming more compact in size as time goes on. Finally,

every node u is able to deactivate any incident edge.

The problem that we examine is the construction of a given connected graph G,

starting from G0 using the operations listed. An interesting attempt in this direction

was the Nubot model of Woods et al. [14], showing how to efficiently self-assemble

shapes and patterns from simple monomers in a 2D discrete geometric environment.

Apart from the Nubot model the literature seems lacking on the subject of growing

networks. While the ultimate goal is to study the distributed case of the above model,

it seems prudent to begin with the centralized case in order to find the limitations of

the model as well as key intuitions that might translate from the centralized case to

the distributed one.
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1.5 Programmable Matter

While Chapters 2 and 3 focused on abstract dynamic networks, we now want to study

models with geometrical properties. One such field that studies geometrical and actively

dynamic networks is the programmable matter area.

Programmable matter refers to any type of matter that can algorithmically change

its physical properties. “Algorithmically” means that the change (or transformation)

is the result of executing an underlying program. Depending on the implementation,

the program could either be a centralized algorithm capable of controlling the whole

programmable matter system (external control) or a decentralized protocol stored in

the material itself and executed by various sub-components of the system (internal

control). For a concrete example, imagine a material formed by a collection of spheri-

cal (nano- or micro-) modules kept together by magnetic or electrostatic forces. Each

module is capable of storing (in some internal representation) and executing a sim-

ple program that handles communication with nearby modules and that controls the

module’s electromagnets/capacitors, in a way that allows the module to rotate or slide

over neighboring modules. Such a material would be able to adjust its shape in a pro-

grammable way. Other examples of physical properties of interest for real applications

would be connectivity, color [15, 16], and strength of the material.

Computer scientists, nanoscientists, and engineers are more and more joining their

forces towards the development of such programmable materials and have already pro-

duced some first impressive outcomes (even though it is evident that there is much more

work to be done in the direction of real systems), such as programmed DNA molecules

that self-assemble into desired structures [11, 17] and large collectives of tiny identi-

cal robots that orchestrate resembling a single multi-robot organism (e.g., the Kilobot

system [12]). Other systems for programmable matter include the Robot Pebbles [18],

consisting of 1cm cubic programmable matter modules able to form 2-dimensional (ab-

breviated “2D” throughout) shapes through self-disassembly, and the Millimotein [19],

a chain of programmable matter which can fold itself into digitized approximations

of arbitrary 3-dimensional (abbreviated “3D” throughout) shapes. Ambitious long-

term applications of programmable materials include molecular computers, collectives

of nanorobots injected into the human circulatory system for monitoring and treating

diseases, or even self-reproducing and self-healing machines.

In chapter 4, we follow such an approach, by studying the transformation capa-

bilities of models for programmable matter, which are based on minimal mechanical

capabilities, easily implementable by existing technology. We study a minimal pro-

grammable matter system consisting of n cycle-shaped modules, with each module (or

node) occupying at any given time a cell of the 2D grid (no two nodes can occupy the

same cell at the same time). Therefore, the composition of the programmable matter
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systems under consideration is discrete. Our main question throughout is whether an

initial arrangement of the material can transform (either in principle, e.g., by an exter-

nal authority, or by itself) to some other target arrangement. Usually, a step consists

either of a valid movement of a single node (in the sequential case) or of more than one

node at the same time (in the parallel case). We consider two quite primitive types of

movement. The first one, called rotation, allows a node to rotate 90 degrees around one

of its neighbors either clockwise or counterclockwise and the second one, called sliding,

allows a node to slide by one position “over” two neighboring nodes.

1.6 Related Work

Distributed Computation in Passively Dynamic Networks. Probably the first

authors to consider distributed computation in passively dynamic networks were An-

gluin et al. [3, 20, 21]. Their population protocol model, considered originally the

computational power of a population of n finite automata which interact in pairs pas-

sively either under an eventual fairness condition or under a uniform random scheduling

assumption. A variant of population protocols in which the automata can additionally

create or destroy connections between them was introduced in [22, 23]. It was shown

that in that model, called network constructors, complex spanning networks can be cre-

ated efficiently despite the computational weakness of individual entities. Other papers

[4, 24, 25] have studied distributed computation in worst-case dynamic networks using

a traditional message-passing model and typically operating through local broadcast

in the current neighborhood. The key difference between these models and the work

in this thesis is that the previous models are passively dynamic networks whereas the

models introduced here are exclusively actively dynamic networks. Another model [26]

was also introduced where node deletions and insertions are handled by an adversary

and the algorithm has to respond accordingly in a determistic manner.

Temporal Graphs. The algorithmic study of temporal graphs was initiated by

Berman [27] and Kempe et al. [7], who studied a special case of temporal graphs in

which every edge can be available at most once and continuing with subsequent work

on the multi-labeled case [28–30]. The problem of designing a cost-efficient temporal

graph satisfying some given connectivity properties was introduced in [28]. The design

task was carried out by an offline centralized algorithm starting from an empty edge

set. Subsequent work [29, 31], motivated by epidemiology applications, considered the

centralized algorithmic problem of re-designing a given temporal graph through edge

deletions in order to end up with a temporal graph with bounded temporal reachability,

thus keeping the spread of a disease to a minimum. Our work is related to the temporal

network (re-)design problem but the models studied in this thesis are generally more

dynamic (nodes are static in the temporal graphs model) and also distributed in cases.
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Programmable Matter and Self-Assembly. There is a growing interest in study-

ing the algorithmic foundations of systems that can change their physical properties

through local reconfigurations [10, 32–35]. Programmable matter refers to any type of

matter that can be programmed to change its physical properties, such as its shape

[36]. Progress in small-scale engineering has enabled the production of tiny monads,

whose size ranges from milli down to nano and which are equipped with computation,

communication, sensing, and actuation capabilities. These monads are bound to neigh-

boring monads, usually by electromagnetic or electrostatic forces, forming a connected

2D or 3D shape and may be programmed to reconfigure in order to adapt to their

environment or to solve a task requiring modification of their joint physical properties.

Typical examples of systems in this area are reconfigurable robotics, swarm robotics,

and self-assembly systems [8, 9, 37]. In most of these settings, modification of struc-

ture can be represented as a dynamic network, usually called shape, with additional

geometric restrictions coming from the shape and the local reconfiguration mechanism

of the entities. The goal is to transform a given initial shape into a desired target

shape through a sequence of valid local moves. Equally impressive progress has been

made in the domain of DNA self-assembly. There, DNA strands have been successfully

programmed to self-assemble into any desired nano-scale pattern [17], to implement

registers or to simulate circuits [38] and the goal of universally programming molecules

seems now to be within reach. Both directions are based on and further inspiring the

development of solid algorithmic foundations [11, 39–41].

1.7 Thesis Contribution

1.7.1 Distributed Computation and Reconfiguration in Actively Dy-

namic Networks

As previously stated, the goal of chapter 2 is to provide distributed algorithms that

can reconfigure the initial network Gs into a target network Gf with small diameter

via edge activations and deletions. To formally capture costs associated with activating

and maintaining edges, we define three measures: the total edge activations, the maxi-

mum activated edges per round, and the maximum activated degree of a node. We give

(poly)log(n) time algorithms for the task of transforming any Gs into a Gf of diameter

(poly)log(n), while minimizing the edge-complexity. Our main lower bound shows that

Ω(n) total edge activations and Ω(n/ log n) activations per round must be paid by any

algorithm (even centralized) that achieves an optimum of Θ(log n) rounds. We give

three distributed algorithms for our general task. The first runs in O(log n) time, with

at most 2n active edges per round, a total of O(n log n) edge activations, a maximum

degree n− 1, and a target network of diameter 2. The second achieves bounded degree
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by paying an additional logarithmic factor in time and in total edge activations. It

gives a target network of diameter O(log n) and uses O(n) active edges per round. Our

third algorithm shows that if we slightly increase the maximum degree to polylog(n)

then we can achieve o(log2 n) running time.

1.7.2 The Complexity of Growing a Graph

The main problem studied in chapter 3 is given a graph G = (V,E), construct graph G

starting from the singleton graph G0. The feasibility, speed and efficiency of construct-

ing graph G depends on the edge activation distance d allowed by the model. Based

on our observations, there seems to be a clear trade-off between the number of rounds

required to construct the graph and the excess edges generated by the construction

that do not belong to the input graph G. Thus we formally formulate the problem as

follows: Given an input graph G = (V,E), compute in polynomial time a construction

schedule with k slots (rounds) and l excess edges, if it exists. We show that for d = 1,

the only graphs that can be constructed are tree graphs and we also provide a time-

optimal construction schedule for such graphs. For d ≤ 4, we provide an algorithm that

computes a construction schedule for any graph G with ⌈log n⌉ slots and O(n) excess

edges.

The case where d = 2 seems to be the most interesting one. First, we provide lower

bounds based on the chromatic number and largest clique size of a graph. We continue

by creating simple algorithms for line and star graphs. We then use these algorithms

as subroutines and provide an algorithm for tree graphs that computes a construction

schedule with O(log2 n) slots and O(n) edges, and an algorithm for planar graphs that

computes a construction schedule with O(log n) slots and O(n log n) edges. We then

show that the optimal number of time slots to construct an input target graph with

zero-waste (i.e., no edge deletions allowed), is hard even to approximate within n1−ε, for

any ε > 0, unless P=NP. On the contrary, the question of the feasibility of constructing

a given target graph in log n time slots and zero-waste, can be answered in polynomial

time.

1.7.3 On the Transformation Capability of Feasible Mechanisms for

Programmable Matter

In chapter 4, we study whether an initial shape A can transform to some target shape B

by a sequence of movements. The first part of the chapter focuses on the case in which

only rotation is available to the nodes and the other part studies the case in which both

rotation and sliding are available. The latter case has been studied to some extent in

the past in the, so called, metamorphic systems [13, 42, 43], which makes those studies

the closest to our approach.
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When only rotation is available, we introduce the notion of color-consistency, and

prove that if two shapes are not color-consistent then they cannot be transformed to

each other. We also prove that deciding whether two given shapes can transform to each

other, can be achieved in polynomial time. Under the additional restriction of maintain-

ing global connectivity, we prove inclusion in PSPACE and explore minimum seeds that

can make otherwise infeasible transformations feasible. Seeds are external nodes intro-

duced into the system that are not part of the initial shape. Allowing both rotations

and slidings yields universality: any two connected shapes of the same order can be

transformed to each other without breaking connectivity, in O(n2) sequential and O(n)

parallel time (both optimal). Finally, we assume that the nodes are distributed pro-

cesses equipped with limited local memory and able to perform communicate-compute-

move rounds (where, again, both rotation and sliding movements are available) and

provide distributed algorithms for a general type of transformation.
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Chapter 2

Distributed Computation and

Reconfiguration

2.1 Introduction

In this chapter, we consider an actively dynamic and fully distributed system. In partic-

ular, there are n computing entities starting from an initial connected network drawn

from a family of initial networks. The entities are typically equipped with unique IDs,

can compute locally, can communicate with neighboring entities, and can activate con-

nections to new neighbors locally or eliminate some of their existing connections. All

these take place in lock step through a standard synchronous message passing model,

extended to include the additional operations of edge activations and de-activations

within each round.

The goal is, generally speaking, to program all the entities with a distributed al-

gorithm that can transform the initial network Gs into a target network Gf from a

family of target networks. The idea is that starting from a Gs not necessarily having

a good property, like small diameter, the algorithm will be able to “efficiently” reach a

Gf satisfying the property. This gives rise to two main objectives, which in some cases

might be possible to satisfy at the same time. One is to transform a given Gs into a

desired target Gf and the other is to exploit some good properties of Gf in order to

more efficiently solve a distributed task, like computation of a global function through

information dissemination.

Even when edge activations are extremely local, meaning that an edge uv can only

be activated if there exists a node w such that both uw and wv are already active,

there is a straightforward algorithmic strategy that can successfully carry out most of

the above tasks. In every round, all nodes activate all of their possible new connections,

which corresponds to each node u connecting with all nodes vi that were at distance 2

from u in the beginning of the current round. By a simple induction, it can be shown

11



Chapter 2. Distributed Computation and Reconfiguration 12

that in any round r the neighborhood of every node has size at least 2r, which implies

that a clique Kn is formed in O(log n) rounds. Such a clique can then be used for global

computations, like electing the maximum UID as a leader, or for transforming into any

desired target network Gf through eliminating the edges in E(Kn) \ E(Gf ). All these

can be performed within a single additional round.

Even though sublinear global computation and network-to-network transformations

are in principle possible through the clique formation strategy described above, this al-

gorithmic strategy still has a number of properties which would make it impractical for

real distributed systems. As already highlighted in the literature of dynamic networks,

(i.e., [28]), activating and maintaining a connection does not come for free and is as-

sociated with a cost that the network designer has to pay for. Even if we uniformly

charge 1 for every such active connection, the clique formation incurs a cost of Θ(n2)

total edge activations in the worst case and always produces instances (e.g., when Kn

is formed) with as many as Θ(n2) active edges in which all nodes have degree Θ(n).

Our goal in this chapter is to formally define such cost measures associated with

the structure of the dynamic network and to give improved algorithmic strategies that

maintain the time-efficiency of clique formation, while substantially improving the edge

complexity as defined by those measures. In particular, we aim at minimizing the edge

complexity, given the constraint of (poly)logarithmic running time. Observe at this

point that without any restriction on the running time, a standard distributed dis-

semination solely through message passing over the initial network, would solve global

computation without the need to activate any edges. However, linear running times

are considered insufficient for our purposes (even when the goal is to solve traditional

distributed tasks). Moreover, strategies that do not modify the input network cannot

be useful for achieving network-to-network transformations.

2.1.1 Contribution

We define three cost measures associated with the edge complexity of our algorithms.

One is the total number of edge activations that the algorithm performed during its

course, the second one is the maximum number of activated edges in any round by the

algorithm, and the third one is the maximum activated degree of a node in any round,

where the maximum activated degree of a node is defined only by the edges that have

been activated by the algorithm.

Our ultimate goal in this chapter is to give (poly)logarithmic time algorithms which,

starting from any connected network Gs, transform Gs into a Gf of (poly)logarithmic

diameter and at the same time elect a unique leader. Such algorithms can then be

composed with any algorithm B that assumes an initial network of (poly)logarithmic

diameter and has access to a unique leader and unique ids. In case of a static network

algorithm B, this for example yields (poly)logarithmic time information dissemination



Chapter 2. Distributed Computation and Reconfiguration 13

and computation of any global function on inputs. In case of an actively dynamic

network algorithm B, it gives (poly)logarithmic time transformation into any target

network from a given family which depends on restrictions related to the edge complex-

ity.

We restrict our focus on deterministic algorithms, that is, the computational entities

do not have access to any random choices. Moreover, our algorithms never break the

connectivity of the network of active edges as this would result in components that

could never be reconnected based on the permissible edge activations. Temporary

disconnections within a round may be permitted but can always be avoided by first

activating all new edges and then deactivating any edges for the current round.

There is a clear tradeoff between time and edge complexity and formally capture

that with the lower bounds presented in Section 2.7. In particular, we first prove that

Ω(log n) is a lower bound on time following from an upper bound of 2 on the distance

of new connections and the Θ(n) worst-case diameter of the initial network. Then we

give an Ω(n) lower bound on total edge activations and Ω(n/ log n) activations per

round for any centralized algorithm that achieves an optimal Θ(log n) time. Our main

lower bound is a total of Ω(n log n) total edge activations that any logarithmic time

deterministic distributed comparison based algorithm must pay. This is in contrast to

the Θ(n) total edges that would be sufficient for a centralized algorithm and is due to

the distributed nature of the systems under consideration.

We then proceed to our main positive results. In particular, we give three al-

gorithms for transforming any initial connected network Gs into a network Gf of

(poly)logarithmic diameter and at the same time electing a unique leader. Each of

these algorithms makes a different contribution to the time vs edge complexity trade-

off. All of our main algorithms are built upon the following general strategy. For each

of them, we define a different gadget network and the algorithms are developed in such

a way that they always satisfy the following invariants. In any round of an execution,

the network is the union of committees being such gadget networks of varying sizes

and some additional edges including the initial edges and other edges used to join the

committees. Initially, every node forms its own committee and the algorithms progres-

sively merge pairs or larger groups of committees based on the rule that the committee

with the greater UID dominates. If properly performed, this ensures that eventually

only one committee remains, namely, the committee of the node umax with maximum

UID in the network. The diameter of all our gadgets is (poly)logarithmic in their size,

which facilitates quick merging and ensures that the final committee of umax satisfies

the (poly)log(n) diameter requirement for Gf . The algorithms also ensure that, by the

time the committee of umax is the unique remaining committee, umax is the unique

leader elected.
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Our algorithms must achieve (poly)logarithmic time and they do so by satisfying

the invariant that surviving committees always grow exponentially fast. This growth is

asynchronous in our algorithms for the following reason. In a typical configuration (of

a phase) the graph of mergings forms a spanning forest F of committees such that any

tree T in F is rooted at the committee that will eventually consume all committees in

V (T ). Given that those trees may have different sizes (even up to V (T ) = Θ(n)), the

rounds in which various committees finish merging may be different, but we can still

show that their amortized growth is exponential.

Our first algorithm, called GraphToStar and presented in Section 2.4, uses a star

network as a gadget. Its running time is O(log n) and it uses at most 2n active edges

per round and an optimal total of O(n log n) edge activations. The target network Gf

that it outputs is a spanning star, thus, achieving a final diameter of 2.

Our second algorithm, called GraphToWreath and presented in Section 2.5, uses as

a gadget a graph we call a wreath which is the union of a ring and a complete binary

tree spanning the ring. The main improvement compared to GraphToStar is that it

maintains a bounded maximum degree throughout its course (given a bounded-degree

Gs). It does this at the cost of increasing the running time to O(log2 n) and the number

of total edge activations to O(n log2 n). The active edges per round remain O(n). The

target network Gf that it outputs is a spanning complete binary tree (after deleting

the original edges and the spanning ring), thus, the algorithm achieves a final diameter

of O(log n).

Our third algorithm, called GraphToThinWreath and presented in Section 2.6, shows

that if we slightly increase the maximum degree to polylog(n) then we can achieve

a running time of o(log2 n) (more precisely, O(log2 n/ log logk n), for some constant

k ≥ 1).

If our model can be compared to models from the area of overlay networks construc-

tion (see Section 2.2 for a discussion on this matter), then GraphToWreath is, to the

best of our knowledge, the first deterministic bounded-degree O(log2 n)-time algorithm

and GraphToThinWreath is the first deterministic polylog(n)-degree o(log2 n)-time al-

gorithm for the problem of transforming any connected Gs into a polylog(n) diameter

Gf .

2.2 Further Related Work

Construction of Overlay Networks. There is a rich literature on the distributed

construction of overlay networks. A typical assumption is that there is an overlay

(active) edge from a node u to a node v in a given round iff u has obtained v’s UID

through a message. Without further restrictions, the overlay in round r would always

correspond to the union of r consecutive transitive extensions starting from the original
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edge set. The main restriction imposed in the relevant literature is a polylogarithmic

(in bits) communication capacity per node per round, which also implies that in every

round O(log n) new overlay connections per node are permitted.

Our model and results, even though different in motivation, in the complexity mea-

sures considered, and in the restrictions we impose, appear to have similarities with

some of the developments in this area. Unlike our work, where our complexity mea-

sures are motivated by the cost of creating and maintaining physical or virtual connec-

tions, the algorithmic challenges in overlay networks are mainly due to restricting the

communication capacity of each node per round to a polylogarithmic total number of

bits.

Research in this area started with seminal papers such as Chord of Stoica et al.

[6] and the Skip graphs of Aspnes and Shah [47]. Probably the first authors to have

considered the problem of constructing an overlay network of logarithmic diameter were

Angluin et al. [5]. Their algorithm is randomized with O((d+W ) log n) running time

w.h.p., where W is the maximum size of a unique UID. Then Aspnes and Wu [48] gave

a randomized O(log n) time algorithm for the special case in which the initial network

has outdegree 1. A work by Götte et al. [49] has improved the upper bound of [5] to

O(log3/2 n), w.h.p. It is a randomized algorithm which uses a core deterministic proce-

dure that has some similarities to our algorithmic strategy of maintaining and merging

committees (called “supernodes” there) whose size increases exponentially fast. Their

model keeps the polylogarithmic restriction on communication and the polylogarithmic

maximum degree. Finally, Götte et al [50] have proposed a randomized algorithm that

runs in O(log n) optimal time whereas, in different direction, Gilbert et al [51] propose

another model whose goal is to construct efficient topology

To the best of our knowledge, the only previous deterministic algorithm for the

problem is the one by Gmyr et al. [52]. Our algorithmic strategies appear to have

some similarities to their “Overlay Construction Algorithm”, which in their work is

used as a subroutine for monitoring properties of a passively dynamic network. Un-

like our model, their model is hybrid in the sense that algorithms have partial control

over the connections of an otherwise passively dynamic network. Due to using different

complexity measures and restrictions it is not totally clear to us yet whether a direct

comparison between them would be fair. Still, we give some first observations. Their

algorithm has the same time complexity, i.e., O(log2 n), with our GraphToWreath algo-

rithm, while our GraphToStar algorithm achieves O(log n) and our GraphToThinWreath

o(log2 n). Their overlays appear to maintain Θ(n log n) active connections per round,

while our algorithms maintain O(n). Their maximum active degree is polylogarithmic,

the same as GraphToThinWreath, while GraphToStar uses linear and GraphToWreath

always bounded by a constant. Their model restricts the communication capacity of
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every node to a polylogarithmic number of bits per round, whereas we do not restrict

communication.

Scheideler and Setzer [53] studied the (centralized) computational complexity of

computing the optimum graph transformation and gave NP-hardness results and a

constant-factor approximation algorithm for the problem.

2.3 Preliminaries

2.3.1 Model

An actively dynamic network is modeled in this chapter by a temporal graph D =

(V,E), where V is a static set of n nodes and E ⊆
(
V
2

)
× N is a set of undirected

time-edges. In particular, E(i) = {e : (e, i) ∈ E} is the set of all edges that are active

in the temporal graph at the beginning of round i. Since V is static, E(i) can be

used to define a snapshot of the temporal graph at round i, which is the static graph

D(i) = (V,E(i)).

The temporal graph D of an execution is generated by local operations performed

by the nodes of the network, starting from an initial graph Gs = D(1). Throughout

this chapter, Gs is assumed to be connected. A node u can activate an edge with node

v in round i (add edge uv in E(i), if uv ̸∈ E(i) and there exists a node w such that

both uw and wv are active at the beginning of round i. A node u can deactivate an

edge with node v in round i (remove edge uv from E(i)), provided that uv ∈ E(i).

An active edge remains active indefinitely unless a node that is incident to that edge

deactivates it. There is at most one active edge between any pair of nodes, that is

multiple edges are not allowed. If a node attempts to activate an edge which is already

active, the action has no effect and the edge remains active; similarly for deactivating

inactive edges. Moreover, if a node u decides to activate an edge with a node v in round

i and v decides to activate an edge with u in the same round, then only one edge is

activated between them. In case u and v disagree on their decision about edge uv, then

their actions have no effect on uv. We define Eac(i) as the set of all edges that were

activated in round i and Edac(i) as the set of all edges that were deactivated in round

i. Then E(i+ 1) = (E(i) ∪ Eac(i)) \ Edac(i).

We define set N i
1(u) of node u, where v ∈ N i

1(u) iff uv ∈ E(i) which means that set

N i
1(u) contains the neighbors of node u in round i. Additionally, set N i

2(u) of node u,

where w ∈ N i
2(u) iff there exists v ∈ V s.t. v ∈ N i

1(u) and v ∈ N i
1(w) and w ̸∈ N i

1(u).

That is, set N i
2(u) of node u in round i contains the nodes at distance 2 which we will

refer to as potential neighbors. We will omit the i index for rounds, when clear from

context.
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Each node u ∈ V is identical to every other node v but for the unique identifier

(UID) that each node possesses. Each node u starts with a UID that is drawn from

a namespace U . The maximum UID is represented by O(log n) bits. An algorithm is

called comparison based if it manipulates the UIDs of the network using comparison

operations (<,>,=) only. All of the algorithms and lower bounds presented in this

chapter are comparison based.

The nodes represent agents equipped with computation, communication, and edge-

modification capabilities and they operate in synchronous rounds. In each round all

agents perform the following actions in sequence and in lock step: Send messages to

their neighbors, Receive messages from their neighbors, Activate edges with potential

neighbors, Deactivate edges with neighbors, Update their local state.

We note that a node may choose to send a different message to different neighbors

in a round and that the time needed for internal computations is assumed throughout

to be O(1). We do not impose any restriction on the size of the local memory of the

agents, still the space complexity of our algorithms is within a reasonable polynomial

in n.

2.3.2 Problem Definitions and Performance Measures

In this chapter, we are mainly interested in the following problems.

Leader Election. Every node u in graph D = (V,E) has a variable statusu that

can be set to a value in {Follower, Leader}. An algorithm A solves leader election if

the algorithm has terminated and exactly one node has its status set to Leader while

all other nodes have their status set to Follower.

Token Dissemination. Given an initial graph D = (V,E) where each node u ∈ V

starts with some unique piece of information (token), every node u ∈ V must terminate

while having received that unique piece of information from every other node v ∈
V \ {u}. W.l.o.g. we will consider that unique information to be the UID of each node

throughout the chapter.

Depth-d Tree. Given any initial graph Gs from a given family, the distributed

algorithm must reconfigure the graph into a target graph Gf , such that Gf is a rooted

tree of depth d with a unique leader elected at the root.

Apart from studying the running time of our algorithms, measured as their worst-

case number of rounds to carry out a given task, we also introduce the following edge

complexity measures.

Total Edge Activations. The total number of edge activations of an algorithm

is given by
∑T

i=1 |Eac(i)|, where T is the running time of the algorithm.



Chapter 2. Distributed Computation and Reconfiguration 18

Maximum Activated Edges. It is defined as maxi∈[T ] |E(i)\E(1)|, that is, equal
to the maximum number of active edges of a round, disregarding the edges of the initial

network.

Maximum Activated Degree. The maximum degree of a round, if we again

only consider the edges that have been activated by the algorithm. Let ∆(G) denote

the maximum degree of a graph G. Then, formally, the maximum activated degree is

equal to maxi∈[T ] deg(D(i) \ D(1)), where the graph difference is defined through the

difference of their edge sets.

In this chapter, instead of measuring the maximum activated degree we will focus on

preserving the maximum degree of input networks from specific families. For example,

one of our algorithms solves the Depth-d Tree problem on any input network and, if

the input network has bounded degree, then it guarantees that the degree in any round

is also bounded.

2.3.3 Basic Subroutines

We will now provide algorithms that transform initial graphs into graphs with small

diameter and which will be used as subroutines in our general algorithms. The first

called TreeToStar transforms any initial rooted tree graph into a spanning star in

O(log n) time with O(n log n) total edge activations and O(n) active edges per round,

provided that the nodes have a sense of orientation on the tree (i.e., can distinguish

which of their neighbors is “closer” to the root of the tree). In every round, each node

activates an edge with the potential neighbor that is its grandparent and deactivates

the edge with its parent. This process keeps being repeated by each node until they

activate an edge with the root of the tree.

Proposition 2.1. Let T be any tree rooted at u0 of depth d. If the nodes have a sense

of orientation on the tree, then algorithm TreeToStar transforms T into a spanning star

centered at u0 in ⌈log d⌉ ≤ log n rounds. TreeToStar has at most 2n − 3 active edges

per round.

Our next algorithm called LineToCompleteBinaryTree transforms any line into a

binary tree in O(log n) time, with O(n log n) total edge activations, O(n) active edges

per round and the degree of each node is at most 4, provided that the nodes have

a common sense of orientation. In each round, each node activates an edge with its

grandparent and afterwards it deactivates its edge with its parent. This process keeps

being repeated by each node until they activate an edge with the root of the tree or if

their grandparent has 2 children.

Proposition 2.2. Let T be any line rooted at u0 of diameter d. If the nodes have a

sense of orientation on the line, then algorithm LineToCompleteBinaryTree transforms
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T into a binary tree centered at u0 in ⌈log d⌉ ≤ log n time. LineToCompleteBinaryTree

has at most 2n − 3 active edges per round, n log n total edge activations and bounded

degree equal to 3.

2.3.4 General Strategy for Depth-d Tree

All algorithms developed in this chapter solve the Depth-d Tree problem starting from

any connected initial network Gs from a given family. Our aim is to always achieve

this in (poly)logarithmic time while minimizing some of the edge-complexity parame-

ters. There is a natural trade-off between time and edge complexity and each of our

algorithms makes a different contribution to this trade-off. In particular, by paying for

linear degree, our first algorithm manages to be optimal in all other parameters. If we

instead insist on bounded degree, then our second algorithm shows that we can still

solve Depth-d Tree within an additional O(log n) factor both in time and total edge

activations. Finally, if the bound on the degree is slightly relaxed to (poly)log(n), our

third algorithm achieves o(log2 n) time.

All three algorithms are built upon the same general strategy that we now describe.

For each of them we choose an appropriate gadget network, which has the properties

of being “close” to the target network Gf to be constructed and of facilitating efficient

growth. For example, the Gf of our first algorithm is a spanning star and the chosen

gadget is a star graph, while the Gf of our second algorithm is a complete binary tree

and the chosen gadget is the union of a ring and a complete binary tree spanning that

ring (called a wreath).

Our algorithms satisfy the following properties. The nodes are always partitioned

into committees, where each committee is internally organized according to the corre-

sponding gadget network of the algorithm and has a unique leader, which is the node

with maximum UID in that committee. Initially, every node forms its own trivial com-

mittee and committees increase their size by competing with nearby committees. In

particular, committees select and, if possible, merge with the maximum-UID commit-

tee in their neighborhood. Prior to merging, such selections may give rise to pairs of

committees, in which case merging is immediate, but also to rooted trees of committees

where all selections are oriented towards the root and merging has to be deferred. In

the latter case, the winning committee will eventually be the root of the tree, at which

point all other committees of the tree will have merged to it. In all cases, merging must

be done in such a way that the gadget-like internal structure of the winning committee

is preserved. This growth guarantees that eventually there will be a single committee

spanning the network. At that point, the leader of that committee (which is always

the node with maximum UID in the network) is an elected unique leader. Moreover,

the gadget-like internal structure of that committee can be quickly transformed into
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the desired target network, due to the by-design close distance between them. For ex-

ample, in the algorithm forming a star no further modification is required, while in the

algorithm forming a complete binary tree, a ring is eliminated from a wreath so that

only the tree remains.

Our algorithms are designed to operate in asynchronous phases, with the guarantee

that in every phase pairs of committees merge and trees of committees halve their

depth. This can be used to show that in all our algorithms a single committee will

remain within O(log n) phases. Each phase lasts a number of rounds which is within

a constant factor of the maximum diameter of a committee involved in it, which is

in turn upper bounded by the diameter of the final spanning committee. The latter

is always equal to the diameter of the chosen gadget as a function of its size. The

total time is then given by the product of the number of phases and the diameter of

the chosen gadget. For example, in our first algorithm the gadget is a star and the

running time (in rounds) is O(1) · O(log n), in our second algorithm the gadget is a

wreath of diameter O(log n) and the running time is O(log n) · O(log n) = O(log2 n),

while in our third algorithm the gadget is a modified wreath, called ThinWreath, of

diameter o(log n) and the running time is o(log n) · O(log n) = o(log2 n). Given that

every node activates at most one edge per round, the total number of edge activations

of our algorithms is within a linear factor of their running time.

2.4 An Edge Optimal Algorithm for General Graphs

Our first algorithm, called GraphToStar, solves the Depth-d Tree problem, for d = 1.

In particular, by using a star gadget it transforms any initial graph Gs into a target

spanning star graph Gf . Its running time is O(log n) and it uses an optimal number

of O(n log n) total edge activations and O(n) active edges per round. Optimality is

established by matching lower bounds, presented in Section 2.7.

Algorithm GraphToStar

Each committee C(u) is a star graph where the center node u is the leader of the

committee and all other nodes are followers. A committee is anotion we use for a group

of nodes that coordinate together and act based on their leader’s decision. The leader

node of each committee is the node with the greatest UID in that committee. The

UID of each committee is defined by the UID of that committee’s leader. The winning

committee in the final graph, denoted C(umax), is the one with the greatest UID in the

initial graph. Every node starts as a leader and forms its own committee as a single

node. The original edges of Gs are assumed to be maintained until the last round of

the algorithm and the nodes can always distinguish them. The algorithm proceeds in

phases, where in every phase each committee C(u) executes in one of the following

modes, always executing in selection mode in phase 1.
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• Selection: If C(u) has a neighboring committee C(z) such that UIDz > UIDu

and C(z) is not in pulling mode, then, from its neighboring committees not in

pulling mode, C(u) selects the one with the greatest UID; call the latter C(v).

It does this, by u first activating an edge e1 with a potential neighbor in C(v).

Then u activates an edge with v, deactivates the previous edge e1, and C(u) enters

either the merging or pulling mode. In particular, if C(v) did not select, then

C(u) and C(v) form a pair and C(u) enters the merging mode. If on the other

hand C(v) selected some C(w), then C(u) enters the pulling mode. Otherwise,

C(u) did not select. If C(u) was selected then it enters the waiting mode, else it

remains in the selection mode. If C(u) has no neighboring committees, then it

enters the termination mode.

• Merging: Given that in the previous phase the leader of C(u) activated an

edge with the leader of C(v), each follower x in C(u) activates the edge xv and

deactivates the edge xu. The result is that C(u) and C(v) have merged into

committee C(v), which remains a star rooted at v now spanning all nodes in

V (C(u)) ∪ V (C(v)). Therefore, C(u) does not exist any more.

• Pulling: Given that in the previous phase the leader of C(u) activated an edge

with the leader of C(v) and the leader of C(v) activated an edge with the leader

of C(w), u activates uw, deactivates uv, and C(u) remains in pulling mode. If,

instead, the leader of C(v) did not activate in the previous phase, then C(u)

enters the merging mode. On the other hand, given that in the previous phase

the leader of C(u) activated an edge with the leader of C(v) and in the current

phase, committee C(v) does not exist anymore, this means that v is currently in

some committee C(w), and u activates uw and C(u) enters the merging mode.

• Waiting: If C(u) has no neighboring committees, C(u) enters the termination

mode. If in the previous phase no committee C(v) activated an edge with u, then

C(u) enters the selection mode. Otherwise C(u) remains in the waiting mode.

• Termination: C(u) deactivates every edge in E(Gs) \ E(C(u)). In particular,

each follower x in C(u) deactivates all active edges incident to it but xu.

Correctness

We are now going to prove the correctness of the algorithm. We will do so by showing

that only a single committee is left at the end of the execution of the algorithm. We

can guarantee this by showing that only a single committee will enter the termination

phase while the rest of them will “die” out by entering the merging phase. Since

every committee is a star subgraph and only a single committee will be alive, then the

algorithm solves the problem.
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Algorithm 1 High level phase transition of each committee in the GraphToStar Al-
gorithm

▷state : phase
▷initial state of committee phase C(u) : phase = selection
if phase = selection then
if there no neighboring committee exists then
phase = termination

if there is a neighboring committee C(v) with higher UID not in pulling phase
then
if C(v) selected no committee then
phase = merging

if C(v) selected another committee then
phase = pulling

if there is no neighboring committee with higher UID then
if no committee C(v) selected C(u) then
phase = selection

if another committee C(v) selected C(u) then
phase = waiting

if phase = merging then
Terminate

if phase = pulling then
if the committee I selected is in pulling mode then

phase = pulling
if the committee I selected is in merging mode then
phase = merging

if phase = waiting then
if no committee activated an edge with me then
phase = selection

if phase = termination then
Terminate

Lemma 2.3. Algorithm GraphToStar solves Depth-1 Tree.

Proof. It suffices to prove that in any execution of the algorithm, one committee eventu-

ally enters the termination mode and that this committee can only be C(umax). If this

holds, then by the end of the termination phase C(umax) forms a spanning star rooted

at umax and umax is the unique leader of the network. This satisfies all requirements

of Depth-1 Tree.

A committee dies (stops existing) only when it merges with another committee

by entering the merging mode. First observe that there is always at least one alive

committee. This is C(umax), because entering the merging mode would contradict

maximality of umax. We will prove that any other committee eventually dies or grows,

which due to the finiteness of n will imply that eventually C(umax) will be the only

alive committee.
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In any phase, but the last one which is a termination phase, it holds that every

alive committee C(u) is in one of the selection, merging, pulling, and waiting modes. If

C(u) is in the merging mode, then by the end of the current phase it will have died by

merging with another committee C(v). It, thus, remains to argue about committees in

the selection, pulling, and waiting modes.

We first argue about committees in the pulling mode. Denote their set by Cpull.
Observe that, in any given phase, the committees in pulling mode form a forest F ,

where each C(u) ∈ Cpull belongs to a pulling tree T of F . Any such pulling tree mimicks

the execution of the TreeToStar algorithm (from Proposition 2.1) on the leaders of

committees C(u) and satisfies the invariant that its root committee Cr is always in

the waiting mode and Cr’s children are in the merging mode. In every phase, Cr’s

children merge with Cr and their children become the new children of Cr and enter the

merging mode. It follows that all non-root committees in T will eventually merge with

Cr. Thus, all committees in pulling mode eventually die.

It remains to argue about committees in the selection and waiting modes. We start

from the waiting mode. Any committee C(u) in waiting mode is a root of either a

pulling tree in the forest F or of a star of committees in which all leaf-committees are

merging with C(u). In both cases, C(u) eventually exits the waiting mode and enters

the selection mode. This happens as soon as all other committees in its pulling tree or

star have merged to it, thus C(u) has grown upon its exit.

Now, a committee C(u) in the selection mode can enter any other mode. As argued

above, if it enters the merging or pulling modes it will eventually die and if it enters

the waiting mode it will eventually grow. Thus, it suffices to consider the case in

which it remains in the selection mode indefinitely. This can only happen if all current

and future neighboring committees of C(u), including the ones to eventually replace

neighbors in pulling mode, have an UID smaller than UIDu. But each of these must

have selected a neighboring C(w), such that UIDw > UIDu, otherwise it would have

selected C(u). Any such selection results in C(w) (or a z, such that UIDz > UIDw in

case w belongs to a tree) becoming a neighbor of C(u), thus contradicting the indefinite

local maximality of UIDu.

Time Complexity

Let us move on to proving the time complexity of our algorithm. At the beginning,

we are going to ignore the number of rounds within a phase, and we are just going

to study the maximum number of phases before a single committee is left. We define

|C(u)s| to be the size of committee C(u) in phase s, which is the number of nodes in

committee C(u) in phase s.
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Lemma 2.4. Consider committee C(u) that is in waiting mode between phases s and

s+ j. If the size of every committee in phase s is at least 2k, then the size of committee

C(u) once it enters the selection mode in phase s+ j + 1 is at least 2k+j−2.

Proof. Any committee C(u) in waiting mode is a root of either (i) a pulling tree in

the forest F or (ii) a star of committees in which all leaf-committees are merging with

C(u).

For case (i): root committee C(u) is always in waiting mode and every other com-

mittee C(v) of T is either in pulling or merging mode. It follows that all non-root

committees C(v) in the pulling tree will eventually merge with C(u) in some phase

s + j. W.l.o.g. assume that every committee C(v) that belongs to the pulling tree T

entered pulling or merging mode in phase s and every committee C(v) will have merged

with committee C(v) by phase s+ j. Every committee C(v) will stay in pulling mode

for i < j phases and in merging mode for 1 phase. Consider the leaders v of every

committee C(v) and note that while in pulling mode, the leaders are mimicking the

execution of the TreeToStar algorithm, where the leader of C(u) is the root of the tree,

and the leaders of C(v) are the non-root nodes of the tree. We know by Proposition 2.1,

that the running time of the algorithm is log d, where d is the depth of the tree. Thus, if

every committee C(v) enters the pulling mode in phase s and the last committee C(v)

to exit the pulling mode is in phase s+ i, s+ i− s = log d =⇒ i = log d. This means

that the depth of tree T is 2i. Since the depth of the pulling tree T is 2i, the tree T

must contain at least 2i committees. Additionally note that after the last committee

C(v) exits the pulling mode is in phase s+ k, in phase s+ k + 1 it enters the merging

mode and in phase s+ k + 2 every committee C(v) has merged with committee C(u).

Thus, s + i + 2 = s + j =⇒ i = j − 2 and the size of C(u) in phase s + j + 1 is

|C(u)s+j+1| ≥ 2k ∗ 2i = 2k+j−2.

For case (ii): root committee C(u) is in waiting mode and has at least one leaf

committee in phase s. After the leaf committee merges in 1 phase, committee C(u) has

size |C(u)s+1| ≥ |C(u)s|+ |C(u)s| =≥ 2k + 2k = 2k+1.

Lemma 2.5. If committee C(u) stays in the selection mode for p ≥ 4 consecutive

phases, then C(u) has a neighboring committee C(v) ∈ Cpull that belongs to a pulling

tree T for at least p phases.

Proof. Let us assume that committee C(u) stays in the selection mode for p ≥ 4

consecutive phases while having a neighbor C(v) that does not belong to pulling tree

T .

• If C(v) does not belong to a pulling tree in phase k, then it cannot be in pulling

mode.
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• If C(v) is in selection mode in phase k and C(v) does not select C(u) and C(u) does

not select C(v), then C(v) has a neighbor C(w) where UIDw > UIDv > UIDu

and C(v) selected C(w). Then C(v) enters the merging mode in phase k+1 and

gets merged with C(w). In phase k + 2 committee C(w) becomes a neighbor of

C(u) and C(w) enters the selection mode. Therefore, since UIDw > UIDu, C(u)

would select C(w) in phase k + 2, and enter either the pulling or merging mode.

Thus, a contradiction.

• If C(v) is in waiting mode in phase k, it cannot be the root of a pulling tree, and

is the root of a star. Therefore in phase k+1 it will enter the selection mode and

based on the analysis of the previous paragraph, in phase k+3 C(u) will exit the

selection mode. Thus, a contradiction.

Lemma 2.6. Let us assume that the minimum size of a committee in phase s is 2k. If

committee C(u) stays in the selection mode from phase s to phase s + p, where p ≥ 4

and those p phases are consecutive, then in phase s+ p+ 1 it will select or get selected

by a committee C(v) of size at least 2k+p−2.

Proof. From Lemma 2.5 it follows that, since C(u) is in the selection mode for at least

4 phases, there exists a neighbor C(v) that belongs to a pulling tree T . W.l.o.g. assume

that C(w) is the root of the pulling tree T and C(w) has been in waiting mode between

phases s and s + p. Note also that in phase s + p + 1, committees C(u) and C(w)

are neighboring committees and both are in selection mode. Thus, C(u) will exit the

selection mode in phase s + p + 1, because either C(u) will select C(w) or C(w) will

select C(u). Since C(w) was in waiting mode for p phases, the size of C(w) is at least

2k+p−2 (based on Lemma 2.4).

Lemma 2.7. Assume that the minimum size of every committee in phase s is 2k and

that every committee will have exited the selection mode in phase s + p at least once.

The size of all winning committees (committees that still exist) in phase s+ p+ 1 is at

least 2k+p−2.

Proof. Trivially, if p ≤ 4 the winning committee has size at least 2k+1 in phase p + 1

since it has merged with at least one other committee. From Lemma 2.6 it follows that

if p ≥ 4 the winning committee between C(w) and C(u) will have size at least 2k+p−2

in phase s+ p+ 1.

Lemma 2.8. After O(log n) phases, there is only a single committee left in the graph.

Proof. We trivially assume that committee C(umax) has size |C(umax)|1| = 1 in phase

1. Based on Lemma 2.7, after O(log n) phases, C(umax) has size |C(umax)O(logn)| ≥
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21+O(logn)−c ≥ 2logn ≥ n. Therefore, committee C(umax) must contain every single

node of G.

Lemma 2.9. Each phase consists of at most 2 rounds.

Proof. Based on the description of the algorithm, the selection phase lasts 2 rounds

and the rest of the phases lasts 1 round.

Edge Complexity

It is very simple to prove the edge complexity for the algorithm. Note that in each

round i each node activates at most 1 edge and based on Lemma 2.8 the algorithm

runs for O(log n) phases which means that there are O(n log n) total edge activations.

Furthermore, if a node had activated an edge u in round i, and it activates another

edge v in round i + 1, then it deactivates edge u. Therefore, each node cannot have

more than 2 active edges that it has activated itself at any time and since we have n

nodes in the network, there can ever be at most 2n active edges per round. Since the

structure of every committee is a star, the maximum activated degree is O(n).

Theorem 2.10. For any initial connected graph Gs, the GraphToStar algorithm solves

the Depth-1 Tree problem in O(log n) time with at most O(n log n) total edge activations,

O(n) active edges per round and O(n) maximum activated degree.

2.5 Minimizing the Maximum Degree on General Graphs

In this section we will create an algorithm that minimizes the maximum activated degree

to a constant but has O(log2 n) running time and O(n log2 n) total edge activations.

For this algorithm, our committees must have at least Ω(log n) diameter in order

to have a constant degree and therefore merging two different committees in constant

time while keeping a specific structure proves to be complicated. The new gadget of

our committees is going to be a graph we call wreath. A wreath graph is a graph that

has both a ring subgraph and a complete binary tree subgraph. We are going to use

the edges of the ring subgraph to merge committees and the binary tree subgraph to

exchange information between the nodes of the graph. First, let us define the structure

of the wreath graph.

Definition 2.11 (Wreath graphs). A graph D = (V,E) belongs to the class of wreath

graphs if it has two subgraphs Dr = (V,Er) and Db = (V,Eb), where Dr belongs to

the class of ring graphs, Db belongs to the class of complete binary tree graphs, and

E = Er ∪ Eb.

The O(log n) diameter that the wreath graph possesses will allow the leaders of

committees C(u) to communicate with neighboring committees C(v) in O(log n) time.
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u

Figure 2.1: A wreath graph with 8 nodes. The ring subgraph consists of the normal
(black) and dashed (blue) edges. The complete binary tree consists of the dotted (red)

and dashed (blue) edges.

Additionally, the merging phase of each pair of committees will require only O(log n)

time. The algorithm is almost identical to the GraphToStar as far as the high level

strategy is concerned. Committees select neighboring committees and merge with them.

The main difference is that when a tree with root v is formed, we cannot use the pulling

mode since this would increase the degree significantly. We provide an example of two

committees merging in Fig. 2.2. In this example, committee C(u) is merging with

committee C(v) and the merging happens through nodes x and y, see Fig. 2.2(a). The

committees on each tree merge in a single ring that includes all committees in O(1) time

(ring merging mode), see Fig. 2.2(b),2.2(c). After this, v deactivates one of its incident

edges in order to create a line subgraph, see figure 2.2(d). Once this happens, each

node on the line executes an asynchronous version of the LineToCompleteBinaryTree

subroutine in O(log n) time using the orientation of the new ring, where root v is the

root of the line. Once the subroutine is finished, the complete binary tree subgraph of

the wreath graph is ready. Therefore we have managed to merge a tree graph of multiple

committees into a single committee. Fig. 2.2 does not include the asynchronous version

of the LineToCompleteBinaryTree subroutine since it is quite involved to illustrate.

Algorithm GraphToWreath

The structure of each committee/node is the same as the GraphToStar algorithm

apart from the fact that each committee C(u) is a wreath graph. Every node is able to

distinguish between the edges of the binary tree and the edges of the ring by marking

them and it can also distinguish its clockwise neighbor and counterclockwise neighbor

on the ring. Our algorithm proceeds in phases, where in every phase each committee

C(u) executes in one of the following modes, always executing in selection mode in

phase 1.

• Selection: If C(u) has a neighboring committee C(z) such that UIDz > UIDu

and C(z) is not in Ring Merging mode or Tree Merging mode then, from its

neighboring committees not in ring merging or tree merging mode, C(u) selects
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Figure 2.2: Example where committee C(u) is merging with committee C(v) and
the merging happens through nodes x and y. Figure (a) shows the initial connections.
Figure (b) shows that ring merging process where x and y activate edges with the
counterclockwise neighbors of each other. Figure (c) shows the deactivation of edges
from x and y in order to form the cycle which includes the black and blue edges. Figure
(d) shows the that node v deactivates its incident edge (dotted line) in order to turn
the cycle into a line where the asynchronous version of the LineToCompleteBinaryTree

subroutine will be executed.

the one with the greatest UID; call the latter C(v). If C(u) selected C(v) or C(u)

was selected, C(u) enters the Ring Merging mode. If C(u) did not select anyone

and it was not selected by anyone, it stays in the selection mode. If C(u) has no

neighboring committees, C(u) enters the termination mode.

• Ring Merging: Given that in the previous phase, C(u) selected C(v), committee

C(u) merges its ring component with the ring component of C(v) by the following

method: Let k ∈ C(u) and l ∈ C(v), such that edge kl is active. k activates an

edge with the clockwise neighbor of l, call it l1, and l activates an edge with the

clockwise neighbor of k, call it k1. Then they deactivate edges kk1, ll1, and kl.

The two rings have now merged into a single ring.

Given that in the previous phase, C(u) was selected by C(k), committee C(k)

merges its ring component with the ring component of C(u). C(u) enters the tree

merging mode.
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• Tree Merging: Every node x in C(u) executes one round of an asynchronous

version of the LineToCompleteBinaryTree algorithm, which extends the LineTo-

CompleteBinaryTree algorithm with extra wait states. If there exists node x that

has not terminated the asynchronous LineToCompleteBinaryTree algorithm, C(u)

stays in the Tree Merging mode. If all nodes x have terminated the asynchronous

LineToCompleteBinaryTree algorithm, all nodes x have now merged with com-

mittee C ′(u) whose leader is the root of the complete binary tree and C ′(u) enters

the selection mode. C(u) does not exist anymore.

• Termination: Each follower x in C(u) deactivates every edge apart from the

edges that define the spanning complete binary tree subgraph.

Algorithm 2 High level phase transition of each committee in the GraphToWreath
Algorithm

▷state : phase
▷initial state of committee phase C(u) : phase = selection
if phase = selection then
if there no neighboring committee exists then
phase = termination

if there is a neighboring committee C(v) with higher UID not in tree merging or
ring merging phase then
phase = ringmerging

if there is no neighboring committee with higher UID then
if no committee C(v) selected C(u) then
phase = selection

if another committee C(v) selected C(u) then
phase = ringmerging

if phase = ringmerging then
phase = treemerging

if phase = treemerging then
if tree merging subroutine has not finished then

phase = treemerging
if tree merging subroutine has finished then
if C(u) is leader then
phase = selection

if C(u) is not leader then
Terminate

if phase = termination then
Terminate

2.5.1 Low Level Description of Modes

In this subsection, we are going to describe the low level details of each mode since the

communication process is much more complicated than the GraphToStar algorithm.
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Selection. Consider committee C(u). Each follower x in committee C(u) sends a

message {myUIDx, maxNeighborUID,maxNeighborDiameter} to its leader u via

the binary tree subgraph, see Fig. 2.3. Variable myUIDx contains the UID of node x,

maxNeighborUID contains the UID of the neighboring committee with the greatest

UID among all neighboring committees that x has an edge with, and maxNeighbor-

Diameter contains the diameter of that committee.

x y

u v

Figure 2.3: Every follower in C(u) sends a message with the information of its
neighboring committees to leader u via the complete binary tree. For example, follower

x sends the information for committee C(v)

.

After committee leader u receives all triplets, u knows the UID of all neighboring

committees. If ∃ maxNeighborUID > UIDu, C(u) selects the neighboring committee

C(v) with the greatest maxNeighborUID and broadcasts a message to x to initi-

ate the connection with that committee. Since, it is possible that multiple followers

x sent the same maxNeighborUID, u picks the one with the greatest UIDx. If ∄
maxNeighborUID > UIDu, committee C(u) does not select another committee. Ei-

ther way, after the selection, u waits to see whether another committee has selected

C(u). Committee leader u knows the maximum waiting time since it just received the

maximum diameter of all neighboring committees.

After follower x receives the initiation message, it sends a connection message to the

leader v of the neighbouring committee C(v) via followers x and y though the binary

tree subgraphs. See Fig. 2.4. After leader v receives all possible requests, it sends back

an approval message to all nodes y with a timestamp that defines in which round the

merging should happen. See Fig. 2.5.

Therefore every committee C(u) can understand which committee C(v) it has se-

lected and whether any committees C ′(v) have selected C(u). This means that C(u)

knows which mode it should enter after the selection phase.

Ring Merging. Assume that multiple committees C(v1), C(v2), ..., C(vi) for i =

1, ..., n−1 have selected committee C(u) in the selection phase, via followers y1, y2, ..., yi

respectively, whose neighbour x ∈ C(u) will initiate the connection. See Fig. 2.6(a) for
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x y

u v

Figure 2.4: Leader u sends a message to follower x to initiate a connection with
committee v. Follower x sends the request to follower y who propagates it to leader v

.

x y

u v

Figure 2.5: Leader v sends the approval message to follower y to initiate the merging
with committee u

.

an example. Followers y1, y2, ..., yi, x execute the following steps in order to complete

the ring merging mode.

• Follower x sends a message to followers y1, y2, ..., yi to rearrange themselves into

an inner-circle by activating edges {x, y1}, {y1, y2}, {y2, y3}, ...., {yi−1, yi}, {yi, x}
and deactivating edges {y1, x}, {y2, x}, ..., {yi, x}. See Fig. 2.6(b).

• Each follower activates an edge with the clockwise neighbor of its inner-circle

outgoing neighbor. See Fig. 2.6(c).

• Each follower deactivates an edge with its clockwise neighbor, as well as the edges

of the inner-circle. See Fig. 2.6(d).

Note that the orientation of the new ring is the same as the orientation of committee

C(u) and all nodes in the committee have the same orientation.

Tree Merging. Note that we cannot use the LineToCompleteBinary tree algorithm

from section 2.3.3 to merge the tree component of the committees since that algorithm

assumes that every node starts the execution at the same time. But in our case, we
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(a) (b)

(c) (d)

Figure 2.6: Example where 3 committees C(v1), C(v2), C(v3) have selected commit-
tee C(u). Figure (a) shows the initial connection. In figure (b) committees rearrange
themselves into an inner-circle. In figure (c) each committee activates an edge with the
clockwise neighbor of its inner-circle outgoing neighbor. In figure (d) each committee
deactivates an edge with its clockwise neighbor(based on the committee orientation),

as well as the edges of the inner-circle.
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have multiple committees that are merging together with different sizes and therefore

the nodes are not synchronized. Thus, we introduce an asynchronous version of the

algorithm where nodes can start the execution at different rounds.

Every node x executes the asynchronous LineToCompleteBinaryTree algorithm

which works as follows. If node x was a committee leader, then leaderx = true else

leaderx = false. The acronym EA stands for Edge Activations and DEA stands for

Edge Deactivations.

Algorithm 3 Asynchronous LineToCompleteBinaryTree

▷state : EA, DEA, awake, leader
▷initial state of node : EA = 0, DEA = 0, Awake = false
if node receives awake signal OR leader = true then
Awake = true

if awake = true then
Broadcast awake
if grandparent has only 1 child then

if EAmy = DEAmy = EAfather = DEAfather then
Activate edge with grandparent
EAmy ++

if EAmy = DEAmy + 1 = EAchild then
Deactivate edge with parent
DEAmy ++

We are going to give an intuition on how this algorithm works. First, the leader

of each committee broadcasts an awake signal to its own committee. Once a node

awakes, it starts executing the asynchronous LineToCompleteBinaryTree algorithm.

Since nodes have different waking points, we cannot use the synchronous LineToCom-

pleteBinaryTree that requires synchronized clocks from each node. Therefore, we are

going to use other properties that are present for every node in the synchronous Line-

ToCompleteBinaryTree which are: (i) Every node x has the same total number of

activations as its parent. (ii) Every node has the same number of total activations

as total deactivations. The asynchronous version tries to mimic that by having every

node activate an edge, only when its parent has the same total number of edge acti-

vations as itself. Similarly, for the deactivations, every node checks that its child has

the same deactivations as itself before deactivating an edge. This way, the synchronous

LineToCompleteBinaryTree is simulated by the asynchronous version.

Correctness

We are now going to prove the correctness of the algorithm. We will do so by showing

that only a single committee is left at the end of the execution of the algorithm. We

can guarantee this by showing that only a single committee will enter the termination

phase while the rest of them will “die” out by entering the merging phase. Since
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every committee is a star subgraph and only a single committee will be alive, then the

algorithm solves the problem.

Lemma 2.12. Algorithm GraphToWreath solves Depth-log n Tree.

Proof. It suffices to prove that in any execution of the algorithm, one committee even-

tually enters the termination mode and that this committee can only be C(umax) where

umax is the highest UID in the network. If this holds, then by the end of the termina-

tion phase C(umax) forms a complete binary spanning tree rooted at umax and umax is

the unique leader of the network. This satisfies all requirements of Depth-log n Tree.

A committee dies only when it merges with another committee by entering the tree

merging mode. First observe that there is always at least one alive committee. This

is C(umax), because when it enters the tree merging mode, it is always the root of the

complete binary tree. We will prove that any other committee eventually dies or grows,

which due to the finiteness of n will imply that eventually C(umax) will be the only

alive committee.

In any phase, but the last one which is a termination phase, it holds that every

alive committee C(u) is in one of the selection, ring merging, and tree merging modes.

If C(u) is in the ring merging mode then it will enter the tree merging mode and if its

leader is not the root of the complete binary tree, then by the end of the current phase

it will have died by merging with another committee C ′(u). It, thus, remains to argue

about committees in the selection mode.

Now, a committee C(u) in the selection mode can enter the tree merging mode.

As argued above, if it enters the ring merging and tree merging modes in sequence it

will either die or it will eventually grow. Thus, it suffices to consider the case in which

it remains in the selection mode indefinitely. This can only happen if all current and

future neighboring committees of C(u) have an UID smaller than UIDu. But each of

these must have selected a neighboring C(w), such that UIDw > UIDu, otherwise it

would have selected C(u). Any such selection, results in C(w) becoming a neighbor of

C(u), thus contradicting the indefinite local maximality of UIDu.

Time Complexity

Let us move on to proving the time complexity of our algorithm. At the beginning,

we are going to ignore the number of rounds within a phase, and we are just going to

study the maximum number of phases before a single committee is left.

Lemma 2.13. After O(log n) phases, there is only a single committee left in the graph.

Proof. Note that there is a direct correspondence between the modes in the GraphTo-

Wreath algorithm and the GraphToStar algorithm.

Both selection modes are used to decide the selections between the neighboring

committees. The difference between the two algorithms is that each selection phase
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has a different running time. In particular, The GraphToStar selection phase required

2 rounds while the selection phase of the GraphToWreath requires O(log n) rounds due

to the diameter of the Wreath graph that each committee has. Therefore Lemma 2.5

that talks about the selection waiting time still holds.

The ring mode is always an intermediate phase between the selection phase and

the tree merging phase that lasts for O(1) rounds. The purpose of this mode is

to turn the tree T created by the committees in the selection phase into a cycle so

that the LineToCompleteBinaryTree subroutine can work. The pulling mode in the

GraphToStar implements the TreeToStar subroutine, while the tree merging mode in

the GraphToWreath implements the asynchronous version of the LinetoCompleteBina-

ryTree. Both subroutines are used to merge the Trees T of depth t created by the

committees in O(log t) time and recall from the basic subroutines subsection that the

TreeToStar and the LineToCompleteBinaryTree have the same running time. There-

fore both algorithms require the same amount of phases. Therefore Lemmas 2.4, 2.6

and 2.7 that show the growth of each committee still hold.

Note that there is no merging or waiting mode in the GraphToWreath since those

modes have also been implemented by the merging tree mode.

Since all modes that have been implemented in the GraphToWreath have equivalent

modes in the GraphToStar with similar running times and growths for the committes,

the GraphToWreath algorithm requires at most O(log n) phases.

Lemma 2.14. Each phase in the GraphToWreath algorithm, requires at most O(log n)

rounds.

Proof. First, we argue that the selection phase requires O(log n) rounds since each

committee C(u) has to exchange information with its neighboring committees in order

to decide which committee C(w) it is going to merge with and whether any other

committee C(v) will decide to merge with C(u). This requires time that is upper

bounded by the diameter of each committee. Based on the low level description of

the selection mode, the leader of committee C(u) learns the UID of every neighboring

committee in log d rounds and initiates the connection with the chosen neighboring

committee C(w) in another log d rounds, where d is the diameter of committee C(u).

Another log dw rounds are required in order for committee C(w) to accept and initiate

the connection with committee C(u), where dw is the diameter of C(w). Since log d ≤
log n and log dw ≤ log n, the selection mode requires O(log n) rounds.

The ring merging phase requires O(1) rounds since every committee has to merge

its ring component with committees C(v) and the running time does not depend on

the size of each committee participating.

Each tree merging mode implements one round of the asynchronous LineToCom-

pleteBinaryTree. Note here that the asynchronous version of this algorithm has the
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same running time as the synchronous version if we consider round 0 to be the first

round in which all nodes are awake. Additionally, since every committee leader broad-

casts the awake message to its own committee, the time needed for all nodes to be

awake is log(max d) < log n. Thus, the running time of the asynchronous LineToCom-

pleteBinaryTree is O(log n).

Edge Complexity

The analysis for the total edge activations is simple. The algorithm runs for

O(log2 n) rounds and each node activates at most 1 edge per round. Therefore the

total edge activations are O(n log2 n).

Let us consider the maximum incident edges that a node can have, excluding the

edges of the initial graph. Each node has up to 2 edges for the ring component of the

wreath and 2 for the binary tree component of the wreath graph. Based on the low

level description of the GraphToWreath algorithm, a node can have 1 active edge used

for the ring merging phase. Additionally, it can have 2 active edges for the execution of

the LineToCompleteBinaryTree. Therefore the number of active edges per round are

O(n) and the maximum degree of each node is 7+ c, where c is the degree of each node

in the original graph.

Theorem 2.15. For any initial connected graph with constant degree, the Graph-

ToWreath algorithm solves Depth-log n Tree problem in O(log2 n) time with O(n log2 n)

total edge activations, O(n) active edges per round and O(1) maximum activated degree.

2.6 Trading the Degree for Time

In this section, we provide another algorithm aiming at O( logn
log logn) time for the merging

but we are going to allow the maximum degree to reach O(log2 n). This requires a

new graph for the committees where the diameter of the shape is O( logn
log logn), so that

the communication within the committees is O( logn
log logn) and a new way to merge the

committees in O( logn
log logn) time. For this algorithm only, we also make the assumption

that all nodes know the size of the initial graph. This yields an interesting open problem

on whether we can modify the algorithm so that it will not require knowledge of the

initial network.

The new graph is very similar to the Wreath graph and we call it ThinWreath.

The main difference is that instead of having a complete binary tree component, it

has a complete polylogarithmic degree tree component with diameter O( logn
log logn). The

O( logn
log logn) diameter that the ThinWreath graph possesses will allow the leaders of

neighboring committees to communicate in O( logn
log logn) time.
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Algorithm GraphToThinWreath

The structure of each committee is the same as in GraphToStar algorithm, apart

from the fact that each committee C(u) is a ThinWreath graph. We also assume that

the nodes know the size of the initial graph. Our algorithm proceeds in phases, where

in every phase each committee C(u) executes in one of the following modes, always

executing in selection mode in phase 1.

• Selection: If C(u) has a neighboring committee C(z) such that UIDz > UIDu

and C(z) is in selection mode, then, C(u) selects its neighboring committee with

the greatest UID; call the latter C(v). If C(u) was selected by another committee,

C(u) enters the Matchmaker mode. If C(u) was not selected and C(u) selected

C(v), C(u) enters the Matched mode. If C(u) did not select anyone and it was

not selected by anyone, it stays in the selection mode. If C(u) has no neighboring

committees, it enters the termination mode.

• Matchmaker: If multiple committees had selected C(u) in the previous phase,

committee C(u) matches those committees in pairs. If the number of committees

that selected C(u) is odd, one committee is matched with C(u). C(u) enters the

Matched mode.

• Matched: If committee C(u) selected committee C(v) in the last selection phase,

committee C(u) is matched with another committee. Committee C(u) enters the

Ring Merging mode.

• Ring Merging: Given that in the previous phase, C(u) was matched with C(v),

committee C(u) merges its ring component with the ring component of C(v) where

the winning committee is C(u) if UIDu > UIDv , otherwise C(v) is the winning

committee. Either way, committee C(u) enters the Leader Merging mode.

• Leader Merging: Given that in the previous mode, committee C(u) lost to

committee C(w), the leader of C(u) activates an edge with the leader of C(w).

If committee C(w) has lost to some other committee C(z) in the previous phase,

C(u) enters the Tree Merging mode. If C(u) did not lose to any other committee,

C(u) enters the Tree Merging mode where u is the root.

• Tree Merging: The leader of C(u) executes one round of the asynchronous Line-

ToCompletePolylogarithmicTree algorithm, which is similar to the asynchronous

LineToCompleteBinaryTree algorithm with a termination criterion of log n chil-

dren instead of 2. If there exists node x that has not terminated the asynchronous

LineToCompletePolylogarithmicTree algorithm, C(u) stays in the Tree Merging

mode. If all nodes x have terminated the asynchronous LineToCompletePolylog-

arithmicTree algorithm, all nodes x ∈ C(u) have now merged with committee
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C ′(u) whose leader of C(u) is the root of the complete polylogarithmic tree and

C ′(u) enters the selection mode. Committee C(u) does not exist anymore.

• Termination: Each follower x ∈ C(u) deactivates every edge apart from the

edges that define the complete polylogarithmic spanning tree subgraph.

Algorithm 4 High level phase transition of each committee in the GraphToThinWreath
Algorithm

▷state : phase
▷initial state of committee phase C(u) : phase = selection
if phase = selection then
if there no neighboring committee exists then
phase = termination

if there is a neighboring committee C(v) with higher UID not in tree merging or
ring merging phase then
phase = matchmaker

if there is no neighboring committee with higher UID then
if no committee C(v) selected C(u) then
phase = selection

if another committee C(v) selected C(u) then
phase = Matched

if phase = matchmaker then
phase = matched

if phase = matched then
phase = ringmerging

if phase = ringmerging then
phase = leadermerging

if phase = leadermerging then
phase = treemerging

if phase = treemerging then
if tree merging subroutine has not finished then

phase = treemerging
if tree merging subroutine has finished then
if C(u) is root then
phase = selection

if C(u) is not root then
Terminate

if phase = termination then
Terminate

2.6.1 Low Level Description of the Modes

We will now describe the low level operation of the modes. The selection and ring

merging modes are identical to the equivalent modes of the GraphToWreath algorithm

and therefore will not be described here.
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Matchmaker. Before we begin the description of this mode, we would like to give

some insight on the Matchmaker/Matched modes and what they are trying to achieve.

After the selection mode, the graph of committees consists of directed trees, directed

lines and pairs. We want to break up the directed trees into lines and pairs since

directly merging the committees using the directed trees might result in having a final

committee with linear degree due to the structure of the directed tree. We break up the

committees by pairing up the multiple committees C(v) that have selected committee

C(u). The difficulty here arises from the fact that committees C(v) are not neighbours

and they have to use committee C(u) in order to become neighbours by activating

edges on C(u). While doing this, we have to make sure that these edge activations

don’t violate the maximum degree of O(log n).

In this mode, we know that at least one committee C(v) has selected committee

C(u). Leader u sends a synchronisation message with a timestamp to all leaders v

which dictates when the Matched mode algorithm should begin. This timestamp is

equal to 3 · d where d is the diameter of the neighbouring committee with the highest

UID among all neighbouring committees of C(u). This guarantees that the message

can reach every leader v in 2 · d time and d time for the v leaders to send the message

back to their followers. After this, committee C(u) enters the Matched mode.

Matched. In this mode, after leader v receives the synchronization message from

leader u, leader v sends the timestamp to follower y to begin the Matched algorithm.

Once follower y receives the message, it starts executing the following algorithm on the

round specified by the timestamp. Followers x ∈ C(u) are responsible for Matching

followers y.

Follower x acts as a matchmaker in this mode. In every round, each follower yi asks

the current neighbour x to be matched with another follower yj . If multiple followers

yi send a Matched message, follower x matched them in pairs, using their UIDs in

ascending order and sends Matched = {1, UID} back to each follower yi where UID

is the committee that each follower yi is matched with. See Figs. 2.7(c),2.7(d). If only

one follower yi sends a Matched message then follower x sends back Matched = 0, UID

to inform it that no matches are present. See Figs. 2.7(a). After that follower yi moves

on to the next level of the polylogarithmic tree by activating an edge with the parent

of follower x and looks again for a match. See Fig. 2.7(b).

In short, followers yi might start at different levels of the polylogarithmic tree of

C(u). In each round, they activate an edge with the next level until they find a match

at their current level. Note that all followers yi will find a match, since they have a

common destination which is the root of committee C(u).

Let us now consider the maximum activated degree of each follower x during the

Matched algorithm. In each round, followers yi might activate an edge with follower

x while coming through the lower levels. Each follower x has at most log n children
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Algorithm 5 Matched

▷state : round, Matched
▷initial state of node : round = request, Matched = {1,myUID}
if round == request then
Send Matched to follower x

if round == receive then
Receive Matched′ = {Match, UID} from follower x
if Match == 0 then
Activate edge with parent of x
Deactivate edge with x

if Match == 1 then
myMatch = C(UID)
round = terminate

if round == terminate then
Terminate with committee myMatch as its Matched committee

if round == request then
round = receive

else
round = request

and it is not possible for more than 1 follower yi to come through each child since, if

one child had multiple requests from followers yi, they would get matched together and

terminate as in Fig. 2.7(d). Therefore the maximum activated degree of each follower x

can increase by at most log n. Finally note that at this point, the graph of committees

consists of directed lines and pairs.

Leader Merging. In this mode, provided that committee C(v) has smaller UID than

C(u), leader v activates an edge with leader u by activating edges on the polylogarithmic

trees of C(v) and C(u). This process is bound by the diameter of the committees. If

we focus on any directed lines in the graph of committees, we can see that we have

created a path that consists only of the leaders of the committees in the directed line.

Tree Merging. Every committee leader v executes the asynchronous LineToCom-

pletePolylogarithmicTree algorithm which is the same as the asynchronous LineToCom-

pleteBinaryTree algorithm except that termination criteria requires that your grandfa-

ther has log n children instead of 2 children.

Note here that the whole merging process is finished for this phase. Our final graph

consists of a ring graph created by the ring merging process and a collection of wreath

graphs with leader u as the root, created by the Leader/Tree merging process. Because

of the Tree merging process, there is a polylogarithmic tree consisting of leaders u

and v with diameter O( logn
log logn). Additionally each leader v is the root of its own

polylogarythmic tree with diameter O( logn
log logn) from the previous phase. Therefore the

diameter of the collection of wreath graphs is O( logn
log logn).



Chapter 2. Distributed Computation and Reconfiguration 41

k level

(k-1) level

x

y

(a)

k level

(k-1) level

x

y

(b)

k level

(k-1) level

x

y1y2

(c)

k level

(k-1) level

x

y1y2

(d)

Figure 2.7: Figures showing the Matched mode. Figure (a,b) show that committee
C(v) goes up one level on the binary tree of committee C(u) if follower y finds no match
through follower x. On the other hand, figures (c,d) show that if two committees are

in the same round on the same follower x, they get matched together.

2.6.2 GraphToThinWreath Proof

For this algorithm’s proof, it is not possible to use the same strategy as the previ-

ous algorithms. This is because, while we can prove that this algorithm also requires

O(log n) phases as the previous algorithms, all of our modes require O( logn
log logn) but for

the tree merging mode which requires O(log n) and therefore similar analysis would

yield O(log2 n) running time. Our new strategy is to show that after O(log n) rounds

in which at least one committee is in the tree merging mode in each round, there is

only a single committee left in the graph.

Correctness

Lemma 2.16. Algorithm GraphToThinWreath solves the Depth- logn
log logn Tree problem.

Proof. Since the selection mode of the GraphToThinWreath algorithm is identical with

the GraphToWreath algorithm, we argue that there will be a single committee left in

the final graph. This committee consists of a ring subgraph and multiple thinwreath

subgraphs. Based on the low level description of the tree merging mode, the diameter

of the graph is O( logn
log logn).

Time Complexity
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Lemma 2.17. After O(log n) tree merging rounds, there is only a single committee left

in the graph.

Proof. We define a tree merging round to be a round in which at least one committee is

in the tree merging mode. For the purposes of this proof, we are going to consider each

tree merging round to be its own phase. Consider the rounds in which a committee is in

the tree merging mode. Observe that in any such round, the leaders of those committees

form a forest F, where each committee belongs to a tree of F. Any such tree executes

the asynchronous LineToCompletePolylogarithmicTree algorithm. This structure is

identical to the structure in the pulling mode of the GraphToStar algorithm. The only

difference between the pulling mode and the tree merging mode is that they are running

different algorithms. But, the asynchronous LineToCompletePolylogarithmicTree and

the TreeToStar algorithm have the same running time and both of them merge the

trees of committees into single committees. Therefore the two algorithms will have

the same number of rounds. Based on Lemma 2.8, there at most O(log n) phases for

the GraphToStar algorithm to terminate and every phase includes at most one round

of pulling mode and subsequently there are at most O(log n) rounds of pulling mode.

Therefore the GraphToThinWreath algorithm can have at most O(log n) tree merging

rounds before a single committee is left in the graph.

Lemma 2.18. The GraphToThinWreath algorithm has O( log2 n
log logn) running time.

Proof. In order for a committee to enter the tree merging mode, it has to go through

some or all of the other modes of the algorithm which have O( logn
log logn) running time

since all of them are bound by the diameter of the committee. Therefore, for every tree

merging round, there can be at most O( logn
log logn) rounds from the other modes. Then

based on Lemma 2.17, the running time of the algorithm is O( logn
log logn) · O(log n) =

O( log2 n
log logn).

Edge complexity

Let us consider the maximum possible edges added on each node throughout each

phase. Based on the low level description of the modes, each mode adds at mostO(log n)

number of edges to each node. From Lemma 2.17, we implicitly know that there can be

at most log n phases until the algorithm terminates. Therefore, the maximum degree

of each node is O(log2 n). Similarly, since in every round, each node activates at most

1 edge, the maximum edges activated are O(n · log2 n
log logn). Finally, since in every mode,

every edge activation is followed by a deactivation, the maximum number of activated

edges in O(n).
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Theorem 2.19. For any initial connected graph with polylogarithmic degree, the Graph-

ToThinWreath algorithm solves Depth- logn
log logn Tree in O( log2 n

log logn) time with O(n log2 n)

total edge activations, O(n) active edges per round and O(1) maximum activated degree.

2.7 Lower Bounds for the Depth-log n Tree Problem

We will now shift our focus into proving lower bounds for our model. We are going to

provide lower bounds for both a centralized model and a distributed one because we

want to show that there is an important difference between the two of them.

2.7.1 Centralized Setting

In the centralized setting, everything we have previously defined in the model section

stays the same but now every node also has complete knowledge of the graph and a

centralized controller can decide what each node will do in each round.

We begin by defining the potential of a UID to a node v. The potential describes

how far the UID is from node v. We are going to use this definition to measure how

fast the identifier can be transmitted throughout the graph.

Definition 2.20. We define the potential of a UIDu to v as its minimum “distance”

from v. The distance is defined as follows: Consider all nodes w in the network that

know UIDu. Compute the length of the shortest path between each node w and node

v. The minimum length among all shortest paths is the distance between UIDu and

node v. We denote the potential of UIDu to v by ϕu,v.

Note that in any initial graph D = (V,E), ∀u, v ∈ V, ϕu,v = max
u

ϕu,v ≤ n − 1.

Consider any pair of nodes u, v, where ϕu,v = k. There are two ways to reduce ϕu,v in

each round i:

• Information Propagation. Consider all nodes w that currently know UIDu.

Compute the shortest path between all pairs of w and v and pick node w that yields the

smallest shortest path. Node w can send UIDu to one of its neighbors y that belong

to the shortest path between w and v to reduce ϕu,v by 1.

• Reduce Shortest Paths. Consider all nodes w that currently know UIDu.

Compute the shortest path between all pairs of w and v and pick node w that yields

the smallest shortest path with size = k. Now consider all pairs of nodes x, y that are

potential neighbors and also belong to the shortest path between w and v. Activating

xy between one pair of x, y reduces ϕu,v by 1. Activating multiple xy between different

pairs in one round can reduce ϕu,v even more but at most by k/2.

Observation 1. In order for an algorithm to solve the Depth-log n Tree Problem, ∀u, v ∈
V, ϕu,v ≤ log n.
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Lemma 2.21. Any transformation strategy based on this model requires Ω(log n) time

to solve the Depth-log n tree problem if the initial graph Gs is a spanning line.

Proof. Consider a spanning line where, for simplicity, we call the node that resides at

the “left” endpoint of the line u and the node that resides at the “right” endpoint of the

line v. According to Observation 1, in order for an algorithm to solve the Depth-log n

tree problem, ϕu,v ≤ log n. In the initial graph, ϕu,v = n − 1. We know that by using

edge activations, we can reduce ϕu,v by half in each round, and by using Information

Propagation we can reduce ϕu,v by 1 in each round. Therefore in order for ϕu,v = log n,

any algorithm would require at least Ω(log n) rounds.

Lemma 2.22. Any transformation strategy based on this model that solves the Depth-

log n Tree problem in O(log n) time requires Ω(n) edge activations.

Proof. Let us again consider a spanning line as the initial graph. W.l.o.g. let us assume

that the size of the network is odd. Let us call u the node that is the “left” end point

of the line and v the “right” endpoint of the line.

Let us assume that in some round i, where i ≤ log n, that ϕu,v ≤ log n. We

can produce the following equation based on the two rules that allow us to reduce

the potential: InitialPotential −#EdgeActivations−#MessagesSent ≤ log n. The

maximum value of MessagesSent is log n and InitialPotential = n− 1 and if we add

those in the previous equation we get #EdgeActivations ≥ n−1−2 log n and therefore,

in order for ϕu,v ≤ log n at least n− 1− 2 log n edges have to have been activated.

Lemma 2.23. Any transformation strategy based on this model that solves the Depth-

log n Tree problem in O(log n) time, requires Ω(n/ log n) edge activations per round.

Proof. From Lemma 2.22 we know that ϕu,v = 0 to be possible in log n time, the

following equation has to be true EdgeActivations = Ω(n). Now, since we are trying

to find the minimum number of edge activations per round possible, we can easily

do this by dividing the total number of edge activations with the number of rounds.

Therefore EdgeActivationsPerRound ≥ EdgeActivations
Rounds ≥ Ω(n)

logn .

Since we have just proven that Ω(n) edge activations are required in order to solve

the Depth-log n problem given any initial graph, we are now going to prove that Θ(n)

edges are sufficient in order to solve it. First, we are going to informally prove it for

the special case of the spanning line graph and afterwards we are going to prove it for

general graphs.

Consider a spanning line with nodes u1, u2, . . . , uj for j = 1, 2, . . . , n. For simplicity,

assume that u1 is the “left” endpoint of the line, u2 is the neighbor of u1 etc, u3 is a

neighbor of u2 etc. In each round i, we activate edge uj , uj+2i ∀ {uj |(j mod (2i) =

1) ∧ (j + 2i ≤ n)}. After log n rounds, the diameter of the shape is equal to log n. Let
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us now proceed to analyzing the total edge activations. By definition of the algorithm,

in each round i, n
2i

edges are activated. Since the algorithm runs for log n rounds, we

have
∑logn

i=1
n
2i

= n total edge activations. We call this algorithm CutInHalf.

Theorem 2.24. Given any initial graph D = (V,E), the Depth-log n problem can be

solved in O(log n) time, with Θ(n) total edge activations.

Proof. Since we are in a centralized setting, we are first going to perform some global

computations that are going to output the specific edges that have to be activated in

order for the diameter of the shape to drop to log n. We consider any initial graph

D = (V,E) and we pick an arbitrary node called u. First, we compute a spanning tree

that starts from node u. Afterwards we compute an Eulerian tour starting from u. This

way we can create a virtual ring D′ = (V ′, E′) that has |V ′| ≤ 2|V | and |E′| ≤ 2|E|.
Now in this ring, node u deactivates one of its incident edges and the graph is now

a line. We can now execute the CutInHalf algorithm to solve the Depth-log n Tree

problem in O(log n) time, with Θ(n) total edge activations.

2.7.2 Distributed Setting

In this part, we are going to show that there is a difference in the minimum total

edge activations required for solving the Depth-log n problem between the centralized

and the distributed model. At this point, we would like to remind to the reader that

an algorithm is called comparison based if it manipulates the UIDs of the network

using comparison operations (<,>,=) only. Our main theorem will show that any

deterministic distributed comparison based algorithm requires Ω(n log n) total edge

activations to solve the Depth-log n Tree problem in O(log n) time. Consider two nodes,

called u and v , that have received increasing order UIDs that are larger than both u

and v during the execution of a deterministic comparison based algorithm. Since nodes

are only allowed to compare UIDs between them, nodes u and v the results of the

comparison of u and v are exactly the same and thus, u and v must have the same

behaviour until they find a different result by comparing receiving UIDS. We are going

to use this behaviour to show that any algorithm must activate Ω(n log n) total edge

activations.

Definition 2.25. Let U = u1, u2, . . . , uk be a sequence of UIDs of length k. We say

that U is an increasing order sequence if, for all i, j, 1 ≤ i, j ≤ k, we have i ≤ j iff

ui ≤ uj .

At this point, we would like to remind to the reader that an algorithm is called

comparison based if it manipulates the UIDs of the network using comparison operations

(<,>,=) only.
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Definition 2.26. Let A be a comparison-based algorithm executing on an increasing

order ring graph. Let i and j be two nodes in the ring graph. We say that i and j are

in corresponding states if the UIDs that they both have received from counterclockwise

neighbors are a decreasing order sequence and the UIDs they have received are an

increasing order sequence and vice versa. Two nodes in corresponding states in round

i must have the same behaviour during the execution of an algorithm in round i

Definition 2.27. We define the increasing order ring R as follows. Suppose we have

an increasing order sequence U of UIDs to be assigned on a ring with n nodes. We

assign the smallest UID from U = u1, u2, . . . , uk to an arbitrary node and we continue

assigning increasing UIDs clockwise (or counterclockwise). We call this an increasing

order ring.

Definition 2.28. We define a round of an execution/algorithm to be active if at least

one message is sent in it or an edge is activated in it.

Definition 2.29. We define the k-expo-neighborhood of node i in ring R of size n,

where 0 ≤ k ≤ n/2, to consist of the 2 · 2k + 1 nodes i − 2k, . . . , i + 2k, that is, those

that are within distance at most 2k from node i (including i itself).

Lemma 2.30. Consider an increasing order ring of size n. Let dmin be the initial

distance between node d and the node with the minimum UID called d0. Let dmax

be the initial distance between node d and the node with me maximum UID called

dn−1. Let i and j be two nodes in A, where imin, imax is the minimum distance be-

tween i and d0, dmax respectively, and jmin, jmax is the minimum distance between

j and d0, dmax respectively. Let A be a comparison-based algorithm executing in the

ring. Then, nodes i and j must be in corresponding states for at least k rounds, where

2k = min(max(imin, imax),max(jmin, jmax)).

Proof. Note here that nodes i and j are in corresponding states as long as (((ϕd0,i >

0) ∨ (ϕdn−1,i > 0)) ∧ ((ϕd0,j > 0) ∨(ϕdn−1,j > 0)). In simple terms, i and j are in

corresponding states as long as both of them do not know both UIDd0 and UIDdn−1

which follows from definition 2.26. This means that i and j will stop being in corre-

sponding states once one of them learns both d0 and dmax. By definition, 2k is the

potential between i, j and d0, dmax and we know that the potential of a UID can only

be decreased by information propagation and reducing shortest paths, where informa-

tion propagation reduces the potential by at most 1 per round and reducing shortest

paths reduces it by half. Thus, since the initial potential is 2k, by applying the po-

tential reduction methods, any algorithm would need at least k − log k rounds so that

(((ϕd0,i = 0) ∨ (ϕdn−1,i = 0)) ∧ ((ϕd0,j = 0) ∨(ϕdn−1,j = 0)).
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Observation 2. Any transformation strategy based on this model that solves the Depth-

log n Tree problem in O(log n) time in an increasing order ring, requires at least log n

active rounds.

Theorem 2.31. Any deterministic distributed algorithm that solves the Depth-log n

Tree problem in O(log n) time, requires Ω(n log n) total edge activations.

Proof. Consider an increasing order ring R with n nodes and algorithm A that solves the

Depth-log n problem. Consider the node with the greatest UID in the network, called

umax, the node with the smallest UID in the network, called u1, and the antipodal node

of umax called uc.

First of all, note that in the first round, all nodes except from u1 and umax are in

corresponding states. We can generalize this statement by using Lemma 2.30 to state

that in round i, each node whose i-expo-neighborhood does not include both u1,umax is

in a corresponding state with each such node. Therefore those nodes behave the same

way e.g. if in round i, one of those c nodes activates an edge, then all c nodes activate

an edge. For this proof, we define a round of algorithm A to be live if the c nodes

activate at least one edge in it, we also define a round of algorithm A to be asleep if

none of the c nodes activate an edge in it.

We already know that we need at least log n active rounds to connect umax with uc

from Lemma 2. Our goal here is to prove that log n of those active rounds also have to

be live rounds.

For simplicity, we define the set C where node u ∈ C if u is in the same corre-

sponding state as uc (including uc), the set A where node u ∈ A if u is not in the same

corresponding state as uc.

Consider an arbitrary round i, where the shortest path between umax and uc is

|P | = k. This shortest path can be split into two different paths. The one called PA

that includes nodes u ∈ A and the one called PC that includes nodes v ∈ C. Essentially,

the potential ϕumax,a ≥ |PC | since otherwise, some node v ∈ C would know UIDumax

which is impossible by definition of set C. Let us divide our analysis between asleep

and live rounds and study how much the potential can be reduced in each round.

• Asleep rounds. In each asleep round a, only nodes u ∈ A can activate edges

and |PC | can only be reduced by at most l+1 where l is the total number of live rounds

before round a. We can reduce it l by having u ∈ A activating an edge with each

potential neighbor v ∈ C, and reduce it by 1 by having u send UIDumax to all v ∈ C.

• Live rounds. In each live round l, all nodes can activate an edge so we can reduce

|PC | by l + 1 by following the above strategy and additionally, use edge activations

between nodes v ∈ C so that |PC | is reduced by at most half.

Note here, that Asleep rounds are not enough to reduce the potential to 0 in

order to solve the Depth-log n problem. After O log(n) asleep rounds, ϕumax,a ≥
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InitialPotential − (log n)(l + 1) = n
2 − (log n)(l + 1). Therefore we need at least

log n live rounds to solve the Depth-log n problem.

We are now examining how many edges are activated in each live round. Before

we do that, we list some abbreviations: CN : the number of nodes in the original

graph, NRL: number of nodes that were removed in previous live rounds, NRA:

number of nodes removed in previous asleep rounds. Recall that in each live round

l , at least 1 node v ∈ C activates an edge and by Lemma 2.30, all nodes v ∈ C

activate an edge. The number of nodes v ∈ C in round i are |u| ≥ #CN − NRL−
NRA = (n− 2)− (

∑l−1
i=1 2

i)(
∑a

i=1−i(l− 1))− a(l− 1). The number of edges activated

in each round l are at least |C| ≥ |u|. Therefore the total number of edge activations in

live rounds after log n rounds is at least (n−2)−(∑logn
i=1 2i)(

∑logn
i=1 −i(l−1))−a(l−1) =

Θ(log n).

2.8 Conclusion

In this Chapter, we investigated a new distributed model involving a network comprised

of computing entities that can activate new connections. We defined natural cost mea-

sures associated with the edge complexity of actively dynamic algorithms. It turns out

that there is a natural trade-off between the time and edge complexity of algorithms.

By focusing on the apparently representative task of transforming any initial network

from a given family into a target network of (poly)logarithmic diameter, which can then

be exploited for global computation or further reconfiguration, we obtained non-trivial

insight into this trade-off. At first, we provided the GraphToStar that optimized both

time and the maximum activated edges at the cost of having linear degree. We contin-

ued in the opposite direction; the GraphToWreath algorithm optimized the maximum

degree to a constant at the cost of time. To complete our positive results, we provided

a third algorithm, called GrapthToThinWreath that achieves a middle ground between

the first two algorithms, for both time and maximum degree. Finally, we accompanied

our algorithms with lower bounds for both the centralized and the distributed case of

the problem.

There is also a number of technical questions specific to our model and the obtained

results. We do not know yet what are the ultimate lower bounds on time for different

restrictions on the maximum degree. For maximum degree bounded by a constant our

best upper bound is O(log2 n) and if bounded by (poly)log(n) this drops slightly by

an O(log log n) factor. Can any of these be improved to O(log n), that is, matching

the Ω(logn) lower bound on time? It would also be valuable to investigate randomized

algorithms for the same problems, like those already developed in overlay networks.
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Finally, there are many variants of the proposed model and complexity measures

that would make sense and might give rise into further interesting questions and de-

velopments. Such variants include anonymous distributed entities which are possibly

restricted to treat their neighbors identically even w.r.t. actions (e.g., through local

broadcast) and alternative potential neighborhoods, e.g., activating edges at larger dis-

tances. Another interesting approach includes introducing a very strict limit to the

neighbors of each node in an effort to better mimic real life systems that have a set

amount of connections limited by space constraints.





Chapter 3

Growing Graphs

3.1 Introduction

3.1.1 Motivation

Growth processes are found in a variety of networked systems. In nature, crystals grow

from an initial nucleation or from a “seed” crystal and a process known as embryogen-

esis develops sophisticated multicellular organisms, by having the genetic code control

tissue growth [54, 55]. In human-made systems, sensor networks are being deployed

incrementally to monitor a given geographic area [56, 57], social-network groups ex-

pand by connecting with new individuals [58], DNA self-assembly automatically grows

molecular shapes and patterns starting from a seed assembly [59–61], and high churn or

mobility can cause substantial changes in the size and structure of computer networks

[62, 63]. Graph-growth processes are central in some theories of relativistic physics.

For example, in dynamical schemes of causal set theory, causets develop from an initial

emptiness via a tree-like birth process, represented by dynamic Hasse diagrams [64, 65].

Finally, growth has also been considered in the context of logic and automata research

[66, 67]. Though diverse in nature, all these are examples of systems sharing the notion

of an underlying graph-growth process. In some, like crystal formation, tissue growth,

and sensor deployment, the implicit graph representation is bounded-degree and em-

bedded in Euclidean geometry. In others, like social-networks and causal set theory, the

underlying graph might be free from strong geometric constraints but still be subject

to other structural properties, as is the special structure of causal relationships between

events in casual set theory.

Further classification comes in terms of the source and control of the network dy-

namics. Sometimes, the dynamics are solely due to the environment in which a system

is operating, as is the case in DNA self-assembly, where a pattern grows via random en-

counters with free molecules in a solution. In other applications, the network dynamics

51
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are, instead, governed by the system. Such dynamics might be determined and con-

trolled by a centralized program or schedule, as is typically done in sensor deployment,

or be the result of local independent decisions of the individual entities of the system.

Even in the latter case, the entities are often running the same global program, as do

the cells of an organism by possessing and translating the same genetic code.

Inspired by such systems, we study a high-level, graph-theoretic abstraction of

network-growth processes. We do not impose any strong a priori constraints, like

geometry, on the graph structure and restrict our attention to centralized algorithmic

control of the graph dynamics. We do include, however, some weak conditions on the

permissible dynamics, necessary for non-triviality of the model and in order to capture

realistic abstract dynamics. One such condition is “locality”, according to which a

newly introduced vertex u′ in the neighborhood of a vertex u, can only be connected to

vertices within a reasonable distance d−1 from u. At the same time, we are interested in

growth processes that are “efficient”, under meaningful abstract measures of efficiency.

We consider two such measures, to be formally defined later, the time to grow a given

target graph and the number of auxiliary connections, called excess edges, employed to

assist the growth process. For example, in cellular growth, a useful notion of time is

the number of times all existing cells have divided and is usually polylogarithmic in the

size of the target tissue or organism. In social networks, it is quite typical that new

connections can only be revealed to an individual u′ through its connection to another

individual u who is already a member of a group. Later, u′ can drop its connection to

u but still maintain some of its connections to u’s group. The dropped connection uu′

can be viewed as an excess edge, whose creation and removal has an associated cost,

but was nevertheless necessary for the formation of the eventual neighborhood of u′.

The present study is also motivated by work on dynamic graph and network models

[68–70]. Research on temporal graphs studies the algorithmic and structural properties

of graphs G = (V, E), in which V is a set of time-vertices and E a set of time-edges of the

form (u, t) and (e, t), respectively, t indicating the discrete time at which an instance of

vertex u or edge e is available. A substantial part of work in this area has focused on the

special case of temporal graphs in which V is static, i.e., time-invariant [30, 71–75]. In

overlay networks [5, 51, 76–78] and distributed network reconfiguration [79], V is a static

set of processors that control in a decentralized way the edge dynamics. Even though, in

this paper, we do not study our dynamic process from a distributed perspective, it still

shares with those models both the fact that dynamics are active, i.e., algorithmically

controlled, and the locality constraint on the creation of new connections. Nevertheless,

our main motivation is theoretical interest. As will become evident, the algorithmic

and structural properties of the considered graph-growth process give rise to some

intriguing theoretical questions and computationally hard combinatorial optimization

problems. Apart from the aforementioned connections to dynamic graph and network
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models, we shall reveal interesting similarities to cop-win graphs [80–83]. It should also

be mentioned that there are other well-studied models and processes of graph growth,

not obviously related to the ones considered here, such as random graph generators

[84, 85]. While initiating this study from a centralized and abstract viewpoint, we

anticipate that it can inspire work on more applied models, including geometric ones

and models in which the growth process is controlled in a decentralized way by the

individual network processors. Note that centralized upper bounds can be translated

into (possibly inefficient) first distributed solutions, while lower bounds readily apply to

the distributed case. There are other studies considering the centralized complexity of

problems with natural distributed analogues, as is the work of Scheideler and Setzer on

the centralized complexity of transformations for overlay networks [86] and of some of

the authors of this paper on geometric transformations for programmable matter [87].

3.1.2 Our Approach

We study the following centralized graph-growth process. The process, starting from

a single initial vertex u0 and applying vertex-generation and edge-modification oper-

ations, grows a given target graph G. It operates in discrete time-steps, called slots.

In every slot, it generates at most one new vertex u′ for every existing vertex u and

connects it to u. This is an operation abstractly representing entities that can replicate

themselves or that can attract new entities in their local neighborhood or group. Then,

for every new vertex u′, it connects u′ to any (possibly empty) subset of the vertices

within a “local” radius around u, described by a distance parameter d, essentially rep-

resenting that radius plus 1, i.e., as measured from u′. Finally, it removes any (possibly

empty) subset of edges whose removal does not disconnect the graph, before moving on

to the next slot. These edge-modification operations are essentially capturing, at a high

level, the local dynamics present in most of the applications discussed previously. In

these applications, new entities typically join a local neighborhood or a group of other

entities, which then allows them to easily connect to any of the local entities. Moreover,

in most of these systems, existing connections can be easily dropped by a local decision

of the two endpoints of that connection. 1The rest of this paper exclusively focuses on

d = 2; as formally shown in the appendix, the cases d = 1 and d ≥ 3 admit simple and

efficient growth processes.

1Despite locality of new connections, a more global effect is still possible. One is for the degree of
a vertex u to be unbounded (e.g., grow with the number of vertices). Then u′, upon being generated,
can connect to an unbounded number of vertices within the “local” radius of u. Another would be
to allow the creation of connections between vertices generated in the past, which would enable local
neighborhoods to gradually grow unbounded through transitivity relations. In this work, we do allow
the former but not the latter. That is, for any edge (u, u′) generated in slot t, it must hold that u was
generated in some slot tpast < t while u′ was generated in slot t. Other types of edge dynamics are left
for future work.
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It is not hard to observe that, without additional considerations, any target graph

can be grown by the following straightforward process. In every slot t, the process

generates a new vertex ut which it connects to u0 and to all neighbors of u0. The graph

grown by this process by the end of slot t, is the clique Kt+1, thus, any Kn is grown

by it within n − 1 slots. As a consequence, any target graph G on n vertices can be

grown by extending the above process to first grow Kn and then delete from it all edges

in E(Kn) \ E(G), by the end of the last slot. Such a clique growth process maximizes

both complexity parameters that are to be minimized by the developed processes. One

is the time to grow a target graph G, to be defined as the number of slots used by

the process to grow G, and the other is the total number of deleted edges during the

process, called excess edges. The above process always uses n− 1 slots and may delete

up to Θ(n2) edges for sparse graphs, such as a path graph or a planar graph.

There is an improvement of the clique process, which connects every new vertex ut

to u0 and to exactly those neighbors v of u0 for which vut is an edge of the target graph

G. At the end, the process deletes those edges incident to u0 that do not correspond

to edges in G, in order to obtain G. If u0 is chosen to represent the maximum degree,

dmax, vertex of G, then it is not hard to see that this process uses n− 1− dmax excess

edges, while the number of slots remains n − 1 as in the clique process. However, we

shall show that there are (poly)logarithmic-time processes using close to linear excess

edges for some of those graphs. In general, processes considered efficient in this work

will be those using (poly)logarithmic slots and linear (or close to linear) excess edges.

The goal of this paper is to investigate the algorithmic and structural properties of

such processes of graph growth, with the main focus being on studying the following

combinatorial optimization problem, which we call the Graph Growth Problem. In this

problem, a centralized algorithm is provided with a target graph G, usually from a

graph family F , and non-negative integers k and ℓ as its input. The goal is for the

algorithm to compute, in the form of a growth schedule for G, such a process growing

G within at most k slots and using at most ℓ excess edges, if one exists. All algorithms

we consider are polynomial-time.2

For an illustration of the discussion so far, consider the graph family Fstar = {G | G
is a star on n = 2δ vertices} and assume that edges are activated within local distance

d = 2. We describe a simple algorithm returning a time-optimal and linear excess-

edges growth process, for any target graph G ∈ Fstar given as input. To keep this

exposition simple, we do not give k and ℓ as input-parameters to the algorithm. The

process computed by the algorithm, shall always start from G0 = ({u0}, ∅). In every

2Note that this reference to time is about the running time of an algorithm computing a growth
schedule. But the length of the growth schedule is another representation of time: the time required
by the respective growth process to grow a graph. To distinguish between the two notions of time, we
will almost exclusively use the term number of slots to refer to the length of the growth schedule and
time to refer to the running time of an algorithm generating the schedule.
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slot t = 1, 2, . . . , δ and every vertex u ∈ V (Gt) the process generates a new vertex u′,

which it connects to u. If t > 1 and u ̸= u0, it then activates the edge u0u
′, which

is at distance 2, and removes the edge uu′. It is easy to see that by the end of slot

t, the graph grown by this process is a star on 2t vertices centered at u0 (see Figure

3.1) . Thus, the process grows the target star graph G within δ = log n slots. By

observing that 2t/2 − 1 edges are removed in every slot t, it follows that a total of∑
1≤t≤logn 2

t−1 − 1 <
∑

1≤t≤logn 2
t = O(n) excess edges are used by the process. Note

that this algorithm can be easily designed to compute and return the above growth

schedule for any G ∈ Fstar in time polynomial in the size |⟨G⟩| of any reasonable

representation of G.

u0

u1

u2

u3

u4u5

u6

u7

t = 3

(a)

u0

u1

u2

u3

u4u5

u6

u7

t = 4

u′1

u′2

u′3
u′4

u′5

u′6

u′7

u′0

(b)

u0

u1

u2

u3

u4u5

u6

u7

t = 4

u′1

u′2

u′3
u′4

u′5

u′6

u′7
u′0

(c)

u0

u1

u3

u5

u7
u9

u11

u13

t = 4

u2

u4

u6

u8

u10

u12

u14

u15

(d)

Figure 3.1: The operations of the star graph process in slot t = 4. (a) A star of size
23 grown by the end of slot 3. (b) For every ui, a vertex u′

i is generated by the process
and is connected to ui. (c) New vertices u′

i are connected to u0. (d) Edges between
peripheral-vertices are being removed to obtain the star of size 24 grown by the end

of slot 4. Here, we also rename the vertices for clarity.

Note that there is a natural trade-off between the number of slots and the number

of excess edges that are required to grow a target graph. That is, if we aim to minimize

the number of slots (resp. of excess edges) then the number of excess edges (resp. slots)

increases. To gain some insight into this trade-off, consider the example of a path graph

G on n vertices u0, u1, ..., un−1, where n is even for simplicity. If we are not allowed to

activate any excess edges, then the only way to grow G is to always extend the current

path from its endpoints, which implies that a schedule that grows G must have at least
n
2 slots. Conversely, if the growth schedule has to finish after log n slots, then G can

only be grown by activating Ω(n) excess edges.
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In this paper, we mainly focus on this trade-off between the number of slots and the

number of excess edgesthat are needed to grow a specific target graph G. In general,

given a growth schedule σ, any excess edge can be removed just after the last time it

is used as a “relay” for the activation of another edge. In light of this, an algorithm

computing a growth schedule can spend linear additional time to optimize the slots

at which excess edges are being removed. A complexity measure capturing this is the

maximum excess edges lifetime, defined as the maximum number of slots for which an

excess edge remains active. Our algorithms will generally be aiming to minimize this

measure. When the focus is more on the trade-off between the slots and the number of

excess edges, we might be assuming that all excess edges are being removed in the last

slot of the schedule, as the exact timing of deletion makes no difference w.r.t. these

two measures.

3.1.3 Contribution

Section 2 presents the model and problem statement and gives two basic subprocesses

that are recurrent in our growth processes. In Section 3.2.4, we provide some basic

propositions that are crucial to understanding the limitations on the number of slots

and the number of excess edges required for a growth schedule of a graph G. We then

use these propositions to provide some lower bounds on the number of slots.

In Section 3.3, we study the zero-excess growth schedule problem, where the goal is

to decide whether a graph G has a growth schedule of k slots and ℓ = 0 excess edges. We

define the candidate elimination ordering of a graph G as an ordering v1, v2, . . . , vn of

V (G) so that for every vertex vi, there is some vj , where j < i such that N [vi] ⊆ N [vj ]

in the subgraph induced by vi, . . . , vn, for 1 ≤ i ≤ n. We show that a graph has a growth

schedule of k = n − 1 slots and ℓ = 0 excess edges if and only if it is has a candidate

elimination ordering. Our main positive result is a polynomial-time algorithm that

computes whether a graph has a growth schedule of k = log n slots and ℓ = 0 excess

edges. If it does, the algorithm also outputs such a growth schedule. On the negative

side, we give two strong hardness results. We first show that the decision version of the

zero-excess growth schedule problem is NP-complete. Then, we prove that, for every

ε > 0, there is no polynomial-time algorithm which computes a n
1
3
−ε-approximate

zero-excess growth schedule, unless P = NP.

In Section 3.4, we study growth schedules of (poly)logarithmic slots. We provide

two polynomial-time algorithms. One outputs, for any tree graph, a growth schedule

of O(log2 n) slots and only O(n) excess edges, and the other outputs, for any planar

graph, a growth schedule of O(log n) slots and O(n log n) excess edges. Finally, we give

lower bounds on the number of excess edges required to grow a graph, when the number

of slots is fixed to log n.

In the conclusion, we also discuss some interesting problems opened by this work.
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3.2 Preliminaries

3.2.1 Model and Problem Statement

A growing graph is modeled as an undirected dynamic graph Gt = (Vt, Et), where

t = 1, 2, . . . , k is a discrete time-step, called slot. The dynamics of Gt are determined

by a centralized growth process (also called growth schedule) σ, defined as follows. The

process always starts from the initial graph instance G0 = ({u0}, ∅), containing a single

initial vertex u0, called the initiator. In every slot t, the process updates the current

graph instance Gt−1 to generate the next, Gt, according to the following vertex and

edge update rules. The process first sets Gt = Gt−1. Then, for every u ∈ Vt−1, it adds

at most one new vertex u′ to Vt (vertex generation operation) and adds to Et the edge

uu′ alongside any subset of the edges {vu′ | v ∈ Vt−1 is at distance at most d− 1 from

u in Gt−1}, for some integer edge-activation distance d ≥ 1 fixed in advance (edge ac-

tivation operation). Throughout the rest of the paper, d = 2 is always assumed (other

edge-activation distances are being studied in the appendix). We call u′ the vertex

generated by the process for vertex u in slot t. We also say that u is the parent of u′

and that u′ is the child of u at slot t and write u
t→ u′. The process completes slot t

after deleting any (possibly empty) subset of edges from Et (edge deletion operation).

We also denote by V +
t , E+

t , and E−
t the set of vertices generated, edges activated, and

edges deleted in slot t, respectively. Then, Gt = (Vt, Et) is also given by Vt = Vt−1∪V +
t

and Et = (Et−1 ∪ E+
t ) \ E−

t . Deleted edges are called excess edges and we restrict

attention to excess edges whose deletion does not disconnect Gt. We call Gt the graph

grown by process σ after t slots and call the final instance, Gk, the target graph grown

by σ. We also say that σ is a growth schedule for Gk that grows Gk in k slots using ℓ

excess edges, where ℓ=
∑k

t=1 |E−
t |, i.e., ℓ is equal to the total number of deleted edges.

This brings us to the main problem studied in this paper:

Graph Growth Problem: Given a target graph G and non-negative integers k and

ℓ, compute a growth schedule for G of at most k slots and at most ℓ excess edges, if

one exists.

The target graph G, which is part of the input, will often be drawn from a given

graph family F , e.g., the family of planar graphs. Throughout, n denotes the number

of vertices of the target graph G. In this paper, computation is always to be performed

by a centralized polynomial-time algorithm.

Let w be a vertex generated in a slot t, for 1 ≤ t ≤ k. The birth path of vertex w

is the unique sequence Bw = (u0, ui1 , . . . , uip−1 , uip = w) of vertices, where ip = t and

uij−1

ij→ uij , for every j = 1, 2, . . . , p. That is, Bw is the sequence of vertex generations
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that led to the generation of vertex w. Furthermore, the progeny of a vertex u is the

set Pu of descendants of u, i.e., Pu contains those vertices v for which u ∈ Bv holds.

In what follows, we give a formal and detailed description of a graph growth sched-

ule.

Definition 3.1 (growth schedule for d = 2). Let σ = (S1,S2, . . . ,Sk, E) be an ordered

sequence of sets, where E is a set of edges, and each Si = {(u1, v1, E1), (u2, v2, E2),

. . . , (uq, vq, Eq)} is an unordered set of ordered tuples {(uj , vj , Ej) : 1 ≤ j ≤ q} such

that, for every j, uj and vj are vertices (where uj gives birth to vj) and Ej is a set

of edges incident to vj such that ujvj ∈ Ej . Suppose that, for every 2 ≤ i ≤ k, the

following conditions are all satisfied:

• each of the sets {v1, v2, . . . , vq} and {u1, u2, . . . , uq} contain q distinct vertices,

• each vertex vj ∈ {v1, v2, . . . , vq} does not appear in any set among S1, . . . ,Si−1

(i.e., vj is “born” at slot i),

• for each vertex uj ∈ {u1, u2, . . . , uq}, there exists exactly one set among S1, . . . ,Si−1

which contains a tuple (u′, uj , E
′) (i.e., uj was “born” at a slot before slot i).

Let i ∈ {2, . . . , k}, and let u be a vertex that has been generated at some slot i′ ≤ i,

that is, u appears in at least one tuple of a set among S1, . . . ,Si. We denote by Ei the

union of all edge sets that appear in the tuples of the sets S1, . . . ,Si; Ei is the set of all

edges activated until slot i. We denote by Ni(u) the set of neighbors of u in the set Ei.

If, in addition, E ⊆ Ek and, for every 2 ≤ i ≤ k and for every tuple (uj , vj , Ej) ∈ Si, we
have that Ni(vj) ⊆ Ni(uj), then σ is a growth schedule for the graph G = (V,Ek \ E),
where V is the set of all vertices which appear in at least one tuple in σ. The number

k of sets in σ is the length of σ. Finally, we say that G is constructed by σ with k slots

and with |E| excess edges.

3.2.2 Basic Subprocesses

We start by presenting simple algorithms for two basic growth processes that are recur-

rent both in our positive and negative results. One is the process of growing any path

graph and the other is that of growing any star graph. Both returned growth schedules

use a number of slots which is logarithmic and a number of excess edges which is linear

in the size of the target graph. Logarithmic being a trivial lower bound on the number

of slots required to grow graphs of n vertices, both schedules are optimal w.r.t. their

number of slots. As will shall later follow from Corollary 3.35 in Section 3.4.3, they are

also optimal w.r.t. the number of excess edges used for this time-bound.

Path algorithm: Let u0 always be the “left” endpoint of the path graph being grown.

For any target path graph G on n vertices, the algorithm computes a growth schedule
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Figure 3.2: (a) The path graph at the beginning of slot 3. (b) Vertex generation and
edge activation step (steps 1 and 2). The arrows represent vertex generations, while
dotted lines represent the edges added to vertices of distance 2. (c) Third slot of the

path algorithm.

for G as follows. For every slot 1 ≤ t ≤ ⌈log n⌉ and every vertex ui ∈ Vt−1, for

0 ≤ i ≤ 2t−1 − 1, it generates a new vertex u′i and connects it to ui. Then, for all

0 ≤ i ≤ 2t−1− 2, it connects u′i to ui+1 and deletes the edge uiui+1. Finally, it renames

the vertices u0, u1, . . . , u2t−1 from left to right, before moving on to the next slot.

Figure 3.2 shows an example slot produced by the path algorithm. The pseudo-

code of the algorithm can be found in 6. Note that the pseudo-code growth schedule

of Algorithm 6 reserves every edge deletion operation until the last slot.

Lemma 3.2. For any path graph G on n vertices, the path algorithm computes in

polynomial time a growth schedule σ for G of ⌈log n⌉ slots and O(n) excess edges.

Proof. It is easy to see by the description and by Figure 3.2 that the graph constructed

is a path subgraph on n vertices. To expand on this, in every slot, we maintain a path

graph but we double its size. This process requires ⌈log n⌉ slots by design since in every

slot, for every vertex the process generates a new vertex (apart from the last slot) and

after ⌈log n⌉ slots, the size of the current graph will be n. For the excess edges, consider

that in the whole process at the end of every slot t, every edge activated in the previous

slot t − 1 is deleted. Every edge activated in the process apart from those in the last

slot is an excess edge. For every vertex generation there are at most 2 edge activations

that occur in the same slot and there are n− 1 total vertex generations in total which

means that the total edge activations are 2(n − 1). Therefore, the excess edges are at

most 2(n−1)− (n−1) = O(n) since the final path graph has n−1 edges. Finally, note

that if an excess edge is activated in slot t, then it is deleted in slot t+ 1 which results

in maximum lifetime of 1.

Star algorithm: The description of the algorithm can be found in Section 3.1.2.
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Algorithm 6 Path growth schedule.

Input: A path graph G = (V,E) on n vertices.
Output: A growth schedule for G.
1: V = u1
2: for k = 1, 2, . . . , ⌈log n⌉ do
3: Sk = ∅; Vk = ∅; E = ∅
4: for each vertex ui ∈ Vk do
5: µ(k) = i+ ⌈n/2k⌉
6: if uµ(t) ∈ V then
7: Sk = Sk ∪ {(ui, uµ(k), {uiuµ(k), (uµ(k)uµ(k−1) : uµ(k−1) ∈ V )})}
8: if k < ⌈log n⌉ then
9: E = E ∪ {uiuµ(k), (uµ(k)uµ(k−1) : uµ(k−1) ∈ V )})}

10: Vk ← Vk ∪ uµ(k)
11: V ← V ∪ Vk

12: return σ = (S1,S2, . . . ,S⌈logn⌉, E)

Lemma 3.3. For any star graph G on n vertices, the star algorithm computes in

polynomial time a growth schedule σ for G of ⌈log n⌉ slots and O(n) excess edges.

Proof. Let u0 be the initiator and n the size of the star graph. By construction, we

can see that in every slot a star graph is maintained. In order to terminate with a star

graph of size n, we require ⌈log n⌉ slots since for every vertex a new vertex is generated

in each slot and therefore after ⌈log n⌉ slots, the graph will have size n.

For every vertex generation, there are at most two edge activations. Since there are

n − 1 vertices generated in total, there are 2(n − 1) total edge activations. Therefore,

the excess edges are at most 2(n− 1)− (n− 1) = O(n). Finally, note that if an excess

edge is activated in slot t, then it is deleted in slot t + 1 which results in maximum

lifetime of 1.

3.2.3 The Case d = 1 and d ≥ 3

In this section, we show that for edge-activation distance d = 1 or d ≥ 3 there are

simple but very efficient algorithms for finding growth schedules. As a warm-up, we

begin with a simple observation for the special case where the edge-activation distance

d is equal to 1.

Observation 3. For d = 1, every graph G that has a growth schedule is a tree graph.

Proposition 3.4. For d = 1, the shortest growth schedule σ of a path graph (resp. a

star graph) on n vertices has ⌈n/2⌉ (resp. n− 1) slots.

Proof. Let G be the path graph on n vertices. By definition of the model, increasing

the size of the path can only be achieved by generating one new vertex at each of the

endpoints of the path. The size of a path can only be increased by at most 2 in each
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slot, where for each endpoint of the path a new vertex that becomes the new endpoint

of the path is generated. Therefore, in order to create any path graph of size n would

require at least ⌈n/2⌉ slots. The growth schedule where one vertex is generated at each

of the endpoints of the path in each slot creates the path graph of n vertices in ⌈n/2⌉
slots.

Now let G be the star graph with n− 1 leaves. Increasing the size of the star graph

can only be achieved by generating new leaves directly connected to the center vertex,

and this can occur at most once per slot. Therefore, the growth schedule of G requires

exactly n− 1 slots.

Observation 4. Let d = 1 and G = (V,E) be a tree graph with diameter diam. Then

any growth schedule σ that constructs G requires at least ⌈diam/2⌉ slots.

Proof. Consider a path p of size diam that realizes the diameter of graph G. By

Proposition 3.4 we know that p alone requires a growth schedule with at least ⌈diam/2⌉
slots.

Observation 5. Let d = 1 and G = (V,E) be a tree graph with maximum degree ∆(G).

Then any growth schedule σ that constructs G requires at least ∆(G) slots.

Proof. Consider a vertex u ∈ G with degree ∆(G) and let G′ = (V ′, E′) be a subgraph

of G, such that V ′ = NG[u] and E′ = E(NG[u]). Notice that G′ is a star graph of size

∆(G). By Proposition 3.4, we know that the growth schedule of G′ alone has at least

∆(G) slots.

We now provide an algorithm, called trimming, that optimally solves the graph

growth problem for d = 1. We begin with the following simple observation.

Observation 6. Let d = 1. Consider a tree graph G and a growth schedule σ for it.

Denote by Gt the graph grown so far until the end of slot t of σ. Then any vertex

generated in slot t must be a leaf vertex in Gt.

Proof. Every vertex u generated in slot t has degree equal to 1 at the end of slot t by

definition of the model for d = 1. Therefore every vertex u in graph Gt must be a leaf

vertex.

The trimming algorithm, see Algorithm 7 follows a bottom-up approach for building

the intended growth schedule σ = (Sk,Sk−1, . . .S1, E), where E = ∅. At every iteration

i = 1, 2, . . . of the algorithm, we consider the leaves of the current tree graph and we

create the parent-child pairs of the currently last slot Sk+1−i of the schedule. Then we

remove from the current tree graph all the leaves that were included in a parent-child

pair at this iteration of the algorithm, and we recurse. The process is repeated until
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Algorithm 7 Trimming Algorithm, where d = 1.

Input: A target tree graph G = (V,E) on n vertices.
Output: An optimal growth schedule for G.
1: k ← 1
2: while V ̸= ∅ do
3: for each leaf vertex v ∈ V and its unique neighbor u ∈ V do
4: if u is not marked as a “parent in Sk” then
5: Mark u as a “parent in Sk”
6: Sk ← Sk ∪ {(u, v, {uv})}
7: V ← V \ {v}
8: Sk+1 = ∅; k ← k + 1
9: return σ = (Sk,Sk−1, . . .S1, ∅)

graph G has a single vertex left which is added in the first slot of σ as the initiator. In

the next theorem we show that the algorithm produces an optimum growth schedule.

Theorem 3.5. For d = 1, the trimming algorithm computes in polynomial time an

optimum (shortest) growth schedule σ of κ slots for any tree graph G.

Proof. Let σ = (S1, . . . ,Sk, ∅) be the growth schedule obtained by the trimming al-

gorithm (with input G). Suppose that σ is not optimum, and let σ′ ̸= σ be an op-

timum growth schedule for G. That is, σ = (S ′1, . . . ,S ′k′ , ∅), where k′ < k. Denote

by (L1, L2, . . . Lk) and (L′
1, L

′
2, . . . L

′
k′) the sets of vertices generated in each slot of the

growth schedules σ and σ′, respectively. Note that
∑k

i=1 |Li| =
∑k′

i=1 |L′
i| = n − 1.

Among all optimum growth schedules for G, we can assume without loss of generality

that σ′ is chosen such that the vector (|L′
k′ |, |L′

k′−1|, . . . |L′
1|) is lexicographically largest.

Recall that the trimming algorithm builds the growth schedule σ backwards, i.e., it

first computes Sk, it then computes Sk−1 etc. At the first iteration, the trimming

algorithm collects all vertices which are parents of at least one leaf in the tree and

for each of them will generate a new vertex in Sk. Then, the algorithm removes all

leaves that are generated in Sk, and it recursively proceeds with the remaining tree

after removing these leaves.

Let ℓ be the number of slots such that the growth schedules σ and σ′ generate

the same number of leaves in their last ℓ slots, i.e., |Lk−i| = |L′
k′−1|, for every i ∈

{0, 1, . . . , ℓ − 1}, but |Lk−ℓ| ≠ |L′
k′−ℓ|. Suppose that ℓ ≤ k − 1. Note by construction

of the trimming algorithm that, since |Lk| = |L′
k′ |, both growth schedules σ and σ′

generate exactly one leaf for each vertex which is a parent of a leaf in G. That is,

in their last slot, both σ and σ′ have the same parents of new vertices; they might

only differ in which leaves are generated for these parents. Consider now the graph

Gk−1 (resp. G′
k′−1) that is obtained by removing from G the leafs of Lk (resp. of

L′
k′). Then note that Gk−1 and G′

k′−1 are isomorphic. Similarly it follows that, if we

proceed removing from the current graph the vertices generated in the last ℓ slots of
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the schedules σ and σ′, we end up with two isomorphic graphs Gk−ℓ+1 and G′
k′−ℓ+1.

Recall now that, by our assumption, |Lk−ℓ| ̸= |L′
k′−ℓ|. Therefore, since the trimming

algorithm always considers all possible vertices in the current graph which are parents

of a leaf (to give birth to a leaf in the current graph), it follows that |Lk−ℓ| > |L′
k′−ℓ|.

That is, at this slot the schedule σ′ misses at least one potential parent u of a leaf v

in the current graph G′
k′−ℓ+1. This means that the tuple (u, v, {uv}) appears at some

other slot S ′j of σ′, where j < k′ − ℓ. Now, we can move this tuple from slot S ′j to

slot S ′k′−ℓ, thus obtaining a lexicographically largest optimum growth schedule than σ′,

which is a contradiction.

Therefore ℓ ≥ k, and thus ℓ = k, since
∑k

i=1 |Li| =
∑k′

i=1 |L′
i| = n− 1. This means

that σ and σ′ have the same length. That is, σ is an optimum growth schedule.

We move on to the case of d ≥ 4, and we show that for any graph G, there is a

simple algorithm that computes a growth schedule of an optimum number of slots and

only linear number of excess edges in relation to the size of the graph.

Lemma 3.6. For d ≥ 4, any given graph G = (V,E) on n vertices can be grown with

a growth schedule σ of ⌈log n⌉ slots and O(n) excess edges.

Proof. Let G = (V,E) be the target graph, and Gt = (Vt, Et) be the grown graph at

the end of slot t. When the growth schedule generates a vertex w, w is matched with

an unmatched vertex of the target graph G. For any pair of vertices v, w ∈ G⌈logn⌉

that have been matched with a pair of vertices vj , wj ∈ G, respectively, if (vj , wj) ∈ E,

then (v, w) ∈ E⌈logn⌉, and if (vj , wj) /∈ E, then (v, w) /∈ E⌈logn⌉.

To achieve growth of G in ⌈log n⌉ slots, for each vertex of Gt the process must

generate a new vertex at slot t + 1, except possibly for the last slot of the growth

schedule. To prove the lemma, we show that the growth schedule maintains a star as

a spanning subgraph of Gt, for any t ≤ ⌈log n⌉, with the initiator u as the center of

the star. Trivially, the children of u belong to the star, provided that the edge between

them is not deleted until slot ⌈log n⌉. The children of all leaves of the star are at

distance 2 from u, therefore the edge between them and u are activated at the time of

their birth.

The above schedule shows that the distance of any two vertices is always less or

equal to four. Therefore, for each vertex w that is generated in slot t and is matched

to a vertex wj ∈ G, the process activates the edges with each vertex u that has been

generated and matched to vertex uj ∈ Gj and (wj , uj) ∈ E. Finally, the number of the

excess edges that we activate are at most 2n − 1 (i.e., the edges of the star and the

edges between parent and child vertices). Any other edge is activated only if it exists

in G.
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It is not hard to see that the proof of Lemma 3.6 can be slightly adapted such that,

instead of maintaining a star, we maintain a clique. The only difference is that, in this

case, the number of excess edges increases to at most O(n2) (instead of at most O(n)).

On the other hand, this method of always maintaining a clique has the benefit that it

works for d = 3, as the next lemma states.

Lemma 3.7. For d ≥ 3, any given graph G = (V,E) on n vertices can be grown with

a growth schedule σ of ⌈log n⌉ slots and O(n2) excess edges.

3.2.4 Basic Properties on d = 2

For the rest of the paper, we always assume that d = 2. In this section, we show some

basic properties for growing a graph G which restrict the possible growth schedules and

we also provide some lower bounds on the number of slots. In the next proposition

we show that the vertices generated in each slot form an independent set in the grown

graph, i.e., any pair of vertices generated in the same slot cannot have an edge between

them in the target graph.

Proposition 3.8. The vertices generated in a slot form an independent set in the target

graph G.

Proof. Let Gt−1 be our graph at the beginning of slot t. Consider any pair of vertices

u1, u2 that have minimal distance between them, in other words, they are neighbors

and dist = 1. Assume that for vertices u1, u2 new vertices v1, v2 are generated in slot t,

respectively. The distance between vertices v1, v2 in slot t just after they are generated

is dist = 3 and therefore the process cannot activate an edge between them. Finally,

for any other pair of non-neighboring vertices, the distance between their children is

dist > 3, thus remaining an independent set.

Proposition 3.9. Consider any growth schedule σ for graph G. Let t1, t2, t1 ≤ t2,

be the slots in which a pair of vertices u,w is generated, respectively. Let distt2 be the

distance between u and w at the end of slot t2. Then, at the end of any slot t ≥ t2,

distt ≥ distt2.

Proof. Given that the d = 2, for any vertex that is generated at slot t, edges can only

be activated with its parent and with the neighbors of its parent.

Let u be a vertex that is generated for a vertex u′ at t1, and w be a vertex that is

generated for a vertex w′ at t2. Let Gt2−1 be the graph at the beginning of slot t2, and

P , |P | = d, be the shortest path between u and w in Gt2−1. We distinguish two cases:

1. For vertex u and/or w new vertices that are connected to all neighbors of u and/or

w are generated. In this case, the path that contains the new vertices will clearly

be larger than d.
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2. In this case, for some vertex p in the path between u and w a new vertex p′ is

generated and all its edges with the neighbors of p are activated. In this case, the

path that passes through p′ will clearly have the same size as P .

It is then obvious that no growth schedule starting from Gt2−1 can reduce the

shortest distance between u and w.

Proposition 3.10. Consider t1, t2, where t1 ≤ t2, to be the slots in which a pair of

vertices u,w is generated by a growth schedule σ for graph G, respectively, and edge

(u,w) is not activated at t2. Then any pair of vertices v, z cannot be neighbors in G if

u belongs to the birth path of v and w belongs to the birth path of z.

Proof. Given that the edge between vertices u and w is not activated, and by Propo-

sition 3.9, the children of u will always have distance at least 2 from w (i.e., edges of

these children can only be activated with the vertices that belong to the neighborhood

of their parent vertex, and no edge activations can reduce their distance). Sequentially,

the same holds also for the children of w. All vertices that belong to the progeny Pu

of u (i.e., each vertex z such that u ∈ Bz) have to be in distance at least 2 from w,

therefore they cannot be neighbors with any vertex in Pw.

We will now provide some lower bounds on the number of slots for any growth

schedule σ for graph G.

Lemma 3.11. Assume that graph G has chromatic number χ(G). Then any growth

schedule σ that grows G requires at least χ(G) slots.

Proof. Assume that there exists a growth schedule σ that can grow graph G in k < χ(G)

slots. By Proposition 3.8, the vertices generated in each slot ti for i = 1, 2, ..., k must

form an independent set in G. Therefore, we could color graph G using k colors which

contradicts the original statement that χ(G) > k.

Lemma 3.12. Assume that graph G has clique number ω(G). Then any growth schedule

σ for G requires at least ω(G) slots.

Proof. By Proposition 3.8, we know that every slot must contain an independent set

of the graph and it cannot contain more than one vertex from clique q. By the pigeon

hole principle, it follows that σ must have at least c slots.

3.3 Growth Schedules of Zero Excess Edges

In this section, we study which target graphs G can be grown using ℓ = 0 excess edges

for d = 2. We begin by providing an algorithm that decides whether a graph G can be

grown by any schedule σ. We build on to that, by providing an algorithm that computes
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a schedule of k = logn slots for a target graph G, if one exists. We finish with our

main technical result showing that computing the smallest schedule for a graph G is

NP-complete and any approximation of the shortest schedule cannot be within a factor

of n
1
3
−ε of the optimal solution, for any ε > 0, unless P = NP . First, we check whether

a graph G has a growth schedule of ℓ = 0 excess edges. Observe that a graph G has a

growth schedule if and only if it has a schedule of k = n− 1 slots.

Definition 3.13. Let G = (V,E) be any graph. A vertex v ∈ V can be the last

generated vertex in a growth schedule σ of ℓ = 0 for G if there exists a vertex w ∈ V \{v}
such that N [v] ⊆ N [w]. In this case, v is called a candidate vertex and w is called the

candidate parent of v. Furthermore, the set of candidate vertices in G is denoted by

SG = {v ∈ V : N [v] ⊆ N [w] for some w ∈ V \ {v}}, see Figure 3.3.

Definition 3.14. A candidate elimination ordering of a graph G is an ordering v1, v2,

. . . , vn of V (G) such that vi is a candidate vertex in the subgraph induced by vi, . . . , vn,

for 1 ≤ i ≤ n.

w1 w2 w3

w4

u1 u2

Figure 3.3: Consider the above graph Gt to be the graph grown after slot t. Vertices
u1 and u2 are candidate vertices. The arrows represent all possible vertex generations
in the previous slot t. Vertices w1 and w4 are candidate parents of u1, while w3 and

w4 are candidate parents of u2.

Lemma 3.15. A graph G has a growth schedule of n− 1 slots and ℓ = 0 excess edges

if and only if G has a candidate elimination ordering.

Proof. By definition of the model, whenever a vertex u is generated for a vertex w in a

slot t, only edges between u and vertices in N [w] can be activated, which means that

N [u] ⊆ N [w]. Since ℓ = 0, this property stays true in Gt+1. Therefore, any vertex u

generated in slot t, is a candidate vertex in graph Gt+1.

The following algorithm can decide whether a graph has a candidate elimination

ordering, and therefore, whether it can be grown with a schedule of n − 1 slots and

ℓ = 0 excess edges. The algorithm computes the slots of the schedule in reverse order.

Candidate elimination ordering algorithm: Given the graph G = (V,E), the al-

gorithm finds all candidate vertices and deletes an arbitrary candidate vertex and its
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Algorithm 8 Candidate elimination order

Input: A graph G = (V,E) on n vertices.
Output: A growth schedule for G, if it exists
1: for k = n− 1 downto 1 do
2: Sk = ∅
3: for every vertex v ∈ V do
4: if (N [v] ⊆ N [u], for some vertex u ∈ V \ {v}) ∧ (Sk = ∅) then {v is a new

candidate vertex}
5: Sk ← {(u, v, {vw : w ∈ N(v)})}
6: V ← V \ {v}
7: if Sk = ∅ then
8: return “NO”
9: return σ = (S1,S2, . . . ,Sn−1, ∅)

incident edges. The deleted vertex is added in the last empty slot of the schedule σ.

The algorithm repeats the above process until there is only a single vertex left. If that

is the case, the algorithm produces a growth schedule. If the algorithm cannot find any

candidate vertex for removal, it decides that the graph cannot be grown.

Lemma 3.16 (⋆). Let v ∈ SG. Then G has a candidate elimination ordering if and

only if G− v has a candidate elimination ordering.

Proof. Let c be a candidate elimination ordering of G − v. Then, generating vertex v

at the end of c trivially results in a candidate elimination ordering of G.

Conversely, let c be a candidate elimination ordering of G. If v is the last vertex

in c, then c \ {v} is trivially a candidate elimination ordering of G − v. Suppose that

the last vertex of c is a vertex u ̸= v. As v ∈ SG by assumption, there exists a vertex

w ̸= v such that N [v] ⊆ N [w]. If v does not give birth to any vertex in c then we

can move v to the end of c, i.e., right after vertex u. Let c′ be the resulting candidate

elimination ordering of G; then c′ \ v is a candidate elimination ordering of G − v, as

the parent-child relations of G− v are the same in both c′ \ v and c.

Finally suppose that v gives birth to at least one vertex, and let Z be the set of

vertices which are born by v or by some descendant of v. If w appears before v in c,

then for any vertex in Z we assign its parent to be w (instead of v). Note that this

is always possible as N [v] ⊆ N [w]. Now suppose that w appears after v in c, and let

Z0 = {z ∈ Z : v <c z <c w} be the vertices of Z which lie between v and w in c. Then

we move all vertices of Z0 immediately after w (without changing their relative order).

Finally, similarly to the above, for any vertex in Z we assign its parent to be w (instead

of v). In either case (i.e., when w is before or after v in c), after making these changes

we obtain a candidate elimination ordering c′′ of G, in which v does not give birth to

any other vertex. Thus we can obtain from c′′ a new candidate elimination ordering c′′′
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of G where v is moved to the end of the ordering. Then c′′′\v is a candidate elimination

ordering of G − v, as the parent-child relations of G − v are the same in both c′′′ \ v
and c′′.

Theorem 3.17. The candidate elimination ordering algorithm is a polynomial-

time algorithm that, for any graph G, decides whether G has a growth schedule of n− 1

slots and ℓ = 0 excess edges, and it outputs such a schedule if one exists.

Proof. First note that we can find the candidate vertices in polynomial time, and thus,

the algorithm terminates in polynomial time. This is because the algorithm removes

one candidate vertex u in each loop, which based on Lemma 3.16. This means that the

algorithm terminates with a growth schedule for G if one exists.

The notion of candidate elimination orderings turns out to coincide with the notion

of cop-win orderings, discovered in the past in graph theory for a class of graphs,

called cop-win graphs [80–82]. In particular, it is not hard to show that a graph has a

candidate elimination ordering if and only if it is a cop-win graph. This implies that our

candidate elimination ordering algorithm is probably equivalent to some folklore

algorithms in the literature of cop-win graphs.

Lemma 3.18 (⋆). There is a modified version of the candidate elimination ordering

algorithm that computes in polynomial time a growth schedule for any graph G of n− 1

slots and ℓ excess edges, where ℓ is a constant, if and only if such a schedule exists.

Proof. The candidate elimination ordering algorithm can be slightly modified to check

whether a graph G = (V,E) has a growth schedule of n − 1 slots and ℓ excess edges.

The modification is quite simple. For ℓ = 1, we create multiple graphs G′
x for x =

1, 2, . . . , e2−|E| where each graph G′
x is the same as G with the addition of one arbitrary

edge e /∈ E, and we do this for all possible edge additions. Since the complement of G

has e ≤ n2 edges, we will create up to n2 graphs G′
x. In essence, G′

x = (V ′
x, E

′
x), where

V ′
x = V and E′

x = E ∪ uv such that uv ̸∈ E and (E′
j ̸= E′

i), for all i ̸= j. We then run

the candidate elimination ordering algorithm on all G′
x. If the algorithm returns “no”

for all of them, then there exists no growth schedule for G of n − 1 slots and 1 excess

edge. Otherwise, the algorithm outputs a schedule of n − 1 slots and 1 excess edge

for graph G. This process can be modified for any ℓ, but then the number of graphs

G′
x tested are n2ℓ. Therefore ℓ has to be a constant in order to check all graphs G′

x in

polynomial time.

Our next goal is to decide whether a graph G = (V,E) on n vertices has a growth

schedule σ of log n slots and ℓ = 0 excess edges. For easiness of notation, we assume

that n = 2δ for some integer δ. This assumption can be easily removed. The fast

growth algorithm computes the slots of the growth schedule in reverse order.
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Fast growth algorithm: The algorithm finds set SG of candidate vertices in G. It

then tries to find a subset L ⊆ SG of candidates that satisfies all of the following:

1. |L| = n/2.

2. L is an independent set.

3. There is a perfect matching between the candidate vertices in L and their candi-

date parents in G.

Any set L that satisfies the above constraints is called valid. The algorithm finds such a

set by creating a 2-SAT formula ϕ whose solution is a valid set L. If the algorithm finds

such a set L, it adds the vertices in L to the last slot of the schedule. It then removes

the vertices in L from graph G along with their incident edges. The above process is

then repeated to find the next slots. If at any point, graph G has a single vertex, the

algorithm terminates and outputs the schedule. If at any point, the algorithm cannot

find a valid set L, it outputs “no”.

Lemma 3.19. Consider any graph G = (V,E). If G has a growth schedule of log n

slots and ℓ = 0 excess edges then there exists a perfect matching M that contains a

valid candidate vertex set L, where L has exactly one vertex for each edge of the perfect

matching M .

Proof. Let us assume that graph G has a growth schedule. Then in the last slot,

there are n/2 vertices, called parents, for which n/2 other vertices, called children, are

generated. Therefore, such a perfect matching M always exists where set L contains

the children.

Lemma 3.20. The 2-SAT formula ϕ, generated by the fast growth algorithm, has

a solution if and only if there is an independent set |V2| = n/2, where V2 is a valid set

of candidate vertices in graph G = (V,E).

Proof. Let us assume that graph G has a growth schedule. Based on Lemma 3.19,

there are n/2 parents and n/2 children in G. Therefore, there has to be a set V2,

where |V2| = n/2 and V2 is an independent set such that there is another set V1, where

|V1| = n/2 and V1 ∩ V2 = ∅. Any perfect matching M ∈ G includes edges uivi ∈ M ,

where ui ∈ V1 and vi ∈ V2 because V2 is an independent set.

The solution to the 2-SAT formula ϕ we are going to create is a valid set V2 as stated

above. Consider an arbitrary edge uivi from the perfect matching M . The algorithm

creates a variable xi for each uivi. The truthful assignment of xi means that we pick vi

for V2 and the negative assignment means that we pick ui for V2. Since |V2| = n/2, then

for every edge uivi ∈ M , at least one of ui, vi is a candidate vertex, because otherwise

some other edge ujvj ∈ M would need to have 2 candidates vertices at its endpoints
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Algorithm 9 Fast growth algorithm

Input: A graph G = (V,E) on n = 2δ vertices.
Output: A growth schedule of k = log n slots and ℓ = 0 excess edges for G.
1: for k = log n downto 1 do
2: Sk = ∅; ϕ = ∅
3: Find a perfect matching M = {uivi : 1 ≤ i ≤ n/2} of G.
4: if No perfect matching exists then
5: return ”NO”
6: for every edge uivi ∈M do
7: Create variable xi
8: for every edge uivi ∈M do
9: if (N [ui] ⊆ N [w], for some vertex w ∈ V \ {ui}) ∧ (N [vi] ̸⊆ N [x], for any

vertex x ∈ V \ {vi}) then {ui is a candidate vertex and vi is not.}
10: ϕ← ϕ ∧ (¬xi)
11: else if (N [ui] ̸⊆ N [w] for any vertex w ∈ V \ {ui}) ∧ (N [vi] ⊆ N [x], for some

vertex x ∈ V \ {vi}) then {ui is a not candidate and vi is a candidate}
12: ϕ← ϕ ∧ (xi)
13: else if (N [ui] ̸⊆ N [w], for some vertex w ∈ V \{ui}) ∧ (N [vi] ̸⊆ N [x], for some

vertex x ∈ V \ {vi}) then {ui is not a candidate and vi is not a candidate}
14: return ”NO”
15: for every edge uiuj ∈ E \M do
16: ϕ← ϕ ∧ (xi ∨ xj)
17: for every edge vivj ∈ E \M do
18: ϕ← ϕ ∧ (¬xi ∨ ¬xj)
19: for every edge uivj ∈ E \M do
20: ϕ← ϕ ∧ (xi ∨ ¬xj)
21: if ϕ is satisfiable then
22: Let τ be a satisfying truth assignment for ϕ
23: for i = 1, 2, . . . , n/2 do
24: if xi = true in τ then
25: Sk ← Sk ∪ (ui, vi, {viw : w ∈ N(vi)})
26: V ← V \ {vi}
27: E ← E \ {viw : w ∈ N(vi)}
28: else {xi = false in τ}
29: Sk ← Sk ∪ (vi, ui, {uiw : w ∈ N(ui)})
30: V ← V \ {ui}
31: E ← E \ {uiw : w ∈ N(ui)}
32: else {ϕ is not satisfiable}
33: return ”NO”
34: return σ = (S1,S2, . . . ,Sk, ∅)

and include them both in V2, which is impossible. Thus, graph G would have no growth

schedule.

If vi is a candidate vertex and ui is not, then vi ∈ V2, and we add clause (xi) to

ϕ. If ui is a candidate vertex and vi is not, then ui ∈ V2, in which case we add clause
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(¬xi) ϕ. If both ui and vi are candidate vertices, either one could be in V2 as long as

V2 is an independent set.

We now want to make sure that every vertex in V2 is independent. Therefore, for

every edge uiuj ∈ E, we add clause (xi ∨ xj) to ϕ. This means that in order to satisfy

that clause, ui and uj cannot be both picked for V2. Similarly, for every edge vivj ∈ E,

we add clause (¬xi)∨(¬xj) to ϕ and for every edge uivj ∈ E, we add clause (xi)∨(¬xj)
to ϕ.

The solution to formula ϕ is a valid set V2 and we can find it in polynomial time. If

the formula has no solution, then no valid independent set V2 exists for graph G.

Lemma 3.21. Consider any graph G = (V,E). If G has a growth schedule of log n slots

and ℓ = 0 excess edges, then any arbitrary perfect matching contains a valid candidate

set |L| = n/2, where L has exactly one vertex for each edge of the perfect matching.

Proof. By Lemma 3.20, any perfect matching M contains edges uv, such that there

exists a valid candidate set V2 that contains one vertex exactly for each edge uv ∈M .

Thus, if graph G has a growth schedule, the solution to the 2-SAT formula corresponds

to a valid candidate set V2.

Theorem 3.22. For any graph G on 2δ vertices, the fast growth algorithm computes

in polynomial time a growth schedule σ for G of log n slots and ℓ = 0 excess edges, if

one exists.

Proof. Suppose that G = (V,E) has a growth schedule σ of log n slots and ℓ = 0 excess

edges. By Lemmas 3.20 and 3.21 we know that our fast growth algorithm finds a set

L for the last slot of a schedule σ′′ but this might be a different set from the last slot

contained in σ. Therefore, for our proof to be complete, we need to show that if G

has a growth schedule σ of log n slots and ℓ = 0 excess edges, for any L it holds that

(G− L) has a growth schedule σ′ of log n− 1 slots and ℓ = 0 excess edges.

Assume that σ has in the last slot Sk a set of vertices V1 generating another set

of vertices V2, such that |V1| = |V2| = n/2, V1 ∩ V2 = ∅ and V2 is an independent set.

Suppose that our algorithm finds V ′
2 such that V ′

2 ̸= V2.

Assume that V ′
2 ∩ V2 = Vs and |Vs| = n/2 − 1. This means that V ′

2 = Vs ∪ u′ and

V2 = Vs ∪ u and u′ has no edge with any vertex in Vs. Since u′ ̸∈ V2 and u′ has no edge

with any vertex in Vs, then u′ ∈ V1. However, u′ cannot be the candidate parent of

anyone in V2 apart from u. Similarly, u is the only candidate parent of u′. Therefore

N [u] ⊆ N [u′] ⊆ N [u] =⇒ N [u] = N [u′]. This means that we can swap the two vertices

in any growth schedule and still maintain a correct growth schedule for G. Therefore,

for L = V ′
2 , the graph (G − L) has a growth schedule σ′ of log n − 1 slots and ℓ = 0

excess edges.
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Assume now that V ′
2∩V2 = Vs, where |Vs| = x ≥ 0. Then, V ′

2 = Vs∪u′1∪u′2,∪ . . .∪u′y
and V2 = Vs ∪ u1 ∪ u2,∪ . . . ∪ uy, where y = n/2 − x. As argued above, vertices

u′1, u
′
2, . . . , u

′
y can be candidate parents only to vertices u1, u2, . . . , uy, and vice versa.

Thus, there is a pairing uj , u
′
j such that N [uj ] ⊆ N [u′j ] ⊆ N [uj ] =⇒ N [u′j ] = N [uj ],

for every j = 1, 2, . . . , y. Thus, these vertices can be swapped in the growth schedule

and still maintain a correct growth schedule for G. Therefore for any arbitrary L = V ′
2 ,

the graph (G−L) has a growth schedule σ′ of log n−1 slots and ℓ = 0 excess edges.

We will now show that the problem of computing the minimum number of slots

required for a graph G to be grown is NP-complete, and that it cannot be approximated

within a n
1
3
−ε factor for any ε > 0, unless P = NP.

Definition 3.23. Given any graph G and a natural number κ, find a growth schedule

of κ slots and ℓ = 0 excess edges. We call this problem zero-excess growth schedule.

Theorem 3.24. The decision version of the zero-excess graph growth problem is NP-

complete.

Proof. First, observe that the decision version of the problem belongs to the class NP.

Indeed, the required polynomial certificate is a given growth schedule σ, together with

an isomorphism between the graph constructed by σ and the target graph G.

To show NP-hardness, we provide a reduction from the coloring problem. Given an

arbitrary graph G = (V,E) on n vertices, we construct graph G′ = (V ′, E′) as follows:

Let G1 = (V1, E1) be an isomorphic copy of G, and let G2 be a clique of n vertices.

G′ consists of the union of G1 = (V1, E1) and G2 = (V2, E2), where we also add all

possible edges between them. Note that every vertex of G2 is a universal vertex in

G′ (i.e., a vertex which is connected with every other vertex in the graph). Let χ(G)

be the chromatic number of graph G, and let κ(G′) be the minimum number of slots

required for a growth schedule for G′. We will show that κ(G′) = χ(G) + n.

Let σ be an optimal growth schedule for G′, which uses κ(G′) slots. As every vertex

v ∈ V2 is a universal vertex in G′, v cannot coexist with any other vertex of G′ in the

same slot of σ. Furthermore, the vertices of V1 require at least χ(G) different slots

in σ, since χ(G) is the smallest possible partition of V1 into independent sets. Thus

κ(G′) ≥ χ(G) + n.

We now provide the following growth schedule σ∗ for G′, which consists of exactly

χ(G)+n slots. Each of the first n slots of σ∗ contains exactly one vertex of V2; note that

each of these vertices (apart from the first one) can be generated and connected with an

earlier vertex of V2. In each of the following χ(G) slots, we add one of the χ(G) = χ(G1)

color classes of an optimal coloring of G1. Consider an arbitrary color class of G1 and

suppose that it contains p vertices; these p vertices can be born by exactly p of the

universal vertices of V2 (which have previously appeared in σ∗). This completes the

growth schedule σ∗. Since σ∗ has χ(G) + n slots, it follows that κ(G′) ≤ χ(G) + n.
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Theorem 3.25. Let ε > 0. If there exists a polynomial-time algorithm, which, for

every graph G, computes a n
1
3
−ε-approximate growth schedule (i.e., a growth schedule

with at most n
1
3
−εκ(G) slots), then P = NP.

Proof. The reduction is from the minimum coloring problem. Given an arbitrary graph

G = (V,E) with n vertices, we construct in polynomial time a graph G′ = (V ′, E′)

with N = 4n3 vertices, as follows: We create 2n2 isomorphic copies of G, which are

denoted by GA
1 , G

A
2 , . . . , G

A
n2 and GB

1 , G
B
2 , . . . , G

B
n2 , and we also add n2 clique graphs,

each of size 2n, denoted by C1, C2, . . . , Cn2 . We define V ′ = V (GA
1 ) ∪ . . . ∪ V (GA

n2) ∪
V (GB

1 ) ∪ . . . ∪ V (GB
n2) ∪ V (C1) ∪ . . . ∪ V (Cn2). Initially we add to the set E′ the edges

of all graphs GA
1 , . . . , G

A
n2 , G

B
1 , . . . , G

B
n2 , and C1, . . . , Cn2 . For every i = 1, 2, . . . , n2 − 1

we add to E′ all edges between V (GA
i ) ∪ V (GB

i ) and V (GA
i+1) ∪ V (GB

i+1). For every

i = 1, . . . , n2, we add to E′ all edges between V (Ci) and V (GA
i )∪V (GB

i ). Furthermore,

for every i = 2, . . . , n2, we add to E′ all edges between V (Ci) and V (GA
i−1) ∪ V (GB

i−1).

For every i = 1, . . . , n2 − 1, we add to E′ all edges between V (Ci) and V (Ci+1). For

every i = 1, 2, . . . , n2 and for every u ∈ V (GB
i ), we add to E′ the edge uu′, where

u′ ∈ V (GA
i ) is the image of u in the isomorphism mapping between GA

i and GB
i . To

complete the construction, we pick an arbitrary vertex ai from each Ci. We add edges

among the vertices a1, . . . , an2 such that the resulting induced graph G′[a1, . . . , an2 ] is

a graph on n2 vertices which can be grown by a path schedule within ⌈log n2⌉ slots
and with zero excess edges (see Lemma 3.23). This completes the construction of G′.

Clearly, G′ can be constructed in time polynomial in n.

Now we will prove that there exists a growth schedule σ′ of G′ of length at most

n2χ(G) + 4n − 2 + ⌈2 log n⌉. The schedule will be described inversely, that is, we will

describe the vertices generated in each slot starting from the last slot of σ′ and finishing

with the first slot. First note that every u ∈ V (GA
n2) ∪ V (GB

n2) is a candidate vertex in

G′ Indeed, for every w ∈ V (Cn2), we have that N [u] ⊆ V (GA
n2)∪ V (GB

n2)∪ V (GA
n2−1)∪

V (GA
n2−1)∪V (Cn2) ⊆ N [w]. To provide the desired growth schedule σ′, we assume that

a minimum coloring of the input graph G (with χ(G) colors) is known. In the last χ(G)

slots, σ′ generates all vertices in V (GA
n2) ∪ V (GB

n2), as follows. At each of these slots,

one of the χ(G) color classes of the minimum coloring cOPT of GA
n2 is generated on

sufficiently many vertices among the first n vertices of the clique Cn2 . Simultaneously,

a different color class of the minimum coloring cOPT of GB
n2 is generated on sufficiently

many vertices among the last n vertices of the clique Cn2 .

Similarly, for every i = 1, . . . , n2 − 1, once the vertices of V (GA
i+1) ∪ . . . ∪ V (GA

n2) ∪
V (GB

i+1) ∪ . . . ∪ V (GB
n2) have been added to the last (n2 − i)χ(G) slots of σ′, the

3From Lemma 3.2 it follows that the path on n2 vertices can be constructed in ⌈logn2⌉ slots using
O(n2) excess edges. If we put all these O(n2) excess edges back to the path of n2 vertices, we obtain a
new graph on n2 vertices with O(n2) edges. This graph is the induced subgraph G′[a1, . . . , an2 ] of G′

on the vertices a1, . . . , an2 .
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vertices of V (GA
i ) ∪ V (GB

i ) are generated in σ′ in χ(G) more slots. This is possible

because every vertex u ∈ V (GA
i ) ∪ V (GB

i ) is a candidate vertex after the vertices of

V (GA
i+1)∪ . . .∪ V (GA

n2)∪ V (GB
i+1)∪ . . .∪ V (GB

n2) have been added to slots. Indeed, for

every w ∈ V (Ci), we have that N [u] ⊆ V (GA
i )∪V (GB

i )∪V (GA
i−1)∪V (GA

i−1)∪V (Ci) ⊆
N [w]. That is, in total, all vertices of V (GA

1 ) ∪ . . . ∪ V (GA
n2) ∪ V (GB

1 ) ∪ . . . ∪ V (GB
n2)

are generated in the last n2χ(G) slots.

The remaining vertices of V (C1)∪. . .∪V (Cn2) are generated in σ′ in 4n−2+⌈log n2⌉
additional slots. First, for every odd index i and for 2n− 1 consecutive slots, for vertex

ai of V (Ci) exactly one other vertex of V (Ci) is generated. This is possible because

for every vertex u ∈ V (Ci) \ ai, N [u] ⊆ V (Ci) ∪ V (Ci−1) ∪ V (Ci+1) ⊆ N [ai]. Then,

for every even index i and for 2n − 1 further consecutive slots, for vertex ai of V (Ci)

exactly one other vertex of V (Ci) is generated. That is, after 4n − 2 slots only the

induced subgraph of G′ on the vertices a1, . . . , an2 remains. The final ⌈log n2⌉ slots of
σ′ are the ones obtained by Lemma 3.2. To sum up, G′ is grown by the growth schedule

σ′ in k = n2χ(G)+4n−2+ ⌈log n2⌉ slots, and thus κ(G′) ≤ n2χ(G)+4n−2+ ⌈2 log n⌉
(1).

Suppose that there exists a polynomial-time algorithm A which computes an N
1
3
−ε-

approximate growth schedule σ′′ for graph G′ (which has N vertices), i.e., a growth

schedule of k ≤ N
1
3
−εκ(G′) slots. Note that, for every slot of σ′′, all different vertices

of V (GA
i ) (resp. V (GB

i )) which are generated in this slot are independent. For every

i = 1, . . . , n2, denote by χA
i (resp. χB

i ) the number of different slots of σ′′ in which at

least one vertex of V (GA
i ) (resp. V (GB

i )) appears. Let χ
∗ = min{χA

i , χ
B
i : 1 ≤ i ≤ n2}.

Then, there exists a coloring of G with at most χ∗ colors (i.e., a partition of G into at

most χ∗ independent sets).

Now we show that k ≥ 1
2n

2χ∗. Let i ∈ {2, . . . , n2− 1} and let u ∈ V (GA
i )∪ V (GB

i ).

Assume that u is generated at slot t in σ′′. Then, either all vertices of V (GA
i−1)∪V (GB

i−1)

or all vertices of V (GA
i+1)∪V (GB

i+1) are generated at a later slot t′ ≥ t+1 in σ′′. Indeed,

it can be easily checked that, if otherwise both a vertex x ∈ V (GA
i−1) ∪ V (GB

i−1) and a

vertex y ∈ V (GA
i+1) ∪ V (GB

i+1) are generated at a slot t′′ ≤ t in σ′′, then u cannot be

a candidate vertex at slot t, which is a contradiction to our assumption. That is, in

order for a vertex u ∈ V (GA
i ) ∪ V (GB

i ) to be generated at some slot t of σ′′, we must

have that i is either the currently smallest or largest index for which some vertices of

V (GA
i ) ∪ V (GB

i ) have been generated until slot t. On the other hand, by definition of

χ∗, the growth schedule σ′′ needs at least χ∗ different slots to generate all vertices of the

set V (GA
i ) ∪ V (GB

i ), for 1 ≤ i ≤ n2. Therefore, since at every slot, σ′′ can potentially

generate vertices of at most two indices i (the smallest and the largest respectively), it

needs to use at least 1
2n

2χ∗ slots to grow the whole graph G′. Therefore k ≥ 1
2n

2χ∗ (2).
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Recall that N = 4n3. It follows by Eq. (1) and Eq. (2) that

1

2
n2χ∗ ≤ k ≤ N

1
3
−εκ(G′)

≤ N
1
3
−ε(n2χ(G) + 4n− 2 + ⌈2 log n⌉)

≤ 4n1−3ε(n2χ(G) + 6n)

and thus χ∗ ≤ 8n1−3εχ(G) + 48n−3ε. Note that, for sufficiently large n, we have

that 8n1−3εχ(G) + 48n−3ε ≤ n1−εχ(G). That is, given the N
1
3
−ε-approximate growth

schedule produced by the polynomial-time algorithm A, we can compute in polynomial

time a coloring of G with χ∗ colors such that χ∗ ≤ n1−εχ(G). This is a contradiction

since for every ε > 0, there is no polynomial-time n1−ε-approximation for minimum

coloring, unless P = NP [88].

3.4 Growth Schedules of (Poly)logarithmic Slots

In this section, we study graphs that have growth schedules of (poly)logarithmic slots,

for d = 2. As we have proven in the previous section, an integral factor in computing

a growth schedule for any graph G, is computing a k-coloring for G. Since we consider

polynomial-time algorithms, we have to restrict ourselves to graphs where the k-coloring

problem can be solved in polynomial time and, additionally, we want small values of k

since we want to produce fast growth schedules. Therefore, we investigate tree, planar

and k-degenerate graph families since there are polynomial-time algorithms that solve

the k-coloring problem for graphs drawn from these families. We continue with lower

bounds on the number of excess edges if we fix the number of slots to logn, for path,

star and specific bipartite graph families.

3.4.1 Trees

We now provide an algorithm that computes growth schedules for tree graphs. Let G

be the target tree graph. The algorithm applies a decomposition strategy on G, where

vertices and edges are removed in phases, until a single vertex is left. We can then grow

the target graph G by reversing its decomposition phases, using the path and star

schedules as subroutines.

Tree algorithm: Starting from a tree graphG, the algorithm keeps alternating between

two phases, a path-cut and a leaf-cut phase. Let G2i, G2i+1, for i ≥ 0, be the graphs

obtained after the execution of the first i pairs of phases and an additional path-cut

phase, respectively.

Path-cut phase: For each path subgraph P = (u1, u2, . . . , uν), for 2 < ν ≤ n, of

the current graph G2i, where u2, u3, ..., uν−1 have degree 2 and u1, uν have degree ̸= 2
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in G2i, edge u1uν between the endpoints of P is activated and vertices u2, u3, ...uν−1

are removed along with their incident edges. If a single vertex is left, the algorithm

terminates; otherwise, it proceeds to the leaf-cut phase.

Leaf-cut phase: Every leaf vertex of the current graph G2i+1 is removed along with its

incident edge. If a single vertex is left, the algorithm terminates; otherwise, it proceeds

to the path-cut phase.

Finally, the algorithm reverses the phases (by decreasing i) to output a growth

schedule for the tree G as follows. For each path-cut phase 2i, all path subgraphs that

were decomposed in phase i are regrown by using the path schedule as a subprocess.

These can be executed in parallel in O(log n) slots. The same holds true for leaf-cut

phases 2i+ 1, where each can be reversed to regrow the removed leaves by using star

schedules in parallel in O(log n) slots. In the last slot, the schedule deletes every excess

edge.

(a) (b) (c)

Figure 3.4: An example of a path-cut phase. (a) Graph G2i−1 at the beginning
of the i-th path-cut phase. (b) The dotted and the dashed edges with their incident
vertices form two different path subgraphs. Every vertex, apart from the endpoints of
each path, is removed and the endpoints become connected. (c) The resulting graph

G2i+1 at the end of the i-th path-cut phase.

(a) (b) (c)

Figure 3.5: An example of a leaf-cut phase. (a) Graph G2i+1 at the beginning of the
i-th leaf-cut phase. (b) The leaf vertices along with their incident edges are removed.

(c) The resulting graph G2i+2 at the end of the i-th leaf-cut phase.
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Lemma 3.26. Given any tree graph G, the algorithm deconstructs G into a single

vertex using O(log n) phases.

Proof. Consider the graph G2i after the execution of the i-th path-cut phase. The path-

cut phase removes every vertex that has exactly 2 neighbors in the current graph, and

in the next leaf cut phase, the graph consists of leaf vertices u ∈ Su with deg = 1 and

internal vertices v ∈ Sv with deg > 2. Therefore, |Su| > |Sv| and since |Su|+ |Sv| = |Vi|,
we can conclude that |Su| > |Vi|/2 and any leaf-cut phase cuts the size of the current

graph in half since it removes every vertex u ∈ Su. This means that after at most log n

path-cut phases and log n leaf cut phases the graph will have a single vertex.

Lemma 3.27. Every phase can be reversed using a growth schedule of O(log n) slots.

Proof. First, let us consider the path-cut phase. At the beginning of this phase, every

starting subgraph G′ is a path subgraph with vertices u1, u2, ..., ux, where u1, ux are

the endpoints of the path. At the end of the phase, every subgraph has two connected

vertices u1, ux. The reversed process works as follows: for each path u1, u2, . . . ux that

we want to generate, we use vertex u1 as the initiator and we execute the path algorithm

from Section 3.2.2 in order to generate vertices u2, u3, ..., ux−1. We add the following

modification to path: every time a vertex is generated, an edge between it and vertex

ux is activated. After this process completes, edges not belonging to the original path

subgraph G′ are deleted. This growth schedule requires log x ≤ log n slots. We can

combine the growth schedules of each path into a single schedule of log x slots since

every schedule has distinct initiators and they can run in parallel.

Now let us consider the leaf-cut phase. In this phase, every vertex removed is a

leaf vertex u with one neighbor v. Note that v might have multiple neighboring leaves.

The reverse process works as follows: For each vertex v, we use a separate star growth

schedule from Section 3.2.2 with v as the initiator, in order to generate every vertex u

that was a neighbor to v. Each of this growth schedule requires at most log x ≤ log n

slots, where x is the number of leaves in the current graph. We can combine the

growth schedules of each star into a single schedule of log k slots since every schedule

has distinct initiators and they can run in parallel.

Theorem 3.28. For any tree graph G on n vertices, the tree algorithm computes in

polynomial time a growth schedule σ for G of O(log2 n) slots and O(n) excess edges.

Proof. The growth schedules can be straightly combined into a single one by appending

the end of each growth schedule with the beginning of the next one, since every sub-

schedule σi uses only a single vertex as an initiator u, which is always available (i.e., u

was generated by some previous σj). Since we have O(log n) schedules and every

schedule has O(log n) slots, the combined growth schedule has O(log2 n) slots. Note
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that every schedule used to reverse a phase uses O(n) excess edges, where n is the

number of vertices generated in that schedule. Since the complete schedule generates

n−1 vertices, the excess edges activated throughout the complete schedule are O(n).

3.4.2 Planar Graphs

In this section, we provide an algorithm that computes a growth schedule for any target

planar graph G = (V,E). The algorithm first computes a 5-coloring of G and partitions

the vertices into color-sets Vi, 1 ≤ i ≤ 5. The color-sets are used to compute the growth

schedule for G. The schedule contains five sub-schedules, each sub-schedule i generating

all vertices in color-set Vi. In every sub-schedule i, we use a modified version of the

star schedule to generate set Vi.

Pre-processing: By using the algorithm of [89], the pre-processing step computes

a 5-coloring of the target planar graph G. This creates color-sets Vi ⊆ V , where

1 ≤ i ≤ 5, every color-set Vi containing all vertices of color i. W.l.o.g., we can assume

that |V1| ≥ |V2| ≥ |V3| ≥ |V4| ≥ |V5|. Note that every color-set Vi is an independent set

of G.

Planar algorithm: The algorithm picks an arbitrary vertex from V1 and makes it the

initiator u0 of all sub-schedules. Let Vi = {u1, u2, . . . , u|Vi|}. For every sub-schedule i,

1 ≤ i ≤ 5, it uses the star schedule with u0 as the initiator, to grow the vertices in

Vi in an arbitrary sequence, with some additional edge activations. In particular, upon

generating vertex ux ∈ Vi, for all 1 ≤ x ≤ |Vi|:

1. Edge vux is activated if v ∈ ⋃
j<i Vj and uyv ∈ E, for some uy ∈ Vi ∩ Pux , both

hold (recall that Pux contains the descendants of ux).

2. Edge wux is activated if w ∈ ⋃
j<i Vj and wux ∈ E both hold.

Once all vertices of Vi have been generated, the schedule moves on to generate Vi+1.

Once all vertices have been generated, the schedule deletes every edge uv /∈ E. Note

that every edge activated in the growth schedule is an excess edge with the exception

of edges satisfying (2). For an edge wux from (2) to satisfy the edge-activation distance

constraint it must hold that every vertex in the birth path of ux has an edge with w.

This holds true for the edges added in (2), due to the edges added in (1).

The edges of the star schedule are used to quickly generate the vertices, while the

edges of (1) are used to enable the activation of the edges of (2). By proving that the

star schedule activate O(n) edges, (1) activates O(n log n) edges, and by observing

that the schedule contains star sub-schedules that have 5×O(log n) slots in total, the

next theorem follows.

Lemma 3.29. Given a target planar graph G = (V,E), the planar algorithm returns

a growth schedule for G.
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Proof. Based on the description of the schedule, it is easy to see that we generate

exactly |V | vertices, since we break V into our five sets Vi and we generate each set in

a different phase i. This is always possible no matter the graph G, since every set Vi is

an independent set.

We will now prove that we also generate activate the edges of G. Note that this

holds trivially since (2) activates exactly those edges. What remains is to argue that

the edges of (2) do not violate the edge activation distance d = 2 constraint. This

constraint is satisfied by the edges activated by (1) since for every edge wux ∈ G, the

schedule makes sure to activate every edge uuy, where vertices uy are the vertices in

the birth path of ux.

Lemma 3.30. The planar algorithm has O(log n) slots and O(n log n) excess edges.

Proof. Let ni be the size of the independent set Vi. Then, the sub-schedule that con-

structs Vi requires the same number of slots as path, which is ⌈log ni⌉ slots. Combining

the five sub-schedules requires
∑5

i=1 log ni = log
∏5

i=1 ni < 5 log n = O(log n) slots.

Let us consider the excess edges activated in every sub-schedule. The number of

excess edges activated are the excess edges of the star schedule and the excess edges for

the progeny of each vertex. The excess edges of the star schedule are O(n). We also

know that the progeny of each vertex u includes at most |Pu| = O(log n) vertices since

the length of the growth schedule is O(log n). Since we have a planar graph we know

that there are at most 3n edges in graph G. For every edge (u, v) in the target graph,

we would need to add at most O(log n) additional excess edges. Therefore, no matter

the structure of the 3n edges, the schedule would activate 3nO(log n) = O(n log n)

excess edges.

The next theorem now follows from Lemmas 3.29 and 3.30.

Theorem 3.31. For any planar graph G on n vertices, the planar algorithm computes

in polynomial time a growth schedule for G of O(log n) slots and O(n log n) excess edges.

Definition 3.32. A k-degenerate graph G is an undirected graph in which every sub-

graph has a vertex of degree at most k.

Corollary 3.33. The planar algorithm can be extended to compute, for any graph

G on n vertices and in polynomial time, a growth schedule of O((k1 + 1) log n) slots,

O(k2n log n) and excess edges, where (i) k1 = k2 is the degeneracy of graph G, or (ii)

k1 = ∆ is the maximum degree of graph G and k2 = |E|/n.

Proof. For case (i), if graph G is k1-degenerate, then an ordering with coloring number

k1 + 1 can be obtained by repeatedly finding a vertex v with at most x neighbors,

removing v from the graph, ordering the remaining vertices, and adding v to the end
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of the ordering. By Lemma 3.30, the algorithm using a k1 + 1 coloring would produce

a growth schedule of O((k1 + 1) log n) slots. Since graph G is k2 − degenerate, G has

at most k2 × n edges and by the proof of Lemma 3.30, the algorithm would require

O(k2n log n) excess edges. For case (ii), we compute a ∆ + 1 coloring using a greedy

algorithm and then use the planar graph algorithm with the computed coloring as an

input. By the proof of Lemma 3.30, the algorithm would produce a growth schedule of

O((∆ + 1) log n) slots.

3.4.3 Lower Bounds on the Excess Edges

In this section, we provide some lower bounds on the number of excess edges required

to grow a graph if we fix the number of slots to log n. For simplicity, we assume that

n = 2δ for some integer δ, but this assumption can be dropped.

We define a particular graph Gmin of size n, through a growth schedule σmin for it.

The schedule σmin contains log n slots. In every slot t, the schedule generates one vertex

u′ for every vertex u in (Gmin)t−1 and activates uu′. This completes the description

of σmin. Let G be any graph on n vertices, grown by a log n-slot schedule σ. Observe

that any edge activated by σmin is also activated by σ. Thus, any edges of Gmin “not

used” by G are excess edges that must be deleted by σ, for G to be grown by it. The

latter is captured by the following minimum edge-difference over all permutations of

V (G) mapped on V (Gmin).

Consider the set B of all possible bijections between the vertex sets of V (G) and

V (Gmin), b : V (G) 7−→ V (Gmin). We define the edge-difference EDb of every such

bijection b ∈ B as EDb = |{uv ∈ E(Gmin) | b(u)b(v) /∈ E(G)}|. The minimum edge-

difference over all bijections b ∈ B is min
b

EDb. We argue that a growth schedule of

log n slots for graph G uses at least min
p

EDp excess edges since the schedule has to

activate every edge of Gmin and then delete at least the minimum edge-difference to

get G. This property leads to the following theorem, which can then be used to obtain

lower bounds for specific graph families.

Theorem 3.34. Any growth schedule σof log n slots that grows a graph G of n vertices,

uses at least min
b

EDb excess edges.

Proof. Since every schedule σ of log n slots activates every edge uv of Gmini , σ must

delete every edge uv /∈ G. To find the minimum number of such edges, if we consider

the set B of all possible bijections between the vertex sets of V (G) and V (Gmin),

b : V (G) 7−→ V (Gmin) and we compute the minimum edge-difference over all bijections

b ∈ B as min
b

EDb, then schedule σ has to activate every edge of Gmin and delete at

least min
b

EDb edges.
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Corollary 3.35. Any growth schedule of log n slots that grows a path or star graph of

n vertices, uses Ω(n) excess edges.

Proof. Note that for a star graph G = (V,E), the maximum degree of a vertex in Gmin

is log n and the star graph has a center vertex with degree n−1. This implies that there

are n−1− log n edges of Gmin which are not in E. Therefore min
b

EDb = (n−1− log n).

A similar argument works for the the schedule of a path graph.

We now define a particular graph Gfull = (V,E) by providing a growth schedule for

it. The schedule contains log n slots. In every slot t, the schedule generates one vertex

u′ for every vertex u in Gt−1 and activates uu′. Upon generating vertex u′, it activates

an edge u′v with every vertex v that is within d = 2 from u′. Assume that we name the

vertices u1, u2, . . . , un, where vertex u1 was the initiator and vertex uj was generated

in slot ⌈log(uj)⌉ and connected with vertex uj−⌈log(uj)⌉.

Lemma 3.36. If n is the number of vertices of Gfull = (V,E) then the number of edges

of Gfull is n log n ≤ |E| ≤ 2n log n.

Proof. Let f(x) be the sum of degrees when x vertices have been generated. Clearly

f(2) = 2. Now consider slot t and lets assume it has x vertices at its end. At end

of next slot we have 2x vertices. Let the degrees of the vertices at end of slot t be

d1, d2, ..., dk. Consider now that:

• Child i′ of vertex i (generated in slot t+1) has 1 edge with its parent and di edges

(since an edge between it and all vertices at distance 1 from i will be activated in

slot t. So d′i = di + 1.

• Vertex i has 1 edge (with its child) and di edges (one from each new child of its

neighbours in slot t), that is di(new) = 2di + 1.

Therefore f(2x) = 3f(x) + 2x. Notice that 2f(x) + 2x ≤ f(2x) ≤ 4f(x) + 4x. Let

g(x) be such that g(2) = 2 and g(2x) = 2g(x) + 2x. We claim g(x) = x log x. Indeed

g(2) = 2 log 2 = 2 and by induction g(2x) = 2g(x) + 2x = 2x log x + 2x = 2x log(2x).

It follows that n log n ≤ f(n) ≤ 2n log n.

We will now describe the following bipartite graph Gbipart = (V,E) using Gfull =

(V ′, E′) to describe the edges of Gbipart. Both parts of the graph have n/2 vertices and

the left part, called A, contains vertices a1, a2, . . . , an/2, and the right part, called B,

contains vertices b1, b2, . . . , bn/2, and E′ = {aibj | (ui, uj ∈ E) ∨ (i = j)}. This means

that if graph Gfull has m edges, Gbipart has Θ(m) edges as well.

Theorem 3.37. Consider graph Gbipart = (V ′, E′) of size n. Any growth schedule σ

for graph Gbipart of log n slots uses Ω(n log n) excess edges.



Chapter 3. Growing Graphs 82

Proof. Assume that schedule σ of log n slots, grows graph Gbipart. Since σ has log n

slots, for every vertex u ∈ V ′
j−1 a vertex must be generated in every slot j in order for

the graph to have size n. This implies that in the last slot, n/2 vertices have to be

generated and we remind that these vertices must be an independent set in Gbipart. For

i = {n/2}, ai, bi ∈ E′ and both vertices ai, bi cannot be generated together in the last

slot. This implies that in the last slot, for every i = 1, 2, . . . , n/2, we must have exactly

one vertex from each pair of ai, bi. Note though that vertices a1, b1 have an edge with

every vertex in B,A respectively. If vertex a1 or b1 is generated in the last slot, only

vertices from A or B, respectively, can be generated in that same slot. Thus, we can

decide that the last slot must either contain every vertex in A or every vertex in B.

W.l.o.g., assume that in the last slot, we generate every vertex in B. This means

that for every vertex ai ∈ A one vertex bj ∈ B must be generated. Consider an arbitrary

vertex ai for which an arbitrary vertex bj is generated. In order for this to happen in

the last slot, for every al, bj ∈ (E′ \ ai, bj), alai must be active and every edge alai is

an excess edge since set A is an independent set in graph Gbipart. This means that for

each vertex bj generation, any growth schedule must activate at least deg(bj)−1 excess

edges. By construction, graph Gbipart has O(n log n) edges and thus, the sum of the

degrees of vertices in B is O(n log n). Therefore, any growth schedule has to activate

Ω(n log n)− n = Ω(n log n) excess edges.

3.5 Conclusion

In this work, we considered a new model for highly dynamic networks, called growing

graphs. The model, with no limitation to the edge-activation distance d, allows any

target graph G to be constructed, starting from an initial singleton graph, but large

values of d are an impractical assumption with simple solutions and therefore we focused

on cases where d = 2. We defined performance measures to quantify the speed (slots)

and efficiency (excess edges) of the growth process, and we noticed that there is a natural

trade off between the two. We proposed algorithms for general graph classes that try

to balance speed and efficiency. If someone wants super efficient growth schedules (zero

excess edges), it is impossible to even find a n
1
3
−ε-approximation of the length of such

a schedule, unless P = NP. For the special case of schedules of logn slots and ℓ = 0

excess edges, we provide a polynomial-time algorithm that can find such a schedule.

We believe that the present study, apart from opening new avenues of algorithmic

research in graph-generation processes, can inspire work on more applied models of

dynamic networks and network deployment, including ones in which the growth process

is decentralized and exclusively controlled by the individual network processors and

models whose the dynamics are constrained by geometry.
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There is a number of interesting technical questions left open by the findings of

this paper. It would be interesting to see whether there exists an algorithm that can

decide the minimum number of edges required for any schedule to grow a graph G or

whether the problem is NP-hard. Note that this problem is equivalent to the cop-win

completion problem; that is, ℓ is in this case equal to the smallest number of edges

that need to be added to G to make it a cop-win graph. We mostly focused on the two

extremes of the (k, ℓ)-spectrum, namely one in which k is close to log n and the other

is which ℓ close to zero. The in-between landscape remains to be explored. Finally, we

gave some efficient algorithms, mostly for specific graph families, but there seems to be

room for more positive results. It would also be interesting to study a combination of

the growth dynamics of the present work and the edge-modification dynamics of [79],

thus, allowing the activation of edges between vertices generated in past slots.





Chapter 4

Programmable Matter

4.1 Introduction

The programmable matter field is quite a new area in the field of theoretical computer

science. Apart from the fact that systems work is still in its infancy, there is also an

apparent lack of unifying formalism and theoretical treatment. Still there are some

first theoretical efforts aiming at understanding the fundamental possibilities and lim-

itations of this prospective. The area of algorithmic self-assembly tries to understand

how to program molecules (mainly DNA strands) to manipulate themselves, grow into

machines and at the same time control their own growth [11]. The theoretical model

guiding the study in algorithmic self-assembly is the Abstract Tile Assembly Model

(aTAM) [41, 90] and variations. A model called the nubot model, was proposed for

studying the complexity of self-assembled structures with active molecular components

[14]. This model “is inspired by biology’s fantastic ability to assemble biomolecules that

form systems with complicated structure and dynamics, from molecular motors that

walk on rigid tracks and proteins that dynamically alter the structure of the cell during

mitosis, to embryonic development where large-scale complicated organisms efficiently

grow from a single cell” [14]. Another model, called the Network Constructors model,

studied what stable networks can be constructed by a population of finite-automata

that interact randomly like molecules in a well-mixed solution and can establish bonds

with each other according to the rules of a common small protocol [23]. The develop-

ment of Network Constructors was based on the Population Protocol model of Angluin

et al. [3], that does not include the capability of creating bonds and focuses more on the

computation of functions on inputs. A very interesting fact about population protocols

is that, when operating under a uniform random scheduler, they are formally equivalent

to a restricted version of stochastic chemical reaction networks (CRNs), “which model

chemistry in a well-mixed solution and are widely used to describe information pro-

cessing occurring in natural cellular regulatory networks” (see, e.g., [91, 92]). Also the

85
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proposed Amoebot model, “offers a versatile framework to model self-organizing parti-

cles and facilitates rigorous algorithmic research in the area of programmable matter”

[10, 93–96]. See also [97] for latest activities and developments in this area of research.

Each theoretical approach, and to be more precise, each individual model, has its

own beauty and has lead to different insights and developments regarding potential pro-

grammable matter systems of the future and in some cases to very intriguing technical

problems and open questions. Still, it seems that the right way for theory to boost the

development of more refined real systems is to reveal the transformation capabilities

of mechanisms and technologies that are available now, rather than by exploring the

unlimited variety of theoretical models that are not expected to correspond to a real

implementation in the near future.

In this chapter, we follow such an approach, by studying the transformation capa-

bilities of models for programmable matter, which are based on minimal mechanical

capabilities, easily implementable by existing technology.

4.1.1 Our Approach

We study a minimal programmable matter system consisting of n cycle-shaped mod-

ules, with each module (or node) occupying at any given time a cell of the 2D grid

(no two nodes can occupy the same cell at the same time). Therefore, the composi-

tion of the programmable matter systems under consideration is discrete. Our main

question throughout is whether an initial arrangement of the material can transform

(either in principle, e.g., by an external authority, or by itself) to some other target

arrangement. In more technical terms, we are provided with an initial shape A and a

target shape B and we are asked whether A can be transformed to B via a sequence

of valid transformation steps. Usually, a step consists either of a valid movement of

a single node (in the sequential case) or of more than one node at the same time (in

the parallel case). We consider two quite primitive types of movement. The first one,

called rotation, allows a node to rotate 90 degrees around one of its neighbors either

clockwise or counterclockwise (see, e.g., Figure 4.1 in Section 4.2) and the second one,

called sliding, allows a node to slide by one position “over” two neighboring nodes (see,

e.g., Figure 4.2 in Section 4.2). Both movements succeed only if the whole direction of

movement is free of obstacles (i.e., other nodes blocking the way). More formal defini-

tions are provided in Section 4.2. One part of the chapter focuses on the case in which

only rotation is available to the nodes and the other part studies the case in which both

rotation and sliding are available. The latter case has been studied to some extent in

the past in the, so called, metamorphic systems [13, 42, 43], which makes those studies

the closest to our approach.

For rotation only, we introduce the notion of color-consistency and prove that if

two shapes are not color-consistent then they cannot be transformed to each other.
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On the other hand color-consistency does not guarantee transformability, as there is

an infinite set of pairs (A,B) such that A and B are color consistent but still can-

not be transformed to each other. At this point, observe that if A can be trans-

formed to B then the inverse is also true, as all movements considered in this chap-

ter are reversible. We distinguish two main types of transformations: those that

are allowed to break the connectivity of the shape during the transformation and

those that are not; we call the corresponding problems Rot-Transformability and

RotC-Transformability, respectively. We prove that RotC-Transformability

is a proper subset of Rot-Transformability by showing that a line-folding prob-

lem is in Rot-Transformability\RotC-Transformability. Our main result re-

garding Rot-Transformability is that Rot-Transformability ∈ P. To prove

polynomial-time decidability, we prove that two shapes A and B are transformable to

each other iff both A and B have at least one movement available (without any move-

ment available, a shape is blocked and can only trivially transform to itself). Therefore,

transformability reduces to checking the availability of a movement in the initial and

target shapes. The idea is that if a movement is available in a shape A, then there

is always a way to extract from A a 2-line (meaning to disconnect a line of length 2

from shape A, via a sequence of rotation movements). Such a 2-line can move freely in

any direction and can also extract further nodes to form a 4-line. A 4-line in turn can

also move freely in any direction and is also capable of extracting nodes from the shape

and transferring them, one at a time, to any desired target position. In this manner,

the 4-line can transform A into a line with leaves around it that is color-consistent to

A (based on a proposition that we prove, stating that any shape has a corresponding

color-consistent line-with-leaves). Similarly, B, given that it is color-consistent with

A, can be transformed by the same approach to exactly the same line-with-leaves, and

then, by reversibility, it follows that A and B can be transformed to each other by

using the line-with-leaves as an intermediate. This set of transformations do not guar-

antee the preservation of connectivity during the transformation. That is, even though

the initial and target shapes considered are connected shapes, the shapes formed at

intermediate steps of the transformation may very well be disconnected shapes.

We next study RotC-Transformability, in which again the only available move-

ment is rotation, but now connectivity of the material has to be preserved throughout

the transformation. The property of preserving the connectivity is expected to be a

crucial property for programmable matter systems, as it allows the material to main-

tain coherence and strength, to eliminate the need for wireless communication, and,

finally, enables the development of more effective power supply schemes, in which the

modules can share resources or in which the modules have no batteries but are instead

constantly supplied with energy by a centralized source (or by a supernode that is part

of the material itself). Such benefits can lead to simplified designs and potentially to
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reduced size of individual modules. We first prove that RotC-Transformability

∈ PSPACE. The rest of our results here are strongly based on the notion of a seed.

This stems from the observation that a large set of infeasible transformations become

feasible by introducing to the initial shape an additional, and usually quite small, seed;

i.e., a small shape that is being attached to some point of the initial shape in order

to trigger an otherwise infeasible transformation. In particular, we prove that a 3-line

seed, if placed appropriately, is sufficient to achieve folding of a line (otherwise impos-

sible). We then investigate seeds that could serve as components capable of traveling

the perimeter of an arbitrary connected shape A. Such seed-shapes are very convenient

as they are capable of “simulating” the universal transformation techniques that are

possible if we have both rotation and sliding movements available (discussed in the

next paragraph). To this end, we prove that all seeds of size ≤ 4 cannot serve for

this purpose, by proving that they cannot even walk the perimeter of a simple line

shape. Then we focus on a 6-seed and prove that such a seed is capable of walking the

perimeter of a large family of shapes, called orthogonally convex shapes. This is a first

indication, that there might be a large family of shapes that can be transformed to each

other with rotation only and without breaking connectivity, by extracting a 6-seed and

then exploiting it to transfer nodes to the desired positions. To further support this,

we prove that the 6-seed is capable of performing such transfers, by detaching pairs of

nodes from the shape, attaching them to itself, thus forming an 8-seed and then being

still capable to walk the perimeter of the shape.

Next, we consider the case in which both rotation and sliding are available and insist

on connectivity preservation. We first provide a proof that this combination of simple

movements is universal with respect to (abbreviated “w.r.t.” throughout) transforma-

tions, as any pair of connected shapes A and B of the same order (“order” of a shape S

meaning the number of nodes of S throughout the chapter) can be transformed to each

other without ever breaking the connectivity throughout the transformation (a first

proof of this fact had already appeared in [43]). This generic transformation requires

Θ(n2) sequential movements in the worst case. By a potential-function argument we

show that no transformation can improve on this worst-case complexity for some spe-

cific pairs of shapes and this lower bound is independent of connectivity preservation; it

only depends on the inherent transformation-distance between the shapes. To improve

on this, either some sort of parallelism must be employed or more powerful movement

mechanisms, e.g., movements of whole sub-shapes in one step. We investigate the for-

mer approach and prove that there is a pipelining general transformation strategy that

improves the time to O(n) (parallel time). We also give a matching Ω(n) lower bound.

On the way, we also show that this parallel complexity is feasible even if the nodes

are labeled, meaning that individual nodes must end up in specific positions of the

target-shape.
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Finally, we assume that the nodes are distributed processes equipped with limited

local memory and able to perform communicate-compute-move rounds (where, again,

both rotation and sliding movements are available) and provide distributed algorithms

for a general type of transformation.

In Section 4.1.2 we discuss further related literature. Section 4.2 brings together

all definitions and basic facts that are used throughout the chapter. In Section 4.3, we

study programmable matter systems equipped only with rotation movement. In Section

4.4, we insist on rotation only, but additionally require that the material maintains

connectivity throughout the transformation. In Section 4.5, we investigate the combined

effect of rotation and sliding movements.

4.1.2 Further Related Work

Mobile and Reconfigurable Robotics. There is a very rich literature on mobile

and reconfigurable robotics. In mobile (swarm) robotics systems and models, as are, for

example, the models for robot gathering [98, 99] and deployment [100] (cf., also [101]),

geometric pattern formation [102, 103], and connectivity preservation [104], the modules

are usually robots equipped with some mobility mechanism making them free to move in

any direction of the plane (and in some cases even continuously). In contrast, we only

allow discrete movements relative to neighboring nodes. Modular self-reconfigurable

robotic systems form an area on their own, focusing on aspects like the design, motion

planning, and control of autonomous robotic modules [105–108]. The model considered

in this chapter bears similarities to some of the models that have appeared in this area.

The main difference is that we follow a more computation-theoretic approach, while

the studies in this area usually follow a more applied perspective. Since the research of

this chapter has been published, a lot of follow-up work has been considered where the

authors extend the model with more powerful movement [109, 110].

Puzzles. Puzzles are combinatorial one-player games, usually played on some sort of

board. Typical questions of interest are whether a given puzzle is solvable and find-

ing the solution that makes the fewest number of moves. Answers to these questions

range from being in P up to PSPACE-hard or even undecidable when some puzzles

are generalized to the entire plane with unboundedly many pieces [111, 112]. Famous

examples of puzzles are the Fifteen Puzzle, Sliding Blocks, Rush Hour, Pushing Blocks,

and Solitaire. Even though none of these is equivalent to the model considered here,

the techniques that have been developed for solving and characterizing puzzles may

turn out to be very useful in the context of programmable matter systems. Actually,

in some cases, such puzzles show up as special cases of the transformation problems

considered here (e.g., the Fifteen Puzzle may be obtained if we restrict a transforma-

tion of node-labeled shapes to take place in a 4x4 square region); such connections of
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programmable matter systems and models to puzzles have also been highlighted in [113].

Metamorphic Systems. As already mentioned, [13, 43] are very close to our ap-

proach therefore, despite the fact that they naturally belong to models of mobile and

reconfigurable robotics, we discuss them separately. All modeling and results in the

present chapter were developed independently from the above studies, but as there are

some similarities we now compare to those papers. In particular, the model of rotations

and slidings on the grid that we studied, turns out to be the same as the model consid-

ered in those papers. The study of rotation alone that we explore in Sections 4.3 and

4.4 to the best of our knowledge has not been considered in the literature. Regarding

rotation and sliding combined, discussed in Section 4.5, the universality result that we

prove turns out to have been first proven in [43], but we leave our proof for complete-

ness. Both proofs exploit the idea of converting a given shape A first into a straight line

and then to the target shape B, but the proof arguments are different. Regarding [42],

in that paper the authors mainly studied a distributed version of the transformation

problems. They also posed a number of decidability questions, some of them proved

to be undecidable (we do not deal with undecidable problems in this chapter). Their

main question regarding decidability problems was related to the universality result

later proved in [43]. Our distributed results, only briefly mentioned at the end of Sec-

tion 4.5 (to be published separately, as the focus of the present chapter is feasibility of

transformations and centralized transformation algorithms), use a different model than

the one studied in [13]. The main difference is that in [13] each node can communicate

to the whole network in any given round (mostly, though, in the sense that a node

can have a complete observation of the current global configuration), while in our case

communication is restricted to be local. An interesting idea, explored in [42] that has

also been exploited in our study (but for centralized transformations in our case) is the

pipelining technique, by which more than one nodes traverse the perimeter of a shape

at the same time in order to speed up transformation. In their case, it is used on the

special case of connected shapes in which no row has a gap, i.e., every row is a line of

consecutive nodes, while in our case it is used to speed up the universality result to

linear parallel time. Finally, it should be mentioned that some authors have studied

alternative geometries than the one considered here, such as representations of systems

in which each module is a regular hexagon (see, for instance, [114, 115].

4.2 Preliminaries

The programmable matter systems considered in this chapter operate on a 2D square

grid, with each position (or cell) of the grid being uniquely referred to by its y ≥ 0
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and x ≥ 0 coordinates. 1 Such a system consists of a set V of n modules, called nodes

throughout. Each node may be viewed as a spherical module fitting inside a cell of the

grid. At any given time, each node u ∈ V occupies a cell o(u) = (oy(u), ox(u)) = (i, j)

(omitting the time index for simplicity here and also whenever clear from context) and

no two nodes may occupy the same cell. 2 In some cases, when a cell is occupied

by a node we may refer to that cell by a color, e.g., black, and when a cell is not

occupied (in which case we may also call it empty) we usually color it white. At any

given time t, the positioning of nodes on the grid defines an undirected neighboring

relation E(t) ⊂ V × V , where {u, v} ∈ E iff oy(u) = oy(v) and |ox(u) − ox(v)| = 1 or

ox(u) = ox(v) and |oy(u)−oy(v)| = 1, that is, if u and v are either horizontal or vertical

neighbors on the grid, respectively. It is immediate to observe that every node can have

at most 4 neighbors at any given time. A more informative way to define the system at

a given time t, and thus often more convenient, is as a mapping Pt : N≥0×N≥0 → {0, 1}
where Pt(i, j) = 1 iff cell (i, j) is occupied by a node.

At any given time t, P−1
t (1) defines a shape. 3 Such a shape is called connected

if E(t) defines a connected graph. A connected shape is called convex if for any two

occupied cells, the line in R2 through their centers does not pass through an empty cell.

A connected shape A is called orthogonally convex if the intersection of any vertical or

horizontal line with A is either empty or connected. Equivalently, this means that for

any two cells occupied by A, belonging either to the same row or the same column, the

line that connects their centers does not pass through an empty cell (i.e., compared to

pure convexity, we now exclude diagonal lines). We call a shape compact if it has no

holes.

In general, shapes can transform to other shapes via a sequence of one or more

movements of individual nodes. Time consists of discrete steps (or rounds) and in

every step, zero or more movements may occur, possibly following a centralized or

distributed computation sub-step, depending on the application. In the sequential

case, at most one movement may occur per step, and in the parallel case any number

of “valid” movements may occur in parallel. 4 We consider two types of movements:

(i) rotation and (ii) sliding. In both movements, a single node moves relative to one or

more neighboring nodes as we now explain.

1We should make clear at this point that the grid assumption is only used to facilitate intuition
of the geometric properties of the model (that is, the permissible arrangements of the nodes) and
presentation of our results. Therefore, the systems in this chapter consist of the nodes only and the
grid is not considered part of the studied systems.

2As these are discrete coordinates, we have preferred to use the (i, j) matrix notation, where i is the
row and j the column, instead of the (x, y) Cartesian coordinates, but this doesn’t make any difference.

3P−1
t denotes the inverse function of Pt, therefore P

−1
t (1) returns the set of all cells that are occupied

by nodes.
4By “valid”, we mean here subject to the constraint that their whole movement paths correspond

to pairwise disjoint sub-areas of the grid.
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A single rotation movement of a node u is a 90 degrees rotation of u around one

of its neighbors. Let (i, j) be the current position of u and let its neighbor be v

occupying the cell (i−1, j) (i.e., lying below u). Then u can rotate 90 degrees clockwise

(counterclockwise) around v iff the cells (i, j + 1) and (i − 1, j + 1) ((i, j − 1) and

(i − 1, j − 1), respectively) are both empty. By rotating the whole system 90 180 and

270 all possible rotation movements are defined analogously. See Figure 4.1 for an

illustration.

i

i− 1

j + 1j

rotation is possible after rotation

Figure 4.1: Rotation clockwise. A node on the black dot (in row i − 1) and empty
cells at positions (i, j + 1) and (i− 1, j + 1) are required for this movement. Then an

example movement is given.

A single sliding movement of a node u is a one-step horizontal or vertical movement

“over” a horizontal or vertical line of (neighboring) nodes of length 2. In particular, if

(i, j) is the current position of u, then u can slide rightwards to position (i, j + 1) iff

(i, j + 1) is not occupied and there exist nodes at positions (i− 1, j) and (i− 1, j + 1)

or at positions (i+ 1, j) and (i+ 1, j + 1), or both. Precisely the same definition holds

for up, left, and down sliding movements by rotating the whole system 90 , 180, and

270 degrees counterclockwise, respectively. Intuitively, a node can slide one step in one

direction if there are two consecutive nodes either immediately “below” or immediately

“above” that direction that can assist the node slide (see Figure 4.2). 5

i+ 1

i

i− 1

j + 1j

sliding is possible after sliding

Figure 4.2: Sliding to the right. Either the two light blues (dots in row i + 1;
appearing gray in print) or the two blacks (dots in row i − 1) and an empty cell at
position (i, j + 1) are required for this movement. Then an example movement with

the two blacks is given.

Let A and B be two shapes. We say that A transforms to B via a movement m

(which can be either a rotation or a sliding), denoted A
m→ B, if there is a node u in

A such that if u applies m, then the shape resulting after the movement is B (possibly

5Observe that there are plausible variants of the present definition of sliding, such as to slide with
nodes at (i − 1, j) and (i + 1, j + 1) or even with a single node at (i − 1, j) or at (i + 1, j). In this
chapter, though, we only focus on our original definition.
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after rotations and translations of the resulting shape, depending on the application).

We say that A transforms in one step to B (or that B is reachable in one step from

A), denoted A → B, if A
m→ B for some movement m. We say that A transforms to

B (or that B is reachable from A) and write A ⇝ B, if there is a sequence of shapes

A = C0, C1, . . . , Ct = B, such that Ci → Ci+1 for all i, 0 ≤ i < t. We should mention

that we do not always allow m to be any of the two possible movements. In particular,

in Sections 4.3 and 4.4 we only allow m to be a rotation. We shall clearly explain

what movements are permitted in each part of the chapter. Observe now that both

rotation and sliding are reversible movements, a fact that we extensively use in our

results. Based on this, we may prove that:

Proposition 4.1. The relation “transforms to” (i.e., ‘⇝’) is a partial equivalence

relation.

Proof. The relation ‘⇝’ is a binary relation on shapes. To show that it is a partial

equivalence relation, we have to show that it is symmetric and transitive.

For symmetry, we have to show that for all shapes A and B, if A⇝ B then B ⇝ A.

It suffices to show that for all A,B, if A → B then B → A, meaning that every one-

step transformation (which can be either a single rotation or a single sliding) can be

reversed. For the rotation case, this follows by observing that a rotation of a node u can

be performed iff there are two consecutive empty positions in its trajectory. When u

rotates, it leaves its previous position empty, thus, leaving in this way two consecutive

positions empty for the reverse rotation to become enabled. The argument for sliding

is similar.

For transitivity, we have to show that for all shapes A, B, and C, if A ⇝ B

and B ⇝ C then A ⇝ C. By definition, A ⇝ B if there is a sequence of shapes

A = C0, C1, . . . , Ct = B, such that Ci → Ci+1 for all i, 0 ≤ i < t and B ⇝ C if there

is a sequence of shapes B = Ct, Ct+1, . . . , Ct+l = C, such that Ci → Ci+1 for all i,

t ≤ i < t+ l. So, for the sequence A = C0, C1, . . . , Ct = B,Ct+1, . . . , Ct+l = C it holds

that Ci → Ci+1 for all i, 0 ≤ i < t+ l, that is, A⇝ C.

When the only available movement is rotation, there are shapes in which no rota-

tion can be performed (such examples are provided in Section 4.3). If we introduce a

null rotation, then every shape may transform to itself by applying the null rotation.

That is, reflexivity is also satisfied, and, together with symmetry and transitivity from

Proposition 4.1, ‘⇝’ (by rotations only) becomes an equivalence relation.

Definition 4.2. Let A be a connected shape. Color black each cell of the grid that

is occupied by a node of A. A cell (i, j) is part of a hole of A if every infinite length

single path starting from (i, j) (moving only horizontally and vertically) necessarily

goes through a black cell. Color black also every cell that is part of a hole of A, to
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obtain a compact black shape A′. Consider now polygons defined by unit-length line

segments of the grid. Define the perimeter of A as the minimum-area such polygon

that completely encloses A′ in its interior. The fact that the polygon must have an

interior and an exterior follows directly from the Jordan curve theorem [116].

Definition 4.3. Now, color red any cell of the grid that has contributed at least one

of its line segments to the perimeter and is not black (i.e., is not occupied by a node of

A). Call this the cell-perimeter of shape A. See Figure 4.3 for an example.

Figure 4.3: The perimeter (polygon of unit-length dashed line segments colored
light blue; appearing dashed gray in print) and the cell-perimeter (cells colored red;
appearing gray in print, throughout the chapter) of a shape A (white spherical nodes;
their corresponding cells have been colored black). The dashed black cells correspond

to a hole of A.

Definition 4.4. The external surface of a connected shape A, is a shape B, not nec-

essarily connected, consisting of all nodes u ∈ A such that u occupies a cell defining at

least one of the line segments of A’s perimeter.

Definition 4.5. The extended external surface of a connected shape A, is defined

by adding to A’s external surface all nodes of A whose cell shares a corner with A’s

perimeter (for example, the black node just below the hole in Figure 4.3).

Proposition 4.6. The extended external surface of a connected shape A, is itself a

connected shape.

Proof. The perimeter of A is connected, actually, it is a cycle. This connectivity is

preserved by the extended external surface, as whenever the perimeter moves straight,

we have two horizontally or vertically neighboring nodes on the extended external

surface and whenever it makes a turn, we either stay put or preserve connectivity via an

intermediate diagonal node (from those nodes used to extend the external surface).
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Observe, though, that the extended external surface is not necessarily a cycle. For

example, the extended external surface of a line-shape is equal to the shape itself (and,

therefore, a line).

4.2.1 Problem Definitions

We here provide formal definitions of all the transformation problems that are consid-

ered in this chapter.

Rot-Transformability. Given a connected initial shape A and a connected target

shape B, decide whether A can be transformed to B (under translations and rotations

of the shapes) using only a sequence of rotation movements.

RotC-Transformability. The special case of Rot-Transformability in which

A and B are again connected shapes and connectivity must be preserved throughout

the transformation.

RS-Transformability. Given a connected initial shape A and a connected target

shape B, decide whether A can be transformed to B (under translations and rotations

of the shapes) by a sequence of rotation and sliding movements.

Minimum-Seed-Determination. Given an initial shape A and a target shape B (usually

only with rotation available and a proof that A and B are not transformable to each

other without additional assumptions) determine a minimum-size seed and an initial

positioning of that seed relative to A that makes the transformation from A to B fea-

sible. There are several meaningful variations of this problem. For example, the seed

may or may not be eventually part of the target shape or the seed may be used as an

intermediate step to show feasibility with “external” help and then be able to show

that, instead of externally providing it, it is possible to extract it from the initial shape

A via a sequence of moves. We will clearly indicate which version is considered in each

case.

In the above problems, the goal is to show feasibility of a set of transformation

instances and, if possible, to provide an algorithm that decides feasibility. 6

In the last part of the chapter, we consider distributed transformation tasks. There,

the nodes are distributed processes able to perform communicate-compute-move rounds

and the goal is to program them so that they (algorithmically) self-transform their

6An immediate next goal is to devise an algorithm able to compute an actual transformation or even
compute or approximate the optimum transformation (usually w.r.t. the number of moves). We leave
these as interesting open problems.
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initial arrangement to a target arrangement.

Distributed-Transformability. Given an initial shape A and a target shape B (usu-

ally by having access to both rotation and sliding), the nodes (which are now dis-

tributed processes), starting from A, must transform themselves to B by a sequence of

communication-computation-movement rounds. In the distributed transformations, we

mostly consider the case in which A can be any connected shape and B is a spanning

line, i.e., a linear arrangement of all the nodes.

4.3 Rotation

In this section, the only permitted movement is 90rotation around a neighbor. Our

main result in this section is that Rot-Transformability ∈ P.

Consider a black and red checkered coloring of the 2D grid, similar to the coloring

of a chessboard. Then any shape S may be viewed as a colored shape consisting of

b(S) blacks and r(S) reds (b(S) and r(S) denoting the number of black and reds,

respectively, of a shape S). Call two shapes A and B color-consistent if b(A) = b(B)

and r(A) = r(B) and call them color-inconsistent otherwise. Call a transformation

from a shape A to a shape C color-preserving if A and C are color consistent. Observe

now, that if A → B, then A and B are color-consistent, because a rotation can never

move a node to a position of different color than its starting position. This implies that

if A ⇝ C, then A and C are color-consistent, because any two consecutive shapes in

the sequence are color-consistent. We conclude that:

Observation 7. The rotation movement is color-preserving. Formally, A ⇝ C (re-

stricted to rotation only) implies that A and C are color-consistent. In particular,

every node beginning from a black (red) position of the grid, will always be on black

(red, respectively) positions throughout a transformation consisting only of rotations.

Based on this property of the rotation movement, we may call each node black or

red throughout a transformation, based only on its initial coloring. Observation 7 gives

a partial way to determine that two shapes A and B cannot be transformed to each

other by rotations.

Proposition 4.7. If two shapes A and B are color-inconsistent, then it is impossible

to transform one to the other by rotations only.

We now show that two shapes being color-consistent does not necessarily mean

that they can be transformed to each other by rotations. We begin with a proposition

relating the number of black and red nodes in a connected shape.

Proposition 4.8. A connected shape with k blacks has at least ⌈(k−1)/3⌉ and at most

3k + 1 reds.
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Proof. For the upper bound, observe that a black can hold up to 4 distinct reds in its

neighborhood, which implies that k blacks can hold up to 4k reds in total, even if the

blacks were not required to be connected to each other. To satisfy connectivity, every

black must share a red with some other black (if a black does not satisfy this, then it

cannot be connected to any other black). Any such sharing reduces the number of reds

by at least 1. As at least k − 1 such sharings are required for each black to participate

in a sharing, it follows that we cannot avoid a reduction of at least k− 1 in the number

of reds, which leaves us with at most 4k − (k − 1) = 3k + 1 reds.

For the lower bound, if we invert the roles of blacks and reds, we have that l

reds can hold at most 3l + 1 blacks. So, if k is the number of blacks, it holds that

k ≤ 3l + 1 ⇔ l ≥ (k − 1)/3 and due to the fact that the number of reds must be an

integer, we conclude that for k blacks the number of reds must be at least ⌈(k−1)/3⌉.

Proposition 4.9. There is a generic connected shape, called line-with-leaves, that has

a color-consistent version for any connected shape. In other words, for k blacks it covers

the whole range of reds from ⌈(k − 1)/3⌉ to 3k + 1 reds.

Proof. Let red be the majority color of A and k be the number of black nodes of A.

Consider a line of alternating red and black nodes, starting and ending with a black

node, such that all k black nodes are exhausted (see Figure 4.4). To do this, k− 1 reds

are needed in order to alternate blacks and reds on the line. Next, “saturate” every

black (i.e. maximize its degree) by adding as many red nodes as it can fit around it

(recall that the maximum degree of every node is 4). The resulting saturated shape has

k blacks and 3k + 1 reds. This shape covers the 3k + 1 upper bound on the possible

number of reds. By removing red leaf-nodes (i.e., of degree 1) one after the other, we

can achieve the whole range of numbers of reds, from k − 1 to 3k + 1 reds. It suffices

to restrict attention to the range from k to 3k+1 reds. Take now any connected shape

A and color it in such a way that red is the majority color, that is l ≥ k, where l is the

number of reds and k is the number of blacks (there is always a way to do that). From

the upper bound of Proposition 4.8, l can be at most 3k+1, so we have k ≤ l ≤ 3k+1

for any connected shape A, which falls within the range that the line-with-leaves can

represent. Therefore, we conclude that any connected shape A has a color-consistent

shape B from the line-with-leaves family.

Figure 4.4: A saturated line-with-leaves shape, in which there are k = 5 blacks and
3k + 1 = 16 reds.
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Based on this, we now show that the inverse of Proposition 4.7 is not true, that is,

it does not hold that any two color-consistent shapes can be transformed to each other

by rotations.

Proposition 4.10. There is an infinite set of pairs (A,B) of connected shapes, such

that A and B are color-consistent but cannot be transformed to each other by rotations

only.

Proof. For shape A, take a rhombus as shown in Figure 4.5, consisting of k2 blacks and

(k + 1)2 reds, for any k ≥ 2. In this shape, every black node is “saturated”, meaning

that it has 4 neighbors, all of them necessarily red. This immediately excludes the

blacks from being able to move, as all their neighboring positions are occupied by reds.

But the same holds for the reds, as all potential target-positions for a rotation are

occupied by reds. Thus, no rotation movement can be applied to any such shape A and

A can only be transformed to itself (by null rotations). By Proposition 4.9, any such

A has a color-consistent shape B from the family of line-with-leaves shapes, such that

B ̸= A (actually in B several blacks may have degree 3 in contrast to A where all blacks

have degree 4). We conclude that A and B are distinct color-consistent shapes which

cannot be transformed to each other, and there is an infinite number of such pairs, as

the number k2 of black nodes of A can be made arbitrarily large.

Figure 4.5: A rhombus shape, consisting of k2 = 9 blacks and (k + 1)2 = 16 reds.

Propositions 4.7 and 4.10 give a partial characterization of pairs of shapes that

cannot be transformed to each other. Observe that the impossibilities proved so far

hold for all possible transformations based on rotation only, including those that are

allowed to break connectivity.

A small shape of particular interest is a bi-color pair or 2-line. Such pairs can move

easily in any direction, which makes them very useful components of transformations.

One way to simplify some transformations would be to identify as many such pairs as

possible in a shape and treat them in a different way than the rest of the nodes. A

question in this respect is whether all the minority-color nodes of a connected shape

can be completely matched to (distinct) nodes of the majority color. We show that this

is not true.
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Proposition 4.11. There is an infinite family of connected shapes such that if A is a

shape of size n in the family, then any matching of A leaves at least n/8 nodes of each

color unmatched.

Proof. The counterexample is given in Figure 4.6. The shape consists of a square and

a number of flowers emanating from it. A red flower is one with three red petals and

a black centre and inversely for black flowers. Observe first that any two consecutive

flowers on square cannot be of the same color. We can partition the shape into sub-

shapes consisting of 6 nodes of the square and 2 flowers, i.e., 16 nodes in total (such

as the top left sub-shape highlighted in Figure 4.6). Then it is sufficient to observe

that any at least two petals of any flower cannot get matched to a neighbor of opposite

color, therefore 2 red nodes for the red flower and 2 black nodes from the black flower

will remain unmatched, which corresponds to 1/8 of the nodes of the sub-shape will be

unmatched reds and another 1/8 will be unmatched blacks.

Figure 4.6: The counterexample.

Recall thatRot-Transformability is the language of all transformation problems

between connected shapes that can be solved by rotation only andRotC-Transforma-

bility is its subset obtained by the restriction that the transformation should not

break the connectivity of the shape at any point during the transformation. We begin

by showing that the inclusion between the two languages is strict, that is, there are

strictly more feasible transformations if we allow connectivity to break. We prove this

by showing that there is a feasible transformation, namely folding a spanning line in

half, in Rot-Transformability\RotC-Transformability.

Theorem 4.12. RotC-Transformability ⊂ Rot-Transformability.

Proof. RotC-Transformability ⊆ Rot-Transformability is immediate, as any

transformation using only rotations that does not break the shape’s connectivity is also
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a valid transformation for Rot-Transformability. So, it suffices to prove that there

is a transformation problem in Rot-Transformability\RotC-Transformability.

Consider a (connected) horizontal line of any even length n, and let u1, u2, . . . , un be

its nodes. The transformation asks to fold the line onto itself, forming a double-line of

length n/2 and width 2, i.e., a n/2× 2 rectangle.

It is easy to observe that this problem is not in RotC-Transformability for any

n > 4: the only nodes that can rotate without breaking connectivity are u1 and un,

but any of their two possible rotations only enables a rotation that will bring the nodes

back to their original positions. This means that, if the transformation is not allowed to

break connectivity, then such a shape is trapped in a loop in which only the endpoints

can rotate between three possible positions, therefore it is impossible to fold a line of

length greater than 4.

On the other hand, if connectivity can be broken, we can perform the transformation

by the following simple procedure, consisting of n/4 phases: In the beginning of every

phase i ∈ {1, 2, . . . , ⌊n/4⌋}, pick the nodes u2i−1, u2i, which shall at that point be the

two leftmost nodes of the original line. Rotate u2i−1 once clockwise, to move above u2i,

then u2i three times clockwise to move to the right of u2i−1 (the first of these three

rotations breaks connectivity and the third restores it), and then rotate u2i−1 twice

clockwise to move to the right of u2i, then u2i twice clockwise to move to the right

of u2i−1 and repeat this alternation until the pair that moves to the right meets the

previous pair, which will be when u2i−1 becomes the left neighbor of u2i−2 on the upper

line of the rectangle under formation, or, in case i = 1, when u2i−1 goes above un (see

Figure 4.7). If n/4 is not an integer, then perform a final phase, in which the leftmost

node of the original line is rotated once clockwise to move above its right neighbor, and

this completes folding.

This means that allowing the connectivity to break enables more transformations,

and this motivates us to start from this simpler case. But we already know from

Proposition 4.10 that even in this case an infinite number of pairs of shapes cannot be

transformed to each other. Aiming at a general transformation, we ask whether there

is some minimal addition to a shape that would allow it to transform. The solution

turns out to be as small as a 2-line seed (a bi-color pair, usually referred to as “2-line”

or “2-seed”) lying initially somewhere “outside” the boundaries of the shape (e.g., just

below the lowest row occupied by the shape).

Based on the above assumptions, we shall now prove that any pair of color-consistent

connected shapes A and B can be transformed to each other. Recall from the discussion

before Proposition 4.11 that 2-line shapes can move freely in any direction. The idea is

to exploit the fact that the 2-line can move freely in any direction and to use it in order to

extract from A another 2-line. In this way, a 4-line seed is formed, which can also move
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Figure 4.7: Line folding.

freely in all directions. Then we use the 4-line as a transportation medium for carrying

the nodes of A, one at a time. We exploit these mobility mechanisms to transform

A into a uniquely defined shape from the line-with-leaves family of Proposition 4.9.

But if any connected shape A with an extra 2-line can be transformed to its color-

consistent line-with-leaves version with an extra 2-line, then this also holds inversely due

to reversibility, and it follows that any A can be transformed to any B by transforming

A to its line-with-leaves version LA and then inverting the transformation from B to

LB = LA.

Theorem 4.13. If connectivity can break and there is a 2-line seed provided “outside”

the initial shape, then any pair of color-consistent connected shapes A and B can be

transformed to each other by rotations only.

Proof. Without loss of generality (abbreviated “w.l.o.g.” throughout), due to symmetry

and the 2-line’s unrestricted mobility, it suffices to assume that the seed is provided

somewhere below the lowest row l occupied by the shape A. We show how A can be

transformed to LA with the help of the seed. We define LA as follows: Let k be the

cardinality of the minority color, let it be the black color. As there are at least k reds,

we can create a horizontal line of length 2k, i.e., u1, u2, . . . , u2k, starting with a black

(i.e., u1 is black), and alternating blacks and reds. In this way, the blacks are exhausted.

The remaining ≤ (3k+1)−k = 2k+1 reds are then added as leaves of the black nodes,

starting from the position to the left of u1 and continuing counterclockwise, i.e., below

u1, below u3, ..., below u2k−1, above u2k−1, above u2k−3, and so on. This gives the same



Chapter 4. Programmable Matter 102

shape from the line-with-leaves family, for all color-consistent shapes (observe that the

leaf to the right of the line is always placed). LA shall be constructed on rows l − 5 to

l−3 (not necessarily inclusive), with u1 on row l−4 and a column j preferably between

those that contain A.

First, extract a 2-line from A, from row l, so that the 2-line seed becomes a 4-line

seed. To see that this is possible for every shape A of order at least 2, distinguish the

following two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can

leave the shape without any help and approach the 2-seed. (ii) If not, then take any

node u of row l. As A is connected and has at least two nodes, u must have a neighbor

v above it. The only possibility that the 2-line u,v is not free to leave A is when v has

both a left and a right neighbor. Figure 4.8 shows how this can be resolved with the

help of the 2-line seed (now the 2-line seed approaches and extracts the 2-line).

2-line seed binds

4-line constructed

2-line unable to leave

(a) (b) (c)

(d) (e)

Figure 4.8: Extracting a 2-line with the help of the 2-line seed.

To transform A to LA, given the 4-line seed, do the following:

• While black is still present in A:

– If on the current lowest row occupied by A, there is a 2-line that can be ex-

tracted alone and moved towards LA, then perform the shortest such move-

ment that attaches the 2-line to the right endpoint of LA’s line u1, u2, . . ..

– If not, then do the following. Maintain a repository of nodes at the empty

space below row l− 7, initially empty. If, either in the lowest row of A or in

the repository, there is a node of opposite color than the current color of the

right endpoint of LA’s line, use the 4-line to transfer such a node and make

it the new right endpoint of LA’s line. Otherwise, use the 4-line to transfer

a node of the lowest row of A to the repository.

• Once black has been exhausted from A and the repository (i.e., when u2k−3 has

been placed; u2k−1 and u2k will only be placed in the end as they are part of
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the 4-line), transfer a red to position u2k−2. If there are no more nodes left, run

the termination phase, otherwise transfer the remaining nodes (all red) with the

4-line, one after the other, and attach them as leaves around the blacks of LA’s

line, beginning from the position to the left of u1 counterclockwise, as described

above (skipping position u2k).

• Termination phase: the line-with-leaves is ready, apart from positions u2k−1, u2k

which require a 2-line from the 4-line. If the position above u2k−1 is empty, then

extract a 2-line from the 4-line and transfer it to the positions u2k−1, u2k. This

completes the transformation. If the position above u2k−1 is occupied by a node

u2k+1, then place the whole 4-line vertically with its lowest endpoint on u2k (as

in Figure 4.9). Then rotate the top endpoint counterclockwise to move above

u2k+1, then rotate u2k+1 clockwise around it to move to its left, then rotate the

node above u2k counterclockwise to move to u2k−1, and finally restore u2k+1 to its

original position. This completes the construction (the 2-line that always remains

can be transferred in the end to a predetermined position).

(a) (b) (c)

(d) (e) (f)

Figure 4.9: The termination phase of the transformation.

The natural next question is to what extent the 2-line seed assumption can be

dropped. Clearly, by Proposition 4.10, this cannot be always possible. The following

corollary gives a sufficient condition to drop the 2-line seed assumption, without looking

deep into the structure of the shapes that satisfy it.

Corollary 4.14. Assume rotations only and that connectivity can break. Let A and B

be two color-consistent connected shapes such that each one of them can self-extract a

2-line. Then A and B can be transformed to each other.
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We remind that a rotation move in a grid can occur towards four directions: North

East(1), SouthEast(2), SouthWest(3), NorthWest(4). In order for the first move to

occur, a node has to be present North OR East but not both, and similarly for the

other directions. If the connectivity of the shape can be broken and two nodes, u and

v, are next to each other and u can perform a rotation using v, then v can perform a

rotation using u if the connectivity of the shape can be broken.

We now arrive at a sufficient and necessary condition for dropping the 2-line seed

assumption.

Lemma 4.15. A 2-seed can be extracted from a shape A iff at least one node of A can

rotate.

Proof. If no node of A can rotate, then no movement is possible and trivially a 2-seed

cannot be extracted from the shape. Therefore it suffices to prove that if any node of

A can rotate then a 2-seed can be extracted from A (meaning that after a sequence

of permissible movements a 2-seed will end up at the exterior of A, i.e., outside its

perimeter). We distinguish two cases:

• Case 1: There is a node u incident to the perimeter of A that can move. In this

case, there must be at least two neighboring nodes u, v at positions (i, j), (i, j+1)

such that there are no nodes at position (i + 1, j), (i + 1, j + 1) or in another

symmetric orientation. In any of these cases, the 2-seed consists of the nodes

u, v and can readily be extracted from shape A. The only exception is when the

empty space is part of a tunnel of width 1. In this case, by focusing to the nodes

adjacent to the outermost two empty cells of the tunnel, these two nodes can be

extracted as a 2-seed.

• Case 2: There is an internal node u (i.e., not incident to the perimeter) of A

that can move. In this case, w.l.o.g. (because all other cases are symmetric to

the one considered) there must be two consecutive empty cells (i, j), (i, j+1) with

the two cells (i − 1, j), (i − 1, j + 1) below them being occupied by nodes. It is

straightforward to reconfigure these four cells by two permissible rotations, so that

cells (i− 1, j), (i− 1, j + 1) become now empty and cells (i, j), (i, j + 1) occupied.

By induction, as long as the cells below are occupied we can continue shifting the

two consecutive empty cells downwards. If we now focus on the downmost 2 such

empty cells irrespective of their orientation (the other directions are symmetric)

then shifting them downwards until the perimeter is reached is always possible as

the space between those cells and the perimeter is filled with nodes apart possibly

from isolated empty cells (i.e., an empty cell surrounded by nodes). In all these

cases downward shifting can continue until the perimeter is reached, and when

that happens a movement becomes available at the perimeter which is covered by

the previous case.
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Theorem 4.16. Rot-Transformability ∈ P.

Proof. In Lemma 4.15, we proved that we can extract a 2-seed from a shape iff a move

is initially available. By Theorem 4.13, if both shapes A and B have a 2-seed available

then they can be transformed to each other. It follows that two shapes A and B can

be transformed to each other iff both have a move available. If yes, accept, otherwise,

reject. These checks can be easily performed in polynomial time as follows. Consider a

n×n grid, in which any shape with n nodes can fit. The time it takes for an algorithm

to check if one of the shapes has a move available is O(n). If for example the algorithm

checks each individual node, that takes O(1) time and, therefore, O(n) time for n nodes.

So for two shapes it takes O(n) time to check if a move is available in each of the shapes.

Thus, the problem belongs to P.

4.4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected

shape A into one of its color-consistent shapes B using only rotations without ever

breaking the connectivity of the shape on the way. As already mentioned in the intro-

duction, connectivity preservation is a very desirable property for programmable mat-

ter, as, among other positive implications, it guarantees that communication between

all nodes is maintained, it minimizes transformation failures, requires less sophisticated

actuation mechanisms, and increases the external forces required to break the system

apart.

We begin by proving that RotC-Transformability can be decided in determin-

istic polynomial space.

Theorem 4.17. RotC-Transformability ∈ PSPACE.

Proof. We first present a nondeterministic Turing machine (NTM) N that decides

RotC-Transformability in polynomial space. N takes as input two shapes A and

B, both consisting of n nodes and at most 4n edges. A reasonable representation is in

the form of a binary n × n matrix (representing a large enough sub-area of the grid)

where an entry is 1 iff the corresponding position is occupied by a node. Given the

present configuration C, where C = A initially, N nondeterministically picks a valid

rotation movement of a single node. This gives a new configuration C ′. Then N re-

places the previous configuration with C ′ in its memory, by setting C ← C ′. Moreover,

N maintains a counter moves (counting the number of moves performed so far), with

maximum value equal to the total number of possible shape configurations, which is at

most 2n
2
in the binary matrix encoding of configurations. To set up such a counter,



Chapter 4. Programmable Matter 106

N just have to reserve for it n2 (binary) tape-cells, all initialized to 0. Every time N

makes a move, as above, after setting a value to C ′ it also increases moves by 1, i.e.,

sets moves← moves+1. Then N takes another move and repeats. If it ever holds that

C ′ = B (may require N to perform a polynomial-space pattern matching on the n× n

matrix to find out), then N accepts. If it ever holds that the counter is exhausted, that

is, all its bits are set to 1, N rejects. If A can be transformed to B, then there must be

a transformation beginning from A and producing B, by a sequence of valid rotations,

without ever repeating a shape. Thus, some branch of N ’s computation will follow such

a sequence and accept, while all non-accepting branches will reject after at most 2n
2

moves (when moves reaches its maximum value). If A cannot be transformed to B,

then all branches will reject after at most 2n
2
moves. Thus, N correctly decides RotC-

Transformability. Every branch of N , at any time, stores at most two shapes (the

previous and the current), which requires O(n2) space in the matrix representation, and

a 2n
2
-counter which requires O(n2) bits. It follows that every branch uses space polyno-

mial in the size of the input. So, far we have proved that RotC-Transformability

is decidable in nondeterministic polynomial (actually, linear) space. By applying Sav-

itch’s theorem [117] 7, we conclude that RotC-Transformability is also decidable

in deterministic polynomial space (actually, quadratic), i.e., it is in PSPACE.

Recall that in the line folding problem, the initial shape is a (connected) horizontal

line of any even length n, with nodes u1, u2, . . . , un, and the transformation asks to fold

the line onto itself, forming a double-line of length n/2 and width 2. As part of the

proof of Theorem 4.12, it was shown that if n > 4, then it is impossible to solve the

problem by rotation only (if n = 4, it is trivially solved, just by rotating each endpoint

above its unique neighbor). In the next proposition, we employ again the idea of a seed

to show that with a little external help the transformation becomes feasible.

Proposition 4.18. If there is a 3-line seed v1, v2, v3, horizontally aligned over nodes

u3, u4, u5 of the line, then the line can be folded without breaking connectivity.

Proof. We distinguish two cases, depending on whether we want the seed to be part of

the final folded line or not. If yes, then we can either use a 4-line seed directly, over

nodes u3, u4, u5, u6, or a 3-line seed but require n to be odd (so that n+ 3 is even). If

not, then n must be even. We show the transformation for the first case, with n odd

and a 3-line seed (the other cases can be then treated with minor modifications).

We first show a simple reduction from an odd line with a 3-line seed starting over its

third node to an even line with a 4-line seed starting over its third node. By rotating u1

clockwise over u2, we obtain the 4-line seed u1, v1, v2, v3. It only remains to move the

7Informally, Savitch’s theorem establishes that any NTM that uses f(n) space can be converted to a
deterministic TM that uses only f2(n) space. Formally, it establishes that for any function f : N → N,
where f(n) ≥ logn, NSPACE(f(n)) ⊆ SPACE(f2(n)).
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whole seed two positions to the right (by rotating each of its 2-lines clockwise around

themselves). In this manner, we obtain an even-length line u2, . . . , un and a 4-line seed

starting over its third node, without breaking connectivity. Therefore, in what follows

we may assume w.l.o.g. (due to the described reduction) that the initial shape is an

even-length line u1, u2, . . . , un with a 4-line seed v1, v2, v3, v4 horizontally aligned over

nodes u3, u4, u5, u6. Now, Figure 4.10 gives a step-by-step procedure (call it a phase)

to exploit this 4-line seed in order to remove two nodes from the leftmost part of the

line (e.g., nodes u1 and u2 in Figure 4.10) and add them to the line to be formed over

the original line (i.e., initially two nodes shall be transferred over the rightmost part

of the line; nodes v1 and v4 in Figure 4.10). By the end of a phase, the left part of

the shape is identical in structure to the original one, having the 4-line seed at exactly

the same position relative to the line as before, therefore the same procedure can be

repeated over and over until the line has been completely folded.

As already shown in Theorem 4.12, the connectivity-preservation constraint in-

creases the class of infeasible transformations. As highlighted in Proposition 4.18, a

convenient turnaround in such cases could be to introduce a suitable seed that can

assist the transformation. So, for instance, in Proposition 4.18 we circumvented the

impossibility of folding a line u1, u2, . . . , un in half, by adding a 3-line seed v1, v2, v3,

horizontally aligned over nodes u3, u4, u5 of the line. Interestingly, adding the seed

over nodes u4, u5, u6 does not work. Therefore, given an infeasible transformation, a

natural next question is to find a minimum seed (could be any connected small shape,

not necessarily a line) and a placement of that seed that enables the transformation

(Minimum-Seed-Determination problem). In the following theorem we try to identify

a minimum seed that can walk the perimeter of any shape. We leave as an interesting

open problem whether such a shape is able to move nodes gradually to a predetermined

position, in order to transform the initial shape into a line-with-leaves (as in Theorem

4.13, but without ever breaking connectivity this time). 8

Theorem 4.19. If connectivity must be preserved: (i) Any (≤ 4)-seed cannot traverse

the perimeter of a line, (ii) A 6-seed can traverse the perimeter of any orthogonally

convex shape.

4.5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements. We be-

gin by proving (in Theorem 4.23) that rotation and sliding together are transformation-

universal, meaning that they can transform any given shape to any other shape of the

8Another way to view this, is as an attempt to simulate the universal transformations based on
combined rotation and sliding (presented in Section 4.5), in which single nodes are able to walk the
perimeter of the shape.
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Figure 4.10: The main subroutine (i.e., a phase) of line folding with connectivity
preservation.

same size without ever breaking the connectivity during the transformation. It would

be useful for the reader to recall Definitions 4.2, 4.3, 4.4, and 4.5 and Proposition 4.6,

from Section 4.2, as the results that follow make extensive use of them.

As the perimeter is a (connected) polygon, it can be traversed by a “particle”

walking on its edges (the unit-length segments). We call it a particle as an imaginary

entity that can walk through the edges of the grid and distinguish from nodes of the

shape that may move form cell to cell. We now show how to “simulate” the particle’s

movement and traverse the cell-perimeter by a node, using rotation and sliding only. If

needed, the reader is encouraged to refresh notions like “line segment” and “perimeter”

by looking at Figure 4.3 in Section 4.2. Additionally, staying consistent with Figure
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4.3, we partition the cells of the grid into red, which are the cells of the cell-perimeter,

and black, which are the cells occupied by the shape.

Lemma 4.20. If we place a node u on any position of the cell-perimeter of a connected

shape A, then u can walk the whole cell-perimeter and return to its original position by

using only rotations and slidings.

Proof. We show how to “simulate” the walk of a particle moving on the edges of the

perimeter. The simulation implements the following simple rules:

1. If both the current line segment traversed by the particle and the line segment

traversed in the previous step correspond to edges of the same red cell, then stay

put.

2. If not:

(a) If the two consecutive line segments traversed form a line segment of length

2, then move by sliding one position in the same direction as the particle.

(b) If the two consecutive line segments traversed are perpendicular to each

other, then move by a single rotation in the same direction as the particle. 9

It remains to prove that u can indeed always perform the claimed movements. (1)

is trivial. The node temporarily stops at a “corner” and always moves in the next step

according to condition 2. For (2.a), a line segment of length 2 on the perimeter is always

defined by two consecutive blacks to the interior and two consecutive empty cells to the

exterior (belonging to the cell-perimeter), therefore, u can slide on the empty cells. For

(2.b), there must be a black in the internal angle defined by the line segments (because,

by Definition 4.2 we have colored black all cells in the interior of the perimeter, that is

the shape itself plus its holes if any) and an empty cell diagonally to it, in the exterior

(for an example, see the right black node on the highest row containing nodes of A, in

Figure 4.3, Section 4.2). Therefore, rotation can be performed.

Next, we shall prove that u need not be an additional node, but actually a node

belonging to the shape, and in particular one of those lying on the shape’s boundary.

Lemma 4.21. Let A be a connected shape of order at least 2. Then there is a subset

R of the nodes on A’s external surface, such that |R| ≥ 2 and for all u ∈ R, if we

completely remove u from A, then the resulting shape A′ = A− {u} is also connected.

Proof. If the extended external surface of A contains a cycle, then such a cycle must

necessarily have length at least 4 (due to geometry). In this case, any node of the

9Observe that when these perpendicular line segments correspond to edges of the same red cell, then
the node will not rotate but will instead stay put due to prior execution of rule 1.
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intersection of the external surface (non-extended) and the cycle can be removed with-

out breaking A’s connectivity. If the extended external surface of A does not contain

a cycle, then it corresponds to a tree graph which by definition has at least 2 leaves,

i.e., nodes of degree exactly 1. Any such leaf can be removed without breaking A’s

connectivity. In both cases, |R| ≥ 2.

Lemma 4.22. Pick any u ∈ R (R defined on a connected shape A as above). Then u

can walk the whole cell-perimeter of A′ = A− {u} by rotations and slidings.

Proof. It suffices to observe that u already lies on the cell-perimeter of A′. Then, by

Lemma 4.20, it follows that such a walk is possible.

We are now ready to state and prove the universality theorem of rotations and

slidings. As already mentioned, this result was first proved in [43], but we here give our

independently developed proof.

Theorem 4.23 ([43]). Let A and B be any connected shapes, such that |A| = |B| = n.

Then A and B can be transformed to each other by rotations and slidings, without

breaking the connectivity during the transformation.

Proof. It suffices to show that any connected shape A can be transformed to a span-

ning line L using only rotations and slidings and without breaking connectivity during

the transformation. If we show this, then A can be transformed to L and B can be

transformed to L (as A and B have the same order, therefore correspond to the same

spanning line L), and by reversibility of these movements, A and B can be transformed

to each other via L.

Pick the rightmost column of the grid containing at least one node of A, and consider

the lowest node of A in that column. Call that node u. Observe that all cells to the

right of u are empty. Let the cell of u be (i, j). The final constructed line will start at

(i, j) and end at (i, j + n− 1).

The transformation is partitioned into n − 1 phases. In each phase k, we pick a

node from the original shape and move it to position (i, j + k), that is, to the right of

the right endpoint of the line formed so far. In phase 1, position (i, j + 1) is a cell of

the cell-perimeter of A. So, even if it happens that u is a node of degree 1, by Lemma

4.21, there must be another such node v ∈ A that can walk the whole cell-perimeter of

A′ = A − {v} (the latter, due to Lemma 4.22). As u ̸= v, (i, j + 1) is also part of the

cell-perimeter of A′, therefore, v can move to (i, j+1) by rotations and slidings. As A′ is

connected (by Lemma 4.21), A′∪{(i, j+1)} is also connected and also all intermediate

shapes were connected, because v moved on the cell-perimeter and, therefore, it never

disconnected from the rest of the shape during its movement.

In general, the transformation preserves the following invariant. At the beginning

of phase k, 1 ≤ k ≤ n− 1, there is a connected shape S(k) (where S(1) = A) to the left
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of column j (j inclusive) and a line of length k− 1 starting from position (i, j +1) and

growing to the right. Restricting attention to S(k), there is always a v ̸= u that could

(hypothetically) move to position (i, j + 1) if it were not occupied. This implies that

before the final movement that would place v on (i, j+1), v must have been in (i+1, j)

or (i + 1, j + 1), if we assume that v always walks in the clockwise direction. Observe

now that from each of these positions v can perform zero or more right slidings above

the line in order to reach the position above the right endpoint (i, j+ k− 1) of the line.

When this occurs, a final clockwise rotation makes v the new right endpoint of the line.

The only exception is when v is on (i+1, j+1) and there is no line to the right of (i, j)

(this implies the existence of a node on (i+1, j), otherwise connectivity of S(k) would

have been violated). In this case, v just performs a single downward sliding to become

the right endpoint of the line.

Theorem 4.24. The transformation of Theorem 4.23 requires Θ(n2) movements in the

worst case.

Proof. A staircase is defined as a shape of the form (i, j), (i − 1, j), (i − 1, j + 1), (i −
2, j + 1), (i − 2, j + 2), (i − 3, j + 2), . . .. Consider such a staircase shape of order n,

as depicted in Figure 4.11. The strategy of Theorem 4.23 will choose to construct the

line to the right of node u. The only node that can be selected to move in each phase

without breaking the shape’s connectivity is the top-left node. Initially, this is v, which

must perform ⌈n/2⌉ movements to reach its position to the right of u. In general, the

total number of movements M , performed by the transformation of Theorem 4.23 on

the staircase, is given by

M =
⌈n
2

⌉
+ 2 ·

(n−3)/2∑
i=1

(⌈n
2

⌉
+ i

)

=
⌈n
2

⌉
(n− 2) + 2 ·

(n−3)/2∑
i=1

i

= Θ(n2).

Theorem 4.24 shows that the above generic strategy is slow in some cases, as is the

case of transforming a staircase shape into a spanning line. We shall now show that

there are pairs of shapes for which any strategy and not only this particular one, may

require a quadratic number of steps to transform one shape to the other.

Definition 4.25. Define the potential of a shape A as its minimum “distance” from

the line L, where |A| = |L|. The distance is defined as follows: Consider any placement

of L relative to A and any pairing of the nodes of A to the nodes of the line. Then
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Figure 4.11: Transforming a staircase into a spanning line.

sum up the Manhattan distances 10 between the nodes of each pair. The minimum

sum between all possible relative placements and all possible pairings is the distance

between A and L and also A’s potential. 11 In case the two shapes do not have an equal

number of nodes, then any matching is not perfect and the distance can be defined as

infinite.

Observe that the potential of the line is 0 as it can be totally aligned on itself and

the sum of the distances is 0.

Lemma 4.26. The potential of the staircase is Θ(n2).

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric.

Any such placement leaves either above or below it at least half of the nodes of the

staircase (maybe minus 1). W.l.o.g. let it be above it. Every two nodes, the height

increases by 1, therefore there are 2 nodes at distance 1, 2 at distance 2,. . ., 2 at distance

n/4. Any matching between these nodes and the nodes of the line gives for every pair a

distance at least as large as the vertical distance between the staircase’s node and the

line, thus, the total distance is at least 2 ·1+2 ·2+ ...+2 ·(n/4) = 2 ·(1+2+ ...+n/4) =

(n/4) · (n/4+1) = Θ(n2). We conclude that the potential of the staircase is Θ(n2).

Theorem 4.27. Any transformation strategy based on rotations and slidings which

performs a single movement per step requires Θ(n2) steps to transform a staircase into

a line.

Proof. To show that Ω(n2) movements are needed to transform the staircase into a line,

it suffices to observe that the difference in their potentials is that much and that one

rotation or one sliding can decrease the potential by at most 1.

10The Manhattan distance between two points (i, j) and (i′, j′) is given by |i− i′|+ |j − j′|.
11To make this constructive, it is sufficient to restrict the possible placements of the line to those

were at least one node of the line overlaps with the shape. Note that even without this, the potential
is finite and well defined as it corresponds to a placement that minimizes the above nonnegative sum.
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Remark 4.28. The above lower bound is independent of connectivity preservation. It

is just a matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in poly-

nomial time, because there is a polynomial-time algorithm for computing the distance

between two shapes.

Proposition 4.29. Let A and B be connected shapes. Then their distance d(A,B) can

be computed in polynomial time.

Proof. The algorithm picks a node u ∈ B, a cell c of the grid occupied by a node

v ∈ A, and an orientation o ∈ north, east, south, west and draws a copy of the shape

B, starting with u on c and respecting the orientation o. Then, it constructs (in its

memory) a complete weighted bipartite graph (X,Y ), where X and Y are equal to the

node-sets of A and B, respectively. The weight w(x, y) for x ∈ X and y ∈ Y is defined as

the distance from x to y (given the drawing of shape B relative to shape A). To compute

the minimum total distance pairing of the nodes ofA andB for this particular placement

of A and B, the algorithm computes a minimum cost perfect matching of (X,Y ), e.g.,

by the Kuhn-Munkres algorithm (a.k.a. the Hungarian algorithm) [118], and the sum

k of the weights of its edges, and sets dist = min{dist, k}, initially dist =∞. Then the

algorithm repeats for the next selection of u ∈ B, cell c occupied by a node v ∈ A, and

orientation o. In the end, the algorithm gives dist as output. To see that dist = d(A,B),

observe that the algorithm just implements the procedure for computing the distance,

of Definition 4.25, with the only differences being that it does not check all pairings of

the nodes, instead directly computes the minimum-cost pairing, and that it does not try

all relative placements of A and B but only those in which A and B share at least one

cell of the grid. To see that this selection is w.l.o.g., assume that a placement of A and

B in which no cell is shared achieves the minimum distance and observe that, in this

case, A could be shifted one step “closer” to B, strictly decreasing their distance and,

thus, contradicting the optimality of such a placement. As the different possible relative

placements of A and B are 4n2 (place each node of B on every node of A and for each

such placement there are 4 possible orientations) and the Kuhn-Munkres algorithm is

a polynomial-time algorithm (in the size of the bipartite graph), we conclude that the

algorithm computes the distance in polynomial time.

To give a faster transformation either pipelining must be used (allowing for more

than one movement in parallel) or more complex mechanisms that move sub-shapes

consisting of many nodes, in a single step. In what remains, we follow the former

approach by allowing an unbounded number of rotation and/or sliding movements to

occur simultaneously in a single step (though, in pairwise disjoint areas).
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4.5.1 Parallelizing the Transformations

We now maintain the connectivity preservation requirement but allow an unbounded

number of rotation and/or sliding movements to occur simultaneously in a single step.

Proposition 4.30. There is a pipelining strategy that transforms a staircase into a

line in O(n) parallel time.

Proof. Number the nodes of the staircase 1 through n starting from the top and fol-

lowing the staircase’s connectivity until the bottom-right node is reached. This gives

an odd-numbered upper diagonal and an even-numbered lower diagonal. Node 1 moves

as in Theorem 4.23. Any even node w starts moving as long as its upper odd neighbor

has reached the same level as w (e.g., node 2 first moves after node 1 has arrived to the

right of node 3). Any odd node z > 1 starts moving as long as its even left neighbor

has moved one level down (e.g., node 3 first moves after node 2 has arrived to the right

of 5). After a node starts moving, it moves in every step as in Theorem 4.23 (but

now many nodes can move in parallel, implementing a pipelining strategy). It can be

immediately observed that any node i starts after at most 3 movements of node i − 1

(actually, only 2 movements for even i), so after roughly at most 3n steps, node n− 2

starts. Moreover, a node that starts, arrives at the right endpoint of the line after at

most n steps, which means that after at most 4n = O(n) steps all nodes have taken

their final position in the line.

Proposition 4.30 gives a hint that pipelining could be a general strategy to speed-up

transformations. We next show how to generalize this technique to any possible pair of

shapes.

Theorem 4.31. Let A and B be any connected shapes, such that |A| = |B| = n. Then

there is a pipelining strategy that can transform A to B (and inversely) by rotations and

slidings, without breaking the connectivity during the transformation, in O(n) parallel

time.

Proof. The transformation is a pipelined version of the sequential transformation of

Theorem 4.23. Now, instead of picking an arbitrary next candidate node of S(k) to

walk the cell-perimeter of S(k) clockwise, we always pick the rightmost clockwise node

vk ∈ S(k), that is, the node that has to walk the shortest clockwise distance to arrive at

the line being formed. This implies that the subsequent candidate node vk+1 to walk,

is always “behind” vk in the clockwise direction and is either already free to move or

is enabled after vk’s departure. Observe that after at most 3 clockwise movements, vk

can no longer be blocking vk+1 on the (possibly updated) cell-perimeter. Moreover, the

clockwise move of vk+1 only introduces a gap in its original position, therefore it only

affects the structure of the cell-perimeter “behind” it. The strategy is to start the walk
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of node vk+1 as soon as vk is no longer blocking its way. As in Proposition 4.30, once

a node starts, it moves in every step, and again any node arrives at the end of the line

being formed after at most n movements. It follows, that if the pipelined movement of

nodes cannot be blocked in any way, after 4n = O(n) steps all nodes must have arrived

at their final positions. Observe now that the only case in which pipelining could be

blocked is when a node is sliding through a (necessarily dead-end) “tunnel” of height

1 (such an example is the red tunnel on the third row from the bottom, in Figure 4.3

of Section 4.2). To avoid this, the nodes shortcut the tunnel, by visiting only its first

position (i, j) and then simply skipping the whole walk inside it (that walk would just

return them to position (i, j) after a number of steps).

We next show that even if A and B are labeled shapes, that is, their nodes are

assigned the indices 1, . . . , n (uniquely, i.e., without repetitions), we can still transform

the labeled A to the labeled B with only a linear increase in parallel time. We only

consider transformations in which the nodes never change indices in any way (e.g.,

cannot transfer them, or swap them), so that each particular node of A must eventually

occupy (physically) a particular position of B (the one corresponding to its index).

Corollary 4.32. The labeled version of the transformation of Theorem 4.31 can be

performed in O(n) parallel time.

Proof. Recall from Theorem 4.23 that the line was constructed to the right of some

node u. That node was the lowest node in that column, therefore, there is no node

below u in that column. The procedure of Theorem 4.31, if applied on the labeled

versions of A and B will result in two (possibly differently) labeled lines, corresponding

to two permutations of 1, 2, . . . , n, call them πA and πB. It suffices to show a way to

transform πA to πB in linear parallel time, as then labeled A is transformed to πA, then

πA to πB, and then πB to B (by reversing the transformation from B to πB), all in

linear parallel time.

To do this, we actually slightly modify the procedure of Theorem 4.31, so that it

does not construct πA in the form of a line, but in a different form that will allow us to

quickly transform it to πB without breaking connectivity. What we will construct is a

double line, with the upper part growing to the right of node u as before and the lower

part starting from the position just below u and also growing to the right. The upper

line is an unordered version of the left half of πB and the lower line is an unordered

version of the right half of πB. To implement the modification, when a node arrives

above u, as before, if it belongs to the upper line, it goes to the right endpoint of the

line as before, while if it belongs to the lower line, it continues its walk in order to reach

the right endpoint of the lower line.

When the transformation of labeled A to the folded line is over, the procedure has

to order the nodes of the folded line and then unfold in order to produce πB. We first
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order the upper line in ascending order. While we do this, the lower line stays still

in order to preserve the connectivity. When we are done, we order the lower line in

descending order, now keeping the upper line still. Finally, we perform a parallel right

sliding of the lower line (requiring linear parallel time), so that its inverse permutation

ends up to the right of the upper line, thus forming π.

It remains to show how the ordering of the upper line can be done in linear parallel

time without breaking connectivity. To do this, we simulate a version of the odd-even

sort algorithm (a.k.a. parallel bubble sort) which sorts a list of n numbers with O(n)

processors in O(n) parallel time. The algorithm progresses in odd and even phases.

In the odd phases, the odd positions are compared to their right neighbor and in the

even phases to their left neighbor and if two neighbors are ever found not to respect

the ordering a swap of their values is performed. In our simulation, we break each

phase into two subphases as follows. Instead of performing all comparisons at once, as

we cannot do this and preserve connectivity, in the first subphase we do every second

of them and in the second subphase the rest so that between any pair of nodes being

compared there are 2 nodes that are not being compared at the same time. Now if the

comparison between the i-th and the (i+1)-th node indicates a swap, then i+1 rotates

over i+2, i slides right to occupy the previous position of i+1, and finally i+1 slides

left over i and then rotates left around i to occupy i’s previous position. This swapping

need 4 steps and does not break connectivity. The upper part has n/2 nodes, each

subphase takes 4 steps to swap everyone (in parallel), each phase has 2 sub-phases, and

O(n) phases are required for the ordering to complete, therefore, the total parallel time

is O(n) for the upper part and similarly O(n) for the lower part. This completes the

proof.

An immediate observation is that a linear-time transformation does not seem satis-

factory for all pairs of shapes. To this end, take a square S and rotate its top-left corner

u one position clockwise, to obtain an almost-square S′. Even though, a single counter-

clockwise rotation of u suffices to transform S′ to S, the transformation of Theorem

4.31 may go all the way around and first transform S′ into a line and then transform

the line to S. In this particular example, the distance between S and S′, according

to Definition 4.25, is 2, while the generic transformation requires Θ(n) parallel time.

So, it is plausible to ask if any transformation between two shapes A and B can be

performed in time that grows as a function of their distance d(A,B). We show that

this cannot always be the case, by presenting two shapes A and B with d(A,B) = 2,

such that A and B require Ω(n) parallel time to be transformed to each other.

Proposition 4.33. There are two shapes A and B with d(A,B) = 2, such that A and

B require Ω(n) parallel time to be transformed to each other.
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Proof. The two shapes, a black and a red one, are depicted in Figure 4.12. Both shapes

form a square which is empty inside and also open close to the middle of its bottom

side. The difference between the two shapes is the positioning of the bottom “door” of

length 2. The red shape has it exactly in the middle of the side, while the black shape

has it shifted one position to the left. Equivalently, the bottom side of the red shape is

“balanced”, meaning that it has an equal number of nodes in each side of the vertical

dashed axis that passes through the middle of the bottom, while the black shape is

“unbalanced” having one more node to the right of the vertical axis than to its left.

To transform the black shape into the red one, a black node must necessary cross

either the vertical or the horizontal axis (e.g., the black node u to move all the way

around and end up at the same cell as the red node v). Because, if nothing of the

two happens, then, no matter the transformation, we won’t be able to place the axes

so that the running shape has two pairs of balanced quadrants, while, on the other

hand, the red shape satisfies this, by pairing together the two bottom quadrants and

the two upper quadrants. Clearly, no move can be performed in the upper quadrants

initially, as this would break the shape’s connectivity. The only black nodes that can

move initially are u and w and no other node can ever move unless first approached by

some other node that could already move. Observe also that u and w cannot cross the

vertical boundary of their quadrants, unless with help of other nodes. But the only way

for a second node to move in any of these quadrants (without breaking connectivity) is

for either u or w to reach the corner of their quadrant which takes at least n/8−2 steps

and then another n/8 steps for any (or both) of these nodes to reach the boundary,

that is, at least n/4 − 2 steps, which already proves the required Ω(n) parallel-time

lower bound (even a parallel algorithm has to pay the initial sequential movement of

either u or w).

v uw

Figure 4.12: Counterexample for distance.
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4.6 Conclusion

In this Chapter, we considered a programmable matter model where each node of the

network occupies a cell of a 2D grid and the nodes are able to perform valid movements

in order to transform into different shapes. We intentionally restricted attention to

very minimal actuation mechanisms, namely rotation and sliding. When only rotation

is available, we showed that deciding whether two given shapes can transform to each

other, is in P but adding the extra constraint of maintaining connectivity makes the

problems much more difficult. Adding the sliding movement allows any shape A to

transformed into any shape B (provided that they have the same size). More sophisti-

cated mechanical operations would enable a larger set of transformations and possibly

also reduce the time complexity. Such an example is the ability of a node to become

inserted between two neighboring nodes (while pushing them towards opposite direc-

tions). This could enable parallel mergings of two lines of length n/2 into a line of

length n in a single step (an, thus, for example, transforming a square to a line in

polylogarithmic time). Another, is the capability of rotating whole lines of nodes (like

rotating arms, see, e.g., [14]). The geometry of the individual modules seems to be

a parameter that greatly affects the transformation capabilities of the system as well

as the algorithmic solutions. It would be interesting to extend the existing studies

and problems to 3-dimensional settings (even motivated by real systems such as the

Catoms3D system [119]).

In the transformations considered, there was no a priori constraint on the maxi-

mum area that a transformation is allowed to cover or on the maximum dimensions

that its intermediate shapes are allowed to have. It seems in general harder to achieve

a particular transformation if any of these restrictions is imposed. For example, the

generic transformation requires some additional space below the shape and the subse-

quent transformations transform any shape first to a spanning line, whose maximum

dimension is n, even though the original shape could have a maximum dimension as

small as
√
n. Another interesting fact about restricting the boundaries is that in this

way we get models equivalent to several interesting puzzles. For example, if the nodes

are labeled, the initial shape is a square with a single empty cell, and the boundaries

are restricted to the dimensions of the square, we get a generalization of the famous

15-puzzle (see, e.g., [111] for a very nice exposition of this and many more puzzles and

2-player games). Techniques developed in the context of puzzles could prove valuable

for analyzing and characterizing discrete programmable matter systems. We also pro-

vided a distributed transformation for transforming any discrete convex shape into a

line. There are various interesting variations of the model considered here, that would

make sense. For example, to assume nodes that are oblivious w.r.t. their orientation or
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to consider alternative communication principles, such as visibility and asynchronous

communication.

There are also some promising specific technical questions. We do not yet know what

is the complexity of RotC-Transformability. The fact that a 6-seed is capable of

transferring pairs of nodes to desired positions suggests that shapes having such a seed

in their exterior or being capable of self-extracting such a seed will possibly be able to

transform to each other. Even if this turns out to be true, it is totally unclear whether

transformations involving at least one of the rest of the shapes are feasible.





Chapter 5

Conclusions

In this thesis, we considered three different models for actively dynamic networks.

For each model, we considered reconfiguration problems that may arise from their real-

world counterpart that we are trying to investigate. In Chapter 2, we investigated a new

distributed model involving a network comprised of computing entities that can activate

new connections. We defined natural cost measures associated with the edge complexity

of actively dynamic algorithms. We provided algorithms that optimize different time

and edge complexity measures and we accompanied our algorithms with lower bounds

for both the centralized and the distributed case of the problem. In Chapter 3, we

considered a growing graphs model where a graph can grown by starting from a single

node. We proposed algorithms for general graph classes that try to balance speed and

efficiency. If someone wants super efficient growth schedules (zero excess edges), it is

impossible to even find a n
1
3
−ε-approximation of the length of such a schedule, unless

P = NP. In Chapter 4, we considered a programmable matter model where each node

of the network occupies a cell of a 2D grid and the nodes are able to perform valid

movements in order to transform into different shapes. We showed that maintaining

connectivity is a much more difficult problem and provided feasibility results for each

case.

The results of this thesis can also be used to inspire additional work. The pro-

grammable model from chapter 4 has been extended and studied in subsequent work.

In this paper [109], the authors consider the same model but they also introduce a

“powerful” operation which allows the nodes to be pushed together on the line. Given

this additional operation. the authors provide faster and more efficient algorithms

for the reconfiguration problem while maintaining connectivity, along with some lower

bounds. In another paper [110], the authors study the aforementioned problem in a

distributed setting where the propose algorithms that transform any initial shape into a

spanning line. Another paper [120], partially answers one of our open problems, where

they solve the ROTC problem by showing that a 6-seed introduced at the perimeter of

121
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any orthogonal convex shape A is sufficient to transform shape A into an orthogonal

convex target shape B.

In Chapter 2, we proposed a model to study ad-hoc and wireless networks that

also have some physical limitations to their connections. We proposed distributed

algorithms that allow us to reconfigure the network to have more desirable properties.

In chapter 4, we considered a geometric model of small robots that can move around to

change their shape but in a centralized setting. It would be interesting to see whether

we can extend this robots on a distributed setting. It might be possible to use/extend

some of the algorithms from chapter 2 or borrow some techniques since that model

imposes some limitations on the degree of each node.

Another interesting avenue consists of combining the growing graphs model with

the programmable matter model in order to study biological systems since both systems

model different properties of biological systems. Consider that in the human body, a

single cell can start replicating when it receives a signal from the brain and create a

large structure of cells that then moves around in order to fulfill a task. These two

processes are abstractly described by our two models. This gives rise to the following

problem: Given a target shape A, starting from a single node u, can we devise an

algorithm that grows u into a shape of size |V (A)| and the transforms into shape A?

Additionally, while we have studied both of these problems separately on a centralized

setting, it would be interesting to consider them both in a distributed setting either

independently or together. One such preliminary result include the paper by Almalki

and Michail [121], where the consider a geometric growing graphs model but they do

not allow the nodes to move. They consider different types of growth and the provide

lower bounds and algorithms for the graph growth problem. We also hope that the

growing graphs model introduced in this thesis can help spark interest in the community

to consider actively growing graphs. Most of the models in the research community

consider growing graphs models where the nodes in the system are introduced gradually

into the system by an external scheduler but this is not indicative for many real-world

systems where the growth is actively managed by the system itself. For example, our

work can be considered in self-healing systems [26] where the growth is used to correct

the system itself.
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