I

UNIVERSITY OF LIVERPOOL
DEPARTMENT OF COMPUTER SCIENCE

LOGICAL SEPARABILITY Of OPEN-WORLD DATA

Thesis submitted in accordance with the requirements of the
University of Liverpool for the degree of Doctor in Philosophy by

Hadrien Pulcini

October 2022

FIRST SUPERVISOR Pr. Frank Wolter, University of Liverpool
SECOND SUPERVISOR Pr. Boris Konev, University of Liverpool
INTERNAL EXAMINER ~ Dr. Louwe B. Kuijer, University of Liverpool

EXTERNAL EXAMINER Dr. Victor Guttiérrez-Basulto, Cardiff University

Abstract

For any two fragments L), L of first-order logic, we define as (£, Lg)-separability
the problem of, given an ontology formulated in £, and a database containing
positively and negatively labeled tuples, the existence of a separating formula ¢
in Lg, i.e., that applies to all positive tuples but no negative one. We distinguish
several versions of that problem, depending on how the notion of separation is
defined or on the symbols ¢ may contain. For each version and various combina-
tions of languages (L, L) (ranging over first-order logic, its guarded fragment,
its two-variable fragment, expressive description logics, conjunctive queries or
unions thereof), we provide model-theoretic characterisations and complexity
bounds for (£, Ls)-separability. To that end, we uncover and make use of the
interplay between separability and well-studied decision problems such as query
evaluation, satisfiability, interpolation and deciding conservative extensions.

0

1

2

INTRODUCTION

PRELIMINARIES
1.1 First-Order Logic background
1.2 KR terminology
1.3 Conjunctive queries
1.4 Description logics
1.4.1 Syntax & Semantics
1.4.2 Model theory
1.5 Guarded Fragment
1.6 The separability problem

FULL WEAK SEPARABILITY

2.1 FO-ontologies

2.2 FO?-ontologies
2.2.1 Separating power
2.2.2 Complexity

2.3 Projective case in DL7o
2.3.1 Intermediate characterisations
2.3.2 Proof of Lemma 2.18 in ALCT
2.3.3 Proof of Lemma 2.18 in ALCOT
2.3.4 Proof of Lemma 2.18 in ALC(Q)
2.3.5 Final characterisation
2.3.6 Separability & query evaluation
2.3.7 Preliminaries for complexity
2.3.8 Complexity for ALCT
2.3.9 Complexity for ALCOT
2.3.10 Complexity for ALC
2.3.11 Complexity for ALCQ

2.4 Non-projective case in ALCZ

2.4.1 Semantic characterisation

CONTENTS

16
17
19
20
22
22
25
31
36

40
43
46
46
48
51
52
54
56
59
60
61
62
63
63
71
81
82
82

2.4.2 Complexity
2.5 GF-ontologies
2.5.1 Preliminaries
2.5.2 Intermediate characterisation

2.5.3 Final characterisation

2.6 Undecidability for (ALC,EL(T))

FULL STRONG SEPARABILITY

3.1 Reduction to satisfiability with FO

3.2 ALC(Z)-ontologies
3.3 GF-ontologies

3.4 FO?-ontologies

RESTRICTED WEAK SEPARABILITY

4.1 Semantic characterisation in DL

4.2 Hybrid UCQs
4.3 Conservative extensions

4.4 2Exp upper bound for ALC(Z)
4.4.1 2ATAs and proof strategy
4.4.2 Encoding models as input

4.4.3 Recognising adequate models
4.5 Undecidability results

RESTRICTED STRONG SEPARABILITY
5.1 Interpolation

5.2 DL;, ontologies
5.2.1 Boolean Hybrid CQs
5.2.2 2Exp-completeness for DLz,

5.3 GF and FO? ontologies

CONCLUSION & REFERENCES

89
90
91
95
100

110

112
113
114
116

119

125
126
131
137

139
140
141
143

145

151
152

153
154
156

158

161

Chapter O

Introduction

HiS thesis discusses the following problem. Given two sets of data points

ET and E~ of positive and negative examples (possibly both within a larger

set) labeled with information under logical form, is there a logical expression ¢
that only applies to the positive ones?

A crucial feature of our framework is that we assume our information to be
incomplete: if all one knows is that a satisfies A, one cannot conclude that a
does not satisfy B. This feature is well-known in Knowledge Representation
terminology as the open-world assumption, as opposed to closed-world where
information is assumed complete and absence of explicit satisfaction equates to
satisfaction of absence. With open-world semantics, what we mean by “sepa-
rating” is not as straightforward: the positive examples may share a common
property that, to our knowledge, is not forced onto any negative example, but
still allowed for at least one of them.

a satisfies A a and b have A in common;
b satisfies A ¢ may or may not satisfy A.

¢ satisfies B

In consequence, we distinguish two approaches to separation: either we require
from a separating formula that it does not necessarily apply to any negative
example, or that it necessarily does not apply to any negative example. We say
the formula weakly separates E* from E~ in the former case and strongly in
the latter. In the above example, a and b are weakly separated from ¢ but not
strongly.

Our main motivation for looking at the logical separability problem comes from
its applications to Knowledge Representation, as we explain in detail further
below. Knowledge Representation is a four-decade-old subfield of Artificial
Intelligence that aims at designing structured computer representations of the
world. Ontologies are currently one of its main formalisms. They express general

knowledge through semantic links between concepts. They can be understood
as a generalization of dictionaries or taxonomies. On top of information that is
provided by our data points (databases), we also take ontologies into account
(again, under the open-world assumption, customary for ontologies).

a satisfies A
DATABASE | b satisfies A ONTOLOGY | B implies A
¢ satisfies B

Now, in any world realizing the above,
c satisfies A so a, b are not weakly separable from c.

We work within first-order logic (FO): all the information given by the ontology
and the database is assumed to be expressed as first-order formulas, and so is
the separating formula we look for. In our framework, the informal example
above is understood as follows.

A(a)
DATABASE | A(b) ONTOLOGY | Yx(B(x) — A(x))
B(c)

We also work with strictly less expressive, but decidable, fragments of first-
order logic. Examples might be separable by a first-order formula but not by
any formula from some less expressive fragment. If the database consists of
{A(a), B(b), C(c)} where A, B, C are atomic, a and b are not separable from c in
a language that cannot express disjunction.

Separating sets of data points is at the heart of Supervised Machine Learning.
The information carried by our data corresponds to features in standard Machine
Learning terminology. One difference is that data points there are usually
described independently from each other whereas we also consider relations
between them.

R(a,b) a and b are weakly separated
DATABASE | R(b,c) from ¢ by ¢(x)=3yR(x,y).
B(c)

7 0 INTRODUCTION

A more precise formulation of the separability problem is as follows.

Given a database D and a constantless ontology O that together
constitute a knowledge base K, formulated in a fragment £, of
first-order logic, sets ET, E~ of tuples of constants occurring in
D and a separation language L (also a fragment of FO), does
L contain a constantless formula ¢ such that

KE ¢(a)
forallac Ef,be€E™, KE () (weak case) ?
K E —@p(b) (strong case)

We refer to that decision problem as (£, Lg)-separability. We mostly focus on
the case where constants are not allowed in ontology and separating formulas.
While it obviously trivializes the problem to allow constants from E*,E~ in the
separating formulas (as the equality symbol is present), allowing other constants
is of interest as well but will only briefly be discussed in this thesis. Aside from
the distinction between weak and strong separability, we also include other
interesting dimensions. If ¢ is allowed to contain symbols that do not occur in
O U D, we speak of projective separability (non-projective otherwise). We also
look at the case in which ¢ is only allowed to feature a predetermined set of
symbols from O U D, as part of the input. We denote it as restricted and the
opposite case — where no restriction is given — as full signature separability.

The practical suitability of weak versus strong separability depends on how
complex the ontology is, as we illustrate later on in Section 1.6. Restricted
separability is not considered in any of the applications we describe; we include
it as a natural generalisation. Projective separability is also not yet considered
in applications. In a theoretical context, as we show, it proves important to
equivalence results.

The contribution of this thesis can be summarized as follows. We study, for vari-
ous combinations of the above variations, ontology language £, and separation
language Lg,

the computational complexity of (Lo, Lg)-separability, either
with the ontology as part of the input (combined complexity) or
without (data complexity),

relations of inclusion between each variation - how languages
relate to each other in terms of separating power, the conse-
quences of projectivity, etc.

To this end, we often aim at characterising separability in model-theoretic terms.
Those characterisations, often unexpectedly, revealed fruitful connections be-
tween separability and well-known problems such as satisfiability, query evalua-
tion, interpolation and deciding conservative extensions.

Aside from first-order logic FO, we pay particular attention to description logics.
Responding to KR’s need for a logical formalism that would support automated
reasoning and overcome the drawbacks of first-order logic, description logics
were designed to offer a satisfactory trade-off between expressivity and practical-
ity, the latter ranging from user interface (readability for non-domain experts) to
decidability of the core reasoning problems (satisfiability, instance checking...).
The reader is referred to [BHLS17, BCMNP03] for an extensive account of their
history and their applications. We consider the ‘standard’ DL ALC and its lattice
of extensions induced by the constructors Z, O, Q (inverse roles, nominals and
number restrictions). As separation languages, we also consider the fundamental
database language CQ (of conjunctive queries) and its closure UCQ under dis-
junction. We include the Guarded Fragment GF and the two-variable fragment
FO? of FO for the interesting compromise they offer between expressiveness
(they both subsume .AL£CZ) and desirable properties such as decidability or the
finite model property. More anecdotally, we discuss strictly positive description
logics £L£,ELT and the Guarded Negation Fragment GNF of FO that subsumes
GF and UCQ.

A related notion to separability, which we choose to leave outside of our discus-
sion, is definability. It corresponds to the particular case where the negative data
points are exactly all the non-positive ones. Definability is relevant to many of
the same applications as separability and notable theoretical results have been
obtained in parallel to separability. For the most part, they are corollaries of
results on separability and the techniques used to obtain them are essentially
the same.

Following the way our results and proof techniques tend to cluster, we dedicate
a chapter to every combination of weak/strong and restricted/full separability.

9 0 INTRODUCTION

OUTLINE

Chapter 2. Full weak separability. We give a semantic characterisation of
projective weak full (FO, FO)-separability. The main consequences are that it
coincides with projective and non-projective (FO, Lg)-separability whenever
UCQ € Lg € FO and that for all FO-fragments £, Lg such that £g contains UCQ
and £ has the relativization property, weak (projective) (L, Ls)-separability is
reducible to the complement of rooted UCQ-evaluation on £-knowledge bases.

As opposed to FO, the satisfiability problem in FO? is decidable, then separa-
bility for FO?-knowledge bases is potentially decidable. We show that (projective
or not) full weak (FO? FO?) and (FO?,FO)-separability are still undecidable.
This is done via reduction from a tiling problem, without using any model-
theoretic characterisation of separability. We show that, in contrast to FO,
projectivity can make a difference with FO? as a separating language. We show
however that even with the help of projectivity, FO? has strictly less separating
power than FO.

We then consider (£, £)-separability for £ € DL;o, where DLz, denotes the
set of description logics that can be constructed from ALC using the extensions
Z,Q. We establish a model-theoretic characterisation of separability that is
uniform over all languages in DLz. Projectivity is crucial. The characterisation
reveals a connection between the decision problems of separability and UCQ
evaluation, from which we deduce combined complexity bounds for full signature
weak projective (£, £)-separability, £ € DL7o (NExp-complete for all except Exp-
complexity for ALCQT). We also show PSPACE-completeness in data complexity
for ALC.

By tweaking the model-theoretic characterisation of projective separability,
we (much less easily) establish a characterisation of non-projective full weak
(ALCI, ALCT)-separability. It follows that we can easily reduce the projective
problem to the non-projective one in polynomial time. Then, non-projective full
weak (ALCZ, ALCT)-separability is NExp-complete in combined complexity and
in data complexity.

Projective and non-projective (GF, GF)-separability turn out to behave sim-
ilarly to (ALCZ, ALCT)-separability in many ways. The projective and non-
projective cases also do not coincide. Then, GF also admits a notion of bisim-
ulation, which we use to characterise separability as for ALCZ: in the projec-
tive case we also characterise separability following a “bisimulation-simulation-
homomorphism” pattern, while in the non-projective case we also rely on a
notion of “type incompleteness”. The results are, however, significantly more
difficult to establish. An analogous connection with UCQ-evaluation then yields
2Exp-completeness of (projective) (GF, GF)-separability.

10

Finally, we show undecidability of (projective) full weak (L, Ls)-separability
for Lo 2 ALC and Lg € {EL,ELT}.

Chapter 3. Full strong separability. A first observation is that projectivity
does not affect strong separability. As in the weak case, full signature strong
(Lo, Ls)-separability coincides with full signature strong (£, Lg)-separability
for all FO-fragments Ly, Ls, Lg such that Lg, L5 contain UCQ and either £, €
{ALC,GF} U {L£ | UCQ C £ C FO}. However, the proofs are fundamentally
different from the weak case. While the useful link for complexity was between
separability and query evaluation in the weak case, here our characterisations
imply that satisfiability provides an upper bound on the complexity of separability.
We then obtain, in combined complexity, Exp-completeness of full strong (£, £)-
separability where £ € {ALC; ALCZ,FO?} and 2Exp-completeness for GF. We
also obtain the same data complexity as (the complement of) satisfiability, that
is CONP-completeness.

Chapter 4. Restricted weak separability. The main equivalence results from
the full case fail when a signature is part of the input. We give model-theoretic
characterisations for projective separability in DL and observe that they do not
apply to ALCZO. We observe that it follows from our main characterisation
theorem that projective ALCZ and ALCO-separability can be non-projectively
captured by a language combining UCQs and DLs. We show that for the DLs we
consider, separability is tightly connected to the problem of deciding conservative
extensions. That reduction implies 2Exp-hardness for projective (ALC, ALC) and
(ALCZ, ALCT)-separability. We sketch a matching 2Exp upper bound via tree
automata and the characterisation theorem.

Our other main investigation is on the impact of admitting only concept
names as helper symbols for projective separability, versus also admitting role
names and/or constants. In particular we prove undecidability of projective
weak (ALC, ALCO)-separability if constants are allowed as helper symbols. This
is done via reduction from an undecidable tiling problem. Finally, we use the
same tiling problem to show that (projective) (ALC, ALCFIO)-separability is
undecidable.

Chapter 5. Restricted strong separability. We first look at the problem in the
context of DL, ontologies. As in the full case, projective and non-projective
separability coincide. Our main observation is that restricted strong separability
can be seen as an interpolation problem. Because FO has the Craig Interpolation
Property, we can even see it as an entailment problem, via a characterisation
of (£,FO)-separability for all £ € DL;,. From that characterisation, it follows
that (£,FO)-separability is Exp-complete and that FO’s separating power is
matched by Boolean hybrid CQs — extensions of hybrid CQs introduced in the

11 0 INTRODUCTION

previous section. From the link between separability and interpolation, we
deduce that restricted strong (£, £)-separability is 2Exp-complete for all £ €
DL;,. We then focus on GF and FO?. While it needs some tweaking, the
same link between separability and interpolation holds there. We can, once
again, use the CIP of FO and results on the complexity of interpolants to deduce
combined complexity bounds (3Exp-completeness for (GF, GF), 2Exp-hardness
and CON2Exp for (FO?, FO?)).

RELATED WORK

Aside from the consideration of relations between data points, another key
difference between our approach and a statistical ML approach is that the latter’s
aim is less to find the explicit nature of what separates the points than to be
able to accurately classify future examples. In the applications that motivated
our investigation however, the explicit nature of the separating property is
interesting in and of itself, especially when under logical form. In the next
paragraphs we give an overview of those applications and discuss how they
relate to our treatment of the separability problem.

Early efforts towards inductive learning of first-order formulas converged in the
1990s into what became known as Inductive Logic Programming (ILP), baptized
in [Mu91]. Aside from better explainability, ILP offered an interesting alternative
to statistical ML by generalizing better over small datasets and taking relational
data into account. With the diversification of KR formalisms came the birth
of what could be considered as other forms of Inductive Logic Programming,
applied to the languages underlying those systems. Description logics are now
ubiquitous in KR thus primary candidates for any research that involves inductive
learning of logical formulas in the context of KR. The need for such research
quickly arose to answer a fundamental bottleneck of KR: that the implementation
and maintenance of ontologies require a great deal of manual input from domain
experts. The subfield of Ontology Learning, a term coined in [MS01], emerged
as an attempt to automatize this process. Among other research directions in
Ontology Learning, to expand ontologies based on description logic concepts,
much attention has been brought upon what is known as Concept Learning.

ILP & DL Concept Learning. Inspired by techniques from Inductive Logic
Programming, refinement operators are used in DL concept learning to construct a
concept that generalizes positive examples while not encompassing any negative

12

ones. An ontology may or may not be present. A downward (resp. upward)
refinement operator is a function that maps any hypothesis (i.e. formula) to a set
of refinements (resp. generalisations) of that hypothesis: formulas that are more
(resp. less) specific. The first transposition of the ILP refinement approach to DLs
was done in [BN00] for the logic ALER. Many have followed since then, both
for weak separation [HL10,S15,HS19] and strong separation [AEF08, Li12, AFR20].
Prominent systems include the DL LEARNER [BBLPW18,BLW16], DL-FOIL [AEFR18a]
and its extension DL-FOCL [AEFR18b], SPaCEL [DGMT17], YINYANG [FIP07], and
PFOIL-DL [MS15]. A method for generating strongly separating concepts based on
bisimulations has been developed in [HHNST12, HNT15,DHNN18] and an approach
based on answer set programming was proposed in [Li16].

Algorithms for DL concept learning typically aim to be complete, that is, to
find a separating concept whenever there is one. Complexity lower bounds for
separability as studied in this thesis then point to inherent limitations on any
such algorithm. Undecidability even means that no learning algorithm can be
both terminating and complete.

Computing the least common subsumer (LCS) of a set of concepts and the
most specific concept (MSC) applying to a single data item [BCH92, N90, BKM99]
can be viewed as DL concept learning in the case that only positive examples
are available. The problem is trivialized if the separation language expresses
disjunction. [TZ13] studies LCS/MSC in the context of ££ in the presence of an
ontology, gives a semantic characterisation of their existence and computing
procedures: in ££, with a single data item, MCS verification and existence are
tractable. A recent study of LCS and MSC from a separability angle is done
in [JLw20]. It extends the MSC to multiple examples, looks at special cases
like empty ontologies, arbitrary signature restrictions, and adds ££Z to the
discussion. Complexity is dramatically increased from [TZ13]. It shows that for
EL,ELT, the complement of separability can be mutually reduced with MCS
verification.

Query-by-Example. Reverse engineering of database queries, or Query-By-
Example (QBE) is another active field of relevant applications, see e.g. [CPT09,
EPSZ13,CW17,KLS18,DG19,SWi12] and [Mart19] for a recent survey. A query can
be understood as a logical expression, typically used to retrieve elements from
a database. QBE grew from the difficulty for non-expert users to formulate
their desired queries. Instead, users may simply input some database examples
(and counterexamples) for the ‘notion’ they are targeting and receive query
suggestions from the QBE system in return. This can easily be seen as a separation
problem where one looks for a separating formula in a query language. In
particular, the language CQ of conjunctive queries is in fact the positive existential

13 0 INTRODUCTION

fragment of first-order logic.

A theoretical side to learnability and separability of queries burgeoned in
the last 5 years, under both closed-world [AD16, BR17, KR18, CD21] and open-
world [019, CCL21, ADK16] semantics. We give a brief description of the clos-
est approaches to ours. Under closed-world assumption, [AD16] shows GI-
completeness of FO-definability, which can be seen as separability with no nega-
tive example. Earlier, CONEXP-completeness of CQ-separability was proved using
a folklore semantic characterization based on product homomorphisms [CD15].
In [BR17] CONP-completeness is shown for UCQ-separability and approximation
methods are designed to reach tractability. Separability with fragments of the
query langage SPARQL on (closed-world) RDF graphs is also studied for its
complexity in [ADK16], as well as definability.

In [GJS18], QBE is brought to the open-world setting and the separabil-
ity problem there includes ontologies to the background knowledge. Model-
theoretic characterisations and complexity bounds are given for what we, in our
terminology, would refer as weak (£, Lg)-separability, where L5 € {CQ, UCQ}
and L, € {HornALCZ,Horn ALC,ELT}. A distinction is made between restricted
and full signature separability, as is done here. The presence of an ontology is
shown to be computationally detrimental as complexity bounds range from Exp
to 2Exp. As shown in [019], using a more rudimentary language for ontologies
such as DL-LITEy, reduces the complexity down to CONP-completeness for UCQ
(arguably less interesting than CQ for generalizing, as disjunctions make it prone
to overfitting) but the complexity stays as prohibitively high as before for CQ.

As is done here for more expressive logics, [F19] investigates “Concept-
By-Example”, i.e. full weak separability under ontologies formulated in ££,
with model-theoretic characterisations. This approach intersects both QBE and
DL Concept Learning, as £L£Z-concepts are equivalent to tree-shaped conjunc-
tive queries. Exp-completeness in combined complexity is shown for (£y, EL)-
separability for any £, contained in ££. Separability for a given role depth of
the separating concept is also characterised and shown to be NP-complete.

Generating referring expressions. Generating referring expressions (GRE) has
originated from linguistics (see [DK12] for a survey). A referring expression is
any noun phrase that identifies an object in a given context (e.g. “the man on
the left”). In GRE, one aims to design algorithms that can produce accurate
referring expressions in the sense that they fit human intuition. It can be seen
as a definability problem in our framework. Both weak and strong separability
are conceivable: weak separability means that the positive data item is the only
one that we are certain to satisfy the separating formula and strong separability
means that in addition we are certain that the other data items do not satisfy

14

the formula. Approaches to GRE such as the ones in [BTW16, AMOW21] aim
for stronger guarantees, for instance by demanding that a referring expression
for an object refers only to that object, in the context imposed by the ontology.
GRE has recently been converging towards KR framework. In a closed-world
context description logic concepts have also been proposed for singling out a
domain element in an interpretation [AKS18]. The computation of referring
expressions has recently received interest in the context of ontology-mediated
querying [TW19].

Entity Comparison. As relevant field we can finally mention Entity Comparison,
in which one aims to extract the similarities and the difference between two
data points. RDF graphs are the standard format for displaying information from
the Semantic Web, and SPARQL queries are the standard language for query
answering on RDF data. An approach to entity comparison in RDF graphs is
presented in [GHPS17,GHKP19]. There, SPARQL queries are used to describe both
similarities and differences, under an open world semantics. The ‘computing
similarities’ part is closely related to the LCS and MSC mentioned above. The
‘computing differences’ part is closely related to QBE and fits into our framework.

15 0 INTRODUCTION

This dissertation draws on the following joint work with Maurice Funk, Jean
Christoph Jung, Carsten Lutz and Frank Wolter.
» Sections 2.3/2.6/3.2:

Learning Description Logic Concepts:
When can Positive and Negative Examples be Separated?,

published in Proceedings of the 28th International Joint Conference on
Artificial Intelligence (1JCAI 2019). [FJLPW19]
» Chapters 2 and 3, aside from Sections 2.3/2.6/3.2:
Logical Separability of Incomplete Data under Ontologies,
published in Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2020). [JLPW20]
» Chapters 4 and 5:

Separating Data Examples by Description
Logic Concepts with Restricted Signatures,

published in Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2021). [JLPW21]

Material from the above publications that is mentioned in the thesis but to which
I have not contributed includes all results about full weak separability on £L£(Z)-
ontologies (mentioned in Ch. 2), 3EXp-completeness of restricted projective and
non-projective weak (ALCO, ALCO) separability (Ch. 4), and undecidability of
restricted weak (GF®, Lg)-separability for £g 2 ALC (Ch. 4).

An article [JLPW22] building upon material presented in Chapters 2 and 3 has
been published in the December 2022 issue of Artificial Intelligence (ALJ).

€0

Chapter 1

Preliminaries

We introduce the required material to enunciate and investigate the separability
problem. In particular, we introduce all languages studied in this thesis, with
some of their essential model-theoretical and computational properties. Ulti-
mately, we give a formal definition to the separability problem, together with
some of its overarching properties.

1.1 First-Order Logic background 17
1.2 KR terminology 19
1.3 Conjunctive queries 20
1.4 Description logics 22

1.4.1 Syntax & Semantics 22

1.4.2 Model theory 25
1.5 Guarded Fragment 31

1.6 The separability problem 36

17 1 PRELIMINARIES

§ 1.1. FIRST-ORDER LOGIC BACKGROUND

All logics considered in this thesis can be interpreted as fragments of first-order
logic (FO), either directly or by some syntactic translation. We introduce FO
and remind the reader of general facts in the context of FO. For a thorough
introduction, see e.g. [Mark02].

We work with the standard syntax of first-order logic, but without function
symbols.

1.1. Definition. Let var, cons and rel, be countably infinite sets, for every n > 1.
We respectively call their elements variables, constants and relations of arity n.
Let rel = [J,> rel,. Let the full alphabet be the set var U cons U rel. Let an
atomic FO-formula be any formula of the form t; = t5 or R(tq,...,t,), where
n=1,Rerel,and tq,...,t, € var U cons. Let the set of FO-formulas be the
smallest set S containing all atomic FO-formulas and such that, if ¢, € S and
x € var, then -, p AY,dxp € S. For all FO-formulas ¢, and x € var, we use
the following abbreviations.

(pVY) | 2(~p A1)
(p—=Y) | (mpVy)

T (¢ Vo)
1 =T
Vxp —dx—p

We call signature any subset of rel U cons. We call a signature relational if it does
not contain any constant symbol. For any FO-formula ¢ we define the signature
of , written sig(¢), as the set of symbols from rel U cons occurring in ¢. For
any set S of FO-formulas let sig(S) := U(p s
set £ of FO-formulas closed under conjunction. We call its elements £-formulas.

sig(¢). We call fragment of FO any

Let £ be a fragment of FO and X a signature. We call £(X)-formula any ¢ in
£ with sig(p) € . We respectively call £-sentence and £(X)-sentence any such
formula with no unquantified (or free) variable.

We also use standard semantics, with the following notation.

1.2. Definition. Let a model be any triple 2 = (dom(21), (RM)gerel, (€*)cecons)
where R* C dom(20)" if R € rel,,, and ¢* € dom(2A) for every c € cons. We call
dom(2A) the domain of A, R* the extension of R in 2 and c* the interpretation of ¢
in 2A. We call pointed model any pair (2, a) where 2 is a model and a € dom(2()"
for some n = 1. Using the standard semantics, for any FO-formula ¢ (x4, ..., x,),

1.1. First-Order Logic background 18

model 2 and a = (a, ..., a,) € dom(A)*, we define c¥(a) = ¢* and x?‘(a) =q
and we write 2 F p(a) (¥ ¢(a) otherwise) to denote that 2 satisfies ¢ in a. It
is inductively defined as such.

AE(t; =ty)(a) if t¥(a) = t3(a)

AFE (R(tq,...,t))(a) if (tf‘(a), o ti‘(a)) eR*

AE (—p)(a) if A p(a)

AE (¢ A)(a) if AE ¢(a) and A F y(a)

AE (3x;0)(a) if AFE ¢(ay,...,a;_1,b,ai41,-..,a,)

for some b € dom(2A)
We next introduce the Compactness Theorem (see e.g. [Mark02, §27).

1.3. Definition. An FO-theory is a set of FO-sentences. For any FO-theory T and
any model 2(we write 2 F T (“2 satisfies T”, or “A is a model of T”) if AF ¢
for every ¢ € T. T is satisfiable if there exists 2 such that A F T. T is finitely
satisfiable if every finite subset of T is satisfiable. We write S(x;,...,x,) if S is
a set of formulas whose free variables are all among {xq,...,x,}. We say S is
satisfiable if there exists a pointed model (2, a) such that 24 F ¢(a) for all p €S,
and S is finitely satisfiable if every finite subset Sy of S is satisfiable.

1.4. Theorem (Compactness). Every finitely satisfiable FO-theory is satisfiable.

An immediate application of the compactness theorem extends it to sets of
formulas that are not necessarily closed.

1.5. Corollary. Every finitely satisfiable set S(x1,...,X,) of FO-formulas is satisfi-
able.

The remaining definitions are basic model-theoretic notions, but we define them
with respect to relations only and not constants; the separability problem involves
constantless formulas in the vast majority of cases treated in this thesis.

1.6. Definition. Let 2,3 be models, ¥ a signature and h : dom(2() — dom(8).
h is a 3-homomorphism if, for alln = 1, R € rel, N % and (a4, ...,a,) € dom(A)",
(aj,...,a,) € R implies (h(a;),...,h(a,)) € R®. We write h : 2A —* %B. For
every a = (a,...,a,) in dom(2A)" and b = (b4,...,b,) in dom(B)" we write
h: (YA,a) == (B,b) if h(ay) = by,...,h(a,) = b,. We omit X if X D rel. h
is a X-embedding if h is an injective homomorphism and, for alln > 1, R €
rel, N2 and (ay,...,a,) € dom(Q)", (ay,...,a,) € R¥ iff (h(a;),...,h(a,)) €
R®. h is an Z-isomorphism if it is a surjective Z-embedding. We then denote

19 1 PRELIMINARIES

it as (2A,a) ~5 (B,h(a)). h is an elementary embedding if, for all n = 1, ¢
constantless FO-formula and (ag,...,a,) € dom(2)", A p(a,,...,a,) iff BE
p(h(ay),...,h(a,)). A is an extension of B if the identity map id : dom(B) —
dom(®l) is a rel-embedding. 2 is an elementary extension of 9B if the identity map
from B to 2 is an elementary embedding. 2l and 98 are elementary equivalent if,
for all constantless FO-sentences ¢, 2 F ¢ iff B F p.

Suppose ¥ is a signature, n > 1, 2 is a model, a = (a,, ..., a,) € dom(2)" and
A C dom(21). For any fragment £ of FO, let £,(X) denote the set of £(X14)-
formulas where =™ = Z U {c, : a € dom(2)} and where for all a € A, ¢, is
assumed without loss of generality not belonging to cons and such that ci‘ =a.
We define the £(X)-type of a in 2 over A as

tpy 5(a/A) = {p(x1, ..., X,) € Ly(Z) | AF p(a)}.

We call £(X)-n-type any set t such that t = tp?z(b/B) for some model ®B,B €
dom(B) and b € dom(B)". We say t is realized in B by b over B. We call
L-n-type any L(X)-n-type for some Y. An FO-n-type t is consistent with an FO-
theory T if T has a model realizing t. Let S, (T) denote the set of all £-n-types
consistent with T. Let T,(2() denote the set of all FO4-sentences satisfied by
2. Let S%(A) =S, (T4(21)). We say 2 is w-saturated if, for any n > 1, any finite
subset A € dom(2l) and any FO-n-type t € S%(A), t is realized in L.

We also make use of the following well-known property of FO (see e.g. [Mark02]).

1.7. Theorem. Any model has an w-saturated elementary extension.

§ 1.2. KR TERMINOLOGY

Our statement of the separability problem is expressed using Knowledge Repre-
sentation terminology, which we now make precise in the most general context
of FO.

1.8. Definition. Let £ be a fragment of FO. We call £-ontology any finite set of
L-sentences. We call database any finite set of formulas of the form R(a) with
R(x) € rel, and a € cons" for some n = 1. We call £-knowledge base any pair
consisting of an £-ontology and a database. For a database D, let cons(D) be
the set of constants occurring in D. For any £-knowledge base K = (O, D) and
any model 2l we write 2 F IC (“A satisfies K7, “A is a model of K”) if A E O and
A ED. We write K F ¢ ("K entails ¢") if A F ¢ for all A F K.

1.3. Conjunctive queries 20

1.9. Remark. For any FO-knowledge base (O, D), the set OUD is an FO theory
(using constants). If constants are allowed in the ontology, the database is
redundant thus, conversely, every FO-theory T can be seen as a knowledge
base (T,#). In a KR setting, the ontology usually expresses general knowledge
about the world (e.g. “every X is a Y”) and leaves every information concerning
particular individuals to the database. If the ontology does not use constants,
our definition of a knowledge base is a specific case of first-order theory in which
all formulas containing constants need to be atomic.

1.10. Model induced by a database. Any database D can be seen as a model
2, defined by dom(2p) = cons(D), c*? = ¢ for all ¢ € cons(D) and R¥*» = {c|
R(c) € D} for allR € rel.

1.11. Definition. For a database D, n 2 1 and a € cons(D)", we denote by D,
the “connected component of a in D”, that is, to be formally exact given our
definitions, the set of all R(b), R € rel, such that b is in the connected component
of a in the Gaifman graph Gy of the model 2l;, induced by D, where the
Gaifman graph Gy of a model 2 is defined by Gy = (V, E) with V = dom(2() and
E ={(x,y) | x,y occur in some tuple a € R* for some R € rel}. An example is

@ 4

A Ga

given below.

§ 1.3. CONJUNCTIVE QUERIES

Conjunctive queries and their unions happen to play a pivotal role in character-
ising separability and are themselves an interesting language for separation.

1.12. Definition. A conjunctive query is a formula of the form g(x) = yp(x,y),
where ¢(X,y) is a finite conjunction of constantless atomic FO-formulas. A union
of conjunctive queries (UCQ) is a finite disjunction of conjunctive queries that all
share the same free variables. We write (U)CQ for the language of (unions of)
conjunctive queries. The free variables of a UCQ are often called answer variables
in the Knowledge Representation or Description Logic literature [BHLS17].

1.13. Model-database-CQ correspondence. Let a pointed database be any pair
(D, a) such that a is a tuple of constants occurring in D. Any conjunctive query

21 1 PRELIMINARIES

q(x1,...,x,) can be seen as a pointed database (Dg,[x1],...,[x,]), by defining
D, to be the set of all R([y1],...,[y;,]) such that there exist y; € [y1],...,¥,, €
[¥m]withR(y1,..., ¥,) € D, where [-] denotes the equivalence class induced by
the smallest equivalence relation over the variables of g that contains all pairs
(x,) such that (x = y) is a conjunct of q. We can assume [y7],...,[y,] € cons
without loss of generality as cons is infinite. Any conjunctive query can therefore
be seen as a model 2, by setting 2l, = Qqu, where QLDq is the model induced
by the database D, as defined in Remark 1.10. The Gaifman graph G, of a
conjunctive query q can be defined as the Gaifman graph of the model 2, induced
by g. Conversely, any finite pointed model (2, a) with a = (a,,...,a,) can be
seen as the CQ

Rerel

q(2,a)0x1, -, %) = Iycdom@ara) ¥ [\ ROar/x1, .., an/X,]
yER%
A /\ Xi:Xj
ai=aj

(assuming without loss of generality that x4, ..., x,, € dom(2()), thus any pointed
database (D, a) can be seen as a CQ q(D,a) := q(2p,a).

1.14. Definition. Call a CQ q rooted if every variable is reachable from an answer
variable in Gg.

1.15. Remark. As conjunctive queries can be seen as models, satisfying a CQ for
a pointed model (2, a) is the same as being able to homomorphically embed the
(model induced by the) query into that model, matching the answer variables
with a. Let q(xi,...,x,) and a = (a,,...,a,) € dom(2)" for some model 2.
Then A & q(a) iff there is a homomorphism h : 2, — 2 with h(x;) = a; for all i.

1.16. Definition. Let £ be a fragment of FO. We call UCQ evaluation on L-
knowledge bases the decision problem associated with the set of all triples (K, g, a)
such that K = (0, D) is an £-knowledge base, q(x) is a UCQ, a € cons(D)*, and
K E g(a). Similarly, we define CQ evaluation and rooted UCQ evaluation on
L-knowledge bases.

(Rooted) (U)CQ-evaluation on empty ontologies is NP-complete. By Remark
1.15, it follows from NP-completeness of the Graph Homomorphism Problem
[BHLS17]. On the other hand, undecidability of (rooted) (U)CQ-evaluation on
FO-knowledge bases follows from undecidability of satisfiability in FO.

1.17. Definition. Let L be a fragment of FO. Evaluating queries from a query
language £ contained in FO is finitely controllable on £-knowledge bases if

1.4. Description logics 22

for every L-ontology O, database D, formula ¢(x) in £, tuple of constants
a € cons(D)X, if (0, D) |- p(a), then there is a finite model 2 of K such that
A = p(a®) [JKs4,Roll].

Note that £ has the finite model property (for all ¢ in £, § ¥ ¢ iff A ¥ ¢ for
some finite model 2() if evaluating queries from L is finitely controllable on
L-knowledge bases. Conversely, the finite model property does not always imply
finite controllability of evaluating (rooted) CQs or UCQs, but it does for ALCZ
and even GF [BGO14].

§ 1.4. DESCRIPTION LOGICS

Description logics are a family of languages originally designed and popularized
in the context of Knowledge Representation, for their good computational be-
haviour and easy readability by engineers unfamiliar with logical syntax. Those
two qualities also make them interesting candidates as separating languages,
from an applied standpoint. Their model-theoretic and computational properties
have been extensively studied in the last forty years, see [BHLS17, BCMNP03] for
standard textbooks.

1.4.1. Syntax & Semantics

We introduce the foundational description logic ALC and its negation-free frag-
ment L.

1.18. Definition. Let the languages ALC and £L£ be defined by the following
grammars, for all A € rel;,R € rel,.

{ AlCnD|-C|3R.C ALC
C,D::=

T|A|CAD|3R.C L

Let £ be a description logic inductively defined over constructors and symbols
from rel; and R € rel,. We define

LZ, by extending rel, to the closure of rel, under R — R™ (inverse roles)
LO, by extending rel; to rel; U {{c} : c € cons} (nominals)

LQ, by adding "C € £LQ implies = nr.C € LQ" (number restrictions) for all
n€N,R < rel,.

If £ is a description logic, we call its elements £-concepts. If C € L, let sig(C)
denote the set of symbols from rel U cons occurring in C. If sig(C) = %, we say C
is an £(X)-concept. In Description Logic terminology, unary relations in rel; are

23 1 PRELIMINARIES

usually called concept names and binary relations in rel, role names. We write
rel; for rel, U{R™ | R € rely}.

1.19. Remark. The order in which suffixes 7,0, Q are positioned is purely
conventional. While outside of our scope, many other suffixes and extensions
exist in the DL literature; see [BHLS17].

We use the following standard abbreviations.

T cu-C

L -T
cub =(=C M -D)
C—D -CuUD
VR.C —3R.~C

R (R)~
<nR.C -2 (n+1)R.C
=nR.C | <nR.CM=2nR.C

1.20. Definition. Let £ be a description logic. An L-ontology is a set of expres-
sions of the form C E D (concept inclusion) where C,D are L-concepts. An
L-database is a set of expressions of the form R(a, b) (role assertion) or A(a)
(concept assertion) for some role name R € rel, and concept name A € rel;. An
L-knowledge base is a pair K = (O, D) consisting of an £-ontology and an £L-
database. We write sub(K) to denote the closure under subconcepts and single
negation of the set of concepts occurring in K, and sub(Q) analogously. For any
pointed model (2, x), let tpx(2l, x) = {C € sub(K) | x € C*} and similarly for
O. Call K-type (resp. O-type) any t such that t = tp(2, x) (resp. O) for some
(A, x).

Unlike in the traditional definition of databases (also called ABoxes) in Descrip-
tion Logic, we do not consider complex concepts in databases but only atomic
ones, unless specified otherwise. For instance, a database containing (3R.A)(a)
is not allowed in our framework.

1.21. DLs as fragments of FO. The description logics defined above can be seen as
fragments of FO: for each £, every £L-concept, concept inclusion or role/concept
assertion can be translated into first-order via the function (-)', defined below

1.4. Description logics 24

forany C,D € £, A€ rel;,R €rely,c € cons and n € N.

AT =A(x)
{c}'=(x=0)
(cnD)" = (Cc'(x) ADT(x))
(AR.C)" =y (R(x, y) ACT(y))
(AR~.C)" = 3y (R(y, x) ACT(3))
(>nR.C) =13y, ... Elyn(/#\—'(yi =) A A\RGE) ACT (1))
i#j l
(CED) =Vx(C'(x) - D(x))
(C(e)"=C(c)
(R(a, b)) =R(a, b)

We then interchangeably use the term of “L-formulas” when speaking of £-
concepts, for any description logic L.

Thanks to the translatability of description logic concepts, we can use first-order
semantics to interpret Description Logic concepts in relational structures, as first-
order formulas. The definitions of £-ontologies, databases and knowledge bases
in the Description Logic context are then also consistent with their definitions in
the first-order context.

1.22. Definition. For any £-concept C and model 2, let C* = {x € dom(2) | A E
CT(x)}. We write the following for any C,D € ALCQZO, any pointed model
(A, a) and ¢ € cons.

AFEC(a) ifaec*
AE C(c) if X ec?
AECCED if c* c p*

Let tp,»(,x) ={Cin L(Z) | x € C%}. and £(Z)-types denote any set of the
aforementioned form for some pointed model (2, x).

1.23. DLs as syntactic variants of modal logics. While DLs and modal logics
—see [BRV01] for an overview— were developed independently, it was first pointed
out in [Sc91] that every ALC-concept can be translated into a multi-modal
formula via the function ()7, defined below for all concepts C, D, role names R
and concept names A.

25 1 PRELIMINARIES

AT=A
(cnD) =(cTAD")
(3R.C)" = ¢, C"
(~C)F =T

1.4.2. Model theory

1.24. Definition. Given a signature %, an ALC(%)-bisimulation is a binary
relation B € dom(2A) x dom(®8) for two models 2, B satisfying the following
conditions, for all (x,y) € B, all concept names, role names and constants
AR,c e X
AToM x € A% iff y € A®,
FORTH If (x,x’) € R* for some x’, then there exists y’ such that
(y,¥') €R® and (x',y") € B.
Back If (y,y") € R* for some y’, then there exists x’ such that
(x,x")eR® and (x’,y’) €B.
To define £Z-bisimulations from £-bisimulations, letRe XU {S™ | S € ©}.
To define £O-bisimulations from £-bisimulations, add
OAroM x =c¥iff y =c%.
To define £Q-bisimulations from £-bisimulations, replace FORTH, BACK by
QFORTH For any finite X C {x’ : (x,x’) € R¥}, B contains a bijection
X —Y forsomeY C{y":(y,y’) €R%}.
QBAck For any finite Y C {y’ : (y,y’) € R®}, B contains a bijection
X — Y for some X C {x’: (x,x’) € R*}.

If B is an £(X)-bisimulation for some £ between two pointed models (2, a)
and (B, b), we write (2,a) ~, » (B, b) and say that (2, a) and (B, b) are L(X)-
bisimilar. We say that (%A, a) and (B, b) are logically £(3)-equivalent, which we
write (4, a) =, » (B, b), if A F C(a) & B F C(b) for all L(X)-concepts C.

The following is well-known in modal and description logics. It is usually only
proved for ALC; we quickly show that it can be extended to any extension within

DLz .
1.25. Lemma. The following items hold for any £ € DLzng, pointed models
(2(,d), (B, e), and signature 3.

1. (Ql: d) ~Ls (%, e) = (Q[) d) EL,Z (%J e)-
2. (A,d)~,5(B,e) = (A,d) =, 5 (B, e) if A has finite outdegree.

1.4. Description logics 26
3. (A,d)~,5(B,e) = (A,d) =, 5 (B,e) if A and B are w-saturated.

Proof. We prove it for £ = ALCQZO. Arguments for the less expressive lan-
guages are easily derived from the ALCQZO proof. (1) is straightforward. To
prove the converse implication, suppose (2,d) =, ». (B, e). We show that the
relation = y; is itself the desired bisimulation if 2 has finite outdegree or if 2, B
are w-saturated. Let (x,y) € =;y». Let R € L Nrel,. ATOM and OATOM are
trivially satisfied. For all x, y, (2, x) =, (B, y) iff tp?z(x) = tp?z(y). It is
clear that QFORTH and QBACK immediately follow if f01” every E(Z’)-type t, x
and y have equally many R-successors of type t. It only remains to prove the
latter when either 2l has finite outdegree or 2, B are w-saturated. Let t be an
arbitrary £(X)-type and n,, n, denote the respective numbers of R-successors of
x and y of type t.

(2) Suppose 2 has finite outdegree and let n be the number of R-successors of x
in 2. Then, A F (= nR.T)(x). Then, B F (= nr.T)(y) by logical equivalence,
so y also has n R-successors. For each R-successor x’ of type t’ # t, there is
an L£(X)-concept C,, € t"\ t. Let I denote the set of such successors. Since 2
has finite outdegree, I is finite, so we can write A E = (n—n,)R.| |,/c; Cx/(x)
thus B E = (n—n,)R.| |,.c; Cx(y) by logical equivalence. Then, y has at least
n —n, R-successors of different type from t. To show y has, in fact, exactly
n—n, such successors, suppose it has more and denote their set by J. Again,
each y’ € J satisfies a concept Cy ¢ t, thus B F =(n—ny)R. |_|y,€J Cy/(y), and
L E=(n—n,)R. |_|y,ej C,.(x) by logical equivalence. Then x has at least n—n,,

R-successors of different type from ¢, so n, =n,,.

(3) Suppose 2 and B are w-saturated. Suppose n, is finite. The FO(X%)-n,.-

type t'(z1,...,2,) = U1<i<nx{‘/’(2i) AR(y,z;) | ¢ € t} over the finite set {y}
is realized in 8. Then, n, < n,. That set is indeed a type as it is finitely
satisfiable: for any ¢1,...,¢n € t, A F 321...32, N\1cicn Ni<jem 95z A
R(x,2;), therefore B F 3z1...3z, Ai<icn Ni<j<m ?i(2) ARy, 2;) since we
assumed (2, x) =, 5 (B, y). If n, is infinite, then t(21,...,2,), which is a type
by the same argument as above, is realized in 5 for any n > 1, so n, is infinite.

It only remains to show that n,, < n