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Abstract

The theme of this dissertation is deep learning with graph-structured representations on

the tasks of biomedical and biometric image analysis. Graphs are general representations

of signal structure that are crucial in a wide variety of domains, including attributes ex-

traction, features aggregation, and information propagation. Thus, developing machine

learning algorithms capable of effectively learning from graph-structured representations

is an important computer vision and image analysis topic.

The overarching aim of this dissertation is to structure the representations and compu-

tations of neural network-based models in the form of a graph, which allows for improved

generalisability of the neural network when learning from data with both implicit and ex-

plicit graph structures. This entails several research directions in the task of biometric and

biomedical image analysis.

Firstly, I explored the geometric association/consistency between objects’ region and

boundary via implicit graph data representation learning; and proposed different graph-

based novel methods to exploit the underlying complementary spatial relationships. I

addressed the rarely discussed issues of the underlying relationship between the region and

boundary characteristics in segmentation tasks and data efficiency learning researches.

I have applied this new method to five large-scale fundus image datasets for optic disc

and cup segmentation in both fully supervised and semi-supervised learning paradigms

and five challenging datasets of colonoscopic endoscopy images for polys segmentation in

fully supervised mechanism, and the results demonstrated an average 4.1% Dice score

improvement over the previous cutting-edge segmentation methods in both learning tasks.

Secondly, I studied the context pattern fusion of various forms of granularity informa-

tion using inner-domain and cross-domain implicit graph data representation learning. I

proposed several novel graph-based methods for hybrid information fusion and addressed

the contextual dependency difficulties of multi-granularity features during graph reason-
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ing. The methods were applied to the three largest 3D CT-based COVID-19 diagnosis

datasets and five challenging 2D image-based crowd counting datasets and achieved su-

perior performance to previous state-of-the-art methods in both tasks. Significantly, my

proposed graph model can outperform other compared methods by a large margin in the

generalisation ability evaluation experiments of the COVID-19 diagnosis task.

Thirdly, I attempted to model the geometric structure of explicit graph data repre-

sentations regarding objects’ boundaries. I introduced a novel graph-based segmentation

paradigm and addressed the difficulties of direct feature learning on objects’ boundary

locations by previous convolutional neural network-based methods. I applied the proposed

methods to several biomedical image segmentation tasks, such as fundus image based op-

tic disc and cup segmentation and ultrasound image based fetal head segmentation tasks.

Results on two types of challenging datasets have demonstrated my model’s superiority.

Fourthly, I researched the explicit graph data representation learning of dense ver-

tices regression task. I proposed a multi-level aggregated graph convolutional network

and addressed the challenges of loss of semantic and spatial information in classic graph

convolutional network-based methods. The proposed model was applied to two large 3D

face reconstruction datasets; excellent results have achieved, demonstrating my model’s

reconstruction accuracy and ability to tackle a large number of vertices.

In conclusion, I have proposed several novel methods on the basis of graph-based deep

learning with explicit and implicit representations in different biomedical and biometric

image analysis tasks. I have demonstrated the robustness and generalisability of the afore-

mentioned proposed methods in various biomedical and biometric image analysis tasks. All

of my approaches are anticipated to be widely applicable to real-world applications. Future

works can combine the benefits of explicit and implicit graph representation learning and

tackle more complicated problems in graph structure, such as protein analysis and drug

discovery.
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volume. Then, I automatically select trustworthy slices and the correspond-
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soning model BA-GCN is proposed to aggregate and fuse the information
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5.2 Axial CT slices demonstrate various patterns (red arrows emphasised) of
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5.5 Overview of the proposed BA-GCN, Bilateral Adaptive Graph Convolution

(BA-GConv) and Bilateral Adaptive Adjacency Matrix (Ã). . . . . . . . . . 127
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5.9 Qualitative comparisons between Ours, C19C-Net ( [21]), COVNet ( [207]),
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6.2 Comparison of our predictions and the ground truth. Our predictions are

robust enough even when there are mislabeled or incorrectly labeled point

annotations in the ground truth of crowd counting and vehicle counting

datasets. Our model can indicate more accurate object locations or counting

numbers compared with the ground truth. The red bounding boxes are used
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6.5 Architecture of the proposed GCN reasoning module. fDM ∈ RC×H×W is

the feature map of the density map regression branch, C = 32 is the channel

size; MCS ∈ R1×H×W is the prediction of the crowd segmentation branch;

MDS ∈ RL×H×W is the prediction of density level segmentation branch,

L = 4 is the number of density levels; DD ∈ RHW×HW is the density level

dependency matrix; VD ∈ RK×HW is the constructed vertex features and
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number of vertices. fDM ′ ∈ RC×H×W is the output feature map after GCN
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6.9 Comparison of GAME performance on the Trancos dataset among the pro-
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7.2 Overview of our proposed network structure. The size of feature maps of the

CNN encoder and vertex maps of the GCN decoder for each stage (columns)

are shown. In the CNN encoder, the horizontal black arrow represents CNN

convolutional operations that are achieved by a standard CNN Residual

Block [143] with kernel size 3 x 3, stride 1, followed by a Batch Normalization

(BN) layer [159] and Leaky ReLU as the activation function. The down-
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up-sampling are conducted by graph vertices sampling, which is described

in Section 3.3, and the horizontal black arrow represents residual graph

convolution (ResGCN) blocks [204] with polynomial order 4. The horizontal

blue arrow achieves ‘skip up sampling’ with vertices number four times up

sampled in terms of graph vertices sampling method via retained vertices.
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7.5 A comparison of different parameter settings (w and ε) for Fan-loss function,
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8.1 Diagrams illustrating the difference between a mesh encoder-decoder and

our proposed method. (a) An encoder-decoder structure used by existing

methods [507] to regress 3D face mesh from latent embeddings. (b) Our

method. As illustrated, our model fuses and reuses multi-level spatial and

semantic features from an input face, which works as extra input information

to help GCNs decoder to reconstruct the coordinates of face vertices better. 221
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8.3 Overview of our proposed model. Down-sampling is conducted by setting
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8.6 (a)&(b), Illustration of the influence of the aggregation block. (c)&(d), the

parameter setting for the proposed loss function. Methods are evaluated
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Chapter 1

Introduction

1.1 Overview

A natural way to represent information in structured form is as a graph. A graph is a data

structure that represents a collection of items (vertices) and their pairwise associations

(edges) [79,82,121]. Graph-structured data is ubiquitous throughout the natural and social

sciences, from fundamental physical interactions to emergent structures such as molecules,

societal networks, ecosystems, the world wide web, etc.. The pervasiveness of this graph-

structured representation of information necessitates the development of efficient ways for

using and learning to interpret data presented in this structural form. To this end, it

is critical to build relational inductive biases in graph representation learning if we create

systems capable of learning, reasoning, and generalising from this kind of data to novel and

unforeseeable circumstances. Research on graph representation learning has accelerated in

recent years, including methods for deep graph embeddings, expansions of convolutional

neural networks (CNNs) to graph-structured data, and neural message-passing systems

inspired by belief propagation. These advancements in graph representation learning have

1
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resulted in new state-of-the-art results in computer vision and image analysis domains,

including 3D vision, surveillance, and biomedical image-based segmentation and diagnosis.

The field of graph representation learning is involved with the study and design of oper-

ations that make use of the graph structure inherent in data [343,362]. As a result, graph

representations are perfect mathematical objects for defining the structure of networks,

and hence the optimum framework for handling network data is graph data processing.

Network data is represented as two distinct objects in graph data processing: graph data

and graph adjacency matrix. The graph data provides a value to each node, while the

graph adjacency matrix records the underlying network structure for usage with the graph

data. Indeed, the interaction between the adjacency matrix and the graph data repre-

sentations enables the development of graph filters, most notably the graph convolution

operation [99, 182, 346]. This generalises the conventional graph convolution process. The

concept of graph filtering serves as the foundation for the graph neural network (GNN)

models [17,85,118,123,220,280,342,344]. GNNs handle graph representations by using the

adjacency matrix’s graph structure; they are good at tackling Non-Euclidean data struc-

ture with the benefits of defined associations among vertices [182,346]. This thesis focuses

on researching graph representation learning on implicit (hidden graph data) and explicit

graph-structured data, such as the datasets that are given to us in the form of entities and

their relations to biometric and biomedical image analysis tasks.

1.2 Scope and Research Questions

The works presented in this thesis are on graph representation learning, which is one of the

most actively researched areas of machine learning research. Machine learning is concerned

with the question of developing systems and algorithms that are capable of learning from

data and experience. The learning challenge is often addressed by fitting a model to data
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to generalise the learned model to new data or experiences. This thesis’s primary goal is

to structure the representations and computations of neural network-based models in the

form of a graph, allowing for increased generalisability of neural networks while learning

from data using both explicit and implicit graph structures on the task of biometric and

biomedical image analysis. This thesis is generally structured into two parts: Part 1

explores the implicit structure of graph representation learning in geometry-aware and

cross-granularity inductive biases, as applied to biometric and biomedical image analysis

tasks. Typically, the overtly graph-structured datasets are not given but rather to create

models that infer or exploit latent graph structures in the data or high-dimensional features.

Part 2 researches deep graph neural network models for various data-driven regression

tasks using explicitly graph-structured data. The graph information in the form of entities

and their relations are given. Specifically, the dense geometric data modelling, spatial

information supplement and the novel segmentation paradigm via geometric structure are

explored.

The following research questions lead to the contributions of this thesis:

Research Question 1: Can graph neural networks exploit the underlying spatial and

semantic relationships between objects’ region and boundary characteristics?

• I proposed two methods based on GNNs and GCNs to address this question. They

are introduced in Chapter 3. In brief, I proposed a GRBNet [286] for reasoning the

spatial association of objects’ regions and boundaries with implicit graph data rep-

resentation learning in the forms of GNNs. My methods explicitly leveraged both

region and boundary characteristics during graph-based information propagation.

They specifically modelled and reasoned about the boundary-aware region-wise cor-
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relations of different classes through learning implicit graph representations, which

can manipulate long-range semantic reasoning across various regions with the spa-

tial enhancement along the object’s boundary. My models were well-suited to obtain

global semantic region information while simultaneously accommodating local spatial

boundary characteristics. I have addressed the rarely discussed issues that previous

approaches usually overlooked the underlying relationship between the region and

boundary characteristics while segmenting biomedical images. Such geometric asso-

ciations can boost the model’s segmentation performance, specifically for boundary

accuracy. I evaluated the proposed methods in five large-scale colour fundus im-

age datasets on optic disc and cup segmentation and five large-scale colonoscopic

endoscopy images for polys segmentation tasks.

Research Question 2: Can graph neural networks exploit the geometric consis-

tency within and between objects’ region and boundary, and contribute to the semi-

supervised learning mechanism?

• To address the question, I proposed a DC-GCN [282] under a semi-supervised learn-

ing mechanism to exploit the boundary and region’s inherent geometric consistency

via an implicit graph data representation learning. The enforced consistency on

regional and marginal predictions leads the learned model to a generalisable char-

acteristic learning via leveraging a large amount of unlabeled data. Specifically, the

consistent regional regularisation between different formats of region graph repre-

sentations advanced semi-supervised learning and exploited the inherent geometric

consistency in many unlabeled data. I demonstrated robustness and generalisability

of the proposed networks in several biomedical image analysis tasks, such as optical
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disc and cup segmentation and vertical cup to disc ratio estimation of colour fundus

images, under semi-supervised learning mechanisms, respectively. The performance

is superior to previous cutting-edge semi-supervised segmentation methods. They

are introduced in Chapter 4.

Research Question 3: Can graph neural networks discover and build effective con-

text patterns of cross-granularity multi-domain representations?

• To address the question, I proposed a BAGCN [271] for fusing various forms of gran-

ularity information using implicit graph data representations in a three-dimensional

(3D) chest computed tomography (CT) based COVID-19 diagnosis task. They are

introduced in Chapter 5. Specifically, my proposed method represented inner-domain

and cross-domain multi-granularity features as vertices in the proposed graph. In this

way, the contextual dependency and properties among vertices with multi-granularity

are exploited during graph reasoning. On the other hand, such cross-granularity in-

formation can supplement each other vertices through graph-based propagation for

the aimed task. For example, BAGCN aggregated information and exchanged mes-

sages between bilateral cross-domain vertices in terms of 2-dimensional (2D) and 3D

levels. This helps the proposed method consider features at both levels of the given

volume data when making inferences, thus improving the proposed model’s diagnosis

performance. Apart from that, BAGCN addressed the shortcomings of hand-crafted

or randomly initialised graph structures by prior GCN-based approaches. As a re-

sult of this challenge, the model tends to develop a specific context pattern that is

less generalisable to other domains of similar data. BAGCN, on the other hand,

adaptively learned the graph structure and edge relationships between vertices via
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initialising adjacency matrix according to the cross-granularity vertices’ own proper-

ties. The data-dependent way of vertices reasoning enables the BAGCN to learn an

input-related long-range context pattern, which improves the generalisation ability of

graph representation learning. I demonstrated the resilience and generalisability of

the proposed methods in the three largest CT-based COVID-19 diagnosis datasets.

Specifically, my model outperformed other state-of-the-art methods by a large margin

in evaluating generalisation ability with external test data.

Research Question 4: Can graph neural networks adaptively exploit the supple-

mentary information of different auxiliary tasks and contribute to the main task in

the multi-task based learning mechanism?

• To address the question, I proposed an adaptive auxiliary task learning-based ap-

proach for supplementing the complementary information of different auxiliary tasks

to the main task of crowd counting with biometric images. I proposed an AAL-

Net [272] that consisted of both CNN and GCN for feature extraction and feature

reasoning among different domains of auxiliary tasks. My approach gained enriched

contextual information by iteratively and hierarchically fusing the features across

different task branches of the adaptive CNN backbone. The framework paid spe-

cial attention to the objects’ spatial locations and varied density levels, informed by

crowd segmentation and density level segmentation auxiliary tasks via the proposed

adaptive GCN module. In other words, the proposed adaptive GCN module can

tackle different auxiliary tasks information and supply it to the main task through

graph-based information propagation and update. In other words, I proposed a new

vertices-edges connection paradigm in the graph that contains rich auxiliary tasks in-
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formation. The method is introduced in Chapter 6. Experiments on five challenging

multi-domain datasets demonstrate that my method is superior to the state-of-the-art

auxiliary task learning-based counting methods.

Research Question 5: Can deep neural networks exploit the geometric structure

of explicit graph representations and directly learn features on objects’ boundary lo-

cations while tackling segmentation tasks?

• To address the question, I introduced a novel image segmentation paradigm [276] and

addressed the difficulties of direct features learning on objects’ boundary locations

by previous CNN based methods while tackling segmentation tasks. The model

is introduced in Chapter 7. I did not follow the traditional segmentation way of

dense pixel-wise classification or Activate Contour Model (ACM) based iteration

methods but proposed directly regressing the objects’ boundary location via a graph-

based learning mechanism. I explicitly defined the vertices and the edges within the

proposed graph along the objects’ boundaries. On the other hand, loss of spatial

information and limitation of CNN’s receptive field makes direct feature learning on

the objects’ boundary location difficult. In contrast, I directly exploited the GCNs’

long-range information propagation ability on objects’ boundary locations to address

the challenge. Such a straightforward and intuitive segmentation method leads to a

new paradigm of biomedical image segmentation tasks because boundary information

and accuracy are more critical than pixel-wise converge in the biomedical image

segmentation tasks. Experiments demonstrate that my method achieved comparable

segmentation performance with state-of-the-art approaches but is able to give more

interpretative and accurate boundary predictions on the segmentation of fetal head
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in ultrasound images and segmentation of optic disc and optic cup in colour fundus

images.

Research Question 6: Can deep neural network based models efficiently tackle

large-scale nodes’ (vertices) location tasks with graph-structured datasets?

• My main contribution to addressing this question is to propose a multi-level multi-

stage aggregation mechanism that seamlessly combines classic CNNs and Graph Con-

volution networks (GCNs) [182]. Such aggregation mechanisms contributed to sup-

plementing spatial and semantic information loss due to the difficulty of dense ver-

tices’ information gain. Specifically, I proposed a MA-GCN [273], for dense vertices

regression of explicit graph data representation learning task. They are introduced

in Chapter 8. MA-GCN is a form of graph neural network that performs parame-

terised message-passing operations inside a graph. It is represented as a first-order

approximation to spectral graph convolutions. Specifically, multi-level and multi-

stage aggregation paradigms are proposed for sufficient information gain and feature

propagation of GCNs. They efficiently address the loss of spatial information chal-

lenges in single CNNs or GCNs based methods on dense vertices regression tasks.

The aggregation paradigm benefits the advantages of both CNNs and GCNs in terms

of semantic and spatial feature extraction ability, resulting in superior performance.

I demonstrated its state-of-the-art performance and outperformed previous cutting-

edge methods by a large margin in graph-structured datasets, such as 2D-3D face

mesh reconstruction.



Chapter 2

Background

Deep learning models are essentially deep artificial neural networks. This chapter aims to

provide a formal introduction and definition of the concepts, methodologies, and architec-

tures of deep learning.

2.1 Fundamentals of Deep Learning

2.1.1 Neural Network Neurons

Neural networks are a learning algorithm that serves as the foundation for most deep

learning methods. A neural network is comprised of neurons or units with some activation

and parameters Θ = {W, b}, where W is a set of weights and b a set of biases. The

activation represents a linear combination of the input x to the neuron and the parameters,

followed by an element-wise non-linearity σ(·), referred to as a transfer function:

a = σ(W Tx+ b). (2.1)

9
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Typical transfer functions for traditional neural networks are the sigmoid and hyperbolic

tangent function. The multi-layered perceptrons (MLPs), the most well-known of the

classic neural networks, have several layers of the following transformations:

f(x; ,Θ) = σ(WLσ(WL−1...σ(W 0x+ b0) + bL−1) + bL). (2.2)

Here, Wn is a matrix containing rows wk, associated with activation k in the output. The

symbol n represents the number of the current layer, with L indicating the ultimate layer.

Typically, layers between the input and output are known as ‘hidden’ layers. When a

neural network contains multiple hidden layers, it is often referred to as a ’deep’ neural

network, thus the phrase ‘deep learning’. Typically, the activation of the final layer of the

network is mapped to a distribution over classes P (y|x; Θ) through an activation function,

such as softmax.

2.1.2 Non-linear Activation Function

There are a variety of nonlinear activation function types. The most prevalent are detailed

below. Figure. 2.1 depicts the S-shaped appearance of the Sigmoid activation function.

The range of sigmoid outputs (prediction probability) is between 0 and 1. The definition

of Sigmoid activation function is as follows:

Sigmoid(x) =
1

1 + e−x
(2.3)

The activation function of Tanh is also represented in Figure. 2.1 as an S-shape. The

Tanh function has a range of between and (-1 to 1). The Tanh function has the virtue of
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Figure 2.1: Representation of the Sigmoid and Tanh activation function.

mapping negative inputs substantially negative and zero inputs near zero.

Tanh(x) =
ex − e−x

ex + e−x
(2.4)

Both the Sigmoid and Tanh activation functions are mostly used for classifying between

two groups. The softmax function is a comparable activation function that is one of the

most often utilised activation functions in machine learning. Softmax is a more generalised

logistic activation function used for multi-class problems.

Rectified Linear Unit (ReLU ) [300] was recently proposed to tackle the problem men-

tioned above, shown in Figure. 2.2. ReLU is defined by the formula below,

ReLU(x) = max{0, x} (2.5)
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Figure 2.2: Representation of the ReLU activation function.

ReLU returns the input value directly, or 0.0 if the input is less than 0.0, in contrast

to the Tanh and sigmoid activation functions, which need an exponential computation.

An important advantage of the ReLU is that it may output a true zero value, unlike the

sigmoid activation function, which learns to approximate a zero output, e.g. a number

extremely near to 0.0, but not a true zero.

2.1.3 Convolution Layers

The convolutional layer [195] is the fundamental building element for CNNs, although it is

constrained by sluggish CPUs. The convolutional layer may be parameterized using filters

convolved across the image’s width and height. The neurons in the convolutional layer are

connected to local input areas and calculate their outputs depending on these local regions.
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Figure 2.3: Diagram shows convolution operation with RReLU as the activation function.

Each filter’s output is known as a feature map (see Figure. 2.3). Convolution is important

for extracting information from pictures as feature maps. Transposed convolution [98,

476], dilated convolution/atrous convolution [59], and depth-wise convolution [78] are the

variants of convolution.

2.1.4 Pooling Layers

The pooling layer is a spatial downsampling procedure performed after the convolution

layer (see Figure. 2.4). The feature maps from convolution layers are subsampled, or

pooled, with sections that do not overlap (windows). The non-overlapping windows on

the feature map are relocated. The objective of the pooling layer of a CNN is to re-

duce the number of trainable parameters, the network’s overall calculation time, and to
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Figure 2.4: Diagram shows max and average pooling operations.

achieve translation invariance [324]. The size of windows is an empirically-definable hyper-

parameter. Two main forms of pooling procedures exist. 1) max pooling: the maximum

value of all pixels in the batch is chosen; 2) average pooling: the average value of all pixels

in the batch is chosen.

2.2 Graph Neural Networks

Graph neural networks (GNNs) are a class of deep neural network models suited for pro-

cessing graph-structured data and are of central importance to the topics covered in this

thesis. The architecture of a GNN is structured according to a graph G = (V,E) with a

set of nodes V and a set of edges E. Generally, nodes are identified by a unique index

i ∈ V ranging from 1 to |V |, and directed edges from i to j are represented by an ordered
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pair of nodes (i, j) ∈ V ×V . For undirected graphs, both (i, j) and (j, i) are in E if nodes i

and j are connected. A GNN takes as input an instance of a graph G (e.g., a sample from

a dataset of many graphs), where nodes are associated with feature vectors xi and edges

may also be associated with feature vectors xi,j . We denote hidden representations in the

neural network for nodes and edges with hi and hi,j , respectively. As the initial node rep-

resentation, we may set hi = xi. The structure of the graph G then dictates the message

passing updates that are conducted sequentially to produce updated node representations

h′j and edge representations hi,j :

hi,j = fedge(hi, hj , xi,j), (2.6)

h′i = fnode(hi,
∑
j∈Ni

hj,i, xi). (2.7)

Ni is the set of neighbors with an incoming edge to node i. fedge and fnode typically are

small MLPs with two or three layers which take a concatenation of the function arguments

as input, but alternative options are conceivable. Multiple message passing updates can be

chained by setting from h′i to hi after each node update given by Eq. 2.7. The parameters

of fedge and fnode do not need to be shared across changes involving message passing.

This form of GNN was introduced by Gilmer et al. [118] under the name message

passing neural network, in an effort to generalize and unify earlier models, such as the

graph convolutional network (GCN) [182] or the interaction network [23]. We can utilize

this GNN as a function approximator on graph-based tasks trained with backpropagation,

e.g., in the context of graph classification by aggregating the final outputs of the GNN into

a global representation hg =
∑

i∈V hi. For a recent study of the expressive power of this

class of models in the context of function approximation, see [71].
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The first GNN model is typically attributed to [123], who originated the term graph

neural network. Their model contains many of the core concepts found in the GNN def-

inition above but was formulated as a recurrent neural network, trained by a version of

backpropagation through time [438] that demanded that message passing updates of the

GNN model are a contraction mapping. This form of GNN further did not learn an explicit

edge representation hi,j and the update function for a node i was conditioned on neighbor-

ing states hj with j ∈ Ni only (in addition to initial node feature vector xi). Scarselli et

al. [344] enhanced this formulation by also configuring the message passing update based

on initial edge characteristics xi,j .

The GNN definitions in Eq. 2.6 and Eq. 2.7 are not exhaustive, but they do correspond

to the models analysed in this thesis. Recent extensions include graph networks [24], which

provides a global state and update mechanism, and graph G-invariant networks [267].

Other recent related models and GNN variants can be cast as a special case of the message

passing definition above, such as the transformer architecture [399]. Lastly, there exists

a class of spectral methods for learning on graphs [42, 85, 147, 182], which promote the

development of GNN. Among them, [182] has been widely adopted as the baseline model

in the task of computer vision and image analysis.

2.2.1 Graph Convolutional Network

The start point of building a graph-based neural network classifier is the notion of a

spectral graph convolution [85]. A spectral convolution on a graph can be understood

as parameterized filtering operation that takes into account both node features and the

structure of a graph.

The spectral convolutions on graphs defined as the multiplication of a signal x ∈ RN
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Figure 2.5: Diagram shows an example of Multi-layer Graph Convolutional Network
(GCN).

with a filter gθ = diag(θ) parameterized by θ ∈ RN in the Fourier domain, i.e.:

gθ(x) = UgθU
Tx, (2.8)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = LN −

D−
1
2AD−

1
2 , with a diagonal matrix of its eigenvalues Λ and UTx being the graph Fourier

transform of x. The gθ can be understood as a function of the eigenvalues of L, i.e., gθ(Λ).

Eq. 2.8 is computationally expensive, as multiplication with the eigenvector matrix U is

O(N2). Furthermore, computing the eigendecomposition of L in the first place might be

prohibitively expensive for large graphs.

To circumvent this problem, one can approximate gθ(λ) by a truncated polynomial
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expansion, e.g. using a monomial basis or, as proposed in [85], in terms of Chebyshev

polynomials Tk(x) up to K-th order:

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃), (2.9)

with re-scaled Λ̃ = 2
λmaxΛ− IN . Λmax denotes the largest eigenvalue of L. θ′ ∈ RK is now

a vector of Chebyshev coefficients. The Chebyshev polynomials are recursively defined as

Tk(x) = 2xTk−1(x)−Tk−2(x), with T0(x) = 1 and T1(x) = x. The reader is referred to [85]

for more details.

Going back to the definition of a convolution of a signal x with a filter gθ′ , now the

spectral graph convolution can be defined as:

gθ′(x) ≈
K∑
k=0

θ′kTk(L̃)x, (2.10)

with L̃ = 2
λmax

L − IN ; as can easily be verified by noticing that (UΛUT )k = UΛkUT .

Note that this expression is now K-localized since it is a K-th order polynomial in the

Laplacian, i.e. it depends only on nodes that are at maximum K steps away from the

central node (K-th order neighborhood), and hence it can be seens as a spatial graph filter.

The complexity of evaluating Eq.2.10 is O(|ε|), i.e. linear in the number of edges.

In [182], Kipf et al. further simplified the graph convolution as gθ = θ(D̂−
1
2 ÂD̂−

1
2 ),

where Â = A + I, D̂ii =
∑

j Âij , and θ is the only Chebyshev coefficient left. The

corresponding graph Laplacian adjacency matrix Â is hand-crafted, which leads the model

to learn a specific long range context pattern rather than the input-related one [215].
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2.3 Application Domain

Here we introduce the related techniques and applications to the high-level themes of our

work, which will be discussed in detail in the corresponding chapters.

2.3.1 Biomedical Image Analysis

Medical imaging is often an integral aspect of the medical diagnosis and treatment process.

Typically, a radiologist reviews the acquired medical images and writes a summarising re-

port of their findings. The referring physician formulates a diagnosis and treatment plan

based on the images and the radiologist’s report. Often, medical imaging is ordered as

part of a patient’s post-therapy follow-up to confirm treatment effectiveness. In addition,

images are increasingly used for surgical planning and real-time imaging during invasive

surgical operations. As a specific example, consider “radiology challenge” [325,339]. With

the advancement of technology related to the image capture process during the last decade,

the speed and resolution of imaging equipment have increased. For example, in 1990, a

CT scanner might acquire 50–100 slices in each case; however, modern CT scanners might

acquire 1000–2500 slices per case. A single whole slide digital pathology image correspond-

ing to a single prostate biopsy core can easily occupy 10GB of space at 40x magnification.

Overall, there are billions of medical imaging studies undertaken annually worldwide, and

this number is growing. Most interpretations of medical images are performed by physicians

and, in particular, by radiologists. However, image interpretation by humans is limited

due to human subjectivity, high inter-interpreter variances, and weariness. Case-reviewing

radiologists have limited time to examine an ever-increasing volume of images, resulting

in missed diagnoses, lengthy turnaround times, and a dearth of numerical data or quan-

tification. This severely hinders the medical community’s capacity to progress towards

more evidence-based, customised treatment. AI tools such as deep learning technology can
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provide support to physicians by automating image analysis, leading to what we can term

”Computational Radiology” [36, 391]. Among the automated tools that can be developed

are detection of pathological findings, quantification of disease extent, characterisation

of pathologies (e.g., into benign vs malignant), and assorted software tools that can be

broadly characterised as decision support. This technology can also extend physicians’

capabilities to include the characterisation of three-dimensional and time-varying events,

which are often not included in today’s radiological reports because of both limited time

and limited visualisation and quantification tools.

Medical image segmentation aims to make anatomical or pathological structure changes

more evident in images; it often plays a crucial role in computer-assisted diagnosis and

smart medicine due to the vast increase in diagnostic efficiency and accuracy. Popular

medical image segmentation tasks consist of liver and liver-tumor segmentation [214,216],

brain and brain-tumor segmentation [287, 313], optic disc segmentation [274, 282], cell

segmentation [337, 479], lung segmentation, pulmonary nodules [271, 426], cardiac image

segmentation [57, 441], colorectal tumor or polyps segmentation [280, 286], fetal head seg-

mentation [276,278] etc. With the development and widespread adoption of medical imag-

ing techniques, X-ray, CT, Magnetic Resonance Imaging (MRI), ultrasound, colour fundus,

and endoscopy images have become important image assisted means to assist clinicians in

diagnosing diseases, evaluating prognosis, and to plan operations in medical institutions.

In practical applications, although these ways of imaging have advantages as well as dis-

advantages, they are useful for the medical assessment of different parts of the human

body.

To aid clinicians make an accurate diagnosis, it is necessary to segment some crucial

objects in medical images and extract features from segmented areas. Early approaches to

medical image segmentation often rely on edge detection, template matching techniques,
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statistical shape models, active contours, machine learning, etc. Zhao et al. [473] proposed

a new mathematical morphology edge detection algorithm for lung CT images. Lalonde

et al. [192] applied Hausdorff-based template matching to disc inspection, and Chen et

al. [63] also employed template matching to perform ventricular segmentation in brain CT

images. Tsai et al. [393] proposed a shape-based approach using horizontal sets for 2D

segmentation of cardiac MRI images and 3D segmentation of prostate MRI images. Li

et al. [203] used the activity profile model to segment liver-tumors from abdominal CT

images, while Li et al. [212] proposed a framework for medical body data segmentation

by combining level sets and support vector machines (SVMs). Held et al. [146] applied

Markov random fields (MRF) to brain MRI image segmentation.

Even though many techniques have been described and are effective in specific condi-

tions, image segmentation is still one of the most challenging topics in the field of computer

vision due to the difficulty of feature representation. In particular, it is more challenging to

extract discriminating features from medical images than standard RGB images since the

former often suffers from problems of blurring, noise, low contrast, etc.. Due to the rapid

development of deep learning techniques [189], medical image segmentation will no longer

require hand-crafted features, and CNNs or GNNs successfully achieve hierarchical feature

representation of images, making it the most popular research topic in image processing

and computer vision. As CNNs or GNNs used for feature learning are insensitive to image

noise, blur, contrast, etc., they provide excellent segmentation results for medical images.

It is worth mentioning that there are currently two categories of image segmentation

tasks, semantic segmentation and instance segmentation. Image semantic segmentation is

a pixel-level classification that assigns a corresponding category to each pixel in an image.

Compared to semantic segmentation, instance segmentation needs to achieve pixel-level

classification and distinguish instances based on specific categories. There are few reports



22 Yanda Meng

on instance segmentation in medical image segmentation since each organ or tissue is quite

different. In this thesis, we report our proposed model for both segmentation tasks.

Medical image diagnosis usually focuses on classifying the medical image into two or

more classes. There are different types of classification tasks. For example, exam clas-

sification and object classification. Exam classification aims to categorise an image of a

diagnostic exam as absent/present or typical/abnormal illness. As for object classification,

the goal is to classify an entity that has been pre-identified (such as a Chest CT nodule)

into one of two or more classes. This thesis focuses on the object classification task of

COVID-19 diagnosis among common pneumonia and healthy control cases in chest CT. .

For many of these tasks, both local information on radiographic diagnosis characteristics

(GGO) appearance and global contextual information on GGO location are required for

accurate classification. This combination is typically not possible in generic deep learning

architectures. Previous COVID-19 related deep learning methods rely on the extracted

features from either 2D or 3D level, for example, 2D CNN models on the selected 2D CT

images ( [101, 113, 149, 230, 395, 415, 433, 447, 504]) or 3D CNN models for CT volumes

( [145,428,511]). This thesis presents a graph-based model that can simultaneously exploit

the features on 2D and 3D levels of chest CT images.

2.3.2 Crowd Counting

Accurately estimating the number of objects in a single image is a challenging yet meaning-

ful task and has been applied in many applications, including urban planning and public

safety. In the various object counting tasks, crowd counting is particularly prominent due

to its significance to social security and development. Fortunately, the development of

the techniques for crowd counting can be generalised to other related fields, such as ve-

hicle counting and environment survey, without taking their characteristics into account.
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Therefore, many researchers are devoted to crowd counting, and many excellent works of

literature and works have spurred out.

Over the past few decades, an increasing number of research communities, have consid-

ered the problem of object counting as their mainly research direction, as a consequence,

many works have been published to count the number of objects in images or videos

across wide variety of domains such as crowding counting [131, 231, 284, 306, 326], cell mi-

croscopy [269], animals [16], vehicles [127, 478, 487] and leaves [3]. In all these domains,

crowd counting is of paramount importance, and it is crucial to building a more high-level

cognitive ability in some crowd scenarios, such as crowd analysis [353, 503], and video

surveillance [52]. As the world’s population rises and urbanisation grows, crowds assemble

rapidly in several settings, including parades, concerts, and stadiums. In these scenar-

ios, crowd counting plays an indispensable role in social safety and control management.

Considering the specific importance of crowd counting aforementioned, more and more re-

searchers have attempted to design various sophisticated projects to address the problem

of crowd counting. Especially in the last half decades, with deep learning, CNNs or GNNs

based models have been overwhelmingly dominated in various computer vision tasks, in-

cluding crowd counting. Although different tasks have unique attributes, standard features

such as structural features and distribution patterns exist. Fortunately, the techniques for

crowd counting can be extended to some other fields with specific tools.

The various approaches for crowd counting are mainly divided into four categories:

detection-based, regression-based, density estimation, and, more recently CNNs or GNNs-

based density estimation approaches. Early works [200, 208, 387] on crowd counting use

detection-based approaches. These approaches usually apply a person or head detector

via a sliding window on an image. Recently many extraordinary object detectors such

as R-CNN [119, 141, 329], YOLO [327], and SSD [235] have been presented, which may
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perform dramatic detection accuracy in the sparse scenes. However, they will present

unsatisfactory results when en-countered the situation of occlusion and background clutter

in extremely dense crowds. To reduce the above problems, some works [52,53,155] introduce

regression-based methods which directly learn the mapping from an image patch to the

count. They usually first extract global features [58] (texture, gradient, edge features), or

local features [340] (SIFT [249], LBP [305], HOG [83], GLCM [139]). Then some regression

techniques such as linear regression [309], and Gaussian mixture regression [385] is used to

learn a mapping function to the crowd counting. These methods successfully deal with the

problems of occlusion and background clutter, but they always ignore spatial information.

Therefore, Lemptisky et al. [201] first adopt a density estimation based method by learning

a linear mapping between local features and corresponding density maps. To reduce the

difficulty of learning a linear mapping, [314] proposes a non-linear mapping, random forest

regression, which obtains satisfactory performance by introducing a crowdedness prior

and using it to train two different forests. Besides, this method needs less memory to

store the forest. These methods consider spatial information, but they only use traditional

hand-crafted features to extract low-level information, which cannot guide the high-quality

density map to estimate more accurate counting. Recently, benefiting from the powerful

feature representation of CNNs or GNNs, more researchers utilise them to improve density

estimation. Earlier heuristic models typically leverage basic CNNs to predict the density of

the crowds [405], which obtain significant improvement compared with traditional hand-

crafted features. In this thesis, we focused on the GNN based density map regression

direction. We proposed a model that can utilise multi-domains of auxiliary information

from auxiliary tasks with the help of graph-based information propagation and message

passing mechanism.
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2.3.3 2D-3D Human Face Reconstruction

Facial analysis has been exploited extensively in variety of applications, including human-

computer interaction [137, 482], security [46, 172], animation [435, 436], and even health

[51, 148, 321, 377]. A recent trend in this discipline is to incorporate 3D data to overcome

some of the inherent limitations of the ubiquitous 2D facial analysis. Due to the 3D aspect

of the face, a 2D image cannot adequately depict its geometry since it compresses one

dimension. Furthermore, 3D imaging represents the facial geometry independent of posture

and lighting, which are two of the problematic aspects of 2D imaging. The advantages

brought by 3D facial analysis systems come at the expense of a more sophisticated imaging

procedure, which can often restrict their scope. Typically, 3D facial information is usually

captured via stereo-vision systems [4, 25, 26], 3D laser scanners [198] (e.g. NextEngine

and Cyberware), or RGB-D cameras (such as Kinect). The first two methods capture

high-quality facial scans but need calm surroundings and costly equipment. In contrast,

RGB-D cameras are cheaper and easier to use, but the resulting scans are of limited

quality [177,462].

An attractive approach to acquiring a 3D scan of the face is to estimate its geometry

from an uncalibrated 2D image [35,130,392]. This 3D-from-2D reconstruction alternative

aims to combine the ease of obtaining 2D images with the benefit of a 3D representation

of facial geometry. Even while this approach seems appealing, it is intrinsically flawed: the

unique facial geometry, the pose of the head and its texture (including illumination and

colour) have to be reconstructed from a single picture, resulting in an underdetermined

problem. Consequently, there are ambiguities in the solution of the 3D-from-2D face

reconstruction since a single 2D picture can be generated from different 3D faces, and it is

hard to determine which one corresponds to the actual geometry. Recent methodological

advancements have helped to achieve remarkably convincing reconstructions, allowing it
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possible to use 3D-from-2D face reconstruction in a wide variety of fields [1, 49, 80]. Some

methods are even able to recover local details, such as wrinkles, or to reconstruct the 3D

face from images viewed under extreme conditions, such as occlusions or large head poses

[35,130]. Incorporating past information to clarify ambiguities in the solutions is crucial to

the success of 3D-from-2D reconstruction approaches. Three methods for incorporating this

previous knowledge have emerged in the last decade: statistical model fitting, photometric

stereo, and deep learning. In the first method, previous information is represented in a

3D face model constructed from a collection of 3D facial scans and fitted to the input

photos. In the second, photometric stereo techniques are used with a 3D template face

or 3D facial model to estimate the facial surface normals. This technique often employs

information from numerous photos, which further restricts the issue. In the third method,

the 2D-to-3D mapping is accomplished using deep neural networks that, given the proper

training data, can acquire the requisite priors to connect the geometry and appearance of

faces.

The most widespread statistical models of 3D faces are the 3D Morphable Models

(3DMM), which were introduced to the community by Blanz and Vetter [32]. A 3DMM

consists of a shape (i.e., geometry) model and, optionally, an albedo (a.k.a texture or

colour) model, separately constructed using principal component analysis (PCA). Let M

be the number of 3D faces in the training set and N the number of vertices in each

mesh. Let x = (x1, y1, z1, ..., xN , yN , zN ) ∈ R3N be the shape vector of a mesh, and

c = (R1, G1, B1, ..., RN , GN , BN ) ∈ [0, 1]3N the albedo vector that contains the R (red), G

(green), and B (blue) values of the RGB colour model for each of the N vertices. The idea

behind the 3DMM is that, if the set of 3D faces is sufficiently large, one can express any

new textured shape as a linear combination of the shapes and textures of the training 3D
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faces:

xnew =
M∑
m=1

amxm, (2.11)

cnew =

M∑
m=1

bmcm, (2.12)

with am, bm ∈ R,∀m = 1, ...,M . Thus, it can parametrise any new face by its shape

xnew = (a1, ..., aM )T and albedo cnew = (b1, ..., bM )T . However, this parametrisation gets

more complicated when the number of shapes in the training set M is large. PCA helps

compressing the data, performing a basis transformation to an orthogonal coordinate sys-

tem defined by the eigenvectors φi and ψi of the covariance matrices computed over the

shapes and albedos in the training set. In the orthogonal basis given by PCA,

xnew = x̄+
M−1∑
i=1

αiφi = x̄+ Φα, (2.13)

cnew = x̄+
M−1∑
i=1

βiψi = c̄+ Ψβ, (2.14)

with x̄ = 1
M

∑M
m=1 xm the mean shape, α = (α1, ..., αM−1)T ∈ RM−1 the shape parameters

of the model, and Φ = (φ1, ..., φM−1) ∈ R3N×(M−1) the shape basis matrix of the model;

c̄, β,Ψ are analogously defined for the texture. The probability of the shape parameters

p(a) is given by:

p(α) ∝ exp[−1

2

M−1∑
i=1

(
αi
σαi

)2] (2.15)

where σ2
αi

are the eigenvalues of the corresponding eigenvectors φi. The probability of the

albedo parameters p(β) is defined analogously.

Finally, the shape model of the 3DMM is defined by the mean shape, x̄, the eigenvectors
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of the shape covariance matrix, Φ, and the corresponding eigenvalues, {σ2
αi
}M−1
i=1 . Similarly,

the albedo model is given by c̄,Ψ and {σ2
βi
}M−1
i=1 .

However, some of the variation modes (eigenvalues σ2
αi
, σ2

βi
), thus they are dispensable.

Keeping only the directions that represent model of the variance of the taining set can

reduce the dimension of the data, which is very useful when M us large. Assuming the

eigenvalues σ2
xii

(denoting either σ2
αi

or σ2
βi

) are ordered in decending order, the M̃ first

eigenvectors with higher eigenvalues.

Even though most extant 3D statistical face models are based on the process described

above, various researchers have identified two problems with this approach. First, PCA

calculates basis vectors that generically describe the input data; hence, delicate informa-

tion, like wrinkles, is not captured, making it difficult to recreate face characteristics by

fitting a 3DMM model. Some works [43, 107, 169, 257, 301] emphasised the significance of

modelling facial deformations locally and suggested various approaches to do so. Neu-

mann et al. [301] and Ferrari et al. [107] proposed to decompose the matrix of the training

shapes by imposing sparse components. Bruton et al. [43] applied a wavelet transform to

every training shape, obtaining a multi-scale decomposition of the surface, and computed

localised multilinear models on the estimated wavelet coefficients. Jin et al. [169] applied

non-negative matrix factorisation (NMF) since it decomposes a share into localised fea-

tures. And finally, Luthi et al. [257] modelled shape variations using Gaussian processes,

which provide a way of adding local models to global models, thus combining the informa-

tion at multiple scales. The second drawback of 3DMMs was noted by [37, 168, 323], who

argues that facial shape changes are not completely linear and hence cannot be adequately

modelled using linear models. Using a mesh-to-mesh autoencoder, their method consists

of discovering a latent space of face deformations. Ranjan et al. [323] and Bouritsas [37]

modelled all the shape variations in a single latent space, as opposed to Jiang et al. [168],
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who estimated two separated latent spaces, one corresponding to expression-related de-

formations. Whereas Ranjan et al. [323] and Jiang et al. [168] used spectral convolution

operations, Bouritsas [37] proposed a spiral convolution that employs anisotropic filters,

which enable a one-to-one mapping between the neighbours of a vertex and the parameters

of the local filter.

To address the limitations mentioned above, we proposed a graph-based mesh recon-

struction method that can directly generate the vertices locations from the 2D input images

with the help of the proposed aggregated CNN and GCN.



Chapter 3

Researching Region and Boundary

Correlations with Implicit Graph

Representations

In this chapter, I introduce a graph based model, to address challenges of implicit structure

modeling with geometry-aware graph representation.

Specifically, I built a novel graph neural network (GNN ) based deep learning framework

with multiple graph reasoning modules to explicitly exploit both region and boundary

features in an end-to-end manner. The mechanism extracts discriminative region and

boundary features, referred to as initialized region and boundary node embeddings, using

a proposed Attention Enhancement Module (AEM ). The weighted links between cross-

domain nodes (region and boundary feature domains) in each graph are defined in a data-

dependent way, which retains both global and local cross-node relationships. The iterative

message aggregation and node update mechanism can enhance the interaction between each

graph reasoning module’s global semantic information and local spatial characteristics. Our

30
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model, in particular, is capable of concurrently addressing region and boundary feature

reasoning and aggregation at several different feature levels due to the proposed multi-

level feature node embeddings in different parallel graph reasoning modules. Experiments

on two challenging datasets demonstrate that our method outperforms state-of-the-art

approaches for the segmentation of polyps in colonoscopy images and the optic disc and

optic cup in colour fundus images. The trained models are made available at https:

//github.com/smallmax00/Graph_Region_Boudnary

3.1 Introduction

The precise evaluation of anatomical features in medical pictures is essential for the treat-

ment of a broad range of medical illnesses and disorders. For instance, glaucoma is a

chronic neurodegenerative condition, and a leading cause of irreversible but preventable

blindness worldwide [384]. The relative size of the optic disc (OD) and optic cup (OC )

in colour fundus images is often used to assess glaucomatous damage to the optic nerve

head [134,213]. Similarly, colorectal polyps are positively related with colorectal cancer, the

third most common cancer worldwide [364]. Segmenting polyps gives crucial diagnostic and

surgical information on the location and shape of colorectal polyps. It is impracticable for

doctors to manually annotate these structures since it is time-consuming, labor-intensive,

and prone to human error. Automated and accurate biomedical image segmentation tech-

niques are required to resolve this issue. To this purpose, I present a graph-based deep

learning framework for segmentation problems, with the crucial innovation of aggregating

information on an object’s area and border. I demonstrate the framework’s effectiveness

for segmentation of polyps in colonoscopy images and OD & OC in colour fundus images.

Previous approaches of image segmentation based on deep learning focused on learning

the intensity attributes of the input picture. Either they are region-based approaches that

https://github.com/smallmax00/Graph_Region_Boudnary
https://github.com/smallmax00/Graph_Region_Boudnary
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do dense pixel classification or boundary-based methods that regress the position of the

border. Neither approach, however, takes into account the fundamental region-boundary

connection, which is essential for improving segmentation performance [72, 100]. Region

characteristics, for instance, emphasise the global homogeneity of pixel-wise semantics

and object-level contextual information. In contrast, boundary characteristics describe

the local edge characteristics and spatial changes on both sides of the border contour.

Intuitively, combining information about region and boundary features ought to improve

segmentation. In addition, the subjective experience of doctors who annotate biological

pictures often entails evaluating both the relevant area’s specifics and the border that

defines its edge. Clinicians often tour the cupped area to establish the OC border [307].

I demonstrates how to rationally combine region and boundary features using a sin-

gle graph-structure model. This takes advantage of the proposed Graph Neural Network

(GNN ) model’s long-range information propagation and cross-domain feature update ca-

pabilities. The summary pipeline of our work is depicted in Fig. 6.1, please refer to Fig. 4.2

for more details. The term ‘cross-domain features’ refers to the region features (containing

semantic information) and boundary features (containing spatial information).

This study specifically includes information from the area and border domains of med-

ical imaging objects of interest. Specifically, I design numerous graphs, each of which

contributes to addressing the updating and reasoning of specific-level cross-domain fea-

tures. There are region nodes with global semantic information and border nodes with

local geographical properties in every network. Weighted linkages exchange and aggregate

semantic and geographical information between nodes. Additionally, I introduce an atten-

tion enhancement module (AEM ) in conjunction with two sequential attention mechanisms

through the channel and the spatial inter-dependencies. The AEM is built between the

multi-level backbone features and the corresponding constructed graph nodes to extract
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Figure 3.1: The pipeline of the proposed network, with the example of a colonoscopy polyp
image as the input. The extracted region and boundary features from the CNN backbone
are treated as the initialized graph nodes and then go through the graph-level feature
aggregation and reasoning process. A requirement for consistency between the boundary
and the region outputs forces the GNN to learn coherent features.

discriminative feature embeddings for the region and boundary nodes, respectively. To

utilise the underlying coherence between the region and boundary segmentation predic-

tions, I also generate a spatial gradient from the anticipated region mask as the resulting

border probability map. To enforce boundary consistency in area mask prediction dur-

ing model training, the differences between the resulting boundary probability map and

the boundary ground-truth are defined as one of the loss terms, termed boundary agree-

ment loss. Our experimental findings demonstrate that the new GNN -based framework

significantly outperforms existing approaches.

In summary, these two works makes the following contributions:

• Despite the intuitive usage of both domains by human graders, segmentation tech-

niques for biological pictures often ignore the underlying link between the area and

border features. I present a unique trainable end-to-end segmentation model that

incorporates area and boundary information as graph nodes and updates and prop-
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agates cross-domain features.

• Cross-domain features are difficult to optimise simultaneously; in particular, the un-

avoidable prediction perturbation will hinder the simultaneous learning and updating

of cross-domain features. Here, I provide a boundary agreement loss function, which

ensures that the borders of the forecast area and boundary mask are consistent.

• Extensive experiments demonstrate that our proposed model outperforms the state-

of-the-art approaches on two segmentation tasks. Instead of conducting experiments

on a small number of datasets, I combine five different OD & OC segmentation

datasets and five different colonoscopy polyp segmentation datasets, respectively. In

terms of varying dataset sources, they may contain different annotation standards

for ground truths by various clinicians. Nevertheless, our model achieves good seg-

mentation performance, demonstrating its robustness and generalizability.

3.2 Related Works

3.2.1 Region-based Segmentation

Convolutional Neural Networks (CNN ) have found widespread applications in medical im-

age segmentation. Existing CNN-based methods [101, 109, 125, 164, 210, 295, 296, 337, 508]

have considered segmentation as a dense pixel classification task. For example, the classic

U-net [337] employs a skip-connection between the encoder and decoder to alleviate infor-

mation loss; and it has served as a baseline model for segmentation tasks in recent years.

Another classic region-based segmentation method, U-Net++ [508], uses an aggregated

mechanism to fuse multi-level features. However, it may result in excessive information

flow because some low-level features are unnecessarily over-extracted while object bound-

aries are simultaneously under-sampled. Recently, Gu et al. proposed CE-Net [125] to
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capture high-level information and preserve spatial information based on U-Net [337].

However, due to the limited receptive field of standard CNN, dense atrous convolutions

were incorporated [59,470] to enlarge the receptive regions for long-range context reasoning.

M-Net [109] represented the fundus image in polar coordinates, and achieved high accu-

racy in segmenting OD & OC. However, it needed additional processes, such as multi-scale

input and side-output mechanisms with deep supervision, to achieve multi-level receptive

field fusion for long-range relationship aggregation. Similarly, Fan et al. proposed a Inf-

Net [101] to tackle COVID-19 lung infection segmentation. A reverse attention module

is included to work with deep supervision in terms of multiple side-outputs. The afore-

mentioned methods have achieved promising results in segmentation tasks with the help

of boosted long-range relationship reasoning abilities. However, they are not efficient since

stacking local cues cannot always precisely handle long-range context relationships. Espe-

cially for pixel-level classification problems, such as segmentation, performing long-range

interactions is important for reasoning in complex scenarios [59]. To address this challenge,

recent self-attention [429] based methods [164,210] have demonstrated a superior ability to

capture long-range relationships. For example, Segtran [210] proposed a squeezed atten-

tion block, which regularized the self-attention of Transformers [399], and an expansion

attention block learned diversified representations. In this way, Segtran can calculate the

pairwise interactions (self-attention) between all input units, combine their features and

generate contextualized features. It has achieved promising results in the OD & OC and

polyp segmentation tasks. On the other hand, in order to comprehend scenes or global

contexts, these approaches must learn the object’s position, boundary, and category from

high-level semantic awareness and regional location information [247]. However, they tend

to focus on learning image intensity features and suffer from a lack of regional position

information at the pixel level [69]. This has resulted in inaccurate object boundary pre-
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dictions.

3.2.2 Boundary-based Segmentation

Polygon-based boundary regression methods have drawn much recent attention. Polygon-

based methods [73,278,345,424,449] regress the predefined vertex positions along the object

boundaries and connect the predicted vertices to form a polygon, which is then converted

into a mask. For example, Cheng et al. combined Active Contour Models (ACMs) [173]

and CNN, to create a Deep Active Ray Network [73], which utilizes polar coordinates (rays)

to represent active contours. Along the same lines, Xie et al. proposed PolarMask [449] to

interpret the object boundary in a polar coordinate system and proposed a CNN to regress

the length of rays, which implicitly estimates the object boundary. Similarly, Meng et al.

proposed CABNet [278], which represents the object boundary as vertices, then explicitly

estimates the vertex locations. It achieved promising results on OD & OC segmentation

tasks. Other boundary-based methods [66, 68, 72, 175] integrate the boundary geometry

constraint into the loss function or evaluation measurement. For example, Kervadec et

al. proposed boundary loss [175] which takes the distance metric on contours’ space to

mitigate the difficulties of highly unbalanced foreground and background. Cheng et al.

proposed a Boundary Intersection-over-Union (BIoU ) [72] evaluation measurement, which

quantifies boundary quality in region segmentation tasks.

These methods are applicable to segment the whole region of the objects by regressing

the position of vertices along boundary contours. However, they overlook the intrinsic

region-boundary relationship, which I suggest is crucial for enhancing segmentation per-

formance.
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3.2.3 Region and Boundary for Segmentation

Recent methods, such as [100, 101, 104, 299, 411, 425, 486, 489], explicitly or implicitly con-

sidered the dependency between the regions and boundaries of an object of interest in OD

& OC or polyp segmentation. Specifically, Zhang et al. proposed ET-Net [489] for OD &

OC segmentation, where an edge attention mechanism is proposed to explicitly emphasise

the object boundary. On the other hand, Fan et al. [100,101] and Zhang et al. [486] shared

a similar boundary attention idea, where the object boundary is implicitly extracted from

region predictions with a foreground erasing mechanism. In general these approaches treat

segmentation as a multi-task learning problem, by using a shared backbone and two inde-

pendent sub-networks to extract features of the regions and the boundaries, respectively.

Then, the extracted features of regions and boundaries are directly fused with basic fusion

operations such as element-wise addition or multiplication [100, 425, 486], or channel-wise

concatenation [411,489] with or without a fusion operation [104,299].

I suggest that the correlations between region and boundary features cannot be ade-

quately captured and exploited by two independent sub-networks that rely on these types

of primary fusion operations. An intuitive solution would be to aggregate region and

boundary features during the whole learning process. Unfortunately, the extracted region

and boundary features are necessarily from two different domains and so contain varying

semantic and spatial details. For example, region features focus on global homogeneity

in pixel-wise semantics and object-level contextual information; while boundary features

describe local edge characteristics and spatial variations on both sides of the boundary

contours. It is well known that concurrently optimizing cross-domain features are difficult.

Our experimental results also support this, and readers are directed to Ablation Study

(Section 6.5.4) for detailed information. In contrast, our method studies the cross-domain

relationship of the region and boundary features throughout the whole training process
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with the help of the proposed GNN module. In other words, our model benefits from

complementary cross-domain feature exchange and self-domain information propagation

of region and boundary features along the entire training pipeline through the proposed

graph structure model. Our experimental results prove that the proposed GNN reasoning

module can tackle cross-domain feature optimization and achieved promising results on

two segmentation tasks.

3.2.4 GNN in Segmentation

Graph-structure models have recently been adopted for segmentation tasks because of

their natural aptitude for long-range information propagation and feature updates. Dong

et al. [94] and Shen et al. [356] exploited the traditional random walk algorithm on a graph

to tackle image segmentation tasks. However, the energy formulations for describing the

images are complicated and higher-order energy function based methods [355, 357] may

be needed to solve the problem. Recently, Yao et al. proposed a GNN network [466]

to study the 3D geometrical relationship between vertices through mesh representation in

an organ segmentation task. With the nature of GNN, long-range shape information can

be updated and passed among vertices to maintain a consistency constraint. Along the

same lines, Voxel2mesh [439] learned a deformable mesh representation through GNN to

propagate the voxel features along the edges of the built graph model. Another paper [360]

by Shin et al. used GNN to learn the global structure of the vessel’s shape, which mirrored

the connectivity of neighbouring vertices. Similarly, Meng et al. proposed RBA-Net [276]

to regress the OD & OC boundaries by aggregated CNN and GCN, which learns the

long-range features and directly regresses vertex coordinates in a Cartesian system.

The methods mentioned above used GNN to address the problem of intra-domain

long-range feature propagation, as messages passing between graph nodes share similar
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Figure 3.2: Overview of the proposed GNN model (best viewed in color). The initialized
nodes from the AEM output are interpolated into the same scale (32 × 32) through the
bi-linear interpolation layer. For simplicity, I present only two graph reasoning modules in
the middle, with the top one containing two region nodes and two boundary nodes from
relatively deep feature level and the bottom one containing four region nodes and four
boundary nodes from both shallow and deep feature levels. In this figure, I demonstrate
how to segment polyps. As for OD & OC segmentation, the only difference is that the
output probability map has a channel size of 2.

semantic and spatial characteristics. In contrast, our method considers extracted region

and boundary features as distinct graph nodes and employs GNN to learn their inter-

domain relationship. Additionally, methods such as [276,439,466] represented each graph

node with a predefined vertex and the corresponding coordinate under the form of mesh

[439,466] or triangle [276]. In that kind of framework, each graph node can only represent

a single location. In contrast, our method represents each graph node with a set of pixels

(locations) in the region area or boundary area (shown in Fig. 6.1).
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3.3 Methods

Fig. 4.2 shows the model architecture of the proposed method. Given an input image,

I extract the multi-level features through a backbone network. Following PraNet [100], I

adopt the truncated Res2Net [114] as the backbone due to its superior ability to extract

features in the segmentation task. I propose to use several GNN modules to reason and

aggregate the extracted multi-level region and boundary features, which are elaborated as

follows.

3.3.1 Attention Enhancement Module

Inspired by [440], I applied an attention enhancement module (AEM ) upon each of the

extracted multi-level backbone features. Specifically, the AEM is designed as a sequential

operation consisting of channel attention Catt(·) and spatial attention Satt(·). The AEM

is defined as: FAEM (f) = Satt (Catt(f)) , where Catt(f) = f ⊗MLP (Poolc(f)), MLP (·)

is a multi-layer perceptron with two layers and sigmoid as the activation function; f is the

input feature; Poolc(·) denotes the global max pooling for each feature map; ⊗ represents

the multiplication by the dimension broadcast. In addition, Satt(f) = f⊗Conv(Pools(f)),

where Conv(·) is a 3×3 convolution layer with padding=1, followed by a sigmoid activation

function; Pools(·) denotes the global max pooling operation for each position in the feature

map along the channel axis. In contrast to [440], I omitted the additional feature merging

operations, such as the average pooling layer, in order to retain the most critical extracted

characteristics.

As shown in Fig. 4.2, for each resolution’s backbone feature map, I applied two AEMs,

resulting in attention-enhanced region and boundary feature maps, respectively, which is

referred to as the initialised nodes (region nodes Vr and boundary nodes Vb). Fig. 6.1

demonstrates the boundary node and region node representations. Each node represents
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a set of relative features (pixels), such as region pixels and boundary pixels. The sub-

sequent graph reasoning module treats each region and boundary nodes independently;

afterwards, the output nodes of region and boundary are fused separately, resulting in

region output Rp and boundary output Bp. The whole network is end-to-end trainable;

the supervision gradients of the region and boundary ground truth will back-propagate to

the corresponding AEM, respectively. Thus, the two AEM will excavate the discriminative

feature embeddings for the region and boundary features from each resolution’s backbone

feature.

3.3.2 Graph Based Reasoning

Fig. 4.2 illustrates several graphs in parallel that address the cross-domain, cross-level rea-

soning with varying numbers of region nodes Vr and boundary nodes Vb. In this manner,

the deep-level semantics of a region of interest, and the shallow-level spatial characteristics

of the associated boundary can be interpreted as a whole. In the Ablation Study section,

I perform detailed studies to evaluate the effectiveness of the number of graphs and the

number of node updating times in each graph.

Graph Node Initialization

In our graph-based reasoning module, I construct multiple graphs in parallel, in which

various levels of the attention-enhanced features are referred to as the initialized region

node embeddings Vr = {vr1 , ..., vrn} and boundary node embeddings Vb = {vb1 , ..., vbn}.

In other words, I treat the extracted region and boundary output features of the AEM

module as the corresponding region and boundary nodes in the proposed graph. The

underlying motivations are twofold: (1) As mentioned before, the region and boundary

output features from AEM contain different levels (shallow and deep) and domains (region
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and boundary) of information. In order to obtain complementary information from those

features I treated them as graph nodes and used the message passing and information

exchange mechanism of GNN. (2) In general, a GNN model propagates messages through

a graph, with each node’s representation conditioned on its relationships with surrounding

nodes as well as its own information. Thus, through passing messages among different

nodes, relevant information and relations may be gradually distilled for learning feature

embeddings, where the region and boundary segmentation can be derived.

Single Graph Reasoning Module

In this section, I demonstrate the structure and components of a single graph, such as

the one on the top middle in Fig. 4.2, in which there are four nodes with low-resolution

(8× 8 and 16× 16); the one on the bottom middle has eight nodes of both low- and high-

resolutions (from 8× 8 to 64× 64). Please note that, rather than being chosen at random,

the nodes in each graph are fixed during training. Thus, each graph will address specific

levels of the region and boundary feature aggregation process.

Node Embeddings. Given the initialized region nodes Vr = {vr1 , ..., vrn} and boundary

nodes Vb = {vb1 , ..., vbn}, I interpolate them to have the same size through the bi-linear

interpolation layer. Then, I construct the graph G = {V,E}, where V = Vr ∪Vb, are the

combination of region and boundary nodes.

Edge Embeddings. For information propagation, nodes are linked with each other by

weighted edges E = {e1, ..., en2−n}, where the weighted edges can reflect the different

correlations among various nodes. Rather than randomly initialising the edges, I define

the edges in a data-dependent way. Inspired by [251,432], for two linked nodes vi, vj from

V, the edge ei,j from vi to vj is defined as:

ei,j = Conv(Cat(vi − vj , vj)), (3.1)
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where Cat(·) is channel-wise concatenation, Conv(·) represents a 1×1 convolution layer to

learn the relationships and minimise the channel size into 1. Thus, data-dependent local

information vi − vj and global information vj are both considered in the edge ei,j . Note

that, ei,j has the same size as vi and vj . In contrast, the edge ej,i from vj to vi is defined

as:

ej,i = Conv(Cat(vj − vi, vi)). (3.2)

In this way, the weighted edge embeddings contain the self-information of the starting

node and the cross-information (cross domains or cross levels) of the connected node.

Thus, both types of information can be aggregated to other connected nodes during the

messaging passing process. The edge is defined as directional so as to distinguish the

directional information passing and message aggregation among different nodes.

Message Aggregation & Nodes Update. In our GNN model, nodes connect with

each other; as a result, each node aggregates the cross-level (deep and shallow) and cross-

domain (region and boundary) messages from all its neighbouring nodes, then the node

embeddings will be updated. At T-th update step, for the node vT−1
i and all its neighbour

nodes vT−1
j , the message aggregation function mT

j,i from vT−1
j to vT−1

i is defined as:

mT
j,i =

n−1∑
j

ReLU(eT−1
j,i )� vT−1

j , (3.3)

where � is element-wise multiplication; ReLU(·) as the non-linear function to convert the

edge embeddings to link weight. Then I update the node embeddings with a residual

connection:

vTi = (
n−1∑
j

mT
j,i) + vT−1

i , (3.4)

where the last step node embeddings vT−1
i is maintained for the subsequent graph reasoning
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process.

After T times message aggregations and node updates, I fuse the region nodes VT+1
r =

{vT+1
r1

, ..., vT+1
rn } and boundary nodes VT+1

b = {vT+1
b1

, ..., vT+1
bn } respectively through channel-

wise concatenation, following by 1×1 convolution to generate the output region nodes and

boundary nodes. T is 3 in our work.

Multi-level Graph Reasoning Modules

As observed by others [100, 508], the deep- and shallow- layer features from different lev-

els complement one another, with the deep-layer features containing extensive semantic

region information and the shallow-layer features retaining adequate spatial boundary in-

formation. To this end, I expand the proposed GNN by running several graph reasoning

modules concurrently (2 in our work). Each graph includes region and boundary nodes

from different shallow and deep feature levels of the backbone network. Thus, each graph

reasoning module will address specific levels of aggregation and reasoning about region and

boundary features. For example in Fig. 4.2, the top reasoning graph tackles the deep-level

feature aggregation (8 × 8, 16 × 16), and the bottom reasoning graph tackles the shallow-

and deep-level feature aggregation (8 × 8, 16 × 16, 32 × 32, 64 × 64). Finally, I fuse

the output region (VT+1
r ) and boundary nodes (VT+1

b ) of each parallel graph respectively

by channel-wise concatenation, followed by a 1 × 1 convolution with sigmoid activation

function, then up-sample to obtain the region and boundary segmentation predictions (Rp

and Bp, with the same size of 256 × 256 as the input images). Please note, the parallel

graphs are not connected during the reasoning process but have connections (fusion) on

the output nodes. This is because each graph is designed to concentrate exclusively on a

particular set of levels (resolutions) of nodal reasoning. I found that adding connections

between graphs did not improve segmentation, but did increase training time.
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3.3.3 Loss Function

The total loss function is defined as:

Ltotal = LR + β · (LB + LD), (3.5)

where Dice Loss [289] (LR) is used for the region segmentation predictions to penalize

the mismatch regions against the corresponding ground truth. I defined LR as:

LR(Rp, YR) = 1− 2RpGTR + 1

Rp +GTR + 1
, (3.6)

where Rp and GTR denote the region segmentation predictions and the ground truth. Here,

1 is added to avoid divide by zero errors, such as when Rp = GTR = 0. I also adopt the

signed distance map loss (Lsdm) [175] as the boundary loss (LB) on boundary segmentation

predictions due to the challenge of highly imbalanced foreground and background [258]. In

detail, [175] used an integral approach for computing boundary variations with a signed

distance transformation map, which can avoid complex local differential computations.

Formally, the signed distance function (SDF ) of segmentation ground truth (GT ) can be

defined as:

GTSDF =



−inf
y∈∆G

||x− y||2, x ∈ GTin

0, x ∈ ∆G

inf
y∈∆G

||x− y||2, x ∈ GTout

where ||x − y||2 represent the Euclidean distance between pixel x and y. Besides, GTout,

GTin and ∆G, denote the outside, inside and boundary of the object, respectively. Given

the signed distance maps of ground truth (GTSDF ) and the sigmoid outputs of the model
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Predθ (θ is the parameters), the signed distance map loss (Lsdm) is represented as:

Lsdm(Predθ, GTSDF ) = Predθ �GTSDF , (3.7)

where � denotes Hadamard product. In this way, I can represent the boundary loss LB in

this work as:

LB = Lsdm(Bp, GTB), (3.8)

where GTB represents the signed distance map of the boundary segmentation ground truth.

β is empirically set as 0.5 to balance the losses between Dice loss, region and boundary

predictions.

Boundary Agreement Loss (LD). Firstly, I derive the spatial gradient from the pre-

dicted region mask (Rp), as the derived boundary probability map (Dp). In detail, I em-

pirically adopt the Laplacian filter as a 3 × 3 kernel [[1, 1, 1], [1,−8, 1], [1, 1, 1]] convolution

layer to compute the spatial gradient in an end-to-end manner. The Laplacian filter is the

direct result of a finite-difference approximation of the spatial derivative [108], highlight-

ing the rapid intensity change regions. However, this will lead to thin and coarse derived

boundaries, which results in extremely unlabeled classes (Shown in Fig. 4.2). To address

this issue, I then empirically applied an approximated 3 × 3 Gaussian kernel convolution

layer (sigma equals to 3 for two directions), followed by a 1 × 1 convolution layer to in-

crease the boundary width and address the unbalanced issues [72]. The derived boundary

probability map (Dp) is defined as:

Dp = Conv1×1

(
Gaussian3×3

(
Laplacian3×3(Rp)

))
. (3.9)

Furthermore, the signed distance map loss [175] is applied to it against the boundary

ground truth due to address the challenge of unbalanced classes.



Chapter 3. Researching Region and Boundary Correlations with Implicit Graph
Representations 47

The boundary agreement loss (LD) is defined as:

LD = Lsdm(Dp, GTB). (3.10)

With boundary agreement loss, region segmentation can benefit from additional bound-

ary constraints, resulting in more reliable region segmentation predictions with more ac-

curate boundary details. The boundary ground truth was generated by applying the same

Laplacian filter and Gaussian kernel convolution to the corresponding segmentation ground

truth mask. I then converted it into a binary map with threshold 0 as the final ground

truth.

Furthermore, I empirically found that incorporating the derived boundary (Dp) into

the boundary output (Bp) can enhance both the region and boundary segmentation per-

formance. Thus, to augment the segmentation accuracy, I fuse the derived boundary

probability map Dp with the boundary segmentation map Bp in terms of element-wise

addition. The resulting concatenated feature map is then fed into a 1×1 convolution layer

with a sigmoid activation function to produce the final boundary segmentation predic-

tion. In this way, the boundary segmentation prediction Bp can benefit from the feature

supplement provided by the derived boundary maps Dp.

3.4 Experiments

3.4.1 Datasets

I evaluate our approach with two distinct yet challenging medical image segmentation tasks:

segmentation of OD & OC from retinal images, segmentation of polyps from colonoscopy

images. Accurate segmentation of the OC in colour fundus images is often difficult because

of poor contrast between the cup and the surrounding rim [307]. The boundary between a
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Table 3.1: Quantitative segmentation results of OD & OC and polyps on respective testing
datasets. The performance is reported as Dice (%) and B-Acc (%) and BIoU (%). 95%
confidence intervals are presented in the brackets, respectively. I compare our model with
previous state-of-the-art methods by running their open-source code. Notably, I sampled
120 vertices for PolarMask [449], CABNet [278] and RBA-Net [276] to construct a smooth
boundary.

Methods
Tasks OC OD Polyps

Dice (%)↑ B-Acc (%)↑ BIoU(%)↑ Dice (%)↑ B-Acc (%)↑ BIoU(%)↑ Dice (%)↑ B-Acc (%)↑ BIoU(%)↑

U-Net [337]
85.3

(82.1, 86.8)
87.1

(85.9, 88.8)
80.1

(77.6, 82.4)
95.0

(93.1, 97.1)
97.0

(95.3, 98.6)
86.2

(84.1, 88.3)
66.7

(63.6, 68.1)
73.7

(72.1, 75.1)
60.0

(57.6, 62.2)

U-Net++ [508]
86.0

(83.8, 88.5)
87.6

(85.3, 89.1)
81.4

(79.5, 83.8)
95.0

(93.9, 96.1)
97.9

(97.0, 98.5)
88.0

(86.4, 89.8)
65.6

(63.1, 67.7)
72.6

(70.1, 74.4)
58.8

(55.6, 61.3)

M-Net [109]
86.9

(85.0, 88.0)
89.7

(88.3, 90.9)
82.9

(79.5, 84.7)
96.8

(95.5, 97.6)
96.7

(95.9, 97.9)
88.1

(87.0, 89.3)
- - -

PolarMask [449]
87.2

(85.3, 89.1)
90.9

(88.7, 91.6)
83.2

(81.0, 85.1)
96.5

(95.8, 97.2)
97.8

(96.9, 98.5)
87.0

(86.0, 88.3)
69.3

(67.2, 71.4)
83.6

(81.2, 85.7)
60.3

(58.4, 61.9)

PraNet [100] - - - - - -
74.0

(72.6, 75.7)
85.6

(84.1, 86.9)
66.0

(63.3, 68.9)

Psi-Net [299]
85.7

(83.0, 88.2)
87.1

(85.5, 89.0)
82.1

(80.3, 84.0)
95.8

(94.5, 97.1)
97.7

(96.5, 98.4)
87.9

(85.4, 89.2)
63.8

(59.7, 65.9)
75.5

(73.1, 77.2)
57.1

(55.7, 58.6)

RBA-Net [276]
87.8

(85.2, 89.7)
89.5

(87.1, 91.6)
83.8

(81.6, 85.9)
96.1

(95.5, 96.7)
97.5

(96.4, 98.1)
88.9

(88.0, 89.2)
73.5

(71.2, 75.6)
85.1

(83.0, 87.3)
66.2

(64.8, 67.9)

ACSNet [486] - - - - - -
70.1

(67.8, 72.3)
82.6

(80.8, 84.4)
63.3

(60.1, 65.7)

CABNet [278]
87.1

(84.9, 88.8)
88.8

(87.1, 90.2)
83.0

(81.1, 85.4)
95.5

(94.6, 96.7)
96.4

(95.5, 97.2)
88.2

(87.1, 89.6)
73.0

(70.7, 75.4)
84.2

(82.0, 86.3)
65.5

(63.2, 67.7)

Segtran [210]
88.8

(86.5, 90.3)
91.0

(88.6, 93.2)
83.9

(81.3, 85.8)
97.3

(96.1, 98.2)
97.5

(96.6, 98.8)
90.0

(89.1, 91.2)
75.3

(73.5, 77.1)
86.5

(84.4, 88.3)
67.9

(65.5, 69.2)

Ours
89.4

(87.6, 90.8)
91.7

(91.1, 92.5)
85.1

(83.3, 86.8)
97.7

(97.0, 98.7)
98.1

(97.8, 98.5)
91.1

(90.2, 92.0)
75.7

(73.1, 77.6)
87.0

(86.1, 88.3)
69.3

(67.9, 70.5)

polyp and its surrounding mucosa is typically blurred in colonoscopy images and lacks the

intense contrast required for segmentation approaches [163].

Fundus images of OD and OC: I pooled 2068 images from five datasets (Refuge [307],

Drishti-GS [370], ORIGA [490], RIGA [6], RIM-ONE [111]). 613 fundus images were

randomly selected as the test dataset, leaving the other 1455 images for training and

validation. Following [276], I located the disc center from each image and then cropped a

subimage of 256 × 256 pixels centered on the disc for the subsequent analysis.

Colonoscopy polyp images: I retrieved 2085 colonoscopy images from five datasets

(ETIS [364], CVC-ClinicDB [28], CVC-ColonDB [379], EndoScene-CVC300 [400], and

Kvasir [163]). I used the same data split settings as [100], namely 1450 colonoscopy images
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from Kvasir [163] and CVC-ClinicDB [28] comprised the training and validation datasets.

The remaining 635 colonoscopy images from [364, 379, 400] were used for testing. All of

the images are uniformly resized to 256 × 256.

Input         GT       U-Net      Psi-Net  M-Net  PolarMask  RBA-Net  Ours

Input         GT       U-Net      U-Net++   Psi-Net  PraNet   RBA-Net     Ours

Figure 3.3: Qualitative results of OD & OC segmentation and colonoscopy polyp seg-
mentation. I compare our model with U-Net [337], U-Net++ [508], M-Net [109], Polar-
Mask [449], PraNet [100], Psi-Net [299], RBA-Net [276]. Our method can produce more
accurate segmentation results when compared with ground truth (GT ). Note that I plot
the boundary (spatial gradient through Laplacian filter) of the region mask on the input
image to better visualise the OD & OC segmentation comparison. Along the same lines,
I highlight the region in the input image for colonoscopy polyp segmentation comparison.

3.4.2 Experimental Setting and Evaluation Metrics

To augment the dataset, I randomly rotated and horizontally flipped the training dataset

with a probability of 0.3. The rotation ranges from −30 to 30 degree. I use stochastic

gradient descent with a momentum of 0.9 to optimize the overall parameters. I trained

the model around 300 epochs for all the experiments, with a learning rate of 1e-2 and

a decay rate of 0.5 every 100 epochs. The batch size was set as 48. The network was
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 Input     GT   Region  Boundary  Input   GT   Region  Boundary

Figure 3.4: Figure shows the binary mask comparison between our model’s prediction
and the ground truth. Our model produces consistent region (Region) and boundary
(Boundary) predictions compared with the ground truth (GT).

trained end-to-end; all the training processes were performed on a server with 4 TESLA

V100, and all the test experiments were conducted on a local workstation with Intel(R)

Xeon(R) W-2104 CPU and Geforce RTX 2080Ti GPU with 11GB memory. Five-fold

cross-validation was used for fair comparison and hyper-parameters tuning in all settings.

I randomly selected 10% of the training dataset for internal validation.

I report Dice similarity score (Dice) and balanced accuracy (B-Acc) as the region

segmentation accuracy metrics; and Boundary Intersection-over-Union (BIoU ) [72] as the

boundary segmentation metric. 95% confidence intervals were generated by using 2000

sample bootstrapping. As for BIoU [72], compared with other boundary-based evaluation

metrics such as Trimap IoU [59, 185] or Boundary F1-measure [81, 311], BIoU is more

sensitive to show boundary errors on small objects (e.g. polyps) [72]. BIoU is defined as:

BIoU =
|(Bp ∩ YB) ∩ (Rp ∩ YR)|
|(Bp ∩ YB) ∪ (Rp ∩ YR)|

, (3.11)
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Table 3.2: Ablation study on different feature fusion methods. The performance is reported
as Dice (%), BIoU (%), on the two segmentation test datasets.

Methods
Tasks

OC OD Polyps
Dice BIoU Dice BIoU Dice BIoU
(%)↑ (%)↑ (%)↑ (%)↑ (%)↑ (%)↑

w/o Fusion 86.6 79.1 94.7 86.7 71.2 64.6
w/ Addition 87.0 81.7 96.0 86.6 70.9 63.0

w/ Concatenation 85.7 80.1 94.8 87.5 71.1 65.3
w/ Non-local [429] 87.2 83.4 95.2 89.6 74.9 69.1

w/ GloRe [70] 88.1 84.3 96.1 89.9 73.7 67.5

Ours 89.4 85.1 97.7 91.1 75.7 69.3

where YB and YR are the boundary segmentation ground truth and the region segmentation

ground truth, respectively; Rp and Bp are the region and boundary predictions.

3.4.3 Performance Comparison and Analysis

In this section, I show qualitative (Fig. 3.3, Fig. 3.4) and quantitative (TABLE 5.3)

results of the OD & OC and polyp segmentation tasks. The best result in each category

is highlighted in bold.

OD & OC Segmentation Fig. 3.3 and 3.4 show qualitative results. TABLE 5.3 provides

the quantitative results of Ours and other methods. I obtain an average 89.4% and 97.7%

Dice on OC and OD segmentation, respectively, outperforming approaches based on re-

gion segmentation such as U-Net++ [508] and M-Net [109] by an average of 3.4% and 1.9%

respectively; outperforming polygon-based boundary regression approaches such as Polar-

Mask [449] by 1.9%; outperforming boundary-region based methods such as Psi-Net [299]

by 3.2%; and outperforming GNN based segmentation methods such as RBA-Net [276],

CABNet [278] by 1.8% and 2.5%. Note that PraNet [100] and ACSNet [486] are specially

designed for binary segmentation of colorectal polyps with respect to the implicit region-
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boundary reverse attention module. I cannot extend it to OD & OC segmentation directly

since this is a multi-segmentation task. On the other hand, training two models, one for

OD segmentation and another for OC segmentation, would be unfair to the other models

under comparison. As a result, this model was not tested on the OD & OC segmentation

tasks.

Polyp Segmentation TABLE. 5.3 and Fig. 3.3, Fig. 3.4 show the quantitative and

qualitative results. Our model achieves 75.7% Dice, which outperforms the cutting-edge

ACSNet [486] and PraNet [100] by 8.0% and 2.2% respectively. As for boundary segmen-

tation accuracy, our model achieves 69.3% BIoU, which is 5.0% better than PraNet [100]

and 8.0% better than ACSNet [486]. Our model size (∼ 38.69 million parameters) is larger

than PraNet [100] (∼ 30.49 million parameters) when our framework has 2 graph reasoning

modules (shown in TABLE 3.4). However, our model can gain more accurate segmentation

performance (74.3% Dice; 68.1% BIoU ) with a comparable model size (∼ 30.57 million

parameters) with PraNet [100] when the number of graph reasoning modules is 1 (N = 1 in

TABLE 3.4). Segtran [210] is a very recent region-based approach for polyp segmentation.

It benefits from the long-range feature reasoning ability of Transformer [399], and achieves

comparable performance with ours. However, it has a larger model size (93.0 million pa-

rameters) than ours (38.69 million parameters), and due to the complexity of the model

structure it has a relatively lower inference speed (8.7 fps) compared with ours (21.6 fps)

on our local machine).
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3.5 Discussion and Conclusion

3.5.1 Ablation Study

I conducted detailed ablation studies, and all the results demonstrate our model’s effective-

ness. As an illustration, the ablation results for different feature fusion methods, network

components, attributes of the graph reason modules, and loss functions are shown in TA-

BLE 3.2, TABLE 3.3, TABLE 3.4, and TABLE 6.10.

Feature Fusion. In this section, I evaluated the effectiveness of the proposed GNN

reasoning module. Firstly, I replaced the GNN module with two feed-forward CNN blocks

for the region and boundary features, respectively, to minimise the model size gap and

retain a comparable number of parameters (e.g., ∼ 38.69 million for our model). In each

CNN block, I built several standard convolution layers with kernel size 3 × 3, padding

1, followed by a Batch Normalization layer. Then, the boundary and region features are

fused in three ways (similar to previous methods [100, 104, 299, 411, 425, 489]), including

element-wise addition [100, 425], channel-wise concatenation [411, 489] or without fusion

operation [104,299]. Finally, two 1 ×1 convolution layers were added to generate the region

and boundary predictions. Additionally, I adopted two more potent fusion mechanisms to

show our proposed GNN reasoning module’s superiority. In detail, I applied the Non-local

module [429], and GloRe module [70] respectively, where the Non-local module exploits

a self-attention mechanism [399] and GloRe utilizes graph convolution [182] to tackle the

long-range relations among features. TABLE 3.2 shows that our model with the GNN

reasoning module achieves much more accurate and reliable results than simple fusion

operations and outperforms the Non-local and GloRe modules by 2.2% and 2.0% in terms of

Dice (%); and 1.4% and 1.7% in terms of BIoU (%) on two segmentation tasks respectively.

Network Components. This section presents the results of our ablation study on net-
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Table 3.3: Ablation study on different model structure components. The performance is
reported as Dice (%), BIoU (%), on the two segmentation test datasets. The best results
are highlighted in bold.

Methods
Tasks

OC OD Polyps
Dice BIoU Dice BIoU Dice BIoU
(%)↑ (%)↑ (%)↑ (%)↑ (%)↑ (%)↑

w/o AEM 87.1 83.6 96.7 89.2 74.0 68.0
w/o Gaussian 88.3 84.7 97.1 90.2 74.6 68.1

w/o Boundary nodes 86.3 82.0 94.8 88.7 72.9 66.0
w/o Region nodes 83.6 80.2 91.2 87.5 64.1 57.9

Ours 89.4 85.1 97.7 91.1 75.7 69.3

Table 3.4: Ablation study on the attributes of the graph reason modules. The segmentation
performance is reported as Dice (%), BIoU (%); the inference speed is reported as frame
per second (fps) on the two testing datasets. Additionally, I present the model size in
millions of parameters. The best result in each category is highlighted in bold.

Methods
Tasks

OD & OC Polyps
Model Size

Inference Dice BIoU Inference Dice BIoU
(fps) ↑ (%)↑ (%)↑ (fps)↑ (%)↑ (%)↑ (# of parameters in millions)↓

N = 1, T = 3 ∼21.6 92.1 86.6 ∼29.3 74.3 68.1 ∼30.57
N = 2, T = 3 ∼21.6 93.6 88.1 ∼29.3 75.7 69.3 ∼38.69
N = 3, T = 3 ∼21.6 91.8 86.1 ∼29.3 72.1 66.0 ∼46.56

N = 2, T = 1 ∼38.1 92.0 87.4 ∼44.0 74.8 68.3 ∼38.69
N = 2, T = 3 ∼21.6 93.6 88.1 ∼29.3 75.7 69.3 ∼38.69
N = 2, T = 5 ∼3.7 91.9 87.3 ∼13.8 73.4 68.1 ∼38.69

work structure components. I evaluated the effectiveness of the attention enhancement

module (AEM ), Gaussian kernel convolution layer, boundary nodes, and region nodes,

respectively. I did this by removing each of those components in turn while retaining the

rest of the structure. Notably, I overlooked the model size difference for the ablation study

of the AEM and the Gaussian kernel convolution layer because there is no significant

difference in the number of model parameters. To retain a comparable model size for the

boundary nodes and region nodes ablation studies, I added feed-forward CNN blocks (same
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Table 3.5: Ablation study on the loss function. The performance is reported as Dice
(%), BIoU (%) on two segmentation test datasets. The best result in each category is
highlighted in bold.

Methods
Tasks OC OD Polyps

Dice BIoU Dice BIoU Dice BIoU
(%)↑ (%)↑ (%)↑ (%)↑ (%)↑ (%)↑

w/ Dice Loss 87.0 83.2 95.2 89.0 73.3 67.0
w/o Agreement Loss 88.1 84.1 96.2 90.0 74.2 67.9

Ours 89.4 85.1 97.7 91.1 75.7 69.3

as the one in the Feature Fusion ablation study) after the GNN reasoning module. (1).

The AEM is designed to extract the discriminating features for boundary and region nodes

through the back-propagation mechanism in the proposed end-to-end trainable network.

TABLE 3.3 demonstrates that our model (Ours) improves average 2.1% Dice and 2.0%

BIoU, respectively, using AEM upon two segmentation test datasets.

(2). The Gaussian kernel convolution layer (Gaussian) is critical to increasing the

boundary width in the generation of boundary ground truth and the derived boundary

prediction (Dp). As discussed previously, I use it to increase the boundary width of the

boundary output (Bp) and of the boundary ground truth. Our model (Ours) gains 1.1%

Dice and 1.6% BIoU improvement upon two segmentation tasks.

(3). I performed extensive experiments to evaluate the significance of boundary nodes

and region nodes by removing every element associated with the boundary nodes, including

the corresponding AEM, Vb, Dp, Bp, LD, LB, etc.. In this way, the network is devoid of

boundary information supervision and produces only region prediction. Furthermore, the

proposed GNN module can only serve as a cross-level (shallow and deep) feature refinement

module for the region segmentation task. It shows that our model (Ours) gains 3.5% Dice

and 3.1% BIoU improvement from boundary information supervision on two segmentation



56 Yanda Meng

tasks. On the other hand, I remove region information related elements in the network

such as the corresponding AEM, Vr, Dp, Rp, LD, LR, etc., and construct a boundary

segmentation network. TABLE 3.3 shows that the model cannot achieve comparatively

promising segmentation results due to the lack of supervision over region details. This

further demonstrates the importance of boundary and region information in biomedical

image segmentation tasks.

Attributes of the Graph Reason Modules. In this section, I present the results of

the ablation study on the attributes of the graph reason modules. Here I evaluated the

effectiveness of the number of graph reasoning modules (N ) and the number of update

times (T ) in each graph reasoning module. TABLE 3.4 shows that our model achieves the

best performance on two segmentation test datasets with two graph reasoning modules (N

= 2), and each module updates three times (T = 3). In detail, the two graph reasoning

model tackles (8 × 8, 16 × 16) and (8 × 8, 16 × 16, 32 × 32, 64 × 64) levels’ features,

respectively.

Furthermore, the number of graph reasoning modules (N ) impacts the model size;

the number of update times in each graph can influence inference time. To present a

comprehensive analysis, I show the inference time and model size with different attributes

of the graph reason module in TABLE 3.4. As shown, with N = 2 and T = 1, our model

can run at a real-time speed of ∼ 38.1 fps and ∼ 44.0 fps for a 256 × 256 input of fundus

image and colonoscopy image, respectively.

Loss Function. In general, the losses employed in this work serve a variety of purposes.

Dice loss [289] (LR) is a commonly used region-based loss for segmentation task. While

Dice loss outperforms other losses (i.e. Cross-Entropy loss) in addressing the unbalanced

issues [175], I discover that by using Dice loss for boundary segmentation, the predicted

boundary segmentation masks appear to be incomplete, leading to almost black masks
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(most zero pixel values) due to the unbalanced foreground and background. I addressed this

challenge by applying boundary loss [175] (LB) to the boundary segmentation predictions

(Bp). Boundary agreement loss (LD) adopts [175] as well. However, it is applied on the

derived boundary (Dp), which aims for the consistent boundary upon the region predictions

(Rp) and boundary predictions (Bp). LD brings two essential advantages. Firstly, since

Dp and Bp are under the supervision of the same boundary ground truth, LD can be

considered as the consistency loss between the Dp and Bp; at the same time, it can force

the model to learn consistent boundary features for region nodes Vr and boundary nodes Vb.

Secondly, the LD serves as a boundary focus on the Rp with additional boundary ground

truth supervision. This aids the model to produce more precise boundary predictions.

To analyse the effectiveness of the LB and LD, I applied Dice loss [289] to LB (w/ Dice

Loss), which is inevitably vulnerable to unbalanced foreground and background. TABLE

6.10 shows that our model improves by 2.9% Dice and 2.7% BIoU with boundary loss [175]

on two segmentation tasks. Additionally, I excluded boundary agreement loss (LD) while

maintaining the remaining components to verify its importance (w/o Boundary Agreement

Loss). As shown, LD can deliver a 1.7% Dice improvement in region segmentation and

1.5% BIoU improvement in boundary segmentation.

3.5.2 Clinical Evaluation and ‘Failure’ Analysis

Clinical Evaluation. As well as assessing computer vision evaluation metrics, I also

evaluated the clinical output of our method. The vertical Cup to Disc Ratio (vCDR) is an

important indicator for screening and diagnosis of glaucoma. The vCDR value is calculated

by the ratio of vertical cup diameter to vertical disc diameter. A larger vCDR indicates

a higher possibility of glaucoma and vice versa. Following previous methods [109, 276],

I provided the Mean Absolute Error of vCDR (δvCDR) between the predictions and the
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ground truth. Our method (Ours) achieved 0.056 δvCDR on the OC & OD segmentation

test set, which outperformed classic methods U-Net [337] (0.089 δvCDR) and U-Net++

[508] (0.077 δvCDR) by 37.1 and 27.3% respectively, outperformed cutting-edge methods

M-Net [109] (0.064 δvCDR), RBA-Net [276] (0.062 δvCDR), Segtran [210] (0.060 δvCDR)

and CABNet [278] (0.067 δvCDR) by 12.5%, 9.7%, 6.7% and 16.4%. Ours provides more

accurate vCDR estimation than these other methods, and this is consistent with superior

segmentation.

‘Failure’ Analysis. I studied the reasons for poor segmentation by our method, and found

that in some cases this could be attributed to imprecise ground truth in public OD & OC

segmentation datasets. In detail, for each retinal image in the OD & OC test dataset, I

considered segmentation to have ‘failed’ when the Dice (%) of OC segmentation was below

80.0% or OD segmentation was below 90.0%. According to these criteria, segmentation

failed on 28 out of 613 test images. I made a montage of each case, comprising the original

image, our segmentation, and ground truth. I present some of the failed segmentations

by using our model (Ours) and the ground truth (GT ) in Fig. 3.5. The ophthalmolo-

gist (IJCM) reviewed these 28 montages in a masked manner and indicated which of the

two segmentations was more accurate for OC and OD, respectively. A McNemar-Bowker

test [270] confirmed that Our segmentation was regarded as clinically accurate significantly

more often than the GT (p=0.029 for OC and p=0.001 for OD). Further subjective clinical

review of some GT image sets suggested variable GT accuracy. This highlights the robust-

ness of our model, but also points to important limitations in the ground truth manual

annotations. The quality of manual annotations is of utmost importance for developing

and validating segmentation models as well as translating automation tools into clinical

practice. I advise investigators to apply extra caution when using public datasets. Quality

assurance of manual annotations of public datasets is a strategic vulnerability in the field
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and requires further work.

  Input            Ours            GT Input            Ours            GT

Figure 3.5: A comparison of our segmentation (green) and the ground truth (red) in
some ‘failed’ cases. The ground truth has inaccurate OC boundaries for most of the
cases. According to an ophthalmologist (IJCM), our model generally produces more precise
boundaries than the ground truth.

3.5.3 Limitation and Future Work

Limitations. Our method achieves promising results for segmenting OC & OD and

colonoscopy polyps. However, it may not work as well for highly complex objects, such

as curvilinear structures like retinal vessels [66, 260, 499]. The primary reason for this is

that retinal vessels’ region and boundary areas can be challenging to distinguish due to

their complex topology and tortuosity. In particular, the derived boundary map (Dp)

I propose may have a significant overlap with the region map (Rp) in these situations.

Thus, an inevitable perturbation will be included in the information propagation and
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message passing process between the region and boundary nodes, harming the segmentation

performance.

Future Work. Our method can be extended to tackle video-based segmentation tasks, es-

pecially for polyp segmentation. In brief, video-based polyp segmentation methods require

high accuracy and speed at the same time. In addition, polyps are of varying size, and

their appearance depends on the movement of the camera past the lesion. Thus, dynamic

and rapid updates to the receptive field of the network are essential. An extension from our

proposed multi-level graph reasoning modules, where each graph is responsible for tackling

a specific level of the receptive field, a dynamic attention module (similar to [164]) could

be applied on the fusion of different graphs. In this way, our model could automatically

adopt the weight contributions between different graphs for inference predictions. As for

the inference speed required by video-based tasks, a trade-off between accuracy and speed

can be achieved by a different number of graphs and iteration numbers for message pass-

ing. Besides this, our proposed model could also be extended to tackle 3D image-based

segmentation tasks. In 3D settings, I can regard the boundary as a surface mesh (vertices)

and the region as voxels. Thus, the proposed boundary nodes in our method could repre-

sent the extracted surface mesh (vertices) features, and the region nodes could represent

the extracted voxel-wise features. In this case information exchange and message passing

between the surface and volume of 3D objects could be achieved with the same network,

simply by redefining the identity of the nodes.

3.5.4 Conclusion

I propose a novel graph-based aggregation module that takes advantage of intuitive associ-

ations between the region and boundary features in biomedical images, in order to produce

more accurate segmentation. Our experiments have demonstrated that the proposed model
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can effectively aggregate and explain the semantic region features and spatial boundary

features for segmentation of polyps from colonoscopy images, and the optic disc & optic

cup from retinal images. I believe the proposed GNN model can also tackle other cross-

domain feature reasoning challenges, such as regions, boundaries, and landmark reasoning

segmentation tasks.



Chapter 4

Researching Regional and

Marginal Consistency with

Implicit Graph Representations

In this chapter, I research the geometry-aware graph representation in the task of biomed-

ical image analysis, specifically on the task of glaucoma assessment of optic disc and cup

segmentation with colmy fundus images. In detail, glaucoma is a progressive eye dis-

ease that results in permanent vision loss, and the vertical cup to disc ratio (vCDR) in

colmy fundus images is essential in glaucoma screening and assessment. Previous fully

supervised convolution neural networks segment the optic disc (OD) and optic cup (OC )

from color fundus images and then calculate the vCDR offline. However, they rely on a

large set of labeled masks for training, which is expensive and time-consuming to acquire.

To address this, I propose a weakly and semi-supervised graph-based network that inves-

tigates geometric associations and domain knowledge between segmentation probability

maps (PM ), modified signed distance function representations (mSDF ), and boundary re-

62
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gion of interest characteristics (B-ROI ) in three aspects. Firstly, I propose a novel Dual

Adaptive Graph Convolutional Network (DAGCN ) to reason the long-range features of

the PM and the mSDF w.r.t. the regional uniformity. Secondly, I propose a dual con-

sistency regularization-based semi-supervised learning paradigm. The regional consistency

between the PM and the mSDF, and the marginal consistency between the derived B-ROI

from each of them boost the proposed model’s performance due to the inherent geometric

associations. Thirdly, I exploit the task-specific domain knowledge via the oval shapes

of OD & OC, where a differentiable vCDR estimating layer is proposed. Furthermore,

without additional annotations, the supervision on vCDR serves as weakly-supervisions

for segmentation tasks. Experiments on six large-scale datasets demonstrate my model’s

superior performance on OD & OC segmentation and vCDR estimation. The implemen-

tation code has been made available 1.

Glaucomatous damage to the optic nerve head can be assessed on colmy fundus im-

ages, by measuring the relative size of the optic disc (OD) and the optic cup (OC ) in the

vertical direction of the image [307]. Traditionally, a widely adopted method is to calculate

the vertical cup to disc ratio (vCDR) [109]. Few of the current methods directly regresses

the vCDR values from fundus images [497]. However, it has lead to the difficulty and

uninterpretability in learning [307]. A common pipeline is to segment OD and OC regions

respectively, after which the vCDR is calculated as the ratio between the vertical cup di-

ameter and vertical disc diameter. Consequently, accurate segmentation of OD & OC is

critical for the vCDR measurement, in turn for the glaucoma assessment. Recently, nu-

merous deep learning-based segmentation models [109,276,278,280,286,307,445] have been

proposed, significantly improving the OD & OC segmentation accuracy. However, most of

them use a fully supervised paradigm, where a large number of manual delineation labels

1https://github.com/smallmax00/Dual_Adaptive_Graph_Reasoning

https://github.com/smallmax00/Dual_Adaptive_Graph_Reasoning
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by clinicians or trained experts are required as the ground truth prior to training the model.

The manual annotations are also hugely subjective, time-consuming, laborious, and costly.

Solving this problem depends on automated and precise segmentation algorithms that can

exploit a large number of unlabeled images without the need for manual delineations. To

this end, I proposed a newly designed weakly/semi-supervised learning mechanism that

is integrated with my proposed Dual Adaptive Graph Convolutional Network (DAGCN ).

With the critical novelty of exploiting the geometric associations and domain knowledge,

I have demonstrated the framework’s effectiveness for the segmentation of OD & OC and

also glaucoma assessment w.r.t. vCDR estimation in colmy fundus images.

The previous segmentation methods concentrated on learning the intensity features of

the input images; they would normally rely on a single task such as dense probability

map classification, boundary localization, or signed distance function regression. Despite

human graders’ instinctive use of both image intensity features and spatial relationships

between object’s boundary and region, they ignore the inherent geometric association be-

tween these learned representations, which are critical for improving segmentation perfor-

mance [72,286]. To be more precise, segmentation probability map (PM ) features empha-

size on the global homogeneity of pixel-level semantics and contextual information at the

object level. The local boundary characteristics, such as boundary region of interest (B-

ROI ), describes the spatial variations on both sides of the boundary contour. The signed

distance function (SDF ) representations emphasize on the global geometry-aware signed

distance w.r.t. the object contours. Notably, in this work, I propose a modified signed

distance function (mSDF ) that has similar attributes to the SDF but indicates more co-

herent signals at the semantic level akin to PM. More specifically, the sign label is reversed

from the SDF to the proposed mSDF (e.g. +, -) for the inner and outer regions of objects

in order to make the learned mSDF features need to be coherent with the PM features
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for the construction of the dual graph adjacency matrix. Intuitively, the geometric asso-

ciations between them appears to complement one another during model learning, such

as regional and marginal consistency via spatial area and boundary uniformity, thereby

improving segmentation performance. To accomplish this, I propose a semi-supervised

learning paradigm to construct dual consistency regularizations on both object’s region

and boundary via the three aforementioned tasks. Additionally, I investigated the method

to accompany the feature complementing rationally between PM segmentation and mSDF

regression tasks at semantic and spatial levels. For example, the proposed novel DAGCN

leverages the advantage of the graph-based model’s long-range information propagation

and cross-domain feature update capabilities. Specifically, I adaptively constructed the

dual graph via initializing the adjacency matrix in a data-dependent way. The estimated

vertex embeddings of mSDF and PM contributed to the dual adjacency matrices adap-

tively according to the geometric associations between them. I implemented two matrices

to quantify the distance and relationship among different vertices so as to achieve adaptive

graph construction and reasoning. On the other hand, previous OD & OC segmentation-

based glaucoma assessment methods have chased high segmentation accuracy but have

overlooked the fact that the ultimate goal of such a learning pipeline is to estimate the

vCDR in order to aid in glaucoma assessment. As a result, the underlying weak supervision

label of vCDR in OD & OC segmentation task is understudied. The previous methods

adopted an offline post-processing step to calculate the vCDR given the estimated diam-

eters of the OD & OC. On the contrary, I have exploited the domain-specific knowledge

between the boundary and region in terms of the perimeter and area of an oval shape of

OD & OC, where a new differentiable vCDR estimating layer is proposed for the end-to-

end training. Thus, my model does not only avoid any offline post-process to generate

vCDR but also gains more weakly-supervised guidance without further annotations. Such
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a novel design ensured that the proposed model learns the well-defined goals and gains

more supervision from the ground truth on both the regions and boundaries of objects.

The overview pipeline of my work is depicted in Fig. 6.1, please refer to Fig. 4.2 for more

details. In summary, this work makes the following contributions:

• I proposed a dual adaptive graph convolutional network (DAGCN ) to reason the

cross-domain segmentation probability maps and modified signed distance function

representations. The information propagation and message exchange w.r.t. geometric

associations and semantic context were exploited to learn a comprehensive graph

representation and adaptive structure.

• I proposed a dual consistency-based paradigm on region and boundary geometric

associations in a semi-supervised manner. The enforced consistency on regional and

marginal features leads the learned model to a generalizable characteristic learning

via leveraging a large amount of unlabeled data.

• For the first time, I exploited the task-specific domain knowledge in terms of perime-

ter and area of the oval-shaped OD & OC, and proposed to estimate the vCDR in a

differentiable way. Thus, without any further laborious annotations, the supervision

on vCDR serves as weakly-supervised guidance on the accurate OD & OC region

and boundary segmentation.

4.1 Related Works

4.1.1 Pixel-wise Medical Image Segmentation

Convolution Neural Network (CNN ) has found widespread use in the segmentation of

medical images. Existing CNN-based methods [109,125,337] have considered segmentation

as a dense pixel classification task. For example, the classic U-net [337] employs a skip-
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Figure 4.1: Overview of the proposed network, where three major contributions, DAGCN,
dual consistency regularization and differential vCDR estimation, are shown.

connection between the encoder and decoder to minimize information loss. In recent years,

it has been used as a baseline model for medical image segmentation tasks. Recently, Gu

et al. [125] proposed to capture high-level information while preserving spatial information

on OD & OC segmentation task. However, due to the limited receptive field of standard

CNN, dense atrous convolutions were incorporated [470] to enlarge the receptive regions

for long-range context reasoning. Similarly, M-Net [109] requires multi-scale input and

side-output mechanisms with deep supervision, to achieve multi-level receptive field fusion

for aggregating long-range relationships. With the assistance of the enhanced long-range

reasoning abilities, the aforementioned methods achieved promising results in the OD &

OC segmentation task. They are however inefficient as the stacking of local cues as it does

not always accurately represent long-range context relationships [286]. On the contrary, I

benefit from the long-range information aggregating ability of the graph-based models to

address this issue.
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4.1.2 Geometry-aware Medical Image Segmentation

It is well established that boundary knowledge is essential in acquiring geometric features

in segmentation tasks. When it comes to medical image segmentation, the boundary

accuracy is often more critical than that of the regional pixel-wise coverage [276, 280].

Recent methods, such as [255, 276, 278, 280, 286, 457], have explicitly or implicitly taken

into account the geometry dependency between the regions and boundaries of an object of

interest in OD & OC. Specifically, Meng et al. proposed an aggregated hybrid network [286]

to jointly learn the relationship between region and boundary of OD & OC, conducting an

accurate boundary localization. On the other hand, Luo et al. [255] and Xue et al. [457]

adopted SDF to represent the target mask in segmentation tasks as it enables the network

to learn a distance-aware representation w.r.t the object boundary, emphasizing the spatial

perception of the input images. Similarly, I proposed to learn a mSDF regression task in

this work to exploit the geometry-aware feature learning. Also, it is integrated into the

proposed dual consistency semi-supervised paradigm at the task level, leading to a coherent

semantic and spatial information integration with PM segmentation task in the proposed

graph-based model.

Other boundary-based methods [72, 445] integrate the region and boundary geometry

constraint into the loss function or evaluation measurement. For example, Cheng et al.

proposed a Boundary Intersection-over-Union (BIoU ) [72] evaluation measurement, which

quantifies boundary quality in segmentation tasks. Wu, et al. [445] proposed an oval

shape constraint-based loss function to regularize the contmy shape of the predicted OD

& OC during learning. Similarly, I exploited the boundary and region relationship in

terms of perimeter and area of oval shape to estimate the vCDR in a differentiable way.

The underlying geometry association of the oval shape of OD & OC was researched and

specially designed in this work.
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4.1.3 Weakly and Semi-supervised Medical Image Segmentation

By learning directly from a small set of labeled data and a large set of unlabeled data,

the semi-supervised learning frameworks [202,255,256] achieved high-quality segmentation

results. Numerous semi-supervised methods [211, 472] have recently been developed that

incorporate unlabeled data through unsupervised consistency regularization. In general,

there are majorly two different types of unsupervised consistency regularizations, i.e. a

data-level of perturbations [211, 382, 472] and a feature-level of perturbations [202, 256].

However, on the other hand, the consistency regularization of task-level in semi-supervised

learning has rarely been explored, until very recently in different computer vision tasks,

such as crowd counting [284], 3D object detection [250], and 3D medical image segmenta-

tion [255]. To be more precise, various levels of information from different task branches

can complement one another during training, whereas divergent focuses can lead to inher-

ent prediction perturbation [475]. For example, [284], [255] and [250] all shared a similar

idea that the dual task’s outputs can be aligned into the same presentation space, and

then an unsupervised loss is applied to regularize the consistency. In this work, I have also

demonstrated a dual-task level of geometric consistency on the OD & OC segmentation.

Apart from that, I have integrated the boundary quality into the task-level of consistency

regularization.

On the other hand, weakly supervised methods [193, 197, 241, 322] segmented images

using image-level of labels [197], bounding boxes [322], points [193], scribbles [241] rather

than pixel-by-pixel annotation, which alleviated the burden of annotation. They all focused

on the data-driven learning-based way of general coarse labels . For example, given the

image-level labels, Wu et al. [197] proposed an attention mechanism on the top of the class

activation maps [502] to improve 3D brain lesion localization. The estimated lesion regions

and normal tissues were then used to train the 3D brain lesion segmentation network.
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Differently, for the first time, I integrated the task-specific domain knowledge into the

proposed weakly supervised paradigm, where the oval shape of the OD & OC is exploited

in the segmentation task. As a result, my model could estimate the vCDR end-to-end

on the basis of OD & OC segmentation. At the same time, the information gained from

vCDR ground truth could weakly-supervise the segmentation process for the both region

and boundary of OD & OC.

4.1.4 Graph Reasoning in Segmentation

In the recent years, the graph-based models [70, 223, 280, 286, 483] have gained popular-

ity for the segmentation tasks due to their inherent ability to propagate information over

long distances and update feature information. Meng et al. proposed RBA-Net [276] and

CABNet [278] to regress the OD & OC boundaries by aggregated CNN and Graph Convo-

lutional Network (GCN ), which learns the long-range features and directly regresses vertex

coordinates in a Cartesian system. The methods described above made use of a Graph

Neural Network (GNN ) to address the challenge of intra-domain long-range feature propa-

gation because messages passing between graph nodes have semantic and spatial character-

istics that are similar to one another. Contrary to this, my method treats extracted pixel-

level PM features and geometry-aware mSDF representations as distinct graph nodes and

employed GNN to learn their inter-domain relationship. In particular, the geometric asso-

ciations between them were exploited. Additionally, methods such as [70,223,276,278,483]

used Laplacian smoothing-based graph convolution [182], provide specific benefits in the

sense of global long-range information reasoning. They estimated the initial graph struc-

ture from a data-independent Laplacian matrix defined by randomly initialized adjacency

matrix [70, 483] or hand-crafted adjacency matrix [182, 223, 276, 278]. However, one may

enable a model to learn a specific long-range context pattern [215, 280], which is less re-
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lated to the input features, and thus I considered them as a data-independent non-adaptive

graph convolution. Differently, as seen in previous works that the graph structure could

be estimated with the similarity matrix from the input data [215], I estimated the initial

adjacency matrix in a data-dependent way. The constructed dual graph in this work had

two distinct structures, which were adaptively learned from the input features of PM and

mSDF features. Hence, my model was capable of adaptively learning an input-related

long-range context pattern, which improved the model segmentation performance; please

read Ablation Study (Section 6.5.4) for more details.
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4.2 Methods

4.2.1 Dual Adaptive Graph Convolutional Network

Graph Node Initialization

A backbone network was used to extract the multi-level features. The deep- and shallow-

layer features from different levels complemented one another. For example, the deep-layer

features contained extensive semantic region information, while the shallow-layer features

retained sufficient spatial boundary information. Thus, for initializing the dual graph

vertices, I used the feature aggregation module that is similar to [280] on relative deep-

level and low-level features. Specifically, the backbone feature maps of 16 × 16, 32 × 32,

and 64 × 64 were aggregated with 1 × 1, 3 × 3 convolutions and bilinear up-sampling

operations. Reader are referred to Feature Aggregation Module (FAM ) in [280] for more

details. As a result, following the feature aggregation module, the output feature maps for

PM (Rpm) and mSDF (RmSDF ) have the same sizes of 64 × 64 × 2. I then referred them

to as the initialised PM node embeddings and mSDF node embeddings, respectively.

Classic Graph Convolution

I first revisited the classic graph convolution and their graph construction process w.r.t

the adjacency matrix. Given a graph G = (V, E), normalised Laplacian matrix is defined

as L = I −D−
1
2AD−

1
2 , where I is the identity matrix, A is the adjacency matrix, and D

is a diagonal matrix that represents each vertex’s degree in V , such that Dii =
∑

j Ai,j .

The Laplacian of the graph is a positive semi-definite symmetric matrix, so L can be

diagonalized by the Fourier basis U ∈ RN×N , such that L = UΛUT . Thus, the spec-

tral graph convolution of i and j can be defined as i ∗ j = U((UT i) � (UT j)) in the

Fourier space. The columns of U are the orthogonal eigenvectors U = [u1, ..., un], and
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Λ = diag([λ1, ..., λn]) ∈ RN×N is a diagonal matrix with eigenvalues that are not neg-

ative. Due to the fact that U is not a sparse matrix, this operation is computationally

inefficient. To solve this, it was proposed that the convolution operation on a graph can

be defined by formulating spectral filtering [85] with a kernel gθ using a recursive Cheby-

shev polynomial in Fourier space. The filter gθ is parameterized in terms of an order K

Chebyshev polynomial expansion, such that gθ(L) =
∑

k θkTk(L̂), where θ ∈ RK is a vec-

tor of Chebyshev coefficients, and L̂ = 2L/λmax − IN represents the rescaled Laplacian.

Tk ∈ RN×N is the Chebyshev polynomial of order K. In [182], Kipf et al. further simplified

the graph convolution as gθ = θ(D̂−
1
2 ÂD̂−

1
2 ), where Â = A+ I, D̂ii =

∑
j Âij , and θ is the

only Chebyshev coefficient left. The corresponding graph Laplacian adjacency matrix Â is

hand-crafted, which leads the model to learn a specific long-range context pattern rather

than the input-related one [215]. As a result, I refered to the classic graph convolution as

data-independent non-adaptive graph convolution.

Dual Adaptive Graph Convolution

This section adopts the similar graph structure w.r.t adjacency matrix from my previous

works [280]. I extended it into a dual adaptive graph, perfectly fitting the proposed semi-

supervised paradigm with dual consistency regularization. Given the initialized PM nodes

Rpm ∈ RN×C and mSDF nodes RmSDF ∈ RN×C , I constructed the input-dependent

adaptive adjacency matrix for the dual adaptive graph (Gpm and GmSDF ), where C is the

channel size; N = H ×W is the number of spatial locations of input feature, which is

referred to as the number of vertices.

I illustrate Gpm as an example and elaborate the graph construction process as below.

Firstly, I implemented two matrices (Λ̃c and Λ̃s) to perform channel-wise attention on the

dot-product distance between input vertex embeddings and to quantify spatially weighted
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relations between different vertices, respectively. For example, Λ̃c(Rpm) ∈ RC×C is the

matrix containing channel-specific information about the dot-product distance of the input

vertex embeddings.; Λ̃s(Rpm) ∈ RN×N is a spatially weighted matrix that quantifies the

relationships between different vertices.

Λ̃c(Rpm) =
(
MLP

(
Poolc(Rpm)

))T
·
(
MLP

(
Poolc(Rpm)

))
, (4.1)

where Poolc(·) denotes the global max pooling for each vertex embedding; MLP (·) is a

multi-layer perceptron with one hidden layer. On the other hand,

Λ̃s(Rpm) =
(
Conv

(
Pools(Rpm)

))
·
(
Conv

(
Pools(Rpm)

))T
, (4.2)

where Pools(·) represents the global max pooling for each position in the vertex embedding

along the channel axis; Conv(·) is a 1×1 convolution layer. In this way, the data-dependent

adaptive adjacency matrix Ā is given by spatial and channel attention-enhanced input

vertex embeddings. I initialized the input-dependent adaptive adjacency matrix Ā as:

Ā = ψ(Rpm,Wψ) · Λ̃c(Rpm) · ψ(Rpm,Wψ)T+

φ(Rpm,Wφ) · φ(Rpm,Wφ)T � Λ̃s(Rpm),

(4.3)

where · represents matrix product; � denotes Hadamard product; ψ(Rpm,Wψ) ∈ RN×C

and φ(Rpm,Wφ) ∈ RN×C are both linear embeddings (1 × 1 convolution); Wψ and Wφ are

learnable parameters. Secondly, I exploited the geometric association between PM and

mSDF through integrating mSDF into the built Laplacian matrix L̃, which allowed us to

adaptively built the graph according to their own constraints. Specifically, I fuse it into

the spatial-wise weighted matrix Λ̃s(Rpm). The geometry-aware spatial weighted matrix
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Λ̃sg(Rpm, RmSDF ) is given as follows:

Λ̃sg(Rpm, BmSDF ) = Conv
(
Pools(Rpm)

)
·(

Conv
(
Pools(Rpm +RmSDF )

))T (4.4)

where Conv(·) is a 1 × 1 convolution layer. In this way, the semantic features of the

object’s foreground were emphasized by geometry-aware features of mSDF. As this is the

case, the proposed adaptive graph convolution could take the spatial characteristics into

account when reasoning the correlations between different regions. Then, the geometry-

aware input-dependent adjacency matrix Ã will be given as:

Ã = ψ(Rpm,Wψ) · Λ̃c(Rpm) · ψ(Rpm,Wψ)T+

ζ(Rpm,Wζ) · ζ(Rpm,Wζ)
T � Λ̃sg(Rpm, RmSDF ),

(4.5)

where ζ(Rs,Wζ) ∈ RN×C is 1 × 1 convolution; Wζ is learnable parameter. With the

constructed Ã, the normalized Laplacian matrix is given as L̃ = I − D̃−
1
2 ÃD̃−

1
2 , where I

is the identity matrix, D̃ is a diagonal matrix that represents the degree of each vertex,

such that D̃ii =
∑

j Ãi,j . I calculated degree matrix D̃ with the same way that is used

in [215,280], to override the computation overhead. Given computed L̃, with RPM as the

input vertex embeddings, I formulate the single-layer DAGConv as :

Y = σ(L̃ ·Rpm ·WG) +Rpm, (4.6)

where WG ∈ RC×C denotes the trainable weights of the DAGConv ; σ is the ReLu activation

function; Y is the output vertex features. Moreover, I add a residual connection to reserve

the features of input vertices.

Please note that the graph construction and convolution process of GmSDF is similar



76 Yanda Meng

to Gpm, where the only difference is to replace RPM to RmSDF or reverse the position of

RPM and RmSDF , from Eq. 4.1 to Eq. 5.12. In that case, the semantic features of PM

is adaptively integrated into the geometry-aware mSDF during the graph construction

of GmSDF . As a result, the proposed DAGCN consists of two adaptive graphs (Gpm and

GmSDF ), to reason the pixel-wise PM features and geometry-aware mSDF representations

respectively and concurrently, with the benefits of their underlying geometric associations.

After the DAGConv (Eq. 5.12) in graph Gpm and graph GmSDF , I apply bilinear up-

sampling layers to scale the feature map in dual graph to the same size as input image.

Then the Sigmoid and Tanh activation function were used to generate the PM output

(OPM ) and mSDF output (OmSDF ) respectively. I then applied Dice loss (LPMO ) and

MSE loss (LmSDFO ) on OPM and OmSDF respectively for all of the labeled input data, to

supervise the dual regional predictions.

4.2.2 Dual Consistency Regularization of Semi-supervised Manner

Modified Signed Distance Function (mSDF)

Given OPM and OmSDF , I explored the geometric association between them and build the

unsupervised dual consistency regularization losses via two differentiable transformation

layers (ξr and τ). As mentioned above, various levels of information from different task

branches can complement one another during training, whereas divergent focuses can lead

to inherent prediction perturbation. The dual consistency regularization imposed the re-

gional and marginal consistency in the task level in a semi-supervised manner. Given a
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target object (OD or OC ), the mSDF is defined as:

mSDF (x) =



1, x ∈ Bin

0, x ∈ ∆B

−inf
y∈∆B

||x− y||2, x ∈ Bout

(4.7)

where ||x − y||2 represent the Euclidean distance between pixel x and y. Besides, Bout,

Bin and ∆B denote the outside, inside, and boundary of the object, respectively. In other

words, the absolute value of mSDF (x) represented the distance between the point and

the nearest point on the object’s boundary, whereas the sign indicates whether the point

is inside or outside the object. The differences between standard SDM and my proposed

mSDF are twofold. Firstly, the mSDF has a reversed sign label against SDF because the

learned mSDF features are used to build adjacency matrix along with PM features to

learn a dual adaptive graph (DAGCN ), it needs to have the similar feature space to the

PM features before activation function (e.g. RmSDF (x) → + ∞, if x ∈ Bin). Secondly, I

set the distance value of the inside region of mSDF to 1, for the ease of building regional

consistency (Eq. (8)) between PM and mSDF. However, the proposed mSDF still has

the similar attribute as the standard SDF to learn distance-aware spatial features. In

this way, dual tasks can acquire the coherent semantic features, meanwhile the mSDF

regression task benefits from the distance-aware spatial information supervision.

Regional Consistency

As for region-wise consistency, similar to [255,284,457], I proposed a transformation layer

to convert the OmSDF to OPM in a differentiable way. To be precise, the region-wise
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transformation layer ξr is defined as:

ξr(z) = 2 ∗ Sigmoid(K ·ReLu(z))− 1, (4.8)

where z denotes the mSDF value at pixel x ; K is a very large value; Sigmoid and ReLu are

the non-linear activation functions. The larger K value indicates a closer approximation,

and it is adopted as 5000 in this work. With Eq. 4.8, I could obtain the transformed

segmentation maps OPMT , for example, OPMT = ξr(O
mSDF ). For all of the unlabeled input,

I applied a Dice loss (LRu) between OPM and OPMT to enforce the unsupervised regional

consistency regularization.

Marginal Consistency

I derived the spatial gradient of OPM and OmSDF as the estimated contours concerning

the boundary-wise consistency. Previous studies [72, 286] have proven that such narrow

contours with a width of one pixel are challenging to optimize due to the highly unbalanced

foreground and background, resulting in weakened consistency regularizations. Rather

than focusing exclusively on the thin contmy locations, I considered the ROI within a

certain distance (boundary width) of the corresponding estimated contours. A simple yet

efficient B-ROI detection layer (τ) is proposed for OPM and OmSDF . For example, τPM

and τmSDF are defined as :

τPM = OPM +Maxpooling2D(−OPM ), (4.9)

τmSDF = ξr(O
mSDF ) +Maxpooling2D

(
− ξr(OmSDF )

)
, (4.10)

The Maxpooling2D operation conducts the same feature map size as its input. It is worth

noting that the output width of τ can be determined by varying the kernel size, stride,
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and padding value of the Maxpooling2D operation. I empirically set the output boundary

width of τPM and τmSDF to 4 pixels in this work. After τPM and τmSDF , I referred to such

B-ROI of OPM and OmSDF as BPM and BmSDF , respectively. Ideally, BPM and BmSDF

should be close enough to one another. Thus, a Dice loss (LBu) between BPM and BmSDF

was applied to enforce the unsupervised marginal consistency regularization of unlabeled

data. Meanwhile, I apply a Dice loss (LB) on both BPM and BmSDF to supervise the dual

boundary predictions of labeled data.

4.2.3 Differentiable vCDR estimation of Weakly Supervised Manner

Because the shapes of OD & OC are oval-like [307], previous methods resort to offline

post-process the segmentation predictions with ellipse fitting to improve the segmentation

accuracy [109], or to calculate vCDR using the approximated diameters of the OD & OC

in the long axis [276, 278, 286]. However, they only use vCDR as an evaluation tool for

glaucoma assessment but overlook the underlying supervision value of it in OD & OC

segmentation task. Additionally, in the real world setting of clinical ophthalmology and

ophthalmic image reading centres, clinicians and graders prefer to calculate the vCDR

value with manually measured diameters of the OD & OC on the long axis, rather than to

delineate the contmy of OD & OC then calculating the vCDR, to save time. This results in

a large number of labeled data with vCDR scalars; however, they have not been exploited

in the computer vision community yet. For example, one of the datasets I used in this

work (UKBB) contains 117,832 images with vCDR ground truth labeled. To address this

issue, I took advantage of the specific domain knowledge between the boundary and region

in terms of the perimeter and area of an oval-like shape to approximate the vCDR in a

differentiable way.

To be precise, the vCDR is defined as the ratio of dividing the measured diameters of
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the cup by disc in the long axis. While such ratio can also be estimated given the size of

perimeter and the area of OD and OC. According to the Euler’s Method [246], the area

(Ao) and perimeter (Po) of the oval shape are defined as:

Ao = π · a · b, (4.11)

Po = π ·
√

2(a2 + b2). (4.12)

where a and b denote the semi-axis of the long and short axis of oval shape, respectively.

I approximated Ao with the summed pixel value of OPM , which can be regarded as the

area of oval shape in pixel level. Furthermore, I derived the spatial gradient of OPM via

the B-ROI detection layer (τPM ), to detect the boundary (bpm) with width = 1. Then the

summed pixel values of bpm was approximately regarded as Po. With Eq. 4.11 and Eq.

4.12, I could approximate a with Ao and Po, such as:

a =

√
(Po)2 +

√
(4πAo + (Po)2) · |((Po)2)− 4πAo)|

4π2
), (4.13)

where |·| is used to prevent sqrt from returning a negative value during the initial learning

period. Given Eq. 4.13, I could calculate the OD long semi-axis (aOD) and the OC long

semi-axis (aOC) with the respective Po and Ao. Then, a vCDR estimation layer ζ was

defined as:

ζ(vCDR) =
aOC + e−6

aOD + e−6
, (4.14)

where, e−6 is added to avoid dividing by zero errors. Given the prediction of vCDR, I

apply a MSE loss (LvCDR) between the prediction and ground truth to fully supervise the

vCDR estimation and weakly-supervise the OD & OC segmentation.
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Table 4.1: Quantitative segmentation results of OD & OC and glaucoma assessment on
SEG testing datasets. The performance is reported as Dice (%), BIoU (%), MAE, and
Corr. 95% confidence intervals are presented in brackets, respectively. I compare my
model with previous state-of-the-art fully-supervised methods by running their codes in
the public domain. The implementation of the compared state-of-the-art semi-supervised
works is mainly based on an open-source codebase [254]. Ours (Semi) achieves statistically
significant improvements consistently over other compared semi-supervised methods; please
refer to TABLE. 4.2 for more details. Up and down arrows represent proportional and
inversely proportional metric value and performance correlations.

Methods
SEG (OC) SEG (OD) SEG (vCDR) UKBB (vCDR)

Dice (%)↑ BIoU(%)↑ Dice (%)↑ BIoU(%)↑ MAE ↓ Corr ↑ MAE ↓ Corr ↑

U-Net [337]
85.3

(82.1, 86.8)
80.1

(77.6, 82.4)
95.0

(93.1, 97.1)
86.2

(84.1, 88.3)
0.089

(0.079, 0.095)
0.685

(0.643, 0.713)
0.150

(0.140, 0.158)
0.301

(0.275, 0.329)

M-Net [109]
86.9

(85.0, 88.0)
82.9

(79.5, 84.7)
96.8

(95.5, 97.6)
88.1

(87.0, 89.3)
0.064

(0.051, 0.073)
0.707

(0.668, 0.741)
0.128

(0.119, 0.140)
0.365

(0.337, 0.390)

GRBNet [286]
89.4

(87.6, 90.8)
85.1

(83.3, 86.8)
97.7

(97.0, 98.7)
91.1

(90.2, 92.0)
0.056

(0.043, 0.067)
0.750

(0.739, 0.764)
0.118

(0.094, 0.134)
0.398

(0.371, 0.415)

RBA-Net [276]
87.8

(85.2, 89.7)
83.8

(81.6, 85.9)
96.1

(95.5, 96.7)
88.9

(88.0, 89.2)
0.062

(0.051, 0.073)
0.713

(0.690, 0.734 )
0.126

(0.109, 0.142)
0.369

(0.350, 0.373)

MT [382]
84.1

(81.8, 85.7)
78.2

(77.0, 79.6)
94.3

(94.0, 94.7)
86.5

(85.0, 87.3)
0.091

(0.080, 0.099)
0.683

(0.641, 0.701)
0.145

(0.139, 0.150)
0.307

(0.276, 0.340)

UAMT [472]
85.3

(82.8, 86.9)
80.2

(79.0, 81.7)
95.2

(94.7, 95.6)
86.4

(85.1, 87.7)
0.075

(0.063, 0.081)
0.692

(0.642, 0.723)
0.134

(0.127, 0.139)
0.339

(0.301, 0.361)

URPC [256]
86.1

(83.1, 87.2)
81.2

(79.6, 82.0)
96.0

(95.4, 96.3)
87.3

(85.0, 87.9)
0.067

(0.059, 0.073)
0.701

(0.659, 0.742)
0.126

(0.121, 0.135)
0.361

(0.337, 0.382)

DTCNet [255]
86.1

(83.0, 87.4)
81.1

(79.5, 82.8)
96.1

(95.3, 96.4)
87.0

(85.2, 87.8)
0.065

(0.060, 0.072)
0.703

(0.661, 0.739)
0.126

(0.120, 0.137)
0.364

(0.339, 0.389)

UDCNet [202]
86.2

(83.3, 87.1)
81.4

(79.6, 83.0)
96.2

(95.7, 96.5)
87.1

(85.6, 87.9)
0.067

(0.059, 0.071)
0.714

(0.663, 0.742)
0.127

(0.119, 0.135)
0.389

(0.365, 0.412)

SASSNet [211]
85.8

(82.1, 87.3)
80.6

(78.2, 82.9)
95.7

(94.1, 96.5)
86.5

(85.4, 87.6)
0.070

(0.061, 0.079)
0.695

(0.633, 0.741)
0.139

(0.118, 0.153)
0.340

(0.313, 0.368 )

Ours (Semi-100%)
90.3

(89.6, 90.8)
87.6

(83.6, 90.8)
98.4

(98.4, 98.5)
93.3

(92.1, 94.9)
0.037

(0.035, 0.041)
0.894

(0.863, 0.918)
0.075

(0.073, 0.078)
0.558

(0.514, 0.583)

Ours (Semi)
88.2

(87.5, 88.9)
84.1

(81.0, 87.6)
97.6

(97.5, 97.8)
89.9

(88.8, 90.7)
0.047

(0.044, 0.051)
0.848

(0.809, 0.879)
0.097

(0.094, 0.099)
0.463

(0.447, 0.480)
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4.3 Experiments

4.3.1 Datasets

SEG dataset: following the previous methods [280,286], I pooled 2,068 images from five

public available datasets (Refuge [307], Drishti-GS [370], ORIGA [490], RIGA [6], RIM-

ONE [111]). These five datasets provided the fundus images and the ground truth masks,

then I generated the corresponding ground truth of OmSDF , BPM , BmSDF and vCDR with

Eq. 4.7, 4.9, 4.10 and 4.14. Following the previous methods [280, 286], 613 fundus images

were randomly selected as the test dataset, leaving the other 1,315 images for training and

140 images for validation.

UKBB dataset: The UK Biobank 2 is a large-scale population-based biomedical database

and research resource that contains detailed health information on half a million partici-

pants from the United Kingdom. Retinal colmy photographs were acquired in a subset of

participants that were scanned using the TOPCON 3D OCT 1000 Mk2 camera (Topcon

Inc, Japan). The color fundus photographs have been graded for various eye diseases by

NetwORC UK, a network of three UK Ophthalmic Reading Centers (Moorfields, Queen

University of Belfast, and Liverpool) to support further scientific research on this invalu-

able dataset. First and foremost, the accredited graders evaluated the image quality to

determine whether it was sufficient for measuring the vCDR. Then vCDR was calculated

by dividing the measured diameter of the cup by the measured diameter of the disc in the

long-axis or vertical direction. There were 117,832 fundus images with vCDR scalars are

available, of which 38,421 were randomly selected as the weakly/semi-supervised training

dataset, and the rest 79,411 are used as the test datasets.

2https://www.ukbiobank.ac.uk/
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Input            GT            MT       UAMT      UDCNet    DTCNet      Ours

Figure 4.3: Qualitative results of OD & OC segmentation in the SEG test dataset. I
compare my model with MT [382], UAMT [472], UDCNet [202] and DTCNet [255]. my
method can produce more accurate segmentation results than the other methods when
compared with the ground truth (GT ). The boundaries were superimposed on the input
image for better visualization of the segmentations.

Table 4.2: Paired t-test results between Ours (Semi) and the compared semi-supervised
methods. I presented the p-value of the mean Dice of OD & OC segmentation on Seg test
dataset; the mean MAE of vCDR estimation on UKBB test dataset; the mean AUROC of
glaucoma diagnosis on ORIGA, RIM-ONE, Refuge test datasets; the mean Dice of polyps
segmentation on colonoscopy polyps test dataset. Because my model achieves consistently
better performance than the other compared semi-supervised methods on the fmy tasks,
the p-value demonstrates that Ours (Semi) achieves statistically significant improvements
consistently over other compared semi-supervised methods.

Tasks: Ours (Semi) vs others MT [382] UAMT [472] URPC [256] DTCNet [255] UDCNet [202] SASSNet [211]

OD & OC p-value (on Dice) 0.014 0.021 0.039 0.041 0.033 0.019
vCDR p-value (on MAE ) 0.018 0.029 0.040 0.044 0.036 0.020

Diagnosis p-value (on AUROC ) 0.009 0.021 0.033 0.037 0.029 0.011
Colonoscopy polyps p-value (on Dice) 0.010 0.028 0.041 0.024 0.031 0.013
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4.3.2 Experimental Settings and Evaluation Metrics

I cropped the image of 256 × 256 pixels in the same way of [276, 280, 286]. To avoid

over-fitting, I adopted an on-the-fly data augmentation strategy. Specifically, I randomly

flipped the training dataset with a probability of 0.5. I used stochastic gradient descent

with a momentum of 0.9 to optimize the overall parameters. I trained the model for 10,000

iterations for all the experiments, with a learning rate of 1e-2 and a step decay rate of 0.999

every 100 iterations. The batch size was set as 56, consisting of 28 labeled and 28 unlabeled

images. A backbone network [114] is used for ours and all the compared methods. The

network was trained end-to-end; all the training processes were performed on a server with

fmy GEFORCE RTX 3090 24GiB GPUs, and all the test experiments were conducted on

a workstation with Intel(R) Xeon(R) W-2104 CPU and Geforce RTX 2080Ti GPU with

11GB memory. I used the output of the PM as the segmentation result. A fixed threshold

of 0.5 is employed to obtain a binary mask from the probability map. Given the previously

discussed loss function terms, I defined the overall loss function as:

Loss = LPMO + LmSDFO + LB + β ∗ (LRu + LBu + LvCDR) (4.15)

where β is adopted from [307] as the time-dependent Gaussian ramp-up weighting coef-

ficient to trade-off between the supervised loss, unsupervised loss and weakly-supervised

loss. This avoids the network getting stuck in a degenerated solution during the initial

training period because no meaningful prediction of the unlabeled data, as well as vCDR,

are obtained.

I reported Dice similarity score (Dice) as the region segmentation accuracy metrics;

Boundary Intersection-over-Union (BIoU ) [72] as the boundary segmentation metrics; and

Mean Absolute Error (MAE ) in pixel level, Pearson’s correlation coefficients [297] (Corr),
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Bland-Altman analysis [31] as the vCDR estimation metric. 95% confidence intervals

were generated by using 2,000 sample bootstrapping. Note that the Pearson’s correlation

coefficients [297] are used to measure the linear association. Paired t-test was used to assess

statistical significance of the differences between my model and the compared methods. A

p-value of < 0.05 was deemed as statistically significant.

4.3.3 Performance Comparison and Analysis

In this section, I demonstrate the qualitative (Fig. 4.3) and quantitative (TABLE. 4.1)

results of the OD & OC segmentation and glaucoma assessment tasks. Specifically, in

TABLE. 4.1, I have presented the results of fully-supervised methods on the upper half

part, and the rest are semi-supervised methods. All the fully-supervised methods were

trained with 100% of the labeled SEG training dataset, and all the semi-supervised methods

were trained with 5 % of SEG training dataset and 100 % of UKBB training dataset. In

order to conduct complementary experiments, I trained my model with 100 % SEG and

100 % UKBB training data to fully utilise the available labeled and unlabeled data (Ours

(Semi-100%)).

OD & OC Segmentation Fig. 4.3 illustrates qualitative comparison with other semi-

supervised methods on SEG test dataset. TABLE. 4.1 shows the quantitative perfor-

mance of Ours and other methods under fully-supervised and semi-supervised manner,

respectively. More experimental results for the data utilization efficiency can be found in

Section 6.5.4.

With only 5 % labeled segmentation training data, Ours (Semi) obtains an average

92.9 % Dice on OC and OD segmentation, outperforms data-level consistency regulariza-

tion based methods MT [382], UAMT [472] by 4.2 % and 2.9 %, outperforms feature-level

regularization based methods URPC [256] and UDCNet [202] by 2.0 % and 1.9 %, and
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Table 4.3: Number of parameters and FLOPs on a 256 × 256 input image.

M-net [109] RBA-Net [276] GRBNet [286] MT [382] UAMT [472] URPC [256] DTCNet [255] SASSNet [211] Ours (Semi)

Params (M ) 27.7 34.3 24.7 26.3 26.3 27.2 26.7 29.5 28.6

FLOPs (G) 15.5 130.3 7.1 5.5 5.5 7.3 5.5 10.3 9.1

Mean of Prediction and Ground Truth 
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Figure 4.4: (A): The vCDR distribution histogram of the UKBB test dataset. In total,
there are 79,411 testing images with corresponding vCDR ground truth ranging from 0 to
0.8. (B): Bland-Altman plot of vCDR estimation for Ours (Semi) in UKBB test dataset.
The x-axis and y-axis represents the mean and difference between ground truth and pre-
dicted vCDR value, respectively. The mean offsets and the limits of agreement, as well as
the 95 % confidence interval on the mean values are shown.

outperforms adversarial regularization based method SASSNet [211] by 2.3 %. Paired

t-tests on average Dice of OD & OC segmentation between Ours (Semi) and other semi-

supervised methods were conducted to evaluate the statistical significance in the differ-

ence. The proposed method achieves statistically significant improvements consistently

over other compared semi-supervised methods. Readers are referred to Table. 4.2 for

the details. Distinctively, with sufficient labeled and unlabeled data, Ours (Semi-100%)

achieved the best performance of averaged 94.4 % Dice on OD & OC segmentation, out-

performing previous fully-supervised cutting-edge methods, such as M-Net, RBA-Net and

GRBNet [286] by 2.7 %, 2.6% and 0.9 %.

Clinical Evaluation: vCDR Assessment TABLE. 4.1 illustrates the vCDR evaluation
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results on SEG and UKBB test dataset respectively. The UKBB (vCDR) has 79,411 im-

ages, which is much larger than SEG (vCDR) (619 images). The performance on UKBB

(vCDR) could reflect a more realistic situation in the real-world w.r.t. data distribution.

Specifically, with only 5 % labeled SEG training data, Ours (semi) achieved the best per-

formance of 0.097 MAE and 0.463 Corr, which outperforms DTCNet [255] by 23.0 % and

53.3 %. Paired t-tests on the MAEs of vCDR estimation between Ours (Semi) and other

semi-supervised methods in Table. 4.2 were conducted to evaluate the statistical signifi-

cance in the difference. Please note that, I utilised 38421 images of UKBB training dataset

with the corresponding vCDR ground truth for weakly-supervised OD & OC segmentation

and fully supervised vCDR estimation. On the other hand, with 100 % labeled SEG train-

ing dataset, Ours (Semi-100%) achieved much better performance with 0.075 MAE and

0.558 Corr, which is 22.7 % and 20.5 % better than Ours (Semi). Additionally, the direct

vCDR regression-based method [497] with all UKBB train data achieved 0.074 MAE but

only 0.240 Corr on the UKBB test data. As the distribution of glaucoma patients and

health participants are unbalanced, thus such regression model tends to predict closer to

the majority of the distribution. The distribution of vCDR ground truth in UKBB test

dataset is shown in Fig. 4.4 (A) for a better understanding of the data and my model’s per-

formance. In total, there were 79,411 test images with corresponding vCDR ground truth

ranging from 0 to 0.8. It illustrated that the majority of vCDR ground truth distribution

fell between 0.3 and 0.7. On the other hand, in order to evaluate mean biases and 95 %

limit of agreements of estimated vCDR, a Bland-Altman plot [31] for UKBB test dataset

was conducted and shown in Fig. 4.4 (B). The mean value of the offsets was 0.06, and

the 95 % confidence interval was 0.18, which indicated a close agreement and minimal bias

between the ground truth and my predictions. The bias occurs mainly for a value within

the range of 0.3 to 0.7 in the majority of data distribution. However, my model performs
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well when vCDR is small or big (e.g. less than 0.3 or larger than 0.7), where little bias

cases are observed.

4.3.4 Computational Efficiency

Tab. 6.4 demonstrates the number of parameters (M ) and floating-point operations

(FLOPs) of the compared models. Ours (Semi) and other compared models adopted the

same backbone network, thus showing similar model size (Params). While, RBA-Net [276]

has the largest model size and FLOPs because it contains several iterative feature aggrega-

tion modules, which requires more computations. Ours (Semi) contains 28.6M parameters

and 9.1G FLOPs, which is comparable to other compared models.

4.4 Discussion and Conclusion

4.4.1 Ablation Study

I conducted detailed ablation studies with 5 % SEG training data and 100 % UKBB

training data, and all the results demonstrated my model’s effectiveness. As an illustration,

the ablation results for different graph reasoning modules, weakly/semi-supervisions, and

the efficiency analysis of data utilization are shown in TABLE. 4.4, TABLE. 4.5 and Fig.

4.5.

Graph Reasoning In this section, I assessed the efficacy of the proposed DAGCN. No-

tably, I maintained the same dual graph structure while experimenting with various graph

construction methods (via adjacency matrix) and graph convolutions. To begin, I use the

classic graph convolution [182] to reason about the relationships between the PM and the

mSDF, respectively. Then, I investigated input-dependent graph convolutions in terms

of channel attention (w/ Channel) and spatial attention (w/ Spatial) mechanisms, both



Chapter 4. Researching Regional and Marginal Consistency with Implicit Graph
Representations 89

Table 4.4: Ablation study on graph convolutions. The performance is reported as Dice
(%), BIoU (%), MAE and Corr on two test datasets. The best results are highlighted in
bold.

Methods
SEG (OC) SEG (OD) UKBB (vCDR)

Dice BIoU Dice BIoU MAE Corr
(%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑

Classic GCN [182] 85.9 80.4 95.7 85.9 0.149 0.323
w/ Channel 86.8 82.8 95.8 86.8 0.121 0.349
w/ Spatial 87.1 83.0 96.0 87.1 0.109 0.407
w/ Both 87.6 83.4 96.6 87.8 0.108 0.411

w/ SGR [223] 87.2 83.6 96.5 87.7 0.105 0.430
w/ DualGCN [483] 87.5 83.7 96.6 88.1 0.104 0.427

w/ GloRe [70] 87.4 83.6 96.7 88.4 0.106 0.429

Ours (Semi) 88.2 84.1 97.6 89.9 0.097 0.463

separately and concurrently (w/ Both). Additionally, I adopt three more powerful graph

reasoning modules to demonstrate the superiority of my proposed DAGCN. In particular, I

use the SGR [223], DualGCN [483], and GloRe module [70] respectively. In detail, the SR

module exploits knowledge graph mechanism; DualGCN investigates the coordinate space

and feature space graph convolution; and GloRe leverage projection and re-projection

mechanism to reason the semantics between different regions. Note that the methods

mentioned above belong to single graph reasoning; thus, I have built two separate graphs

for PM segmentation and mSDF regression individually, where there was no associations

or geometric associations between the dual graph. TABLE. 4.4 shows that my model

achieved more accurate and reliable results than [182] and outperformed the SGR [223],

DualGCN [483], and GloRe [70] by 1.1 %, 0.9 % and 0.9 % mean Dice on the SEG test

datasets.

Weakly/Semi-supervision I performed experiments to evaluate the effectiveness of the

proposed dual consistency regularization paradigm in semi-supervised learning and the
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Table 4.5: Ablation study on weakly/semi-supervisions. The performance is reported as
Dice (%), BIoU (%), MAE and Corr on two test datasets. The best results are highlighted
in bold.

Methods
SEG (OC) SEG (OD) UKBB (vCDR)

Dice BIoU Dice BIoU MAE Corr
(%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑

w/o LRu 86.1 80.9 96.3 86.9 0.146 0.326
w/o LBu 86.5 81.7 96.5 87.4 0.131 0.345
w/ Both 86.8 82.6 96.8 88.4 0.123 0.348

w/ LvCDR 87.1 82.9 96.7 88.8 0.108 0.415
w/ LBu+LvCDR 87.3 83.3 96.9 88.9 0.106 0.434
w/ LRu+LvCDR 87.4 83.2 97.1 89.1 0.102 0.443

Ours (Label-only) 80.5 70.7 91.6 75.8 0.628 0.118
Ours (Semi) 88.2 84.1 97.6 89.9 0.097 0.463

proposed differentiable vCDR estimation module in a weakly-supervised manner. The

results are shown in TABLE. 4.5. Specifically, I evaluated the region-wise consistency loss,

the boundary-wise consistency loss, and the vCDR estimation loss, respectively. I have

represented my model that is trained with only 5 % SEG training data as Ours (Label-

only). Firstly, I have retained the same model structure and eliminate the vCDR estimation

loss to focus on the dual consistency regularization losses (w/ Both). Following that, I

have removed the region-wise unsupervised loss (w/o LRu), boundary-wise unsupervised

loss (w/o LBu) respectively. Secondly, I removed both of the consistency losses and only

applied the weakly-supervised vCDR estimation loss (w/ LvCDR). Then I added the other

two unsupervised consistency losses individually (w/ LBu+LvCDR and w/ LRu+LvCDR)

to see if the performance were boosted. TABLE. 4.5 demonstrates that the proposed

unsupervised dual consistency losses and weakly supervised loss could improve the model by

6.6 % and 6.5 % mean Dice for segmentation. Particularly, the boundary-wise unsupervised

loss can increase the model by 6.2 % BIoU, which leads to a better boundary segmentation
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Figure 4.5: The mean OD & OC segmentation performance of my semi-supervised ap-
proach with different ratio of labeled data. The performance is reported with Dice and
Corr.

quality. The weakly supervised loss can bring a large improvement of 82.8 % MAE of

vCDR estimation, which is the ultimate goal for OD & OC segmentation task w.r.t clinic

application.

Data Utilization Efficiency In this section, I show more ablation study results on the

data utilization efficiency. In detail, I have examined the performance of cutting-edge semi-

supervised methods UAMT [472], DTCNet [255] and Ours (Semi) with different ratio of

labeled and unlabeled images. I evaluated the segmentation performance on the SEG test

dataset with Dice and the vCDR estimation performance on the UKBB test dataset with
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Table 4.6: Quantitative comparisons between the Ground Truth vCDR values (GT vCDR),
Ours (semi), Ours (Semi-100 %) and other cutting-edge semi-supervised methods for the
glaucoma classification performance on ORIGA [490], RIM-ONE [111], and Refuge [307]
test dataset. The performance is reported as Precision (%), Specificity (%), Sensitivity
(%), AUROC (%). 95 % confidence intervals are presented in the brackets.

Methods
ORIGA [490] RIM-ONE [111] Refuge [307]

Precision(%) Specificity(%) Sensitivity(%) AUROC(%) Precision(%) Specificity(%) Sensitivity(%) AUROC(%) Precision(%) Specificity(%) Sensitivity(%) AUROC(%)

MT [382]
27.8

(21.1, 34.9)
25.5

(18.6, 32.9)
95.7

(88.9, 100.0)
76.3

(68.7, 83.2)
28.0

(11.5, 46.7)
55.0

(39.5, 70.0)
87.5

(64.0, 100.0)
88.8

(73.4, 99.3)
38.2

(22.6, 55.6)
81.3

(73.8, 88.1)
86.7

(66.7,100.0 )
95.0

(88.7, 99.4)

UAMT [472]
38.9

(29.4, 18.9)
62.1

(54.4, 69.9)
80.4

(68.1, 91.7)
76.7

(69.0, 83.6)
50.0

(16.7, 83.3)
87.5

(76.3, 97.4)
62.5

(25.0, 100.0)
83.8

(66.7, 96.8)
84.6

(62.5, 100.0)
98.2

(95.4, 100.0)
73.3

(50.0, 93.8)
95.4

(88.6, 99.6)

URPC [256]
44.7

(34.1, 55.4)
69.3

(62.0, 76.6)
82.6

(70.8, 92.7)
80.2

(72.9, 87.1)
41.7

(12.5, 71.4)
82.5

(70.0, 93.9)
62.5

(25.0, 100.0)
84.1

(65.3, 97.6)
90.9

(69.2, 100.0)
99.1

(97.2, 100.0)
66.7

(40.0, 90.0)
94.7

(85.6, 99.6)

DTCNet [255]
37.4

(27.7, 47.1)
59.5

(51.6, 67.3)
80.4

(68.2, 91.1)
76.2

(67.7, 84.1)
44.4

(11.1, 80.0)
87.5

(76.5, 97.4)
50.0

(14.3, 85.7)
86.6

(72.5, 97.2)
83.3

(58.3, 100.0)
98.2

(95.4, 100.0)
66.7

(40.0, 90.0)
93.7

(83.2, 99.6)

UDCNet [202]
45.3

(34.3, 57.0)
73.2

(65.6, 80.0)
73.9

(60.0, 86.5)
80.2

(72.8, 87.1)
50.0

(14.3, 87.5)
90.0

(80.4,85.7 )
50.0

(14.3, 85.7)
87.8

(73.9, 98.4)
83.3

(58.5, 100.0)
98.2

(95.7, 100.0)
60.0

(35.0, 85.7)
93.6

(82.7, 99.6)

SASSNet [211]
38.5

(28.6, 48.7)
63.4

(55.7, 71.2)
76.1

(63.5, 88.4)
77.7

(70.0, 84.9)
40.0

(10.0, 72.7)
85.0

(73.7, 95.0)
50.0

(14.3, 85.7)
85.0

(69.8, 97.3)
76.9

(50.0, 100.0)
97.3

(93.8, 100.0)
66.7

(40.0, 90.0)
94.8

(87.1, 99.3)

GT vCDR
45.5

(35.6, 55.8)
68.6

(60.9, 76.0)
87.0

(76.7, 96.0)
82.9

(76.1, 88.9)
63.6

(33.3, 90.9)
90.0

(80.0, 97.6)
87.5

(60.0, 100.0)
91.3

(75.4, 100.0)
81.8

(44.4, 87.5)
98.2

(95.5, 100.0)
60.0

(33.3 84.6)
90.9

(81.0, 98.3)

Ours (Semi)
45.7

(35.6, 55.7)
67.3

(59.7, 75.3 )
91.3

(88.2, 98.0)
85.5

(78.9, 91.3)
42.9

(16.7, 71.4)
80.0

(66.7, 92.3)
75.0

(40.0, 100.0)
90.6

(78.6, 99.1)
91.7

(71.4, 100.0)
99.1

(97.2, 100.0)
73.3

(50.0, 93.8)
95.7

(90.2, 99.3)

Ours (Semi-100%)
54.2

(42.5, 65.4)
78.4

(71.1, 85.1)
84.8

(72.7, 94.4)
86.5

(80.3, 91.9)
66.6

(33.3, 100.0)
92.5

(84.2, 100.0)
75.0

(40.0, 100.0)
91.6

(78.4, 99.7)
90.0

(66.7, 100.0)
99.1

(97.2, 100.0)
60.0

(35.0, 85.7)
95.7

(90.0, 99.7)

Corr, respectively. As for the labeled images, I vary the ratio of labeled segmentation

images from 5 % to 100 % (out of 1315 SEG training data) while fixing the number of

unlabeled images to be 38421 (100 % UKBB training data). The performance are shown

in the top of Fig. 4.5 for the averaged OD & OC segmentation performance and vCDR

estimation, respectively. It shows Ours (Semi) achieves consistent superior performance

over the UAMT [472], DTCNet [255] on both tasks under different labeled data utilizations.

Primarily when less labeled data is used, Ours (Semi) suppressed the other two methods

by a large margin. On the other hand, for unlabeled images, I varied the ratio of unlabeled

segmentation images from 5 % to 100 % (out of 38421 UKBB training data) while fixing

the number of labeled images to be 73 (5 % SEG training data). The performance are

shown in the bottom of Fig. 4.5 for the averaged OD & OC segmentation performance

and vCDR estimation, respectively. It shows Ours (Semi) achieved consistent superior

performance over the UAMT [472], DTCNet [255] on both tasks under different unlabeled

data utilizations, which indicated that my method effectively utilized the unlabeled data.

When more unlabeled data is used, Ours (Semi) significantly outperformed the other two
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ORIGA RIM-ONE Refuge

Figure 4.6: ROC curves showing the glaucoma classification performance using the Ground
Truth vCDR values (GT vCDR), Ours (Semi), Ours (Semi-100 %) and other cutting-edge
semi-supervised methods on ORIGA [490], RIM-ONE [111], and Refuge [307] test dataset,
respectively.

methods by a large margin.

Table 4.7: Quantitative segmentation results of polyps on the test dataset. The perfor-
mance is reported as Dice (%) and BIoU (%). 95% confidence intervals are presented in
brackets, respectively.

Methods
Fully-Supervised Semi-Supervised

ACSNet [486] BI-GCN [280] PraNet [100] GRBNet [286] MT [382] UAMT [472] URPC [256] DTCNet [255] UDCNet [202] SASSNet [211] Ours (Semi)

Dice (%)
70.1

(67.8, 72.3)
73.2

(70.7, 75.8)
74.0

(72.6, 75.7)
75.7

(73.1, 77.6)
69.6

(67.2, 72.0)
70.9

(68.4, 73.3)
72.6

(70.1, 74.9)
73.1

(70.6, 75.5)
71.5

(69.0, 74.1)
71.6

(69.0, 74.0)
74.7

(72.1, 77.0)

BIoU (%)
65.2

(62.5, 67.7)
67.5

(65.9, 70.7)
66.0

(63.3, 68.9)
69.3

(67.9, 70.5)
64.3

(61.0, 67.9)
65.4

(61.7, 67.7)
66.8

(62.3, 69.7)
66.8

(63.4, 70.0)
65.9

(62.1, 69.8)
65.4

(62.0, 68.7)
68.7

(64.2, 71.1)

4.4.2 Glaucoma Diagnosis

In order to understand the relevance of the glaucoma diagnosis and the vCDR value, I

conducted a classification evaluation based on the given glaucoma and healthy participant

labels. Among the datasets used in this work, the glaucoma classification labels are avail-

able in RIM-ONE [111], Refuge [307], and ORIGA [490] datasets. Their corresponding

test datasets with glaucoma and healthy participant labels are used in this section. In

detail, there were 40 healthy participants and 8 glaucoma patients in the RIM-ONE test

dataset; 112 healthy participants and 15 glaucoma patients in the Refuge test dataset; 153
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healthy participants and 46 glaucoma patients in the ORIGA test dataset. I compared

the aforementioned semi-supervised methods (in TABLE. 4.1), to evaluate the vCDR as-

sessment performance in glaucoma diagnosis. Precision, Specificity, Sensitivity and Area

Under the Receiver Operating Characteristic (AUROC ) were used as the classification

metrics. Specifically, a vCDR value larger than 0.6 is considered at risk for glaucoma,

because the optic nerve damage from increased eye pressure reflected by an increase in

the vCDR value [5, 8, 157]. TABLE. 5.3 shows the quantitative comparison between ours

and previous cutting-edge semi-supervised methods on the three test datasets, respectively.

GT vCDR represents the glaucoma diagnosis performance using the ground truth vCDR

values of three test datasets. Specifically, Ours (Semi-100%) achieved consistently better

Precision and Specificity than GT vCDR and other compared semi-supervised methods

on the three test datasets. Fig. 4.6 demonstrates the ROC Curve comparison, where

Ours (Semi-100%) obtains 86.5 %, 91.6% and 95.7% AUROC scores on ORIGA, RIM-

ONE and Refuge test datasets respectively, which is consistently better than GT vCDR.

Paired t-test results on AUROC of glaucoma diagnosis between Ours (Semi) and other

semi-supervised methods were conducted using bootstrapping [335] and are shown in TA-

BLE. 4.2, which indicates that my method achieved statistically significant improvements

over other semi-supervised methods. Notably, paired T-test between Ours (Semi-100%)

and GT vCDR also suggests that my method outperforms the vCDR ground truth with a

statistically significant difference in performance (P < 0.05 ). The potential reason for not

so perfect GT vCDR diagnosis performance and my better AUROC performance could

be twofold. Firstly, glaucoma patients usually have a higher vCDR compared to normal

people; however, there is a significant overlap in vCDR between healthy individuals and

glaucoma patients [140]. Thus, only relying on vCDR value cannot guarantee an accurate

glaucoma diagnosis. Instead, it can be used as a strong clinical indicator for suspected
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disc in clinical practice [8,157]. Secondly, some of the OD & OC ground truth annotations

in the aforementioned datasets may not be accurate, thus leading to an inaccurate vCDR

value, which has also been noted previously [286].

Input            GT            MT       UAMT      UDCNet    DTCNet      Ours

Figure 4.7: Qualitative results of colonoscopy polyps segmentation in the polyps segmen-
tation test dataset. I compare my model with MT [382], UAMT [472], UDCNet [202]
and DTCNet [255]. my method can produce more accurate segmentation results when
compared with the ground truth (GT ).

4.4.3 Generalizability of Dual Consistency regularization

In order to verify the generalizability of my proposed dual consistency regularization

mechanism in semi-supervised learning, I conducted external experiments on a large-scale

colonoscopy polyps segmentation benchmark [100] that has been validated by previous

methods [280,286,486]. The polyp shapes in the dataset are irregular and complex, which

compose a more challenging task than the OD & OC segmentation. The dataset con-

tains 2,247 colonoscopy images from five datasets (ETIS [364], CVC-ClinicDB [28], CVC-

ColonDB [379], EndoScene-CVC300 [400], and Kvasir [163]). All the images were resized
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to 256 × 256 pixels. As suggested by [100] in fully-supervised data setting, i.e., 1,450

images from Kvasir [163] and CVC-ClinicDB [28] were selected as the training datasets

and the other 635 images from ETIS [364], CVC-ColonDB [379], EndoScene-CVC300 [400]

are pooled together for independent testing (unseen data). By doing this, the training

and test data are from different data sources so as to evaluate the model’s generaliza-

tion capability. Note that 10 % of training datasets were randomly selected as internal

validation. For the semi-supervised data setting in this section, I used 50 % of the train-

ing data as the labeled data and the rest 50 % training data was used as the unlabeled

data. As for the framework structure, the differentiable vCDR estimation module was

specially designed for the OD & OC segmentation tasks with prior knowledge of ellipse

shape objects. Thus, I removed it and remained the rest of the structure (Ours (Semi))

as my framework in this section. The quantitative results are shown in TABLE. 4.7,

where Ours (Semi) achieved 74.7 % Dice with only 50 % labeled training data, which

is comparable to the previous fully-supervised cutting-edge methods PraNet [100] and

GRBNet [286]. On the other hand, my model outperformed other state-of-the-art semi-

supervised methods UAMT [472], URPC [256], and UDCNet [202] by 5.4 %, 2.9 %, and

4.5 % in Dice, respectively. Paired T-test on Dice of segmentation between Ours (Semi)

and other semi-supervised methods suggests a statistically significant difference in per-

formance (P < 0.05 ). I have shown the qualitative results comparison in the Fig. 4.7,

where Ours could generate a more accurate polyps segmentation performance compared

to other semi-supervised methods. This demonstrated that my proposed dual consistency

regularization mechanisms could generalise to more complex objects with irregular shapes.
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4.4.4 Limitations

Regarding to the vCDR estimation performance in UKBB test dataset, Ours (Semi) and

Ours (Semi-100 %) could gain 0.463 and 0.558 Corr, respectively. Although my method

outperformed the compared cutting-edge semi-supervised methods in TABLE. 4.1, the

performance is moderate if applied to real-world clinical applications. The main reason

for moderate Corr performance could be threefold. Firstly, the limited number of labeled

segmentation masks for training would undoubtedly affect the model’s performance. my

model could achieve better Corr if given more labeled data. For example, in TABLE. 1,

Ours (Semi-100 %) outperforms Ours (Semi) by 20.5 % of Corr on UKBB test dataset.

Secondly, the underlying low-quality input images also lead to limited performance. I

considered vCDR estimation to be ‘failed’ if it fell outside 95 % confidence interval of

the Bland-Altman plot in Fig. 4.4 (B). According to these criteria, I showed some of the

‘failed’ predictions in Fig. 4.8. It illustrates that my model could not accurately segment

the OC and OD if the image quality was relatively low, such as incomplete OD & OC

region, blurred area, extremely low-contrast, etc.. Thirdly, an extremely unbalanced data

distribution could contribute to a moderate Corr performance. As the vCDR distribution

and Bland-Altman plot shown above, the majority of vCDR falls between 0.3 to 0.7, where

the bias mainly occurs. The glaucoma diagnosis evaluation presented in Section 4.4.2

further demonstrates that my method could achieve satisfying diagnosis performance, even

when compared to the vCDR ground truth.

On the other hand, the designed dual consistency regularization mechanism can be

widely applied to other semi-supervised medical image segmentation tasks such as ultra-

sound fetal head segmentation, etc. However, it may not work for highly complex objects,

such as curvilinear structures like blood vessels [125], whose region and boundary areas

can be challenging to distinguish due to their composite topology and tortuosity. Thus,
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Input Image
Our

Predictions Input Image
Our

Predictions

Figure 4.8: Examples of the input image and my model’s predictions (Ours (Semi)) in
some challenging cases. The proposed model failed to segment the OD & OC if the image
quality is considerably poor, such as incomplete OD & OC region, blurred area, extremely
low-contrast, etc..

an inevitable perturbation will be introduced in the marginal and regional consistency

regularization, thus impacting the semi-supervised segmentation performance.

4.4.5 Conclusion

I have proposed a novel graph-based weakly/semi-supervised segmentation framework. The

geometric associations between the pixel-wise probability map features, modified signed

distance function representations and object boundary characteristics are exploited in

the proposed dual graph model, semi-supervised consistency regularizations, and weakly-

supervised guidance. Remarkably, the proposed differential vCDR estimation module

boosts the proposed model with a significant improvement in glaucoma assessment. Apart
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from the performance, It has facilitated my model to leverage an extensive data set with

no segmentation but only vCDR labels. Such data and labels commonly exist in real-

world clinical circumstances (UK-Biobank); however, they are usually understudied. my

experiments have demonstrated that the proposed model can effectively leverage semantic

region features and spatial boundary features for segmentation of optic disc & optic cup

and vCDR estimation for glaucoma assessment from retinal images. I believe my proposed

method can be easily extended to explore geometric associations between more feature

representations, such as regions, surfaces, boundaries, and landmarks in different medical

image segmentation tasks.



Chapter 5

Researching Cross-Granularity

Information Fusion with Implicit

Graph Representations

I research the implicit graph representation learning with cross-granularity in this section,

especially on the task of COVID-19 diagnosis. In detail, coronavirus disease (COVID-19)

has caused a worldwide pandemic, putting millions of people’s health and lives in jeop-

ardy. Detecting infected patients early on chest computed tomography (CT) is critical in

combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance

learning (UC-MIL), we propose to diagnose COVID-19 using a new bilateral adaptive

graph-based (BA-GCN ) model that can use both 2D and 3D discriminative information

in 3D CT volumes with arbitrary number of slices. Given the importance of lung segmen-

tation for this task, we have created the largest manual annotation dataset so far with

7,768 slices from COVID-19 patients, and have used it to train a 2D segmentation model

to segment the lungs from individual slices and mask the lungs as the regions of interest

100
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for the subsequent analyses. We then used the UC-MIL model to estimate the uncertainty

of each prediction and the consensus between multiple predictions on each CT slice to au-

tomatically select a fixed number of CT slices with reliable predictions for the subsequent

model reasoning. Finally, we adaptively constructed a BA-GCN with vertices from differ-

ent granularity levels (2D and 3D) to aggregate multi-level features for the final diagnosis

with the benefits of the graph convolution network’s superiority to tackle cross-granularity

relationships. Experimental results on three largest COVID-19 CT datasets demonstrated

that our model can produce reliable and accurate COVID-19 predictions using CT volumes

with any number of slices, which outperforms existing approaches in terms of learning and

generalisation ability. To promote reproducible research, we have made the datasets, in-

cluding the manual annotations and cleaned CT dataset, as well as the implementation

code, available at https://doi.org/10.5281/zenodo.6361963.

5.1 Introduction

Coronavirus disease (COVID-19 ) is a highly contagious respiratory infection caused by the

new coronavirus SARS-CoV2. The most frequent symptoms of infection in the majority of

infected people are fever, dry cough, and malaise ( [414]). Some of these patients quickly

deteriorate, developing acute respiratory distress syndrome, septic shock, multiple organ

failure, and even death, among other complications ( [62, 152, 209]). Nearly 600 million

people have been infected worldwide so far, and over 6 million lost their lives, COVID-19

still spreads across the world. Timely and accurate COVID-19 diagnosis is critical for

estimating the need for intensive care unit admission, oxygen therapy, prompt treatment,

and so on. Despite the large number of deep learning models that have been proposed so

far for the diagnosis of COVID-19 using computed tomography (CT) and X-ray, none of

them is clinically usable due to methodological flaws and/or underlying biases [334]. There

https://doi.org/10.5281/zenodo.6361963
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Figure 5.1: Overview of the proposed diagnosis framework. Our framework first segments
and crops automatically the lung regions from the input raw 3D CT volume. Then, I
automatically select trustworthy slices and the corresponding 2D features via the proposed
UC-MIL. Afterwards, a graph-based reasoning model BA-GCN is proposed to aggregate
and fuse the information (vertices) at 2D and 3D levels simultaneously, which contributes
to the final diagnosis.

is an unmet need of accurate and robust diagnosis models for COVID-19.

Given existing COVID-19 related datasets, such as computed tomography (CT), X-

ray, etc., previous deep learning based diagnosis methods ( [21, 122, 135, 145, 207, 430])

focus on the identification of three classes: novel coronavirus pneumonia (NCP), nor-

mal controls (Normal), and common pneumonia (CP) at either 2-dimensional (2D) or

3-dimensional (3D) level depending on the types of data they have used. Specifically, CT

plays an important role in diagnosing and quantifying COVID-19 and other pneumonia

( [54,145,428,451,454,460,465,467,511]). The appearances on CT of infective pneumonia

can give clues to its aetiology, as certain consolidation patterns are associated with specific

pneumonia. Fig. 5.2 demonstrates axial CT slices comparison between various patterns of

pneumonia.
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Figure 5.2: Axial CT slices demonstrate various patterns (red arrows emphasised) of pneu-
monia. A: consolidation in the posterior right upper lobe and superior right lower lobe
showing typical air bronchograms and a segmental/lobar distribution in an individual with
bacterial pneumonia. B : multifocal patches of airspace change in the posterior right upper
lobe in an individual with viral pneumonia. C : bilateral multifocal ground glass changes in
the upper lobes with some smaller reticulonodular opacities, in an individual with COVID-
19 pneumonia.

The CP group consists of different disease types, normally including community-acquired

bacterial pneumonia and viral pneumonia. In detail, community-acquired bacterial pneu-

monia is described as showing focal segmental or lobar opacities, but may also show ground

glass attenuation or centrilobular nodules ( [402]). Viral pneumonia is often described as

multifocal, patchy or ground glass consolidation with influenza specifically demonstrat-

ing bilateral reticulonodular opacities ( [179, 187]). COVID-19 is associated with ground

glass opacities (GGO) and areas of consolidation that are often bilateral and peripheral

( [136, 206, 358]). However, given the overlap in radiological appearances between etio-

logical agents, with a few exceptions no reliable diagnosis of bacterial or viral origin can

be made from CT ( [328]), and attempts to differentiate definitively between COVID-19

and other viral pneumonia by imaging have met previously with similarly limited success

( [20,180]). Additionally, the underlying correlations among CT slices are essential in NCP

diagnosis or infection detection tasks ( [124]) but have not been considered enough in ex-

isting methods. Thus, we specially design and evaluate the proposed model on COVID-19

CT dataset in this work. The proposed framework is also readily applied to other medical

applications where 3D data such as CT or MRI are used. Fig.5.3 shows an overview of
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our proposed methods, where we propose a novel diagnosis framework in an attempt to

address four critical difficulties that were rarely discussed or unsolved by earlier CT-based

COVID-19 approaches. The four critical issues are discussed and elaborated as follows.

Firstly, lung segmentation is an essential step prior to performing the COVID-19 classi-

fication task, however, it has received little attention in previous methods. Due to a lack of

ground truth masks, previous methods ( [122, 446]) segmented the lungs with pre-trained

models on non-COVID datasets, while others ( [416,430]) adopted un-/ weakly-supervised

schemes. However, due to the noticeable domain gap and complex appearances of CT im-

ages specific to COVID-19 (e.g. severe cases with massive GGO), the major issue is poor

segmentation performance, which will compromise the subsequent NCP classification task.

As a result, these methods need to manually clean a large number of wrong segmentations,

which increase the labour cost and inconvenience for use. Here we manually annotated

7,768 slices from public COVID-19 datasets and trained a segmentation model under a

fully-supervised learning mechanism. Our segmentation model can achieve more accurate

results than pre-trained models or previous un-/ weakly-supervised methods; please refer

to Fig.5.7 for the qualitative comparison between our model’s and others’ segmentations.

We also prove that, without the lung segmentation, the subsequent diagnosis model may

only learn a specific format pattern of different classes rather than the actual radiographic

diagnosis characteristics (i.e. GGO for NCP). This may be due to specific CT scanner

models, protocol standards, data sources of different classes, etc.. The potential dataset

issues related to the lung segmentation process are further discussed in Section 5.7.1.

Secondly, selecting a fixed number of slices from each CT volume is often compulsory

as the size of the inputs have to be the same for specific models ( [103,145,218,428]). Man-

ual selection of CT slices is labour-intensive and time-consuming, which is incompatible

with the goal of using AI models. Automatic selection following pre-defined slice sampling
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Figure 5.3: Overview of the proposed diagnosis framework. Our framework first segments
and crops automatically the lung regions from the input raw 3D CT volume. Then, we
automatically select trustworthy slices and the corresponding 2D features via the proposed
UC-MIL. Afterwards, a graph-based reasoning model BA-GCN is proposed to aggregate
and fuse the information (vertices) at 2D and 3D levels simultaneously, which contributes
to the final diagnosis.

rules, on the other hand, may result in a hand-crafted optimisation process. Additionally,

possibly infected slices being missed may construct a noisy dataset with intrinsic uncer-

tainty. In this work, we propose automatically selecting reliable CT slices according to

the model’s probability prediction on 2D slices. A specially designed Uncertainty-aware

Consensus-assisted Multiple Instance Learning UC-MIL model is proposed to achieve such

a goal. Our UC-MIL can extract 2D level features for each CT slice and automatically

select trustworthy slices.

Thirdly, several methods ( [47, 265, 350]) have attempted to quantify the uncertainty

in the COVID-19 classification task but rarely exploited it during the training process. In

other words, they only treated uncertainty as a quantification tool after the model had been

trained, which overlooked the potential benefits of uncertainty during the model training
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process. In general, there are two types of uncertainty [174]: epistemic uncertainty, which

corresponds to the uncertainty in the model parameters and can be addressed when suffi-

cient data is available; and aleatoric uncertainty, which corresponds to the inevitable noisy

perturbations presented in the data. Publicly available CT datasets (e.g. [481]) contain

inevitable inherent uncertainties and constraints ( [145]), such as multiple domains data

sources, duplicated or noisy slices, damaged data, disordered and incomplete slices, etc..

Alleviating the aleatoric uncertainty and exploiting it during the supervision is significant

for the COVID-19 classification tasks. In this work, we propose a UC-MIL to extract

2D level features and select reliable CT slices. Specifically, an uncertainty and consensus

estimation module is proposed to assist the supervision process of the multiple instance

learning (MIL) models. The underlying motivations are threefold: (1) As discussed before,

the inherent uncertainty in the CT dataset may perturb the model learning process. (2)

In some NCP cases, there might be only few slices with COVID-19 features. Under the

assumptions of class-imbalanced slices distribution in a CT volume, classic MIL might re-

sult in the classification decision boundary closer to the uncertain (rare) slices ( [202]). (3)

Owing to the weakly supervised learning nature of MIL, the model is prone to overfitting

to noisy and uncertain slices ( [176]), as all the slices from a COVID-19 positive CT volume

will have the same positive labels. Nonetheless, because many slices may still look normal,

this label assignment may mistakenly introduce label noise and uncertainty.

Fourthly, previous COVID-19 related deep learning methods only rely on the extracted

features from either 2D or 3D level, for example, 2D CNN models on 2D X-ray images

( [290, 371, 501]) or 3D CNN models for CT volumes ( [145, 428, 511]). Differently, we

propose to aggregate and reason features from 2D and 3D levels concurrently during the

model learning process. Specifically, we adopt the pre-trained 2D CNN model of the pro-

posed UC-MIL as the initialised 2D level feature extractor. We also adopt a 3D CNN
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as the backbone network to extract the 3D level features. Please refer to Section 5.3.3

for further details. With the 2D and 3D features extracted from the input CT slices,

we propose a BA-GCN to aggregate the 2D and 3D information. Previous graph-based

methods ( [129, 251, 285]) have proven the superiority of graph-based models on tackling

cross-granularity relationships. In this work, we regard 2D and 3D features as the bilateral

vertices in a graph. A Graph Convolution Network (GCN ) based model is proposed to

aggregate information and exchange messages between cross-granularity vertices (2D and

3D). Note that the graph structure and edge relationships between vertices are adaptively

learnt during the reasoning process, according to the 2D and 3D level features, respectively.

In this way, the proposed BA-GCN can adaptively fuse and reason the bilateral relation-

ships between 2D and 3D vertices. Specifically, in this work, the message exchange and

information aggregation within 2D/3D vertices can be considered as ‘inner-granularity’,

and between 2D/3D vertices can be considered as ‘cross-granularity’. Our experiments

prove that such an adaptively learnt graph can better tackle the cross-granularity relation-

ships and achieves superior classification performance than previous GCN reasoning based

methods. Please refer to Section 5.6.2 for more details.

In summary, this work makes the following contributions:

• This work proves that lung segmentation is an essential and necessary pre-processing

step for the COVID-19 classification task on the public CT datasets. We establish the

largest lung region mask dataset, with precise manual annotations of lung boundaries

on the public COVID-19 CT dataset. Because of its significance we will make them

publicly available to promote related research in the community.

• We propose an Uncertainty-aware Consensus-assisted Multiple Instance Learning

(UC-MIL) model for 2D level feature extraction and automatic selection of reliable

CT slices simultaneously. This avoids handcrafted data preparation and also allows
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the framework to work on CT volumes with an arbitrary number of slices. It also

alleviates the effects of inherent noise in public datasets on the learning and the

potential uncertainty from the weakly-supervised learning mechanism of MIL.

• We propose a Bilateral Adaptive Graph Convolution Network (BA-GCN ) to aggre-

gate information and exchange messages between bilateral cross-granularity vertices

(2D and 3D levels). An adaptively learned graph structure and edge relationships are

built during the graph learning process to fuse and reason the relationships between

2D and 3D vertices. This helps our proposed method consider features at both levels

when making inference, thus improving the classification performance.

• Extensive experiments show that our framework comprising UC-MIL and BA-GCN

outperforms existing related approaches in terms of learning ability on the three

largest publicly available COVID-19 CT datasets. In respect of varying dataset

sources, we evaluate the generalisation ability of the proposed model on one of them

as the external dataset, demonstrating its superior robustness and generalisability to

the previous methods.

5.2 Related Works

In this section, we review previous COVID-19 related works w.r.t. 2D and 3D level, respec-

tively in several aspects, such as classification, infection segmentation, severity assessment,

etc.. Additionally, as lung segmentation is an essential pre-process for the diagnosis, we

review and compare previous works with such pre-process in a separate section. Apart

from that, GCN related works in biomedical image tasks (segmentation, classification,

etc.) have also been discussed.
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5.2.1 COVID-19 Diagnosis at 2D Level

It is known that tackling the NCP diagnosis problem with 2D X-ray or 2D ultrasound im-

ages can achieve promising results in many tasks, such as severity assessment ( [363,456]),

infection localisation ( [264,338,401,434]) and diagnosis ( [18,38,102,126,190,290,304,361,

371, 501]). However, compared with CT images, X-ray cannot indicate the significant ap-

pearance characteristics of NCP, such as GGO), multi-focal patchy consolidation and bilat-

eral patchy shadows ( [481]). On the other hand, CT images are 3D volumes, which contain

correlated spatial information among slices, essential for NCP diagnosis and infection local-

isation tasks. However, some previous methods ( [101,113,149,230,395,415,433,447,504])

overlooked the 3D spatial information and developed 2D deep Learning model for the

aforementioned tasks only on selected CT slices. This is mainly due to limited 3D data

at the early pandemic stage, and various slice numbers of CT scans from different pa-

tients. Thus, it is difficult to develop models that can directly take CT volumes with

a random number of slices as input. A potential solution adopted by previous methods

( [21,122,207,317]) is to extract 2D features independently for each slice, then combining all

slices’ feature maps via pooling operations. Although all the slices are considered, features

are still extracted independently, and correlations between slices are not utilised. Other

than that, hand-crafted selection of a fixed number of slices is commonly used for most

CT based COVID-19 methods. We will discuss these methods in the following section

(Section 5.2.2).

5.2.2 COVID-19 Diagnosis at 3D Level

Information at 3D level is essential for the tasks related with COVID-19. Most deep

learning based models used 3D CT volume as the input, such as classification ( [145,

381, 428]), segmentation ( [451, 460, 465, 467]), disease progression ( [54, 454, 511]), etc..
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However, all of them need a pre-process to select a fixed number of slices as the input of

these models. For example, [103] selected 64 slices per CT volume as the model’s input.

Similarly, [145,381] utilised different slices sampling rules, including random sampling and

symmetrical sampling, to select a fixed number of slices. Then a neural architecture search

(NAS ) technique was proposed to search 3D models for the NCP diagnosis. Along the

same line, [428] used an equal interval sampling rule to select slices. A joint segmentation

and classification model was proposed to indicate 3D lesion regions and NCP diagnosis

simultaneously. [218] proposed to extract the features of COVID-19 positive and negative

samples as the pretext task, then a downstream model was developed to tackle the NCP

classification. However, the pre-selection step was not discussed, where a fixed size of 256 ×

192 × 56 voxels were cropped from CT volume as the input. [308] proposed a size-balanced

slice sampling mechanism to train the model in terms of repeating NCP data with small

infections and CP data with large infections in each mini-batch. A pre-selection process

of different patients w.r.t. different infection regions (small or large) need to be manually

done as well. Excessive manual pre-processes made the whole framework labour-extensive

and unsuitable for real-world applications.

Despite the cutting-edge performance of the models mentioned above, manual selection

of a fixed number of slices is an underrated and rarely discussed issue in the task of COVID-

19 with CT. For example, manual selection of CT slices is labour-intensive and time-

consuming, which violate the intention of developing AI models. Automatic selection under

manually designed slice sampling rules may lead to a handcrafted optimisation process and

cause missing potential infected slices, which results in noise data and unsubtle predictions.

Furthermore, more hyper-parameters, such as the interval value, are introduced into the

developed model, which will impair models generalisability. Differently, we propose a UC-

MIL framework to work as an automated trustworthy slice selection module, according to
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the estimated uncertainty and consensus score during the inference. Thus, our framework

can automatically select corresponding slices, eliminating the labour-extensive pre-selection

process and meeting real-world applications’ needs. In other words, our model can work

with a raw CT volume with an arbitrary number of slices instead of pre-selected stacked

CT slices.

5.2.3 Multiple Instance Learning

Multiple Instance Learning (MIL) based methods ( [77, 135, 144, 221]) play a significant

role to address the aforementioned challenges. In detail, a whole CT volume of a patient is

considered as a bag of slices (instances) that can be COVID-19 positive or negative. Then

a patient-level label is given to train the model under the weakly-supervised learning mech-

anism. Most of the aforementioned MIL based methods are inspired from ( [158]), where

an attention mechanism is proposed to learn a scoring system among different instances

for the patient-level inference. For example, [221] proposed an attention-based MIL frame-

work for the task of NCP severity assessment, where the instance-level attention module

assigns attention scores to different instances automatically during inference. Along the

same line, [77] and [135] both exploited the instance-level attention mechanisms in the task

of NCP diagnosis. In contrast, we propose to research the uncertainty and interpretabil-

ity learning of the MIL model. A scoring system among different slices is achieved by

the uncertain value of each instance’s probability predicted by our UC-MIL model. On

the other hand, previous MIL based methods only rely on the extracted features of 2D

instance levels. The attention module can only be seen as a weighting system among the

embeddings of bags; the underlying correlations between instances are still understudied.

Nevertheless, the correlations are essential in NCP diagnosis or infection detection tasks

( [124]). In our proposed framework, the UC-MIL works for feature extraction and reliable
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slices selection in the first stage. Moreover, we developed a 3D volume-based BA-GCN

model in the second stage to simultaneously exploit the 2D pixel-level features and 3D

slice-level correlations for a better diagnosis performance.

5.2.4 Segmentation before Classification

To mitigate the influence of non-lung region in CT slices, a standard pipeline will be to

segment the lung region as a prerequisite before the NCP diagnosis ( [416, 430, 446, 491]).

For example, [446] and [122], segmented the lung regions using a pre-trained U-net on

other disease (non-COVID) dataset, such as NSCLC ( [183]) and LUNA16 ( [383]), then

directly applied it to the COVID-19 CT datasets, (e.g. CC-CCII ( [481]) or MosMed

( [294])). However, NSCLC and LUNA16 are CT datasets containing epithelial lung

cancers, which differ noticeably from CC-CCII ( [481]) and MosMed ( [294]). The domain

gaps between these datasets will cause poor segmentation performance of the pre-trained

model, which in turn compromises the NCP diagnosis performance. Differently, [430]

utilised an unsupervised method ( [224]) to extract the connected component activation

regions, which are regarded as the lung regions. However, the segmentation performance

is relatively poor. It is due mainly to the distinct appearance of NCP CT slices from other

normal ones, such as GGO, multi-focal patchy consolidation and patchy bilateral shadows.

Thus, they had to manually clean a large number of failure cases. On the other hand, [416]

followed [417], used primitive thresholding and connected-component labelling algorithms

to obtain a binary lung mask that indicates the coarse lung regions. Then, a sub-image

was cropped to contain lung regions covered by the convex hull of the lung masks. They

treated the rough mask as the ground truth to train a model to segment the lungs, which

led to inevitable noisy training data because of the inaccurate lung regions.

In summary, the aforementioned methods either adopted a pre-trained model or un-/
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weakly-supervised methods to segment the lung region due to the lack of ground truth.

The primary issue is poor segmentation performance, which perturbs the following NCP

diagnosis task. Again, some methods need to clean the wrong segmentations manually,

which increases the labour cost and reduces repeatability. On the contrary, we trained our

segmentation module with the manually annotated lung masks under a fully-supervised

learning mechanism; our segmentation model can achieve highly accurate results. We

will make this manual annotation dataset publicly available. For more details about the

dataset, readers are referred to Section 5.4.2.

5.2.5 Uncertainty-Assisted COVID-19 Diagnosis

In recent years, the uncertainty and interpretability of deep learning models have been

explored in several different computer vision tasks, such as scene understanding ( [284,480])

and medical image analysis ( [165,253,427,472]), etc.. Quantifying the uncertainty is crucial

for COVID-19 classification task since publicly available CT datasets contain inherent

constraints, such as multiple domains of data sources, limited dataset size, etc.. [350]

proposed a transfer learning-based framework with the help of quantified uncertainty to

address the COVID-19 diagnosis problem. They estimated the epistemic uncertainty with

an ensemble learning scheme ( [191]). Differently, [265] developed a deep uncertainty-aware

classifier using a probabilistic generalisation of the non-parametric KNN approach. The

proposed probabilistic neighbourhood component analysis method maps samples to latent

probability distributions and then minimises a form of nearest-neighbour loss to develop

classifiers. Then they estimated the uncertainty in terms of a threshold of the fraction of

correctly classified examples. On the other hand, [47] researched the underlying capability

of unlabeled data to improve the reliability of uncertainty. They estimated the uncertainty

with the Monte Carlo Dropout ( [194]) methods under the MixMatch ( [29]) semi-supervised
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learning scheme.

Although these aforementioned methods studied the uncertainty in the diagnosis of

COVID-19 cases, the estimated uncertainty is only used as a quantification tool at the

inference stage, which overlooked the potential benefits of uncertainty during the model

training. Instead, we exploit the value of uncertainty throughout the training process.

Specifically, an uncertainty-aware consensus-assisted training mechanism is proposed to

help the model produce more reliable predictions. Please read Section 5.3.2 for more

details.

5.2.6 Graph-based Diagnosis and Reasoning

Graph-based reasoning algorithms have been studied in the recent years. Benefits from

Graph Neural Network (GNN )’s superior ability of information propagation and message

exchange, it achieved promising results in segmentation ( [154,276,278,281,285,483], classi-

fication ( [56,70,138,223,303,331]) and reconstruction ( [64,186,439,466,498]) tasks in the

field of biomedical images analysis. Graph based techniques ( [18,90,227]) have been used

to tackle COVID-19 related tasks as well. For example, [18] proposed a graph diffusion

model that reinforces the natural relation among tiny labelled sets and vast unlabeled data

in a semi-supervised learning scheme. Specifically, the graph is built on initial embeddings

of the network, where each node represents an image, to produce pseudo labels, which is

used for the semi-supervised NCP classification task. Moreover, [190] combined CNN and

GCN to learn the relation-aware representation from the NCP X-ray images. Along the

same line, [90] proposed a hypergraph model for the diagnosis of NCP. In detail, various

types of features (e.g. regional features and radiographic features) are extracted from CT

images for each case (CT volume). Then, the relationship among different cases was for-

mulated by a hypergraph structure. Again, each case represented a vertex (node) in the
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hypergraph. Similarly, [227] proposed a distance-aware pooling procedure along with the

GCN to aggregate the slice level feature into the patient level gradually. The CT scan

is converted to a densely connected graph, where each slice represents a vertex (node) in

the graph. The problem becomes a graph classification task, and each graph represents a

different patient (CT volume).

The aforementioned methods shared a similar idea: each instance (single slice or whole

CT volume) was represented as a vertex in the proposed graph. A subsequent graph rea-

soning mechanism then propagates the vertex and edge information among instance levels.

However, there are some fundamental limitations: (1) the instance level features are rea-

soned individually. For example, work by [227] focused only on slice level feature reasoning

by a graph; the same situation happened in the works of [18] and [90] on patient levels

(whole CT volume or X-ray) as well. This setting limits the graph-based model’s capa-

bility to tackle cross-granularity or cross-feature information propagation. In other words,

the GCN mentioned above only serves to build a long relationship between instances.

However, such functionality can also be achieved by pure CNN based methods, according

to the recent development of Non-local methods ( [429]) or Transformer-based methods

( [95]). (2) For GCN based methods ( [190, 227]), they adopted Laplacian smoothing-

based graph convolution ( [182]), which provided specific benefits in the sense of global

long-range information reasoning. However, they estimated the initial graph structure

from a data-independent Laplacian matrix. Such matrix is defined by a handcrafted or

randomly initialised adjacency matrix ( [281]), which leads a model to learn a specific long-

range context pattern ( [215]). Differently, our graph-based model considered features from

both 2D and 3D level to propagate the cross-granularity information. Also, as seen in pre-

vious works, the graph structure can be estimated with the similarity matrix from the

input data [217]. We estimate the initial adjacency matrix in an input-dependent way.
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Specifically, a reasoning mechanism is achieved by propagating information and passing

messages among inner-granularity and cross-granularity vertices (2D and 3D). Addition-

ally, the structure of our BA-GCN is adaptively built during the graph reasoning according

to the information of 2D and 3D levels. Thus, the graph representations can be adaptively

learnt in an input-dependent way instead of the pre-defined hand-craft one from the pre-

vious methods. Please read Section 5.3.3 for more details. Notably, a recent work ( [500])

built the adjacency matrix based on the instance features in a bag under MIL paradigm,

which can also be regarded as input-dependent. However, they handcrafted the adjacency

matrix weights, and the major difference between Ours and theirs are threefold: (1) Zhao

et al. ( [500]) built a binary adjacency matrix with edge weight values of 0 or 1 to indicate

whether the vertices are connected or not. However, the similarity among vertices is over-

looked. Differently, Ours exploited the relationship among vertices’ own correlation and

can indicate the similarity of different vertices with normalised edge weights between 0 and

1. (2) Zhao et al. ( [500]) introduced a hyper-parameter (γ) to determine if two vertices

are connected or not, according to their Euclidean distance. Conversely, Ours does not

introduce any hyper-parameter and only relies on the vertices’ own correlations. (3) Ours

constructs a fully-connected graph with every vertex connecting to one other, while Zhao

et al. ( [500]) did not because of the potential edge weight of 0.

5.3 Methods

Fig.5.4 shows the proposed method’s pipeline. It contains three sub-tasks: (1) lung region

segmentation, (2) reliable CT slices selection and COVID-19 classification on 2D levels

(UC-MIL), (3) COVID-19 classification at both 2D and 3D levels (BA-GCN ). Given an

input CT volume with an arbitrary number of slices, we first segmented the lung regions for

each slice, then fed the segmented CT volume into a UC-MIL model to learn and extract
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Figure 5.4: Illustration of the proposed method’s pipeline. In addition to the lung seg-
mentation and region cropping, the two stage diagnosis mechanism w.r.t. UC-MIL and
BA-GCN is shown on the top and bottom, respectively. Seg represents the lung region
segmentation; UC score denotes the estimated uncertainty and consensus scores. Notably,
the non-lung regions were masked out from the raw CT data by using our lung segmenta-
tion model before input into the UC-MIL. The 2D/3D level of vertices are initialised by the
feature maps at 2D/3D level, which are extracted from UC-MIL and MF-Net backbone,
respectively.

the relevant features at 2D slice level under a weakly supervised learning mechanism. After

that, we selected D slices from each CT volume according to the predicted probability of

UC-MIL model. The D slices and the corresponding 2D features extracted from UC-MIL

are regarded as the input for the proposed BA-GCN. The BA-GCN learns the features

on the 3D volume level (D slices) and also propagate the information from 2D level fea-

tures among different vertices in the bilateral graph. Notably, the hyper-parameter D is

empirically set as 16 in this work. The details of each task and the developed models are

elaborated as follows.
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5.3.1 Lung Segmentation

Because our intention was primarily the task of COVID-19 classification, here we only

utilised classic methods, such as UNet ( [337]), UNet++ ( [509]), and other cutting-edge

methods, such as PraNet ( [100]), RBA-Net ( [276]), CABNet ( [278]), GRB-GCN ( [285]),

and BI-GConv ( [281]). We trained those models with the annotated slices at the 2D

level, and applied the trained model on the rest unannotated images then cropped the

lung regions. After that, the CT volume containing lungs only is ready for the following

COVID-19 diagnosis task. Please note that lung segmentation process is essential and

necessary in the task of COVID-19 classification primarily due to the dataset issue. Please

refer to Section 5.7.1 for further details.

5.3.2 UC-MIL for Diagnosis on 2D Level

To develop a comprehensive COVID-19 classification model, we built a UC-MIL model

to learn the diagnosis features at 2D level. In the MIL paradigm ( [9, 91, 268]), unlabeled

instances belong to labeled bags of instances. The goal is to predict the label of a new bag

or the label of each instance. We will elaborate the mechanisms of the proposed UC-MIL

in the following subsections.

Multiple Instance Learning

We denote a patient’s CT volume as a bag and the slices herein as instances, following the

standard MIL formulation. We associate the bag label with the corresponding instances.

In other words, all instances from the same bag have the same label and are considered

discriminatory. Nonetheless, this assignment may inadvertently add label noise in positive

bags due to the possibility of a certain number of slices being negative. Thus, exploiting the

discriminative training samples is essential under this circumstance. Here, ‘discriminative’
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represents that the true hidden label of the instance is the same as the true label of the

bag.

LetX = {X1, X2, ..., XN} as the dataset containing N bags. Each bagXi = {xi,1, xi,2, ..., xi,Ni}

consists of Ni instances, where Xi,j = {xi,j , yi}, xi,j is the j-th instance, yi denotes its as-

sociated label in the i-th bag. Please note, Ni may differ due to different number of slices

in different CT volumes. The label Yi of bag Xi is given by:

Yi =


0, iff

∑
i

yi = 0

1, otherwise.

(5.1)

Generally, a MIL based prediction model contains an appropriate transformation f and a

permutation-invariant transformation g ( [158, 202, 431]). Thus, the MIL’s prediction for

bag Xi is defined as:

P (Xi) = g
(
f(xi,1), f(xi,2), ..., f(xi,Ni)

)
. (5.2)

With respect to the choice of f and g, there are generally two types: 1.) Instance-

based approach. f is an instance classifier that assigns a score to each instance, and g is a

pooling operator (e.g. max pooling) that fuses the instance scores to obtain a bag score.

Specifically, a 2D CNN was trained to predict the class probability of each instance. A

few instances with higher responses were selected and performed back-propagation during

training. An iteration process was used with a new set of discriminative instances un-

til convergence. 2.) Embedding-based approach. f is an instance-level feature extractor

that maps each instance to an embedding; g is an aggregation operator that produces

a bag embedding from the instance embeddings and outputs a bag score based on the

bag embedding. The embedding-based method generates a bag score from a bag embed-

ding supervised by the bag label. The discriminative and non-discriminative instances’
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embeddings contribute differently to the overall bag prediction ( [431]). However, it is typ-

ically more challenging to identify the discriminative instances that activate the classifier,

compared with instance-based approaches ( [244]).

Uncertainty-aware Consensus-assisted Multiple Instance Learning

All the previous MIL based COVID-19 diagnosis methods ( [77,135,221]) are embedding-

based methods, which are adapted from [158]. In this work, we take another direction

and propose an instance-based UC-MIL method. Our experimental results prove that the

proposed method outperforms previous instance-based and embedding-based methods on

two different evaluation settings (learning ability and generalisation ability). Additionally,

we conducted extensive ablation studies to determine the backbone network of the proposed

MIL method. More experimental details are referred to Section 5.6.2.

Previous instance-based MIL methods ( [48,150,312,315,318,444,479]) achieved promis-

ing results on different medical image classification tasks, such as whole slide image classi-

fication, optical coherence tomography image classification, etc.. However, two significant

challenges remain for these works. Firstly, the distribution of instances in the positive

bags may be extremely imbalanced when only a tiny proportion of instances are positive,

and models are prone to misclassify those positive instances as negative, especially when

a simple aggregation operator, such as max-pooling, is used. This is because, under the

assumptions of MIL and imbalanced instances in a bag, max-pooling might result in the

classification decision boundary closer to the uncertain (rare) instances ( [202]). Secondly,

as discussed above, all the instances from the same bag have the same label and are con-

sidered discriminatory. Nonetheless, this assignment may inevitably add label noise into

positive bags due to the possibility of a certain amount of slices being negative. Due to

such a weakly supervised learning mechanism, the model is prone to overfitting to noisy
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and uncertain instances, resulting in poor generalisability in real-world clinical practice.

Additionally, instances with high uncertainty have a disproportionate presence in the clas-

sification space, making it difficult to generalise learnt limits to new test examples. ( [176]).

To solve this problem, we specifically design an uncertainty estimation module and

a consensus achievement module into the standard instance-based MIL model training

pipeline, where an uncertainty-aware consensus-assisted supervision process is conducted.

Firstly, to quantify the reliability of each instance’s prediction, we adopt Shannon Entropy

( [352]) as the metric to measure the randomness of the information ( [351]), which is

referred to as the uncertainty in this work. Formally, given a C-dimensional softmax

predicted class score P
(C)
xi,j from an input instance xi,j , the uncertainty Ixi,j is defined as:

Ixi,j = −
C∑
c=1

P (C)
xi,j � logP (C)

xi,j , (5.3)

where � is Hadamard Product; C is the number of classes. In practice, we perform T times

stochastic forward passes on each instance classifier under random dropout and Gaussian

noise perturbed input for each input instance. Note that T is empirically set as 8 in

this work. Therefore, under such self-ensemble mechanism, we obtain a set of softmax

probability vectors:
{
P txi,j

}T
t=1

, then the mean predicted class score P̃
(C)
xi,j is given as:

P̃ (C)
xi,j =

1

T

T∑
t=1

P txi,j , (5.4)

thus based on equation (5.3) we can obtain the uncertainty Ĩxi,j for input instance xi,j as :

Ĩxi,j = −
C∑
c=1

P̃ (C)
xi,j � log P̃ (C)

xi,j . (5.5)

With the quantified uncertainty Ĩxi,j for instance xi,j , we normalise Ĩxi,j into [0, 1] then
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perform element-wise broadcasting multiplication between Ĩxi,j and softmax predicted class

score P
(C)
xi,j . In this way, uncertainty-weighted probability prediction P

(C)

Ĩxi,j
for each instance

xi,j is calculated as:

P
(C)

Ĩxi,j
= Ĩxi,j ⊗ P (C)

xi,j , (5.6)

where ⊗ denotes the element-wise broadcasting multiplication. In other words, the oper-

ator g in our UC-MIL will consider the reliability of each f(xi,Ni) in equation (5.2), and

only the trustworthy slides are considered for the model to learn the features.

Secondly, under a certain perturbation, network predictions for memorised features

that learned from noise change significantly, while those for generalised features do not

( [196]). In other words, the predictions of a generalisable instance classifier should be

robust to input perturbation, and the predicted class score that changes significantly under

a certain perturbation hence highly suggests a noisy instance ( [202]). Thus, we quantify

the consensus regarding the standard deviation over a self-ensembling models’ multiple

outputs, with the same input but under various perturbations. Formally, for an instance

xi,j , given a set of softmax probability vectors
{
P txi,j

}T
t=1

and the mean predicted class

score P̃
(C)
xi,j , the standard deviation P̂

(C)
xi,j of the predicted class score is defined as:

P̂ (C)
xi,j =

1

T

√√√√ T∑
t=1

(P txi,j − P̃
(C)
xi,j )2, (5.7)

which is regarded as the metric of consensus in this work. With such quantified consensus

achievement, we exclude the uncertain instances so as to guide the model to learn from

more reliable instances. More specifically, the reliable instances jr in bag Xi are selected

iif P̂
(C)
xi,j is smaller than a threshold γ. Formally, for bag Xi, the trustworthy instances set

Ω is given by:

Ω = {xi,j |P̂ (C)
xi,j < γ}. (5.8)
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Notably, we perform extensive experiments to tune the hyper-parameter γ value, which is

empirically set as 0.02 in this work. The number of trustworthy slices in Ω ranges from

16 to 45 for all of the data used in this work. This comes with the advantage that our

framework can deal with CT volumes with any arbitrary number of slices.

Combining the uncertainty and the consensus scores discussed before, the whole opti-

misation procedure of the proposed UC-MIL methods in a single bag (Xi) can be found

in Algorithm (1). An iteration process was used with a new set of bags (X1, ..., XN ) to

update the parameter of the instance classifier until convergence.

Algorithm 1 Uncertainty-aware Consensus-assisted MIL

Data: A bags of Ni instances: Xi = {xi,1, ..., xi,Ni}

Result: Instance classifier: f(xi,j), j ∈ [1, Ni]

1 initialisation;

2 for j ← 1 to Ni do

3 Calculate P̃
(C)
xi,j with Eq.(5.4);

4 Calculate P̂
(C)
xi,j with Eq.(5.7);

5 end

6 Calculate Ω with Eq.(5.8); // Nir: size of Ω

7 for jr ← 1 to Nir do

// xi,jr: instances from Ω

8 Calculate Ĩxi,jr with Eq.(5.5);

9 Calculate P
(C)

Ĩxi,jr
with Eq.(5.6); // P

(C)

Ĩxi,jr
:f(xi,jr)’s output

10 end

In this way, whether a retrieved discriminative instance is trustworthy or noisy can be

differentiated by the model during the training. The learnt classifier considers the uncer-
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tainty level of the instance predictions to re-adjust boundaries (i.e., providing more room

to uncertain samples). This improves the generalisation ability of the proposed model

for either imbalanced instances or weakly supervised learning mechanisms ( [176]). Fur-

thermore, our experiments prove that with the UC-MIL training, our model outperforms

previous instance-level MIL methods by a large margin in the evaluation of generalisation

ability. Notably, previous instance-level MIL methods conduct a promising classification

results in the seen data (i.e. the evaluation of learning ability), however, drop dramatically

on unseen data (i.e. the evaluation of generalisation ability).

During the training, we adopted the same method used in ( [48]), which selects the top

instances with maximum prediction probability within a bag as the bag’s prediction. Such

bag-level aggregation derives directly from the standard multiple instance assumption and

is generally referred to as ‘max-pooling’ ( [48]) and is shown in Fig. 5.4. With the proposed

UC-MIL, we obtain temporary patient-level diagnosis results in the first stage. However,

the instance level features are learned individually during the whole training process. In

other words, only 2D level of information is considered in UC-MIL. Thus we aggregate

both 2D and 3D features in the subsequent BA-GCN, which helps to make the diagnosis

more reliable and accurate.

5.3.3 Diagnosis at both 2D and 3D Levels

In this section, we demonstrate the proposed BA-GCN w.r.t. the COVID-19 diagnosis at

both 2D and 3D levels. As discussed in Section 5.2.2, the correlations between different

CT slices are essential for the COVID-19 diagnosis. For bag Xi, we select the top D

instances (slices) according to the ranked order of uncertainty-aware consensus-assisted

instance prediction probability (P
(C)

Ĩxi,jr
) from the corresponding trustworthy set Ω. Then

we stack the slices along the depth channel as the 3D input for the proposed BA-GCN.
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In this way, we can automatically select a fixed number of reliable slices from each CT

volume, which avoids the labour-intensive manual selection process or other hand-craft slice

sampling strategies that are adopted by the previous methods ( [103, 145, 218, 308, 428]).

Additionally, the extracted slice-level features of UC-MIL are used as the 2D feature maps

input for the proposed BA-GCN. Specifically, for each of the D slices classifier in UC-MIL,

we extract the feature map before the pooling layer and add an 1× 1 convolution layer to

reduce the channel size to 128. Then for each CT volume, we stack all the corresponding

D feature maps along the depth channel as the ‘2D’ input for the proposed BA-GCN. We

represent the ‘2D’ input as X2D in this work. Notably, X2D has the size of D × 128 × 7 ×

7. The size format follows (D × C × H × W), where D is number of slices; C is channel

size; H and W represents height and width of feature maps, respectively. There are two

primary modules in the proposed BA-GCN : (1) Backbone Network, (2) Bilateral Adaptive

Graph Reasoning Module. The details for each of them are elaborated as follows.

Backbone Network

We firstly input 3D CT volumes as the inputs into a backbone network to extract features

and learn the correlations between different slices at the 3D level. Different from previous

methods ( [218, 308, 428]), where the 3D extensions of ResNet ( [143]) or Inception-Net

( [378]) are used as the backbone, we adopt Multi-Fiber Network (MF-Net) ( [69]) due to

its superior ability to extract discriminative features in recognition tasks. MF-Net ( [69]) is

a sparsely connected 3D CNN backbone that costs a minimal computational overhead, but

brings a boosted representation capability of features. The multiple separated lightweight

residual units, called fibers, can effectively reduce the number of connections within the

network and enhance the model efficiency. The advantage of MF-Net fits in and benefits

our model in this specific task. Our ablation study results also prove that the MF-Net
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based backbone outperforms ResNet or Inception-Net variants in this work. Specifically,

the 3D Multi-Fiber Units can enhance the model efficiency while effectively reducing the

number of computations. In detail, we extract the feature map before the pooling layer,

then add a 1 × 1 × 1 convolution layer to reduce the channel size to 128, and save it for

the subsequent information aggregation process in the proposed BA-GCN. We refer to this

feature maps as X3D in this work. Notably, the X3D has the same size as X2D, with D ×

128 × 7 × 7.

Bilateral Adaptive Graph Reasoning Module

Given the feature maps extracted from UC-MIL as 2D level’s information (X2D) and

the feature maps extracted from MF-Net Backbone as 3D level’s information (X3D), we

propose a bilateral adaptive graph to aggregate the features from both 2D and 3D levels.

In detail, a graph reasoning module is achieved by information exchange and propagation

among different granularity levels of vertices. Additionally, our graph structure and the

edge relationship are adaptively learnt during the reasoning process according to the 2D

and 3D level features’ own information. Thus, a bilateral adaptive graph representation can

be learnt in an input-dependent way, rather than predefined hand-craft ones ( [18,90,227]).

Classic Graph Convolution We begin with a review of classic graph convolution. Given

a graph G = (V, E), the normalised Laplacian matrix is defined as L = I −D−
1
2AD−

1
2 ,

where I is the identity matrix, A is the adjacency matrix, and D is a diagonal matrix

representing the degree of each vertex in V, such that Dii =
∑

j Ai,j . Because the graph’s

Laplacian is a symmetric and positive semi-definite matrix, L may be diagonalised using

the Fourier basis U ∈ RN×N , resulting in L = UΛUT . Thus, the Fourier space spectral

graph convolution of i and j may be described as i∗j = U((UT i) � (UT j)). The columns of

U correspond to the orthogonal eigenvectors U = [u1, ..., un], and Λ = diag([λ1, ..., λn]) ∈
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Figure 5.5: Overview of the proposed BA-GCN, Bilateral Adaptive Graph Convolution
(BA-GConv) and Bilateral Adaptive Adjacency Matrix (Ã).

RN×N is a diagonal matrix with non-negative eigenvalues. Due to the fact that U is not

a sparse matrix, this operation is computationally inefficient. [85] hypothesised that the

convolution operation on a graph may be characterised by constructing spectral filtering

with a kernel gθ in Fourier space through a recursive Chebyshev polynomial. The filter

gθ is parameterised as a Chebyshev polynomial expansion of order K, such that gθ(L) =∑
k θkTk(L̂), where θ ∈ RK is a vector of Chebyshev coefficients, and L̂ = 2L/λmax− IN is

the rescaled Laplacian. Tk ∈ RN×N is the Chebyshev polynomial of order K. [182] further

simplified the graph convolution to gθ = θ(D̂−
1
2 ÂD̂−

1
2 ), where Â = A + I, D̂ii =

∑
j Âij ,

and θ are the only remaining Chebyshev coefficients. The corresponding graph Laplacian

adjacency matrix Â is handcrafted, causing the model to learn a specific long range context

pattern rather than the input-related one ( [215]). Thus, we refer to the classic graph

convolution ( [182]) as handcrafted input-independent graph convolution.

Bilateral Adaptive Graph Convolution Given X2D ∈ RN2d×C and X3D ∈ RN3d×C ,
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where C is the channel size; N2d = H2d × W2d × D and N3d = H3d × W3d × D are

the number of spatial locations of 2D and 3D level of input features, which are referred

to as the number of vertices. Note that H, W and D represent the height, width, and

depth of the corresponding level of feature map, respectively. Firstly, we construct the

bilateral adjacency matrix (Ã) in an adaptive way. The vertices of 2D and 3D (X2D, X3D)

contribute to the adjacency matrix construction concurrently and adaptively. In detail, we

stack them together and represent it as Xall ∈ R(N3d+N2d)×C , which is regarded as the input

vertices of BA-GConv (shown in Equation. (5.12)). Then, we implement two matrices (Λ̃c

and Λ̃s) to execute channel-wise attention on the dot-product distance and to quantify

spatially weighted relations between various input vertices embeddings, respectively. For

example, Λ̃c(Xall) ∈ RC×C is the matrix that contains channel-wise attention on the dot-

product distance of the input vertex embeddings; Λ̃s(Xall) ∈ R(N3d+N2d)×(N3d+N2d) is the

spatial-wise weighting matrix, measuring the spatial relationships among different vertices.

Λ̃c(Xall) =
(
MLP

(
Poolc(Xall)

))T
·
(
MLP

(
Poolc(Xall)

))
, (5.9)

where · denotes matrix product; Poolc(·) is the global max pooling for each vertex embed-

ding; MLP (·) is a multi-layer perceptron with one hidden layer. On the other hand,

Λ̃s(Xall) =
(
Conv

(
Pools(Xall)

))
·
(
Conv

(
Pools(Xall)

))T
, (5.10)

where Pools(·) represents the global max pooling for each position in the vertex embedding

along the channel axis; Conv(·) is a 1×1 convolution layer. The data-dependent adjacency

matrix Ã is given by spatial and channel attention-enhanced input vertex embeddings. We
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initialise the bilateral adjacency matrix Ã ∈ R(N3d+N2d)×(N3d+N2d) as:

Ã = ψ(Xall,Wψ) · Λ̃c(Xall) · ψ(Xall,Wψ)T+

ζ(Xall,Wζ) · ζ(Xall,Wζ)
T � Λ̃s(Xall),

(5.11)

where · represents matrix product; � denotes Hadamard product; ψ(Xall,Wψ) ∈ R(N2d+N3d)×C

and ζ(Xall,Wζ) ∈ R(N2d+N3d)×C are both linear embeddings; Wψ and Wζ are learnable pa-

rameters. Fig.5.5 shows a detailed demonstration of the bilateral adjacency matrix Ã.

Please note that the different granularity levels of relationships among vertices from 2D

and 3D (X2D, X3D) are exploited in this bilateral graph, where the graph is adaptively built

up according to the multi-granularity vertices’ own correlations in a data-dependent way.

With the constructed Ã, the normalised Laplacian matrix is given as L̃ = I − D̃−
1
2 ÃD̃−

1
2 ,

where I is the identity matrix; D̃ is a diagonal matrix that represents the degree of each

vertex, such that D̃ii =
∑

j Ãi,j ; notably a softmax is applied on Ã for normalised adjacency

weights. We calculated degree matrix D̃ with the same way that is used in ( [215, 281]),

to override the computation overhead. Given computed L̃, with Xall as the input vertex

embeddings, we formulate the single-layer BA-GConv as :

Y = σ(L̃ ·Xall ·WG) +Xall, (5.12)

where WG ∈ RC×C denotes the trainable weights of the BA-GConv ; σ is the ReLu acti-

vation function. Additionally, we include a residual connection to preserve the features of

input vertices. Y ∈ R(N3d+N2d)×C is the output vertex features. Empirically, Three layers

of the proposed BA-GConv with residual connections build up a graph reasoning module

(BA-GCN shown in Fig.5.5). After the BA-GCN, a convolution layer is added to reduce

the channel size to one. Two layers of MLP with ReLu and Softmax as the activation
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functions respectively are used to aggregate the output vertices features and predict the

final patient-level diagnosis probability.

5.4 Experiments

5.4.1 Datasets

In this work, we perform experiments on three currently largest publicly available COVID-

19 CT datasets: CC-CCII ( [481]), MosMed ( [294]) and COVID-CTset ( [320]). All of

the three datasets are used in PNG format in this work. The total number of slices per

CT volume ranges from 16 to 375. They are utilised to evaluate the learning ability and

generalisation ability of our proposed model, respectively. The details of these three

datasets w.r.t. two evaluation settings are shown in Table.5.1. The CC-CCII ( [481])

dataset contains three classes of NCP, CP and Normal and the other two datasets only

contain two classes of NCP and Normal. We evaluate the learning ability of our proposed

model on CC-CCII ( [481]) dataset. On the other hand, we evaluate the generalisation

ability of our proposed model . Firstly, in order to eliminate the effect of imbalanced

data class distribution, we combine the Normal class’s data of CC-CCII ( [481]) with all

of MosMed ( [294]) dataset as Train & Val dataset. Then, the COVID-CTset ( [320])

dataset is treated as the External Test dataset. We have shown this data setting in the

middle of Table. 5.1. We elaborate the details of each datasets below.

• CC-CCII ( [481]). The original CC-CCII dataset contains a total of 617,775 slices

of 6,752 CT volume from 4,154 patients. However, it has several problems, such as

corrupted data, duplicated and noisy slices, incomplete slices, non-unified data type,

etc.. Please see Fig. 5.6 for details. Considerable effort has been made to build

a clean dataset for training and evaluation. We have manually checked the whole
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Table 5.1: Descriptions of the three COVID-19 CT datasets. Cleaned CC-CCII ( [481]),
MosMed ( [294]) and COVID-CTset ( [320]) are three currently largest publicly available
COVID-19 CT datasets. # Patient and # Slices represent the number of patient and
slices, respectively. Train & Val represent the subset that contains train and validation
datasets. Note that we randomly select 10 % of Train & Val as the validation datasets.

Datasets Classes
# Patients # Slices

Train & Val Test Train & Val Test

CC-CCII

NCP 414 133 24,255 10,330
CP 773 186 59,080 12,509

Normal 675 174 50,874 15,266
Total 1,862 493 134,209 38,105

MosMed + NCP 856 95 28,188 15,589
CC-CCII + Normal 929 95 59,439 12,718

COVID-CTset Total 1,785 190 97,627 28,307

dataset and removed the noisy data (damaged, duplicated and non-unified). Note

that we only use complete scans with volume scan per patient to avoid information

leakage during training and evaluation. After addressing the above problems, we

build a clean CC-CCII dataset, which consists of 172,314 slices of 2,355 scans from

2,355 patients (shown in Table.5.1). Apart from the issues above, CC-CCII pro-

vided pre-segmented CT slices only but without original CT slices for part of the

dataset. For example, in the clean CC-CCII, 59,256 slices of 740 volume from 740

patients are pre-segmented, and the rest 113,058 slices of 1,615 scans from 1,615 pa-

tients are not. Our experimental results proved that lung segmentation pre-process

is necessary for the task of COVID-19 classification, especially for models trained

on CC-CCII ( [481]) datasets. The details of the potential dataset issue related

to the lung segmentation pre-process are discussed in Section 5.7.1. Besides, some

qualitative visualisation results, such as GradCAMs ( [348]), are shown in Fig.5.11

to prove the importance of lung segmentation pre-process in this task. To address

the non-segmentation problem, we segmented the lungs of the non-segmented slices
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with our trained model. Compared with the pre-segmented lung slices of CC-CCII

( [481]), our model can segment more accurate lung regions. Qualitative results and

comparisons are shown in Fig.5.7. As illustrated, our segmentation can generate a

more smooth lung boundary and conduct fewer false positive predictions.

Imcomplete Lungs Corrupted LungsNoisy Lungs No Lungs No Lungs

Figure 5.6: Examples of problematic slices from the original CC-CCII ( [481]) dataset.
Those noisy data will inevitably introduce perturbations into both the lung segmentation
task and the COVID-19 diagnosis task.

• MosMed ( [294]). MosMed dataset was collected from March 2020 to April 2020,

within the outpatient CT centres in Moscow outpatient clinics, Moscow, Russia.

The CT scans were performed on Canon (Toshiba) Aquilion 64 units with standard

scanner protocols and 8mm inter-slice distance. The dataset contains 36,753 slices

of 1,110 volume from 1,110 patients. Specifically, 28,188 slices of 856 volume are

NCP cases, and the rest 8,565 slices of 254 volume are Normal. Additionally, 50

CT volume were annotated on the region of infection areas such as GGO and con-

solidation. However, the ground truth of lung region segmentation is not provided.

We segmented the lung regions of all the slices with our trained segmentation model

and used the cropped slices as the clean dataset for the COVID-19 classification

task. Please note that the data were provided in NIfTI format by [294], which were
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converted to PNG format, where a window (window center: -600HU, window width:

1200HU) was applied for re-scaling and normalising the pixel values.

• COVID-CTset ( [320]). COVID-CTset dataset was collected from Negin radiology

located at Sari in Iran between March 5th to April 23rd, 2020. This medical center

uses a SOMATOM Scope model and syngo CT VC30easyIQ software version for

capturing and visualising the lung HRCT radiology images from the patients. The

dataset contains 63,849 slices of 377 volumes from 377 patients. Specifically, 15,589

slices of volumes scans are NCP cases, and the rest 48,260 slices of volumes scans are

Normal. We randomly select 95 out of 282 Normal volumes to construct a balanced

external test dataset. Again the ground truth of lung region segmentation is not

provided. Thus, pre-segmentation is performed with our trained segmentation model

to build a clean dataset with cropped slices.

5.4.2 Annotation of COVID-19 CT Images

As discussed in Section 5.2.4, previous methods, such as [446] and [122], pre-trained the

lung segmentation model from non-COVID datasets (i.e. cancer nodule segmentation

datasets: NSCLC ( [183]) and LUNA16 ( [383])), then applied it to the COVID-19 CT

scans. The domain gap between different datasets would cause significantly performance

drop. For example, the GGO regions are typical characterises of NCP cases, which is

an unseen feature in the cancer nodule dataset. Thus, their pre-trained models are likely

to treat it as background (similar examples are shown in the top left and top right of

the Fig.5.7). To address the challenges and train a robust lung segmentation model, four

trained medical students (trainee doctors after training on the annotation tasks) from the

University of Liverpool manually annotated 7,768 slices of NCP, CP, and Normal scans

from CC-CCII ( [481]) datasets. In detail, the boundaries of the left and right lungs are



134 Yanda Meng

traced via Labelme ( [403]) annotation tool. Among the annotated 7,768 slices, 6,045 slice

of 190 patients are NCP, 1,202 slices of 10 patients are CP, 521 slices of 10 patients are

Normal. In this way, our annotated slices contain NCP, CP and Normal examples, which

addresses the domain gap between the train and test dataset.

5.4.3 Evaluation Metrics

Segmentation Metrics Typical segmentation metrics, such as Dice similarity score (Dice),

Mean Absolute Error (MAE ) and Balanced Accuracy (B-Acc), are applied. 95% con-

fidence intervals were calculated using 2000 sample bootstrapping for Dice, MAE, and

B-Acc. Specifically, B-Acc is the mean value of Sensitivity and Specificity ; MAE is used to

measure the pixel-wise error between the segmentation and ground truth. MAE is defined

as:

MAE =
1

w × h

w∑
x

h∑
y

|Sp(x, y)− Sgt(x, y)|, (5.13)

where, w and h are the width and height of the ground truth GTs, and (x, y) denotes the

coordinate of each pixel in GTs.

Classification Metrics Typical classification metrics, such as Sensitivity, Specificity, F1

score (F1 ), Precision, Receiver Operating Characteristic Curves (ROC Curve), Area Under

the ROC Curve(AUROC ), are used for the evaluation of classification. In particular, F1 is

introduced to eliminate the interference of data imbalance. 95% confidence intervals were

calculated using De Long’s method [86] for AUROC and using 2000 sample bootstrapping

for Sensitivity, Specificity, F1 and Precision.

5.4.4 Experimental Details

In this section, we describe the experimental implementation details for the lung seg-

mentation and COVID-19 classification tasks, respectively. All the training processes are
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performed on an Amazon Web Services p3.8xlarge node with four Tesla V100 16GiB GPUs

and our workstation with four GEFORCE RTX 3090 24GiB GPUs. All the test exper-

iments are conducted on a local workstation with Intel(R) Xeon(R) W-2104 CPU and

Geforce RTX 2080Ti GPU. Notably, we have conducted extensive experiments to evaluate

the sensitivity of the hyper-parameters, where γ has been set at 0.1, 0.05, 0.02, 0.01, 0.005,

and T has been set at 2, 4, 6, 8, 10. In conclusion, we found no significant difference in

diagnostic performance with paired t-test (p > 0.05) in the two evaluation settings, which

proves that our model is robust to the hyper-parameters. Thus, we set the value of γ and

T at 0.02 and 8 empirically, respectively.

Lung Segmentation

Implementation Details The original slice image is resized into 224 × 224 from 512 ×

512by bilinear interpolation for CT slices and by nearest neighbour interpolation for binary

annotation masks. To augment the dataset, we randomly rotate and horizontally flip the

training dataset with the probability of 0.3. The rotation ranges from −30 to 30 degree.

Besides, a random crop of size 112 × 112 are also applied both on the input image and

ground truth during the training. Among all of our annotated data, 60 % of which are

randomly selected as Train dataset, 10% are Val dataset and 30 % are Test dataset. The

network is trained end-to-end by an Adam optimiser ( [181]) for around 400 epochs, with

a start learning rate of 0.01 and a cosine decay schedule ( [248]). The batch size is set at

126. We adopt standard Dice Loss ( [289]) for training the lung segmentation model.

COVID-19 Classification

Implementation Details. The input image size is 224 × 224 after lung segmentation.

Similarly, to augment the dataset, we randomly rotate, horizontally and vertically flip the
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Table 5.2: Quantitative segmentation results of the lung regions on CT slices. The perfor-
mance is reported as Dice (%), B-Acc (%) and MAE (%). 95% confidence intervals are
presented in brackets. We performed experiments with classic segmentation methods such
as U-Net ( [337]), U-Net++ ( [509]), and cutting-edge methods such as PraNet ( [100]),
RBA-Net ( [276]), CABNet ( [278]), GRB-GCN ( [285]) and BI-Gconv ( [281]). Notably,
we sampled 120 vertices for CABNet [278] and RBA-Net [276] to construct a smooth
boundary.

Methods
Metrics

Dice (%)↑ B-Acc (%)↑ MAE (%)↓

U-Net
95.7

(93.2, 97.6)
96.9

(95.0, 98.4)
1.49

(1.12, 1.68)

U-Net++
94.1

(92.2, 96.0)
95.0

(93.2, 97.5)
1.98

(1.56, 2.23)

PraNet
95.2

(94.0, 96.6)
96.0

(95.1, 98.0)
1.55

(1.38, 1.68)

RBA-Net
96.2

(95.2, 98.0)
96.8

(95.9, 98.0)
1.45

(1.29, 1.56)

CABNet
95.4

(93.8, 96.7)
96.4

(94.7, 98.1)
1.60

(1.42, 1.78)

GRB-GCN
96.6

(94.9, 97.9)
96.7

(95.8, 97.9)
1.50

(1.32, 1.68)

BI-GConv
96.3

(94.8, 98.0)
96.5

(94.7, 98.2)
1.52

(1.34, 1.69)

training dataset with the probability of 0.3. The rotation ranges from −30 to 30 degree.

10% of the Train & Val dataset are randomly selected as the validation dataset. The

network is trained end-to-end for 400 epochs, with a start learning rate of 1e-4 and a

cosine decay schedule ( [248]). The optimiser is an Adam optimiser ( [181]), the batch size

is set at 48 and 36, for 2D and 3D COVID-19 diagnosis training, respectively. We adopt

standard Cross Entropy Loss for both 2D and 3D COVID-19 classification respectively.
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Pre-segmented CT slices provided from CC-CCII dataset 

Our segmentation results on CC-CCII dataset

Input

Output

Figure 5.7: Qualitative comparison of pre-segmented slices and our segmentation results
on CC-CCII ( [481]) dataset. The top row is the pre-segmented slices that are provided
by CC-CCII and the bottom row shows our segmentation examples on un-segmented
cases. Red bounding boxes indicate the pre-segmented slices’ false positive or false negative
predictions. In particular, the top left and top right examples illustrate a typical false
negative prediction, where the potential GGO regions may be treated as background, as
the patient-level label for this case is COVID-19 positive. Such false negative segmentation
would perturb the subsequent COVID-19 classification model training because there is no
infection areas or diagnosis characteristics left in the segmented CT slices. On the other
hand, our segmentation model can produce a complete lung region, even when there is a
large number of infection regions (e.g. GGO). Please note that CC-CCII only provides the
pre-segmented CT slices without the original ones, thus we cannot intuitively compare the
segmentation results with the same examples.
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Table 5.3: Quantitative comparisons between Ours and previous 3D CT based COVID-
19 diagnosis methods, such as CCT-Net ( [122]), C19C-Net ( [21]), COVNet ( [207]),
DeCoVNet ( [430]), ASCo-MIL ( [135])). The performance is reported as F1 (%), Precision
(%), Specificity (%), Sensitivity (%), AUROC (%). 95 % confidence intervals are presented
in brackets.

Methods
Learning Ability Generalisation Ability

F1 (%)↑ Precision(%)↑ Specificity(%)↑ Sensitivity(%)↑ AUROC(%)↑ F1 (%)↑ Precision(%)↑ Specificity(%)↑ Sensitivity(%)↑ AUROC(%)↑

CCT-Net
76.8

(72.9, 80.6)
83.5

(81.0, 86.1)
84.4

(81.2, 87.4)
78.1

(74.6, 81.5)
96.1

(94.4, 97.1)
71.6

(62.8, 79.2)
86.6

(77.8, 94.2)
90.5

(84.2, 96.0)
61.1

(50.5, 71.3)
85.9

(80.1, 90.7)

C19C-Net
66.2

(61.5, 70.8)
71.2

(66.2, 75.9)
80.0

(76.8, 82.9)
70.2

(66.3, 74.0)
86.7

(83.9, 88.4)
70.4

(63.5, 76.2)
56.8

(48.7, 64.3)
29.5

(20.2, 38.8)
92.6

(87.4, 97.8)
80.0

(73.2, 86.0)

COVNet
59.6

(54.9, 64.6)
73.7

(64.5, 79.4)
75.5

(71.5, 78.7)
68.0

(63.9, 72.0)
87.5

(84.8, 89.3)
33.6

(22.4, 43.7)
70.0

(52.0, 85.7)
90.5

(84.0, 96.0)
22.1

(14.1, 30.6)
71.5

(63.7, 78.6)

DeCoVNet
91.2

(88.5, 93.7)
91.6

(89.1, 94.0)
95.0

(93.4, 96.5)
91.3

(88.6, 93.7)
97.5

(96.7, 98.6)
68.8

(59.6, 76.2)
87.1

(78.2, 94.9)
91.6

(85.7, 96.7)
56.8

(46.5, 67.0)
85.1

(79.2, 90.2)

ASCo-MIL
76.5

(72.5, 80.6)
79.6

(76.1, 82.9)
86.2

(83.8,88.4)
77.9

(74.2, 81.5)
91.2

(88.9, 93.0)
60.7

(50.7, 69.7)
88.0

(78.4, 96.1)
93.7

(88.5, 97.9)
46.3

(36.4, 56.6)
82.1

(75.9, 87.8)

Ours
94.9

(93.0, 96.8)
95.1

(93.3, 96.9)
97.1

(95.9, 98.2)
94.9

(93.1, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
96.3

(91.5, 100.0)
96.8

(92.9, 100.0)
81.1

(72.9, 88.7)
91.8

(84.6, 93.3)

5.5 Results

5.5.1 Lung Segmentation

Fig.5.7 shows the qualitative lung segmentation result of the pre-segmented slices (provided

by CC-CCII ) and our segmentation results on CC-CCII. Table. 5.2 shows the quantitative

results of classic segmentation models, such as U-Net ( [337]), U-Net++ ( [509]), and

cutting-edge methods such as PraNet ( [100]), RBA-Net ( [276]), CABNet ( [278]), GRB-

GCN ( [285]) and BI-Gconv ( [281]). There are no significant differences between these

models. Among them, GRB-GCN ( [285]) achieves the best performance of 96.6 % Dice,

outperforming U-Net ( [337]) and U-Net++ ( [509]) by 0.9 and 2.7 %.

5.5.2 COVID-19 Diagnosis

This section provides the classification results in two evaluation settings with the pre-

segmented COVID-19 CT data. Firstly, we train, validate and test our model on CC-CCII

dataset (seen data) only, where there are three classes such as Normal, NCP, and CP. In

this way, the learning ability of our model can be illustrated on the seen data. Secondly, in
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Figure 5.8: ROC Curve comparisons between Ours and previous 3D CT based COVID-
19 diagnosis methods, such as CCT-Net ( [122]), C19C-Net ( [21]), COVNet ( [207]),
DeCoVNet ( [430]), ASCo-MIL ( [135])). Two evaluation settings of learning Ability and
Generalisation Ability are presented.

order to address the unbalanced classes issue of Mosmed, we combine the Normal class’s

data from CC-CCII and all of the data from MosMed, to train and validate our model,

while test on COVID-CTset (unseen data). There are two classes in this setting, such as

Normal and NCP. In this way, we demonstrate the generalisation ability of our model on

the unseen data. Generalisability is essential for the real-world COVID-19 diagnosis task,

because of different domains of data w.r.t. scanning machine types, protocol standards,

data sources. The details of data settings in these two schemes can be found in Table.5.1.

The quantitative comparison results on respective test datasets of two evaluation settings

are shown in Table.5.3, where previous 3D CT based COVID-19 diagnosis methods such

as CCT-Net ( [122]), C19C-Net ( [21]), COVNet ( [207]), DeCoVNet ( [430]), ASCo-

MIL ( [135]) are presented. Notably, their results are reproduced by using their open-

source code, and experiments are conducted under the same settings as Ours with our

pre-segmented lung CT images.
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      Input                   C19C-Net                COVNet             ASCo-MIL             DeCoVNet          Ours

Figure 5.9: Qualitative comparisons between Ours, C19C-Net ( [21]), COVNet ( [207]),
ASCo-MIL ( [135]) and DeCoVNet ( [430]). Specifically, attention heatmaps visualisation
of Grad-CAM on NCP patients are presented in each row. Ours has a more precise and
comprehensive activate area that encompasses more diagnosis characteristics, including
GGO, multi-focal patchy consolidation and bilateral patchy shadows.
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Learning Ability

Table.5.3 shows the quantitative comparison results in terms of the learning ability between

Ours and previous 3D CT based COVID-19 diagnosis methods on CC-CCII dataset. Ours

obtains an average of 94.9 F1, which outperforms the pooled 2D slice features based meth-

ods, such as CCT-Net ( [122]), C19C-Net ( [21]), COVNet ( [207]) by 23.6 %, 43.4 % and

59.2 %, respectively. In addition, Ours outperforms the 3D level CNN based approaches

DeCoVNet ( [430]) by 4.1 %, outperforms the attention score based MIL method ASCo-

MIL ( [135]) by 24.1 %. Fig.5.8 demonstrates the ROC Curve comparison between the

aforementioned methods. Ours achieves the best AUROC of 98.7 %. Notably, the macro-

averaged performance (aka unweighted mean of per-class performance) of three classes with

one vs rest calculation setting 1 on learning ability is presented in Table. 5.3 and Fig. 5.8.

Generalisation Ability

To evaluate the generalisation ability of the proposed model, we evaluate and compare

Ours with previous 3D CT based COVID-19 diagnosis approaches with external test data

(unseen data). The generalisation ability part of Table.5.3 shows the quantitative results.

Ours achieves the best F1 of 88.0 %, which outperforms the cutting-edge COVID-19

diagnosis methods DeCoVNet ( [430]) and ASCo-MIL ( [135]) by 27.9 % and 45.0 %.

Fig.5.8 shows the ROC Curve comparison. Ours achieves the best AUROC of 91.8 %.

Attention Heat maps Visualisation

Fig.5.9 demonstrates the attention heat maps generated by using the gradient-weighted

class activation mapping (Grad-CAM ) ( [349]). Specifically, Grad-CAM results on different

slices of different NCP patients are presented in each row of the figure. We compare Ours

1https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#

sphx-glr-auto-examples-model-selection-plot-roc-py

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html##sphx-glr-auto-examples-model-selection-plot-roc-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html##sphx-glr-auto-examples-model-selection-plot-roc-py
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Table 5.4: Computational efficiency. Model size, FLOPs, and inference time of different
3D CT based COVID-19 diagnosis methods on a 224 × 224 × D input volume.

CCT-Net C19C-Net COVNet DeCoVNet Ours

Params (M ) 24.8 23.8 23.5 0.35 15.0
FLOPs (G) 67.1 39.0 65.8 28.9 35.0

Inference Time (s) 1.2 1.2 1.1 1.1 1.1

with previous methods such as C19C-Net ( [21]), COVNet ( [207]), ASCo-MIL ( [135]),

CCT-Net ( [122]), and present them in each column. Ours has a more accurate and

comprehensive activate area that covers more diagnosis characteristics, such as GGO, multi-

focal patchy consolidation and bilateral patchy shadows, which are highlighted within red

bounding box in the figure. Notably, all the compared methods in Fig. 5.9 adopted at least

the same D slices as ours to make the inference and prediction. Specifically, C19C-Net

( [21]) and COVNet ( [207]) used the same selected D slices, which is also aligned with

their original implementation. ASCo-MIL ( [135]) and DeCoVNet ( [430]) used all of the

slices in a CT scan to make the inference, thus includes the selected D slices.

Computational Efficiency

Table.6.4 presents the number of parameters (M ), floating-point operations (FLOPs) and

inference time (s) of the compared models. Notably, ignoring the slices selection process

of the first stage, we represent the proposed BA-GCN as Ours to compare with other

methods in the Table.6.4. Ours adopted a light-weight backbone network of MF-Net to

extract the 3D level of features, which leads to a relatively smaller model size as 15.0 M

parameters.
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Table 5.5: Ablation study of lung segmentation on CCT-Net ( [122]), DeCoVNet ( [430])
and Ours. w/o Seg represents without lung segmentation pre-process; w/ Our seg rep-
resents adopting our fully supervised lung segmentation method. The performance is
reported as F1 (%), AUROC (%). 95 % confidence intervals are presented in brackets,
respectively.

Methods
Learning Ability Generalisation Ability

F1 (%)↑ AUROC (%)↑ F1 (%)↑ AUROC (%)↑

CCT-Net, w/o Seg
82.3

(80.0, 84.6)
97.2

(95.2, 98.5)
51.0

(48.7, 54.0)
65.3

(63.2, 68.1)

CCT-Net
75.0

(73.0, 78.1)
95.1

(92.5, 97.7)
69.0

(66.9, 72.1)
83.8

(81.1, 85.9)

CCT-Net, w/ Our seg
76.8

(72.9, 80.6)
96.1

(94.4, 97.1)
71.6

(62.8, 79.2)
85.9

(80.1, 90.7)

DeCoVNet, w/o Seg
93.9

(91.0, 95.5)
99.2

(97.1, 99.8)
57.3

(55.8, 60.2)
76.5

(74.1, 78.8)

DeCoVNet
88.7

(86.0, 90.3)
95.4

(93.2, 97.7)
66.7

(64.4, 68.9)
82.0

(80.0, 84.7)

DeCoVNet, w/ Our seg
91.2

(88.5, 93.7)
97.5

(96.7, 98.6)
68.8

(59.6, 76.2)
85.1

(79.2, 90.2)

Ours, w/o Seg
96.8

(94.7, 98.9)
99.4

(98.1, 99.7)
71.3

(69.2, 73.5)
84.3

(82.0, 86.6)

Ours
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

5.6 Ablation Study

We conduct thorough ablation studies, and all the results demonstrate our model’s ef-

fectiveness. As an illustration, the ablation results for the lung segmentation and model

components are elaborated as follows.

5.6.1 Need of Lung Segmentation Pre-process

Lung segmentation is an essential pre-processing step in this task. Please note that the

original CCT-Net ( [122]) adopted a pre-trained lung segmentation model on other CT

datasets (non-COVID) and the original DeCoVNet ( [430]) used an unsupervised approach

to segment the lung regions as the pre-process for subsequent classification task. In this

experiment, we used our pre-segmented lung CT images (w/ Our seg) to provide a more

accurate cropped lung regions for their methods. Table.5.5 shows that w/ Our seg can



144 Yanda Meng

boost their original classification performance of F1 by 2.4 %, 2.8 % and 3.8 %, 3.1 %

in the Learning Ability and Generalisation Ability experiment settings, respectively. This

can demonstrate the importance and the benefits of our fully-supervised lung-segmentation

model in the task of 3D CT based COVID-19 classification. Additionally, Table.5.5 shows

that the three methods without lung pre-segmentation (w/o Seg) can produce a better

classification performance on the non-segmented CT data under the Learning Ability ex-

periment setting, than the one with segmentation w/ Our Seg. However, the qualitative

results (Fig.5.11) prove that, such model trained on non-segmented data, can only learn

a specific format pattern of different classes rather than the real radiographic diagnosis

characteristics (i.e. GGO for NCP), because of specific scanning machine types, protocol

standards, data sources of different classes. Also, due to the evaluation setting under Learn-

ing Ability of test on seen data, such specific format patterns also exist in the test dataset,

which helps the models achieve ‘excellent’ classification results, rather than learning the

real diagnosis features.

Differently, under the experiment setting of Generalisation Ability, those methods w/o

Seg conducts a terrible classification performance because an external test dataset (unseen

data) is introduced to evaluate the trained model, where the aforementioned specific for-

mat patterns do not exist. This further demonstrates the importance of pre-segmentation,

generalisation ability and external test dataset (unseen data) in this task. More visualisa-

tion comparisons and discussions related to this challenge are refereed to Section 5.7.1 and

Fig.5.11.

5.6.2 Model Components

This section presents the results of our ablation study on model components. We evaluate

the effectiveness of the proposed UC-MIL, BA-GCN modules, and present the quantitative
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Table 5.6: Ablation study on the effectiveness of the proposed UC-MIL and BA-GCN. The
performance is reported as F1 (%), AUROC (%). 95 % confidence intervals are presented
in brackets, respectively.

Methods
Learning Ability Generalisation Ability

F1 (%)↑ AUROC (%)↑ F1 (%)↑ AUROC (%)↑

Ours w/o BA-GCN
82.6

(79.0, 86.0)
94.6

(92.9, 96.2)
81.0

(73.9, 87.2)
83.9

(77.1, 89.8)
Ours w/o UC-MIL

(random)
91.5

(89.1, 93.3)
97.4

(95.5, 98.8)
72.6

(70.9, 74.1)
87.0

(85.2, 88.7)
Ours w/o UC-MIL

(symmetrical)
91.9

(90.1, 93.3)
97.9

(95.8, 98.8)
73.1

(71.9, 75.2)
86.8

(84.8, 88.0)

Ours
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

results in Table.5.6. Firstly, we remove the BA-GCN and keep the rest of our model,

conduct Ours w/o BA-GCN in the Table. Secondly, we replace UC-MIL with random and

symmetrical slice sampling rules to select the fixed number of slices for each CT scan in the

same manner as ( [145]). In these two cases, the proposed bilateral graph model becomes an

unilateral graph model, because there is no 2D feature information included in the vertices

features. Specifically, for both evaluation settings (Learning and Generalisation Abilities),

BA-GCN helps our model gain an average 9.4 % performance boost w.r.t. F1 and 4.3 %

performance boost w.r.t AUROC ; UC-MIL outperforms the hand-crafted slice sampling

rules, e.g. random and symmetrical, by 12.5 % and 11.9 % F1 on average, respectively.

Additionally, we conduct extensive experiments to evaluate the effectiveness of the pro-

posed components inside UC-MIL and BA-GCN modules respectively, such as backbones,

Uncertainty-Aware mechanism, Consensus-Assisted mechanism, BA-GConv layers, etc..

The experimental results are elaborated as follows, which prove their effectiveness.

UC-MIL

Backbone Network We conduct experiments to evaluate the effectiveness of different

backbone models in the proposed UC-MIL. We adopt several classic 2D classification back-
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Table 5.7: Ablation study on the effectiveness of the UC-MIL’s backbone networks and
the proposed Uncertainty-aware Consensus-assisted mechanism. Specifically, we respec-
tively replace the proposed UC-MIL to another two classic MIL methods, such as [48] (w/
Instance-based) and [158] (w/ Embedding-based). The performance is reported as F1 (%),
AUROC (%). 95 % confidence intervals are presented in brackets, respectively.

Methods
Learning Ability Generalisation Ability

F1 (%)↑ AUROC (%)↑ F1 (%)↑ AUROC (%)↑

Backbone

w/ ResNet34
93.2

(90.9, 95.5)
98.0

(96.1, 99.1)
86.8

(84.7, 88.1)
90.5

(88.7, 92.0)

w/ ResWide50
93.3

(91.7, 95.0)
97.7

(95.4, 98.9)
86.0

(84.2, 88.1)
90.2

(88.4, 92.3)

w/ EfficientNetB3
90.2

(88.1, 92.3)
96.0

(93.9, 98.0)
84.6

(82.7, 86.1)
88.1

(86.5, 89.7)

w/ Res2Net50
91.7

(89.9, 93.2)
96.8

(94.7, 98.0)
85.0

(83.1, 87.2)
88.7

(86.6, 89.9)

Ours
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

Component

w/o Uncertainty
92.2

(90.1, 94.1)
97.0

(95.8, 98.1)
86.2

(94.9, 88.3)
90.2

(88.1, 92.1)

w/o Consensus
92.2

(90.4, 94.6)
97.7

(95.1, 98.6)
85.8

(83.3, 87.0)
89.4

(87.2, 90.5)

w/ Instance-based
88.7

(86.0, 90.1)
95.5

(93.3, 96.8)
81.5

(80.0, 83.1)
85.7

(83.3, 87.1)

w/ Embedding-based
89.9

(87.4, 91.2)
95.9

(93.3, 97.6)
83.0

(81.0, 85.2)
87.0

(85.1, 88.9)

Ours
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

bones, such as ResNet ( [143]) variants (e.g. 18, 34, 50, 101), and cutting-edge classification

backbones such as ResWide ( [474]) variants (e.g. 50, 101), ResNeXt ( [450]) variants (e.g.

50, 101), EfficientNet ( [380]) series (e.g. B0, B3, B5, B7) and Res2Net ( [114]) variants

(e.g. 50, 101). For each model’s variants, we present the best performance in Table.5.7

for an intuitive comparison. Ours achieves the best performance of 94.9 % and 88.0 % F1

with ResNeXt50 and ResNet18 as the backbone in Learning Ability and Generalisation

Ability settings, respectively.

Uncertainty & Consensus Mechanism We evaluate the effectiveness of the proposed

Uncertainty-aware mechanism and Consensus-assisted mechanism respectively. In detail,
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we remove each of them correspondingly and remain the rest of the model unchanged,

which are represented as w/o Uncertainty and w/o Consensus in Table.5.7. As a result,

the reliable slices selection process will rely on the ranked order of consensus-assisted

instance probability (P
(C)
xi,jr , xi,jr ∈ Ω) and the ranked order of uncertainty-aware instance

probability (P
(C)

Ĩxi,j
), respectively. Specifically, Uncertainty-aware and Consensus-assisted

modules boost the performance of F1 by 2.9 % and 2.9 % on Learning Ability and 2.0 %

and 2.6 % on Generalisation Ability, respectively.

Multiple Instance Learning To further verify the usefulness of the proposed UC-MIL,

we respectively replace it with another two classic MIL methods, [48] (w/ Instance-based)

and [158] (w/ Embedding-based), shown in Table.5.7. Notably, w/ Instance-based can be

seen as our UC-MIl but without Uncertainty and Consensus mechanisms. As for w/

Embedding-based ( [158]), as we discussed in Section 5.2.1, all previous 3D CT based

COVID-19 diagnosis methods ( [77,135,221]) adopted its attention scoring system. Specif-

ically, we adopted the same backbone framework as Ours, but a trainable attention score-

based pooling mechanism from [158]. In detail, two fully-connected layers with Softmax

as the activation functions are applied to learn a weighted average of instances (low-

dimensional embeddings). We trained those two models ( [48] [158]) with all of the training

CT slices/instances under the same experiment settings as ours. In Table.5.7, Ours out-

performs w/ Instance-based and w/ Embedding-based by an average of 7.5 % and 5.8 %

F1 on both evaluation settings. Notably, for w/ Instance-based ( [48]), we selected the top

D instances (CT slices) according to the ranking of the predicted probability of instances,

which is straightforward to implement and has been adopted by previous MIL methods

( [48, 188, 375]). On the other hand, for w/ Embedding-based ( [158]), we used the ranked

attention weights to select the corresponding top D instances, which is similar to the pre-

vious methods ( [158,202,354]). Those selected top D instances were then used as the 3D
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Table 5.8: Ablation study on the effectiveness of the BA-GCN ’s backbone networks and
the proposed Bilateral Adaptive Graph Convolution. Specifically, we respectively replace
the proposed BA-GConv layer to another three cutting-edge graph reasoning based classifi-
cation layers, such as SGR ( [223]), DualGCN ( [483]) and GloRe ( [70]). The performance
is reported as F1 (%), AUROC (%). 95 % confidence intervals are presented in brackets,
respectively.

Methods
Learning Ability Generalisation Ability

F1 (%)↑ AUROC (%)↑ F1 (%)↑ AUROC (%)↑

Backbone

w/ 3D-ResNet50
93.2

(91.4, 95.1)
98.0

(96.3, 98.9)
87.1

(86.2, 88.7)
91.0

(89.7, 92.8)

w/ 3D-ResNeXt50
93.2

(91.7, 95.5)
97.7

(95.8, 98.8)
87.3

(85.8, 89.9)
91.2

(89.7, 93.0)

w/ 3D-EfficientNetB0
90.7

(87.1, 91.3)
95.5

(92.8, 97.0)
85.2

(82.5, 84.0)
89.9

(87.0, 91.2)
Ours

(w/ MF-Net)
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

Component

w/ SGR
90.3

(88.2, 92.8)
95.5

(93.0, 97.7)
85.7

(83.6, 87.6)
86.0

(83.9, 88.0)

w/ DualGCN
91.1

(89.4, 92.9)
96.0

(94.1, 97.8)
85.9

(83.8, 87.1)
86.3

(84.9, 87.7)

w/ GloRe
90.8

(88.5, 92.0)
95.9

(93.1, 97.0)
86.1

(84.2, 88.2)
86.6

(84.1, 88.0)

Ours
94.9

(93.0, 96.8)
98.7

(97.6, 99.4)
88.0

(82.3, 92.7)
91.8

(84.6, 93.3)

input for our proposed BA-GCN.

As we have noted, previous instance-level MIL methods yield promising classification

results in the seen data (i.e. the evaluation of Learning Ability), but poor on unseen data

(i.e. the evaluation of Generalisation Ability). On the other hand, Ours can achieve more

consistent results on the unseen data, with the benefit of the proposed uncertainty-aware

and consensus-assisted mechanisms.

Bilateral Adaptive Graph Convolution Network

Backbone Network. We conduct experiments to evaluate the effectiveness of different

backbone models in the proposed BA-GCN. We adopt several classic classification back-
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bones, such as 3D-ResNet ( [143]) variants (e.g. 18, 34, 50), and cutting-edge classification

backbones such as MF-Net ( [69]), 3D-EfficientNet ( [380]) variants (e.g. B0, B3, B5)

and 3D-ResNeXt ( [450]) variants (e.g. 50, 101). For each model’s variants, we present

the best performance in Table.5.8 for an intuitive comparison. Ours achieves the best

performance of 94.9 % and 88.0 % F1 with MF-Net as the backbone in Learning Ability

and Generalisation Ability settings, respectively.

Graph Convolution To further verify the usefulness of the proposed BA-GCN, we re-

spectively replace it to another three cutting-edge graph-based reasoning methods, such

as SGR ( [223]), DualGCN ( [483]) and GloRe ( [70]), shown in Table.5.8. In detail, we

retain the same input vertices (Xall) and replace the proposed BA-GConv layer to their

corresponding graph convolution layers, where SGR makes use of the knowledge graph

mechanism, DualGCN investigates the coordinate space and feature space graph convo-

lution, and GloRe makes use of the projection and re-projection mechanisms to reason

about the relationships of different regions. In this way, the compared GCNs will consider

both 2D and 3D levels of information from the input vertices. Table.5.8 shows that Ours

achieves more accurate and reliable results, and outperforms SGR, DualGCN and GloRe

by an average of 3.9 %, 2.9 % and 3.4 % F1 on both the evaluation settings.

5.7 Discussion

5.7.1 Hidden Challenges of the COVID-19 Dataset

CC-CCII ( [481]) is now the largest public available 3D CT dataset for the COVID-

19 diagnosis, with patients’ CT scans of NCP, CP and Normal classes. Many previous

methods ( [145,149,381,446]) reported evaluation results on it, however, rarely discussed the

importance of pre-segmentation process. In Table.5.5, we present a better quantification
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Normal

NCP

Figure 5.10: CT slices are randomly selected from different patients. The top and bottom
rows represent Normal and NCP classes, respectively. Red bounding box highlights the
differences between the scanner beds in the two classes.

results of training the proposed model without pre-segmentation process (Ours, w/o Seg),

than the one with the pre-segmentation (Ours). Similar circumstances are also observed

with previous methods in Table.5.5, such as CCT-Net, w/o Seg and DeCoVNet, w/o Seg.

However, the trained models without pre-segmentation may only learn a specific format

pattern of different classes, rather than the true radiographic diagnosis characteristics (i.e.

GGO for NCP), because of specific scanning machine types, protocol standards, data

sources for different classes in the dataset. For example, in Fig.5.10 we show ten randomly

selected CT slices of different patients from Normal and NCP classes. The model can easily

learn the difference between the specific scanner bed part of different classes (highlighted

with red bounding box).

To further prove the necessity of pre-segmentation in this task, we visualise the trained

model’s attention heat maps, which are generated by using the Grad-CAM. In Fig.5.11,

it shows that the models without pre-segmentation (Ours, w/o Seg) look at other regions

(e.g. scanner bed) rather than the diagnosis characteristics part (e.g. GGO) of the lungs

in the NCP CT images.
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Ours 
(w/o Seg)

Ours

Input
(NCP)

Input
(NCP)

Figure 5.11: Qualitative comparison of Grad-CAM on the same input with and without
pre-segmentation step. Models without pre-segmentation (Ours, w/o Seg) attend to other
regions (e.g. scanner bed) rather than the discriminatory parts (e.g. GGO) of the lung
regions in the NCP CT images.

5.7.2 Limitations of the Proposed Model

Our proposed model achieves accurate classification results on three largest public avail-

able CT dataset w.r.t. Learning Ability and Generalisation Ability evaluation settings.

However, one limitation of our model is two-stage, which requires a relatively longer in-

ference time or training time compared to other one-stage methods. This is because we

proposed UC-MIL for 2D feature extraction and trustworthy slices selection on the first

stage, then, we propose BA-GCN to extract 3D features, and aggregate the 2D and 3D

information for a more comprehensive level of feature reasoning on the second stage. Such

a design increases the diagnostic accuracy but also consumes more time to infer and train.

Compared to the other methods in Table. 5.3, Ours takes 30.0 more hours on average

for training the first stage of UC-MIL due to MIL’s specific training mechanism. This is

similar to ASCo-MIL ( [135]), which is also a MIL-based method. However, we believe
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the training model process is often one-off, while inference speed plays a more important

role in evaluating the algorithm and applying to the real applications. Specifically, Ours

requires approx 0.26 seconds more inference time per 3D CT volume for both evaluation

settings on average. In addition, if ignoring the slice selection process in the first stage for

both Ours and other compared methods, we have demonstrated in the Table. 6.4 that all

the methods have a similar inference time. However, w.r.t. the diagnosis of COVID-19, the

diagnostic accuracy would matter more than the inference speed. This highlights the need

of a trade-off between accuracy and running time when applying AI models to real world

applications. On the other hand, our proposed UC-MIL works as the automatically reli-

able CT slices selection step in the first stage, rather than the handcrafted slice sampling

rules or manual slices selection of previous methods. In other words, previous methods

also belong to the two-stage pipeline, where they need to select CT slices in a handcrafted

way in the first stage. However, our method can automatically work with raw CT images

without any manually designed pre-processing steps.

5.7.3 Future Work

Future studies building on this work should may wish to focus on the first stage of reliable

slices selection, as the second stage of graph-based 2D/3D feature reasoning processes will

rely mainly on the the selected slices and the 2D features from the first stage as the input.

Consequently, a collection of noisy input slices will inevitably introduce noise into the

second stage and in turn perturbing the training process. The ablation study experiments

of UC-MIL and BA-GCN in Table. 5.7 and Table. 5.8 of the original manuscript further

support this view, that is, unreliable slices of the first stage lead to lower performance in

the diagnosis of second stage, especially in the generalisation ability evaluation.

A potential concern of using automatically selected top D CT slices of UC-MIL as the



Chapter 5. Researching Cross-Granularity Information Fusion with Implicit Graph
Representations 153

3D input for the 3D CNN backbone in BA-GCN could be that the non-adjacent top D

CT slices may lack abundant spatial correlations along the channel axis, which may lead

to insufficient usage of the potential of 3D CNN. To address this concern, we have experi-

mentally demonstrated that such 3D input can be used to boost the COVID-19 diagnosis

performance via the extracted 3D features in both Learning Ability and Generalisation

Ability settings in TABLE. 8, compared to the one without 3D features (Ours w/o BA-

GCN in Table. 6). Also, the same circumstance occurred and has been observed by many

previous CT-based COVID-19 diagnosis studies ( [103,145,218,308,381,428]), where they

sampled a fixed number of slices from adjacent CT slices, to form a 3D input volume with

non-adjacent CT slices. Moreover, they have all proved that such 3D volume can be used

for 3D CNN to extract COVID-19 diagnosis-related features and also achieve satisfying

results. An extensive analysis of the relations between 3D CNN and non-adjacent CT

slices’ effectiveness will be of interest in future studies.

5.8 Conclusion

We have proposed a novel and comprehensive framework for diagnosing COVID-19 using

CT scans of an arbitrary number of slices. It takes advantage of both 2D and 3D features

of CT images by utilising the proposed UC-MIL and BA-GCN modules. Our experiments

have demonstrated that our framework can locate the diagnosis characteristics in both seen

and unseen evaluation settings by the graph-based information aggregation of trustworthy

2D and 3D features. Our approach is anticipated to be widely applicable to real-world

applications.



Chapter 6

Researching Auxiliary Task

Learning with Implicit Graph

Representations

In this chapter, I research the auxiliary-task enhanced implicit graph representation in

the task of object counting. Specifically, this section proposes an adaptive auxiliary task

learning-based approach for transport object counting problems such as humans and ve-

hicles. These problems are essential in many real-world tasks such as video surveillance,

traffic monitoring, public security, and urban planning, to aid intelligent transportation

systems. Unlike existing auxiliary task learning-based methods, we develop an attention-

enhanced adaptively shared backbone network to enable both task-shared and task-tailored

features that are learned in an end-to-end manner. The network seamlessly combines a

standard Convolution Neural Network (CNN ) and a Graph Convolution Network (GCN )

for feature extraction and feature reasoning among different domains of tasks. Our ap-

proach gains enriched contextual information by iteratively and hierarchically fusing fea-

154
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tures across different task branches of the adaptive CNN backbone. The whole framework

pays special attention to objects’ spatial locations and varied density levels, informed by

object (or crowd) segmentation and density level segmentation auxiliary tasks. In particu-

lar, thanks to the proposed dilated contrastive density loss function, our network benefits

from individual and regional context supervision, along with strengthened robustness. Ex-

periments on six challenging multi-domain datasets demonstrate that our method achieves

superior performance compared with state-of-the-art auxiliary task learning-based count-

ing methods. Our code is publicly available 1.

6.1 Introduction

Object counting by inferring the number of objects in images or video contents is a crucial

yet challenging computer vision task. This paper is primarily motivated to address human

crowd counting problems whilst being applicable to other domains such as vehicle counting.

Due to the occurrence of crowd gatherings in many scenarios such as parades, concerts, and

stadiums, a robust and accurate crowd counting model plays an essential role in multimedia

applications for security alerts, public space design, transportation management etc. [112].

As a result of Convolutional Neural Network’s (CNN )’s exceptional feature learning

capability, the performance of crowd counting methods has been steadily enhanced. Re-

cent state-of-the-art methods, such as [284, 306], have demonstrated that a density map

regression paradigm yields satisfactory results. In these methods, given an input image,

a CNN -based network is used to regress the corresponding density map; the sum of the

pixel values in the density map represents the total number of counts in the image. There

are a number of challenging issues [112] such as significant scale changes, wide variations

in density levels, and complex scene backgrounds, however, there is still considerable room

1https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary

https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
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GCN Reason Module

Shared Backbone

Binary Segmentation

Semantic  Segmentation

Density Map Regression

Input
Binary Prediction

LB

Convolution

Density Prediction

Output: Counting Number

LDCD+LDP

Semantic Prediction

LS

Convolution

Figure 6.1: Overview of the proposed network structure in the scene of crowd count-
ing. An attention-enhanced adaptively shared backbone network is proposed to enable
both task-shared and task-tailored features learning. A novel Graph Convolution Net-
work (GCN ) reasoning module is introduced to tackle issues of cross-granularity feature
reasoning among three different tasks. A novel loss function LDCD is proposed to take
into account more adjacent pixels for regional density difference, which strengthens the
network’s generalizability.

Input PredictionGround truth Input PredictionGround truth

Figure 6.2: Comparison of our predictions and the ground truth. Our predictions are
robust enough even when there are mislabeled or incorrectly labeled point annotations in
the ground truth of crowd counting and vehicle counting datasets. Our model can indicate
more accurate object locations or counting numbers compared with the ground truth. The
red bounding boxes are used for better visualisation and comparison.
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for counting performance improvement. Some previous methods [167, 229, 292, 359] rely

on various types of information granularity in terms of ’auxiliary task learning’ to address

these issues. Using a single shared backbone network structure, these methods extract

generalised features for all tasks. Unfortunately, this strategy may result in under-fitting,

as the generalizable representation is frequently incapable of describing the comprehen-

sive cross-granularity features across multiple tasks simultaneously [112]. Contrasting, our

adaptive shared backbone network focuses on maximising the principal density map re-

gression task and multi-granularity information augmentation from auxiliary tasks. Our

backbone network has a multi-level information aggregation mechanism to repeatedly and

hierarchically combine features from distinct stages and auxiliary branches. Note that,

the term ‘auxiliary task learning’ is referred to as the feature learning of different density

information granularity levels. Specifically, the crowd segmentation task and the density

level segmentation task in Fig. 6.1 are the auxiliary tasks, and the density map regres-

sion task is the main task. We generated the ground truth of crowd segmentation and

density level segmentation from the density map regression ground truth. Intuitively, no

increase in information from the ground truth of auxiliary tasks is generated; however, the

information is enhanced and specified through auxiliary tasks in terms of different density

information granularity.

Given the auxiliary-task learning paradigm, we researched how to reason and fuse

features from different tasks for density map regression. Crowd segmentation and density

level segmentation feature domains have different granularity of representations. Direct

fusion (element-wise multiplication or channel-wise concatenation) of three task branches’

outputs might cause domain conflicts [252]. To improve counting accuracy, we exploited

the nature of Graph Convolutional Networks (GCN ) for information reasoning. GCN has

showed promising reasoning ability on several computer vision problems, including scene
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interpretation [217,284] and image segmentation [275,277,278,281,283,285], but has been

rarely investigated in crowd counting. Our model projects a collection of pixels from a

spatial-aware density feature map with similar density levels to each graph vertex and

exploits a GCN to reason about the relations among graph vertices. This is different

from a recent work [252], which directly treated cross-granularity feature maps as graph

vertices and utilized a cascaded Graph Neural Network (GNN) to reason the cross-scale

relationships.

In this work we present a novel loss function for density map regression. The commonly

adopted Least Absolute Error (L1) or Least Square Error (L2) loss [236,359,488] assumes

pixel-wise independence. However, two major flaws exist: (1) The estimated density map is

over-smoothed [229], underestimating high-density regions and overestimating low-density

parts. The model may focus on reducing count mistakes rather than regressing high-quality

density maps, therefore it cannot reflect the true density levels. (2) Without a large re-

ceptive field, pixel-wise loss functions may ignore regional density level information during

training [166]. Unbalanced low- and high-level density distributions might cause bias in

training, reducing network resiliency. To overcome these concerns, we present a new loss

function for density map regression called Dilated Contrastive Density Loss (LDCD), where

the density difference between dilated adjacent pixels provides extra regional supervision.

Ablation studies conducted show that our proposed regional loss function outperforms

pixel-wise losses in all datasets used in this work.

We conducted extensive experiments on seven well-known challenging counting bench-

marks. Quantitative and qualitative results demonstrate that our model achieves state-of-

the-art performance. To the best of our knowledge, we achieved the best counting per-

formance among other auxiliary task-based counting methods on the NWPU-Crowd [419]
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benchmark 2, which is currently the largest crowd counting benchmark. Our model is

robust and generalizable, indicating incorrectly labeled or mislabeled object ground truths

in the test datasets. Please refer to Fig 6.2 for more details.

In summary, this work makes the following contributions:

• We address the feature learning issues of the backbone network for auxiliary task-

based methods in crowd counting challenges, by enabling task-shareable and task-

specified feature learning simultaneously with a primary focus on the main task.

• We propose crowd segmentation and density level segmentation as auxiliary tasks

in crowd counting with additional spatial crowd location and density level infor-

mation enhancement. Moreover, a GCN model was proposed to reason about the

cross-granularity feature relations between density map regression and other auxiliary

tasks.

• We propose a novel loss function tailored for density map regression, strengthening

the network’s generalizability and improving the counting accuracy.

6.2 Related Work

In recent years, density map regression-based counting methods [22,65,92,219,233,234,236,

262, 386, 410, 443, 458, 459, 461, 495, 506] using CNNs have achieved good performance. As

mentioned previously, they employ different learning strategies to address difficult issues

such as variations in scale, alternate density levels, and complicated background scenes.

Specifically, attention-based methods [55,97,151,166,288,368,410,422,453,477], auxiliary

task-based methods [2,74,167,199,232,237,238,373,408,464,485], and different supervision-

based methods [239,240,259,261,372,374,407,409,412,413,418,423] align closely with our

proposed method presented in this work. We have elaborated the related works of the

2https://www.crowdbenchmark.com/nwpucrowd.html

https://www.crowdbenchmark.com/nwpucrowd.html
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aforementioned learning strategies in the following contents.

6.2.1 Attention-Based Counting

Visual attention mechanisms were applied among several works [55, 97, 151, 166, 288, 368,

410, 422, 453, 477] in crowd counting applications, which helps the network focus on valu-

able information and addresses several challenges. For example, Miao et al. [288] utilized

a shallow feature-based attention module to highlight the regions of crowd interest and

filter out the noise from background clutter. To tackle various density levels issues, Jiang

et al. [166] employed an attention mask to refine the density map for adapting to different

density levels. Furthermore, Zhang et al. [477] proposed the Attention Neural Field that

incorporates non-local attention modules with conditional random fields to maintain multi-

scale features and long-range dependencies, enabling control over the large-scale variation

challenge of input crowd images. Wan et al. [406, 410] exploited the self-attention mech-

anism to adaptively generate density maps with different Gaussian kernel sizes, which

is then used as the ground truth to supervise the model. The aforementioned methods

adopt the attention mechanism as a feature enhancement module to implicitly address

the crowd counting task challenges emphasised throughout this paper, including notable

scale changes, large-scale density level variability, and complex scene backgrounds. Our

model explicitly addresses these challenges through auxiliary tasks. On the other hand,

our model adopts the attention mechanism to construct an adaptively shared backbone

network, enabling task-shared and task-specific feature learning simultaneously.

6.2.2 Auxiliary Task-Based Counting

Recently, auxiliary task learning-based counting methods [2,74,167,199,222,228,232,237,

238,330,373,408,464,485] have attracted research attention because of their ability to cap-
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ture extra granularity information and contextual dependencies for density map regression.

Most methods utilize the potential of a model itself with auxiliary tasks, such as object

detection, crowd segmentation, density level classification, etc., to enhance the feature

tuning for density map regression. For example, the task of patch-based density level clas-

sification [167,242,291,359,366,367,505] can enhance patch-wise density-level information,

which helps to address the underestimation and overestimation problems of density map

regression. However, it may be difficult to guide the pixel-wise density map regression via

patch-wise density-level classification because of the gap between pixel-wise and patch-wise

feature learning. In contrast, our model proposes a density level segmentation auxiliary

task, which can be regarded as the pixel-wise density-level classification task. In this way,

our model can enhance the pixel-wise density-level information to the pixel-wise density

map regression task, aiming to address the challenges of wide variations of density levels.

Moreover, because the background regions in complex scenes contain confusing ob-

jects or similar appearances, the crowd segmentation task, adopted by previous meth-

ods [252, 292, 359, 421, 496], can provide spatial location information for the crowd, which

highlights the foreground over the background and guides the network focus onto the region

of interest. Our model also adopts the crowd segmentation task because of its superiority

in spatial location information enhancement. In particular, Luo et al. [252] adopted crowd

segmentation as the auxiliary task, then proposed a cascaded graph-based model to tackle

the fusion of features between the crowd segmentation and density map regression tasks.

This is similar to our learning paradigm, however, there are two significant difference: (1)

They did not consider the density level information and only treated the features of the

density map and crowd segmentation as the vertices in their proposed model. Alterna-

tively, we incorporate the spatial information of crowd location, the semantic information

of density level, and the main task of density map features, into the proposed vertices in
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our model. (2) They treated the vertices equally. Specifically, they regarded the crowd

segmentation and density map features as independent vertices, fusing and aggregating the

information among them. However, the main task to estimate the counting number should

be density map regression, hence they may introduce inevitable noise into the training

process if the auxiliary task takes over. Differently, we project a collection of pixels from a

spatial-aware density feature map with similar density levels to each graph vertex, thereby

enhancing the main task vertices’ spatial location awareness. Also, we project the long-

range density level dependency among every pixel into the adjacency matrix, boosting the

main task vertices’ semantic density level awareness. Please see Section 6.3.5 and Fig. 6.5

for details.

6.2.3 Learn to Count with Different Supervisions

Instead of tackling the counting task through different learning frameworks or strategies,

recent methods [50,76,239,240,259,261,372,374,407,409,412,413,418,420,423] have paid

attention to the way of supervisions. For example, Sravya et al. proposed a bin loss

[374] to enable the data distribution-aware optimization, which helped to address the

domain variation challenges from different crowd data sources. Song et al. [372] studied

the counting problem in a different way, where a combination of Euclidean loss and Cross

Entropy loss was used for point location learning, instead of density map regression. Along

the same line, Bayesian loss was proposed by [261] to provide more reliable supervisions

at each annotated point. Alternatively, Wan et al. [409] studied the combination of pixel-

wise loss and point-wise loss, which investigated the density map representation through

an unbalanced optimal transport problem. [407] proposed a novel loss function to address

the spatial annotation noise during training, where a weighted MSE term and a pixel-wise

correlation term were involved. Recently, [412] proposed a distribution matching loss to
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tackle the weakened generalizability of Gaussian smoothed density maps. Moreover, Wang

et al. [413] treated the counting with density maps as a classification problem, where a

Cross-Entropy loss was used to classify each patch into certain intervals.

The aforementioned methods introduced different loss functions to supervise a model,

such as point locations, bounding boxes, matching, ranking, classification, etc.. However,

the mainstream counting methods still rely on pixel-wise supervision with the density map

ground truth [112], such as the L1 or L2 loss functions. In this work, we propose a Dilated

Contrastive Density Loss (LDCD) to improve the pixel-wise loss’ receptive field and to

increase the regional supervision.

6.3 Methods

6.3.1 Ground Truth Generation

Following [201], given a set of N images {Ii}Ni=1 with corresponding point annotations

{Pi}Ni=1, the ground truth of the density map {Di}Ni=1 is generated by filtering the points

with a normalized Gaussian kernel. The total object count number Ti of image Ii can be

attained by summing all pixel values of the density map Di.

The ground truth mask of the crowd segmentation task is generated from the density

map ground truth. Given a set of N density maps {Di}Ni=1, the value for the pixel in the

mask {Bi}Ni=1 is set to 1 if its pixel value in the density map is larger than zero, otherwise

it is set to 0 .

The ground truth mask used by the density level segmentation task is also generated

from the density map. For pixel p in input image i, its density level class Sp,i is given as:

Sp,i = min
i=1,..,N

(
Di(p)−min(Di)

max(Di)−min(Di)
× L,L

)
, (6.1)
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Figure 6.3: Illustration of our proposed network. The adaptively shared backbone net-
work has three outputs of fCS , fDS , fDM , representing crowd segmentation, density level
segmentation, and density map regression branches’ output feature map, respectively. The
order of their involvements indicates that the density map regression branch can benefit
from the extra density level and crowd spatial supervision from the other two branches
gradually.
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where L represents the overall levels of density. Following previous patch-based density

level classification methods [167,359], we set L equal to 4 in our work. Di is the pixel value

in the ith density map ground truth. Specifically, given a density map and Eq. 6.1, we

can generate the density level map with L levels of object density. In other words, we set

all the pixels of the density map into L categories or classes according to their own pixel

value. In this way, each pixel is assigned to a semantic label to represent the high-level

sparseness or denseness.

6.3.2 Task Adaptive Backbone Network

Intuitively, our motivation is that the backbone network should be able to produce both

universal (or generic) and specialised features that are applicable to all tasks and can also

be tailored to specific tasks. To this end, instead of using a shared backbone network

to extract generalizable features for different tasks, we propose an auxiliary-task based

adaptive backbone network to allow the model to extract discriminative features for the

auxiliary tasks, thus helping to improve the performance of the main task. Fig. 6.3 shows

the detailed structure of the proposed network, which consists of a shared backbone and

three attention-based task-adaptive branches. To make a fair comparison with previous

auxiliary task-based methods, such as [167, 252, 341, 367], etc., the truncated VGG-16

[365] is used as the backbone network. However, it can be replaced by any other robust

network structure; we have reported the counting performance with other powerful network

backbones in TABLE. 6.5. The shared backbone adopts the first 13 layers of VGG-16 to

extract multi-level features. To exploit the global contextual dependencies, we propose a

Feature Fuse Block (FFB), which aggregates and fuses the outputs from posterior layers

back to the preceding layers hierarchically and iteratively, with up-sampling, concatenation

and convolution operations. This provides improvements in extracting the full spectrum of
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semantic and spatial information across different stages and resolutions. The up-sampling

is performed by using a bilinear interpolation algorithm. The convolution operation aims

to reduce and match the corresponding feature map channel size between different stages.

With the aggregating process from high-level features to low-level features, the task-

adaptive attention module is applied in three different task branches; details of the atten-

tion module are shown in the bottom left of Fig. 6.3. Each attention module consists of a

global average pooling (GAP) layer to capture global context through different feature map

channels, generating an attention tensor to lead the emphasis of feature learning. Then,

two blocks with a convolutional layer followed by a Batch Normalization (BN) [160] layer

with ReLu and sigmoid as the activation functions are added. For the convolutional layer

filter, the kernel size is 1× 1. Element-wise multiplication is then performed between the

outputs of a particular layer of the shared backbone and the task-specific attention module,

which filters out the unrelated and redundant features from the backbone with respect to

different auxiliary tasks and the main task. Therefore, the shared backbone can learn a

generalizable representation, while the attention-based branches can extract task-specific

features simultaneously in an end-to-end manner. The ablation study experiments proved

that the attention-based adaptive backbone could boost the counting performance.

Apart from the aforementioned network structure component in three attention-based

task-adaptive branches, we also introduce a cross-granularity feature fusing operator in

a particular order to focus on optimizing the density map regression task. Specifically,

the crowd segmentation branch is applied to the shared backbone first to select the corre-

sponding discriminative spatial features. Then, we applied the density level segmentation

branch on the shared backbone and crowd segmentation branch, which can enhance the

additional contextual density level information into the main task. At last, the main task

of the density map regression branch is applied.
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6.3.3 Auxiliary Tasks

With three outputs from the task adaptive backbone network, we built two auxiliary

tasks and a main task: crowd segmentation, density level segmentation, and density map

regression. We detail each of them subsequently.

Crowd Segmentation. We introduce crowd segmentation as one of the auxiliary tasks

for two reasons. Firstly, the pixel value of the density map should be zero in areas devoid

of people. However, the predicted density map can be inaccurate and noisy when the

background is cluttered and complex. The task of crowd segmentation provides a spatial

focus to the density map regression procedure by setting the pixel values of non-crowd

regions to zero. Secondly, given the standard setup of single density map regression, pixels

within a specific range of the point annotations should contribute more to the final counting

results; however, most irrelevant pixels dominate the loss [112]. In order to circumvent this

constraint, crowd segmentation can provide additional information enhancement in terms

of the spatial indicator via a standalone loss function.

Given an input image Ii ∈ R3×H×W , we can get the output of the crowd segmentation

branch in the backbone network, fCS ∈ RC×H×W , where H and W represent the height

and width of the feature map; C is the channel size. Then, we apply a convolution layer

with filter parameters θCS ∈ R1×1×1, followed by a sigmoid activation function. Through

this operation, we can generate a probability map to calculate the crowd and background

probability. The single channel crowd segmentation probability map MCS is defined as:

MCS = Sigmoid(θCS , fCS) ∈ R1×H×W . Fig. 6.4 demonstrates an example of the location

map, which is the MCS after using 0.5 as the thresholding, resulting in a binary map. The

colors represent different classes, where there is a foreground class and background class.

Crowd segmentation focuses on the spatial information, and indicates the geometry-aware

supplementary as the auxiliary task.
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Density Level Segmentation. Density map regression is a pixel-wise task that focuses

on the learning of low-level features but may disregard high-level semantic information,

such as the density level information [386]. However, such semantic information is critical

in the counting system because the density map’s pixel values should rely not solely on their

own pixel-wise characteristics but also on regions with varying densities [236]. To address

the issues, we perform density level segmentation as another auxiliary task. Compared with

previous patch-based density level classification methods [167,359,366,367], our proposed

pixel-based density level segmentation can provide pixel level density information and high-

level semantic features at the same time. Fig. 6.4 demonstrates an example of the density

level map, where colors represent different classes. From class 3 down to class 0, the

density level decreases. Density level segmentation focuses on the semantic information,

and indicates the density level-aware supplementary as the auxiliary task. Upon the output

of the density level segmentation branch of the backbone network fDS ∈ RC×H×W , a

convolution layer with filter parameters θDS ∈ RL×1×1 and a softmax activation function

are applied. The prediction of the density level segmentation branch MDS is defined as:

MDS = softmax(θDS , fDS) ∈ RL×H×W , where L is the number of density levels.

6.3.4 Density Map Regression

Intuitively, the different granularity features of density levels and spatial crowd locations

need to be further analysed for fusion into a combined reasoned feature to feed to den-

sity map regression branch. To this end, with the predicted crowd segmentation output

MCS and density level segmentation output MDS as the auxiliary information granular-

ity, we input them along with the feature map derived from the density map branches

fDM ∈ RC×H×W into the GCN reasoning module to understand the relationship among

themselves. Subsequently, the output feature map fDM ′ ∈ RC×H×W of the GCN reason-
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Figure 6.4: Example of the density level map (top) and location map (bottom). For the
density level, the colors represent different classes, which corresponds to different density
levels. From class 3 down to class 0, the density level decreases from denseness to sparse-
ness. The class 0 represents the background, where there is no objects. As for the location
map, the colors represent the different classes, where there is a foreground class and a
background class.

ing module is reduced into one-channel through a 1 × 1 convolution layer with a ReLU

activation function.

6.3.5 GCN Reasoning Module

Deep feature extraction and fusion have been explored in previous studies, such as discrim-

inant correlation analysis [13, 14], and multi-canonical correlation analysis [10–12], where

they adaptively selected and fused CNN features from different layers, such that result-

ing representations have a high linear correlation. Following the same line, we propose a

GCN model to fuse the correlated and supplementary features from auxiliary tasks that

contribute to the counting task.

Different granularity representations are utilised for the crowd segmentation and den-

sity level segmentation feature domains. Direct fusion (element-wise multiplication or

channel-wise concatenation) of the outputs of three task branches may lead to domain
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Figure 6.5: Architecture of the proposed GCN reasoning module. fDM ∈ RC×H×W is the
feature map of the density map regression branch, C = 32 is the channel size; MCS ∈
R1×H×W is the prediction of the crowd segmentation branch; MDS ∈ RL×H×W is the
prediction of density level segmentation branch, L = 4 is the number of density levels;
DD ∈ RHW×HW is the density level dependency matrix; VD ∈ RK×HW is the constructed
vertex features and VD′ ∈ RK×HW is the output vertex features after GCN, K = 16 is the
number of vertices. fDM ′ ∈ RC×H×W is the output feature map after GCN reasoning.
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conflicts [252]. Our GCN reason model projects a collection of pixels from a spatial-aware

density feature map with similar density levels to each graph vertex and exploits a GCN

to reason about the relations among graph vertices. In other words, our graph is formed

with fused-information of spatial locations and density levels from auxiliary tasks via ini-

tialising the adjacency matrix and vertices (DD and VD shown in Fig. 6.5). The proposed

GCN reasoning module structure is shown in Fig. 6.5. In detail, there are three primary

modules: Spatial Location Aware module, Density Level Aware Projection module, Graph

Convolution on Vertices module.

Spatial Location Aware Module. Before projecting the density map feature map fDM

into the graph vertices, we directly applied the broadcasting Hadamard Product operation

between the crowd segmentation output MCS and the density map regression branch’s

feature map fDM . There are two underlying reasons for this: (1) MCS is a one-channel

crowd segmentation map, with encoded probabilities of the non-crowd regions’ pixel values

approaching zero and crowd regions’ pixel values approaching one; the value of one serves

as a filter to zero out the non-crowd region’s pixel value of the density map. (2) the

broadcasting Hadamard Product can achieve crowd spatial awareness for every channel of

fDM through zeroing out the non-crowd region’s pixel value. This addresses the challenge

of complex scene backgrounds in crowd images.

Density Level Aware Projection Module. As mentioned above, the pixel-wise density

level information can help to address the challenges of large variations of density levels

in crowd images. However, direct broadcasting Hadamard product between the density

map branch’s feature map fDM and the density level output MDS may result in domain

conflicts [252]. We exploited the nature of GCN and projected the density level information

into the graph vertices for further reasoning, which benefited the long-range relationship

reasoning ability of GCN and the multi-granularity information enhancement from density



172 Yanda Meng

level. Inspired by the non-local module [429], we encoded the long-range density level

dependency among every pixel. Give the feature map MDS , the density level dependency

matrix DD ∈ RHW×HW is defined as:

DD = softmax
(
ε(MDS)⊗ βT(MDS)

)
, (6.2)

where Conv β and Conv ε are two convolution layers with 1 × 1 kernel size, respectively.

The dependency matrix DD can be regarded as a pixel-wise attention map, where pixels

with similar density levels are assigned larger weights. The dependence matrix might itself

reflect the pixel-by-pixel density level dependency. In addition, with Eq. 6.2, we projected

the density level map as a precondition to the graph domain via matrix multiplication,

which simultaneously improves high-level semantic dependence.

Graph Convolution on Vertices. In this module, we learnt how to reason the region-

based relationship in the density map through GCN in graph domain. Formally, the

constructed vertices VD is defined as:

VD = DD ⊗ µ(fDM �MCS), (6.3)

where ⊗ is matrix multiplication; � is the broadcasting Hadamard product. Specifically

in Eq. 6.3, we projected the spatial aware feature map of fDM into graph domain with

K vertices, and each vertex is represented by an embedding of shape H × W . This is

achieved by Conv (µ), which is a 1 × 1 convolution layer. Furthermore, we projected the

dependency matrix DD to the graph domain through matrix multiplication, resulting in

the vertex features VD ∈ RK×HW . The projection aggregated pixels have similar density

levels to graph vertices, where each vertex represents a region in the crowd image. With

the constructed vertices (VD), the long-range region-wise relationship is further reasoned
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in the graph domain through GCN. Formally, the output vertices of our proposed GCN

(VD′) are calculated as:

VD′ = ReLU
(

(I −A)⊗ VD ⊗WD

)
, (6.4)

where I is the identity matrix; A ∈ RHW×HW denotes the adjacent matrix that encodes

the graph connectivity to learn; WD ∈ RK×K is the weights of the GCN. The adjacent

matrix A is randomly initialized but can learn and update the edge weights from vertex

features along the training process. The identity matrix I serves as a residual connection

that alleviates the optimization difficulties. Specifically, in Eq. 6.4, we reasoned over the

region-wise relations by propagating information across vertices with a single layer GCN.

Specifically, we fed the constructed vertex features VD into a first-order approximation of

spectral graph convolution [182], resulting the output vertex features VD′ ∈ RK×HW . Based

on the learned graph, the information propagated across all vertices leads to the finally

reasoned relations between regions. After graph reasoning, a collection of pixels embedded

within one vertex share the same context of features modeled by a graph convolution.

Then, we re-projected the vertex features in the graph domain to the original pixel grids.

Given the reasoned vertices VD′ , we applied Conv (σ), which is a 1× 1 convolution layer.

Finally, we summed up the re-projected and the original density feature maps to form the

final feature map. The final pixel-wise density feature map fDM ′ is thus computed as:

fDM ′ = fDM + σ(VD′). This can be regarded as the residual connection.
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Figure 6.6: Dilated Contrastive Density Loss (LDCD). There are eight dilated contrastive
kernels with green, white, yellow blocks representing 1, 0, -1, respectively. The least-square
error of two outputs from the regression and ground truth is treated as the final LDCD.

6.3.6 Loss Function

The whole network is end-to-end trainable, which includes four loss functions. The total

loss function is defined in Eq. 6.5 as follows:

Ltotal = LCS + LDS + γ · (LDp + LDCD), (6.5)

where γ is empirically set as 2, which is a hyper-parameter to trade-off between the aux-

iliary losses and main loss. Please note that extensive experiments have been conducted

to determine the weights of the losses for the two auxiliary tasks. We found that there is

no significant difference of counting performance with respect to different weight values;

thus, we set them both equal to 1 in the loss function. Binary cross-entropy (LCS) is

used for the crowd segmentation auxiliary task; categorical cross-entropy (LDS) is used for

the density level segmentation auxiliary task; L2 loss is used for pixel-wise density map

regression supervision (LDp). However, the pixel-wise L2 loss assumes pixel-wise indepen-

dence, which results in an over-smooth density map prediction [229] and the underlying

bias from unbalanced low- and high-level density distributions of crowd images. To ad-
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dress this issue, we propose a Dilated Contrastive Density Loss (LDCD), where we take

into account more adjacent pixels for regional density difference. In detail, we applied a

single layer convolution on the regressed density map MD and the ground truth density

map DG. The single layer convolution has eight filters; each filter contains a dilated kernel

with a fixed value (e.g. 1, 0, and -1). The least-square error of the calculated regional

dilated contrastive values from the regressed and ground truth density map is the output

of LDCD. To this end, we define LDCD in Eq. 6.6 as below:

LDCD =
∑
i

||KDCD
i ⊗MD −KDCD

i ⊗DG||22, (6.6)

where KDCD
i is the ith dilated contrastive convolution kernel, i ∈ [1, 8]. Details of the

kernel are shown in Fig. 6.6, where a 3 × 3 convolution layer with the dilated rate of 2

is applied; this gives a larger receptive field as 5 × 5. The kernel value is empirically set

as 0 ,-1, and 1 because we do not find any significant difference regrading different kernel

values. On the other hand, the kernel value is designed to achieve a contrastive learning

purpose to include regional relationships among pixels instead of single pixel-wise L2 or

L1 loss. We performed extensive experiments to evaluate the effectiveness of the proposed

LDCD loss; quantitative results in the Ablation Study (Section 6.5.4) demonstrates that

the proposed LDCD loss can improve the counting accuracy not only for our model but

also for previous single L2 loss-based methods.
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Figure 6.7: Qualitative results of the density, crowd location and density level map in
SHA test dataset. Our model can produce accurate density maps compared with the
ground truth (GT ), along with accurate auxiliary crowd segmentation and density level
segmentation results.

6.4 Experiments

6.4.1 Datasets

ShanghaiTech [488] consists of 1,198 images, containing a total amount of 330,165 people

with head centre point annotations. This dataset has been divided into two parts: SHA

includes 482 images, in which crowds are mostly dense (33 to 3139 people); SHB includes

716 images, where crowds are sparser (9 to 578 people). Each part is divided into training

and testing subsets as specified in [488]. UCF-QNRF [156] is a large crowd dataset,

consisting of 1,535 images with around 1.25 million annotations in total. The number of

people in these images varies largely with a wide range spanning from 49 to 12,865. As

indicated by [156], for training, 1,201 images are used, the remaining 334 images form the

test set. JHU-Crowd++ [369] is a recent challenging large-scale dataset that contains

4,372 images with 1.51 million annotations. The dataset includes several challenging scenes

such as weather-based degradation and illumination variations etc.. This dataset is divided

into 2,272 images for training, 500 images for validation, and 1,600 images for testing.
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NWPU-Crowd [419] is currently the largest public crowd counting dataset, containing

5,109 images with over 2.13 million annotations. The dataset includes 3,109 training

images, 500 validation images and 1,500 test images. Moreover, inspired by the potential

of crowd counting, we conducted experiments on commonly used vehicle counting dataset:

Trancos [127] with 403 images for training, 420 images for validation and 421 images for

testing. These experiments further demonstrate our model’s robustness and applicability

for different real-world applications.

Note that, for ShanghaiTech (SHA, SHB), UCF-QNRF, and DCC dataset, we use 10%

of the given training images as the validation dataset.

6.4.2 Implementation Details

To augment the dataset, we randomly cropped the input images, density maps, crowd

segmentation masks, and density level segmentation masks with fixed size 128 × 128 at a

random location, then randomly flipped the image patches horizontally with a probability

of 0.3. We trained our model with 400 epochs for all experiments, with a starting learning

rate of 1e−4 and a cosine decay schedule [248]. The batch size is set to 96. Five-fold cross-

validation is used for fair comparison and hyper-parameter tuning is applied in all settings.

We implemented the proposed method with PyTorch 1.7, CUDA 10.2 using Python 3.6.

All the training processes are performed on a server with four TESLA V100, and all the test

experiments are conducted on a local workstation with Intel(R) Xeon(R) W-2104 CPU and

Geforce RTX 2080Ti GPU. Our model takes average 19.5 hours to train on JHU-Crowd++

[369] and NWPU-Crowd [419] datasets and average 8.5 hours to train on ShanghaiTech

[488], UCF-QNRF [156] and Trancos [127]. Our implementation code is publicly available

at: https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary.

https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
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6.4.3 Evaluation Metrics

To evaluate the counting performance, we adopted Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE). Since Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) cannot measure the counted objects’ locations, Grid Average Mean

absolute Error (GAME) is used to indicate counting accuracy over local regions. GAME

is defined in Eq. 6.7 as below:

GAME(L) =
1

N

N∑
n=1

(

4L∑
l=1

|yln − ŷln|), (6.7)

where N is the total number of images, yln and ŷln are the ground truth and estimated counts

in the local region l of nth image. 4L denotes the number of non-overlapping regions which

cover the full image. When L equals to 0, GAME is equivalent to MAE.

6.5 Results

6.5.1 Counting Results

In this section, we present our experimental results on the crowd and vehicle counting tasks

in comparison to other auxiliary-task based state-of-the-art crowd counting methods.

These experiments further demonstrate our model’s robustness and applicability in mul-

tiple domain datasets. In the Discussion (Section 6.5.5), we show that our model could

indicate some mislabeled or incorrectly labeled point annotations from the ground truth

of the test dataset. This highlights our approach’s generalizability and the potential issue

of imperfect ground truth in object counting datasets.

Crowd Counting Results. We performed experiments to validate our model’s perfor-

mance in five challenging crowd counting datasets. Fig. 6.7 shows qualitative results;
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Figure 6.8: Qualitative results on the Trancos dataset. The density map ground truth
and our predictions are shown, with counting number presented in the figure. Our model
adapts well with scale variations, where the scale of the vehicles varies from the distance
between the camera and vehicle locations. Specifically, the vehicles that are far from the
camera only contain a few pixels in the image, while the near-camera vehicles have more
pixels. The scale of such pixel occupation changes can be well handled by our methods
and the predicted density maps can clearly show the location correspondence.
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Figure 6.9: Comparison of GAME performance on the Trancos dataset among the pro-
posed approach and the state-of-the-arts, such as Onoro-Rubio et al. [306], Li et al. [219],
Chen et al. [65]. Note that, a small range of increase among different GAME values
indicates that our method counts and localizes overlapping vehicles more accurately.

specifically, we presented the predictions from auxiliary task branches (crowd segmenta-

tion and density level segmentation masks) to demonstrate our model’s cohesion, along

with the spatial location and density level variation’s contribution of auxiliary branches.

To make a fair comparison, we only compared our model with previous auxiliary task

learning-based counting methods. TABLE. 6.3.6 shows that our method outperforms other

methods in terms of MAE on all five datasets. In particular, our model outperforms the

patch-based density level classification based method HA-CCN [366] by 14.7% via average

MAE. Notably, the JHU-Crowd++ dataset [369] and NWPU-Crowd dataset [419] are re-

cent publicly available datasets, which are more challenging due to large variations in scale,

occlusion, and complex weather scenes. Specifically, NWPU-Crowd is the current largest

crowd counting benchmark 3. To the best of our knowledge, we achieved the greatest per-

formance among other auxiliary task-based methods. Except the auxiliary-based methods

shown in TABLE. 6.3.6, our method gains a superior reduction than single-task learning-

based methods as well, for example, scale variation was able to enhance CACC (100.1

3https://www.crowdbenchmark.com/nwpucrowd.html

https://www.crowdbenchmark.com/nwpucrowd.html


Chapter 6. Researching Auxiliary Task Learning with Implicit Graph Representations181

Table 6.2: Results on vehicle (Trancos) counting dataset. Our model achieves superior
performance to the previous state-of-the-art methods.

Methods
Trancos

MAE RMSE

PPPD [269] 9.7 -
CSRNet [219] 3.5 5.1

BL-Crowd [261] 2.9 6.7
MD-Crowd [412] 3.1 6.6
Auto-Scale [453] 2.9 6.1

SUANet-Fully [284] 4.9 6.9
SASNet [373] 2.9 4.7

Gau-SANet [76] 2.5 2.8
STNet [418] 3.8 5.0
ASCC [166] 3.8 4.9

DM-Count [412] 3.9 5.2
P2PNet [372] 3.8 4.9
WSNet [151] 4.3 5.8

Ours 2.3 4.8

MAE ) [236] by 18.3% and the dilated kernel-based method CSR-Net (85.9 MAE ) [219] by

4.8% via MAE.

Vehicle Counting Results. We conducted experiments on vehicle (Trancos [127]) count-

ing datasets to show our model’s broad applicability and robustness. Fig. 6.8 shows the

qualitative results, and TABLE. 6.2 shows the quantitative results compared with the pre-

vious state-of-the-art methods. Due to the different scenes in the vehicle counting dataset,

such as less occlusion, no scale variation, no complex background etc., the contribution of

some components of our model will be lessened because we designed our model especially

for crowd counting tasks; still, our model achieves superior performance when compared

with previous methods. Specifically, our model outperformed the distribution matching

supervised methods BL-Crowd [261], MD-Crowd [412], P2PNet [372] and DM-Count [412]
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Figure 6.10: Qualitative results on different weather conditions of the JHU-Crowd++
dataset. The density map ground truth and our predictions are shown, with the count-
ing number presented in the figure. In total, three conditions, fog, rain, and snow, are
demonstrated in the respective rows of the figure. Our model can handle severe weather
degradation well and indicates precise crowd locations.

by 20.7, 25.8, 39.5 and 41.0 % of MAE; outperformed the auxiliary task assisted methods

Auto-Scale [453], SASNet [373], STNet [418] and ASCC [166] by 20.7, 20.7, 39.5, and

39.5 % of MAE. Notably, WSNet [151] is specially designed for traffic density estimation

and vehicle counting, where an attention-based Transformer [399] is used to extract the

local-global consistent features. This is because the traffic scenario can be easily affected

by weather and scale changes, which results in weakened semantic and spatial content

of the captured images. Our proposed graph-based multi-granularity information fusion

paradigm had a similar intuition, to enhance the relevant semantic and spatial information.

Our model outperformed WSNet [151] by 46.5 % by MAE in Trancos test dataset. Further-

more, we present local comparison performance through the GAME metric to indicate the

model’s ability to recognize the objects’ locations. Fig. 6.9 shows the comparison results

in terms of the GAME on the Trancos dataset. As illustrated, our method localizes and

counts overlapping vehicles more accurately.

Results on Weather Changes Among the seven datasets used in this work, JHU-
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Crowd++ [369] provided the weather condition-based labels. For example, the test dataset

(a total of 1600 images) contained 168 images weather labels; for example, 49 images are

labeled as ‘rain’; 78 images are labeled as ‘snow’; 64 images are labeled as ‘fog’. In this

section, we provide the quantitative and qualitative counting results on different weather

conditions. Following JHU-Crowd++ [369] benchmark’s setting, we report the counting

performance on the test images with weather labels. Specifically in TABLE. 6.3, our

method achieved 110.2 MAE and 598.2 RMSE, which outperformed previous state-of-the-

art methods LSC-CNN [341], and MBTTBF [368] by 38.1 and 20.5 % MAE. Benefiting

from the proposed auxiliary task and the graph-based multi-granularity feature fusion

mechanism, our model can extract the spatial and semantic features from the input image,

especially when weather degradation causes a weakened image quality. Fig. 6.10 shows the

qualitative results of our model under different weather conditions. Our model can han-

dle the severe weather degradation well, which is critical in the intelligent transportation

system because weather can easily affect traffic scenarios.

6.5.2 Auxiliary Task Results

In this section, we report the performance of the two auxiliary tasks. The commonly used

segmentation metric Intersection over Union (IoU ) is used to evaluate the auxiliary tasks’

performance. In detail, we achieved average 88.7 % IoU for the crowd segmentation task

and 81.0 % IoU for the density level segmentation task on the five crowd counting datasets.

Fig. 6.7 shows examples of those tasks’ predictions from our model.

6.5.3 Computational Efficiency

Table.6.4 presents the number of parameters in millions (M ), floating-point operations

(FLOPs) and inference time in millisecond (ms) of the compared models. Our model
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Table 6.3: Results on JHU-Crowd++ [369] counting dataset under weather setting. We
follow the JHU-Crowd++ [369] benchmark’s setting and report the counting performance.
Our model achieves superior performance to the previous state-of-the-art methods.

Methods
JHU-Weather
MAE RMSE

CSRNet [219] 141.4 640.1
SA-Net [50] 154.2 685.7
CACC [236] 155.4 617.0

DSSI-Net [233] 229.1 760.3
MBTTBF [368] 138.7 631.6
LSC-CNN [341] 178.0 744.3

JHU-Crowd++ [369] 138.6 654.0
SFCN [420] 122.8 606.3

BL-Crowd [261] 140.1 675.7

Ours 110.2 598.2

adopts VGG-16 [365] as the backbone, which leads to a relatively smaller model size

of 18.8 M parameters, compared to other models, such as LSC-CNN [341] (35.1 M ),

ASCC [166] (30.4 M ), and SASNet [373] (38.9 M ). On the other hand, our model is

computationally effective, only requiring 8.5 FLOPs. This is comparable to other light-

weight models such as DM-Count [412], SUANet-Fully [284], and BL-Crowd [261]. Due

to the auxiliary task-based nature, our model required a relatively longer inference time,

such as 8.8 ms per image. However, our method can still be used for a real-time counting

application (inference speed > 24 frame per second).

6.5.4 Ablation Study

We investigated the effect of each component in our proposed model. All ablation ex-

periments were performed with the same settings detailed in the Implementation Details

(Section 6.4.2).
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Table 6.4: Computational efficiency. The number of parameters in millions (M ), floating-
point operations (FLOPs) and inference time in millisecond (ms) of different counting
methods on a fixed size of 128 × 128 input image.

Methods Params (M ) FLOPs (G) Inference Time (ms)
DM-Count [412] 21.5 6.7 1.9

SUANet-Fully [284] 15.9 6.5 5.3
LSC-CNN [341] 35.1 25.4 4.6
BL-Crowd [261] 21.5 6.7 1.9

ASCC [166] 30.4 10.2 3.2
SASNet [373] 38.9 14.6 7.8

Ours 18.8 8.5 8.8

Table 6.5: Results of using different backbone networks on five crowd counting datasets.

Methods
SHA SHB QNRF JHU-Crowd++ NWPU-Crowd

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VGG-16 [365] 57.0 98.6 7.1 12.3 85.3 129.4 66.6 254.9 76.4 327.4
VGG-19 [365] 59.7 99.8 8.4 13.2 87.8 144.0 73.7 320.1 79.9 360.0

ResNet-50 [143] 57.8 96.6 7.0 11.7 85.5 128.7 77.9 318.1 79.3 344.4
ResNet-101 [143] 61.1 100.8 9.1 14.5 93.3 147.9 69.7 253.3 81.4 361.5

Ablation on Different Network Backbones We evaluated the effectiveness of differ-

ent backbone networks on the five crowd counting datasets. The counting performance is

shown in TABLE. 6.5 with several different backbone networks. In general, VGG-based

backbone networks achieved comparable counting performance, compared with ResNet-

based backbone networks in relatively large-scale datasets, such as QNRF, JHU-Crowd++

and NWPU-Crowd. While, ResNet-based backbones work better on small-scale count-

ing datasets, such as SHA and SHB. We report our model’s performance with VGG-16

backbone network in TABLE. 6.3.6 for a fair comparison with previous methods.

Ablation on Auxiliary Tasks and Model Components. In this section, we eval-

uate the effectiveness of the auxiliary tasks, adaptively shared backbone network, and

GCN -enabled reasoning module. Please note that, in order to eliminate the performance

improvement from a bigger model, we add feed-forward CNN blocks containing (3 × 3

convolution with Batch Normalization) into other ablation study models in TABLE. 6.6
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to maintain a similar model size as ours (18.8 million parameters). Firstly, we compared

the single task density map regression network, in which we removed the GCN reasoning

module, the auxiliary learning branches, and the adaptively shared backbone branches,

to form a single column network structure (Single Column). Then we added two auxil-

iary branches separately and simultaneously after the single shared backbone’s output to

form an auxiliary learning mechanism (w/ Crowd Seg, w/ Density Seg, w/ Both Auxil-

iary). To further improve the performance, we designed and added an adaptive backbone

network to enable the task-shared and task-specific features to be learned simultaneously

(w/ Adaptive Crowd Seg, w/ Adaptive Density Seg, w/ Both Adaptive Auxiliary). Fur-

thermore, we evaluated the proposed GCN reasoning module’s effectiveness, which can

propagate region-based density level information across the image (Ours). The effect of

each structural component is presented in Fig. 6.6. As illustrated, the proposed auxiliary

task learning mechanism (w/ Both Auxiliary) is reduced by 14.3% over the single-task

learning method (Single Column) via average MAE on two datasets, the task adaptive

backbone (w/ Both Adaptive Auxiliary) reduces 6.8% over the single shared backbone (w/

Both Auxiliary), and the GCN reasoning module further reduces 6.7%. Qualitative com-

parison results of different modules’ effectiveness in terms of predicted density maps are

shown in the Fig. 6.11, where the crowd segmentation auxiliary (w/ Adaptive Crowd Seg)

can help the model to focus on the features in the region of interest and filter out the

background (first and second rows). On the other hand, the density level segmentation

auxiliary (w/ Adaptive Density Seg) can help to estimate more accurate density levels

across the whole density map (second and third rows). We highlighted the different areas

among those ablated models’ density map predictions with red bounding boxes for better

visualization and comparison.

Moreover, in TABLE. 6.7, we further indirectly evaluate the auxiliary tasks’ effec-
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    Input             Single Column        w/ Adaptive         w/ Adaptive              Ours                        GT 
Crowd Seg Density Seg

count: 567  
count:  

count: 532  count: 504  count: 493  count: 510  

count: 373  count: 330  count: 398  count: 322  count: 310  

count: 1121 count: 918 count: 710  count: 761  count: 714 

Figure 6.11: The qualitative results of ablation studies about auxiliary tasks. The red
bounding boxes are used for better visualization and comparison. Ours and w/ Adaptive
Crowd Seg can know the crowd’s spatial regions (first and third rows), and filter out the
background noise (second row). On the other hand, Ours and w/ Adaptive Density Seg
can estimate more accurate density levels across the whole density maps (second and third
rows).

tiveness in this work. Specifically, for other ablation study models except for Ours, we

maintained the same network structure as Ours to keep the same model size (18.8 mil-

lion parameters) but switched off the two auxiliary tasks’ loss functions. In TABLE. 6.7,

it proves that the supervision from multi-granularity information of auxiliary tasks con-

tributes to the final counting performance in this work. Without LCS and LDS losses, the

counting error increases by an average of 21.75 % on the SHA and the JHU-Crowd++

datasets via MAE.

Ablation on Graph Reasoning Module. In this section, we evaluate the effectiveness of

the proposed graph reasoning module. We specially designed our graph reasoning module

to incorporate the auxiliary tasks and for fusing information into the adjacency matrix

to form the information-fused graph. So for the ablation study, we had to only apply

other GCN on the density map. Firstly, we employed the classic graph convolution [182]
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Table 6.6: Ablation study results on network structure components. Each component of
our network contributes to the final prediction.

Methds
SHA JHU-Crowd++

MAE RMSE MAE RMSE

Single Column 71.3 122.3 99.3 391.0

w/ Crowd Seg 67.4 117.0 81.6 343.6
w/ Density Seg 68.1 119.9 86.1 360.0

w/ Both Auxiliary 65.2 115.2 77.3 311.7

w/ Adaptive Crowd Seg 61.3 104.6 75.7 300.9
w/ Adaptive Density Seg 63.8 108.1 76.9 307.8

w/ Both Adaptive Auxiliary 60.8 100.3 71.9 278.9

Ours 57.0 98.6 66.6 254.9

Table 6.7: Ablation study results on auxiliary tasks. Maintaining the same model structure
(model size) and turning off auxiliary tasks’ loss functions can implicitly prove that the
auxiliary tasks contribute to the final counting.

Methds
SHA JHU-Crowd++

MAE RMSE MAE RMSE

w/o LCS 64.4 107.7 78.7 310.5
w/o LDS 62.0 104.8 74.9 302.2

w/o LCS and LDS 67.1 115.2 93.0 377.5

Ours 57.0 98.6 66.6 254.9

Table 6.8: Ablation study results on graph reasoning modules. Only our proposed graph
reasoning module can efficiently utilize the auxiliary information from other tasks to com-
plement the density map regression task.

Methds
SHA JHU-Crowd++

MAE RMSE MAE RMSE

classic GCN 67.1 109.0 79.2 308.7
SGR [223] 60.3 101.0 73.1 301.0

DualGCN [483] 63.8 105.7 80.8 307.3
GloRe [70] 61.0 105.4 71.3 317.7

Ours 57.0 98.6 66.6 254.9
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Table 6.9: Ablation study results on the dilated rate of the proposed loss function LDCD.
When the dilated rate is 2 and the corresponding receptive field is 5, our model can achieve
the best counting performance on the SHA and JHU-Crowd++ datasets.

Dilated Rate
SHA JHU-Crowd++

MAE RMSE MAE RMSE

1 60.1 103.5 70.1 299.0
3 58.7 101.7 68.7 288.4
4 59.2 101.3 68.0 287.6

2 (Ours) 57.0 98.6 66.6 254.9

Table 6.10: Ablation study results (MAE ) on our combined loss (contrastive and L2 loss),
compared with single L2 loss (base). Moreover, we applied the combined loss function
to optimize previous single L2 loss based methods to demonstrate that the counting per-
formance can be improved with the help of regional density difference-based loss function
LDCD).

Methods
SHA JHU-Crowd++

Base w/ contrastive Base w/ contrastive

MCNN [488] 110.2 108.1 188.9 168.3
CSRNet [219] 68.2 65.9 85.9 84.1
CACC [236] 62.3 60.8 100.1 97.9

Ours 59.5 57.0 70.8 66.6
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to reason the correlations between regions in density feature maps (fDM ). Additionally,

we adopted potent graph convolution operations to show the superiority of our proposed

Graph Reasoning Module. In detail, we applied the SGR [223], DualGCN [483], and GloRe

module [70] respectively, where the SGR module exploited a knowledge graph mechanism;

DualGCN explored the coordinate space and feature space graph convolution; and GloRe

utilized a projection and re-projection mechanism to reason the semantics between different

regions. These methods achieved state-of-the-art performance on different computer vision

tasks, however, they can only process single task rather than using auxiliary information.

Tab. 6.8 shows that our model achieves more accurate and reliable results than [182] and

outperforms the SGR, DualGCN, and GloRe by 7.2 %, 20.0 % and 6.6 % in terms of mean

MAE on the two test datasets.

Ablation on Loss Function. We performed experiments to evaluate the receptive field

through different dilated rates in the proposed dilated contrastive density loss function

LDCD. In detail, we changed the dilated rate of the 3× 3 convolution layer into 1, 2, 3, 4,

which resulted in the receptive field of the LDCD being like 3, 5, 7, 9. TABLE. 6.9 shows

the comparison results; when the dilated rate is 2, our model achieves the best performance

on SHA and JHU-Crowd++ datasets.

Furthermore in TABLE. 6.10, we conducted experiments to evaluate the effectiveness

of the proposed dilated contrastive loss function, in which we removed the LDCD and

kept the rest of the network constant with the same trade-off hyper-parameters (Base).

Furthermore, we applied the proposed combined loss function (w/ contrastive) into previous

single L2 -based methods [219,236,488]. We re-implemented their network with their open-

source code and used the same experimental setting as our method. TABLE. 6.10 shows the

comparison results of our proposed combined loss function; as illustrated, with regional

density difference supervision of LDCD, our model attains a 3.5% reduction compared
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with single L2 loss function via average MAE on two datasets. Our proposed LDCD

also helps to reduce the original MCNN [488] by 6.4%, the CSRNet [219] by 2.7%, and

the CACC [236] by 2.3% over average MAE on two datasets. Please note that we did

not compare with other loss functions that were proposed in the recent crowd counting

models [261, 372, 407, 409, 412, 413]. Those methods are not pure density map regression-

based methods, thus it is unfair to compare.

6.5.5 Discussion: Comparison with Ground Truth

Underlying labeling errors (noisy ground truth) exist in most datasets due to human an-

notator error. However, a robust model can omit noisy ground truths during training and

produce a more accurate prediction. This section showed that our model could indicate

some mislabeled or incorrectly labeled point annotations of the ground truth in the test

dataset. This highlights the generalizability of our approach and the potential issue of the

imperfect ground truth in object counting applications. Fig. 6.2 shows a wrongly labeled

point annotation (top left) case of the crowd counting test dataset, and the other cases

are mislabeled point annotation of vehicle counting test dataset. We highlighted the in-

correctly labeled or mislabeled area with red bounding boxes for better visualization and

comparison.

6.5.6 Limitation and Future Work

In this work, we presented an object counting framework assisted by auxiliary multi-

granularity information, achieving cutting-edge counting performance in seven large-scale

counting datasets. This significantly contributes to transportation systems, including many

applications such as security alerts, public space design, etc.. However, one limitation of

our method is that the complexity of inference is increased due to the enlarged num-
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ber of optimized tasks. This is a typical issue of auxiliary-task based counting meth-

ods [2, 74, 167, 199, 232, 237, 238, 373, 408, 464, 485], which has been discussed before. How-

ever, our method only required 8.8 milliseconds per image, which is comparable to other

single-task-based methods (please refer to TABLE. 6.4). In other words, our method can

also be used for a real-time counting application (inference speed > 24 frame per second).

The trade-off between accuracy and complexity can be determined when applied to a real-

world task.

A future extension of our work could be multiple objects tracking (MOT ), such as ve-

hicles or crowd tracking. Most of the MOT approaches [178, 298, 442] follow the classic

paradigm of tracking-by-detection, where object trajectories are obtained by associating

per-frame outputs of object detectors. Recently, a new prediction scheme [330,437] is gain-

ing attention that uses a tracking-by-counting mechanism. Specifically, using the crowd

density maps, the detection, counting, and tracking of multiple targets as a network flow

program is achieved. In the future, our model could be integrated into such learning

pipelines to tackle MOT with dense crowds or vehicles.

6.6 Conclusion

We proposed an auxiliary-task-based object counting methodology via a graph-based multi-

granularity information fusion paradigm. The proposed task-adaptive backbone enabled

the task-shared and task-specific features to be learned simultaneously. We have demon-

strated its potential in maintaining state-of-the-art performance upon seven challenging

benchmarks. Our approach is anticipated to be widely applicable in the real world.



Chapter 7

Researching Explicit Graph

Representations in Medical Image

Segmentation

I study the geometry structure via the explicit graph representation learning in this section.

Specifically, I applied the proposed methods on the task of biomedical image segmentation

but with a novel paradigm. Specifically, this section proposes a straightforward, intuitive

deep learning approach for (biomedical) image segmentation tasks. Different from the ex-

isting dense pixel classification methods, I develop a novel multi-level aggregation network

to directly regress the coordinates of the boundary of instances in an end-to-end manner.

The network seamlessly combines standard convolution neural network (CNN) with Atten-

tion Refinement Module (ARM) and Graph Convolution Network (GCN). By iteratively

and hierarchically fusing the features across different layers of the CNN, our approach gains

sufficient semantic information from the input image and pays special attention to the local

boundaries with the help of ARM and GCN. In particular, thanks to the proposed aggre-

193
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gation GCN, our network benefits from direct feature learning of the instances’ boundary

locations and the spatial information propagation across the image. Experiments on sev-

eral challenging datasets demonstrate that our method achieves comparable results with

state-of-the-art approaches but requires less inference time on the segmentation of fetal

head in ultrasound images and of optic disc and optic cup in color fundus images.

7.1 Introduction

The accurate assessment of anatomic structures in biomedical images plays an important

role in the management of many medical conditions or diseases. For instance, fetal head

(FH) circumference in ultrasound images is a critical indicator for prenatal diagnosis and

can be used to estimate the gestational age and to monitor the growth of the fetus [398].

Similarly, the size of the optic disc (OD) and optic cup (OC) in color fundus images is of

great importance for the diagnosis of glaucoma, an irreversible eye disease [307]. Manual

annotation of this kind of structures by delineating their boundaries in clinics is unrealistic

as it is costly, time consuming, labor intensive, and subject to human experience and errors.

Automatic segmentation of biomedical images is believed to be able to help improve the

efficiency of workflow in clinical scenarios. Inspired by the way clinicians annotate images, I

propose an aggregated network to solve the segmentation tasks through directly regressing

the locations of objects’ boundaries, and demonstrate the effectiveness of the network in

the segmentation of FH in ultrasound and OD & OC in color fundus images, respectively.

The biomedical image semantic segmentation task remains a challenging problem in the

field of computer vision. The commonly-used deep learning-based semantic segmentation

methods [61,141,376] (top row of Fig. 7.1) classify each pixel of an image into a category or

class. These methods benefit from Convolution Neural Networks (CNN)’s excellent ability

to extract high-level semantic features. Being a part of the understanding of scenes or global
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Figure 7.1: Three different segmentation paradigms by deep learning. Top row: pixel-wise
based methods [61,109,141] that classify each pixel into objects or background. Middle row:
active contour based methods [73, 266] that need iterative optimization in action to find
the final contours. Bottom row: our proposed method that directly regresses the locations
of object boundaries by information aggregation through CNN and GCN, enhanced by an
attention module.

contexts, these methods need to learn the object location, object boundary, and object

category from the high-level semantic information and local location information [247].

However, they suffer from the loss of local location information at the pixel-level [69],

because a large receptive field corresponds to a small feature map, and this dilemma

has increased the difficulties of dense prediction tasks. In order to solve this problem,

approaches in [59, 492] either maintain the resolution of the input image with dilated

convolution, or capture sufficient receptive fields with pyramid pooling modules. The

insights behind these methods indicate that the spatial information and the receptive field

are both important to achieving high accuracy. However, it is hard to meet these two

requirements simultaneously with CNN [468]. In particular, it is often challenging to

maintain enough spatial information of the input image.
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To address the aforementioned challenges, I follow a straightforward and intuitive

methodology that human operators take to segment objects and regard segmentation as a

regression task. Compared with the preserving abstraction of spatial details [59,492], I use

a combination of CNN, ARM, and GCN to directly regress the boundary locations of the

instances in the Euclidean space. Our method is different from the recent polygon-based

active contour models (ACM) methods [73, 132, 266] (middle row of Fig. 7.1), which need

to initialize the boundaries and iteratively find the final object boundaries for a new image.

On the contrary, I directly supervise the model to learn the precise location of boundaries

and produce the boundaries without iteration during inference. Compared with the pixel-

wise based methods, our method needs to learn and extract more spatial information to

regress the location directly. To address this issue, the local spatial information propaga-

tion nature of GCN is exploited. GCN has recently been applied to many low-level tasks,

such as scene understanding [217], semantic segmentation [61], and pose estimation [494],

because GCN can propagate the information through neighbor nodes (short range) and

hence allow the model to learn local spatial correlation structure.

I propose an aggregated GCN decoder with graph vertices sampling from sparse to

dense, which contributes to globally propagate the spatial relationship information across

the whole image. This will provide greater representational power and more sufficient in-

formation propagation than previous segmentation methods based on Conditional Random

Fields or Markov Random Fields [15, 245]. Thus, I can directly regress explicit boundary

location with the Euclidean space coordinate representation. This strategy addresses the

concerns of the recent works [448, 455], which share the similar idea but convert the Eu-

clidean space representation into polar representation, and regressing the low-level distance

between the center point and boundary points. They found that CNN cannot regress the

Euclidean space coordinate representation of the boundary well as some more noise may



Chapter 7. Researching Explicit Graph Representations in Medical Image Segmentation197

be added, and the CNN may not maintain enough spatial information [448,455]. Our pro-

posed aggregation GCN can handle this issue well, and our experiment results prove that.

Besides, those methods’ performance may suffer from the low-quality of center point, so,

Xie et al. [448] utilized center sample methods to classify and selected high-quality center

points to improve the segmentation result. In contrast, our methods can directly regress the

boundary location without any further center selection process. As for the proposed CNN

aggregation mechanism, some low-level features are unnecessarily over-extracted while ob-

ject boundaries are simultaneously under-sampled. In order to extract more useful and

representative features, I apply the ARM working as a filter between CNN encoder and

GCN decoder, which cooperates with the GCN to gain more effective semantic and spatial

features, especially the boundary location information from CNN.

In summary, this work makes the following contributions:

• I take a straightforward and intuitive approach to (biomedical) image semantic seg-

mentation and regard it as a direct boundary regression problem in an end-to-end

fashion.

• I propose aggregating mechanisms on both CNN and GCN modules, to enable them

to reuse and fuse the contextual and spatial information. The additional attention

mechanism helps the GCN decoder to gain more useful semantic and spatial infor-

mation from the CNN encoder.

• I apply a new loss function tailored for object boundary localization that will help

to make update step size adaptive to the error values during the training stage.

It is envisaged that the proposed framework may serve as a fundamental and strong baseline

in future studies of biomedical semantic segmentation tasks.
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7.2 Related Work

7.2.1 Pixel-based Methods

Fully Convolution Neural Networks (FCNs) [247] and U-Net architectures [337] are widely

used in semantic segmentation tasks [61,141]. These methods are aimed at extracting more

spatial information or extending the receptive field that is of pivotal importance in semantic

segmentation tasks. However, it is still difficult to capture longer-range correspondence

between pixels in an image [484].

Aggregation module In order to gain global contextual dependencies of an image, meth-

ods like [376,471,492,508] proposed to fuse multi-scale or multi-level features through ag-

gregating across semantic and spatial feature domains. Zhao et al. [492] proposed a pyra-

mid network that utilizes multiple dilated convolution blocks [469] to aggregating global

feature maps on different scales. Other approaches such as Deeplab methods [59–61] ex-

ploited parallel dilated convolution with different rates to extract features at an arbitrary

resolution and preserve the spatial information. However, it is still hard to efficiently

learn the discriminative feature representation as many low-level features are unnecessar-

ily over-extracted. Therefore, these aggregation methods may result in an excessive use of

information flow.

Attention mechanism Alternatively, some other algorithms exploited the benefits of

attention mechanism to integrate local discriminative representation and global contextual

features. For example, DANet and CSNet [110, 295] used the attentions in spatial and

channel dimensions respectively to adaptively integrate local features with their global

dependencies. Furthermore, Zhao et al. proposed the point-wise spatial attention network

[493], which connected each position in the feature map with all the others through self-

adaptive attention maps to harvest local and long-range contextual information flexibly
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and dynamically. In this work, an ARM module is also used to supervise our model to

learn discriminate features from input images.

7.2.2 Polygon-based Methods

Instead of assigning each pixel with a class, some recent methods [73, 132, 266, 448, 455]

started to predict the position of all vertices of the polygon around the boundary of the

target objects. The recent work [448, 455] used polar coordinates to represent object con-

tours. Both methods achieved comparable results with pixel-based segmentation methods

in instance segmentation tasks. Also, the combination of FCNs and Active Contour Mod-

els (ACMs) [173] has been exploited. Some methods formulated new loss functions that

were inspired by the ACMs principles [68,133] to tackle the task of ventricle segmentation

in cardiac MRI. Other approaches used the ACMs as a post-processor of the output of

an FCN, for example, Marcos et al. [266] proposed a Deep Structured Active Contours

model that combined ACMs and pre-trained FCNs to learn the energy surface of the ref-

erence map. These ACM-based methods achieved state-of-the-art performance in many

segmentation tasks. However, there are still two main limitations. First, the contour curve

must be initialized, while the initialized curve is far away from the ground truth, it may

be insufficient to optimize or make an inference. Second, due to the iterative inference

mechanism of ACMs, they require a relatively longer running time during training and

testing.

7.2.3 GCNs in Segmentation

GCNs have been applied to image segmentation tasks recently, as they can propagate and

exchange the local short-range information through the whole image to learn the semantic

relations between objects [360, 484]. In 2D image semantic segmentation tasks, Li et al.
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proposed a Dual Graph Convoltional Network (DGCNet) [484], which applied two orthog-

onal graphs frameworks to compute the global relational reasoning of the whole image and

the reasoning process can help the whole network to gain rich global contextual informa-

tion. Another work [360] proposed by Shin et al. shared the similar idea, and utilized GCN

to learn the global structure of the shape of the object, which reflected the connectivity of

neighbouring vertices. Apart from using GCN to learn global contextual information from

2D input, our approach also exploits spatial and local location information. Compared

with a recent similar work [279], our method further exploit the relations between low-

level and much more high-level vertex information in GCN decoder and perform a ‘skip

up sampling’ in terms of Graph convolutions between two layers. This operation helps our

model further extract feature correlations among different layers.

7.3 Method

7.3.1 Graph Representation

The manually annotated object boundaries are extracted from the binary image and equally

sampled into N vertices with the same angle interval ∆θ (e.g. N = 360, ∆θ = 1◦). The

geometric center of the boundary represents the center vertex. I describe the object contour

with vertices and edges as B = (V,E), where V has N + 1 vertices in the Euclidean space,

V ∈ RN×2, and E ∈ {0, 1}(N+1)×(N+1) is a sparse adjacency matrix, representing the edge

connections between vertices, where Ei,j = 1 means vertices Vi and Vj are connected by an

edge, and Ei,j = 0 otherwise. Every two continuous vertices on the contour are connected

with an edge and are both connected to the center vertices with another two edges to form

a triangle. For the OD and OC segmentation, their contours are sampled separately while

the geometric centre of the OC is shared as the centre vertex. Thus, there are 360 triangles
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and 361 vertices for instances in FH images and 720 triangles and 721 vertices for OD and

OC images. For more details, please refer to the supplementary material.

I directly use the coordinates in the Euclidean space to represent all the vertices and

exploit the semantic and spatial correspondence between the inputs’ instance and bound-

aries. Besides, our boundary representation method is not sensitive to the center point as

the boundary does not have too many correlations with the center point.

7.3.2 Graph Fourier Transform & Convolution

According to [79], the normalized Laplacian matrix is L = I −D−
1
2ED−

1
2 , where I is the

identity matrix, and D is a diagonal matrix that represents the degree of each vertex in

V , such that Di,i =
∑N

j=1Ei,j . The Laplacian of the graph is a symmetric and positive

semi-definite matrix, so L can be diagonalized by the Fourier basis U ∈ RN×N , such that

L = UΛUT . The columns of U are the orthogonal eigenvectors U = [u1, ..., un], and

Λ = diag([λ1, ..., λn]) ∈ RN×N is a diagonal matrix with non-negative eigenvalues. The

graph Fourier transform of the vertices representation x ∈ RN×3 is defined as x̂ = UTx,

and the inverse Fourier transform as x = Ux̂. The spectral graph convolution of i and j is

defined as i∗j = U((UT i)� (UT j)) in the Fourier space. Since U is not a sparse matrix, this

operation is computationally expensive. To reduce the computation, Defferrard et al. [85]

proposped that the convolution operation on a graph can be defined in Fourier space by

formulating spectral filtering with a kernel gθ using a recursive Chebyshev polynomial [85].

The filter gθ is parametrized as a Chebyshev polynomial expansion of order K, such that

gθ(L) =
K∑
k=1

θkTk(L̂) (7.1)

where θ ∈ RK is a vector of Chebyshev coefficients, and L̂ = 2L/λmax − IN represents

the rescaled Laplacian. Tk ∈ RN×N is the Chebyshev polynomial of order K, that can be
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recursively computed as Tk(x) = 2xTk−1(x)−Tk−2(x) with T0 = 1 and T1 = x. Therefore,

the spectral convolution can be defined as

yj =

Fin∑
i=1

gθi,j (L)xi (7.2)

where xi is the i-th feature of input x ∈ RN×Fin , which has Fin features, with Fin = 2

in this work and y ∈ RN×Fout is the output. The entire filter operation is computationally

faster and the complexity drops from O(n2) to O(n) [41].

7.3.3 Graph Vertices Sampling

To achieve multi-level aggregated graph convolutions on different vertex resolutions, I fol-

low [323] to form a new topology and neighbour relationships of vertices. More specifically,

I use the permutation matrix Qd ∈ {0, 1}m×n to down-sample m vertices, m = 360 or 720 in

our work. Qd is gained by iteratively decreasing vertices, which uses a quadratic matrix to

keep the approximations of the surface error [115]. The down-sampling is a pre-processing,

and the discarded vertices are saved with barycentric coordinates. I conduct up-sampling

with another transformation matrix Qu ∈ Rm×n. The up-sampled vertices Vu can be ob-

tained by a sparse matrix multiplication, i.e., Vu = QuVd, where Vd are down-sampled

vertices.

7.3.4 Proposed Aggregation Network

Our novel aggregation graph regression network is motivated by fusing features hierar-

chically and iteratively [376, 471, 508], which consists of an image context encoder, an

attention refinement module and a vertex location decoder. Both the encoder and decoder

contain aggregation mechanisms through up-samplings and down-samplings, which provide

improvements in extracting the full spectrum of semantic and spatial information across



Chapter 7. Researching Explicit Graph Representations in Medical Image Segmentation203

(a) CNNs Encoder

1572 x 16 792  x 16 402 x 32 202 x 64

Attention Refinement Module (ARM)

G
lo

ba
l P

oo
l

1 
x 

1 
co

nv

Ba
tc

h 
N

or
m

Si
gm

oi
d

M
ul

tip
ly

52 x 128102 x 64

ARM

ARM

ARM

ARM

ARM

(b) ARM and GCNs Decoder
32 x 25625 x 256 64 x 128

Down sampling

Convolution

Up sampling

128 x 64 256 x 64 512 x 32 721 x 32 721 x 8 721 x 4 721 x 2

Figure 7.2: Overview of our proposed network structure. The size of feature maps of the
CNN encoder and vertex maps of the GCN decoder for each stage (columns) are shown.
In the CNN encoder, the horizontal black arrow represents CNN convolutional operations
that are achieved by a standard CNN Residual Block [143] with kernel size 3 x 3, stride
1, followed by a Batch Normalization (BN) layer [159] and Leaky ReLU as the activation
function. The down-sampling is conducted by setting stride size as 2, the lower level feature
is bi-linearly up-sampled by a factor 2. In the GCN decoder, down-sampling and up-
sampling are conducted by graph vertices sampling, which is described in Section 3.3, and
the horizontal black arrow represents residual graph convolution (ResGCN) blocks [204]
with polynomial order 4. The horizontal blue arrow achieves ‘skip up sampling’ with
vertices number four times up sampled in terms of graph vertices sampling method via
retained vertices. In this figure, the example is for OD and OC segmentation, and for
FH segmentation, the convolution operation will be the same. Still, the feature map and
vertex map size will be different because of different input size and number of contours of
instances.

stages and resolutions. Besides, the attention module plays an essential role to guide the

feature learning and refine the output from the CNN encoder, then passes to the GCN

decoder through multi-paths. In Section 5.3, our ablation study demonstrates that the

proposed aggregation module helps to extract more useful information, and the attention

module helps to refine the extracted features from the encoder to guide feature learning
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better.

Semantic Encoder Fig. 7.2 (a) shows the detailed structure of our semantic encoder,

which maintains high-resolution representations by connecting low-to-high resolution con-

volutions in parallel, where multi-scale fusions are repeated across different levels (rows).

Our encoder is designed to lessen the spatial information loss and extract a wider spectrum

of semantic features through different receptive fields. The encoder takes input images of

shape 314×314×3 (Fundus OD & OC images) or 140×140×1 (Ultrasound FH images),

with operations of up-sampling and down-sampling. The aggregation block can extract

and reuse more features across various resolutions and scales, which helps to reduce spatial

information loss during the encoding process.

Attention Module: I propose an Attention Refinement Module (ARM) to refine the

features from the outputs of the encoder. As Fig. 7.2 (a) & (b) shows, ARM contains five

attention blocks, and each block employs global average pooling to capture global context

through the different channels, and conducts an attention tensor to lead the emphasis of

feature learning through a convolution layer followed by a BN layer and sigmoid as the

activation function. For the filter, the kernel size is 1 × 1, and the stride is 1. This

design can refine the output features of each stage in the Semantic Encoder, which easily

integrates the global context information.

Spatial Decoder The decoder takes refined multi-paths outputs from the attention mod-

ule, then employ ResGCN blocks [204] through different stages and levels, which has been

shown that as layers go deeper, ResGCN blocks can prevent vanishing gradient problems.

As Fig. 7.2 (b) shows, our decoder fuses and reuses the features extracted by ResGCN

blocks through different stages. Benefits from the graph Vertices sampling, our decoder

can regress the location of the vertices from sparse to dense, which allows the ResGCN

blocks to hierarchically extract spatial location information from refined outputs of the
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attention module. For each ResGCN Block, it consists of 4 graph convolution layers, and

each graph convolution layer is followed by a Batch Normalization layer [159] and Leaky

ReLU as the activation function. After ResGCN blocks and graph vertices up-samplings,

the number of vertices is up-sampled from 25 to 721, and each vertex is represented by

a vector of length 32. Different from [279], Our decoder further explored the relations

between low and high level resolution of vertices features, which improves the performance

and is shown in Section 4. At last, three graph convolution layers are added to generate

2D object contour vertices, which reduces the output channels to 2, as each contour vertex

has two dimensions: x and y. With the output from the decoder, I connect every two

consecutive vertices on the boundary to form a polygon contour as the final segmentation

result.

7.3.5 Loss Function

L2 and L1 loss have been widely used in regression tasks, such as object detection [120,142]

and human pose estimation [389]. However, it is difficult for the L1 loss to find the global

minimization in the late training stage without fine-tuning of the learning rate. L2 loss is

sensitive to outliers which may result in unstable training in the early training stage.

In this work I solve segmentation as a contour vertices location regression problem.

Following Wing-loss [106] and Smooth-L1 loss [119], I adopt a new loss function, Fan-loss

(Fig. 7.3) that can take small update steps when reaching small range errors in the late

training stage and can remain stable training during the early training stage. This loss

function is defined as:

L(x) =

 W [e(|x|/ε) − 1] if |x| < W

|x| − C otherwise
(7.3)
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Figure 7.3: The loss function plotted with different parameter settings, where w controls
the non-linear part and epsilon (ε) limits the curvature.

Where W is non-negative and decide the range of the non-linear part, ε limits the curva-

ture between (−W,W ) and C = W −W [e(|w|/ε) − 1] connects the linear and non-linear

parts. After several evaluation experiments, the parameter W is set to 8 and ε to 5 for

FH segmentation and W = 6, ε = 5 for OD & OC segmentation. For the OD & OC

segmentation tasks, I integrate a weight mask and assign more weights to the vertices that

belong to the OC, as OC is usually difficult to segment because of poor image quality or

low color contrast.

7.4 Experiments

7.4.1 Datasets

I evaluate our approach with two major types of biomedical images on two segmentation

tasks respectively: fundus images of retinal for OD & OC segmentation, and ultrasound

images of the fetus for FH segmentation.

Fudus OD & OC images: 2068 images from five datasets are merged together. 190

fundus images are randomly selected as the retina test dataset, the rest 1878 fundus images

are used for the training. Considering the negative influence of non-target areas in fundus

retina images, I first localize the disc centers by detector [329] and crop to 314 × 314 pixels

and then transmit into our network. Refuge [307] consists of 400 training images and 400

validation images. The pixel-wise OD & OC gray-scale annotations are provided. Drishti-
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GS [370] contains 50 training images and 51 validation images. All images are taken

centered on OD & OC with a field-of-view of 30 degrees. The annotations are provided in

the form of average boundaries. ORIGA [490] contains 650 fundus images. The OD & OC

boundaries were manually marked by experienced graders from the Singapore Eye Research

Institute. RIGA [6] contains 750 fundus images from MESSIDOR [84] database. The

OD and OC are labeled manually by six ophthalmologists and the mean OD and OC are

used ad the ground truth. RIM-ONE [111] contains 169 fundus images, annotated by

five different experts.

Ultrasound FH images: The HC18-Challenge dataset are used which contains 999

two-dimensional (2D) ultrasound images with size of 800 × 540 pixels collected from the

database of Radboud University Medical Center [398]. I apply zero-padding to each image

to 840 × 840 pixels, and then resize into 140 × 140 as the input image, then I randomly

select 94 images as the test dataset, and the model is trained on the rest 905 images.

7.4.2 Implementation Details

To augment the dataset, I randomly rotating the input image of training dataset for both

segmentation tasks. To be specific, the rotation ranges from −15 to 15 degree. I randomly

select 10% of training dataset as the validation dataset. I use stochastic gradient descent

with a momentum of 0.9 to optimize the Fan-loss. The number of graph vertices for FH

is sampled to 361, 256, 128, 64, 32, 25 crosses five stages with Graph Vertices Sampling

introduced in Section 3.3. I trained our model for 300 epochs for all the experiments, with

a learning rate of 1e-2 and decay rate of 0.997 every epoch. The batch size is set as 48.

All the training processes are performed on a server with 8 TESLA V100 and 4 TESLA

P100, and all the test experiments are conducted on a local workstation with Geforce RTX

2080Ti.
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Methods
Tasks OC OD FH

Dice Score AUC Dice Score AUC vCDR Dice Score AUC HD(mm)

U-Net [337] 0.9016 0.9186 0.9522 0.9648 0.0674 0.9625 0.9688 1.79
M-Net [109] 0.9335 0.9417 0.9230 0.9332 0.0488 - - -

U-Net++ [508] 0.9198 0.9285 0.9626 0.9777 0.0469 0.9701 0.9789 1.73
DANet [110] 0.9232 0.9327 0.9654 0.9726 0.0450 0.9719 0.9786 1.69
DARNet [73] 0.9235 0.9339 0.9617 0.9684 0.0455 0.9719 0.9790 1.52

PolarMask [448] 0.9238 0.9366 0.9670 0.9782 0.0419 0.9723 0.9780 1.66
DeepLabv3+ [61] 0.9308 0.9406 0.9669 0.9779 0.0467 0.9779 0.9819 1.58

CGRNet [279] 0.9246 0.9376 0.9688 0.9784 0.0438 0.9738 0.9796 1.58

Our method 0.9255 0.9385 0.9697 0.9791 0.0421 0.9746 0.9801 1.47

Table 7.1: Segmentation results on retina test dataset for OD & OC and on HC18-Challenge
[398] for FH. The performance is reported as Dice score (%), AUC (%), mean absolute
error of Hausdorff distance (HD) for FH and mean absolute error of the vertical cup-to-disc
ratio (vCDR) for OD & OC. The top three results in each category are highlighted in bold.

7.5 Results

In this section, I present our experimental results on the OD & OC and FH segmentation

task in comparison to other state-of-the-art methods. I compare our model with other

state-of-the-art methods, including U-Net [337], PolarMask [448], M-Net [109], U-Net++

[508], DANet [110], DARNet [73], DeepLabv3+ [61], CGRNet [279] through running their

open public source code. Dice score and Area Under the Curve (AUC) are used as the

segmentation accuracy metrics. The results of an ablation study are shown in order to

demonstrate the effectiveness of the proposed aggregation mechanism, attention mechanism

and loss function, respectively.

7.5.1 Optic Disc & Cup Segmentation

The retinal dataset I used is merged from five different fundus OD & OC images datasets.

In terms of different dataset sources, they may contain different annotation standards for

ground truths by different doctors. However, our model still achieve good performance,

which shows the robustness and generalizability of our model. Fig. 7.4 shows some quali-



Chapter 7. Researching Explicit Graph Representations in Medical Image Segmentation209

Image         Ground Truth       U-Net              U-Net++      DeepLabv3+          Ours

Image         Ground Truth       U-Net              M-Net        DeepLabv3+          Ours

Figure 7.4: Qualitative results of segmentation on the testing images of the fundus dataset
and HC18-Challenge [398]. Top two rows are the ultrasound FH segmentation results, and
the bottom two rows are the fundus OD & OC segmentation results.

tative results. I achieve 0.9697 and 0.9255 Dice similarity score on OD & OC segmentation

respectively, which are comparable with other pixel-wise based state-of-the-art methods

even without any bells and whistles (e.g. multi-scale training, ellipse fitting, longer train-

ing epochs, etc.). Tab. 7.1 provides the results of ours and the other methods. As for the

inference speed, our model uses 64.1 milliseconds (ms) per image that is faster than Po-

larMask [448] (72.1 ms) and DeepLabv3 [61] (323.9 ms). In the supplementary material, I

also show some ‘failed’ cases compared with the ground truth. According to the comments

from an anonymous expert at the Liverpool Reading Center, our model produces more
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Loss Function
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

L1 0.9111 0.9259 0.9546 0.9639 0.9505 0.9688
L2 0.9105 0.9210 0.9551 0.9666 0.9440 0.9568

Smooth-L1 [119] 0.9088 0.9114 0.9523 0.9655 0.9394 0.9454

Fan-Loss

weight mask = 0 0.9184 0.9220 0.9618 0.9739
weight mask = 3 0.9221 0.9337 0.9649 0.9769
weight mask = 5 0.9255 0.9385 0.9697 0.9791 0.9746 0.9801
weight mask = 7 0.9175 0.9240 0.9624 0.9720
weight mask = 9 0.9107 0.9213 0.9600 0.9705

Table 7.2: Performance comparisons between different loss function and weight mask pa-
rameter settings on the OD & OC segmentation and the FH segmentation respectively.
For weight mask = 5, our model achieves best performance on the OD & OC segmentation.

accurate results than the ground truth. This highlights the potential issue of imperfect

ground truth in many deep learning applications.

7.5.2 Fetal Head Segmentation

Tab. 7.1 and Fig. 7.4 shows the quantitative and qualitative results, our model achieves

0.9746 Dice similarity score and 0.9801 % AUC, which outperforms DARNet [73] and

DANet [110] by 0.3%. Our model (59.1ms) is faster than PolarMask [448] (65.5 ms) and

Deeplabv3+ [61] (290.3ms) for per image inference.

7.5.3 Ablation Study

I investigate the effect of each component in our proposed model. All the ablation exper-

iments are performed with the same setting as section 4.2 described. The performance in

the form of Dice score and AUC are reported in Fig. 7.5, Tab. 7.2 and 7.3. The best

performance in each experiment is highlighted in bold. For more qualitative results, please

refer to the supplementary material.
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Figure 7.5: A comparison of different parameter settings (w and ε) for Fan-loss function,
measured in terms of the mean Dice score on the fundus dataset for OD & OC. With w
= 6, ε = 5, our model achieves the best performance (0.9255 & 0.9697). On the HC18-
Challenge test dataset [398] for FH segmentation, with w = 6, ε = 7, our model gains the
best results 0.9746). It shows that our network is not sensitive to these parameters as no
significantly different results are found.

Ablation on Parameters of Loss Function I perform Experiments to evaluate the

effect of parameter settings of Fan-loss function. When w = 6, ε = 5, our model achieve

the best performance on OD & OC segmentation test dataset, and w = 6, ε = 7, for FH

segmentation test dataset. For more details, please refer to Fig. 7.5.

Ablation on Loss Function I conduct experiments to evaluate the effectiveness of the

loss function. I compare with L1, L2, Smooth-L1 [119] loss functions, which are commonly

used in the regression problem. Tab. 7.2 shows the quantitative results on OD & OC and

FH segmentation tasks respectively. As illustrated, Fan-loss function attains a superior

performance over the other three loss functions. In particular, it achieves a mean Dice

score that is 1.6% relatively better than that of L1 loss function on OD & OC and 2.7%

relatively better than L1 loss function on FH segmentation. Tab. 7.2 shows comparing

with no-weight mask loss function, our proposed weight mask helps to improve OD & OC

segmentation results by 0.79% when weight mask = 5 is used.
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Ablation on Angle Interval Experiments are conducted to evaluate the effect of different

angle intervals ∆θ for vertices sampling. The larger angle interval indicates the smaller

number of vertices sampled on the contour. With ∆θ = 1◦, our model achieves best

performance on both the FH segmentation and the OD & OC segmentation. The results

are shown in supplementary material.

Ablation on Structure Components In this section, I evaluate the effectiveness of

our aggregation module, attention module and GCN decoder. First, I compare with no-

aggregation structure network, in which I remove all the aggregation parts and attention

modules to form a standard encoder-decoder network structure. Then I add aggregated

CNN and GCN module to form an aggregation network. To further improve the perfor-

mance, I design an attention module, and the effect of the attention module is presented in

Tab 7.3. Furthermore, I evaluate the effectiveness of proposed GCN decoder and replace

the GCN with CNN, which are the same as I used in the encoder. As illustrated, for the

FH segmentation, the proposed aggregation module helps to improve 1.83% on Dice score

over the no-aggregation method, the ARM module further improves 0.47%, and GCN de-

coder further improves 1.11%. For the OD & OC segmentation, the aggregation module

improves 1.17 % on average by Dice score, the ARM improves 0.64%, and the GCN decoder

improves 1.73%.

7.5.4 Data Representation

The left graph of Fig. 7.6 illustrates how fetal head (FH) boundaries are represented to

make it compatible for GCN. The boundary is represented by equally sampled vertices

along it and its geometric center is defined as the center vertex. Each triangle consists of

three vertices and three edges where two vertices are from the boundary and the other is

the center vertex. Then, the vertices locations and their geometric relationships defined by
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Methods
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

No Aggregation
(Encoder + Decoder)

0.9025 0.9065 0.9589 0.9665 0.9567 0.9690

Aggregation 0.9207 0.9303 0.9624 0.9660 0.9700 0.9776

Aggregation + ARM
(with CNN decoder)

0.9099 0.9178 0.9529 0.9635 0.9639 0.9758

Aggregation + ARM
(Our method)

0.9255 0.9385 0.9697 0.9791 0.9746 0.9801

Table 7.3: Ablation study on different structure components of the loss function (w = 6,
ε = 5 for FH segmentation and w = 6, ε = 7 for OD & OC).
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Figure 7.6: Illustration of the object contours representation, left: Fetal Head, right: Optic
Disc and Optic Cup.

an adjacency matrix from the triangulations can be used by GCN. For the optic disc (OD)

and optic cup (OC) segmentation, the centre of the OC is shared as the centre vertex.

However, triangulations are made for both the OD and OC, as demonstrated by the right

graph of Fig. 7.6.
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Angle Interval
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

40◦ 0.9025 0.9094 0.9153 0.9231 0.9416 0.9503

18◦ 0.9104 0.9195 0.9489 0.9555 0.9516 0.9560

10◦ 0.9196 0.9284 0.9584 0.9648 0.9603 0.9695

5◦ 0.9239 0.9307 0.9629 0.9716 0.9710 0.9777

2◦ 0.9245 0.9377 0.9691 0.9783 0.9739 0.9799

1◦ 0.9255 0.9385 0.9697 0.9791 0.9746 0.9801

Table 7.4: Ablation study on different angle interval samplings. With angle interval =
1◦ or 2◦, our model achieves comparable segmentation results on the OD & OC and FH
segmentation tasks, and at the end, angle interval = 1◦ is chosen for our model. Dice score
(%) and AUC (%) are reported for the segmentation on OD & OC and FH test dataset.

7.5.5 Ablation Study on Angle Interval

In this section, I demonstrate the robustness of our model w.r.t the different hyper-

parameters of angle intervals. As the angle interval changes, the number of vertices will

vary as well. This results in smooth or rough boundaries, which affect the final segmenta-

tion performance significantly. As Table. 7.4 shows that our model can achieve comparable

segmentation performance on two tasks when the angle interval is less than 5 ◦.
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7.5.6 Discussion: Comparison with Ground Truth

For each retina image, when the average Dice score of OD & OC segmentation is lower

than 0.85 or our model’s segmentation is deviated much from the ground truth, it will be

regarded as a ‘failed’ case. Results of some ‘failed’ cases in the OD and OC segmentation

are shown in Fig. 7.7. I overlaid segmentations by using our model (green), and the

ground truth (red) for better comparison with the center points shown. An expert from

an anonymous accredited ophthalmology reading center confirmed that for these cases our

segmentations are more accurate than the ground truth. This highlights the robustness of

our model as well as the limitations of the ground truth made from manual annotations.

Image         Comparison        Image         Comparison             

Figure 7.7: Illustration of the comparison between our segmentation (green) and the ground
truth (red) in some ‘failed’ cases. The ground truth has inaccurate OC boundaries for most
of the cases (The top right corner one is inaccurate in both OC and OD boundaries). Our
model can produce more accurate boundaries than the ground truth according to an expert
from an anonymous expert at an accredited ophthalmology reading center.
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7.5.7 More Qualitative Results

In Fig. 7.8 and Fig. 7.9, I showed the effect of L1 loss, L2 loss, Smooth-L1 loss, and the

Fan-loss function on the segmentation of FH and OD and OC, respectively. Intuitively,

Fan-loss function produces more faithful and accurate results.

Image       Ground Truth              L1                     L2             Smooth-L1              Ours

Figure 7.8: Comparison in fetal head segmentation when different loss functions are used.
The Fan-loss function can produce more accurate and faithful boundaries. In each row,
from left to right is the original image, ground truth, segmentations of using L1 loss (L1),
L2 loss (L2), smooth-L1 loss (Smooth-L1) and ours.
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Image        Ground Truth           L1                     L2             Smooth-L1          Ours

Figure 7.9: Comparison of the OD and OC segmentations by using different loss functions.
The Fan-loss function can produce more accurate boundaries, especially for the OC. In
each row, from left to right is the original image, ground truth (GT), segmentations of
using L1 loss (L1), L2 loss (L2), smoothed-L1 loss (Smooth-L1) and ours.

7.6 Conclusion

I propose a straightforward regression method for segmentation tasks by directly regressing

the boundary of the instances instead of pixel-wise dense predictions. I have demonstrated

its potentials on the segmentation problems of the fetal head and optic disc & cup. In

the future work, I will study to extend the proposed model to tackle 3D biomedical image



218 Yanda Meng

segmentation tasks.



Chapter 8

Researching Dense Geometric

Data with Explicit Graph

Representations

In this chapter, I address the challenge that tackling large-scale nodes’ (vertices) location

tasks with graph-structured datasets. In detail, I applied the proposed method on the

task of 3D face reconstruction task with a large amount of face vertices. Specifically, I

propose a novel multi-level aggregation network to regress the coordinates of the vertices

of a 3D face from a single 2D image in an end-to-end manner. This is achieved by seam-

lessly combining standard convolutional neural networks (CNNs) with Graph Convolution

Networks (GCNs). By iteratively and hierarchically fusing the features across different

layers and stages of the CNNs and GCNs, our approach can provide a dense face align-

ment and 3D face reconstruction simultaneously for the benefit of direct feature learning of

3D face mesh. Experiments on several challenging datasets demonstrate that our method

outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.

219
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8.1 Introduction

Face alignment and 3D face reconstruction are two interrelated problems in the field of

computer vision and graphics research and industrial applications. Face alignment aims

to locate specific 2D face landmarks, which is essential for most facial image applications

such as face recognition [404], facial expression recognition [162] or head pose analysis

[89]. However, problems such as occlusions, large pose, and extreme lighting conditions

make it a difficult task. In the past decades, researchers started to solve face alignment

problems through 3D facial reconstruction by exploring the strong correlations between

2D landmarks and 3D faces. Since the introduction of 3D Morphable Model (3DMM) in

1999 [32], several methods have been proposed to extend it to restore a 3D face mesh from a

2D facial image [96,161,390,394], which can provide both 3D face reconstruction and dense

face alignment results. Convolution Neural Networks (CNNs) have been researched in many

computer vision area such as classification [38,39,316], segmentation [88], registration [67],

etc.. More recently, it has been used to directly regress the parameters of 3DMM model

from images [171, 333, 510]. However, the performance of these model-based methods are

still limited by the face reconstruction from a low-dimensional subspace of parametric

3DMM model.

To address this problem, different strategies have been proposed by using the recent

deep learning methods to regress the 3D face coordinates from 2D representations, such

as Projected Coordinate Code (PNCC) [333], quantized conformal mapping [7], depth

images [347] and conformal UV maps [105]. Although these methods can regress the

3D geometry from 2D representations, their performance is often susceptible to the noise

introduced by the 2D representation process from isolated mesh points.

Graph Convolution Networks (GCNs) have recently shown great potential to tackle

non-grid like data such as 3D face meshes [293]. If it is used to perform convolution
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CNNs Encoder GCNs Decoder

Do we need more information from encoder to decoder ?

            (a)

            (b)

CNNs Encoder GCNs Decoder

Aggregation CNNs Blocks

Figure 8.1: Diagrams illustrating the difference between a mesh encoder-decoder and our
proposed method. (a) An encoder-decoder structure used by existing methods [507] to
regress 3D face mesh from latent embeddings. (b) Our method. As illustrated, our model
fuses and reuses multi-level spatial and semantic features from an input face, which works
as extra input information to help GCNs decoder to reconstruct the coordinates of face
vertices better.

on 3D meshes directly, it will necessitate 2D representations as required by the previous

methods and thus reduce (or avoid) noise in the 2D representation. CoMA [323] proposes

a mesh encoder-decoder to learn a non-linear representation on the 3D face surface and

reconstructs the 3D face mesh via GCNs. Following CoMA, [507] propose an encoder-

decoder network, which encodes input images into latent embeddings then decodes the

embeddings to 3D face mesh with GCNs. I believe that, during the encoders downsampling

process, some content information from face image will be lost. As for the decoder, the

only input is the latent embeddings, which cannot adequately represent low-level semantic

information and high-level spatial image features of the input face.

In this work, I propose an end-to-end approach that directly learns multi-level regression

mappings from image pixels to 3D face mesh vertices by seamlessly combining CNNs

and GCNs for 3D face alignment and reconstruction. In this model, I perform feature
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learning on face meshes and utilize additional multi-level features fused from the input

image in a hierarchical manner that helps GCNs regress more accurate 3D face vertices.

Our model attains superior performance on 2D and 3D face alignment tasks to state-of-the-

art methods. In particular, our model outperforms other methods by a large margin on the

large pose face alignment problem, because with the help of aggregative feature learning,

our model gains more useful information from visible parts of the input face image, which

helps GCNs better regressing the invisible mesh vertices. Our model is light-weight and

only needs 16.0 ms to provide 3D face vertices on a test image.

8.1.1 Contributions

Our approach works well with all kinds of face images, including arbitrary poses, facial

expressions and occlusions. The contributions of our work are as follows:

1.) To the best of our knowledge, this is the first time that 3D facial geometry is

directly recovered from 2D images in an end-to-end fashion through fusing features from

different levels enabled by connections between CNNs and GCNs. I demonstrate that

low-level semantic information and the high-level spatial feature can be fully utilized to

estimate 3D facial geometry. This is different from the recently proposed encoder-decoder

networks [507], which only use low-level latent embeddings. 2.) I propose a novel light-

weight and efficient aggregation network to regress more accurate 3D face mesh vertices

from corresponding in-the-wild 2D facial images. For training, I propose a new loss function

for facial landmarks localization, which helps to prevent taking large update steps when

approaching a small range of errors in the late training stage. 3.) Comprehensive experi-

ments have been undertaken on several challenging datasets to evaluate the performance

of the new model. The quantitative and qualitative results confirmed its superiority to

other state-of-the-art approaches. In particular, our model outperforms previous methods
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on 2D and 3D large pose face alignment tasks by more than 18% relative improvement.

8.2 Related work

8.2.1 3D Morphable Models

3DMM is an affine parametric model of face geometry where the texture is learned from

high-quality face scans [32]. It is a PCA-based implementation that produces new shape

instances from a combination of linear bases of the training images. Recent approaches

[96, 170, 171, 332, 510] can be seen as an extension of 3DMM by estimating the 3DMM

parameters by using CNN networks in a supervised manner. [171,332,510] proposed using

cascaded CNNs to approximate the non-linear optimization function and to regress the

3DMM parameters iteratively. They demonstrated the effectiveness of CNNs in solving

the complex mapping function from a 2D face image to 3DMM parameters, but it took a

long time to train the network due to the iterations. [96,170,394] proposed end-to-end CNNs

to directly estimate the 3DMM parameters. In particular, [394] used a very deep CNN

to regress shape and texture parameters of 3DMM for 3D face recognition to improve the

discriminative identity of reconstructed face meshes. Other methods like [33,34,87,116,117]

focused on optimization-based texture generation methods, for example, Booth et al. [34]

used 3DMM fits to in-the-wild images and Principal Component Pursuit with missing

values to complete the unobserved texture. Both [87,117] employed Generative Adversarial

Networks (GANs) to learn a powerful generator of facial texture, in particular, Gecer et

al. [117] used differentiable rendering layer to self-supervise model to learn the texture

information.
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8.2.2 Geometric Deep Learning

GCNs have shown their superior ability on several computer vision tasks such as scene

understanding [272,284], image segmentation [276,278,280,286], etc.. CNNs are effective on

Euclidean data such as images but not good at non-Euclidean domains such as grids in face

mesh [40]. To overcome the disadvantages of CNNs, GCNs from geometric deep learning

have recently been proposed. Bruna et al. [41] proposed convolutions in the spectral domain

defined by the eigenvectors of Laplacian graphs whereas the filters were parametrized with

a smooth transfer function. Still, it is expensive to compute and unable to extract low-level

features on the graph. ChebyNet [85] solved the computational complexity problem with

Chebyshev polynomial functions, which directly applied it to Laplacian graphs without

computing the Fourier basis. CoMA [323] applied ChebyNet to 3D face meshes to find

a low-dimensional non-linear representation of faces with an encoder-decoder structure.

By spectral graph convolution and mesh sampling operations, it achieves state-of-the-art

results in 3D face mesh generation.

8.2.3 Aggregation Network

Aggregation networks have shown powerful ability in visual recognition tasks because these

tasks require rich information that spans channels or depth, scales, and resolutions [471].

Densely connected networks (DenseNets) [153] aggregated across channels and depths.

It improved the induction of recognition through propagating features and losses from

skip connections, which concatenated every layer in stages. Feature pyramid networks

(FPNs) [226] aggregated features across different resolutions and scales. It restricted fea-

tures through adjusting resolutions and semantics and aggregated over the degrees of a

pyramidal component progressive system by top-down and parallel associations. Instead

of a skip-connection design, RefineNet [225] introduced a refine module to extract the
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Figure 8.2: Qualitative results of face alignment on AFLW2000-3D dataset [510]. Top
row: Sparse face alignment results with 68 landmarks plotted, including eyes, eyebrows,
nose, mouth, and jawline. Middle row: Faces rendered with the reconstructed depth map.
Bottom row: Dense face alignment results with all the 53,215 landmarks plotted. Note,
although the results are good as shown by these faces in front view, it may seem the
overlays dislocated for faces of side views because the reconstruction is only for the front
view as the ground truth available for training is front view.

multi-scale features between encoder and decoder. MCUA [302] used multi-level context

ultra-aggregation to combine intra and inter level features for stereo matching. Likewise,

DFANet [205] aggregated discriminative features through sub-networks and sub-stages cas-

cade, respectively. RefineNet, MCUA, and DFANet showed good performance on 2D

semantic segmentation through aggregating features. Compared to these methods, our

proposed aggregation block can fuse and reuse multi-level features iteratively and hierar-

chically across different layers and stages. Our model combines CNNs and GCNs, solving

2D to 3D face reconstruction and dense face alignment task simultaneously.

8.2.4 Recent Work

On the basis of [323], [75] proposed an intrinsic adversarial architecture to reconstruct

more detailed 3D face mesh, and [507] reconstructed the 3D face mesh from a 2D image,
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in particular, CMD [507] added additional texture information in the graph structure to

simultaneously regress coordinates and colour of the mesh. However, [507] used encoder-

decoder networks to reconstruct the 3D mesh, and our work is different from them. As they

all utilize encoder to encode the 2D image into latent embeddings with CNNs and decoder

that reconstructs the 3D face mesh with GCNs from the latent embeddings. It is believed

that only using latent embeddings to represent 2D information is not enough, as some

low-level semantic features cannot be represented properly and feature information will

be lost during the down-sampling or encoding process. Furthermore, the same situation

happens in the up-sampling process. The decoder cannot recover the lost resolution and

semantic information very well when latent embeddings are the only input information.

For the 3D face problem, overall facial structure is fixed, semantic information is not

very rich, so the low-level semantic information and high-level spatial features may both

be valuable. I propose a multi-level regression mappings mechanism between each down-

sampled 2D image feature and corresponding 3D face mesh features, equipped with a

resolution preserved and feature aggregated network structure. I focus on fusing different

depth features along different paths in networks. Our proposed method gains superior

performance on 2D and 3D face alignment tasks, especially in the large pose face alignment

problem, because our model gains more useful information from visible parts of input face

images, which help GCNs to better regressing the invisible mesh vertices.

8.3 Method

8.3.1 Data Representation

I represent the 3D face mesh with vertices and edges, F = (V,A) where V has N vertices

in 3D Euclidean space, V ∈ RN×3, and A ∈ {0, 1}N×N is a a sparse adjacency matrix,
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representing the edge connections between vertices, where Ai,j = 1 means vertices Vi,Vj

are connected by an edge, and Ai,j = 0 otherwise.

8.3.2 Graph Fourier Transform

Following [79], the non-normalized graph Laplacian is defined as L = D−A ∈ RN×N , with

D a diagonal matrix representing the degree of each vertex in V , such thatDi,i =
∑N

j=1Ai,j .

The Laplacian of the graph is a symmetric and positive semi-definite matrix, so L can be

diagonalized by the Fourier basis U ∈ RN×N , that L = UΛUT . The columns of U are

the orthogonal eigenvectors U = [u1, ..., un], and Λ = diag([λ1, ..., λn]) ∈ RN×N is a

diagonal matrix with real, non-negative eigenvalues. The graph Fourier transform of the

face representation x ∈ RN×3 is defined as x̂ = UTx, and the inverse Fourier transform as

x = Ux̂.

8.3.3 Spectral Graph Convolution

The convolution operation on a graph can be defined in Fourier space by formulating mesh

filtering with a kernel gθ using a recursive Chebyshev polynomial [85]. The filter gθ is

parametrized as a Chebyshev polynomial expansion of order K such that

gθ(L) =
K∑
k=1

θkTk(L̂) (8.1)

where L̂ = 2L/λmax−IN represents rescaled Laplacian, and parameter θk is a vector of

Chebyshev coefficients. Tk ∈ RN×N is the Chebyshev polynomial of order K, that can be

recursively computed as Tk(x) = 2xTk−1(x)−Tk−2(x) with T0 = 1 and T1 = x. Therefore,

the spectral convolution can be defined as
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yj =

Fin∑
i=1

gθi,j (L)xi (8.2)

where input x ∈ RN×Fin has Fin = 3 features, as the face mesh of vertices is 3D and

y ∈ RN×Fout is the output. This approach is computationally faster and complexity drops

from O(n2) to O(n), compared with [41].
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Figure 8.3: Overview of our proposed model. Down-sampling is conducted by setting
stride size in the convolution layers as 2. Lower level features are bilinearly up-sampled
by a factor 2. On the left branch, I show the feature map size after down-sampling, and
on the right branch, I show the vertex feature map size with channels after up-sampling,
because I use a vector to represent each vertex. For example, 16384×128 means that 16384
vertices are maintained, and each vertex is represented by a 128×1 vector. The order of
operations and feature map size in a small level of aggregate circulation are illustrated in
the left side, following the ascending order from 1 to 6 (in red color). As is shown, number
5 is the concatenation of number 1 and number 4’s output, then as input to number 6. The
green arrow concatenates the output from CNN Residual Block and DenseGCN Block at
the same level. Graph down-sampling process is not shown because of the space limitation.
More details can be found in Section 3.4.
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8.3.4 Mesh Sampling

To achieve multi-scale graph convolutions on joint mesh vertices and 2D feature maps

from CNNs, I follow [323] to form a new topology and neighbour relationships of vertices.

More specifically, I use the permutation matrix Qd ∈ {0, 1}m×n to down-sample a mesh

with m vertices. Qd(i, j) = 1 denotes the jth vertex is kept, and Qd(i, j) = 0 otherwise.

Up-sampling is conducted with another transformation matrix Qu ∈ Rm×n. In order to

train the CNN and GCN hierarchically and iteratively, I specially design the number of

vertices that are maintained in each up-sampling stage, and the feature map size in the

down-sampling process, to enable CNNs and GCNs to cooperate in the same level. More

details will be shown in Section 3.5.

Down-sampling in GCN is obtained by iteratively contracting vertex pairs, which uses

a quadratic matrix to maintain surface error approximations [115]. The discarded vertices

during down-sampling are recorded using barycentric coordinates. The up-sampling oper-

ates convolution transformations on retained vertices and map the discarded vertices into

the down-sampled mesh surface using Barycentric coordinates. The up-sampled mesh with

vertices Vu is obtained by a sparse matrix multiplication, i.e., Vu = QuVd, where Vd are

down-sampled vertices.

8.3.5 Proposed Aggregation Network

Our novel aggregation graph regression network is motivated by fusing features hierarchi-

cally and iteratively [471, 508], which is illustrated in Fig. 8.3. Our model can provide

improvements in extracting the full spectrum of semantic and spatial information across

stages and resolutions. Our network consists of an encoder and a decoder, which are con-

nected by a series of nested residual convolution blocks (aggregation block). As I mentioned

in section 3.4, I specially design the number of vertices that remain after each up-sampling
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stage in the decoder, and the feature map size after each convolution block in the encoder

to make them equal with each other. For example, after first Residual Block, I make the

feature map size 128×128, which is equal to the total number of vertices remained after

the last DenseGCN block 16384. Our experiments show that maintaining the same graph

nodes on the same level helps to improve the performance in our model. I achieve direct

end-to-end regression from 2D image to 3D mesh vertices through different feature levels,

by making CNNs cooperate with GCNs directly.

The encoder takes input images of shape 256×256×3, and has six residual convolution

blocks [143]. After each residual convolution block, the feature map size is decreased by

half. This reduction continues until the dimension becomes 4×4×128. Then two fully

connected layers are applied to construct a 256×1 dimension embedding.

An aggregation block contains a series of residual convolution blocks, in which there

are three convolution layers with identity short-cut connection followed by a Batch Nor-

malization layer [159] and Leaky Relu as the activation function. For each filter, the kernel

size is three and the stride is one. Different from the network proposed by [471], our

aggregation block achieves fully fused local and global information from encoder into the

decoder. Up-sampling operations in the aggregation block from shallow to in-depth, further

refining features when extracting 2D image features. Besides, I add down-sampling oper-

ations which can project high-resolution features from 2D images into low-resolution 3D

mesh features. With up-sampling and down-sampling operations, the aggregation block

can extract and reuse more features through different resolutions and scales, which can

help to decrease information loss during the encoding process. In Section 5.3, our ablation

study demonstrates that the combination of up-sampling and down-sampling helps to ex-

tract more useful information. Finally, the aggregation block iteratively and hierarchically

aggregates these operations to learn a deep fusion of low and high-level feature information.
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The decoder takes embeddings and multi-level outputs from the aggregation block, then

decodes with six dense graph convolution blocks (DenseGCN), inspired by [204]. It has

been shown that as layers go deeper, DenseGCN can prevent vanishing gradient problems.

Our DenseGCN block consists of 4 graph convolution layers, and each graph convolution

layer is followed by a Batch Normalization layer [159] and Leaky Relu. After 6 DenseGCN

blocks and graph up-sampling operations, the number of vertices is up-sampled from 16

to 16384, and each vertex is represented by a vector of length 128. At last, two graph

convolution layers are added to generate a 3D face mesh, which up-samples the number of

vertices to 53215 and reduces the vertex feature map channels to 3, as each face mesh vertex

has three dimensions: x, y, and z. On the right branch of the network structure in Fig.

8.3, I show the process of up-sampling vertices hierarchically with face meshes. Through

an ablation study in Section 5.3, I demonstrate that our proposed method can perform

better than non-aggregation or shallow aggregation network in the 3D face alignment task.

8.3.6 Loss Function

L2 and L1 loss have widely been used in facial landmark localization tasks by CNN based

networks. It is commonly known that the L2 loss is sensitive to outliers, so in the early

training stage, the training process can be unstable. With the L1 loss, it is difficult to

continuously converge and find the global minimization in the late training stage without

careful tuning of the learning rate. Most of the facial landmarks localization methods use

a joint loss function to guide the training process. For example, PRN [105] uses a weighted

L2 loss function to make the model pay more attention to the central region of the face.

CMD [507] uses a joint loss function where the L2 loss for shape reconstruction, L1 for

texture regression and L-render to minimize pixel-wise reconstruction error for facial pixels

rendering.
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Inspired by Wing-loss [106] and Smooth-L1 loss in [119], I propose a new loss function

that can prevent the model from taking large update steps when approaching small range

errors in the late training stage and can recover quickly when dealing with large errors

during the early training stage. Our loss function is defined as:

L(x) =

 W [e(|x|/ε) − 1] if |x| < W

|x| − C otherwise
(8.3)

Where W should be non-negative and limit the range of the non-linear part, ε decides the

curvature between (−W,W ) and C = W−W [e(|w|/ε)−1] connects the linear and non-linear

parts. After several evaluation experiments, the parameter W is set to 5 and ε to 4 in this

work.

8.4 Experiments

8.4.1 Datasets

I train our model using semi-annotated in-the-wild data (300W-LP) [510]. The 300W-LP

dataset contains 61225 large pose facial images with corresponding 3DMM parameters and

pose coefficients, which are synthetically generated by the profiling method [510]. The

dataset is produced by fitting a 3DMM model using the multi-feature fitting approach

(MFF) [336]. Each image is rendered to 10-15 different poses resulting in a large scale

dataset.

For the evaluation of the trained model, I perform extensive quantitative experiments

on AFLW2000-3D [510] dataset. It contains 2000 large pose samples from the AFLW

dataset [184], annotated with fitted 3DMM parameters and 68 3D landmarks. The sparse

and dense face alignment evaluations are performed on this dataset.
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AFLW-LFPA is another extension of AFLW dataset constructed by [171]. According

to the poses, the dataset contains 1299 test images with a balanced distribution of yaw

angles. Besides, each image is annotated with 13 additional landmarks as a expansion to

the original 21 visible landmarks in AFLW. Same as [105], I use 34 visible landmarks as

the ground truth to measure the accuracy of our results. This database is evaluated on

the task of sparse 3D face alignment.

The Florence dataset is a 3D face dataset that contains high-resolution 3D scans of

53 samples which are acquired from a structure-light scanning system. I compare the

performance of our method on face reconstruction against other recent state-of-the-art

methods.

8.4.2 Implementation Details

I first fit the Basel Face Model (BFM) [32] model to generate and transform the 3D face

mesh with corresponding pose coefficients to form the training data set. Specifically, I

crop the images according to the ground truth bounding box and rescale them into size

256×256. To augment our dataset, similar to other methods [105], I perturb the input

image by randomly rotating and translating. Specifically, the rotation ranges from −45 to

45 degree angles, translation changes is random from 10% of the input image size and has

a scale range from 0.9 to 1.2. I use stochastic gradient descent with a momentum of 0.9

to optimize our loss function. I trained our model with a learning rate of 1e-3 and decay

rate of 0.99 every epoch. The order of Chebyshev polynomial is set to 3 for all the graph

convolution layers. The batch size is set as 48. All training processes are performed on

a server with 8 TESLA V100, and all test experiments are conducted on a local machine

Geforce RTX 2080Ti.
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Table 8.1: Face alignment results on AFLW2000-3D benchmarks. The performance is
reported as bounding box size normalized mean error (%). The best result in each category
is highlighted in bold, the lower value is better. For any specific head pose, our model
outperforms the other methods, and in particular, it defeats the other methods by a large
margin for large pose yaw (60◦ to 90◦).

Methods
AFLW2000-3D AFLW-LFPA

0◦ ∼ 30◦ 30◦ ∼ 60◦ 60◦ ∼ 90◦ Mean Mean

SDM [452] 3.67 4.94 9.67 6.12 -
3DDFA [510] 3.78 4.54 7.93 5.42 -

3DDFA + SDM [510] 3.43 4.24 7.17 4.94 -
N3DMM [390] - - - 4.70 -

DeFA [243] - - - 4.50 3.86
3DSTN [30] 3.15 4.33 5.98 4.49 -
CMD [507] - - - 3.98 -
PRN [105] 2.75 3.51 4.61 3.62 2.93

Bulat et al. [44] 2.47 3.01 4.31 3.26 -
Jia et al. [128] - - - 3.07 -

Ours 2.38 3.03 3.54 2.98 2.86

8.5 Results

In this section, I show our qualitative and quantitative results on AFLW2000-3D [510]

and Florence [19] dataset in comparison with several other state-of-the-art methods. I

then showed the results of an ablation study in order to demonstrate the effectiveness of

the proposed aggregation block. The qualitative results of face alignment and 3D face

reconstruction are shown in Fig. 8.2 and Fig. 8.5 (b) respectively.
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68 Points with 2D Coordinates 68 Points with 3D Coordinates

45K Points with 2D Coordinates 45K Points with 3D Coordinates

Figure 8.4: Errors Distribution (CED) curves for sparse and dense face alignment on
AFLW2000-3D. Note that for dense face alignment, PRN [105] can only regress around
45K points, so I only select around 45K points for evaluation, even though our model
can output all the 53215 vertices provided by the ground truth. Our model performs
consistently better on both 2D and 3D problems when compared to other methods.

8.5.1 Face Alignment

I compare our model with other state-of-the-art methods, 3DDFA [510], DeFA [243],

3D-FAN [45], PRN [105], on sparse alignment tasks (68 landmarks). As suggested by

3DDFA [510], normalized mean error (NME) is used as the alignment accuracy metric.

NME is the average of the landmarks error normalized by the size of the bounding box.
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Figure 8.5: Example results on Florence dataset. (a): Qualitative results, First column are
Ground truth [19]. The second column is Prediction by PRN [105]. The third column is
Results from our model. Note that our model can faithfully reconstruct more regions such
as ears. (b): Quantitative results, the normalized mean error of each method is showed in
the legend.

The bounding box size is defined as the rectangle hull of all the 68 landmarks, which is

√
width ∗ height. Fig. 8.4 (a) and (b) show the sparse face alignment with 68 landmarks

on both 2D coordinate and 3D coordinate system. Our model exceeds other methods

by a large margin on 3D face alignment. Specifically, more than 19 % relative higher

performance is achieved compared with the best method on both 2D and 3D coordinates.

Our model also produces good performance in a dense face alignment task with 45K

vertices. I compare with previous state-of-the-art methods, including 3DDFA [510], DeFA

[243], PRN [105], and NME plots were shown in Fig. 8.4 (c) and (d), which demonstrate

that our model gains more than 41% relative improvements compared to PRN [105], so

our model can produce more accurate vertices localization results, with the help of an

aggregation block to extract more useful information and GCNs to directly perform feature

learning on 3D face mesh.

I further evaluate our model on sparse face alignment with different face poses in 2D
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images in comparison with SDM [452], 3DDFA [510], 3DSTN [30], DeFA [243], PRN [105],

N3DMM [390], CMD [507]. I randomly select 915 images from AFLW2000-3D to balance

the distribution, whose absolute yaw angles with small, medium and large values are 1/3

each. Across three main classes with yaw values (0◦ ∼ 30◦, 30◦ ∼ 60◦, 60◦ ∼ 90◦)

for the faces in different images, our model exceeds the other state-of-the-art methods.

Especially for large pose face alignment (60◦ ∼ 90◦), as shown in Fig. 8.2 our model can

handle large pose face well. Because of the invisible parts of the face due to occlusion,

the other methods cannot capture enough semantic information to regress the landmarks.

Our model, however, utilizes aggregate feature learned from the visible part of the face

to infer the unseen part of the faces’ landmarks, which fuse and reuse the 2D semantic

information to regress the 3D geometric information. The results are shown in Tab. 8.1,

where the numerical values of the other methods are cited from the original papers. As

illustrated, our model achieves more than 25% relative improvement over the best method

on AFLW2000-3D dataset.

8.5.2 3D Face Reconstruction

I illustrate our model’s ability in a 3D face reconstruction task with experiments on the

Florence dataset [19], compared with a state-of-the-art method, 3DDFA [510], PRN [105],

VRN [161], following the experimental settings in PRN [105], and the metric which is the

Mean Squared Error(MSE) normalized by outer interocular distance of 3D coordinates. I

calculate the bounding box from the ground truth point cloud and crop the rendered image

to 256×256, and I follow [161] to choose 19K points of face region for evaluation. Note

that, during the training process, our model only considers the coordinates of vertices, but

for better visualization, the colors of faces are rendered from the corresponding input 2D

image. For our model, I render colours to each 3D face vertex from the corresponding 2D
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input image pixels. Fig. 8.5 shows the qualitative and quantitative results, our model can

handle large pose face well and accurately covers more regions in lateral face parts, such as

ears and necks, but PRN remains blurry in the ear area, and for quantitative comparison,

our model achieves superior performance to PRN and outperform the other two methods

by a large margin.

8.6 Discussion and Conclusion

8.6.1 Ablation Study

Aggregation Block: In this section, I conduct several experiments to establish the

effectiveness and compactness of our proposed aggregation block. I compare with no-

aggregation block (encoder-decoder) and shallow-aggregation block structures (U-net). I

change the decoder of those two networks into GCNs with graph up-sampling operations,

but the encoder remains as CNNs. Apart from the aggregation part, the rest of the network

maintain the same structure. Also, I remove the up-sampling and down-sampling opera-

tions, respectively, to further evaluate whether our aggregation block can help to better

regress the face mesh vertices coordinates. Fig. 8.6 (a) and (b) show the quantitative

results on a 3D face alignment task. As is illustrated, our aggregation model attains a

superior performance over the other four methods, and non-aggregation network structure

has the worst performance.

Parameters of Loss Function: Several experiments are conducted to evaluate the pa-

rameter setting of our proposed loss function. Fig. 8.6 (c) and (d) show the parameters

setting results on sparse and dense alignments tasks, besides, our model is not sensitive

to the two parameters, as no significant difference are found, and when w = 5, ε = 4, our

model achieve best results.
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Loss Function: I compare with L1, L2, Smooth-L1 [119] loss functions, which are com-

monly used in the regression problem. Experiments are performed on sparse alignment (68

points) and dense alignment (45K points) in 3D coordinates. The performance is reported

as average NME(%) of sparse and dense alignment tasks. Our proposed loss function (3.10

%) outperforms smooth-L1 loss (3.39 %) [119] by 9 % relatively better performance, L1 loss

(3.61 %) by 14 % relatively better performance, and L2 Loss (4.02 %) by 23 % relatively

better performance. Our proposed loss function attains a superior performance over the

other three loss functions.

68 Points with 3D Coordinates 68 Points with 3D Coordinates

45K Points with 3D Coordinates 45K Points with 3D Coordinates

Figure 8.6: (a)&(b), Illustration of the influence of the aggregation block. (c)&(d), the
parameter setting for the proposed loss function. Methods are evaluated on 3D face align-
ment with 68 landmarks 45K landmarks. Our aggregation model outperforms the other
four methods, specifically more than 32% relative better performance is achieved over the
non-aggregation method on both sparse and dense face alignment. And when W = 5, ε =
4, our model achieves best results.
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8.6.2 Model Complexity and Running Speed

Even though our model structure looks complicated, in benefit from feature reuse, it is

still relatively light-weight and efficient, taking up only 84.5MB compared to 1.5GB in

VRN [161] and 153MB in PRN [105]. I use the same definition of running time, as suggested

by PRN [105]. The running time of different models is reported in Tab. 8.2. Our model

achieves comparable result with 16.0 milliseconds per image, and the hardware used for

the evaluation is NVIDIA GeForce RTX 2080Ti GPU and Intel(R) Xeon(R) W-2104 CPU

@ 3.20GHz. The results of 3DDFA [510], 3DSTN [30], CMD [507] are from their papers,

while the running time of the other methods is obtained by running their publicly available

source codes on the same machine as our model.

3DDFA [510] 3D-FAN [45] PRN [105] DeFA [243] VRN [161] CMD [507] 3DSTN [30] Ours

75.7 ms 53.9 ms 9.7 ms 34.5 ms 68.5 ms 3.0 ms 19.0 ms 16.0 ms

Table 8.2: Running time per testing image

8.6.3 Conclusion

In this work, I propose a new end-to-end aggregation graph convolution network to improve

the accuracy of dense face alignment and 3D face reconstruction simultaneously. Our

network can regress the coordinates of 3D face mesh vertices directly by learning multi-

level semantic and spatial features from a single 2D image. Qualitative and quantitative

results confirm the effectiveness and efficiency of our model.



Chapter 9

Conclusion & Future Work

9.0.1 Summary

In this thesis, I have presented several works that explore the graph-structured representa-

tions on the task of biomedical and biometric image analysis. Apart from that, I addressed

the several challenging questions that are overlooked or rarely discussed by previous stud-

ies, which promotes the development of the GNN in biomedical image analysis.

Specifically, in Chapter 3 and Chapter 4, I explore the geometric correlation and con-

sistency between objects’ region and boundary through implicit graph data representation

learning; and propose different graph-based novel approaches to leverage complementary

spatial relationships. I address the rarely discussed underlying relationship between the re-

gion and boundary characteristics in segmentation tasks and the semi-supervised learning

paradigm. Such correlations of spatial consistency between the region and boundary fea-

tures advanced the coherence of the network when tackling different tasks and mitigated the

inevitable perturbations at the task level under semi-supervised learning mechanisms. My

methods have achieved superior performance on biomedical image segmentation datasets

such as five large-scale fundus image datasets for optic disc and cup segmentation in both

241
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fully supervised and semi-supervised learning paradigms and five challenging datasets of

colonoscopic endoscopy images for polys segmentation in the fully supervised mechanism.

In Chapter 5 and Chapter 6, I study the context pattern fusing of various forms of

granularity information utilising inner-domain and cross-domain implicit graph data rep-

resentation learning. I propose several graph-based novel methods for hybrid information

fusion and address the contextual dependency difficulties of multi-granularity features dur-

ing graph reasoning. The developed methods achieved excellent performance on the three

largest COVID-19 diagnosis datasets and five challenging crowd counting datasets. Sig-

nificantly, my proposed graph model can outperform other compared methods by a large

margin in the generalisation ability evaluation experiments of the COVID-19 diagnosis

task.

In Chapter 7, I propose to model the geometric structure of explicit graph data repre-

sentations in terms of objects’ boundaries. I introduce a novel graph-based segmentation

paradigm and address the difficulties of direct features learning on objects’ boundary lo-

cations by previous CNN based methods. I used the provided approaches to segment

fundus-based optic discs and cups and ultrasound-based fetal heads. My model achieved

comparable performance with other CNN-based methods but can directly indicate the

boundary locations that show more interpretative prediction than dense-pixel wise classi-

fication methods. In Chapter 8, I research the explicit graph data representation learning

of dense vertices regression task. I propose a multi-level aggregated GCN and address the

challenges of loss of semantic and spatial information in classic GCN based methods. The

proposed model was used in two sizeable 3D face reconstruction datasets, with outstand-

ing results indicating its accuracy and capacity to handle many vertices. In conclusion, I

have proposed several novel methods based on graph-based deep learning with explicit and

implicit representations in different biomedical and biometric image analysis tasks. I have



Chapter 9. Conclusion & Future Work 243

demonstrated the robustness and generalisability of the aforementioned proposed methods

in various biomedical and biometric image analysis tasks.

9.0.2 Future Work

The future work of this thesis can be extended in twofold.

Firstly, all of my approaches are anticipated to be widely applicable to real-world

applications. However, all of the presented works in this thesis follow the same paradigm

that exploits the benefit of explicit or implicit graph representations. At the same time,

future works can combine the benefits of explicit and implicit graph representation learning

and tackle more complicated problems in a graph structure, such as complex non-Euclidean

geometry analysis tasks. Specifically, exploiting graph neural networks to study the task

of protein analysis and drug discovery are attracting the researcher’s attention recently,

including target identification, hit identification, lead optimization, drug repositioning, etc.

In general, the complete process for one authorized drug takes around 13.5 years, including

5.5 years before clinical trials (drug discovery) and eight years for the remainder of the

procedure (drug development) [310]. Consequently, reducing the overall cost and time is a

massive problem in industry and academia, and the modern medication R&D process may

not be sustainable unless these obstacles are overcome. Due to the frequent elimination

of medication candidates, the current pharmaceutical business expends enormous amounts

of time and resources. According to recent statistics [397], 80% of the causes for attrition

were attributed to poor pharmacokinetics (39%), lack of efficacy (30%), and animal toxicity

(11%). Surprisingly, the aforementioned issues are strongly tied to the drug discovery

process prior to clinical trials, indicating the possibility for improvement. In general, the

overall process is determined by knowledge-based decisions, which can be highly biased,

as it is virtually impossible to synthesize and evaluate all the possible compounds by
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experiments. In this circumstance, AI-guided decision-making is a promising breakthrough

[263,463]. Notably, the graph-based network plays a vital role in such circumstances.

Secondly, validating the proposed models on a larger biomedical image dataset is appre-

ciated and critical, especially for evaluating biomedical image analysis algorithms. There

are, in total, six types of biomedical image analysis tasks with their corresponding data

been included in this thesis, such as color fundus images of OC & OD segmentation, color

fundus images of vCDR estimation, colonoscopy images of polyps segmentation, CT images

of COVID-19 diagnosis, ultrasound images of fetal head segmentation. However, only 619

images are used as the test dataset for OC & OD segmentation task; 635 images as the

test dataset for colonoscopy polyps segmentation task; and 94 images as the test dataset

for fetal head segmentation task. Reporting results on such a relatively small size dataset

will be affected by inevitable bias, and overfitting issues [334]. However, the limited data

size of the AI-based biomedical image analysis task is still a challenge nowadays due to the

difficulty of manual annotation efforts in clinics. It is unrealistic for clinicians to annotate a

large number of images as it is costly, time-consuming, and labour-intensive. In the future,

more efficient way of annotations, such as AI-assistant labeling processing, can address the

difficulty and increase the data size.

Thirdly, the domain shift issues and the generalizability of the proposed algorithms

need to be assessed using external test datasets and the associated experiments. The do-

main shift issue resulting from disparate distributions of source/reference data and target

data causes the deep learning algorithms to perform poorly. Specifically, machine learning

algorithms typically assume that the training dataset (source/reference domain) and test

dataset (target domain) share the same data distribution [396]. Nonetheless, this assump-

tion is overly strong and may not hold true in actual reality. Previous studies have revealed

that the test error generally increases in proportion to the distribution difference between
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training and test datasets [27, 388]. This is referred to as the well-known ‘domain shift’

problem [319]. Even in the deep learning era, deep neural networks trained on large-scale

image datasets may still suffer from domain shift [93]. Thus, how to handle domain shift is

a crucial issue to effectively apply the proposed methods to medical image analysis tasks.
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Spatio-temporal event classification using time-series kernel based structured spar-

sity. In European Conference on Computer Vision, pages 135–150. Springer, 2014.

[163] Debesh Jha, Pia H Smedsrud, Michael A Riegler, P̊al Halvorsen, Thomas de Lange,

Dag Johansen, and H̊avard D Johansen. Kvasir-seg: A segmented polyp dataset. In

International Conference on Multimedia Modeling, pages 451–462. Springer, 2020.



Bibliography 271

[164] Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha,

and Ling Shao. Progressively normalized self-attention network for video polyp seg-

mentation. arXiv preprint arXiv:2105.08468, 2021.

[165] Wei Ji, Shuang Yu, Junde Wu, Kai Ma, Cheng Bian, Qi Bi, Jingjing Li, Hanruo Liu,

Li Cheng, and Yefeng Zheng. Learning calibrated medical image segmentation via

multi-rater agreement modeling. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12341–12351, 2021.

[166] Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang, Pei Lv, Bing Zhou, Xin

Yang, and Yanwei Pang. Attention scaling for crowd counting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 4706–4715,

2020.

[167] Xiaoheng Jiang, Li Zhang, Tianzhu Zhang, Pei Lv, Bing Zhou, Yanwei Pang, Min-

gliang Xu, and Changsheng Xu. Density-aware multi-task learning for crowd count-

ing. IEEE Transactions on Multimedia, 23:443–453, 2020.

[168] Zi-Hang Jiang, Qianyi Wu, Keyu Chen, and Juyong Zhang. Disentangled represen-

tation learning for 3d face shape. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 11957–11966, 2019.

[169] Hai Jin, Xun Wang, Zichun Zhong, and Jing Hua. Robust 3d face modeling and

reconstruction from frontal and side images. Computer Aided Geometric Design,

50:1–13, 2017.

[170] Amin Jourabloo and Xiaoming Liu. Pose-invariant 3d face alignment. In Proceedings

of the IEEE International Conference on Computer Vision, pages 3694–3702, 2015.



272 Yanda Meng

[171] Amin Jourabloo and Xiaoming Liu. Large-pose face alignment via cnn-based dense

3d model fitting. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4188–4196, 2016.

[172] Sinan Kaplan, Mehmet Amac Guvensan, Ali Gokhan Yavuz, and Yasin Karalurt.

Driver behavior analysis for safe driving: A survey. IEEE Transactions on Intelligent

Transportation Systems, 16(6):3017–3032, 2015.

[173] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour

models. International Journal of Computer Vision, 1(4):321–331, 1988.

[174] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning

for computer vision? In Advances in Neural Information Processing Systems, pages

5574–5584, 2017.

[175] Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric Granger, Jose Dolz, and

Ismail Ben Ayed. Boundary loss for highly unbalanced segmentation. In International

Conference on Medical Imaging with Deep Learning, pages 285–296. PMLR, 2019.

[176] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao.

Striking the right balance with uncertainty. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages 103–112, 2019.

[177] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of kinect

depth data for indoor mapping applications. sensors, 12(2):1437–1454, 2012.
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