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Abstract

For any two fragmentsLO,LS of first-order logic, we define as (LO,LS)-separability
the problem of, given an ontology formulated in LO and a database containing
positively and negatively labeled tuples, the existence of a separating formula ϕ
in LS , i.e., that applies to all positive tuples but no negative one. We distinguish
several versions of that problem, depending on how the notion of separation is
defined or on the symbols ϕ may contain. For each version and various combina-
tions of languages (LO,LS) (ranging over first-order logic, its guarded fragment,
its two-variable fragment, expressive description logics, conjunctive queries or
unions thereof), we provide model-theoretic characterisations and complexity
bounds for (LO,LS)-separability. To that end, we uncover and make use of the
interplay between separability and well-studied decision problems such as query
evaluation, satisfiability, interpolation and deciding conservative extensions.
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Chapter 0

Introduction

THIS thesis discusses the following problem. Given two sets of data points
E+ and E− of positive and negative examples (possibly both within a larger

set) labeled with information under logical form, is there a logical expression ϕ
that only applies to the positive ones?
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+
+
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-
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ϕ

A crucial feature of our framework is that we assume our information to be
incomplete: if all one knows is that a satisfies A, one cannot conclude that a
does not satisfy B. This feature is well-known in Knowledge Representation
terminology as the open-world assumption, as opposed to closed-world where
information is assumed complete and absence of explicit satisfaction equates to
satisfaction of absence. With open-world semantics, what we mean by “sepa-
rating” is not as straightforward: the positive examples may share a common
property that, to our knowledge, is not forced onto any negative example, but
still allowed for at least one of them.

�

�

�

�

�

�

�

a satisfies A
b satisfies A
c satisfies B

a and b have A in common;
c may or may not satisfy A.

In consequence, we distinguish two approaches to separation: either we require
from a separating formula that it does not necessarily apply to any negative
example, or that it necessarily does not apply to any negative example. We say
the formula weakly separates E+ from E− in the former case and strongly in
the latter. In the above example, a and b are weakly separated from c but not
strongly.

Our main motivation for looking at the logical separability problem comes from
its applications to Knowledge Representation, as we explain in detail further
below. Knowledge Representation is a four-decade-old subfield of Artificial
Intelligence that aims at designing structured computer representations of the
world. Ontologies are currently one of its main formalisms. They express general
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knowledge through semantic links between concepts. They can be understood
as a generalization of dictionaries or taxonomies. On top of information that is
provided by our data points (databases), we also take ontologies into account
(again, under the open-world assumption, customary for ontologies).

DATABASE

�

�

�

�

�

�

�

a satisfies A
b satisfies A
c satisfies B

ONTOLOGY

�

�

�

�

�

�

�

B implies A

Now, in any world realizing the above,
c satisfies A so a, b are not weakly separable from c.

We work within first-order logic (FO): all the information given by the ontology
and the database is assumed to be expressed as first-order formulas, and so is
the separating formula we look for. In our framework, the informal example
above is understood as follows.

DATABASE

�

�

�

�

�

�

�

A(a)
A(b)
B(c)

ONTOLOGY

�

�

�

�

�

�

�

∀x(B(x)→ A(x))

We also work with strictly less expressive, but decidable, fragments of first-
order logic. Examples might be separable by a first-order formula but not by
any formula from some less expressive fragment. If the database consists of
{A(a), B(b), C(c)} where A, B, C are atomic, a and b are not separable from c in
a language that cannot express disjunction.

Separating sets of data points is at the heart of Supervised Machine Learning.
The information carried by our data corresponds to features in standard Machine
Learning terminology. One difference is that data points there are usually
described independently from each other whereas we also consider relations
between them.

DATABASE

�

�

�

�

�

�

�

R(a, b)
R(b, c)
B(c)

a and b are weakly separated
from c by ϕ(x) = ∃yR(x , y).
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A more precise formulation of the separability problem is as follows.

Given a database D and a constantless ontology O that together
constitute a knowledge base K, formulated in a fragment LO of
first-order logic, sets E+, E− of tuples of constants occurring in
D and a separation language LS (also a fragment of FO), does
LS contain a constantless formula ϕ such that

for all a ∈ E+,b ∈ E−,







K ⊨ ϕ(a)
�

K ⊭ ϕ(b) (weak case)
K ⊨ ¬ϕ(b) (strong case)

?

We refer to that decision problem as (LO,LS)-separability. We mostly focus on
the case where constants are not allowed in ontology and separating formulas.
While it obviously trivializes the problem to allow constants from E+, E− in the
separating formulas (as the equality symbol is present), allowing other constants
is of interest as well but will only briefly be discussed in this thesis. Aside from
the distinction between weak and strong separability, we also include other
interesting dimensions. If ϕ is allowed to contain symbols that do not occur in
O ∪D, we speak of projective separability (non-projective otherwise). We also
look at the case in which ϕ is only allowed to feature a predetermined set of
symbols from O ∪D, as part of the input. We denote it as restricted and the
opposite case – where no restriction is given – as full signature separability.

The practical suitability of weak versus strong separability depends on how
complex the ontology is, as we illustrate later on in Section 1.6. Restricted
separability is not considered in any of the applications we describe; we include
it as a natural generalisation. Projective separability is also not yet considered
in applications. In a theoretical context, as we show, it proves important to
equivalence results.

The contribution of this thesis can be summarized as follows. We study, for vari-
ous combinations of the above variations, ontology language LO and separation
language LS ,

▶ the computational complexity of (LO,LS)-separability, either
with the ontology as part of the input (combined complexity) or
without (data complexity),

▶ relations of inclusion between each variation - how languages
relate to each other in terms of separating power, the conse-
quences of projectivity, etc.
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To this end, we often aim at characterising separability in model-theoretic terms.
Those characterisations, often unexpectedly, revealed fruitful connections be-
tween separability and well-known problems such as satisfiability, query evalua-
tion, interpolation and deciding conservative extensions.

Aside from first-order logic FO, we pay particular attention to description logics.
Responding to KR’s need for a logical formalism that would support automated
reasoning and overcome the drawbacks of first-order logic, description logics
were designed to offer a satisfactory trade-off between expressivity and practical-
ity, the latter ranging from user interface (readability for non-domain experts) to
decidability of the core reasoning problems (satisfiability, instance checking...).
The reader is referred to [BHLS17,BCMNP03] for an extensive account of their
history and their applications. We consider the ‘standard’ DL ALC and its lattice
of extensions induced by the constructors I,O,Q (inverse roles, nominals and
number restrictions). As separation languages, we also consider the fundamental
database language CQ (of conjunctive queries) and its closure UCQ under dis-
junction. We include the Guarded Fragment GF and the two-variable fragment
FO2 of FO for the interesting compromise they offer between expressiveness
(they both subsume ALCI) and desirable properties such as decidability or the
finite model property. More anecdotally, we discuss strictly positive description
logics EL,ELI and the Guarded Negation Fragment GNF of FO that subsumes
GF and UCQ.

A related notion to separability, which we choose to leave outside of our discus-
sion, is definability. It corresponds to the particular case where the negative data
points are exactly all the non-positive ones. Definability is relevant to many of
the same applications as separability and notable theoretical results have been
obtained in parallel to separability. For the most part, they are corollaries of
results on separability and the techniques used to obtain them are essentially
the same.

Following the way our results and proof techniques tend to cluster, we dedicate
a chapter to every combination of weak/strong and restricted/full separability.
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OUTLINE

Chapter 2. Full weak separability. We give a semantic characterisation of
projective weak full (FO,FO)-separability. The main consequences are that it
coincides with projective and non-projective (FO,LS)-separability whenever
UCQ ⊆ LS ⊆ FO and that for all FO-fragments LO,LS such that LS contains UCQ
and L has the relativization property, weak (projective) (LO,LS)-separability is
reducible to the complement of rooted UCQ-evaluation on L-knowledge bases.

As opposed to FO, the satisfiability problem in FO2 is decidable, then separa-
bility for FO2-knowledge bases is potentially decidable. We show that (projective
or not) full weak (FO2,FO2) and (FO2,FO)-separability are still undecidable.
This is done via reduction from a tiling problem, without using any model-
theoretic characterisation of separability. We show that, in contrast to FO,
projectivity can make a difference with FO2 as a separating language. We show
however that even with the help of projectivity, FO2 has strictly less separating
power than FO.

We then consider (L,L)-separability for L ∈ DLIQ, where DLIQ denotes the
set of description logics that can be constructed from ALC using the extensions
I,Q. We establish a model-theoretic characterisation of separability that is
uniform over all languages in DLIQ. Projectivity is crucial. The characterisation
reveals a connection between the decision problems of separability and UCQ
evaluation, from which we deduce combined complexity bounds for full signature
weak projective (L,L)-separability, L ∈ DLIQ (NEXP-complete for all except EXP-
complexity for ALCQI). We also show PSPACE-completeness in data complexity
for ALC.

By tweaking the model-theoretic characterisation of projective separability,
we (much less easily) establish a characterisation of non-projective full weak
(ALCI,ALCI)-separability. It follows that we can easily reduce the projective
problem to the non-projective one in polynomial time. Then, non-projective full
weak (ALCI,ALCI)-separability is NEXP-complete in combined complexity and
in data complexity.

Projective and non-projective (GF,GF)-separability turn out to behave sim-
ilarly to (ALCI,ALCI)-separability in many ways. The projective and non-
projective cases also do not coincide. Then, GF also admits a notion of bisim-
ulation, which we use to characterise separability as for ALCI: in the projec-
tive case we also characterise separability following a “bisimulation-simulation-
homomorphism” pattern, while in the non-projective case we also rely on a
notion of “type incompleteness”. The results are, however, significantly more
difficult to establish. An analogous connection with UCQ-evaluation then yields
2EXP-completeness of (projective) (GF,GF)-separability.
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Finally, we show undecidability of (projective) full weak (LO,LS)-separability
for LO ⊇ALC and LS ∈ {EL,ELI}.

Chapter 3. Full strong separability. A first observation is that projectivity
does not affect strong separability. As in the weak case, full signature strong
(LO,LS)-separability coincides with full signature strong (LO,L′S)-separability
for all FO-fragments LO,LS ,L′S such that LS ,L′S contain UCQ and either LO ∈
{ALC,GF} ∪ {L | UCQ ⊆ L ⊆ FO}. However, the proofs are fundamentally
different from the weak case. While the useful link for complexity was between
separability and query evaluation in the weak case, here our characterisations
imply that satisfiability provides an upper bound on the complexity of separability.
We then obtain, in combined complexity, EXP-completeness of full strong (L,L)-
separability where L ∈ {ALC;ALCI,FO2} and 2EXP-completeness for GF. We
also obtain the same data complexity as (the complement of) satisfiability, that
is CONP-completeness.

Chapter 4. Restricted weak separability. The main equivalence results from
the full case fail when a signature is part of the input. We give model-theoretic
characterisations for projective separability in DL and observe that they do not
apply to ALCIO. We observe that it follows from our main characterisation
theorem that projective ALCI and ALCO-separability can be non-projectively
captured by a language combining UCQs and DLs. We show that for the DLs we
consider, separability is tightly connected to the problem of deciding conservative
extensions. That reduction implies 2EXP-hardness for projective (ALC,ALC) and
(ALCI,ALCI)-separability. We sketch a matching 2EXP upper bound via tree
automata and the characterisation theorem.

Our other main investigation is on the impact of admitting only concept
names as helper symbols for projective separability, versus also admitting role
names and/or constants. In particular we prove undecidability of projective
weak (ALC,ALCO)-separability if constants are allowed as helper symbols. This
is done via reduction from an undecidable tiling problem. Finally, we use the
same tiling problem to show that (projective) (ALC,ALCFIO)-separability is
undecidable.

Chapter 5. Restricted strong separability. We first look at the problem in the
context of DLIO ontologies. As in the full case, projective and non-projective
separability coincide. Our main observation is that restricted strong separability
can be seen as an interpolation problem. Because FO has the Craig Interpolation
Property, we can even see it as an entailment problem, via a characterisation
of (L,FO)-separability for all L ∈ DLIO. From that characterisation, it follows
that (L,FO)-separability is EXP-complete and that FO’s separating power is
matched by Boolean hybrid CQs – extensions of hybrid CQs introduced in the
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previous section. From the link between separability and interpolation, we
deduce that restricted strong (L,L)-separability is 2EXP-complete for all L ∈
DLIO. We then focus on GF and FO2. While it needs some tweaking, the
same link between separability and interpolation holds there. We can, once
again, use the CIP of FO and results on the complexity of interpolants to deduce
combined complexity bounds (3EXP-completeness for (GF,GF), 2EXP-hardness
and CON2EXP for (FO2,FO2)).

RELATED WORK

Aside from the consideration of relations between data points, another key
difference between our approach and a statistical ML approach is that the latter’s
aim is less to find the explicit nature of what separates the points than to be
able to accurately classify future examples. In the applications that motivated
our investigation however, the explicit nature of the separating property is
interesting in and of itself, especially when under logical form. In the next
paragraphs we give an overview of those applications and discuss how they
relate to our treatment of the separability problem.

Early efforts towards inductive learning of first-order formulas converged in the
1990s into what became known as Inductive Logic Programming (ILP), baptized
in [Mu91]. Aside from better explainability, ILP offered an interesting alternative
to statistical ML by generalizing better over small datasets and taking relational
data into account. With the diversification of KR formalisms came the birth
of what could be considered as other forms of Inductive Logic Programming,
applied to the languages underlying those systems. Description logics are now
ubiquitous in KR thus primary candidates for any research that involves inductive
learning of logical formulas in the context of KR. The need for such research
quickly arose to answer a fundamental bottleneck of KR: that the implementation
and maintenance of ontologies require a great deal of manual input from domain
experts. The subfield of Ontology Learning, a term coined in [MS01], emerged
as an attempt to automatize this process. Among other research directions in
Ontology Learning, to expand ontologies based on description logic concepts,
much attention has been brought upon what is known as Concept Learning.

ILP & DL Concept Learning. Inspired by techniques from Inductive Logic
Programming, refinement operators are used in DL concept learning to construct a
concept that generalizes positive examples while not encompassing any negative
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ones. An ontology may or may not be present. A downward (resp. upward)
refinement operator is a function that maps any hypothesis (i.e. formula) to a set
of refinements (resp. generalisations) of that hypothesis: formulas that are more
(resp. less) specific. The first transposition of the ILP refinement approach to DLs
was done in [BN00] for the logic ALER. Many have followed since then, both
for weak separation [HL10,LS15,HS19] and strong separation [AEF08,Li12,AFR20].
Prominent systems include the DL LEARNER [BBLPW18,BLW16], DL-FOIL [AEFR18a]
and its extension DL-FOCL [AEFR18b], SPaCEL [DGMT17], YINYANG [FIP07], and
PFOIL-DL [MS15]. A method for generating strongly separating concepts based on
bisimulations has been developed in [HHNST12,HNT15,DHNN18] and an approach
based on answer set programming was proposed in [Li16].

Algorithms for DL concept learning typically aim to be complete, that is, to
find a separating concept whenever there is one. Complexity lower bounds for
separability as studied in this thesis then point to inherent limitations on any
such algorithm. Undecidability even means that no learning algorithm can be
both terminating and complete.

Computing the least common subsumer (LCS) of a set of concepts and the
most specific concept (MSC) applying to a single data item [BCH92,N90,BKM99]
can be viewed as DL concept learning in the case that only positive examples
are available. The problem is trivialized if the separation language expresses
disjunction. [TZ13] studies LCS/MSC in the context of EL in the presence of an
ontology, gives a semantic characterisation of their existence and computing
procedures: in EL, with a single data item, MCS verification and existence are
tractable. A recent study of LCS and MSC from a separability angle is done
in [JLW20]. It extends the MSC to multiple examples, looks at special cases
like empty ontologies, arbitrary signature restrictions, and adds ELI to the
discussion. Complexity is dramatically increased from [TZ13]. It shows that for
EL,ELI, the complement of separability can be mutually reduced with MCS
verification.

Query-by-Example. Reverse engineering of database queries, or Query-By-
Example (QBE) is another active field of relevant applications, see e.g. [CPT09,
EPSZ13,CW17,KLS18,DG19,SW12] and [Mart19] for a recent survey. A query can
be understood as a logical expression, typically used to retrieve elements from
a database. QBE grew from the difficulty for non-expert users to formulate
their desired queries. Instead, users may simply input some database examples
(and counterexamples) for the ‘notion’ they are targeting and receive query
suggestions from the QBE system in return. This can easily be seen as a separation
problem where one looks for a separating formula in a query language. In
particular, the language CQ of conjunctive queries is in fact the positive existential
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fragment of first-order logic.

A theoretical side to learnability and separability of queries burgeoned in
the last 5 years, under both closed-world [AD16, BR17, KR18, CD21] and open-
world [O19, CCL21, ADK16] semantics. We give a brief description of the clos-
est approaches to ours. Under closed-world assumption, [AD16] shows GI-
completeness of FO-definability, which can be seen as separability with no nega-
tive example. Earlier, CONEXP-completeness of CQ-separability was proved using
a folklore semantic characterization based on product homomorphisms [CD15].
In [BR17] CONP-completeness is shown for UCQ-separability and approximation
methods are designed to reach tractability. Separability with fragments of the
query langage SPARQL on (closed-world) RDF graphs is also studied for its
complexity in [ADK16], as well as definability.

In [GJS18], QBE is brought to the open-world setting and the separabil-
ity problem there includes ontologies to the background knowledge. Model-
theoretic characterisations and complexity bounds are given for what we, in our
terminology, would refer as weak (LO,LS)-separability, where LS ∈ {CQ,UCQ}
and LO ∈ {HornALCI,HornALC,ELI}. A distinction is made between restricted
and full signature separability, as is done here. The presence of an ontology is
shown to be computationally detrimental as complexity bounds range from EXP

to 2EXP. As shown in [O19], using a more rudimentary language for ontologies
such as DL-LITER reduces the complexity down to CONP-completeness for UCQ
(arguably less interesting than CQ for generalizing, as disjunctions make it prone
to overfitting) but the complexity stays as prohibitively high as before for CQ.

As is done here for more expressive logics, [F19] investigates “Concept-
By-Example”, i.e. full weak separability under ontologies formulated in EL,
with model-theoretic characterisations. This approach intersects both QBE and
DL Concept Learning, as ELI-concepts are equivalent to tree-shaped conjunc-
tive queries. EXP-completeness in combined complexity is shown for (LO,EL)-
separability for any LO contained in EL. Separability for a given role depth of
the separating concept is also characterised and shown to be NP-complete.

Generating referring expressions. Generating referring expressions (GRE) has
originated from linguistics (see [DK12] for a survey). A referring expression is
any noun phrase that identifies an object in a given context (e.g. “the man on
the left”). In GRE, one aims to design algorithms that can produce accurate
referring expressions in the sense that they fit human intuition. It can be seen
as a definability problem in our framework. Both weak and strong separability
are conceivable: weak separability means that the positive data item is the only
one that we are certain to satisfy the separating formula and strong separability
means that in addition we are certain that the other data items do not satisfy
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the formula. Approaches to GRE such as the ones in [BTW16, AMOW21] aim
for stronger guarantees, for instance by demanding that a referring expression
for an object refers only to that object, in the context imposed by the ontology.
GRE has recently been converging towards KR framework. In a closed-world
context description logic concepts have also been proposed for singling out a
domain element in an interpretation [AKS18]. The computation of referring
expressions has recently received interest in the context of ontology-mediated
querying [TW19].

Entity Comparison. As relevant field we can finally mention Entity Comparison,
in which one aims to extract the similarities and the difference between two
data points. RDF graphs are the standard format for displaying information from
the Semantic Web, and SPARQL queries are the standard language for query
answering on RDF data. An approach to entity comparison in RDF graphs is
presented in [GHPS17,GHKP19]. There, SPARQL queries are used to describe both
similarities and differences, under an open world semantics. The ‘computing
similarities’ part is closely related to the LCS and MSC mentioned above. The
‘computing differences’ part is closely related to QBE and fits into our framework.
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This dissertation draws on the following joint work with Maurice Funk, Jean
Christoph Jung, Carsten Lutz and Frank Wolter.

▶ Sections 2.3/2.6/3.2:

Learning Description Logic Concepts:
When can Positive and Negative Examples be Separated?,

published in Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI 2019). [FJLPW19]

▶ Chapters 2 and 3, aside from Sections 2.3/2.6/3.2:

Logical Separability of Incomplete Data under Ontologies,

published in Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2020). [JLPW20]

▶ Chapters 4 and 5:

Separating Data Examples by Description
Logic Concepts with Restricted Signatures,

published in Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2021). [JLPW21]

Material from the above publications that is mentioned in the thesis but to which
I have not contributed includes all results about full weak separability on EL(I)-
ontologies (mentioned in Ch. 2), 3EXP-completeness of restricted projective and
non-projective weak (ALCO,ALCO) separability (Ch. 4), and undecidability of
restricted weak (GF3,LS)-separability for LS ⊇ALC (Ch. 4).

An article [JLPW22] building upon material presented in Chapters 2 and 3 has
been published in the December 2022 issue of Artificial Intelligence (AIJ).



Chapter 1

Preliminaries

We introduce the required material to enunciate and investigate the separability
problem. In particular, we introduce all languages studied in this thesis, with
some of their essential model-theoretical and computational properties. Ulti-
mately, we give a formal definition to the separability problem, together with
some of its overarching properties.
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§ 1.1. FIRST-ORDER LOGIC BACKGROUND

All logics considered in this thesis can be interpreted as fragments of first-order
logic (FO), either directly or by some syntactic translation. We introduce FO
and remind the reader of general facts in the context of FO. For a thorough
introduction, see e.g. [Mark02].

We work with the standard syntax of first-order logic, but without function
symbols.

1.1. Definition. Let var, cons and reln be countably infinite sets, for every n⩾ 1.
We respectively call their elements variables, constants and relations of arity n.
Let rel =
⋃

n⩾1 reln. Let the full alphabet be the set var ∪ cons ∪ rel. Let an
atomic FO-formula be any formula of the form t1 = t2 or R(t1, . . . , tn), where
n ⩾ 1, R ∈ reln and t1, . . . , tn ∈ var ∪ cons. Let the set of FO-formulas be the
smallest set S containing all atomic FO-formulas and such that, if ϕ,ψ ∈ S and
x ∈ var, then ¬ϕ,ϕ∧ψ,∃xϕ ∈ S. For all FO-formulas ϕ,ψ and x ∈ var, we use
the following abbreviations.

(ϕ ∨ψ)
(ϕ→ψ)
⊤
⊥
∀xϕ

�

�

�

�

�

�

�

�

�

�

�

¬(¬ϕ ∧¬ψ)
(¬ϕ ∨ψ)
(ϕ ∨¬ϕ)
¬⊤
¬∃x¬ϕ

We call signature any subset of rel ∪ cons. We call a signature relational if it does
not contain any constant symbol. For any FO-formula ϕ we define the signature
of ϕ, written sig(ϕ), as the set of symbols from rel ∪ cons occurring in ϕ. For
any set S of FO-formulas let sig(S) :=

⋃

ϕ∈S sig(ϕ). We call fragment of FO any
set L of FO-formulas closed under conjunction. We call its elements L-formulas.
Let L be a fragment of FO and Σ a signature. We call L(Σ)-formula any ϕ in
L with sig(ϕ) ⊆ Σ. We respectively call L-sentence and L(Σ)-sentence any such
formula with no unquantified (or free) variable.

We also use standard semantics, with the following notation.

1.2. Definition. Let a model be any triple A = (dom(A), (RA)R∈rel, (cA)c∈cons)
where RA ⊆ dom(A)n if R ∈ reln, and cA ∈ dom(A) for every c ∈ cons. We call
dom(A) the domain of A, RA the extension of R in A and cA the interpretation of c
in A. We call pointed model any pair (A,a) where A is a model and a ∈ dom(A)n

for some n⩾ 1. Using the standard semantics, for any FO-formula ϕ(x1, . . . , xn),
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model A and a= (a1, . . . , an) ∈ dom(A)n, we define cA(a) = cA and xA
i (a) = ai

and we write A ⊨ ϕ(a) (A ⊭ ϕ(a) otherwise) to denote that A satisfies ϕ in a. It
is inductively defined as such.

A ⊨ (t1 = t2)(a) if tA1 (a) = tA2 (a)

A ⊨ (R(t1, . . . , tn))(a) if (tA1 (a), . . . , tAn (a)) ∈ RA

A ⊨ (¬ϕ)(a) if A ⊭ ϕ(a)
A ⊨ (ϕ ∧ψ)(a) if A ⊨ ϕ(a) and A ⊨ψ(a)

A ⊨ (∃x iϕ)(a) if A ⊨ ϕ(a1, . . . , ai−1, b, ai+1, . . . , an)

for some b ∈ dom(A)

We next introduce the Compactness Theorem (see e.g. [Mark02, §2]).

1.3. Definition. An FO-theory is a set of FO-sentences. For any FO-theory T and
any model A we write A ⊨ T (“A satisfies T”, or “A is a model of T”) if A ⊨ ϕ
for every ϕ ∈ T . T is satisfiable if there exists A such that A ⊨ T . T is finitely
satisfiable if every finite subset of T is satisfiable. We write S(x1, . . . , xn) if S is
a set of formulas whose free variables are all among {x1, . . . , xn}. We say S is
satisfiable if there exists a pointed model (A,a) such that A ⊨ ϕ(a) for all ϕ ∈ S,
and S is finitely satisfiable if every finite subset S f of S is satisfiable.

1.4. Theorem (Compactness). Every finitely satisfiable FO-theory is satisfiable.

An immediate application of the compactness theorem extends it to sets of
formulas that are not necessarily closed.

1.5. Corollary. Every finitely satisfiable set S(x1, . . . , xn) of FO-formulas is satisfi-
able.

The remaining definitions are basic model-theoretic notions, but we define them
with respect to relations only and not constants; the separability problem involves
constantless formulas in the vast majority of cases treated in this thesis.

1.6. Definition. Let A,B be models, Σ a signature and h : dom(A)→ dom(B).
h is a Σ-homomorphism if, for all n⩾ 1, R ∈ reln ∩Σ and (a1, . . . , an) ∈ dom(A)n,
(a1, . . . , an) ∈ RA implies (h(a1), . . . , h(an)) ∈ RB. We write h : A →Σ B. For
every a = (a1, . . . , an) in dom(A)n and b = (b1, . . . , bn) in dom(B)n we write
h : (A,a) →Σ (B,b) if h(a1) = b1, . . . , h(an) = bn. We omit Σ if Σ ⊇ rel. h
is a Σ-embedding if h is an injective homomorphism and, for all n ⩾ 1, R ∈
reln ∩ Σ and (a1, . . . , an) ∈ dom(A)n, (a1, . . . , an) ∈ RA iff (h(a1), . . . , h(an)) ∈
RB. h is an Σ-isomorphism if it is a surjective Σ-embedding. We then denote
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it as (A,a) ≃Σ (B, h(a)). h is an elementary embedding if, for all n ⩾ 1, ϕ
constantless FO-formula and (a1, . . . , an) ∈ dom(A)n, A ⊨ ϕ(a1, . . . , an) iff B ⊨
ϕ(h(a1), . . . , h(an)). A is an extension of B if the identity map id : dom(B)→
dom(A) is a rel-embedding. A is an elementary extension of B if the identity map
from B to A is an elementary embedding. A and B are elementary equivalent if,
for all constantless FO-sentences ϕ, A ⊨ ϕ iff B ⊨ ϕ.

Suppose Σ is a signature, n≥ 1, A is a model, a= (a1, . . . , an) ∈ dom(A)n and
A ⊆ dom(A). For any fragment L of FO, let LA(Σ) denote the set of L(Σ+A)-
formulas where Σ+A = Σ ∪ {ca : a ∈ dom(A)} and where for all a ∈ A, ca is
assumed without loss of generality not belonging to cons and such that cAa = a.
We define the L(Σ)-type of a in A over A as

tpAL,Σ(a/A) := {ϕ(x1, . . . , xn) ∈ LA(Σ) | A ⊨ ϕ(a)}.

We call L(Σ)-n-type any set t such that t = tpBL,Σ(b/B) for some model B, B ⊆
dom(B) and b ∈ dom(B)n. We say t is realized in B by b over B. We call
L-n-type any L(Σ)-n-type for some Σ. An FO-n-type t is consistent with an FO-
theory T if T has a model realizing t. Let Sn(T ) denote the set of all L-n-types
consistent with T . Let TA(A) denote the set of all FOA-sentences satisfied by
A. Let SA

n (A) = Sn(TA(A)). We say A is ω-saturated if, for any n⩾ 1, any finite
subset A⊆ dom(A) and any FO-n-type t ∈ SA

n (A), t is realized in A.

We also make use of the following well-known property of FO (see e.g. [Mark02]).

1.7. Theorem. Any model has an ω-saturated elementary extension.

§ 1.2. KR TERMINOLOGY

Our statement of the separability problem is expressed using Knowledge Repre-
sentation terminology, which we now make precise in the most general context
of FO.

1.8. Definition. Let L be a fragment of FO. We call L-ontology any finite set of
L-sentences. We call database any finite set of formulas of the form R(a) with
R(x) ∈ reln and a ∈ consn for some n ⩾ 1. We call L-knowledge base any pair
consisting of an L-ontology and a database. For a database D, let cons(D) be
the set of constants occurring in D. For any L-knowledge base K = (O,D) and
any model A we write A ⊨ K (“A satisfies K”, “A is a model of K”) if A ⊨O and
A ⊨ D. We write K ⊨ ϕ ("K entails ϕ") if A ⊨ ϕ for all A ⊨ K.
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1.9. Remark. For any FO-knowledge base (O,D), the set O∪D is an FO theory
(using constants). If constants are allowed in the ontology, the database is
redundant thus, conversely, every FO-theory T can be seen as a knowledge
base (T,;). In a KR setting, the ontology usually expresses general knowledge
about the world (e.g. “every X is a Y”) and leaves every information concerning
particular individuals to the database. If the ontology does not use constants,
our definition of a knowledge base is a specific case of first-order theory in which
all formulas containing constants need to be atomic.

1.10. Model induced by a database. Any database D can be seen as a model
AD defined by dom(AD) = cons(D), cAD = c for all c ∈ cons(D) and RAD = {c |
R(c) ∈ D} for all R ∈ rel.

1.11. Definition. For a database D, n ⩾ 1 and a ∈ cons(D)n, we denote by Da

the “connected component of a in D”, that is, to be formally exact given our
definitions, the set of all R(b), R ∈ rel, such that b is in the connected component
of a in the Gaifman graph GAD

of the model AD induced by D, where the
Gaifman graph GA of a model A is defined by GA = (V, E) with V = dom(A) and
E = {(x , y) | x , y occur in some tuple a ∈ RA for some R ∈ rel}. An example is
given below.

A GA

§ 1.3. CONJUNCTIVE QUERIES

Conjunctive queries and their unions happen to play a pivotal role in character-
ising separability and are themselves an interesting language for separation.

1.12. Definition. A conjunctive query is a formula of the form q(x) = ∃yϕ(x,y),
where ϕ(x,y) is a finite conjunction of constantless atomic FO-formulas. A union
of conjunctive queries (UCQ) is a finite disjunction of conjunctive queries that all
share the same free variables. We write (U)CQ for the language of (unions of)
conjunctive queries. The free variables of a UCQ are often called answer variables
in the Knowledge Representation or Description Logic literature [BHLS17].

1.13. Model-database-CQ correspondence. Let a pointed database be any pair
(D,a) such that a is a tuple of constants occurring in D. Any conjunctive query
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q(x1, . . . , xn) can be seen as a pointed database (Dq, [x1], . . . , [xn]), by defining
Dq to be the set of all R([y1], . . . , [y ′m]) such that there exist y ′1 ∈ [y1], . . . , y ′m ∈
[ym] with R(y ′1, . . . , y ′m) ∈ D, where [·] denotes the equivalence class induced by
the smallest equivalence relation over the variables of q that contains all pairs
(x , y) such that (x = y) is a conjunct of q. We can assume [y ′1], . . . , [y ′m] ∈ cons
without loss of generality as cons is infinite. Any conjunctive query can therefore
be seen as a model Aq, by setting Aq = ADq

, where ADq
is the model induced

by the database Dq, as defined in Remark 1.10. The Gaifman graph Gq of a
conjunctive query q can be defined as the Gaifman graph of the model Aq induced
by q. Conversely, any finite pointed model (A,a) with a = (a1, . . . , an) can be
seen as the CQ

q(A,a)(x1, . . . , xn) = ∃y∈dom(A)\{a1,...,an} y
R∈rel
∧

y∈RA

R(y)[a1/x1, . . . , an/xn]

∧
∧

ai=a j

x i = x j

(assuming without loss of generality that x1, . . . , xn /∈ dom(A)), thus any pointed
database (D,a) can be seen as a CQ q(D,a) := q(AD,a).

1.14. Definition. Call a CQ q rooted if every variable is reachable from an answer
variable in Gq.

1.15. Remark. As conjunctive queries can be seen as models, satisfying a CQ for
a pointed model (A,a) is the same as being able to homomorphically embed the
(model induced by the) query into that model, matching the answer variables
with a. Let q(x1, . . . , xn) and a = (a1, . . . , an) ∈ dom(A)n for some model A.
Then A ⊨ q(a) iff there is a homomorphism h : Aq→ A with h(x i) = ai for all i.

1.16. Definition. Let L be a fragment of FO. We call UCQ evaluation on L-
knowledge bases the decision problem associated with the set of all triples (K, q,a)
such that K = (O,D) is an L-knowledge base, q(x) is a UCQ, a ∈ cons(D)|x|, and
K ⊨ q(a). Similarly, we define CQ evaluation and rooted UCQ evaluation on
L-knowledge bases.

(Rooted) (U)CQ-evaluation on empty ontologies is NP-complete. By Remark
1.15, it follows from NP-completeness of the Graph Homomorphism Problem
[BHLS17]. On the other hand, undecidability of (rooted) (U)CQ-evaluation on
FO-knowledge bases follows from undecidability of satisfiability in FO.

1.17. Definition. Let L be a fragment of FO. Evaluating queries from a query
language Q contained in FO is finitely controllable on L-knowledge bases if
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for every L-ontology O, database D, formula ϕ(x) in Q, tuple of constants
a ∈ cons(D)|x|, if (O,D) ̸|= ϕ(a), then there is a finite model A of K such that
A ̸|= ϕ(aA) [JK84,Ro11].

Note that L has the finite model property (for all ϕ in L, ; ⊭ ϕ iff A ⊭ ϕ for
some finite model A) if evaluating queries from L is finitely controllable on
L-knowledge bases. Conversely, the finite model property does not always imply
finite controllability of evaluating (rooted) CQs or UCQs, but it does for ALCI
and even GF [BGO14].

§ 1.4. DESCRIPTION LOGICS

Description logics are a family of languages originally designed and popularized
in the context of Knowledge Representation, for their good computational be-
haviour and easy readability by engineers unfamiliar with logical syntax. Those
two qualities also make them interesting candidates as separating languages,
from an applied standpoint. Their model-theoretic and computational properties
have been extensively studied in the last forty years, see [BHLS17,BCMNP03] for
standard textbooks.

1.4.1. Syntax & Semantics

We introduce the foundational description logic ALC and its negation-free frag-
ment EL.

1.18. Definition. Let the languages ALC and EL be defined by the following
grammars, for all A∈ rel1, R ∈ rel2.

C , D ::=

�

A | C ⊓ D | ¬C | ∃R.C ALC
⊤ | A | C ⊓ D | ∃R.C EL

Let L be a description logic inductively defined over constructors and symbols
from rel1 and R ∈ rel2. We define

▶ LI, by extending rel2 to the closure of rel2 under R 7→ R− (inverse roles)
▶ LO, by extending rel1 to rel1 ∪ {{c} : c ∈ cons} (nominals)
▶ LQ, by adding "C ∈ LQ implies ⩾ nr.C ∈ LQ" (number restrictions) for all

n ∈ N, R ∈ rel2.

If L is a description logic, we call its elements L-concepts. If C ∈ L, let sig(C)
denote the set of symbols from rel∪ cons occurring in C . If sig(C) = Σ, we say C
is an L(Σ)-concept. In Description Logic terminology, unary relations in rel1 are
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usually called concept names and binary relations in rel2 role names. We write
rel−2 for rel2 ∪ {R− | R ∈ rel2}.

1.19. Remark. The order in which suffixes I,O,Q are positioned is purely
conventional. While outside of our scope, many other suffixes and extensions
exist in the DL literature; see [BHLS17].

We use the following standard abbreviations.

⊤
⊥

C ⊔ D
C → D
∀R.C

R
⩽ nR.C
= nR.C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

C ⊔¬C
¬⊤

¬(¬C ⊓¬D)
¬C ⊔ D
¬∃R.¬C
(R−)−

¬⩾ (n+ 1)R.C
⩽ nR.C ⊓⩾ nR.C

1.20. Definition. Let L be a description logic. An L-ontology is a set of expres-
sions of the form C ⊑ D (concept inclusion) where C , D are L-concepts. An
L-database is a set of expressions of the form R(a, b) (role assertion) or A(a)
(concept assertion) for some role name R ∈ rel2 and concept name A∈ rel1. An
L-knowledge base is a pair K = (O,D) consisting of an L-ontology and an L-
database. We write sub(K) to denote the closure under subconcepts and single
negation of the set of concepts occurring in K, and sub(O) analogously. For any
pointed model (A, x), let tpK(A, x) = {C ∈ sub(K) | x ∈ CA} and similarly for
O. Call K-type (resp. O-type) any t such that t = tpK(A, x) (resp. O) for some
(A, x).

Unlike in the traditional definition of databases (also called ABoxes) in Descrip-
tion Logic, we do not consider complex concepts in databases but only atomic
ones, unless specified otherwise. For instance, a database containing (∃R.A)(a)
is not allowed in our framework.

1.21. DLs as fragments of FO. The description logics defined above can be seen as
fragments of FO: for each L, every L-concept, concept inclusion or role/concept
assertion can be translated into first-order via the function (·)†, defined below
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for any C , D ∈ L, A∈ rel1, R ∈ rel2, c ∈ cons and n ∈ N.

A† = A(x)

{c}† = (x = c)

(C ⊓ D)† = (C†(x)∧ D†(x))

(∃R.C)† = ∃y(R(x , y)∧ C†(y))

(∃R−.C)† = ∃y(R(y, x)∧ C†(y))

(⩾ nR.C)† = ∃y1 . . .∃yn

�
∧

i ̸= j

¬(yi = y j)∧
∧

i

(R(x , yi)∧ C†(yi))
�

(C ⊑ D)† = ∀x(C†(x)→ D†(x))

(C(c))† = C†(c)

(R(a, b))† = R(a, b)

We then interchangeably use the term of “L-formulas” when speaking of L-
concepts, for any description logic L.

Thanks to the translatability of description logic concepts, we can use first-order
semantics to interpret Description Logic concepts in relational structures, as first-
order formulas. The definitions of L-ontologies, databases and knowledge bases
in the Description Logic context are then also consistent with their definitions in
the first-order context.

1.22. Definition. For any L-concept C and model A, let CA = {x ∈ dom(A) | A ⊨
C†(x)}. We write the following for any C , D ∈ ALCQIO, any pointed model
(A, a) and c ∈ cons.

A ⊨ C(a) if a ∈ CA

A ⊨ C(c) if cA ∈ CA

A ⊨ C ⊑ D if CA ⊆ DA

Let tpL,Σ(A, x) = {C in L(Σ) | x ∈ CA}. and L(Σ)-types denote any set of the
aforementioned form for some pointed model (A, x).

1.23. DLs as syntactic variants of modal logics. While DLs and modal logics
–see [BRV01] for an overview– were developed independently, it was first pointed
out in [Sc91] that every ALC-concept can be translated into a multi-modal
formula via the function (·)†, defined below for all concepts C , D, role names R
and concept names A.
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A† = A

(C ⊓ D)† = (C† ∧ D†)

(∃R.C)† = ◊r C†

(¬C)† = ¬C†

1.4.2. Model theory

1.24. Definition. Given a signature Σ, an ALC(Σ)-bisimulation is a binary
relation B ⊆ dom(A) × dom(B) for two models A,B satisfying the following
conditions, for all (x , y) ∈ B, all concept names, role names and constants
A, R, c ∈ Σ.

ATOM x ∈ AA iff y ∈ AB.

FORTH If (x , x ′) ∈ RA for some x ′, then there exists y ′ such that
(y, y ′) ∈ RB and (x ′, y ′) ∈ B.

BACK If (y, y ′) ∈ RA for some y ′, then there exists x ′ such that
(x , x ′) ∈ RB and (x ′, y ′) ∈ B.

To define LI-bisimulations from L-bisimulations, let R ∈ Σ∪ {S− | S ∈ Σ}.

To define LO-bisimulations from L-bisimulations, add

OATOM x = cA iff y = cB.

To define LQ-bisimulations from L-bisimulations, replace FORTH, BACK by

QFORTH For any finite X ⊆ {x ′ : (x , x ′) ∈ RA}, B contains a bijection
X → Y for some Y ⊆ {y ′ : (y, y ′) ∈ RB}.

QBACK For any finite Y ⊆ {y ′ : (y, y ′) ∈ RB}, B contains a bijection
X → Y for some X ⊆ {x ′ : (x , x ′) ∈ RA}.

If B is an L(Σ)-bisimulation for some L between two pointed models (A, a)
and (B, b), we write (A, a)∼L,Σ (B, b) and say that (A, a) and (B, b) are L(Σ)-
bisimilar. We say that (A, a) and (B, b) are logically L(Σ)-equivalent, which we
write (A, a)≡L,Σ (B, b), if A ⊨ C(a)⇔B ⊨ C(b) for all L(Σ)-concepts C .

The following is well-known in modal and description logics. It is usually only
proved for ALC; we quickly show that it can be extended to any extension within
DLIOQ.

1.25. Lemma. The following items hold for any L ∈ DLIOQ, pointed models
(A, d), (B, e), and signature Σ.

1. (A, d)∼L,Σ (B, e)⇒ (A, d)≡L,Σ (B, e).
2. (A, d)∼L,Σ (B, e)⇔ (A, d)≡L,Σ (B, e) if A has finite outdegree.
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3. (A, d)∼L,Σ (B, e)⇔ (A, d)≡L,Σ (B, e) if A and B are ω-saturated.

Proof. We prove it for L = ALCQIO. Arguments for the less expressive lan-
guages are easily derived from the ALCQIO proof. (1) is straightforward. To
prove the converse implication, suppose (A, d) ≡L,Σ (B, e). We show that the
relation ≡L,Σ is itself the desired bisimulation if A has finite outdegree or if A,B
are ω-saturated. Let (x , y) ∈ ≡L,Σ. Let R ∈ Σ ∩ rel−2 . ATOM and OATOM are
trivially satisfied. For all x , y, (A, x) ≡L,Σ (B, y) iff tpBL,Σ(x) = tpBL,Σ(y). It is
clear that QFORTH and QBACK immediately follow if for every L(Σ)-type t, x
and y have equally many R-successors of type t. It only remains to prove the
latter when either A has finite outdegree or A,B are ω-saturated. Let t be an
arbitrary L(Σ)-type and nx , ny denote the respective numbers of R-successors of
x and y of type t.

(2) Suppose A has finite outdegree and let n be the number of R-successors of x
in A. Then, A ⊨ (= nR.⊤)(x). Then, B ⊨ (= nr.⊤)(y) by logical equivalence,
so y also has n R-successors. For each R-successor x ′ of type t ′ ̸= t, there is
an L(Σ)-concept Cx ′ ∈ t ′ \ t. Let I denote the set of such successors. Since A

has finite outdegree, I is finite, so we can write A ⊨ = (n− nx)R.
⊔

x ′∈I Cx ′(x)
thus B ⊨ = (n− nx)R.

⊔

x ′∈I Cx ′(y) by logical equivalence. Then, y has at least
n − nx R-successors of different type from t. To show y has, in fact, exactly
n− nx such successors, suppose it has more and denote their set by J . Again,
each y ′ ∈ J satisfies a concept Cy ′ /∈ t, thus B ⊨ = (n− ny)R.

⊔

y ′∈J Cy ′(y), and
A ⊨ = (n−ny)R.

⊔

y ′∈J Cy ′(x) by logical equivalence. Then x has at least n−ny

R-successors of different type from t, so nx = ny .

(3) Suppose A and B are ω-saturated. Suppose nx is finite. The FO(Σ)-nx -
type t ′(z1, . . . , znx

) =
⋃

1⩽i⩽nx
{ϕ(zi) ∧ R(y, zi) | ϕ ∈ t} over the finite set {y}

is realized in B. Then, nx ⩽ ny . That set is indeed a type as it is finitely
satisfiable: for any ϕ1, . . . ,ϕm ∈ t, A ⊨ ∃z1 . . .∃znx

∧

1⩽i⩽nx

∧

1⩽ j⩽mϕ j(zi) ∧
R(x , zi), therefore B ⊨ ∃z1 . . .∃znx

∧

1⩽i⩽nx

∧

1⩽ j⩽mϕ j(zi) ∧ R(y, zi) since we
assumed (A, x)≡L,Σ (B, y). If nx is infinite, then t ′(z1, . . . , zn), which is a type
by the same argument as above, is realized in B for any n⩾ 1, so ny is infinite.
It only remains to show that ny ⩽ nx if nx is finite. If ny was infinite, the last
argument above would imply that nx is infinite. Then ny is finite, so we can apply
to ny the argument we applied to nx in the beginning and obtain ny ⩽ nx . ⊣

1.26. Example. This example shows the converse of (1) in Lemma 1.25 does
not hold with arbitrary models. It is well-known in classical modal logic (ALC
syntax) [BRV01] and easily extendable to any L ∈ DLIOQ. Let A and B (figure
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below) be defined as follows.

dom(A) = {a} ∪
⋃

j⩾1
{ai, j : 1⩽ i ⩽ j}

dom(B) = {b} ∪
⋃

j⩾1
{bi, j : 1⩽ i ⩽ j} ∪ {bi,∞ : i ⩾ 1}

RA = {(a, a1, j) : j ⩾ 1} ∪ {(ai, j , ai+1, j) : j ⩾ 1}

RB = {(b, b1, j) : j ⩾ 1} ∪ {(bi, j , bi+1, j) : j ⩾ 1 or j =∞}

a = cA, b = cB for all c ∈ cons

Then with Σ := {R} we have (A, a)≡ALCIOQ,Σ (B, b) but (A, a) ̸∼ALC,Σ (B, b).

. . .
. . .

. . .

a b

On top of having one R-successor chain of length n

for every n ∈ N, b also has an infinite R-successor chain.

1.27. Definition. L has the finite model property if for any L-concept C and
ontology O, whenever there exists A ⊨O such that CA ̸= ;, there exists B ⊨O
finite such that CB ̸= ;.

1.28. Theorem ( [BHLS17]). ALCI and ALCQO have the finite model property.
ALCQI does not.

Proof. The proof for ALCI and ALCQO is based on a standard filtration argu-
ment (e.g. [BRV01]). To see that ALCQI does not have the finite model property,
consider C = ¬A⊓∃R.A and O = {A⊑ ∃R.A,⊤⊑ ⩽ 1R−.⊤}. Then for any model
A and x ∈ CA, there is an infinite R-chain starting at x . ⊣

{¬A} {A} {A}
. . .

1.29. Definition. To each modelAwe associate a directed graph Gd
A = (dom(A),
⋃

R∈rel2 RA).
We denote its undirected counterpart by Gu

A.

If L ∈ {ALC,ALCO,ALCQ,ALCQO}, we say

1. A has finite L-outdegree if Gd
A has finite outdegree.

2. A is L-rooted in a if every node in A is reachable from aA in Gd
A.
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3. A is an L-tree if Gd
A is acyclic, has maximum indegree 1 and RA

0 ∩ RA
1 = ;

for all distinct R0, R1 ∈ rel2.

If L ∈ {ALCI,ALCIO,ALCQI}, we say

1. A has finite L-outdegree if Gu
A has finite outdegree.

2. A is L-rooted in a if every node in A is reachable from aA in Gu
A.

3. A is an L-tree if Gu
A is acyclic and RA

0 ∩ RA
1 = ; for all distinct R0, R1 ∈ rel2.

1.30. The definition of L-tree only depends on L using inverse roles or not, so
any L-tree is either an ALC-tree or an ALCI-tree. Any ALC-tree is an ALCI-tree
and has finite ALC-outdegree iff it has finite ALCI-outdegree.

1.31. Definition. We define the set path(Gu
A) of all undirected paths in A as the

set of all x0R1 x1R2 . . . Rn xn, n⩾ 0, such that

x i ∈ dom(A) for all i ∈ {0, . . . , n},

Ri ∈ rel−2 for all i ∈ {1, . . . , n},

(x i , x i+1) ∈ RA
i for all i ∈ {0, . . . , n− 1},

Ri = R−i+1⇒ x i−1 ̸= x i+1 for all i ∈ {1, . . . , n− 1}.

Let head(p) = x0 and tail(p) = xn.

1.32. Definition. Let (A, x) be a pointed model. The tree unfolding T x
A of x in A

is the model defined as follows.

dom(T x
A ) = {p ∈ path(Gu

A) | head(p) = x}

RT
x
A = {(p, p′) ∈ dom(T x

A )
2 | ∃x (p′ = pRx ∨ p = p′R−x)} for all R ∈ rel2

AT
x
A = {p ∈ dom(T x

A ) | tail(p) ∈ AA} for all A∈ rel1

. . .x

y

z
x

. . .
xR
− z

xR
− zR
− y

xRy
xRyRz

A T x
A

R R

R R R R R R R

Tree unfolding of some pointed model (A, x).

A routine check shows that unfolding A at x gives an ALCI-tree and preserves
the truth of ALCQI-concepts.

1.33. Lemma. For any pointed model (A, x) and any L ∈ DLIQ,
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1. T x
A is an ALCI-tree,

2. the directedly connected component of x in T x
A is an ALC-tree,

3. the relation {(p, tail(p)) | p ∈ dom(T x
A )} witnesses (A, x)∼ALCQI (T x

A , x).

1.34. Remark. If L extends ALCQ, it is necessary to obtain an L-bisimulation
in Lemma 1.33 that paths cannot ‘turn back’ (fourth condition in Def. 1.31).
Otherwise, for any (x , y) ∈ RA, it follows that, in the tree unfolding, xRy has at
least two R−-successors (x and xRyR−x) while y may only have one (x) in A.
If L does not extend ALCQ, whether we add that requirement or not does not
make any difference with respect to bisimulations; we thus add it everywhere
for uniformity.

1.35. Definition. L has the tree model property if, for any L-concept C and L-
ontology O, whenever there exists A ⊨O such that CA ̸= ;, there exists an L-tree
model B ⊨ K such that CB ̸= ;.

1.36. Theorem. Every L ∈ DLIQ has the tree model property.

Proof. Let L ∈ DLIQ. Let O and C be such that there exists A ⊨O with CA ̸= ;.
Let x ∈ CA. Then letB be the tree unfoldingT x

A ofA at x ifL ∈ {ALCQI,ALCI}
(resp. its directedly connected component if L ∈ {ALCQ,ALC}), which is an
L-tree by Lemma 1.33. By the same Lemma, x is ALCQI-bisimilar (thus L-
bisimilar) to the path consisting of the single point x . That makes them logically
equivalent with respect to L (Lem. 1.25), so x ∈ CA implies x ∈ CT

x
A . ⊣

1.37. Corollary. For L ∈ DLIQ the tree model property is witnessed by an L-tree
of finite outdegree.

Proof. It suffices to show there exists a submodel (T x
A )fo of T x

A that contains x
and has finite outdegree, such that (T x

A )fo ⊨ O and (T x
A )fo ⊨ C(x). Let B0 be

the submodel of T x
A induced by {x}. For any pointed model (B, x) and R ∈ rel−2

we write RB[x] := {y ∈ dom(B) | (x , y) ∈ RB}. Assume w.l.o.g. that O is in
negation normal form and that ⩾ 1R.D is replaced by ∃R.D for any concept D
and relation R. We define Bi+1 from Bi for all i ≥ 0 as follows.

for all d ∈ dom(Bi):
for all concepts of the form (⩾ nR.D) occurring in O ∪ {C}:

while |RBi+1[d]∩ dom(Bi+1)∩ CT
x
A |< n:

pick one e ∈ RT
x
A[d]∩ CT

x
A − dom(Bi+1)

Bi+1← submodel of T x
A

induced by dom(Bi+1)∪ {e}

Then, let (T x
A )fo =
⋃

i≥0 Bi. A quick inductive argument shows that (T x
A )fo ⊨

D(d) iff (T x
A )fo ⊨ D(d) for all d ∈ dom((T x

A )fo) and all D occurring in O ∪ {C},
which implies that (T x

A )fo ⊨O and (T x
A )fo ⊨ C(x). ⊣
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1.38. ALCO does not have the tree model property: it is easy to create an
ALCO-concept that forces a cycle. For instance, O = ; and C = {a} → ∃R.{a}.

For the unfolding to preserve satisfaction of the database (instead of just the
ontology), one needs to “unfold at each constant”. Instead of a tree, we obtain
a union of trees whose roots (the database individuals) are connected as the
database requires them to be. We can also adapt that notion to logics containing
nominals by allowing cycles from constants to themselves as long as the rest of
the structure is tree-shaped.

1.39. Definition. Let A be a model of some database D and L ∈ DLIOQ. We
define the DL-forest unfolding FD

A,L as follows. If L does not contain nominals,

FD
A,L is the union of all tree unfoldings T cA

A for c ∈ cons(D), with their roots
connected by R(cA, dA) whenever R(c, d) ∈ D, except that for each R(cA, dA)
between the tree unfoldings, the subtree of root cARdA, which is redundant if L
has counting, is removed from T cA

A . Formally, for all R ∈ rel2, A∈ rel1,

dom(FD
A ) =
⋃

c∈cons(D)
dom(T cA

A )

− {cASdA · · · | S(c, d) ∈ D}

− {cAS−dA · · · | S(d, c) ∈ D}

RF
D
A = (
⋃

c∈cons(D)
RT

cA
A )|dom(FD

A )
∪ {(cA, dA) | R(c, d) ∈ D}

AF
D
A = (
⋃

c∈cons(D)
AT

cA
A )|dom(FD

A )

If L contains nominals,FD
A,L is obtained by identifying in the construction above

all paths of the form p0aAp1aAp2 with p0aAp2 for all a ∈ cons(D).

A routine check now gives the following.

1.40. Lemma. For any L ∈ DLIOQ, model A of a database D and c ∈ cons(D),
the relation {(p, tail(p) | p ∈ dom(FD

A )} witnesses (A, cA)∼L (FD
A,L, cA).

Such unfoldings give rise to forest models.

1.41. Definition. If L ∈ DLIQ and D is a database, we say A is an L-forest model
of D if A′ is a disjoint union of L-trees rooted in elements of {cA

′
| c ∈ cons(D)},

where A′ is defined as A except for RA′ = RA \ {(aA, bA) : R(a, b) ∈ D}. If
L = DLIOQ \DLIQ and D is a database, we say A is an L-forest model of D if A′

is a disjoint union of L-trees rooted in elements of {cA
′
| c ∈ cons(D)}, where A′
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is defined as A except for RA′ = RA \ {(x , bA) : x ∈ dom(A), b ∈ cons(D)} for all
R ∈ rel2.

D D

A

FD
A,L

D

. .
.

..
.

no nominals nominals

DL-forest unfoldings of an example model A of some database
D illustrating the difference between L having nominals and
not. The right unfolding is an ALCQIO-forest model but not
an ALCQI one.

We can then establish some form of “forest model property” for DLIQ. It can be
proved using the same arguments as the tree model property and Lemma 1.40.

1.42. Lemma. LetL ∈ DLIOQ\{ALCIO,ALCQIO}, K = (O,D) anL-knowledge
base, a ∈ cons(D) and C an L-concept. If K ̸⊨ C(a), then aA ̸∈ CA for some L-forest
model of K of finite outdegree.

1.43. Example 4.3 witnesses failure of the above Lemma with L = ALCIO.
As D separates, it holds that K ⊭ D(b). By point (2) and K ⊨ D(a), for any
ALCIO-forest model A ⊨ K of finite ALCIO-outdegree, A ⊨ D(bA).

§ 1.5. GUARDED FRAGMENT

The Guarded Fragment (GF) of first-order logic, introduced in [ABN98], subsumes
ALCI while enjoying desirable model-theoretic and decidability properties that
FO does not. It is then also considered as an ontology language, in particular in
the context of ontology-mediated querying [BGO14]. We include it as an ontology
language and a separation language. The following section consists of basic
definitions and properties.

For any tuple x= (x1, . . . , xn), let [x] = {x1, . . . , xn}.
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1.44. Definition.

1. (x = y) is a GF-formula for any x , y ∈ var.
2. R(x) is a GF-formula for any n⩾ 1, R ∈ reln and x ∈ varn.
3. If ϕ(x,y),ψ are GF-formulas, then

- (ϕ ∧ψ) is a GF-formula,
- ¬ϕ is a GF-formula,
- ∃y(α(x,y)∧ϕ) is a GF-formula, where α(x,y) (called the guard) is any

atomic FO-formula such that every variable in [x]∪ [y] occurs in it.

1.45. The same standard translation function that shows ALCI can be seen as
a fragment of FO also shows that ALCI can be seen as a fragment of GF.

The notion of bisimulation from ALCI can be extended to GF and, there, also
characterises logical equivalence. We introduce it for GF as well as for its
fragment oGF (defined next) that is involved in the study of separability in GF.

1.46. Definition. Let oGF be the fragment of GF that consists of all open (i.e.
not quantifier-closed) formulas in GF whose subformulas are all open.

1.47. oGF was first considered in [HLPW20] where it is also observed that a GF
formula is equivalent to an oGF formula iff it is invariant under disjoint unions. It
is more natural for separability, as it only speaks locally about the neighbourhood
of tuples and not disconnected parts: when it comes to separating positive from
negative examples, properties of points “unrelated” to either are not relevant.

1.48. Definition. Let A be a model and Σ a signature. For any tuple a =
(a1, . . . , an) we write [a] for {a1, . . . , an}. A set G ⊆ dom(A) is guarded in A if G
is a singleton or there exists R with A ⊨ R(a) such that G = [a]. By S(A), we
denote the set of all guarded sets in A. A tuple a ∈ dom(A)n is guarded in A if
[a] is a subset of some guarded set in A.

For tuples a = (a1, . . . , an) in A and b = (b1, . . . , bn) in B we call a mapping
p from [a] to [b] with p(ai) = bi for 1 ⩽ i ⩽ n (written p : a 7→ b) a partial
Σ-homomorphism if p is a homomorphism from the Σ-reduct of A|[a] to B|[b].
We call p a partial Σ-isomorphism if, in addition, the inverse of p is a partial
Σ-homomorphism with domain B|[b].

A set I of partial Σ-isomorphisms p : a 7→ b from guarded tuples a in A to
guarded tuples b in B is called a

▶ guarded Σ-bisimulation if the following hold for all p : a 7→ b ∈ I :

1. for every guarded tuple a′ in A there exists a guarded tuple b′ in B

and p′ : a′ 7→ b′ ∈ I such that p′ and p coincide on [a]∩ [a′];
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2. for every guarded tuple b′ in B with there exists a guarded tuple a′ in
A and p′ : a′ 7→ b′ ∈ I such that p′−1 and p−1 coincide on [b]∩ [b′].

▶ connected guarded Σ-bisimulation if the following hold for all p : a 7→ b ∈ I :

1. for every guarded tuple a′ in A with [a] ∩ [a′] ̸= ; there exists a
guarded tuple b′ in B and p′ : a′ 7→ b′ ∈ I such that p′ and p coincide
on [a]∩ [a′];

2. for every guarded tuple b′ in B with [b] ∩ [b′] ̸= ; there exists a
guarded tuple a′ in A and p′ : a′ 7→ b′ ∈ I such that p′−1 and p−1

coincide on [b]∩ [b′].

Assume that a and b are (possibly not guarded) tuples in A and B. Then we
say that (A,a) and (B,b) are (resp. connected) guarded Σ-bisimilar, in symbols
(A,a)∼GF,Σ (B,b) (resp. oGF), if there exists a partial Σ-isomorphism p : a 7→ b
and a (resp. connected) guarded Σ-bisimulation I such that conditions (i) and
(ii) hold for p [HLPW20].

If there exist sets Iℓ, . . . , I0 of partial Σ-isomorphisms such that Iℓ contains the
partial Σ-isomorphism p : a 7→ b and for any 1⩽ i ⩽ ℓ and p ∈ Ii , conditions (1)
and (2) above are each witnessed by some p′ ∈ Ii−1 then we say that (A,a) and
(B,b) are (connected) guarded Σ ℓ-bisimilar and write (A,a)∼ℓoGF,Σ (B,b) and
(A,a)∼ℓGF,Σ (B,b), respectively.

The guarded quantifier rank gr(ϕ) of a formula ϕ in GF is the number of nestings
of guarded quantifiers in it. We say that (A,a) and (B,b) are GFℓ(Σ)-equivalent
(resp. oGF), in symbols (A,a) ≡ℓGF,Σ (B,b) (resp. oGF), if A ⊨ ϕ(a)⇔ B ⊨
ϕ(b) for all formulas ϕ(x) in GF(Σ) (resp. oGF) of guarded quantifier rank at
most ℓ.

1.49. Lemma ( [GO14, HLPW20]). For any L ∈ {GF,oGF}, pointed models
(A,a), (B,b), signature Σ and ℓ⩾ 0,

1. (A,a)∼ℓL,Σ (B,b)⇔ (A,a)≡ℓL,Σ (B,b),
2. (A,a)∼L,Σ (B,b)⇒ (A,a)≡L,Σ (B,b),
3. (A,a)∼L,Σ (B,b)⇐ (A,a)≡L,Σ (B,b) if A and B are ω-saturated.

We introduce guarded tree decompositions. They already appear e.g. in [G99]. A
model that admits a guarded tree decomposition is a model that ‘can be seen as
a tree’ in the GF context where, in particular, relations are not necessary binary.

1.50. Definition. A guarded tree decomposition of a model A is a triple (T, E,bag)
with (T, E) an undirected tree and bag a function that assigns to every t ∈ T a
guarded set bag(t) in A such that A =

⋃

t∈T A|bag(t) and {t ∈ T | a ∈ bag(t)}
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is connected in (T, E), for every a ∈ dom(A). We say that A is guarded tree
decomposable if there exists a guarded tree decomposition of A.

(T, E)A

Guarded tree decomposition of some example model
A, with colors representing the bag mapping.

Using guarded tree decompositions one can formulate a variation of the tree
model property for the Guarded Fragment.

1.51. Proposition (Tree model property, [G99]). For every GF-ontology O and
GF-formula ϕ(x) such that O ⊭ ϕ there exists a guarded tree-decomposable model
A of O such that A ⊨ ¬ϕ(a) for a tuple a with [a] ⊆ bag(r).

The extension GNF (for Guarded Negation Fragment) of GF makes minor appari-
tions throughout the thesis. Unlike GF, it subsumes UCQ.

1.52. Definition.
1. (x = y) is a GNF-formula for any x , y ∈ var.
2. R(x) is a GNF-formula for any n⩾ 1, R ∈ reln and x ∈ varn.
3. If ϕ(x,y) are GNF-formulas, then

- (ϕ ∧ψ) is a GNF-formula,
- (ϕ ∨ψ) is a GNF-formula,
- ∃yϕ is a GNF-formula,
- α(x,y)∧¬ϕ is a GNF-formula, where α(x,y) is any atomic FO-formula

such that every variable in [x]∪ [y] occurs in it.



FO

FO2 GF

GNF

CQALCI

ELI

ALCQ

ALCQI UCQ

EL

ALC

ARBITRARY ROOTED

FO Undecidable

FO2 Undecidable [Ro07]
GNF 2EXP [BCS15]
GF 2EXP [BGO14]

ALCQI
2EXP [Lu07] CONEXP [Lu08]

ALCI
ALCQ

EXP [Lu08]
ALC
; NP

COMBINED DATA

ALC EXP [Sc91] NP

ALCIO EXP [ABM99] NP

ALCQI EXP NP

GF 2EXP [G99] NP

GNF 2EXP [BCS15] NP

FO2 NEXP [GKV97] NP

FO Undecidable

Subsumption relations
between languages.

Combined complexity of
(U)CQ-evaluation on L-
knowledge bases.

Combined and data com-
plexity of satisfiability.
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§ 1.6. THE SEPARABILITY PROBLEM

We define the separability problem in its different dimensions (projective, weak,
strong, restricted, full) and enunciate some of its most fundamental properties.

1.53. Definition. Let LO be a fragment of FO. We call labeled LO-knowledge base
any triple (K, E+, E−) with K = (O,D) an LO-knowledge base such that O is a
constantless LO-ontology and E+, E− ⊆ cons(D)n (for some n ⩾ 1) non-empty
sets of positive and negative examples. An FO-formula ϕ(x) with n free variables
weakly separates (K, E+, E−) if K ⊨ ϕ(a) and K ⊭ ϕ(b) for all a ∈ E+,b ∈ E−, and
strongly separates (K, E+, E−) if K ⊨ ϕ(a) and K ⊨ ¬ϕ(b) for all a ∈ E+,b ∈ E−.
Let LS be a fragment of FO and Σ ⊆ rel. A labeled FO-knowledge base is
projectively LS(Σ)-separated if it is separated by an LS-formula ϕ such that
sig(ϕ) ∩ sig(K) ⊆ Σ. It is non-projectively LS(Σ)-separated if it is separated
by an LS-formula ϕ such that sig(ϕ) ⊆ Σ. As convention, unless specified
otherwise, separability will be assumed to be weak, non-projective and full (i.e.
such that Σ = sig(K)). We may then write “L-separable” in place of “weakly
non-projectively L(sig(K))-separable”.

1.54. Example. Let K1 = (;,D) where D =
�

born_in(a, c), citizen_of(a, c),
born_in(b, c1), citizen_of(b, c2), Person(a)

	

. Then (K1, {a}, {b}) is weakly sepa-
rated by Person(x). Now let O =

�

∀x(∃y(citizen_of(x , y))→ Person(x))
	

and
K2 = (O,D). Then K2 ⊨ Person(b), so Person(x) no longer separates. However,
(K2, {a}, {b}) is separated by the formula ∃y(born_in(x , y)∧ citizen_of(x , y)).
Thus (K2, {a}, {b}) is weakly non-projectively L-separable for L = CQ and
L = GF and L = FO2. It is also weakly non-projectively ALCI-separated, al-
though unnaturally, by ∀born_in.Person→∃citizen_of.Person.

born_in

citizen_of

bor
n_in

citizen_of

a b{Person}

A typical witness for the distinction between projective and non-projective sep-
arability is given by the following example, in the context of ALCI and weak
separation.

1.55. Example. Let K = (O,D) with

D = {R(a, a1), R(a1, a2), . . . , R(an−1, a), R(b, b1)}

O = {⊤ ⊑ ∃R.⊤⊓∃R−.⊤},



37 1 | PRELIMINARIES

Then (K, {a}, {b}) is

1. non-projectively CQ({R})-separated by ∃y1 . . .∃ynR(x , y1)∧· · ·∧R(yn−1, x),

2. projectively ALCI({R})-separated by A→∃Rn.A for any A∈ rel1 \ sig(K),

3. not non-projectively ALCI({R})-separable,

4. not non-projectively GF({R})-separable,

5. not non-projectively FO2({R})-separable.

a

b
. . . . . .

1.56. Example. Let D = {votes(a, c1),votes(b, c2),Left(c1),Right(c2)} and K1 =
(;,D). Then (K1, {a}, {b}) is weakly separated by the EL-concept ∃votes.Left,
but it is not strongly FO-separable. Now let K2 = (O,D)with O = {∃votes.Left⊑
¬∃votes.Right}. Then ∃votes.Left strongly separates (K2, {a}, {b}).

a

b

votes

votes

{Left}

{Right}

1.57. As illustrated by Example 1.56, ‘negative information’ introduced by the
ontology is crucial for strong separability because of the open-world semantics
and since the database cannot contain negative information. In fact, labeled KBs
with an empty ontology are never strongly separable. In a sense, weak separability
tends to be too credulous if the data is incomplete regarding positive information,
see Example 1.54, while strong separability tends to be too skeptical if the data
is incomplete regarding negative information, as shown by Example 1.56.

1.58. Strong separability is always trivially monotone in the ontology (and also
the database) in the sense that for any LS and all labeled KBs (Ki , E+, E−) with
Ki = (Oi ,Di) for i = 1, 2, if O1 ⊆O2, D1 ⊆ D2, and (K1, E+, E−) is LS-separable,
then (K2, E+, E−) is LS-separable.

1.59. No labeled ELI-knowledge base is (projectively) strongly FO-separable.
Intuitively, ELI-ontologies only contain “positive” information and can thus
not entail anything “negative”. Rigorously, it immediately follows (even under
UNA) e.g. from the existence of the model A defined by dom(A) = {xc}c∈cons(D),
cA = {xc} for all c ∈ cons(D) and RA = dom(A)n for all R ∈ reln, n ⩾ 1. Then,
A ⊨ (O,D) for any ELI-ontology O, and A ⊨ ϕ(aA)⇔ A ⊨ ϕ(bA) for any
FO-formula ϕ and a,b ⊆ cons(D) of same arity.
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Unlike weak separability, strong separability is not influenced by symbols that
do not occur in the knowledge base. Intuitively, given a knowledge base K, any
‘positive occurrence’ of an external symbol that is satisfied by a model of K is also
negated by another model of K. Then, for any separating formula containing
such a symbol, the same formula ‘without it’ is still separating. The following
applies to any language L that occurs in this thesis. From now on we omit the
mention of (non-)projectivity and simply speak of strong separability.

1.60. Proposition. Any labeled FO-knowledge base (K, E+, E−) is strongly pro-
jectively L(Σ)-separable iff it is strongly non-projectively L(Σ)-separable, for Σ ⊆
sig(K).

Proof. Assume ϕ(x) strongly separates (K, E+, E−) and R ∈ sig(ϕ) \ sig(K). Re-
place every occurrence of any formula of the form R(y) in ϕ(x) by

∧

y∈[y](y = y).
For CQ, UCQ, FO2, and FO, we show the resulting formula ϕ′ is as required
and strongly separates (K, E+, E−). For any model A, let A′ denote the model
obtained from A by replacing RA with dom(A), for any R ∈ reln and n ⩾ 1.
Then, for any tuple x in dom(A), (A′,x) ≃rel\{R} (A,x) (in particular A′ ⊨ K)
and A′ ⊨ ϕ′(x) iff A′ ⊨ ϕ(x). It is then immediate that ϕ′ separates. Let
a ∈ E+ and b ∈ E−. Let A ⊨ K. Then A ⊨ ϕ(aA) ⇒ A′ ⊨ ϕ(aA′) ⇒ A′ ⊨
ϕ′(aA′) ⇒ A ⊨ ϕ′(aA). On the other hand, let A ⊨ K such that A ⊭ ϕ(bA).
Then A ⊭ ϕ(bA) ⇒ A′ ⊭ ϕ(bA′) ⇒ A′ ⊭ ϕ′(bA′). In the guarded fragments, if
R occurs as a guard in ϕ, then the resulting formula might not be guarded. In
this case we replace every subformula of the form ∃y(R(x,y)∧ψ) in ϕ(x) by the
conjunction of all ¬(x = x) with x in x and every occurrence of R(y) in ϕ(x) in a
non-guard position by the conjunction of ¬(y = y) with y in y. Finally, in DLIQ,
assume that the concept C strongly separates (K, E+, E−) and X ∈ sig(C)\sig(K).
If X is a concept name, then replace every occurrence of X in C by ⊥ and if X is
a role name, then replace every subconcept of the form ⩾ nX .D or ⩾ nX−.D in
C by ⊥. The resulting concept strongly separates. A similar proof as above can
be given, where the witness model A′ is instead defined with RA′ = ;. ⊣

1.61. Definition. Let FO-fragments L0,LS be given.

1. Let sepw(LO,LS) (resp. sepp
w(LO,LS)) denote the set of all weakly non-

projectively (resp. projectively) LS-separable labeled L-knowledge bases.
We call (resp. projective) full weak (L0,LS)-separability the problem to
decide sepw(LO,LS) (resp. sepp

w(LO,LS)).

2. Let sepsi g,w(LO,LS) (resp. sepp
sig,w(LO,LS)) denote the set of all (K, E+, E−,Σ)

such that (K, E+, E−) is a weakly non-projectively (resp. projectively)
LS(Σ)-separable LO-knowledge base. We call (resp. projective) restricted
weak (L0,LS)-separability the associated decision problem.



39 1 | PRELIMINARIES

3. Define their strong counterparts by replacing w with s and removing p.

1.62. Reduction to the single example case. Weak separability is polynomial-time
Turing reducible to its subcase where E− is a singleton. If for every b ∈ E− there
is a formulaϕb separating (K, E+, {b}), then

∧

b∈E− ϕb separates (K, E+, E−). On
the other hand, ifϕ separates (K, E+, E−) thenϕ obviously separates (K, E+, {b})
for every b ∈ E−. The same argument works between strong separability and its
subcase where both E+ and E− are singletons. Throughout the thesis we most
frequently assume E− (resp. E+ and E−) is a singleton. Most of the complexity
bounds we obtain are proved for that specific case. For each of them it is easy to
argue that they hold in the general case too, using the reduction above.

1.63. The satisfiability lower bound. For any FO-fragments LO,LS, weak (pro-
jective) and strong (LO,LS)-separability are computationally at least as hard
as satisfiability of L-knowledge bases. Let K = (O,D) be an L-knowledge base.
Suppose wlog A, B ∈ rel1 and a, b ∈ cons do not occur in K. Then the following
equivalences hold.

K is satisfiable by a model of cardinality ⩾ 2.

⇔
�

(O,D ∪ {A(a), B(b)}), {a}, {b}
�

is weakly LS-separable (by A(x)).

⇔
�

(O,D ∪ {A(a), A(b)}), {a}, {b}
�

is not strongly LS-separable.

As immediate consequences, if the ontology language has an undecidable satisfi-
ability problem (e.g. FO), then any kind of separability problem is undecidable;
if the ontology language has an untractable satisfiability problem (e.g. any lan-
guage other than EL among the ones we consider), then any kind of separability
problem is untractable.



Chapter 2

Full weak separability

We now study, for several pairs of languages (LO,LS), the problem of weakly
separating labeled LO-knowledge bases (K, E+, E−) with LS(Σ)-formulas (or, in
the projective case, LS(Σ∪Σ′)) for some set Σ′ of fresh relation symbols) where
Σ is the full signature of K. We mostly focus on the case where LO = LS , hence
the denomination of each section simply by the ontology language.
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The reader is referred to Section 1.6 for definitions of (full) (weak) (LO,LS)-
separability, projectivity, etc.

This chapter is comprised of 6 sections.
(2.1) On (FO,FO)-separability, where, by model-theoretically characterising

the problem, we show that it is unaffected by projectivity, that UCQ can separate
as well as FO, and that weakly separating with FO-formulas is, as a decision
problem, linked to query evaluation.

(2.2) On (FO2,FO2)-separability, where, without model-theoretically charac-
terising the problem, we show that projectivity does not bring enough separating
power to FO2 to match FO and that the problem is undecidable with both as
separation languages.

(2.3) On projective (L,L)-separability for L ∈ DLIQ, where we find a uniform
model-theoretic characterisation of separability over those languages and show
that, as with FO, the decision problem is connected to query evaluation, which
gives us tight complexity bounds for each language.

(2.4) On non-projective (ALCI,ALCI)-separability, where, by model-theoretically
characterising the problem, we show that, even though it does not coincide with
its projective counterpart, it has the same complexity (NEXP-complete).

(2.5) On (GF,GF)-separability, where we notice that GF behaves similarly to
ALCI, which implies that, both in the projective and non-projective case, we
can establish characterisations and a link with query evaluation. Complexity
bounds ensue.

(2.6) On (ALC,EL(I))-separability, where we prove its undecidability via
reduction from a query entailment problem.

Below is a summary of this chapter’s complexity results for full signature weak
(L,L)-separability, where L is displayed in the left column. Separability is
complete for the complexity classes contained in each cell. A grey cell means
the problem is still open, although we get some upper bounds for free, as the
data complexity of any problem is trivially bounded upwards by its combined
complexity. With ALCQ and ALCQI, our results only hold under the Unique
Name Assumption (UNA) [BHLS17], i.e. the assumption that for all c1, c2 ∈ cons
distinct and any model A, cA1 ̸= cA2 .
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COMBINED DATA

PROJ NON-PROJ PROJ NON-PROJ

FO U

FO2 U U U U

GNF 2EXP ⩽ 2EXP

GF 2EXP 2EXP ⩽ 2EXP ⩽ 2EXP

ALC NEXP ? PSPACE ?

ALCI NEXP NEXP NEXP NEXP

ALCQ (UNA) NEXP ? ⩽ NEXP ?

ALCQI (UNA) EXP ? ⩽ EXP ?
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§ 2.1. FO-ONTOLOGIES

We study full signature weak (FO,FO)-separability. With FO-ontologies, the com-
plexity side of things is already clear: as stated in Remark 1.63, undecidability of
FO implies that (FO,LS)-separability is undecidable for any language LS , both
in the projective and non-projective case. By model-theoretically characterising
separability (Thm. 2.1), we find that for all FO-ontologies, UCQ is already as
powerful as FO. More precisely, we can determine an exact UCQ that separates
the examples whenever they are FO-separable. That UCQ does not use any
symbol outside of the knowledge base, which implies that projectivity makes no
difference for separation with FO-formulas (Cor. 2.2). The existence of such a
UCQ also induces a mutual polynomial reduction between the decision problems
of separability and query evaluation (Cor. 2.4). That mutual reduction provides
us with some complexity bounds ‘for free’ (Cor. 2.6).

We now introduce the central characterisation theorem for FO. Recall that we
consider separability of labeled knowledge bases with only one negative example,
without loss of generality (§1.6). Recall that we do not consider constants in
FO-formulas and do not require homomorphisms between models to preserve
constants (see Definition 1.6). Recall that for any pointed database (D,a) we
write Da for the “connected component of a” in D and q(D,a) for the query
induced by (D,a). Precise definitions are given in Remarks 1.13 and 1.10.

2.1. Theorem. Let (K, E+, {b}) be a labeled FO-knowledge base, where K =
(O,D). The following conditions are equivalent.

1. (K, E+, {b}) is weakly projectively FO-separable.

2. (Da,a) ̸→ (A,b) for some model A of K and all a ∈ E+.

3. K ⊭∨a∈E+ q(Da,a)(b).

4. the UCQ
∨

a∈E+ q(Da,a) weakly separates (K, E+, {b}).

5. (K, E+, {b}) is weakly non-projectively UCQ-separable.

Proof.
(2) ⇒ (3) is straightforward by 1.15. (3) ⇒ (4) follows from the fact that
D ⊨ q(Da,a)(a) for all a ∈ E+. (4)⇒ (5) is immediate as

∨

a∈E+ q(Da,a) only
contains symbols from sig(K). (4)⇒ (1) is trivial.

(1)⇒ (2). Suppose that (K, E+, {b}) is separated by a constantless FO-
formula ϕ. Then, there exists a model A of K such that A ⊭ ϕ(b). Let a ∈ E+.
Since A ⊨ ϕ(a) and since isomorphism implies logical equivalence, there is no
model B of K such that (B,a)≃rel (A,b). Then, to prove (1)⇒ (2), we suppose
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¬(2) and define a model B of K such that (B,a)≃rel (A,b), contradicting (1).
Suppose there exists h : (Da,a) → (A,b). Let B be the model satisfying the
following.

B :















dom(B) = dom(A)
RB = RA for every R ∈ rel
cB = cA for every c ∈ cons \ cons(Da)
cB = h(cA) for every c ∈ cons(Da)

Note that the construction of B relies on not making the UNA. Then, the identity
map clearly witnesses (B,a) ≃rel (A,b). It only remains to check that B ⊨ K.
We get B ⊨ O from A ⊨ O and the isomorphism. To prove B ⊨ D, suppose
R(c1, . . . , cn) ∈ D. Then A ⊨ R(cA1 , . . . , cAn ). By definition of Da, either ci /∈
cons(Da) for all i, or ci ∈ dom(Da) for all i. Then by definition of B and the
fact that h is a homomorphism, it directly follows in each of the two cases that
B ⊨ R(cB1 , . . . , cBn ). ⊣

The (1)⇔ (5) equivalence immediately yields the following.

2.2. Corollary. For all FO-fragments LS ,L′S containing UCQ,
sepw(FO,LS) = sepp

w(FO,LS) = sepp
w(FO,L′S) = sepw(FO,L′S).

As q(Da,a) is rooted for any a ∈ E+, we also obtain the following corollary.

2.3. Definition. An FO-fragment L has the relativization property if for every
L-sentence ϕ and A ∈ rel1 \ sig(ϕ), there exists a sentence ϕ′ such that for
every model A with AA ̸= ;, A ⊨ ϕ′ iff A|A ⊨ ϕ where A|A is the AA-reduct of A,
i.e. the restriction of A to domain AA. For any set S of L-sentences we write
S|A = {ϕ|A : ϕ ∈ S}.

2.4. Proposition. For all FO-fragments LO,LS such that LS contains UCQ and
LO has the relativization property, weak (projective) (LO,LS)-separability with
one negative example is mutually polynomial-time reducible with the complement
of rooted UCQ-evaluation on L-knowledge bases.

Proof. The reduction from separability to evaluation is immediate from (1)⇔
(5)⇔ (3) in Theorem 2.1. We show the converse direction. Let K = (O,D) be
an L-knowledge base, q(x) =

∨

i∈I qi(x) a rooted UCQ with x = (x1, . . . , xn) and
a ∈ cons(D)n. For some A ∈ rel1 \ (sig(K)∪ sig(q)), consider the relativization
O|A of O to A and D+A = D∪{A(c) | c ∈ cons(D)}. Let D′ = D+A⊎

⊎

i∈I Di , where
(Di , [x1], . . . , [xn]) is the pointed database associated with qi (Rem 1.13). For
the disjoint union, we write [x1]i , . . . , [xn]i for the copy of [x1], . . . , [xn] in the
disjoint Di. Let E+ = {([x1]i , . . . , [xn]i) | i ∈ I}. Let K′ = (O|A,D′). We show
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that K ⊭ q(a) iff (K′, E+, {a}) is LS-separable. By Theorem 2.1, (K′, E+, {a}) is
LS-separable iff K′ ⊭ ∨p∈E+ q(D′p,p)(a). However, for all p ∈ E+ there exists
i ∈ I such that q(D′p,p) = q(D′([x1]i ,...,[xn]i)

, ([x1]i , . . . , [xn]i)). By the fact that
D′ is a disjoint union, D′([x1]i ,...,[xn]i)

= Di. Then, modulo renaming of answer

variables, q(D′([x1]i ,...,[xn]i)
, ([x1]i , . . . , [xn]i)) = q(D′i , ([x1]i , . . . , [xn]i)) = qi .

Therefore, (K′, E+, {a}) is LS-separable iff K′ ⊭ q(a), so we ultimately need to
show that K ⊭ q(a) iff K′ ⊭ q(a).

(⇐) Suppose there exists A ⊨ K′ such that A ⊭ q(aA). Then A ⊨ O|A implies
A|A ⊨O and A ⊨ D+A implies A|A ⊨ D, so A|A ⊨ K. Then, since A|A is a submodel
of A, the implication A ⊭ q(aA)⇒ A|A ⊭ q(aA) is immediate.

(⇒) Conversely, assume that K ⊭ q(a). Let A ⊨ K with A ⊭ q(aA). As A /∈ sig(K)
we may assume AA = dom(A). As D′ is a disjoint union, we can then expand A

into a model B of K′ in which q(a) is still not satisfied, with B = A⊎
⊎

i ADi
,

where ADi
is Di seen as a model (Rem. 1.10). Let cB = cA for c ∈ cons(D)

and cB = cADi for c ∈ cons(Di). Clearly B ⊨ D′. Then, A|A ⊨ O and A|A =B|A

since A /∈ sig(q), so B|A ⊨ O. Since q is rooted (hence has only one connected
component) and a1, . . . , an ∈ cons(D+A), we have B ⊨ q(aB) iff B|A ⊨ q(aB). By
definition B|A ⊨ q(aB) iff A ⊨ q(aA), which concludes the proof. ⊣

2.5. Remark. We use O|A and D+A because (O,Di) could be unsatisfiable. By
relativizing, we make sure that the ontology axioms only apply to constants in
D+A.

The Guarded Negation Fragment GNF (§1.52) of first-order logic contains UCQ,
so Corollary 2.4 implies the following.

2.6. Corollary. For any FO-fragment L containing UCQ, in combined complexity,
weak (projective) (GNF,L)-separability is 2EXP-complete, and weak (projective)
(;,L)-separability is CONP-complete.

Proof. Immediate from Corollary 2.4, as (1) UCQ-evaluation on GNF-knowledge
bases is in 2EXP (thus rooted UCQ-evaluation is) and GNF-satisfiability is 2EXP-
hard [BCS15]: recall that satisfiability is reducible to separability (§1.6), (2) rooted
UCQ-evaluation on knowledge bases with empty ontologies is NP-complete. ⊣

The (1) ⇔ (3) equivalence from Theorem 2.1 also provides the following
corollary for free.

2.7. Definition. We say (LO,LS)-separability is anti-monotone in the ontol-
ogy if for all LO-ontologies O1,O2, any database D and all sets E+, E− of ex-
amples, it holds that if O1 ⊆ O2, then ((O2,D), E+, E−) LS-separable implies
((O1,D), E+, E−) LS-separable.
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2.8. Corollary. For any FO-fragment L containing UCQ, (projective) (FO,L)-
separability is anti-monotone in the ontology.

§ 2.2. FO2-ONTOLOGIES

As opposed to FO, the satisfiability problem in FO2 has been shown to be decid-
able in [Mo75], and NEXP-complete in [GKV97]. Separability for FO2-knowledge
bases is then potentially decidable. We show that full weak (FO2,FO2) and
(FO2,FO)-separability are still undecidable, both in the projective and non-
projective case (Thm. 2.12). This is done via reduction from a tiling problem,
without using any model-theoretic characterisation of separability. Recall that
for (FO2,FO) there is no difference between the projective and non-projective
case (Cor. 2.2). We show that is not true with FO2 as a separating language
(Ex. 2.10). However, we show that even with the help of projectivity, FO2 still
has strictly less separating power than FO (Thm. 2.9). Rather than showing it
through a counterexample, we use model-theoretic arguments to show that it not
only applies to FO2 but to any fragment of FO with the finite model property, the
relativization property and on which evaluating UCQs is not finitely controllable
(Lem. 2.11).

2.2.1. Separating power

Results relative to the separating power of FO2 are contained in the following
theorem, which contrasts with Corollary 2.2 in two ways: not only does projec-
tivity make a difference for FO2, but it still does not allow FO2 to match FO in
separating power.

2.9. Theorem. sepw(FO2,FO2) ⊊ sepp
w(FO2,FO2) ⊊ sepw(FO2,FO).

Proof. Strictness of the first inclusion is an immediate consequence of Example
2.10 below, as (K, {a}, {b}) is not non-projectively FO2-separable. As for the sec-
ond inclusion, sepp

w(FO2,FO2) ⊆ sepw(FO2,FO) follows from sepp
w(FO2,FO) =

sepw(FO2,FO) (Cor. 2.2) and sepp
w(FO2,FO2) ̸= sepp

w(FO2,FO) follows from
Lemma 2.11, as FO2 has the finite model property [Mo75] and the relativization
property, but rooted UCQ evaluation on FO2-knowledge bases is not finitely
controllable (Ex. 2.15). ⊣

The following example implies strictness of the first inclusion.
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2.10. Example. Let K = (O,D) with O consisting of ∀x∃y∃z(R(x , y)∧ R(z, x))
and ∀x∀y(R(x , y)→¬R(y, x)), and D =

�

R(a, c), R(c, d), R(d, a), R(b, e)
	

.

a
b

c

d
e

Database D.

The labeled FO2-knowledge base (K, {a}, {b}) is projectively ALCI (and thus
FO2)-separable by C = A→∃R.∃R.∃R.A that uses the concept name A as a helper
symbol, but not non-projectively FO2-separable, since every non-trivial FO2-
formula ϕ(x) with sig(ϕ) = {R} is equivalent to x = x or ¬(x = x) w.r.t. O: the
formula ∃yR(x , y) or ∃yR(y, x) is already entailed by the ontology. For every
non-trivial FO2-formula ϕ(x) with sig(ϕ) = {R} that is equivalent to x = x or
¬(x = x) w.r.t. O and whose variables are w.l.o.g amongst {x , y}, the formulas
∃xϕ(x) and ∃yϕ(x) are also equivalent to x = x or ¬(x = x) w.r.t. O.

To illustrate the role of the second sentence in O, let O− be O without it. Then
((O−,D), {a}, {b}) is separated by the FO2-sentence obtained from the separating
ALCI-concept C above by replacing each occurrence of A(x) in the first-order
translation C† by ∃y(R(x , y)∧ x ̸= y ∧ R(y, y)).
The following lemma implies strictness of the second inclusion.

2.11. Lemma. Let L be a fragment of FO such that

1. L has the relativization property,
2. L has the finite model property,
3. sepp

w(L,FO) = sepp
w(L,L).

Then rooted UCQ-evaluation on L-knowledge bases is finitely controllable.

Proof. Assume that evaluating rooted UCQs on L-knowledge bases is not finitely
controllable, i.e. there is an L-knowledge base K = (O,D), a rooted UCQ
q(x) =
∨

i∈I qi(x), x = (x1, . . . , xn), and a ∈ cons(D)|x| such that K ⊭ q(a),
but B ⊨ q(aB) for all finite models B of K. Consider, for some fresh concept
name A, the labeled knowledge base (K′, E+, {a}) defined in Corollary 2.4. It
was proved in that same corollary that q(x) separates (K′, E+, {a}). Suppose
there is an L-formula ϕ(x) that separates (K′, E+, {a}). Since L has the finite
model property, there exists a finite model A f of K′ such that A f ⊨ ¬ϕ(aA f ). As
B ⊨ q(aB) for all finite models B of (O,D) thus all finite models of (O|A,D+A),
there exists i ∈ I with A f ⊨ qi(a

A f ). That is witnessed by a homomorphism
h : (Di , ([x1]i , . . . , [xn]i))→ (A f ,aA f ). Let A′f be a model which coincides with
A f except that the constants c in Di are interpreted as h(c). Then A′f ⊨ K′
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and A′f ⊨ ¬ϕ(([x1]i , . . . , [xn]i)
A f ), which contradicts the assumption that ϕ(x)

separates (K′, E+, {a}). ⊣

2.2.2. Complexity

This subsection is dedicated to proving the following theorem.

2.12. Theorem. Full weak (projective) (FO2,LS)-separability is undecidable for
any FO-fragment LS containing FO2.

The proof is by reduction from tiling problems introduced next.

2.13. Definition. We call square tiling system any triple τ = (T, H, V ) with
T a finite set (of tiles) and H, V ⊆ T × T . An N2-solution to τ is a function
σ : N2 → T such that (σ(i, j),σ(i + 1, j)) ∈ H and (σ(i, j),σ(i, j + 1)) ∈ V
for all i, j ⩾ 0. An N2-solution σ is periodic if there exist h, v ⩾ 1 such that
σ(i, j) = σ(i + h, j) = s(i, j + v), for all i, j ⩾ 0. A periodic N2-solution can be
thought as a torus tiling with square tiles, i.e. assuming that the domain of σ is
Z/hZ×Z/vZ.

A periodic N2-solution for T = {t1, t2}, H = V = {(t1, t2), (t2, t1)}
and its toric interpretation.

It is well-known that the problem of deciding whether a given square tiling
system admits an N2-solution (resp. periodic) is undecidable [B66]. However,
we are going to exploit a stronger undecidability result due to [GK72] (see
also [BGG97, Thm 3.1.7] for a new proof). Recall that two sets A, B are recursively
inseparable if there is no decidable set that contains A and is disjoint from B.
The result is as follows.

2.14. Theorem. The set of square tiling systems that admit no N2-solution is
recursively inseparable from the set of square tiling systems that admit a periodic
N2-solution.

We are now ready to prove Theorem 2.12.
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Proof of Theorem 2.12. Given a square tiling system τ = (T, H, V ), we construct
a labeled FO2-knowledge base (Kτ, {a}, {b}) with Kτ = (Oτ,D) as follows.

Oτ =
§

∀x (B(x)→ (∃y (Rv(x , y)∧ B(y)))∧ (∃y (Rh(x , y)∧ B(y)))) , (2.1)

∀x y (B(x)∧ B(y)→ U(x , y)), (2.2)

∀x y (¬Rv(x , y)→ Rv(x , y)), (2.3)

∀x
∨

t∈T
(At(x)∧
∧

t ′∈T\{t}
¬At ′(x)), (2.4)

∀x y (Rv(x , y)→
∨

(t,t ′)∈V

At(x)∧ At ′(y)), (2.5)

∀x y (Rh(x , y)→
∨

(t,t ′)∈H

At(x)∧ At ′(y))
ª

(2.6)

D =
�

U(a, a1), Rv(a1, a2), Rh(a2, a3), Rh(a1, a4), Rv(a4, a3), B(b)
	

a

Rh

Rh

Rv Rv

U

Connected component of a in D.

By Theorem 2.14, it suffices to prove that for any FO-fragment LS ⊇ FO2,

1. If (Kτ, {a}, {b}) is (projectively) LS-separable, then τ admits a solution.
2. If τ admits a periodic solution, then (Kτ, {a}, {b}) is non-projectively LS-

separable.

Indeed, if that is the case, then {τ | (Kτ, {a}, {b}) separable} contains the set
of tiling systems admitting a periodic solution and is contained in the set of
tiling systems admitting a solution. That set is reduced to the set of separable L-
labeled knowledge bases by the computable function τ 7→ (Kτ, {a}, {b}), hence
the undecidability result.

Proof of (1). For Point 1, suppose that (Kτ, {a}, {b}) is projectively or non-
projectively L-separable. Then, (Kτ, {a}, {b}) is FO-separable. By Theorem 2.1,
it suffices to verify that if Kτ ⊭ q(Da, a)(b), then (T, H, V ) admits a solution.
Let A be a model witnessing Kτ ⊭ q(Da, a)(b). From axioms (2.1)-(2.3) and
B(b) ∈ D, it follows that A contains the submodel depicted below (modulo
homomorphism). Then, A ⊭ q(Da, a)(bA) implies that y is an Rv-successor of
z, otherwise by axiom (2.3) we have A ⊨ Rv(z, y) and thus A ⊨ q(Da, a)(bA).
Repeating this argument we can show A contains (the homomorphic image
of) an infinite Rh/Rv grid : every point in the grid (starting with the square of
bottom-left corner bA) is a U-successor of bA as it satisfies B (axiom (2.2)), thus
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is the bottom-left corner of an Rh/Rv square, by the same argument we used
on bA. Since A is a model of formula (2.4) every element in the grid is labeled
with At for a unique element t ∈ T . Finally, since A is a model of formulas (2.5)
and (2.6), the relations H and V are respected along Rh and Rv , respectively.

U

bA

x y

z

Proof of (2). Suppose that (T, H, V ) admits a periodic solution σ with periods
h, v ⩾ 1. We show that (Kτ, {a}, {b}) is non-projectively FO2-separable under
the assumption that Kτ mentions a binary relation symbol S. This is without
loss of generality, as we can include ∀x y S(x , y)→ S(x , y) in Oτ. Let π be a
bijection from [h]× [v] to [hv] and let Ci j be the ALCI-concept (corresponding
to an FO2-formula) expressing that there is an S-path of length π(i, j)1. Consider
the following FO2-formula, also written as an ALCI-concept.

ϕhv(x) = ∃U .
l

i∈[h]

l

j∈[v]

(∀Rv .∀Rh.Ci j →∃Rh.∃Rv .Ci j)

It should be clear that Kτ ⊨ ϕhv(a) since already q(Da, a)(x) ⊨ ϕhv(x). To see
that Kτ ⊭ ϕhv(b), we construct a (finite) model A witnessing that. Informally, A
consists of two disconnected parts. One part is D viewed as a model; the other is
an h× v-torus over binary symbols Rv , Rh in which each element has an outgoing
S-path. More precisely, the torus has domain [h]× [v] and each element (i, j)
is labeled with the unary symbol Aσ(i, j) and has an outgoing S-path of length
π(i, j). In more details,

BA = [h]× [v]

RA
v =
�

(a1, a2)
	

∪
�

((i, j), (i, j ⊕v 1)) | i ∈ [h], j ∈ [v]
	

RA
h =
�

(a2, a3), (a1, a4)
	

∪
�

((i, j), (i ⊕h 1, j)) | i ∈ [h], j ∈ [v]
	

AA
t =
�

(i, j) ∈ [h]× [v] | σ(i, j) = t
	

for all t ∈ T

UA =
�

(a, a1)
	

∪ ([h]× [v])× ([h]× [v])

bA = (0,0), aA = a, aA
i = ai for i ∈ {1,2, 3,4}

and SA is as described above and R
A

v is the complement of RA
v .

1In the projective case, we could simply take fresh concepts Ci j instead of those S-paths.
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It is readily checked that A is a model of K. Suppose that A ⊨ ϕhv(bA), let (i0, j0)
be the U-successor of bA that witnesses the conjunction in ϕhv , and let i = i0⊕h 1
and j = j0 ⊕v 1. By construction of A, it holds that A ⊨ ∀Rv .∀Rh.Ci j(i0, j0)
and A ⊭ ∃Rh.∃Rv .Ci j(i0, j0), in contradiction to the implication in ϕhv. Hence,
A ̸⊨ ϕhv(bA). ⊣

aA

U
bAaA

1

aA
2 aA

3

aA
4

A depiction of A with h= v = 3 (S- and U-relations omitted on the right).

2.15. The knowledge base used in the previous proof can be used to show
that evaluating rooted CQs (and therefore arbitrary (U)CQs) on FO2-knowledge
bases is not finitely controllable. Let τ be any square tiling system that ad-
mits an N2-solution but no periodic one. Recall Oτ and D from the proof
of Theorem 2.12. As mentioned in the proof, τ admitting a solution implies
(Oτ,D) ⊭ q(Da, a)(b), thus (Oτ, {B(b)}) ⊭ q(Da, a)(b) since B(b) ∈ D. but
(Oτ, {B(b)}) ⊨fin q(Da, a)(b).

§ 2.3. PROJECTIVE CASE IN DLIQ

We consider (L,L)-separability for L ∈ DLIQ, where DLIQ denotes the set of
extensions of ALC using the constructors I,Q. With bisimulations, it is possible
to characterise separability in a rather uniform fashion over these languages,
thanks to them admitting only slightly different notions of bisimulation. As
a first step, a bisimulation-based characterisation (Thm. 2.16) is established.
From that first one follows another characterisation, based on what we define
as “L-simulations” (Lem. 2.18). Finally, we reach the final (homomorphism-
based) characterisation in Theorem 2.28, with the crucial help of projectivity
(Lem. 2.27). One can recognize a similar characterisation to the one shown in
Theorem 2.1 for FO. Then, as does its FO counterpart, Theorem 2.28 reveals a
connection between the decision problems of separability and UCQ evaluation,
from which we deduce complexity bounds for full signature weak projective
(L,L)-separability, L ∈ DLIQ. Below is a summary of this section’s complexity
results, in combined and data complexity. In any given cell, by a complexity class
C we mean that full signature weak projective (L,L)-separability is C-complete.
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COMBINED DATA

ALC NEXP (Thm 2.54) PSPACE (Thm 2.64)

ALCI NEXP (Cor 2.33) NEXP [JLPW20]
ALCQ NEXP (Thm 2.68) ?

ALCQI EXP (Thm 2.35) ?

Our results on ALCQ and ALCQI rely on the Unique Name Assumption (UNA).
For ALC,ALCI, the UNA has no impact as K ⊨ C(a) with UNA iff K ⊨ C(a)
without UNA for any knowledge base K, concept C and constant a.

2.3.1. Intermediate characterisations

Recall that all the DLs we consider each admit a notion of bisimulation that
characterises logical equivalence (§1.4). We use that to give a first semantic
characterisation of full weak projective (L,L)-separability for each L.

2.16. Theorem. Let (K, E+, {b}) be a labeled ALCQI-knowledge base with
K = (O,D) and L ∈ DLIQ. The following conditions are equivalent.

1. There exists an L-forest model A ⊨ K of finite outdegree such that (B, aB) ̸∼L

(A, bA) for all B ⊨ K, a ∈ E+.
2. There exists A ⊨ K of finite outdegree such that (B, aB) ̸∼L (A, bA) for all

B ⊨ K, a ∈ E+.
3. (K, E+, {b}) is weakly projectively L-separable.

Proof. (1)⇒ (2). Immediate.

(3)⇒ (1). Suppose there exists an L-concept C such that K ⊨ C(a) for all
a ∈ E+ and K ⊭ C(b). Then there exists a model A of K such that A ⊭ C(bA). By
Lemma 1.42, A can be assumed to be an L-forest model of D of finite outdegree.
For all a ∈ E+ and any model B of K we have B ⊨ C(aB). Then, for all a ∈ E+,
we have (B, aB) ̸≡L (A, bA) and, by Lemma 1.25, (B, aB) ̸∼L (A, bA).

(2)⇒ (3). Assume there exists a model A of K (of finite outdegree) such
that for all a ∈ E+ and all models B of K, (A, bA) ̸∼L (B, aB). We prove that
there exists {C1, . . . , Cn} ⊆ tpAL(b

A) such that K ⊨
⊔

1⩽i⩽n¬Ci(a) for all a ∈ E+.
Then we are done as K ⊭⊔1⩽i⩽n¬Ci(b). For a proof by contradiction, suppose
this is not the case. Then, for some a0 ∈ E+, every finite subset {C1, . . . , Cn} of
tpAL(b

A) satisfies K ⊭⊔1⩽i⩽n¬Ci(a0). Then, for all finite {C1, . . . , Cn} ⊆ tpAL(b
A),

�

O,D ∪ {C1(a0), . . . , Cn(a0)}
�

is satisfiable. By compactness (Thm 1.4),
�

O,D ∪
{C(a0) | C ∈ tpAL(b

A)}
�

is satisfiable. But any model B of {C(a0) | C ∈ tpAL(b
A)}

satisfies (B, aB
0 )≡L (A, bA). As A has finite outdegree, this implies, by Lemma

1.25, (B, aB
0 )∼L (A, bA), which is the desired contradiction. ⊣
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We now introduce simulations for an intermediate characterisation of separability
that does not depend on the relation between two models A and B like in the
previous theorem, but simply between the database and one model. From there
it will be easy to move on to a homomorphism-based characterisation (and thus
to a “query” one).

2.17. Definition. Let S ⊆ cons(D)×A for some database D and model A. Let Σ
be a relational signature. We define the following conditions. Suppose (c, x) ∈ S,
then

ATOMR A(c) ∈ D⇒ x ∈ AA for all concept names A∈ Σ.
FORTH Same as in the definition of bisimulations, cf. Def 1.24.

QFORTH Same as in the definition of bisimulations, cf. Def 1.24.
BISIML For all y , (c, y) ∈ S⇒ (A, x)∼L (A, y).

For any a ∈ cons(D), let D↑a be the directedly connected component of a in D,
and KA,S :=
�

O,D ∪ {C(c) | C ∈ sub(K), c ∈ cons(D↑a), (c, d) ∈ S, d ∈ CA}
�

.

If S satisfies ATOMR, we say S is an

- ALCI(Σ)-simulation if S satisfies FORTH over rel−2 and BISIMALCI ,
- ALCQI(Σ)-simulation if S satisfies QFORTH over rel−2 and BISIMALCQI .

If, additionally, S ⊆ cons(D↑a)× dom(A) and KA,S ⊭⊥, we say S is an

- ALC(Σ)-simulation if S satisfies FORTH over rel2 and BISIMALC ,
- ALCQ(Σ)-simulation if S satisfies QFORTH over rel2 and BISIMALCQ.

If rel1 ∪ rel2 ⊆ Σ, we write L-simulation for L(Σ)-simulation. If (c, x) ∈ S for
some such S with respect to L, we write (D, c)⪯L (A, x).

2.18. Lemma. Let L ∈ DLIQ. Let (K, E+, {b}) be a labeled L-knowledge base,
with K = (O,D). The following conditions are equivalent for any model A ⊨ K of
finite outdegree.

1. There exist a ∈ E+, B ⊨ K such that (B, aB)∼L (A, bA).
2. There exists a ∈ E+ such that (D, a)⪯L (A, bA).

2.19. Why we need KA,S. To show why we need the additional condition in-
volving KA,S when inverse roles are absent, we consider this example where
that condition is not satisfied and show that, in that case, condition (1) of
Lemma 2.18 does not hold. In other words, without that condition, simulations
would not capture separability. Let K = (O,D), where O = {⊤ ⊑ ∀R.A} and
D = {R(c, a), B(b)}. Clearly, for every model A of K, the relation {(a, bA)}
between cons(D) and dom(A) satisfies ATOMR,FORTH and BISIMALC , since a
has no atom and no successor in D. However, (K, {a}, {b}) is clearly weakly
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ALC-separable by A, i.e. condition (1) is not met. KA,S is not satisfiable for any
A in which bA /∈ AA and any S that contains (a, bA).

2.20. Why we need BISIML. We illustrate the need for BISIML with L=ALCI
as example. Denote ALCI-simulations without BISIMALCI by ⪯−ALCI . Let
K = (O,D) where O = {⊤ ⊑ ∃R.⊤ ⊓ ∃R−.⊤, B ⊑ ∀R.∀R.∀R.¬B} and D =
{R(a, a′), R(a′, a′′), R(a′′, a), B(b)}. Then (D, a)⪯−ALCI (A, b) for all A ⊨ K but
(K, {a}, {b}) is still separable by ¬B. Indeed, (D, a) ̸⪯ALCI (A, b) as any simu-
lation containing (a, bA) would also contain (a, x) for some R ◦ R ◦ R-successor
x ∈ dom(A) of bA. Then, as bA ∈ BA we have x /∈ BA by O, contradicting
BISIMALCI as (A, x) ̸∼ALCI (A, bA).

a

a′

a′′ . . . . . .
b

Database D, with bi-infinite R-chain (modulo bisimulation) enforced around b by O.

2.21. The impact of UNA in ALCQ(I). Without the UNA, Lemma 2.18 fails if the
separation language admits counting. LetO = ;, D = {R(a, a0), R(a, a1), R(b, b0)}
and make the UNA. Then there exists A ⊨ K (the database seen as a model) such
that (Da, a) ̸⪯ALCQI (A, bA), but (K, {a}, {b}) is not weakly ALCQI-separable:
for every A ⊨ K there exists B ⊨ K such that (B, aB) ∼ALCQI (A, bA). That is
made possible by identifying bB

0 and bB
1 .

We now prove Lemma 2.18 for each L ∈ DLIQ. The (1) ⇒ (2) direction is
straightforward in all cases: the restriction S|cons(D) of any ALCI-bisimulation
(resp. ALCQI) S between pointed models (B, aB) and (A, bA) defines an ALCI-
simulation (resp. ALCQI) between D and A containing (a, bA). For ALC(Q),
consider the restriction Sa of S to {cB | c ∈ cons(D↑a)} and it suffices to point out
that Ka,Sa

is satisfied by B. We then focus on (2)⇒ (1).

2.3.2. Proof of Lemma 2.18 in ALCI

Assume (D, a) ⪯ALCI (A, bA) for some a ∈ E+. We extend the model ADa

induced by the maximal connected component of a in D (Rem. 1.10) into a
model B of K satisfying (B, aB)∼ALCI (A, bA).

2.22. Definition. Let S ⊆ cons(D)×dom(A) be an ALCI-simulation witnessing
(D, a)⪯ALCI (A, bA). For any c ∈ cons(Da), choose a unique δ ∈ dom(A) such
that (c,δ) ∈ S. Let dc be arbitrary fresh domain elements for all d ∈ dom(A)
such that dc = cA if d = δ. We define a copy Ac of A for each c ∈ cons(Da), and
a model A′ of Da, which informally consists of all the copies Ac “plugged” onto
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Da at each c. The definitions are given below, for all concept and role names
A, R.

dom(Ac) = {dc | d ∈ dom(A)} dom(A′) =
⋃

c∈cons(Da)

dom(Ac)

AAc = {dc | d ∈ AA} AA′ =
⋃

c∈cons(Da)

AAc

RAc = {(dc , d ′c) | (d, d ′) ∈ RA} RA′ =
⋃

c∈cons(Da)

RAc

∪ {(dA, eA) | R(d, e) ∈ Da}

Moreover, let cA
′
= cA for all c ∈ cons(Da). Finally, let B be the disjoint union

of A′ and a model A′′ of (O,D \Da), with cB = cA
′

for all c ∈ cons(Da) and
cB = cA

′′
for all c ∈ cons(D \Da).

As A′′ ⊨ (O,D \Da) and A′ ⊨ Da, we have B ⊨ K iff A′ ⊨O. As aB ∈ dom(A′),
we have (B, aB)∼ALCI (A, bA) iff (A′, aA′)∼ALCI (A, bA). It is then sufficient
to show there exists a bisimulation β between A′ and A such that (aA′ , bA) ∈ β
and such that for all x ∈ dom(A′), there exists y ∈ dom(A) with (x , y) ∈ β . That
is done in the next Lemma. It implies A′ ⊨O since A ⊨O, hence B ⊨ K.

2.23. Lemma. There exists an ALCI-bisimulation β between A′ and A such that
(aA′ , bA) ∈ β and such that for all x ∈ dom(A′), there exists y ∈ dom(A) with
(x , y) ∈ β .

Proof. By definition of an ALCI-simulation, if (c, d) ∈ S and (c, d ′) ∈ S, then
(A, d)∼ALCI (A, d ′). It is witnessed by a bisimulation in cons(D)× dom(A) that
naturally induces a bisimulation in dom(A′) × dom(A), which we denote by
Sc,d,d ′ . For any set of binary relations R, let R∗ be the set of finite compositions
R1 ◦ · · · ◦ Rn such that {R1, . . . , Rn} ⊆R. The empty composition is allowed and
is defined to be the identity relation. Then, we define the following relations.

β = β ′′∗ ◦ β
′

β ′ =
�

(dc , d) | c ∈ cons(Da), d ∈ dom(A)
	

β ′′ =
⋃
�

Sc,d,d ′ | c ∈ cons(Da), d, d ′ ∈ dom(A)
	

As each Sc,d,d ′ is a bisimulation, β ′′ is also a bisimulation and so is β ′′∗ . We now
check that β is an ALCI-bisimulation, i.e. satisfies ATOM, FORTH and BACK over
every role name and their inverse. Let (dc , d ′) ∈ β for some c ∈ cons(Da) and
d ∈ dom(A). Then by definition of β , either d = d ′ or (d, d ′) ∈ β1 ◦ · · · ◦ βn for
some non-empty subset {β1, . . .βn} ⊆ β ′′. We then suppose otherwise throughout
the rest of the proof.
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ATOM. Let A be a concept name. It follows from the definition of A′ that dc ∈ AA′

iff d ∈ AA and it follows from β ′′∗ being a bisimulation that d ∈ AA iff d ′ ∈ AA.

FORTH. Let ec′ be an R-successor of dc in A′ for some role name R.

(1) Suppose d ̸= cA
′
. Then all successors of dc belong to Ac, so c′ = c. Then,

(d, e) ∈ RA by definition of Ac . Because it is a bisimulation, β ′′∗ satisfies FORTH,
so there exists e′ ∈ dom(A) such that (d ′, e′) ∈ RA and (e, e′) ∈ β ′′∗ . Then,
(e, e′) ∈ β .

(2) Suppose dc = cA
′
. If c′ = c, then the proof goes as before. If c′ ̸= c, then

ec′ /∈ dom(Ac), hence ec′ = c′A
′

by definition of A′. Furthermore, (c, d) ∈ S by
definition of Ac. Since S satisfies FORTH, there exists a successor f (which is
not necessarily e) of d via R such that (c′, f ) ∈ S. Since β ′′∗ satisfies FORTH,
there exists e′ ∈ dom(A) such that (d ′, e′) ∈ RA and ( f , e′) ∈ β ′′∗ . But (c′, e) ∈ S
by definition of Ac′ , so (e, f ) ∈ Sc′,e, f ⊆ β ′′ since e and f have c′ as a common
predecessor via S. Then (e, e′) ∈ β ′′∗ by composition and (ec′ , e) ∈ β ′ by definition
of β ′, hence (ec′ , e′) ∈ β .

BACK. Let e′ be an R-successor of d ′ in A for some role name R. Since β ′′∗ is
a bisimulation, there exists e ∈ A such that (d, e) ∈ RA and (e, e′) ∈ β ′′∗ . But
then, (ec , dc) ∈ RAc by definition of Ac. It thereby holds that (ec , e) ∈ β ′ and
(e, e′) ∈ β ′′∗ , hence (ec , e′) ∈ β . ⊣

c

c′

S

S

S

d

f

e

e′

d ′

R R R

β ′′∗

β ′′∗

β ′′∗
β ′′∗

Illustration for FORTH (2).

2.3.3. Proof of Lemma 2.18 in ALCQI

Assume that (D, a)⪯ALCQI (A, bA) for some a ∈ E+. Let S ⊆ cons(D)× dom(A)
be an ALCQI-simulation between D and A with (a, bA) ∈ S. We construct a
model B of K such that (B, aB)∼ALCQI (A, bA).

2.24. Definition. Take for every c in the maximally connected component
Da of a in D an element d c ∈ A such that (c, d c) ∈ S. Let c1, . . . , cn be the
R-successors of c in D for some (possibly inverse) role R. Let d c

1, . . . , d c
m be the

R-successors of d c in A. There exists a subset D of {d c
1, . . . , d c

m} such that S
contains a bijection f : {c1, . . . , cn} → D. Assume without loss of generality that
f = {(c1, d1), . . . , (cn, dn)}. Consider for n< i ⩽ m the tree unfolding T d c

i
A of A at



57 2 | FULL WEAK SEPARABILITY

d c
i (Def. 1.32). Remove from the domain of each T d c

i
A the subtree of root d c

i R−d c

and denote the resulting model by A′d c
i
. Expand Da by adding c to AB for all

concept names A with d c ∈ AA and connecting for every n< i ⩽ m a fresh copy
of A′d c

i
to Da by adding (c, d c

i ) to RB. Let B0 be the resulting model obtained by

doing this for all c ∈ cons(Da). Let B=B0 ⊎B′, where B′ ⊨ (O,D \Da).

A

· · ·

d cc

· · ·

···

c1 cn

d c
n+1

d c
m

A′d c
i

A′d c
m

d c
1

d c
m

“Plugging” the additional trees onto c, for one particular c ∈ cons(Da).

Then B is as required: (B, aB)∼ALCQI (A, bA) is proved in Lemma 2.25, and
B ⊨ D is immediate by definition. Also, B′ ⊨ O by definition. Then, B0 ⊨ O
follows from A ⊨O and the fact that the bisimulation exhibited in Lemma 2.25
is defined on every element of dom(B0).

2.25. Lemma. There exists an ALCQI-bisimulation β between B0 and A such
that (aB0 , bA) ∈ β and such that for all x ∈ dom(B0), there exists y ∈ dom(A)
with (x , y) ∈ β .

Proof. By definition of an ALCQI-simulation, if (c, d) ∈ S and (c, d ′) ∈ S, then
(A, d) ∼ALCQI (A, d ′). Let Sc,d,d ′ be a bisimulation witnessing that. We define
the following relations.

β = β ′′∗ ◦ β
′

β ′ =
⋃

c∈cons(Da)

{(c, d c)} ∪
⋃

n<i⩽m

{(p, tail(p)) : p ∈ dom(A′d c
i
)}

β ′′ =
⋃

c∈cons(Da)

{Sc,d,d ′ : d, d ′ ∈ dom(A), (c, d) ∈ S, (c, d ′) ∈ S}

We show β is an ALCQI-bisimulation. ATOM is immediate by S being an ALCQI-
simulation and by construction of B0.

QFORTH. Suppose (x , y) ∈ β and R is a (possibly inverse) role.
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1. Suppose x = c for some c ∈ cons(Da). We can write any finite set Sx

of R-successors of x as {ci : i ∈ I} ∪ {d c
j : j ∈ J} with I ⊆ {1, . . . , n} and

J ⊆ {n + 1, . . . , m}. By definition of β , x = c implies (d c , y) ∈ β ′′∗ . We want
to show β contains a bijection between Sx and some set of R-successors of y.
By definition, β ′ contains a bijection onto the set {d ci : i ∈ I ∪ J}, defined by
ci 7→ d ci for all i ∈ I and d c

j 7→ d c
j (writing d c

j on the right as the tail of the
path comprised only of d c

j ) for all j ∈ J . Then, by definition of S we have
(ci , d ci ) ∈ S and (ci , d c

i ) ∈ S. Since S is a simulation thus satisfies BISIMALCQI ,
and by definition of β ′′∗ , we get (d ci , d c

i ) ∈ β
′′
∗ for all i ∈ I . Then β ′′∗ contains the

bijection defined by d ci 7→ d c
i for all i ∈ I and the identity map on all d c

j , j ∈ J .
Now, d c

i is an R-successor of d c for all i ∈ I ∪ J and since (d c , y) ∈ β ′′∗ and β ′′∗
is an ALCQI-bisimulation, there exists a bijection d c

i 7→ yi , i ∈ I ∪ J onto a set
{yi : i ∈ I∪J} of R-successors of y . Then, by composition of bijections contained
in β ′′∗ and definition of β ′′∗ , the bijection d ci 7→ yi , i ∈ I is also contained in β ′′∗ .
Then, the bijection defined by ci 7→ yi for all i ∈ I and d c

j 7→ y j for all j ∈ J is
contained in β ′′∗ ◦ β

′, i.e. in β .

c d c y
β ′ β ′′∗

R

c1

cnc

d c
nc+1

d c
mc

..
.

..
.

d c1

d c
nc+1

d c
mc

..
.

..
.

d cncβ ′

S

R

d c
1

d c
nc+1

d c
mc

...
...

d c
nc

β ′′∗

S

y1

ymc

..
.

β ′′∗

R

An illustration of the argument for QFORTH.

2. Suppose now that x ̸= c for any c ∈ cons(Da). Then, x ∈ dom(A′d c ) for some
c ∈ cons(Da). (x , y) ∈ β implies (x , tail(x)) ∈ β ′ and (tail(x), y) ∈ β ′′∗ . Let
x1, . . . , xn be a finite set of R-successors of x in B0. Suppose first that x i ̸= c for
all i ⩽ n and c ∈ cons(Da). Then, β ′ contains a bijection x i 7→ tail(x i) onto the set
{tail(x i) : 1⩽ i ⩽ n} of R-successors of tail(x). Then, because (tail(x), y) ∈ β ′′∗ ,
β ′′∗ contains a bijection tail(x i) 7→ yi for some set of R-successors y1, . . . , yn of
y. The composition of those two bijections is contained in β ′′∗ ◦ β

′ and clearly
the desired witness. Now, if c ∈ {x1, . . . , xn}, then x = d c

i (as a path) for some
i ∈ {n+1, . . . , m}, so tail(x) = d c

i and d c is an R-successor of x . So the bijection,
contained in β ′, defined on {x1, . . . , xn} \ {c} by x i 7→ tail(x i) and on {c} by
c 7→ d c is a bijection onto a set of R-successors of tail(x). Then, the final witness
bijection is simply given by composing the former with the bijection witnessing
(tail(x), y) ∈ β ′′∗ , from {x1, . . . , d c , . . . , xn} onto a set of R-successors of y .
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QBACK. Suppose (x , y) ∈ β and R is a (possibly inverse) role.

1. Suppose x = c ∈ cons(Da). Then, (d c , y) ∈ β ′′∗ . Let y1, . . . , yn be a finite
set of R-successors of y. By β ′′∗ being an ALCQI-bisimulation, there exists a
bijection between {y1, . . . , yn} and some set {d c

1, . . . , d c
n} of R-successors of d c . To

define the desired bijection between {d c
1, . . . , d c

n} and some set of R-successors of
x , fix a given d c

i . By construction of B0, either (c′, d c
i ) ∈ S for some R-successor

c′ of c in Da, or (x , d c
i ) ∈ RB0 . Let us build the desired bijection. In the first

case, (c′, d c′) ∈ S ∩ β ′ so (d c
i , d c′) ∈ β ′′∗ , so the bijection sends d c

i onto c′. In the
second case, the bijection sends d c onto itself (seen as a path of one element).
That last bijection is clearly contained in β ′, making the composition contained
in β .

2. Suppose x ̸= c for any c ∈ cons(Da). Then, x ∈ dom(A′d c ) and (x , tail(x)) ∈
β ′ and (tail(x), y) ∈ β ′′∗ . Let y1, . . . , yn be a finite set of R-successors of y. By
β ′′∗ being an ALCQI-bisimulation, there exists a bijection between {y1, . . . , yn}
and some set of R-successors of tail(x). By definition of B0, that set is either
comprised of elements of the form tail(x ′) with x ′ a path in the same tree A′d c

as x , or of d c . The remaining bijection contained in β ′ is then simply defined by
sending tail(x ′) to x and d c to c if needed. ⊣

2.3.4. Proof of Lemma 2.18 in ALC(Q)

Proof for ALC. (2)⇒ (1). Let S be a witnessing simulation and B0 ⊨ KA,S . Let
Ac be defined for each c ∈ cons(D↑a) as in the ALCI proof. Consider the model A′

defined as in the ALCI proof, but only using all c ∈ cons(D↑a). Let B1 = A′∪B0

with cB1 = cAc if c ∈ cons(D↑a) and cB1 = cB0 otherwise. Let B be equal to B1

in all aspects except that, for all R ∈ rel2, RB := RB1 ∪ {(cB, dB) | R(c, d) ∈ D}.
Then (B, aB) ∼ALC (A, bA) is clear from (A′, aB) ∼ALC (A, bA) and witnessed
by the same bisimulation as in the ALCI case. It remains to prove B ⊨ K. That
B ⊨ D is clear. We then show that B ⊨ O. By assumption, B0 ⊨ O. By the
arguments from the ALCI proof, A′ ⊨O, so B1 ⊨O. Then, B ⊭O iff relations
added on top of B1 contradict O. It can be quickly checked that any additional
pair (cB, dB) in some RB is such that c /∈ cons(D↑a) and d ∈ cons(D↑a). But since
B0 satisfies KA,S , cB1 already has an R-successor satisfying the same O-type as
dA′ . Then, adding the pair (cB, dB) to the interpretation of R has no effect, i.e.
CB = CB1 for all C ∈ sub(O). ⊣

Proof for ALCQ. (2)⇒ (1). Consider the model B0 defined as in the ALCQI
proof but only with all c ∈ cons(D↑a). Let B′ be a model of KA,S . We can assume
without loss of generality that B′ an ALCQ-forest (Lem. 1.40). Define B′′ by
removing, for any c ∈ cons(D↑a) that is a successor of some d /∈ cons(D↑a), the
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subtree of root cB
′

from B′. Then, define B as in the ALC case. Then B ⊨ K
(same argument as for ALC) and (B, aB)∼ALCQ (A, bA) (same argument as for
ALCQI). ⊣

2.3.5. Final characterisation

We now move on to the final characterisation of full weak (L,L)-separability,
based on homomorphisms from the database. It follows very easily from the
simulation characterisation, but only with the crucial help of projectivity. Again,
each language needs a slightly different variation of “homomorphism” here,
mirroring their simulation counterparts; only with ALCI do we use “homomor-
phism” in the natural understanding of the term, aside from the preservation of
constants.

We start by defining each language’s homomorphism variant.

2.26. Definition. (1) By (D, a) → (A, bA), we denote that there exists a
homomorphism h : (AD, a) → (A, bA) where AD is the canonical model in-
duced by D. (2) By (D, a)→i (A, bA) we additionally require that h is locally
injective for all role names and their inverses, i.e. for all c ∈ cons(D) and
all R ∈ rel−2 , the restriction of h to the set of R-successors of c in AD is in-
jective. (3) By (D, a) →r (A, bA) we denote that there is a homomorphism
h : (AD↑a

, a)→ (A, bA) such that the extended knowledge base KA,h := (O,D+)
is satisfiable, where D+ = D ∪ {C(c) | C ∈ sub(O), c ∈ cons(D↑a), h(c) ∈ CA}. (4)
By (D, a)→r,i (A, bA), we require, in addition to (3), that h is locally injective
for all role names (not necessarily inverse roles).

We can then connect the “simulation” characterisation and the “homomorphism”
characterisation in the next Theorem, using the following Lemma. We rename
homomorphism variants as such.

→ALCI :=→

→ALCQI :=→i

→ALC :=→r

→ALCQ :=→r,i

2.27. Lemma. Let L ∈ DLIQ and let (K, E+, {b}) be a labeled L-knowledge base.
The following conditions are equivalent.

1. There exists A ⊨ K such that for all a ∈ E+, (D, a) ̸⪯L (A, bA).
2. There exists A ⊨ K such that for all a ∈ E+, (D, a) ̸→L (A, b).
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Proof. (1)⇒ (2) is trivial. For (2)⇒ (1), assume A is a model of K such that
(D, a) ̸→L (A, bA) for all a ∈ E+. Define an extension A′ of A by taking for
every x ∈ dom(A) a fresh concept name Cx and setting CA′

x = {x} (crucial use
of projectivity). Then A′ is as required for (1) since any two L-bisimilar nodes
in A′ are identical. ⊣

2.28. Theorem. Let (K, E+, {b}) be an labeled L-knowledge base, where K =
(O,D) and L ∈ DLIQ. Then (K, E+, {b}) is weakly projectively L-separable iff
there exists A ⊨ K such that, for all a ∈ E+, (D, a)↛L(A, bA).

Proof. Assume first that (K, E+, {b}) is weakly projectively L-separable. By
Theorem 2.16, there exists a model A of K of finite outdegree such that for all
a ∈ E+ and all models B of K, (B, aB) ̸∼L (A, bA). By Lemma 2.18, (D, a) ̸⪯L

(A, bA) for all a ∈ E+. By Lemma 2.27, there exists a model A′ of K such that
(D, a) ̸→L (A′, bA) for all a ∈ E+, as required. Conversely, assume there exists a
model A of K such that (D, a) ̸→L (A, bA) for all a ∈ E+. Clearly we may assume
that A has finite outdegree. By Lemma 2.27, there exists a model A′ of K of
finite outdegree such that (D, a) ̸⪯L (A′, bA′) for all a ∈ E+. By Lemma 2.18,
for any model B of K and all a ∈ E+, (B, aB) ̸∼L (A′, bA′). By Theorem 2.16,
(K, E+, {b}) is L-separable. ⊣

Since ALCI uses the usual definition of homomorphism, the above characteri-
sation matches the one from Theorem 2.1 on FO-separability. Thus, if helper
symbols are allowed, ALCI provides as much separating power as the much
more expressive FO (as well as all FO-fragments containing UCQ), when the
knowledge base is also in ALCI.

2.29. Corollary. sepp
w(ALCI,ALCI) = sepp

w(ALCI,L) for any FO-fragment L
containing UCQ.

2.3.6. Separability & query evaluation

As in the FO case, being able to express separability in terms of homomorphisms
from the database also allows us to express it in terms of query satisfaction,
since any database can be seen as a conjunctive query and vice-versa. As each
language has its own ‘version’ of homomorphism, it also has its corresponding
version of query evaluation. Once again, only with ALCI are we dealing with
the ‘normal’ version.

2.30. Definition. Let K be an ALCQI-knowledge base and q a unary UCQ. We
write
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1. K ⊨i q(a) if for all A ⊨ K if there is a CQ p in q and a locally injective
homomorphism from p(x) to A with h(x) = a.

2. K ⊨r q(a) if for all A ⊨ K there is a CQ p in q and a homomorphism from p↑x
to A with h(x) = a, with p↑x the restriction of p to the variables directedly
reachable from x , such that the knowledge base KA,h = (O,Dp∪{C(y) | C ∈
sub(O), y ∈ var(p↑x), h(y) ∈ CA}) is satisfiable, where Dp is the canonical
database induced by p.

3. K ⊨r,i q(a) if for all A ⊨ K there is a CQ p in q and a locally injective (not
necessarily w.r.t. inverse roles) homomorphism from p↑x to A with h(x) = a,
with p↑x the restriction of p to the variables reachable along role names (i.e.
directedly) from x , such that KA,h is satisfiable.

Those variants naturally give rise to the decision problems we respectively call
locally injective, reachable, and locally injective reachable (U)CQ evaluation. In the
context of query evaluation, we then use the following notation for uniformity.

⊨ALCI for ⊨

⊨ALC for ⊨r

⊨ALCQI for ⊨i

⊨ALCQ for ⊨r,i

The following is then immediate from Lemma 2.27 and Definition 2.30.

2.31. Corollary. Let L ∈ DLIQ. Let (K, E+, {b}) be a labeled ALCQI-knowledge
base, where K = (O,D). Then (K, E+, {b}) is weakly projectively L-separable iff
K ⊭L∨a∈E+ q(Da, a)(b).

2.3.7. Preliminaries for complexity

Corollary 2.31 directly implies that for each L ∈ DLIQ, the complexity of the com-
plement of (L’s variant of) rooted unary UCQ evaluation on L-knowledge bases is
an upper bound on the complexity of projective full weak (L,L)-separability with
one negative example. It was determined (in combined complexity) to be NEXP-
complete for ALCI in [Lu07,Lu08]. We determine the complexity for the other
three variants. Surprisingly, the ALCQI variant turns out to be EXP-complete,
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that is no harder than satisfiability of ALCQI-knowledge bases.

ALCI unary rooted UCQ eval. [Lu08] NEXP

ALC reach. unary rooted UCQ eval. NEXP

ALCQI loc. inj. unary rooted UCQ eval. EXP

ALCQ reach. loc. inj. unary rooted UCQ eval. NEXP

The lower bounds are also provided by reduction from each variant of UCQ
evaluation, using the same argument as in Corollary 2.4. Putting the two together
we get the following.

2.32. Proposition. There is a mutual polynomial-time reduction between full
weak projective (L,L)-separability with one negative example and the complement
of the L-variant of unary rooted UCQ evaluation.

2.3.8. Complexity for ALCI

2.33. Corollary. Projective full weak (ALCI,ALCI)-separability is NEXP-complete
in combined complexity.

Proof. The result follows from mutual reduction (Cor. 2.31) of (ALCI,FO)-
separability (which we now know coincides with (ALCI,ALCI)-separability)
to the complement of unary rooted UCQ evaluation on ALCI-knowledge bases.
The latter is proved to be CONEXP-complete in [Lu07,Lu08]. ⊣

Data complexity bounds are due to [JLPW20, Thm 19].

2.34. Theorem. Projective full weak (ALCI,ALCI)-separability is NEXP-complete
in data complexity.

Proof sketch. The upper bound is immediate since data complexity is bounded
by combined complexity. For the lower bound, it suffices to show that unary
rooted UCQ evaluation on a fixed ontology and a database whose Gaifman graph
is connected is CONEXP-hard. That is done by reduction from a tiling problem,
which happens to also be introduced in this thesis for another problem (Prop.
2.51 in the ALC subsection). ⊣

2.3.9. Complexity for ALCQI

2.35. Theorem. Projective full weak (ALCQI,ALCQI)-separability is EXP-
complete in combined complexity.
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Proof. The lower bound is obtained by a reduction to satisfiability of ALCQI-
knowledge bases (Rem. 1.63), which is EXP-complete. The upper bound is
obtained as the ALCI one, via reduction from the corresponding – locally
injective – rooted unary UCQ evaluation problem, defined in Definition 2.30.
The difficult part is now to show that injective rooted unary UCQ evaluation is
EXP-complete (Lem. 2.40). ⊣

To obtain Lemma 2.40, we first characterize locally injective rooted unary UCQ
evaluation in a way that can be efficiently checked. For that, we introduce the
notion of extended type assignment (Definitions 2.36 and 2.38). Then, we show
that locally injective rooted unary UCQ evaluation can be seen as the satisfaction
by some extended type assignment of a semantic condition (Lem. 2.39). Finally,
we show that condition can be checked in exponential time (Lem. 2.40).

2.36. Definition. Let an ALCQI-knowledge base K = (O,D), a unary rooted
UCQ q0(x0), and a candidate answer a0 ∈ cons(D) be given. Let Γ denote the
set of pairs (R(x1, x2), q2(x2)) such that there exists a CQ q′ in q0 with R(x1, x2)
an atom in q′ and q2 a set of atoms in q′ such that q′ \ {R(x1, x2)} consists of
two (potentially empty) disconnected components q1 and q2 of atoms where

1. x1 does not occur in q2 and x2 do not occur in q1

2. x0 ̸= x2 and x0 does not occur in q2, and
3. qr,q2

(x1) = R(x1, x2)∪ q2 is a tree-shaped unary CQ with root x1.

Define the following sets of unary tree-shaped CQs.

Γ0 = {q2(x2) | (R(x1, x2), q2) ∈ Γ }

Γ1 = {qr,q2
(x1) | (R(x1, x2), q2) ∈ Γ }

x1 x2
q2

q′

∈ Γ0

∈ Γ1

2.37. |Γ | is polynomial in the size of q0, as it is bounded by the number of atoms
R(x1, x2) contained in any CQ of q0.

Let K = (O,D), q0 and a0 be fixed for the remainder of this subsection.
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2.38. Definition. Let A be an ALCQI-forest model of K and d an R-successor
of aA for some a ∈ cons(D), such that d ̸= cA for all c ∈ cons(D). A q0-extended
O-type t is the union of an O-type and a set that contains, for every q(x) ∈ Γ0,
either the expression isat(q(x)) or ¬isat(q(x)). We write Tq0

O for the set of q0-
extended O-types. We say that isat(q(x)) is satisfied in (A, d) if A ⊨i q(d) and
this is witnessed by a locally injective homomorphism h into dom(A) \ {cA : c ∈
cons(D)}. As A is a forest model of D, h is locally injective iff it is injective (easy
to check). A q0-extended O-type t is satisfied in (A, d) if its concepts are satisfied
in d and isat(q(x)) is satisfied in (A, d) iff isat(q(x)) ∈ t, for all q(x) ∈ Γ0.

A q0-extended O-type assignment for D is a function µ that assigns to every
a ∈ cons(D) an O-type µ(a) and to every triple (a, R, t) with a ∈ cons(D), R a
role from K, and t a q0-extended O-type, a natural number µ(a, R, t). We say µ
is small if for every a and R we have

∑

t µ(a, R, t)⩽ ||O||. We say µ is realized by
an ALCQI-forest model A of D if for every a ∈ cons(D), a satisfies µ(a) in A and
the number of R-successors of a in A outside cons(D) satisfying an q0-extended
O-type t is µ(a, R, t). A q0-extended O-type assignment µ is K-realizable if there
exists an ALCQI-forest model A of K that realizes it.

A forest decomposition of a CQ q in q0 is a partition q̂ ∪ q1(x1)∪ · · · ∪ qn(xn)
of (the set of atoms in) q such that qi(x i) ∈ Γ1. We assume that the variables
x1, . . . , xn all occur in q̂, which can be achieved by adding ‘dummy atoms’ of the
form ⊤(x i). It can be verified that q̂ and qi share only the variable x i, that x0

occurs in q̂, and that if x0 occurs in qi, then x i = x0. A forest decomposition of
the UCQ q0 is any forest decomposition of any of its CQs.

Given a forest decomposition q̂ ∪ q1 ∪ · · · ∪ qn and x i in q̂ and a role R we
obtain the tree-shaped CQ q j

R(x j) as the conjunction of all queries of the form
R(x j , y)∧ q(y) in {q1, . . . , qn}. For a q0-extended O-type assignment µ we write
K ⊨i

µ q j
R(a) if A ⊨i q j

R(a
A) for some model, or, equivalently, all models A of K

realizing µ – as µ fully determines at each R-successor of database elements
whether isat(q) is satisfied for every q ∈ Γ0 (with multiplicity) therefore fully
determines whether q j

r is locally injectively satisfied in a – and this is witnessed
by an injective homomorphism from q j

R(x j) into the interpretation induced by
the subtree generated by aA in A (so a is the only constant in D such that its
interpretation in A is in the range of h).
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x1

x2 x3

q1(x1)

q
2 (x

2 )

R
R

S

q2
R(x2)

q 3
(x 3
)

q̂

Example of a forest decomposition q̂ ∪ q1 ∪ q2 ∪ q3, with a detailed look at q2.

Elements of Γ0 are displayed in orange and elements of Γ1 in blue.

We say that a q0-extended O-type assignment µ for D avoids q0 if for every
forest decomposition q̂ ∪ q1(x1)∪ · · · ∪ qn(xn) of q0 there is no locally injective
homomorphism h : q̂→ D ∪ {A(a) | A∈ µ(a), a ∈ cons(D)} such that h(x0) = a0

and K ⊨i
µ q j

R(h(x j)) for all R ∈ rel−2 and 1⩽ j ⩽ n.

2.39. Lemma. K ⊭i q0(a0) iff there is a small K-realizable extended O-type
assignment for D that avoids q0.

Proof.

(⇐)We are given a K-realizable small q0-extended O-type assignment µ for
D that avoids q0. We show that any ALCQI-forest model A ⊨ K that realizes µ
satisfies A ⊭i q0(a0). Suppose the contrary for contradiction. Then there exists a
locally injective homomorphism h : q0→ A with h(x0) = aA

0 . Since A is a forest
model, the preimages of h induce a forest decomposition q̂, q1, . . . , qn of q0, with
q̂ induced by the preimage of {cA : c ∈ cons(D)} and the qi , 1 ⩽ i ⩽ n, by the
preimages of trees of root cA for each c ∈ cons(D). It is then immediate that h
is a witness for the fact that µ does not avoid q0: A ⊨ D ∪ {A(a) | A∈ µ(a), a ∈
cons(D)} since A realizes µ, and h is a locally injective homomorphism from q̂
to A thus from q̂ to D ∪ {A(a) | A∈ µ(a), a ∈ cons(D)}.
(⇒) Let A ⊨ K such that A ⊭i q0(a0). We can assume without loss of generality

that A is an ALCQI-forest model and has outdegree⩽ ||O|| outside the database
elements (same argument as Cor. 1.37). For each a ∈ cons(D), role R and q0-
extended O-type t, define as µ(a) the extended O-type satisfied by aA and as
µ(a, R, t) the number of R-successors outside D that satisfy t. Then, µ is small
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and avoids q0: suppose for contradiction that it does not. Let it be witnessed by
some forest decomposition q̂, q1(x1), . . . , qn(xn) of some CQ q of q0 and some
homomorphism h as in the definition of avoiding q0. Then, K ⊨i

µ q j
R(h(x j)) for all

j, r. In particular, A ⊨ K and A realizes µ, so A ⊨i q j
r(h(x j)), witnessed by some

locally injective homomorphism h j,r . Then, the locally injective homomorphism
h∪
⋃

j,r h j,r witnesses A ⊨i q(a0), which is contradictory. ⊣

2.40. Lemma. Locally injective unary rooted UCQ evaluation onALCQI-knowledge
bases is EXP-complete in combined complexity.

Proof. After Lemma 2.39 it suffices to show that, in the size of K and q0,
1. the number of small q0-extended O-type assignments for D is at most

exponential (Lem. 2.41),
2. it can be checked in exponential time whether a small q0-extended O-type

assignment is K-realizable (Lem. 2.45),
3. it can be checked in exponential time whether a small K-realizable q0-

extended O-type assignment avoids q0 (Lem. 2.46).
⊣

2.41. Lemma. The number of small q0-extended O-type assignments for D is at
most exponential in ||K||+ ||q0||.

Proof. There are at most exponentially many q0-extended O-types, since there
are at most exponentially many O-types and Γ (thus Γ0) has polynomial size. It
then suffices to show that the number of functions

f :







(a, R, t)

�

�

�

�

�

�

�

a ∈ cons(D)
R ∈ rel2 ∩ sig(K)
t q0-extended O-type







→ {0, . . . , ||O||}

such that Σt f (a, R, t)⩽ ||O||

is at most exponential. As there are at most exponentially many q0-extended O-
types, the sum restrictions imply that any such function f satisfies f (a, R, t) ̸= 0
on only polynomially many t for each (a, R), therefore on only polynomially
many triples (a, R, t), given that there are only polynomially many a ∈ cons(D)
and R ∈ rel2 ∩ sig(K). ⊣

To prove Lemma 2.45, we extrapolate the so-called ‘elimination procedure’ used
to determine the complexity of satisfiability in ALC [BHLS17].

2.42. Definition. For any tree-shaped CQ q(x) and role S, we call S-subtree of
q(x) any CQ corresponding to a subtree of the graph associated with q(x) that
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is rooted in an S-successor of x . Let Trq0
O be the set of all triples (t, R, t ′) where

R is a (possibly inverse) role and t, t ′ q0-extended O-types.

We aim at eliminating all ‘bad’ triples from Trq0
O , i.e. those whose number

restrictions cannot be witnessed simultaneously. Since a ‘good’ triple can become
bad after one of its bad witnesses is eliminated, we need to make successive
elimination rounds until we reach a fixed point. Let E be the function performing
one round of elimination.

2.43. Definition. For any subset T of Trq0
O , let E(T) be defined as follows.

For each (t, R, t ′) ∈ T , consider all possible ‘combinations of successor triples’
for (t, R, t ′), i.e. sets of the form S = {(t ′, R1, t1)α1 , . . . , (t ′, Rℓ, tℓ)αℓ} where
ℓ⩾ 1, (t ′, Ri , t i) ∈ T,αi ⩾ 1 for all i ∈ {1, . . . ,ℓ}, such that

∑ℓ
i=1αi ⩽ ||O|| (each

αi will indicate the multiplicity of the i-th triple). Check for all such S whether
it is a witness for (t, R, t ′) (defined below) until one is. In that case, move on to
the next triple. If (t, R, t ′) has no witness set, remove the triple from T . Let E(T )
denote the set that remains after applying the procedure to every triple in T .

We now define what it means for S to be a witness for (t, R, t ′), i.e. that S
respects all number restrictions and isat conditions in t ′. Formally, S is a witness
for (t, R, t ′) if

1. for all concepts of the form ⩽ nS.C in t ′,
∑

C∈t i ,S=Ri
αi + 1C∈t, S=R− ⩽ n,

2. for all concepts of the form ⩾ nS.C in t ′,
∑

C∈t i ,S=Ri
αi + 1C∈t, S=R− ⩾ n,

3. for each role ρ and q ∈ Γ0, there is a bijection

f : {ρ-subtrees of q | isat(q) ∈ t ′} → {(t ′, Ri , t i) ∈ S | Ri = ρ}

such that f (q′) = (t, Ri , t i) implies isat(q′) ∈ t i .

For all i ⩾ 1 we write E i for E ◦ · · · ◦ E i times. Then, let m=min{i | E i(TrOq0
) =

E i+1(TrOq0
)} and Elim(TrOq0

) = Em(TrOq0
).

The next step is to characterise realizability in an algorithmically checkable way
(Lem. 2.44), in order to deduce its complexity in Lemma 2.45.

2.44. Lemma. A small q0-extended O-type assignment µ is K-realizable if and
only if the following conditions are met.

1. A(a) ∈ D⇒ A∈ µ(a) for all a ∈ cons(D), A∈ rel1.

2. Let a ∈ cons(D) and R ∈ rel2. Write all ⩾ r number restrictions in µ(a) as
{⩾ λ jR.C j : j ∈ J} and all ⩾ R− number restrictions in µ(a) as {⩾ λ jR

−.C j :
j ∈ J ′}. Then

for all j ∈ J, |{b : C j ∈ µ(b), R(a, b) ∈ D}|+
∑

C j∈t µ(a, R, t)⩾ λ j ,
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for all j ∈ J ′, |{b : C j ∈ µ(b), R(b, a) ∈ D}|+
∑

C j∈t µ(a, R−, t)⩾ λ j .

Same for ⩽ R number restrictions, with all occurrences of ⩾ replaced by ⩽.

3. µ(a, R, t) ̸= 0⇒ (µ(a), R, t) ∈ Elim(Trq0
O ) for all R ∈ rel−2 and q0-extended

O-types t.

Proof. (⇒) Suppose µ is small and K-realizable by some A. Then (1) is satisfied
immediately. For (2) and (3), take as witnesses the types of successors.

(⇐) We build a model A, prove it is a model of K and that it realizes µ. We first
define A0 as

dom(A0) = cons(D)
RA0 = {(a, b) : R(a, b) ∈ D} for all R ∈ rel2
AA0 = {a ∈ cons(D) : A∈ µ(a)} for all A∈ rel1

To construct A1 from A0, add µ(a, R, t) copies of t as R-successors of every
a ∈ dom(A0), for all R ∈ rel−2 and q0-extended O-types t:

dom(A1) = dom(A0) ∪







ta,r
i

�

�

�

�

�

�

�

a ∈ dom(A0), R ∈ rel−2
t q0-extended type
i ∈ {1, . . . ,µ(a, R, t)}







RA1 = RA0 ∪ {(a, ta,s
i ) | t

a,s
i ∈ dom(A1), S = R} for all R ∈ rel−2

AA1 = AA0 ∪ {ta,r
i ∈ dom(A1) | A∈ t} for all A∈ rel1.

We only informally describe how to construct Ak from Ak−1 for all k ⩾ 2, as
a formal description would be too cumbersome. For each x ∈ dom(Ak−1) \
dom(Ak−2), let t ′ be the q0-extended O-type satisfied by x and t the one satisfied
by its unique predecessor (as this is all in a tree), where R is the role linking the
two. Then (t, R, t ′) ∈ Elim(Trq0

O ) by an easy induction, as we assume condition
(3). Consider a set {(t ′, R1, t1)α1 , . . . , (t ′, Rℓ, tℓ)αℓ} witnessing that (t, R, t ′) ∈
Elim(Trq0

O ). To build Ak, we then add, for each i ∈ {1, . . . ,ℓ}, αi copies of t i as
Ri-successors of t ′. Naturally, any concept name A is satisfied in the copy of t i

iff A∈ t i . Finally, set A =
⋃

k⩾0 Ak. We now show that A ⊨ K. It is easy to check
that t ∈ CA iff C ∈ t, for any copy of t in A and any C ∈ sub(O). Let C ⊑ D ∈O.
If a copy of t is in CA then C ∈ t. By maximality of types and consistency with
respect to K, it follows that D ∈ t, hence the copy of t is in DA. Finally, the fact
that A realizes µ is immediate from its definition. ⊣
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ta,r
1

ta,r
µ(a,r,t)

witne
sses

witne
sses

. . .

. . . . .
.

D

a

Construction of A.

2.45. Lemma. K-realizability of a small q0-extended O-type assignment for D is
decidable in exponential time in the size of K, q0.

Proof. Let µ be a small q0-extended O-type assignment, of bound X ⩽ ||O||. We
first need to determine Elim(Trq0

O ). The smallest i such that E i(Trq0
O ) = E i+1(Trq0

O )
is bounded by |Trq0

O |, which is polynomial in the total number of q0-extended
O-types, therefore at most exponential. To determine E i+1(Trq0

O ) from E i(Trq0
O ),

we check whether at most the total number of triples in E i(Trq0
O ) (which is also

at most exponential) is ‘good’ in E i(Trq0
O ). To check that a given triple (t, R, t ′)

is ‘good’ in E i(Trq0
O ), we check at most all sets of triples (with multiplicity) of

cardinality⩽ ||O|| in E i(Trq0
O ). Checking that a given such set respects restrictions

in t ′ takes polynomially many steps in the size of t ′ and the given set. We then
check the conditions given by Lemma 2.44. Condition (1) can be checked
in polynomial time. Condition (2) can be checked in exponential time: the
procedure is the same as to check that a set of triples is ‘good’. Condition (3)
is checked by determining whether (µ(a), R, t) ∈ Trq0

O for a number of triples
(µ(a), R, t) at most as large as the size of µ (exponential in K, q0). ⊣

2.46. Lemma. Whether a small q0-extended O-type assignment avoids q0 is
decidable in exponential time (in the size of K, q0).

Proof. Assume µ is given. There are at most exponentially many forest decom-
positions q̂ ∪ q1 ∪ · · · ∪ qn of q, because Γ1 has polynomial size. Finding all
homomorphisms h : q̂ → D ∪ {A(a) : A ∈ µ(a)} can be done in exponential
time. For each of them, we can then check that h(x0) = a0 and K ⊨i

µ q j
R(h(x j))

for all R ∈ rel−2 and j ∈ {1, . . . , n}. For a given R, denote by S j
R the set of R-

subtrees in q j
R. Note that SR

j ⊆ Γ1. Then, K ⊨i
µ q j

R(h(x j)) iff for all p ∈ S j
R,

∑

isat(p)∈t µ(h(x j), R, t)⩾ 1, which can be checked in polynomial time. ⊣
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2.3.10. Complexity for ALC

We show that full weak projective (ALC,ALC)-separability is NEXP-complete in
combined complexity and PSPACE-complete in data complexity.

For combined complexity, the proof is a simple transposition of the reductions
used for ALCI in Corollary 2.33, but using the ALC (reachable) variant of
unary rooted (U)CQ evaluation, on ALC-knowledge bases. Unlike the ALCI
variant’s, the complexity of that decision problem is not known. We show that
it is CONEXP-complete. We prove the lower bound in Proposition 2.51, using a
reduction from the tiling problem introduced in Definition 2.47 & Proposition
2.48, and the upper bound in Proposition 2.53.

2.47. Definition. Let an initialized square tiling system τ be a triple (T, H, V ),
where T = {0, . . . , k} is a finite set of tile types and H, V ⊆ T × T represent
the horizontal and vertical matching conditions. An initial condition for τ takes
the form c = (c0, . . . , cn−1) ∈ T n. A mapping σ : {0, . . . , 2n − 1}2 → T is an
exponential toric solution for τ given c if for all x , y < 2n, the following holds
(where ⊕i denotes addition modulo i).

1. If σ(x , y) = t1 and σ(x ⊕2n 1, y) = t2, then (t1, t2) ∈ H
2. If σ(x , y) = t1 and σ(x , y ⊕2n 1) = t2, then (t1, t2) ∈ V
3. σ(i, 0) = ci for all i < n.

The core of our lower bound proof follows from the next result, due to [Lu02, Cor.
4.15].

2.48. Proposition. There exists an initialized square tiling system τ such that it
is NEXP-complete to decide, given an initial condition c, whether there exists an
exponential toric solution for τ given c.

Let τ = (T, H, V ) be the tiling problem witnessing Proposition 2.48. Towards
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a reduction to reachable unary rooted CQ evaluation, we construct an ALC-
ontology Oτ,c and a CQ qτ,c .

2.49. Definition. We define Oτ,c. It consists of 4 groups of axioms whose
behaviour is informally described as follows.

1. Below each instance of a distinguished concept name A0, there is a binary tree
of depth 2n whose edges are represented by a role name S. The leaves of the
tree correspond to the positions in the 2n×2n-torus and the position of each leaf
is represented in binary using the concept names X1, . . . , Xn for the x-coordinate
and Y1, . . . , Yn for the y-coordinate. We write ¬ jC for ¬¬ j−1C and ¬0C = C for
every concept C and j ⩾ 1.

Ai ⊑ ¬A j ⊓ ∃S.Ai0 ⊓ ∃S.Ai1 for all distinct i, j ∈ {0,1}∗

Ai1...i2n
⊑

dn
j=1¬

i j X j ⊓
d2n

j=n+1¬
i j Yj for all i1, . . . , i2n ∈ {0, 1}

2. Each ‘leaf’ has three additional successors, all attached via the role name R,
marked with the concept names H (for ‘here’), U (for ‘up’), and R (for ‘right’).

A0 ⊑ ∀S2n.(∃R.⊤⊓∃U .⊤⊓∃H.⊤)

3. The three successors are also associated with torus positions represented
via X1, . . . , Xn and Y1, . . . , Yn. If the position of the leaf that the successors
are attached to is (i, j), then the H-successor also has position (i, h), the U-
successor has position (i, j ⊕2n 1) and the R-successor has position (i ⊕2n 1, j).
For every n-digit binary number b = b1 . . . bn we define CX

b =
dn

i=1¬
bi X i and

CY
b =

dn
i=1¬

bi Yi .

CX
b ⊑ ∀R.CX

b⊕n1 for all b ⩽ 2n

CY
b ⊑ ∀U .CY

b⊕n1 for all b ⩽ 2n

(CX
b ⊓ CY

b′) ⊑ ∀H.(CX
b ⊓ CY

b′) for all b, b′ ⩽ 2n

4. To each of the successor nodes is assigned a tile from T , where tile m is
represented by concept name Tm. The assignment needs to be compatible with
c and ‘locally compatible’ with the matching conditions, that is, if tiles i, j,ℓ are
assigned to the H-, U-, and R-successor of the same tree leaf, then (i, j) ∈ V and
(i,ℓ) ∈ H.

CX
b ⊓ CY

0...0 ⊑ ∀H.Tcb
for all b ⩽ n

∃H.Tm ⊑ ∀R.
⊔

(m,m′)∈H Tm′ for all m ∈ T
∃H.Tm ⊑ ∀U .
⊔

(m,m′)∈V Tm′ for all m ∈ T
Tm ⊑ ¬Tm′ for all m ̸= m′
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A0

TREE ⊓i X i

H U
R

⊓i Yi

⊓i¬X i
⊓i Yi

⊓i X i
⊓i Yi

⊓i X i
⊓i¬Yi

Ti

T j

Tℓ

Depiction of the binary tree described above, with a detailed look at the 3
successors of an example leaf of coordinates

d
i X i and

d
i Yi , i.e. (2n, 2n).

We then define the following CQ qτ,c(x0), represented below, by

∃x1 . . .∃x2n+1∃x ′1 . . .∃x ′2n+1∃y





S(x0, x1)∧ S(x0, x ′1) ∧
∧2n

i=1(S(x i , x i+1)∧ S(x ′i , x ′i+1)) ∧
S1(y, x2n+1)∧ S2(y, x ′2n+1)∧ B0(y)





. . .

. . .

S

S

x0

x ′1

x1

x ′2n+1

x2n+1

y [B0]
S2

S1

and further extend Oτ,c with the following, for 1⩽ i ⩽ n.

B0 ⊑ (∀S1.X i ⊓∀S2.X i)⊔ (∀S1.¬X i ⊓∀S2.¬X i)
B0 ⊑ (∀S1.Yi ⊓∀S2.Yi)⊔ (∀S1.¬Yi ⊓∀S2.¬Yi)
B0 ⊑
⊔

i, j∈T,i ̸= j(∀S1.Ti ⊓∀S2.T j)

Oτ,c and qτ,c can be constructed in polynomial time, thus the next lemma suffices
to obtain the lower bound.

2.50. Lemma. (Oτ,c , {A0(a)}) ⊨r qτ,c(a) iff τ has no exponential toric solution
given c.

Proof. (⇐) Let A ⊨ Oτ,c with a ∈ AA
0 . Then Oτ,c generates a tree below a

as described above. Since τ has no exponential toric solution given c, this tree
must contain a tiling defect, i.e. there must be two elements d1, d2 reachable
from a along an S-path of length 2n+ 1 such that d1, d2

1. are associated with the same position, i.e. d1 ∈ XA
i iff d2 ∈ XA

i for 1⩽ i ⩽ n
and d1 ∈ YA

i iff d2 ∈ YA
i for 1⩽ i ⩽ n; and
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2. are tiled differently, i.e. d1 ∈ TA
i and d2 ∈ TA

j , i ̸= j.

Clearly, there is a homomorphism h from (qτ,c)↑x0
to A with h(x2n+1) = d1 and

h(x ′2n+1) = d2. It is straightforward that, because d1, d2 satisfy Conditions 1
and 2 above and because of the axioms involving B0, h satisfies the required
satisfiability condition, i.e. that there exists a model of the knowledge base

�

Oτ,c ,Dqτ,c
∪ {C(y) | C ∈ sub(Oτ,c), y ∈ var((q↑τ,c)x0

), h(y) ∈ CA}
�

.

(⇒) Assume that τ has a solution given c. We can then find a model A of Oτ,c

with a ∈ AA
0 such that the tree enforced by Oτ,c below a represents that solution.

In particular, there is no tiling defect. Consequently, all homomorphisms from
(qτ,c)↑x0

to A violate the satisfiability condition. ⊣

The result ensues.

2.51. Proposition. Reachable unary rooted (U)CQ evaluation on ALC-knowledge
bases is CONEXP-hard in combined complexity.

We next determine a CONEXP upper bound. It requires the following lemma that
can be easily checked and states that two models of an ontology O can be joined
at a node to form another model of O if that node has the same O-type in both
models.

2.52. Lemma. Let O be an ALC-knowledge base, A1,A2 ⊨ O and x such that
dom(A1)∩ dom(A2) = {x} and tpO(A1, x) = tpO(A2, x). Then A1 ∪A2 ⊨O.

2.53. Proposition. Reachable unary rooted (U)CQ evaluation on ALC-knowledge
bases is in CONEXP in combined complexity.

Proof. Let K = (O,D) be an ALC-knowledge base, q a unary rooted UCQ, and
a ∈ cons(D). Then K ⊨r q(a) iff for every ALC-forest model A ⊨ K of outdegree
at most ||O||, A ⊨r q(a). We omit the full proof as it mirrors the proofs of
Lemmas 1.40 and 1.42: if A ⊭r q(aA), then by forest unfolding and “trimming”
we obtain a forest model of bounded outdegree B such that B ⊭r q(aB). A
NEXP algorithm for the complement of reachable unary rooted UCQ evaluation
on ALC-knowledge bases is now as follows. Let K, q, and a be given as an
input. We guess an initial piece of a forest model A of K of outdegree at most
||O|| and depth at most ||q||. The number of elements in such an initial piece is
single exponential, bounded by ||D||+ ||D|| · ||O||||q||. Along with A, we guess
an adornment µ : dom(A)→ 2sub(O) that specifies which subconcepts of O are
satisfied at each element in A. It is required that for all d ∈ dom(A),

d
µ(d) is
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consistent w.r.t. O, which can be checked in exponential time in ||K||+ ||q||. The
adornment must also be compatible with A, that is

1. d ∈ AA iff A∈ µ(d) for all concept names A;
2. if (d, e) ∈ RA, C ∈ µ(e) and ∃R.C ∈ sub(O), then ∃R.C ∈ µ(d).

By Lemma 2.52, the adornment ensures that the guessed initial piece of A can
be extended to a full ALC-forest model of K. Since q(x) is rooted, however, only
the guessed initial piece of A can be in the range of a homomorphism h from
q↑x to A that maps x to a database constant. The number of homomorphisms
from q↑x to A is single exponential, bounded by |dom(A)|||q||, thus we can iterate
through all candidates. For each h that turns out to be a homomorphism, we
additionally verify that KA,h (which has polynomial size in K , q) is satisfiable in
exponential time (cf. complexity of satisfiability in ALC). We accept iff every
homomorphism violates the satisfiability condition. ⊣

In conclusion,

2.54. Theorem. Full weak projective (ALC,ALC)-separability is NEXP-complete
in combined complexity.

Data complexity, lower bound. We show that when the ontology is removed
from the input, complexity drops to PSPACE-completeness. For the lower bound, it
suffices to show that rooted UCQ evaluation on ALC-knowledge bases K = (O,D)
is PSPACE-hard in the size of ‘database + query’. The reduction to simple (not
necessarily reachable) rooted UCQ evaluation is sufficient, as it provides a query
q(x) such that q↑x = q. The reduction is from validity of quantified Boolean
formulas (QBF), well-known to be PSPACE-complete. We assume without loss
of generality that the input QBF is of the form ϕ = ∀p1∃p2∀p3 · · · ∃pnψ with
ψ = ψ1 ∧ · · · ∧ ψm in conjunctive normal form. We require the following
definitions.

2.55. Definition. We call ∀∃-tree any tree-shaped graph in which every node of
even depth has two children, every node of odd depth has one child, and every
node is labeled with exclusively T or F . In any graph, we call the corresponding
tuple of truth values of a path of length n the tuple (v1, . . . , vn) with vi being the
label (T or F) assigned to the path’s i + 1-th node. Let ϕ-forbidden tuples be all
tuples (v1, . . . , vn) ∈ {T, F}n such that assigning vi to pi for all i makes ψ false.
In any graph, we say a path is ϕ-forbidden if its corresponding tuple of truth
values is ϕ-forbidden.

2.56. Example.
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1. ∀p1∃p2(p1∨p2)∧(¬p1∨p2) is valid. Forbidden tuples are (F, F) and (T, F).
Validity is witnessed by the existence of a ∀∃-tree Tϕ, that has no forbidden
path from its root.

TT

TF

p1 p2

· · ·

· · ·

2. ∀p1∃p2(p1 ∧ p2) is not valid. Any pair containing F is forbidden. In any
∀∃-tree, there exists a path starting from the root that contains F .

2.57. Theorem. Full weak projective (ALC,ALC)-separability is PSPACE-hard in
data complexity.

Proof. Let K = (O,D) with D = {U(a0)} and

O =







U ⊑ ∃R.(E ⊓ T )⊓ ∃R.(E ⊓ F)
E ⊑ ∃R.U
T ≡ ¬F







We use Ri(x , y), i ⩾ 1, as shorthand for R(z1, z2), . . . , R(zi−1, zi) with z1 = x ,
zi = y , and z2, . . . , zi−1 existentially quantified fresh variables. We define a rooted
UCQ qϕ, constructible in polynomial time, such that ϕ is valid iff K ⊭ qϕ(a0).

J+i = { j ∈ {1, . . . , n} | p j occurs positively in ψi}

J−i = { j ∈ {1, . . . , n} | p j occurs negatively in ψi}

qϕ =
m
∨

i=1

�

∃x1 . . .∃xn R(x0, x1)∧ · · · ∧ R(xn−1, xn)∧
∧

j∈J+i

F(x j)∧
∧

j∈J−i

T (x j)
�

We prove that ϕ is valid iff K ⊭ qϕ(a0). In CNF, for some k1, . . . , km ≥ 1, we
can write ϕ =
∧

1⩽i⩽m

∨

1⩽ j⩽ki
ℓi j

. Then, given a valuation χ, ϕ is false iff there
exists at least one i ∈ {1, . . . , m} such that for every j ∈ {1, . . . , ki} we have
V (pi j

) = V i j
, where for any propositional variable p, V (p) is defined as T if

χ(p) = 1 and F otherwise. Therefore, ϕ is valid iff for every choice of p1, there
is a choice of p2 such that for every [...], there is a choice of pn such that those
n choices make ϕ true, i.e. such that for all i ∈ {1, . . . , m} there exists at least
one j ∈ {1, . . . , ki} such that V (pi j

) ̸= V i j
. Using Definition 2.55, that statement

can be rephrased as

▶ ϕ is valid iff there exists a ∀∃-tree with no
ϕ-forbidden path from its root.
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It can then be proved the righthand statement is equivalent to K ⊭ qϕ(a0).
Suppose ϕ is valid. Then there exists a ∀∃-tree Tϕ with no forbidden ϕ-path
from its root. By considering all edges of Tϕ as R-edges, seeing the labels T/F
as concept names and interpreting a0 as the root, Tϕ can be seen as a model.
We then build a model Aϕ from Tϕ by adding U to each node of even depth and

E to each node of odd depth. It is then clear that A ⊨ K and Aϕ ⊭ qϕ(a
Aϕ
0 ). ⊣

2.58. In (1) of Example 2.56, Tϕ induces a model Aϕ that contains the following
submodel.

{E, T}
{U} a0

· · ·

· · ·

{U , T}

{E, F} {U , T}

R

R

R

R

The induced query qϕ(x0) can be represented as below. Clearly, Aϕ ⊭ qϕ(a
Aϕ
0 ).

FF

x0 x1 x2

FT

x0 x1 x2
or

Data complexity, upper bound. For the upper bound, it suffices to show that
reachable rooted UCQ evaluation on ALC-knowledge bases is in PSPACE when
the ontology is fixed. We need the following definitions.

2.59. Definition. An augmented database is a database that may contain ‘atoms’
¬C(a), C an EL-concept. An augmented ALC-knowledge base is a pair (O,D)
with O an ALC-ontology and D an augmented database.

It has been shown in [Lu08, §5] that given an ALC-knowledge base (O,D) and
a CQ q, one can compute a sequence of augmented ALC-knowledge bases
K1, . . . ,Kn, Ki = (Oi ,Di) such that K ⊭ q iff at least one Ki is satisfiable. The
proof straightforwardly extends to reachable evaluation and an easy analy-
sis shows that when q is rooted, then we can assume that Oi = O for all i.
Each database Di is of size polynomial in ||D||+ ||q|| and the knowledge bases
K1, . . . ,Kn, of which there are only single exponentially many in ||D||+ ||q||, can
be enumerated using polynomial space. It thus suffices to show that for every
fixed ALC-ontology O, given an augmented database D, it can be decided in
PSPACE whether the knowledge base (O,D) is satisfiable. We only sketch the
procedure.

2.60. We can assume without loss of generality that ¬∃R.C(a) ∈ D implies
¬C(b) ∈ D for all R(a, b) ∈ D and C . This is because that property can be
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checked in polynomial time and any (O,D) that cannot be completed to satisfy it
is already unsatisfiable. We can precompute in constant time the set S of O-types.
To check satisfiability of (O,D), we first guess an assignment δ : cons(D)→ S of
O-types to constants in D such that

1. for all R(a, b) ∈ D where R ∈ rel2,

- if ∃R.C ∈ sub(O), then C ∈ δ(b) implies ∃R.C ∈ δ(a), and
- if ∀R.C ∈ sub(O), then ∀R.C ∈ δ(a) implies C ∈ δ(b),

2. for all A(a) ∈ D where A∈ rel1, A∈ δ(a).

It is then sufficient to check whether the concept
d

C(a)∈D C⊓
d
δ(a) is satisfiable

w.r.t. O, for every a ∈ cons(D).

2.61. Lemma. If
d

C(a)∈D C ⊓
d
δ(a) is satisfiable w.r.t. O for every a ∈ cons(D),

then (O,D) is satisfiable.

Proof. Suppose that for all c ∈ cons(D) there is Ac and some x ∈ (
d

C(c)∈D C ⊓
d
δ(c))Ac . Then we can define a model A by taking the disjoint union of all

Ac and connecting them at each c. We can assume without loss of generality
that the models Ac are all pairwise disjoint and that for each c ∈ cons(D), the
witness x mentioned above is equal to cAc . Then define A as follows.

dom(A) =
⋃

c∈cons(D)
Ac

RA =
⋃

c∈cons(D)
RAc ∪ {(cAc , dAd ) | R(c, d) ∈ D} for all R ∈ rel2

AA =
⋃

c∈cons(D)
Ac for all A∈ rel1

cA = cAc for all c ∈ cons(D)

Note that CA =
⋃

c∈cons(D) C
Ac for all C ∈ sub(O). It is clear if C is a concept

name. Then assuming the induction hypothesis, let x ∈ (∃R.C)A for some R, C .
The only non-trivial case is, in the left to right inclusion, the case where x = cA

and x ∈ (∃R.C)A is witnessed by dA such that R(c, d) ∈ D. Then d ∈ CA implies
dA ∈ CAd by induction hypothesis, then C ∈ δ(d) since C ∈ sub(O) (therefore
either C ∈ δ(d) or ¬C ∈ δ(d)). From C ∈ δ(d) we get ∃R.C ∈ δ(c) by definition
of δ, and finally cA ∈ CAc . A ⊨ D is clear. To show A ⊨O, let C ⊑ D ∈O. Since
Ac ⊨ O for all c ∈ cons(D) we have CA =

⋃

c∈cons(D) C
Ac ⊆
⋃

c∈cons(D) DAc =
DA. ⊣

To check satisfiability w.r.t. O in PSPACE, we adapt the well-known K-WORLD

recursive procedure (e.g. [Sp93], p. 18) used to determine satisfiability of modal
formulas (i.e. ALC-concepts) w.r.t. an empty ontology.
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2.62. Definition. Let ∆,Σ be sets of ALC-concepts, and t an O-type. Let
K-WORLD(∆,Σ, t) be true iff

1. ∆ is a maximally propositionally consistent subset of Σ, i.e.

C ∈∆⇒ C ∈ Σ for all C
C ∈∆⇔¬C /∈∆ for all ¬C ∈ Σ

C1 ⊓ C2 ∈∆⇒ C1 ∈∆ and C2 ∈∆ for all C1 ⊓ C2 ∈ Σ

2. ∆ is consistent with t, i.e.

C ∈∆⇒¬C /∈ t
C ∈ t ⇒¬C /∈∆

3. For all ∃R.C ∈∆, there exists a set∆C and anO-type t ′ such that K-WORLD(∆C ,Σ′, t ′)
is true, where Σ′ is the closure under subconcepts and single negation of
{D | ∀R.D ∈∆}, and

C ∈∆C

∀R.D ∈∆⇒ D ∈∆C for all D
∀R.D ∈ t ⇒ D ∈ t ′ for all D

2.63. Lemma. K-WORLD(∆,Σ, t) is true iff ∆ is a maximally satisfiable subset of
Σ in a pointed model satisfying t.

Proof. (⇒) Suppose K-WORLD(∆,Σ, t) is true. At each recursive step of the
algorithm (denote by (∆0,Σ0, t0) the triple being considered at that step) and
each concept of the form ∃R.C in ∆0 pick a triple (∆0,C ,Σ′0, t ′0) witnessing
condition (3) for (∆0,Σ0, t0). Let dom(A) be the set of all such picked triples.
For each A∈ rel1 let AA = {(∆,Σ, t) ∈ dom(A) | A∈∆∪ t}. For each R ∈ rel2 let
RA be all pairs of the form ((∆0,Σ0, t0), (∆0,C ,Σ′0, t ′0)). Then let B be the model
obtained by identifying each (∆0,Σ0, t0) with the root of a (tree) model At0

of O
witnessing the fact that t0 is an O-type. We can assume without loss of generality
that all such trees are disjoint. Then, B is well-defined and a (tree) model of O:
one easily checks (same idea as Lemma 2.52) that for all t, CAt = CB∩dom(At),
which means that for every C ⊑ D ∈O we have CB =

⋃

t CAt ⊆
⋃

t DAt = DB.
It holds for all C ∈ Σ that B ⊨ C iff C ∈∆: the proof is exactly the same as for
the case with no ontology ( [Sp93]).
(⇐) Suppose ∆ is a maximally satisfiable subset of Σ in a pointed model

satisfying t. Then (1) and (2) are straightforwardly true. For some pointed
model (A, a) and all C ∈ Σ, we have A ⊨ C(a) iff C ∈∆ and tpO(A, a) = t. Then,
for every concept of the form ∃R.C in ∆ there exists a witnessing R-successor
a′ of a in A. That successor induces witnesses ∆C and t ′ for condition (3), ∆C
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being the set of all C ∈ Σ′ such that A ⊨ C(a′) and t ′ = tpO(A, a′). All conditions
are then satisfied. ⊣

The upper bound proof can now be concluded.

2.64. Theorem. Full weak projective (ALC,ALC)-separability is in PSPACE in
data complexity.

Proof. Let Da =
d

C(a)∈D C . Then, the concept
d

C(a)∈D C ⊓
d
δ(a) is satisfiable

w.r.tO iff there exists∆ ⊆ sub(Da) containing Da such that K-WORLD(∆, sub(Da),δ(a))
is true. If the ontology is fixed, the problem to determine, given an ALC-concept
C and an O-type t, whether there exist ∆ ⊆ sub(C) containing C and t such
that K-WORLD(∆, sub(C), t) is true is in PSPACE in ||C ||. Since |Σ′|< |Σ| at each
level of recursion, the number of recursive calls is bounded by |sub(C)|, hence
polynomial in ||C ||. All subsets of sub(C) encountered in the algorithm can be
represented using polynomial space in ||C ||. The O-types are of constant size as
O is fixed. The fact that we check (3) non-deterministically is unimpactful as
NPSPACE = PSPACE [Sa70]. ⊣

Using the same argument as for the PSPACE upper bound for ALC we obtain
(almost for free) an upper data complexity bound in the case when the ontology
does not contain any quantifier. Let ALCprop be the propositional (or quantifier-
free) fragment of ALC.

2.65. Theorem. For L ∈ DLIQ, full signature weak projective (ALCprop,L)-
separability is in Σ2

p in data complexity.

Proof. It suffices to check, given K, q, a, whether there exists A ⊨ K such that
A ⊭L q(a). Because the ontology is propositional, it holds for any A ⊨ K such
that A ⊭L q(a) that A|D ⊨ K and A|D ⊭L q(a), where A|D is the restriction of
A to {cA | c ∈ cons(D)}. Then it suffices to guess a model A of D, check that
A|D ⊨ O (polynomial time), coguess mappings f : q → A and check whether
f is (resp. injectively) homomorphic (polynomial time). If L = ALC(Q), we
also need to check unsatisfiability of K f ,A. That is in CONP in the size of its
(extended) database, which only extends D with concepts in sub(O), i.e. only
adds constant size. Then, satisfiability of K f ,A is also in NP in ||D||, which
concludes the proof. ⊣

We can get a Σ2
p lower bound by reduction from the problem to decide, given an

undirected graph G and k ⩾ 1, whether there exists a 2-coloring of G that does
not contain a monochromatic k-clique [Ru86].
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2.66. Theorem. For L ∈ DLIQ, full signature weak projective (ALCprop,L)-
separability is Σ2

p-hard in data complexity.

Proof. Let a graph G = (V, E) and k ⩾ 1 be given. Then, G induces the following
knowledge base and UCQ.

O = {C ⊑ C1 ⊔ C2, C1 ⊑ ¬C2}

DG = {R(a0, av), R(av , a0) | v ∈ V}

∪ {R(au, av), R(av , au) | (u, v) ∈ E}

qG(x) = ∃y1 . . .∃yk

∧

1⩽i, j⩽k

(C1(yi)∧ R(x , yi)∧ R(x , yi)∧ R(yi , y j))

∨
∧

1⩽i, j⩽k

(C2(yi)∧ R(x , yi)∧ R(x , yi)∧ R(yi , y j))

Clearly, (O,DG) ⊨ qG(a0) iff all 2-colorings of G admit a monochromatic k-
clique. ⊣

2.3.11. Complexity for ALCQ

Following the same arguments as for other languages, to determine the complex-
ity of weak projective (ALCQ,ALCQ)-separability, it is sufficient to determine
the complexity of locally injective reachable unary rooted UCQ evaluation. In
contrast to the ALCQI case, local injectivity here only concerns role names, but
not inverse roles. This has no impact on the upper bound part, which can be
proved in a similar fashion to the ALC one (Prop. 2.53). Because of number
restrictions, it is however not as simple to extend the initial part as “plugging”
models of the guessed O-types onto each element. One needs to add exactly the
“missing” number of each O-type, similarly to what is done in subsection 2.3.3.

2.67. Lemma. Locally injective reachable unary rooted UCQ evaluation on ALCQ-
knowledge bases is CONEXP-complete in combined complexity.

Proof. For the lower bound, it suffices to slightly tweak the proof for the ALC
lower bound (Prop. 2.53). The difference is that the CQ q branches directly at
the ‘root’ while the corresponding ‘real branching’ in the tree might occur on a
deeper level. That is not an issue in ALC as the homomorphism does not need to
be locally injective. In the ALCQ case, the (⇐) direction in Lemma 2.50 cannot
be transposed: τ can have no solution given c while there might exist a model
of (O, {A0(a)}) into which q, as defined there, can only be “reachably”, but not
locally injectively, embedded. A solution is to replace q with a UCQ q0∨· · ·∨q2n−1

that contains one CQ for each possible level on which the branching could occur.
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In detail, for all i, we define qi (represented below) as follows.

∃x1 . . .∃x2n+1∃x ′i+1 . . .∃x ′2n+1∃y





R(x0, x1)∧ · · · ∧ R(x2n, x2n+1)∧ R(x i , x ′i+1)
∧R(x ′i+1, x ′i+2)∧ · · · ∧ R(x2n, x2n+1)
∧S1(y, x2n+1)∧ S2(y, x ′2n+1)∧ B0(y)





⊣

. . .

. . .

R x i

x ′2n+1

x2n+1

y [B0]
S2

S1

. . .x0

x ′i+1

x i+1

The lower bound follows.

2.68. Theorem. Weak projective (ALCQ,ALCQ)-separability is NEXP-complete
in combined complexity.

§ 2.4. NON-PROJECTIVE CASE IN ALCI

Example 1.55, seen in the Introduction, shows that there exist labeled ALCI-
knowledge bases that are weakly projectively ALCI-separable but not non-
projectively so. That is also clearly true for all L ∈ DLIOQ, but we choose to
start the investigation into non-projective separability with ALCI, as it has the
simplest characterisation in the projective case. Tweaking the model-theoretic
characterisation of projective separability, we can establish a characterisation
of non-projective (ALCI,ALCI)-separability (Thm. 2.74). It follows from that
characterisation that we can easily reduce the projective problem to the non-
projective one in polynomial time (Cor. 2.78). We then deduce that weak non-
projective (ALCI,ALCI)-separability is, as the projective one, NEXP-complete
in combined complexity (Thm. 2.80) and in data complexity.

2.4.1. Semantic characterisation

Analogs of the bisimulation and simulation-based characterisations from the
projective case are easily obtained in the non-projective case. They also, as in
the projective case, pave the way for a (partially) “homomorphism-based” final
characterisation.

2.69. Lemma. Let (K, E+, {b}) be a labeled ALCI-knowledge base. The following
conditions are equivalent.
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1. (K, E+, {b}) is weakly non-projectively ALCI-separable.
2. There exists an ALCI-forest model of finite outdegree A ⊨ K such that
(B, aB) ̸∼ALCI,sig(K) (A, bA) for all B ⊨ K, a ∈ E+.

3. There exists an ALCI-forest model of finite outdegree A ⊨ K such that
(D, a) ̸⪯ALCI,sig(K) (A, bA) for all a ∈ E+.

Proof. A simple transposition of the proofs of Theorem 2.16 (for (1)⇔ (2)) and
Lemma 2.18 (for (2)⇔ (3)) from (bi)simulations respecting the full signature
to (bi)simulations respecting sig(K) only. ⊣

We now introduce the notion of incompleteness of a cl(K)-type, essential to
formulate the characterisation of non-projective separability.

2.70. Definition. Let K be an ALCI-knowledge base. Let cl(K) denote the
closure under single negation of sub(K) and {∃R.⊤,∃R−.⊤ : R ∈ rel2 ∩ sig(K)}.
We call cl(K)-type any set t ⊆ cl(K) such that there exists a model A ⊨ K and
a ∈ dom(A) with tpcl

K(A, a) = t, where tpcl
K(A, a) = {C ∈ cl(K) | a ∈ CA}

is the cl(K)-type of a in A, i.e. a realizes t in A. A cl(K)-type t is connected
if ∃R.⊤ ∈ t for some R ∈ rel−2 . A cl(K)-type t is ALCI-complete if for any two
pointed models (A1, b1) and (A2, b2) of K, t = tpcl

K(A1, b1) = tpcl
K(A2, b2) implies

(A1, b1)∼ALCI,sig(K) (A2, b2). A type t is realizable in (K, b), where K = (O,D)
and b ∈ cons(D), if bA realizes t in some model A of K. Two cl(K)-types t1 and
t2 are R-coherent if there exists A ⊨ K and d1, d2 ∈ dom(A) respectively realizing
t1 and t2, such that (d1, d2) ∈ RA. We write t1⇝R t2 in this case.

2.71. Definition. We say a sequenceσ = t0R0 . . . Rn tn+1 of cl(K)-types t0, . . . , tn+1

and sig(K)-roles R0, . . . , Rn witnesses ALCI-incompleteness of a cl(K)-type t if
t = t0, n⩾ 1, and

1. t i ⇝Ri+1
t i+1 for i ⩽ n;

2. there exists a model A of K and nodes dn−1, dn ∈ dom(A) with (dn−1, dn) ∈
RA

n−1 such that dn−1 and dn realize tn−1 and tn in A, respectively, and there
does not exist dn+1 in A realizing tn+1 with (dn, dn+1) ∈ RA

n .

The following lemma can be considered as part of Lemma 2.73, which describes
how incompleteness will be used in Theorem 2.74.

2.72. Lemma. There exists a tree-shaped model At of O whose root c realizes t
such that if a node e ∈ dom(At) realizes any cl(K)-type t1 and is of depth k ⩾ 0,
then for every cl(K)-type t2 with t1 ⇝R t2 for some sig(K)-role R there exists e′

realizing t2 of depth k+ 1 with (e, e′) ∈ RAt .

Proof. Define At =
⋃

i⩾0 A
i
t where dom(A0

t ) = {t}. For all i ⩾ 1, role name R,
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t0 ∈ dom(Ai
t) \ dom(Ai−1

t ) and t1 such that t0 ⇝R t1, define Ai+1
t by adding a

fresh copy of t1 as R-successor to t0. For any concept name A, assume that AAi
t

consists of all elements such that their associated cl(K)-type contains A. Then,
At ⊨O follows from the fact that C ∈ t0 iff t0 ∈ CA for any C ∈ cl(K) where t0

denotes any fresh copy of t0 as a type. If C is atomic, that equivalence is clear by
definition. If C = ∃R.C ′ for some role R and concept C ′, suppose C ∈ t0. Then,
since t0 is realizable by some x in some A there exists x ′ such that (x , x ′) ∈ RA

and t ⇝R tpcl
K(A, x) so there exists an R-successor of (any element representing)

t0 in At that is a fresh copy of tpcl
K(A, x). By induction, C ′ ∈ tpcl

K(A, x) implies
that this fresh copy is in (C ′)A which concludes the argument. The converse
direction is straightforward. ⊣

2.73. Lemma. The following conditions are equivalent for any cl(K)-type t.

1. t is not ALCI-complete;
2. There is a sequence witnessing ALCI-incompleteness of t;
3. There is a sequence witnessing ALCI-incompleteness of t, of length⩽ 2||K||+1.

Proof.

(1) ⇒ (2). If t is not ALCI-complete, then there exists a model A′t of O
realizing t in its root c′ such that (At , c) ̸∼ALCI,sig(K) (A′t , c′). But then there is
a sequence σ of the form t0R0 . . . Rn tn+1 (possibly with n= 0) witnessing that
absence of bisimulation that is realized in At starting from c. We need n ⩾ 1
to fit Definition 2.71. To obtain a sequence σ with n ⩾ 1 assume that there
exist a role R, a cl(K)-type t ′ and a node d ∈ dom(At) such that (c, d) ∈ RAt

and d realizes t ′ in At , but there exists no such d ′ in A′t with (c′, d ′) ∈ RA′t and
d ′ realizing t ′ in A′t . If no such R, t ′, d exist then clearly already n ⩾ 1. Now
observe that ∃R.⊤ ∈ t. Thus there exists d ′ realizing a cl(K)-type t ′′ in A′ such
that (c′, d ′) ∈ RA′t . Then t and t ′′ are R-coherent, so by definition of At there
exists an R-successor of c in At of type t ′′. Then the sequence tRt ′′R− tRt ′ is as
required.

(2)⇒ (3). Suppose there exists σ witnessing ALCI-incompleteness of t with
length> 2||K||+1. Define the sequence σ′ obtained by substituting to exhaustion
all subsequences in σ of the form tRσ1R′ t ′R′′σ2 by tR′′σ2 whenever t = t ′,
where R, R′, R′′ are (possibly inverse) roles and σ1,σ2 are subsequences (with
σ2 being possibly empty). The total number of cl(K)-types is bounded by 2||K||.
Then σ′ has length ⩽ 2||K|| + 1 since all its types are distinct, except possibly its
first and last. Condition (1) in Definition 2.71 is trivially satisfied by σ′ as it is
by the larger sequence σ. Condition (2) is also satisfied by σ′ as it is satisfied
by σ and as the last two types in σ′ are the same as in σ.

(3)⇒ (1). Straightforward from the definition. ⊣
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2.74. Theorem. A labeled ALCI-knowledge base (K, E+, {b}) is weakly non-
projectively ALCI-separable iff there exists a model A of K such that, for all
a ∈ E+,

1. (Da, a) ̸→ (A, bA)
2. if tpcl

K(A, bA) is connected and ALCI-complete, it is not realizable in (K, a).

Proof. (⇒) Assume (K, E+, {b}) is ALCI-separable. By Lemma 2.69, there
exists a forest model A of K of finite outdegree such that (Da, a) ̸⪯ALCI,sig(K)

(A, bA) for all a ∈ E+. To show that Condition 1 holds, assume that there exists
a ∈ E+ and a homomorphism h from Da to A mapping a to bA. As h is clearly
an ALCI(sig(K))-embedding, we have derived a contradiction. To show that
Condition 2 holds, assume that tpcl

K(A, bA) is ALCI-complete and that tpcl
K(A, bA)

is realized at aB in a model B of K. By completeness, (B, aB) ∼ALCI,sig(K)

(A, bA).
(⇐) Assume Conditions 1 and 2 hold for a model A of K. We may assume that

A is a forest model and of finite outdegree. If tpcl
K(A, bA) is connected and ALCI-

complete, then by Condition 2 ¬(
d

C∈tpcl
K(A,bA) C) separates (K, E+, {b}) and we

are done. If tpcl
K(A, bA) is not connected, then it follows from (Da, a) ̸→ (A, bA)

that either there exists A with A(a) ∈ D and bA ̸∈ AA or there exists R with
R(a, c) ∈ D for some c. In both cases tpcl

K(A, bA) is not realizable in (K, a). Thus
¬(

d
C∈tpcl

K(A,bA) C) separates (K, E+, {b}) and we are done. Assume now that

tpcl
K(A, bA) is connected and not ALCI-complete. For a model C of K and ℓ⩾ 0

we denote by C⩽ℓD,b the submodel of C induced by all nodes reachable from some
cC, c ∈ dom(Db), in at most ℓ steps. We construct for any ℓ⩾ 0 a model C of K
such that

1. (C⩽ℓD,b, bC)→ (A, bA);
2. (C, d1) ̸∼ALCI,sig(K) (C, d2) for any two distinct d1, d2 ∈ dom(C⩽ℓD,b).

By Lemma 2.75, the theorem is proved if such a C can be constructed. By Lemma
2.76, such a model can indeed be constructed. ⊣

2.75. Lemma. If (1) and (2) hold for ℓ⩾ |D| and (Da, a) ̸→ (A, bA) for a ∈ E+,
then (Da, a) ̸⪯sig(K) (C, bA).

Proof. Let ℓ ⩾ |D|. Assume that there exists an ALCI(sig(K))-simulation S
between (Da, a) and (C, bC) for some a ∈ E+. As there is no homomorphism
from Da to A mapping a to bA, by Condition (1) there is no homomorphism
from Da to C⩽ℓD,b mapping a to bC. Then there exist e, d, d ′ with d ̸= d ′ and
(e, d), (e, d ′) ∈ S such that dist(bC, d),dist(bC, d ′) ⩽ |Da| (otherwise S would
be a homomorphism). Then (C, d) ∼ALCI,sig(K) (C, d ′) and we have derived a
contradiction to Condition (2) for C. ⊣
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2.76. Lemma. For any ℓ⩾ 0, there exists a model C of K such that

1. (C⩽ℓD,b, bC)→ (A, bA);
2. (C, d1) ̸∼ALCI,sig(K) (C, d2) for any two distinct d1, d2 ∈ dom(C⩽ℓD,b).

Proof. Take a sequenceσ = tσ0 Rσ0 . . . Rσmσ tσmσ+1 that witnessesALCI-incompleteness
of tσ0 := tpcl

K(A, bA), where 1 ⩽ mσ ⩽ LK := 2||K|| + 1. Then there exists
d ∈ dom(A) such that (bA, d) ∈ (Rσ0 )

A. By unfolding A at all cA, c ∈ dom(Db),
we obtain a model of K having exactly the same properties as A except that
in addition in the tree-shaped models Ac hooked to cA all nodes of any depth
k have an R-successor in Ac of depth k + 1, for some R ∈ sig(K). We denote
this model again by A. Denote by L the set of all nodes in A that have depth
exactly ℓ in some Ac , c ∈ dom(Db). We obtain C by keeping only A⩽ℓD,b and then
attaching to every d ∈ L a tree model Fd (but not at its root) such that in the
resulting model no node in L is ALCI(sig(K))-bisimilar to any other node in
A⩽ℓD,b. It then directly follows that C satisfies Conditions (1) and (2):

1. (C⩽ℓD,b, bC)→ (A, bA) iff (A⩽ℓD,b, bC)→ (A, bA) which is trivially true.
2. Suppose for contradiction that some bisimulation S is witnessed by d1, d2.

Then it is clear by ‘following’ the bisimulation that there exists d ∈ L that
contradicts the assumption.

We set

C0 =
l

C∈tσmσ−1

C , C1 =
l

C∈tσmσ

C , C2 =
l

C∈tσmσ+1

C , S = Rσmσ−1, T = Rσmσ

Take for any d ∈ L a number Nd such that

�

Nd > |D|+ 2ℓ+ 2(LK + 1)
|Nd − Nd ′ |> 2(LK + 1) for d ̸= d ′

Now fix d ∈ L and let t0 = tpcl
K(A, d). By first walking from d to bA we find a

sequence t0R0 · · ·Rnd
tnd+1 that witnesses ALCI-incompleteness of t0 and ends

with tσmσ−1StσmσT tσmσ+1: the concatenation of σ with the sequence of types
leading from d to bA. By Lemma 2.73 we may assume that nd ⩽ LK. Let
D = ∃ΣLK .(C1 ⊓ ¬∃T.C2), where ∃Σk.C stands for the disjunction of all ∃ρ.C
with ρ a path R1 · · ·Rm of Σ := sig(K), roles R1, . . . , Rm and m⩽ k. To construct
Fd , consider the tree model Ac0

of O whose root c0 realizes tnd
such that if a

node e ∈ dom(Ac0
) realizes any cl(K)-type t and is of depth k ⩾ 0, then for every

cl(K)-type t ′ with t ⇝R t ′ for some sig(K)-role R there exists e′ realizing t ′ of
depth k+ 1 with (e, e′) ∈ RAc0 , except if k ⩽ Nd + LK + 1, t = tnd

, R = T , and
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t ′ = tnd+1. Observe that Ac0
satisfies

e ∈ DAc0 for all e such that distAc0
(c0, e)⩽ Nd ;

e ̸∈ DAc0 for all e such that distAc0
(c0, e)> Nd + 2(LK + 1).

Moreover, Ac0
contains a path e0, . . . , end

. . . , end+2Nd
= c0 such that t0 is realized

in e0, and

(ei , ei+1) ∈ R
Ac0
i for all i < nd ;

(end+2k+1, end+2k), (end+2k+1, end+2k+2) ∈ SAc0 for all 0⩽ k < Nd ;

end+2k ∈ C
Ac0
1 for all k ⩽ Nd ;

end+2k+1 ∈ C
Ac0
0 for all k < Nd .

Then Fd is obtained from Ac0
by renaming e0 to d. Finally C is obtained from

A⩽ℓD,b by hooking Fd at d to A⩽ℓD,b for all d ∈ L (see figure), via identifying e0

with d. C is a model of K since t0 is realized in e0. Moreover, clearly C satisfies
Condition (1). For Condition (2) assume d ∈ L is as above. Let Cd = ∀ΣNd .D,
where ∀Σk.D stands for ¬∃Σk.¬D. As depicted below, condition (2) now follows
from the fact that there exists a path from d to a node satisfying Cd that is shorter
than any such path in C from any other node in A⩽ℓD,b to a node satisfying Cd . ⊣
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An illustration of C, with example points d,d ′,d ′′

in dom(A⩽ℓD,b) such that Nd ′′ < Nd < Nd ′ .

2.77. Remark. Theorem 2.74 still holds without any mention of “connected-
ness”. That mention simply highlights that if tpcl

K(A, bA) is complete and not
connected, then Point 1 already suffices. Intuitively, if tpcl

K(A, bA) is not con-
nected, then separability is determined only at the concept name level. Example
1.55 shows that when relations are involved (and more particularly cycles),
the weak expressiveness of ALCI cannot match the discriminating power of
homomorphisms. At the concept name level, homomorphisms lose that edge.

Still by Example 1.55, we know that Point 1 is not enough if tpcl
K(A, bA) is com-
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plete: there is no homomorphism (Da, a)→ (A, bA) but the labeled knowledge
base is still not non-projectively separable. But Point 2 is also not enough if
tpcl

K(A, bA) is not complete. Intuitively, completeness makes it so that the cl(K)-
type determines the bisimulation type, therefore the full L-type. Then, whether
it is realizable or not tells the full story. If tpcl

K(A, bA) is not complete however,
there can be a separating concept, i.e. a difference in full logical types, that is
not captured by cl(K)-types. There are many more concepts using sig(K) than
there are in cl(K), so it is easy to find such a counter-example. For instance,
if O = ; and D = {R(a, b), R(b, c)}, then ∃R.∃R.⊤ is a separating concept but
for any model A of K, tpcl

K(A, bA), which cannot contain any information about
paths of length > 1, is still realizable in (K, a).

2.4.2. Complexity

Theorem 2.74 implies the following.

2.78. Corollary. Weak projective (ALCI,ALCI)-separability is polynomial-time
reducible to weak non-projective (ALCI,ALCI)-separability.

Proof. Let (K, E+, {b}), K = (O,D), be a labeled ALCI-knowledge base. Then
K is projectively ALCI-separable iff (K′, E+, {b}) is non-projectively ALCI-
separable where K′ = (O′,D) and O′ = O ∪ {A⊑ A}, A a fresh concept name:
(K, E+, {b}) is clearly projectively ALCI-separable iff (K′, E+, {b}) is, which is
itself projectively ALCI-separable iff it is non-projectively ALCI-separable be-
cause no connected cl(K′)-type is ALCI-complete, thus Point 2 of Theorem 2.74
is vacuously true. ⊣

2.79. The argument above also implies that whenever a labeledALCI-knowledge
base is projectively separable, then a single fresh concept name suffices for sepa-
ration.

2.80. Theorem. Weak non-projective (ALCI,ALCI)-separability is NEXP-complete
in combined complexity and in data complexity.

Proof. The lower bound is immediate from Corollary 2.78. For the upper bound,
let (K, E+, {b}) be a labeled ALCI-knowledge base. For any cl(K)-type t, let
Kt = (Ot ,Dt) where Ot = O ∪ {A⊑

d
C∈t C} and Dt = D ∪ {A(b)} for a fresh

concept name A. By Theorem 2.74, (K, E+, {b}) is ALCI-separable iff there exists
a cl(K)-type t that is realizable in (K, b) such that (i) Kt ⊭∨a∈E+ q(Da, a)(b)
and (ii) if t is connected and ALCI-complete, then t is not realizable in (K, a)
for any a ∈ E+: if (i) is witnessed by A ⊨ Kt then A ⊨ K and that directly
implies Condition (1) of Theorem 2.74. Condition (2) of Theorem 2.74 follows
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immediately from (ii) and the fact that t ⊆ tpcl
K(A, bA) implies t = tpcl

K(A, bA) by
definition of cl(K)-types. The NEXP upper bound now follows from the following
facts.

1. Rooted UCQ evaluation on ALCI-knowledge bases is in CONEXP (comple-
ment of (i)).

2. ALCI-completeness of t can be checked in exponential time.

Proof. There exists a model A whose domain consists of all cl(K)-types
t and such that t ∈ AA if A ∈ t and (t1, t2) ∈ RA if t1 ⇝R t2 (see
2.72). Then t is not ALCI-complete iff there exists a path starting at
t in A that ends with RA

n−1 tnRA
n tn+1 such that the second condition for

sequences witnessing ALCI-incompleteness holds. The existence of
such a path can be decided in polynomial time in the size of A, thus in
exponential time.

3. Realizability of t can be checked in exponential time: t is realizable w.r.t.
(K, a) if

d
C∈t C(a) is satisfiable w.r.t. K, which is decidable in exponential

time in ALCI.

⊣

§ 2.5. GF-ONTOLOGIES

Projective and non-projective (GF,GF)-separability turn out to behave similarly
to their ALCI counterparts in many ways. First, the projective and non-projective
cases also do not coincide, as shown in the preliminaries by Example 1.55, be-
cause GF contains the first-order translation of ALCI. Then, GF also admits a
notion of bisimulation, which we use to characterise separability in a similar
way to ALCI: in the projective case we also characterise separability following
a “bisimulation-simulation-homomorphism” pattern, while in the non-projective
case we also rely on a notion of “type incompleteness”. An analogous con-
nection with UCQ-evaluation then yields 2EXP-completeness of projective and
non-projective full weak (GF,GF)-separability. Overall, the results are signifi-
cantly more difficult to establish than in the ALCI case: GF deals with n-ary
relations, which poses additional challenges. For instance, trees and unfoldings
may not be used as easily. We define and work with the more elaborate guarded
tree decompositions instead. Guarded bisimulations, defined as sets of partial
isomorphisms, are also more involved than simple bisimulations.
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2.5.1. Preliminaries

We introduce necessary definitions and results. General GF definitions are
available in Section 1.5. Recall that for any tuple x= (x1, . . . , xn) we write [x]
for {x1, . . . , xn}. We define paths and strict paths in the context of GF. It is not
as straightforward as in ALCI to obtain a GF counterpart to Lemma 2.72. Using
strict paths makes that construction possible.

2.81. Definition. A path of length n from a to b in a model A is (in this
section) a path of length n from a to b in the Gaifman graph associated with
A (Def. 1.11), i.e. a sequence R1(b1) . . . Rn(bn) where R1, . . . , Rn ∈ rel \ rel1,
a ∈ [b1], b ∈ [bn], and [bi]∩ [bi+1] ̸= ; for all i. We call a path strict if (1) all
[bi]∩ [bi+1] are singletons consisting of distinct points ci and (2) there are sets
A1, . . . , An ⊆ dom(A) covering dom(A) such that [bi] ⊆ Ai, Ai ∩ Ai+1 = {ci} and
such that if i < j, then any path in the Gaifman graph of A from an element of
Ai to an element of A j contains ck for all k ∈ {i, . . . , j − 1}.

a b a b a b

not (1) & not (2) (1) & not (2) strict

The following construction allows us to transform paths into strict paths, while
preserving the bisimulation type.

2.82. Definition. The partial unfolding Aa of a model A along a tuple a =
(a1, . . . , an) in dom(A) such that distA(ai , ai+1) = 1 for all i < n is defined as the
following union of n+ 1 copies of A. Denote the copies by A1, A2, . . . ,An+1.
The copies are mutually disjoint except that Ai and Ai+1 share a copy of ai . The
domain of Ai is A× {i} with (ai−1, i) and (ai−1, i − 1) identified, for all i > 1.
The constants are interpreted in A1 and we often denote the elements (a, 1) of
A1 simply by a. The following figure illustrates the construction.

A1

. . .

A3

A4

a3a2a1

A2

a4

R2R1 R3

2.83. It is straightforward to check that if i < j, then any path in Aa from
an element of dom(Ai) to an element of dom(A j) contains (ak, k) for all k ∈
{i, . . . , j − 1}, which makes R1, . . . , Rn a strict path.
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We then show that partial unfoldings preserve the bisimulation type.

2.84. Lemma. Let I contain for all i with 1⩽ i ⩽ n+1 and all guarded (b1, . . . , bk)
in A the mappings p : (b1, . . . , bk) 7→ (c1, . . . , ck), where c j = (b j , i) if b j ̸= ai−1

and c j = (b j , i − 1) if b j = ai−1. Then I is a guarded bisimulation between A and
Aa.

Proof. For any i, every such mapping (b1, . . . , bk) 7→ (c1, . . . , ck) from A to Aa

(in particular to Ai) is a partial isomorphism by definition of Aa. We then need
to check the (Forth) and (Back) conditions. Let (b1, . . . , bk) 7→ (c1, . . . , ck) ∈ I .
Write b= (b1, . . . , bk).

(Forth) Let b′ = (b′1, . . . , b′k′) be a guarded tuple in A. Then (b′1, . . . , b′k′) 7→
(c′1, . . . , c′k′), where c′j is defined w.r.t. b′j as c j is defined w.r.t. b j, obviously
coincides with (b1, . . . , bk) 7→ ((b1, i), . . . , (bn, i)) on [b]∩ [b′].

(Back) Let (c′1, . . . , c′k′) be a guarded tuple in Aa that intersects (c1, . . . , ck). By
definition, c1, . . . , ck ∈ dom(Ai) for some i. Thus, by definition of Aa and the
fact that (c′1, . . . , c′k′) is guarded, we know that c′1, . . . , c′k′ ∈ Aℓ for some ℓ ∈
{i− 1, i, i + 1}, assuming without loss of generality that n> i > 1 (cases n and 1
are similar). For any of those three values of ℓ, the mapping sending c′j to its
first coordinate coincides with (c1, . . . , ck) 7→ (b1, . . . , bk) on [c]∩ [c′]. ⊣

2.85. As an immediate consequence of the previous lemma, If A ⊨ K, then
Aa ⊨ K. Also, the mapping h from Aa to A defined by setting h(b, i) = b is
a homomorphism from Aa to A: by definition, Aa ⊨ R((b1, i1), . . . , (bm, im))
implies A ⊨ R(b1, . . . , bm), for any tuple ((b1, i1), . . . , (bm, im)) in Aa.

2.86. Assume that R0(a0), . . . , Rn(an) is a path in A with ai+1 ∈ [ai]∩ [ai+1] for
i ⩽ n. Let ai = (a1

i , . . . , ani
i ) and assume a1

i = ai+1. Then R0(a0, 1), . . . , Rn(an, n+
1) is a strict path in Aa realizing the same K-types as the original path, where

(a0, 1) := ((a1
0, 1), . . . , (an0

0 , 1))

(ai , i + 1) := ((a1
i , i), (a2

i , i + 1) . . . , (ani
i , i + 1))

We introduce guarded embeddings as a tool to prove Theorem 2.90. They act as
the GF counterpart to DL simulations (Def. 2.17).

2.87. Definition. Let (D,a) be a pointed database, (A,bA) a pointed model,
ℓ ⩾ 0, and Σ ⊇ sig(K) a signature. A partial embedding is an injective partial
homomorphism. A pair (e, H) is a guarded Σ ℓ-embedding between (D,a) and
(A,b) if e is a homomorphism from D onto a database D′ and H is a set of partial
embeddings from D′ to A containing h0 : e(a) 7→ b and a partial embedding
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h from any guarded set in D′ to A such that the following condition holds.
If hi : ai 7→ bi ∈ H for i = 1,2, then there exists a partial isomorphism p :
h1([a1]∩ [a2]) 7→ h2([a1]∩ [a2]) such that p ◦ h1 and h2 coincide on [a1]∩ [a2]
and for any c with [c] = h1([a1] ∩ [a2]), (A,c) ∼ℓoGF,Σ (A, p(c)). We write
(D,a)⪯ℓoGF,Σ (A,bA) if there exists a guarded Σ ℓ-embedding H between (D,a)
and (A,b).

h1

h2

∼ℓ

a e(a) b

D D′ A

Illustration for Definition 2.87.

The following is a useful property of guarded embeddings that will be involved
in later proofs.

2.88. Lemma. Let (D,a) be a pointed database and (A,bA) be a pointed model
such that (D,a)⪯ℓoGF,sig(K) (A,bA). Then there there exist a surjective homomor-
phism e : D→ D′ for some database D′ and sets Hℓ, . . . , H0 of partial embeddings
D′→ A such that

1. for all k ⩽ ℓ, all h ∈ Hk and all guarded sets c in D′ such that [c]∩dom(h) ̸= ;,
there exists h′ ∈ Hk−1 with domain [c] such that h′ coincides with h on
[c]∩ dom(h),

2. for all k1, k2 ⩽ ℓ, all h1 ∈ Hk1
, h2 ∈ Hk2

, and all tuples c1,c2 in D′ such that
[ci] = dom(hi), for all c such that [c] = [c1]∩ [c2], we have

(A, h1(c))∼
min(k1,k2)
oGF,sig(K) (A, h2(c)).

c1

c2

h1 ∈ Hk1

h2 ∈ Hk2

∼min(k1,k2)
c1

c2

h ∈ Hk

h′ ∈ Hk−1

1 2
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Illustration for conditions (1) and (2) above.

Proof. Let H be the set of partial embeddings witnessing (D,a) ⪯ℓoGF,sig(K)
(A,bA). Define Hℓ := H. We define Hk for k < ℓ by induction. Suppose Hk

has been defined. We define Hk−1. We assume that for all h1 ∈ Hk, h2 ∈ Hℓ
having intersecting domains [c1], [c2], with c2 being guarded the following
condition holds:

(*) for any tuple c in D′ such that [c] = [c1]∩ [c2], there is a partial isomor-
phism p : h1(c) 7→ h2(c) witnessing h1(c)∼k

oGF,sig(K) h2(c).

Now assume that h1, h2 satisfying the conditions above are given. As [h2(c2)] is
guarded (by c2 being guarded and h a partial homomorphism) and intersects
h2[[c1]∩ [c2]], and as p witnesses an oGF(sig(K)) k-bisimulation, there exists
a partial isomorphism qh1,h2

with domain [h2(c2)] witnessing h2(c2)∼k−1
oGF,sig(K)

qh1,h2
(h2(c2)) and that coincides with p−1 on h2[[c1]∩ [c2]]. We then include

qh1,h2
◦ h2 in Hk−1.

c1

c2

h1 ∈ Hk

h2 ∈ H
ℓ

∼kp qh1,h2

∼k−1

This is well-defined, as the assumption (*) holds for all k ⩽ ℓ. Indeed, iff k = ℓ,
then (*) is stated in the definition of sig(K) ℓ-guarded embeddings. If 0< k < ℓ
and (*) holds for k, let h1 ∈ Hk−1, h2 ∈ Hℓ with intersecting domains [c1], [c2]
and c2 guarded be given. Then h1 = qη1,η2

◦η2 for some η1 ∈ Hk,η2 ∈ Hℓ, by
definition of Hk−1. By definition of sig(K) ℓ-guarded embeddings, as η2 and
h2 are both in Hℓ and have intersecting domains [c1] and [c2], there exists a
partial isomorphism p′ witnessing η2(c) ∼ℓoGF,sig(K) h2(c) for any c such that
[c] = [c1]∩[c2]. Then, by composition of bisimulations, p := p′|η2[c]

◦(q−1
η1,η2

)|h1[c]

is a partial isomorphism witnessing that (*) holds for k− 1.

c1

c2

η2 ∈ Hℓ

h2 ∈ H
ℓ

qη1,η2

∼k−1

h1 ∈ Hk−1

∼ℓp′

p′ ◦ q−1
η1,η2

∼k−1

Elements of Hk−1 are partial embeddings, as compositions of partial isomor-
phisms with partial embeddings. We thus have a homomorphism e : D→ D′ and
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sets Hℓ, . . . , H0 of partial embeddings D′→ A. We now prove that Conditions 1
and 2 hold.

1. Let 0 ⩽ k ⩽ ℓ and h1 ∈ Hk with domain [c1]. Let c2 be guarded in D′ such
that [c1]∩ [c2] ̸= ;. By definition of ℓ-guarded embeddings, every guarded tuple
is the domain of some embedding in H = Hℓ. In particular there exists h2 ∈ Hℓ
with domain [c2]. Then Condition (*) holds, with matching notation. Consider
qh1,h2

and p as defined above. A witnessing partial homomorphism h′ can be
defined as h′ := qh1,h2

◦h2 ∈ Hk−1. Since p−1 ◦h2 coincides with h1 on [c1]∩[c2],
and qh1,h2

coincides with p−1 on h2[[c1]∩ [c2]], it follows that h′ coincides with
h1 on [c1]∩ [c2].

2. Let h1 ∈ Hk1
, h2 ∈ Hk2

with intersecting domains [c1], [c2]. By definition
of ℓ-guarded embeddings, there exists h′2 in H = Hℓ with domain [c2]. By
(*), for every c in D′ such that [c] = [c1] ∩ [c2] we have h1(c) ∼

k1
oGF,sig(K)

h′2(c) and h2(c)∼
k2
oGF,sig(K) h′2(c), thus h1(c)∼

min(k1,k2)
oGF,sig(K) h2(c) by composition of

bisimulations. ⊣

2.89. If Hℓ, . . . , H0 satisfying the conditions of Lemma 2.88 exist, then Hℓ ⊆
· · · ⊆ H0: let k ⩽ ℓ and c 7→ d ∈ Hk. By condition (1), since [c]∩ [c] ̸= ; there
exists c 7→ d′ ∈ Hk−1 that coincides with c 7→ d on [c], i.e. c 7→ d ∈ Hk−1.

2.5.2. Intermediate characterisation

We can now state the model-theoretic characterisation of separability in terms of
bisimulation and embeddings, as we did for ALCI in Lemma 2.69. The process
to go from simulation/embedding to bisimulation is essentially the same as for
ALCI. As guarded bisimulations are defined with respect to n-ary relations, the
proof is heavier in its execution but not conceptually.

2.90. Theorem. Let (K, E+, {b}) be a labeled GF-knowledge base. The following
conditions are equivalent.

1. (K, E+, {b}) is non-projectively oGF-separable.

2. (K, E+, {b}) is non-projectively GF-separable.

3. There exist A ⊨ K (finite), ℓ⩾ 0 such that (B,aB) ̸∼ℓGF,sig(K) (A,bA)
for all B ⊨ K,a ∈ E+.

4. There exist A ⊨ K (finite), ℓ⩾ 0 such that (Da,a) ̸⪯ℓoGF,sig(K) (A,bA)
for all a ∈ E+.

5. There exist A ⊨ K (finite), ℓ⩾ 0 such that (B,aB) ̸∼ℓoGF,sig(K) (A,bA)
for all B ⊨ K,a ∈ E+.
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Proof. The implications (1)⇒ (2), (2)⇒ (3) and (5)⇒ (1) are straightforward.
For an indirect proof of (4) ⇒ (5), suppose I2ℓ, . . . , I0 is a guarded sig(K) 2ℓ-
bisimulation between (B,aB) and (A,bA) for a model B of K, where ℓ ⩾ |D|.
We may assume that Ii+1 ⊆ Ii for i < 2ℓ. Let D′ be the restriction of B to {cB |
c ∈ cons(Da)}, seen as a database. Define e : Da→ D′ by setting e(c) = cB. Let
H contain h0 : aB 7→ bA and, for every guarded tuple d in D′ any h : d 7→ c ∈ Iℓ.
Then (e, H) is a guarded sig(K) ℓ-embedding: assume that hi : ci 7→ di ∈ H
for i = 1,2. Let X1, X2 be the images of [c1] ∩ [c2] under hi and d such that
[d] = X1. Then we have hi : ci 7→ di ∈ Iℓ, for i = 1, 2. Let p be the restriction of
h2 ◦ h−1

1 to X1. By definition p is a partial isomorphism from X1 to X2. It is as
required, as (A,d) ∼ℓoGF,sig(K) (B, h−1

1 (d)) ∼
ℓ
oGF,sig(K) (A, h2(h−1(d))).

(3) ⇒ (4). Take a model A of K and ℓ ⩾ 0 witnessing Condition 3. We may
assume that ℓ exceeds the maximum guarded quantifier rank of formulas in K.
We show that Condition 4 holds for A and ℓ. Assume for a proof by contradiction
that there exists a0 ∈ E+ such that there exists a guarded sig(K) ℓ-embedding
(e, H) from (Da0

,a0) to (A,bA). Assume e : Da0
7→ D′ and e(a0) = a′0. We

construct a model B as follows. First take a copy B′ of A. We define B as the
disjoint union of B′ and B′′, where B′′ is defined next. We denote by H ′ the
set obtained from H with a′0 7→ bA removed if a0 is not guarded. Then B′′ is
defined as follows.

1. dom(B′′) = (H ′ × dom(A))/∼, where ∼ identifies all (h, d), (h′, d ′) such
that (h, d) = (h′, d ′) or there exists c ∈ dom(h)∩dom(h′) such that h(c) = d
and h′(c) = d ′. Denote the equivalence class of (h, d) w.r.t. ∼ by [h, d].

2. For any R ∈ rel, let RB′′ be defined by setting, for e1, . . . , en ∈ dom(B′′),
B′′ ⊨ R(e1, . . . , en) if there exists h ∈ H ′ and c1, . . . , cn ∈ dom(A) such that
ei = [h, ci] and A ⊨ R(c1, . . . cn).

For any constant c in D \Da0
, we define cB as the copy of cA in B′. For any

constant c in Da0
, we set cB = cB

′′
= [h, h(e(c))], where h ∈ H ′ is such that

e(c) ∈ dom(h). This is well-defined as (h′, h′(e(c)))∼ (h, h(e(c))) for any h′ ∈ H ′

with e(c) ∈ dom(h′). Then, an embedding from A to B′′ is given by the map
fh : dom(A) → (H ′ × dom(A))/∼ defined by fh(c) = [h, c]. We show that
(B,aB

0 ) ∼
ℓ
GF,sig(K) (A,bA). By construction and the assumption that ℓ exceeds

the guarded quantifier rank of K, it also follows that B is a model of K. It thus
follows that we have derived a contradiction to the assumption that A and ℓ
witness Condition 3.

To define a guarded sig(K) ℓ-bisimulation Ĥℓ, . . . , Ĥ0, let Si be the set of p : c 7→ d
witnessing that (A,c)∼i

oGF,sig(K) (A,d), where c is guarded. Then include in Ĥi

1. all c′ 7→ c, where c′ is the copy in B′ of the guarded tuple c in A;



97 2 | FULL WEAK SEPARABILITY

2. all compositions p ◦ ( f −1
h )|[d] for any guarded tuple d in the range of fh

and p ∈ Si;

In addition, include aB
0 7→ bA in all Ĥi, 0 ⩽ i ⩽ ℓ. We prove that Ĥℓ, . . . , Ĥ0

is a guarded sig(K) ℓ-bisimulation witnessing (B,aB
0 ) ∼

ℓ
GF,sig(K) (A,bA). For

any k ∈ {0, . . . ,ℓ}, any element g in Ĥk is clearly a partial sig(K)-isomorphism,
either trivially if dom(g) ⊆B′ or by composition of partial sig(K)-isomorphisms
if dom(g) ⊆ B′′. By definition, Ĥℓ contains aB

0 7→ bA, thus Ĥk does for any
k ∈ {0, . . . ,ℓ}. We then only need to check satisfaction of the Forth and Back
conditions. Let g ∈ Ĥk for some k ∈ {1, . . . ,ℓ}. By definition of Ĥk, we have
either dom(g) ⊆ B′ or dom(g) ⊆ B′′. In each case, we show that for any c
guarded in B and d guarded in A, there exists g ′0 ∈ Ĥk−1 of domain [c] that
coincides with g on [c]∩ dom(g) (Forth) and there exists g ′1 ∈ Ĥk−1 such that
dom((g ′1)

−1) = [d] and (g ′1)
−1 coincides with g−1 on [d]∩ im(g) (Back).

The subcase [c]∩dom(g) = ; is straightforward: because it is guarded in B, c is
either included in B′ or included in B′′. If c is in B′, then the partial isomorphism
mapping c to its copy in A is in Ĥk−1 and as required. If c is in B′′, then c can be
written ([h, ci])1⩽i⩽n for some h ∈ H ′ and c1, . . . , cn ∈ dom(A) as it is guarded.
But then ( fh)−1

|[c] ∈ Ĥk−1 is as required. Similarly, the case when [d]∩ im(g) = ;
is straightforward: if we write d := (d1, . . . , dn) and [h,d] := ([h, di])1⩽i⩽n ∈B′′

for any h ∈ H ′, then ( fh)−1
|[h,d] ∈ Ĥk−1 is as required, for any h ∈ H ′. We now

focus on proving (Forth) and (Back) assuming intersections are not empty.

1. Suppose dom(g) ⊆B′.

(1. Forth) Let c be guarded in B such that [c]∩dom(g) ̸= ;. We show there exists
g ′ ∈ Ĥk−1 that coincides with g on dom(g)∩ dom(g ′), such that [c] = dom(g ′).
By construction of B, [c] ∩ dom(g) ̸= ; and dom(g) ⊆ B′ imply [c] ⊆ B′. By
definition of Ĥk, dom(g) is the copy of im(g) in B′. Therefore simply take g ′ to
be the partial isomorphism c 7→ d such that c is the copy in B′ of d; it clearly
coincides with g on the intersection of their domains, and is in Ĥk−1 which
contains every “copy” mapping, by definition.

(1. Back) Let d be guarded in A such that [d] ∩ im(g) ̸= ;. Take c to be
the copy in B′ of d. Then, the partial isomorphism g ′ := c 7→ d is in Ĥk−1 by
definition, and is such that (g ′)−1 coincides with g−1 on im(g)∩ im(g ′).

2. Suppose dom(g) ⊆B′′.

(2. Forth) Write dom(g) as ([hi , ci])1⩽i⩽n with h1, . . . , hn ∈ H ′ and (c1, . . . , cn) =:
c a tuple in A. We want to prove that for any ([h′i , c′i])1⩽i⩽m guarded in B

that intersects dom(g) there exists g ′ ∈ Ĥk−1 of domain ([h′, c′i])1⩽i⩽m that
coincides with g on dom(g) ∩ dom(g ′). Because ([h′i , c′i])1⩽i⩽m is guarded in
B and intersects dom(g) which is in B′′, it also has to be contained in B′′ by
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construction of B. The fact it is guarded implies we can write it as ([h′, c′i])1⩽i⩽m

for some h′ ∈ H ′, with (c′1, . . . , c′m) being guarded in A, still by construction of
B. As for ([hi , ci])1⩽i⩽n, we can write it as ([h, ci])1⩽i⩽n for some h ∈ H ′, either
because it is guarded or because it is equal to aB, i.e. ([h, h(ai)])1⩽i⩽n for some
h ∈ H ′. By definition of Ĥk, we can write g as p ◦ ( f −1

h )|dom(g) for some p ∈ Sk,
and we know g ′ has to be of the form p′ ◦ ( f −1

h′ )|dom(g ′) for some p′ ∈ Sk−1. For
notation purposes, we write [h,c] = ([h, ci])1⩽i⩽n and [h′,c′] = ([h′, c′i])1⩽i⩽m.

Suppose h ̸= h′. For all [h, ci] in [[h,c]] ∩ [[h′,c′]] we have ci = h(di) and
c′i = h′(di) for some di ∈ dom(h) ∩ dom(h′). For any tuple d in D′ such that
[d] = dom(h)∩ dom(h′), a partial isomorphism q : [h′(d)]→ [h(d)] witnesses
(A, h′(d))∼ℓGF,sig(K) (A, h(d)). Via p, for any d′ such that [d′] = [h(d)]∩ [c], we
have (A,d′) ∼k

GF,sig(K) (A, p(d′)). By composition, for any d′′ such that [d′′] =
[h′(d)]∩ [c′] we have (A,d′′)∼k

GF,sig(K) (A, p(q(d′′))). Because p ◦ q is in Sk (by
definition of Sk) and because [c′] trivially intersects [h′(d)]∩ [c′], there exists,
by definition of guarded k-bisimulations, a partial isomorphism p′ ∈ Sk−1 of
domain [c′] that coincides with p◦q on [h′(d)]∩[c′]. Then, g ′ := p′◦( f −1

h′ )|[h′,c′]
is the desired partial isomorphism in Ĥk−1.

Suppose h = h′. Then [h,c]∩[h,c′] ̸= ; implies [c]∩[c′] ̸= ;. Then, since p ∈ Sk

and dom(p) = [c], by definition of guarded k-bisimulations there exists p′ ∈ Sk−1

of domain [c′] that coincides with p on [c]∩ [c′]. Then g ′ := p′ ◦ ( f −1
h )|[h,c′] in

Ĥk−1 is as required.

(2. Back) Let d be guarded in A such that [d]∩ im(g) ̸= ;. We show there exists
g ′ ∈ Ĥk−1 of image [d] such that (g ′)−1 coincides with g−1 on [d]∩ im(g). By
definition of Ĥk we can write g = p ◦ ( f −1

h )|dom(g) for some h ∈ H ′ and p ∈ Sk,
and we know g ′ has to be of the form p′◦( f −1

h′ )|[d] for some h′ ∈ H ′. By definition
of guarded k-bisimulations, there exists p′ ∈ Sk−1 such that im(p′) = [d] and p′−1

coincides with p−1 on im(p)∩ im(p′). Given that im(g) = im(p), if we write d :=
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(d1, . . . , dn) and [h, p′−1(d)] for ([h, p′−1(di)])1⩽i⩽n , then g ′ = p′ ◦ ( fh)−1
|[h,p′−1(d)]

in Ĥk−1 is as required.

dom(g)
f −1
h p

∼k

p′

∼k−1
d

im(g)

[h, p′−1(d)]

g ∈ Ĥk

g ′ ∈ Ĥk−1

B′′ A

f −1
h

⊣

We get a similar result for projective separability when replacing sig(K) by the
full signature. It is proved in the same way.

2.91. Theorem. Let (K, E+, {b}) be a labeled GF-knowledge base. The following
conditions are equivalent.

1. (K, E+, {b}) is projectively oGF-separable.

2. (K, E+, {b}) is projectively GF-separable.

3. There exist A ⊨ K (finite), ℓ⩾ 0 such that (B,aB) ̸∼ℓGF (A,bA)
for all B ⊨ K,a ∈ E+.

4. There exist A ⊨ K (finite), ℓ⩾ 0 such that (Da,a) ̸⪯ℓoGF (A,bA)
for all a ∈ E+.

5. There exist A ⊨ K (finite), ℓ⩾ 0 such that (B,aB) ̸∼ℓoGF (A,bA)
for all B ⊨ K,a ∈ E+.

While (GF,GF)-separability coincides with (GF,oGF)-separability in the projec-
tive and the non-projective case, using oGF for separation instead of GF can
come at the expense of much larger formulas.

2.92. oGF can force large formulas. Let D (depicted below) contain two R-paths
of length n, a0Ra1R . . . Ran and b0Rb1R . . . Rbn with an labeled with E.

a0 a1 an

b0 b1 bn

{E}+

−

Let O = {A ⊑ ∀R.A, ∀x y(R(x , y) → ¬R(y, x))}. Consider the labeled GF-
knowledge base (K, {a0}, {b0}) with K = (O,D). Then the GF-formula A(x)→
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∃y(A(y) ∧ E(y)) separates (K, {a0}, {b0}), but the shortest separating oGF-
formula has guarded quantifier rank n. To prove that no oGF-formula of depth
m< n separates (K, {a0}, {b0}), it is sufficient to prove that for all models A of
K there exists a model B of K such that (A, bA

0 )∼
m
oGF,sig(K) (B, aB

0 ). Let A be a
model of K. Define B as the disjoint union of the standard unfolding A∗a0

of A at
bA

0 into a guarded tree-decomposable model [HLPW20] and A, modified by inter-
preting aB

i , 0⩽ i ⩽ n, by the strict RA∗a -chain starting at bA
0 and corresponding

to the path bA
0 RA · · ·RAbA

n , adding aB
n to EB, and setting bB

i := bA
i , for 0⩽ i ⩽ n.

It is straightforward to check that B ⊨ K and (A, bA
0 )∼

m
oGF,sig(K) (B, aB

0 ) for all
m< n.

2.5.3. Final characterisation

We formulate a characterisation of projective and non-projective (GF,GF) sep-
arability using, once again, a similar approach to the ALCI case’s, based on
homomorphisms from the database and, in the non-projective case, on a GF
version of type incompleteness. For GF, we need to work with a slightly more
involved notion of “cl(K)-type” than in ALCI.

2.93. Definition. For a GF-knowledge base K = (O,D), let cl(K) denote the
smallest superset of K that is closed under subformulas, single negation and
contains the following, assuming for all n ≥ 1 a tuple xn of length n, made of
distinct variables, to be fixed.

1. x = y for all distinct variables x , y ,
2. For all R ∈ sig(K) of arity n ≥ 2 and all distinct x , y ∈ [xn], the formulas

R(xn), ∃y1 (R(xn)∧ x ̸= y) where y1 is xn without x , and ∃y2 R(xn) for all
y2 with [y2] ⊆ [xn] \ {x , y} (for n≥ 3).

Let A be a model and a a tuple in A. In this section we call the cl(K)-type of a
in A the set tpcl

K(A,a) := {ϕ ∈ cl(K)[x] | A ⊨ ϕ(a)}, where cl(K)[x] is obtained
from cl(K) by substituting in any formula ϕ ∈ cl(K) the free variables of ϕ by
variables in x in all possible ways, x being a tuple of same length as a. We then
call cl(K)-type any set t such that t = tpcl

K(A,a) for some (A,a). A cl(K)-type
is said to be connected if it contains a formula of the form ∃y1 (R(xn)∧ x ̸= y)
as described above. A guarded cl(K)-type Φ(x) is a cl(K)-type that contains an
atom R(x). Call cl(K)-types Φ1(x1) and Φ2(x2) coherent if there exists a model A
of K satisfying Φ1 ∪Φ2 under an assignment µ for the variables in [x1]∪ [x2].
For a cl(K)-type Φ(x) and a subsequence xI of x we denote by Φ|xI

(restriction of
Φ to xI) the subset of Φ containing all formulas in Φ with free variables from xI .

Observe that cl(K)-types Φ1(x1) and Φ2(x2) are coherent iff their restrictions to
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[x1]∩ [x2] are logically equivalent.

2.94. Definition. Assume a cl(K)-type Φ(x) is given. We say Φ(x) is complete if
for all pointed models (A, a), (B, b) it holds that tpcl

K(A, a) = tpcl
K(B, b) = Φ(x)

implies (A, a) ∼oGF,sig(K) (B, b). We say a sequence σ = (Φi(xi))n+1
i=0 witnesses

oGF-incompleteness of Φ if Φ is the restriction of Φ0 to x , n ⩾ 0, and all Φi,
0 ⩽ i ⩽ n + 1, are guarded cl(K)-types each containing ¬(x = y) for some
variables x , y (we say that the Φi are non-unary) such that

1. [xi]∩ [xi+1] ̸= ;;
2. all Φi ,Φi+1 are coherent;
3. there exists a model A of K and a tuple an in A such that A ⊨ (Φn ∧
¬∃x′n+1Φn+1)(an), where x′n+1 is the sequence xn+1 without [xn]∩ [xn+1].

The following is a GF counterpart of Lemma 2.73. We also use it to make up for
the lack of helper symbols.

2.95. Lemma. The following conditions are equivalent for any cl(K)-type Φ(x).

1. Φ(x) is not oGF-complete.
2. There exists a sequence witnessing oGF-incompleteness of Φ(x).
3. There exists a sequence of length ⩽ 22||K|| + 2 witnessing oGF-incompleteness

of Φ(x).

Proof. One can, similarly to what is done in the proof of Lemma 2.71, construct
a guarded tree decomposable model A of O with tree decomposition (T, E,bag)
and root r such that Φ(x) is realized in bag(r) by a and for every cl(K)-type
Ψ1(x) realized in some bag(t) by a and every cl(K)-type Ψ2(y) coherent with
Ψ1(x) there exists a successor t ′ of t in T such that Ψ1(x)∪Φ2(y) is realized in
bag(t)∪ bag(t ′) in A under an assignment µ of the variables [x]∪ [y] such that
µ(x) = a. Thus, A satisfies ∀x(Ψ1→∃y′Ψ2) for any coherent pair Ψ1(x),Ψ2(y),
where y′ is y without [x]∩ [y].

(1)⇒ (2). If Φ(x) is not oGF-complete, then there exists a guarded tree
decomposable model A′ of K with root r which realizes Φ(x) in bag(r) at a′ such
that (A, a) ̸∼oGF,sig(K) (A′, a′). It is immediate that (A, a) realizes a sequence
σ that witnesses oGF-incompleteness of Φ(x), unless there exists a guarded
non-unary cl(K)-type Φ0(x0) which is realized in some a0 in A with a ∈ [a0] but
no a′0 in A′ containing a′ and realizing Φ0(x0). Let R0(x0) ∈ Φ0. Then, because
of condition (2) in Definition 2.93 and because it is non-unary, Φ0(x0) contains
∃y(R0(x0) ∧ x ≠ y) for any y ∈ [y] and [y] = x0 \ {x}. Then, they are also
contained in Φ(x) (as restriction of Φ0), and thus satisfied by (A′, a′). That
implies there exists a non-unary guarded cl(K)-type Φ′(x′0) containing R0(x′0)
such that there exists a tuple a′0 in A′ containing a′ realizing Φ′. We obtain a
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sequence σ of any length by first taking Φ′(x0) an arbitrary number of times and
then appending Φ0.

(2)⇒ (3). This can be proved by a straightforward pumping argument, in
particular if one works with a sequence σ realized by a strict path. Consider a
sequenceσ = Φ0(x0), . . . ,Φn(xn),Φn+1(xn+1) that witnesses oGF-incompleteness
of Φ(x). We may assume (by possibly repeating Φn once in the sequence) that
there is a model A of K with a path R0(a0), . . . , Rn(an) such that ai realizes Φi

and A ⊨ (Φn∧¬∃x′n+1Φn+1)(an). We now modify A in such a way that we obtain
a sequence witnessing oGF-incompleteness of Φ(x) which is realized by a strict
path. Choose a sequence a= (a1, . . . , am) such that a1 = a for the node a in a0

realizing Φ(x), ai ≠ ai+1 and ai , ai+1 ∈ [a j] for some j ⩽ n, for all i < m, and
am ∈ an. Clearly one can find such a sequence for some m⩽ 2n. Then take the
partial unfolding Aa of A along a. In Aa we find the required strict path (Lem.
2.86). Pumping on this path is straightforward.

(3)⇒ (1). Straightforward. ⊣

2.96. A 2EXP upper bound for deciding whether a guarded cl(K)-type is oGF-
complete can now be proved similarly to the EXP upper bound for deciding
whether a type defined by an ALCI-knowledge base is ALCI-complete (2.80).

2.97. Lemma. A guarded cl(K)-type Φ(x) is oGF-complete iff all restrictions Φ(x)
of Φ to some variable x in x are oGF-complete.

Proof. The left to right direction is straightforward. Conversely, assume that
Φ(x) is not oGF-complete. One can show similarly to the proof of Lemma 2.95
that (i) or (ii) holds.

(i) There exists a guarded cl(K)-type Φ0(x0) sharing with x the variables xI for
some nonempty I ⊆ {1, . . . , n} such that for x′0 the variables in x0 without
xI the following holds:

(1) there exists A ⊨ K realizing Φ in a tuple a such that A ⊨ (∃x′0Φ0)(aI);
(2) there exists A′ ⊨ K realizing Φ in a tuple a such that A′ ⊭ (∃x′0Φ0)(aI ).

(ii) There exists a guarded cl(K)-tuple Φ0(x0) sharing with x the variables xI for
some nonempty I ⊆ {1, . . . , n} and a sequenceΦ1(x1), . . . ,Φn(xn),Φn+1(xn+1)
of guarded cl(K)-tuples with n⩾ 1 such that Φ(x)∪Φ(x0) is satisfiable in a
model of K and Φ0(x0), . . . ,Φn+1(xn+1) satisfy the conditions of a sequence
witnessing non oGF-completeness, except that no type Φ(x) of which it
witnesses non-oGF-completeness is given.

If (ii), then we are done by taking any variable x in xI and the restriction Φ|x of
Φ to x . Then Φ|x is not oGF-complete. Now assume that (i) holds. We are again
done if I contains at most one element (we can simply take the type tpcl

K(A, aI)
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then). Consider a relation R0 with R0(x0) ∈ Φ0. By the closure condition on
cl(K)-types, we have A′ ⊨ ∃x′0R0(x0)(aI). Take an extension a1 of aI such that
A′ ⊨ R0(a1). Take any a ∈ aI , the unary cl(K)-type Φ(x) = tpcl

K(A
′, a), and the

cl(K)-type Φ1(x1) := tpcl
K(A

′,a1). Then the sequence Φ1,Φ0 shows that Φ(x) is
not oGF-complete. ⊣

The following lemma helps bridge the gap between embedding and homomor-
phism in the next Theorem, whose proof revolves around some subset of elements
being pairwise non-bisimilar. See Lemma 2.75 in the ALCI case.

2.98. Lemma. Let (D,a) be a pointed database, (A,b) be a pointed model, and
ℓ⩾ |D|. Suppose that (Da,a)⪯ℓoGF,sig(K) (A,b) and (Da,a) ̸→ (A,b). Then there

exist d, d ′ with d ̸= d ′ in A
⩽|D|
b such that (A, d)∼ℓ−|D|oGF,sig(K) (A, d ′).

Proof. Let e, Hℓ, . . . , H0 witness (Da,a)⪯ℓoGF,sig(K) (A,b) as in Lemma 2.88. We
define a sequence of mappings S0, . . . , Sℓ with Sk ⊆ Hℓ−k for k ⩽ ℓ as follows.
Define S0 := {e(a) 7→ b} and assume that Sk has been defined for some k < ℓ.
To define Sk+1, choose for every h ∈ Sk and all guarded c intersecting dom(h) an
h′ ∈ Hℓ−k−1 with domain [c] that coincides with h on [c]∩dom(h) (this is possible
by Condition 1 of Lemma 2.88) and add it to Sk+1. Define ĥ :=

⋃

(
⋃

k≤|D| Sk).
We can see ĥ as a set of pairs from cons(D′e(a))× dom(A), which may or may not
be functional. We know h is not a homomorphism from (D′e(a), e(a)) to (A,b)
because h ◦ e would otherwise witness (Da,a)→ (A,b). However,

1. D′ ⊨ R(c1, . . . , cn) implies A ⊨ R(d1, . . . , dn) for every (c1, d1), . . . , (cn, dn) ∈
ĥ and every n-ary R ∈ Σ, since ĥ is a union of partial homomorphisms;

2. for every c ∈ D′e(a) there exists h ∈
⋃

k⩽distD′ (c,e(a)) Sk such that c ∈ dom(h),

so ĥ is defined on the entire underlying set of D′e(a), as distD′(c, e(a)) is
bounded by |D′| and |D′|⩽ |D| follows from surjectivity of e;

3. e(a) 7→ b is included in ĥ.

Therefore the only possible cause of ĥ not being a homomorphism witnessing
(Da,a)→ (A,b) is that ĥ is not functional, i.e. there exist c ∈ cons(D′e(a)) and

d, d ′ ∈ dom(A) such that d ̸= d ′ and (c, d), (c, d ′) ∈ ĥ. As every h included in ĥ
is functional, that implies there exist h, h′ ∈

⋃

k⩽|cons(D)| Sk such that h(c) = d
and h′(c) = d ′. There exist k1, k2 ⩾ ℓ−|cons(D)| such that h ∈ Hk1

and h′ ∈ Hk2
.

By condition (2) of Lemma 2.88 we get

(A, d)∼min(k1,k2)
oGF,sig(K) (A, d ′),

hence (A, d)∼ℓ−|cons(D)|
oGF,sig(K) (A, d ′).
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Finally, d, d ′ ∈ A
≤|cons(D)|
b follows from the fact that distA(h(c),b) ⩽ k for any

c ∈ dom(h) such that h ∈ Sk. This can be proved by induction on k. Case k = 0
is straightforward. Now suppose h ∈ Sk+1 and c ∈ dom(h). By definition of
Sk+1, h coincides with some h′ ∈ Sk on dom(h) ∩ dom(h′) which is not empty.
By induction hypothesis distA(h′(c′),b)⩽ k for any c′ ∈ dom(h′) and there is a
path of guarded sets (dom(h),dom(h′)) of length 1 between c and c′, hence a
path (im(h), im(h′)) of length 1 between h(c) and h(c′), from the fact that h, h′

are partial homomorphisms (guaranteeing that im(h), im(h′) are guarded) and
the fact that they coincide on dom(h)∩ dom(h′). Then, we get distA(h(c),b)⩽
k+ 1. ⊣

2.99. Theorem. A labeled GF-knowledge base (K, E+, {b}) with K = (O,D) and
b = (b1, . . . , bn) is weakly non-projectively GF-separable iff there exists A ⊨ K such
that for all a ∈ E+, the following conditions are met.

1. (Da,a) ̸→ (A,bA)

2. if I = {i : tpcl
K(A, bA

i ) connected and oGF-complete} ≠ ;, then

either J = {1, . . . , n} \ I ̸= ; and (DaJ
,aJ ) ̸→ (A,bA

J )
or tpcl

K(A,bA) is not realizable in (K,a).

For projective separability, Point 2 must be dropped.

Proof.
(⇒). Assume (K, E+, {b}) is non-projectively GF-separable. By Theorem 2.90,
there exists a finite model A of K and ℓ0 ⩾ 0 such that (Da,a) ̸⪯ℓ0

oGF,sig(K)
(A,bA) for all a ∈ E+. Assume a ∈ E+ is given. As (Da,a) → (A,bA) implies
(Da,a)⪯ℓoGF,sig(K) (A,bA) for all ℓ⩾ 0, Condition 1 holds. To show that Condition
2 holds for A and a, assume that I as defined in the theorem is not empty and that
tpcl

K(A,bA) is realizable in (K,a). Take a model B witnessing this. Consider the
maximal sets I1, . . . , Ik ⊆ {1, . . . , n} such that bB

I j
is in a connected component B j

of B. Then there exists at least one j such that tpcl
K(A,bA

I j
) is not oGF-complete

or not connected: otherwise the following sequence of implications holds and
leads to a contradiction.

tpcl
K(B,aB

I j
) = tpcl

K(A,bA
I j
) for all j ∈ {1, . . . , k}

⇒ (B,aB
I j
)∼oGF,sig(K) (A,bA

I j
) for all j ∈ {1, . . . , k}

⇒ (DaI j
,aI j
)⪯ℓoGF,sig(K) (A,bA

I j
) for all ℓ⩾ 0, j ∈ {1, . . . , k}

⇒ (Da,a)⪯ℓoGF,sig(K) (A,bA) for all ℓ⩾ 0, j ∈ {1, . . . , k}

For any j such that tpcl
K(A,bA

I j
) is not oGF-complete we have by Lemma 2.97 that

tpcl
K(A,bA

i ) is not oGF-complete for any i ∈ I j. Therefore J ̸= ;. Assume now
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for a proof by contradiction that (DaJ
,aJ )→ (A,bA

J ). Then, (DaJ
,aJ )⪯ℓoGF,sig(K)

(A,bA
J ) for any ℓ ⩾ 0. By Lemma 2.97, tpcl

K(A,bA
I ) is oGF-complete. Then,

(B,aB
I ) ∼oGF,sig(K) (A,bA

I ) thus (DaI
,aI) ⪯ℓoGF,sig(K) (A,bA

I ) for all ℓ ⩾ 0. Then,

since (DaJ
,aJ)⪯ℓoGF,sig(K) (A,bA

J ) for all ℓ⩾ 0 and DaI
,DaJ

are disjoint, we get

(Da,a)⪯ℓoGF,sig(K) (A,bA) for all ℓ⩾ 0.

(⇐). For the projective case, assume Condition 1 holds for some A ⊨ K, that we
can assume without loss of generality such that for each x ∈ dom(A) there exists
a fresh unary predicate Ax such that AA

x = {x}. Then (A, x) ̸∼GF (A, y) for any
x ̸= y . Then Condition 1 implies Condition 3 of Theorem 2.90, which concludes
the proof.

For the non-projective case, assume Conditions 1 and 2 hold for some model
A of K and all a ∈ E+. As GF is finitely controllable, there exists a finite such
model A. Assume that the set I defined in the theorem is empty: the case in
which it is not empty is very similar to this case and omitted. Let X be the
set of i such that Φi(x) = tpcl

K(A, bA
i ) is not connected. If X = {1, . . . , n}, then

¬
∧

i∈X Φi(x i) separates (K, E+, {b}) (as condition 1 holds), which concludes the
proof. Otherwise, let Ai, i ∈ X , be the maximal connected components of A
containing the singleton bA

i . Our aim is to show that there exists a variant C
of A and a sufficiently large ℓ such that (Da,a) ̸⪯ℓoGF,sig(K) (C,bA). We partition
the remaining part of A without (Ai)i∈X into components as follows. Define an
equivalence relation E on the class of cl(K)-types Φ(x) with one free variable
x such that (Φ(x),Ψ(x)) ∈ E iff there exists A ⊨ K and nodes a, b in dom(A)
such that a, b are in the same connected component in A and a and b realize Φ
and Ψ, respectively. Let A′ and {E | E ∈ K} be the maximal components of A
without {bA

i | i ∈ X } such that

1. all nodes in any E are connected to a node in {cA | c ∈ dom(D)};
2. all cl(K)-types Φ(x) realized in a same E are E-equivalent;
3. no node in A′ is connected to a node in {cA | c ∈ dom(D)}.

Observe that A is the disjoint union of Ai, i ∈ X , A′, and the models in K. Let
E ∈ K and let D′ be the restriction of D to the constants c ∈ cons(D) such that
cA ∈ dom(E). Let I0 be the set of i with bA

i ∈ dom(E). We aim to construct a
model C of (O,D′) such that

(∗) (DaI0
,aI0
) ̸→ (A,bA

I0
) implies ∃ℓ⩾ 0 : (DaI0

,aI0
) ̸⪯ℓoGF,Σ (C,bA

I0
).

For any model C of D′ and d ∈ dom(C) we let the distance distC(D′, d) = ℓ iff
ℓ is minimal such dist(cC, d) ⩽ ℓ for at least one c ∈ cons(D′). We denote by
C⩽ℓD′ the submodel of C induced by the set of nodes d in C with distC(D′, d)⩽ ℓ.
We construct for any ℓ ⩾ 0 a model C of O that coincides with E on {cE | c ∈
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dom(D′)} such that C⩽ℓD′ is finite and there exists ℓ′ ⩾ ℓ with

(a) (C⩽ℓD′ ,b
A
I0
)→ (A,bA

I0
);

(b) for any two distinct d1, d2 ∈ dom(C⩽ℓD′ ), (C, d1) ̸∼ℓ
′

oGF,Σ (C, d2).

We first show that (∗) follows. Assume ℓ′ is such that (b) holds. Let ℓ′′ = ℓ′+ |D|
and ℓ⩾ |D|. Assume that (DaI0

,aI0
)⪯ℓ

′′

oGF,Σ (C,bA
I0
) and (DaI0

,aI0
) ̸→ (A,bA

I0
). By

Condition (a), (DaI0
,aI0
) ̸→ (C⩽ℓ

′′

D′ ,bC
I0
). By Lemma 2.98, there exist d, d ′ with

d ̸= d ′ in C
⩽|D|
D′ such that (C, d)∼ℓ

′

oGF,Σ (C, d ′) and Condition (b) is contradicted.

Assume ℓ ⩾ 0 is given. To construct C, tet TE be the set of cl(K)-types Φ(x)
that are E-equivalent to some cl(K)-type realized in E. Observe that TE is an
equivalence class for the relation E, by construction of E. By definition, no
cl(K)-type in TE is oGF-complete. As they are all E-equivalent, there exists
a sequence σ = Φσ0 ,Φσ1 ,Φσ2 such that for any cl(K)-type Φ(x) ∈ TE we find a
sequence witnessing oGF-incompleteness of Φ(x) that ends with σ: choose one
such sequence for one of the types, then for any other type, simply walk to
the former type and then follow that sequence. The concatenation creates a
witnessing sequence. As a first step of the construction of C, we define a model
B of K by repeatedly forming the partial unfolding of E so that

(path) from any f0 ∈B⩽ℓD′ there exists a strict path R f0
1 (d1), . . . , R f0

k (dk)
from f0 to some f1 such that distB(D′, f1) = ℓ.

For the construction of B, let B0 = A and include all d ∈ dom(A⩽ℓD′ ) into the
frontier F0. Assume Bi and frontier Fi have been constructed. If Fi is empty, we
are done and set B=Bi . Otherwise take d ∈ Fi and let d ′ ̸= d be any element
contained in a joint guarded set with d in Bi. Assume k = distBi

(D′, d). Then
let Bi+1 be the partial unfolding (Bi)d of Bi for the tuple d= (d, d ′, d, d ′, . . .)
of length ℓ−k, and obtain Fi+1 by removing d from Fi and adding all new nodes
in dom((Bi+1)

⩽ℓ
D′ ). Clearly this construction terminates after finitely many steps

and (path) holds, see 2.83.

Let L denote the set of all d in B with distB(D′, d) = ℓ and let L′ denote the set
of all d of arity ⩾ 2 in B such that there exist R with B ⊨ R(d) and d ∈ [d] with
distB(D′, d) = ℓ. We obtain C by keeping B⩽ℓD′ and the guarded sets that intersect
with it and attaching to every d ∈ L and d ∈ L′ guarded tree decomposable Fd

and F′d such that in the resulting model no d in L is guarded Σ ℓ′-bisimilar to
any other d ′ in B⩽ℓD′ for a sufficiently large ℓ′. It then directly follows that C
satisfies Conditions (a) and (b).

The construction of F′d is straightforward. Fix d ∈ L′. Let Φ′0 := tpcl
K(B,d). Then

F′d is defined as the tree decomposible model A′r of O with tree decompositon
(T ′, E′,bag′) and root r such that A′r ⊨ Φ

′
0(d) and bag(r) = [d] and for every
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cl(K)-type Ψ1(x1) realized by some c with [c] = bag(t) and K type Ψ2(x2)
coherent with Ψ1(x1) there exists a successor t ′ of t in T such that Ψ1(x1)∪Ψ2(x2)
is realized in bag(t)∪ bag(t ′) under an assignment µ of the variables [x1]∪ [x2]
such that µ(x1) = c1. The only property of F′d we need is, x1 being the variables
in Φσ1 and x′ the variables in Φ2 that are not in Φ1, that F′d ⊨ ∀x1(Φσ1 →∃x

′Φσ2 ).

The construction of Fd is more involved. Let LK = 22||K||+1 and take for any d ∈ L
a number Nd such that Nd > |B⩽ℓ+1

D′ |+ 2(LK + 1) and |Nd − Nd ′ | > 2(LK + 1)
for d ̸= d ′. Fix d ∈ L and let Φ0(x) = tpcl

K(A, d). Then Φ0(x) ∈ TE and
there exists a sequence Φ0(x0), . . . ,Φnd

(xnd
),Φnd+1(xnd+1) that witnesses oGF-

incompleteness of Φ0(x0) and ends with Φσ0Φ
σ
1Φ

σ
2 . By Lemma 2.73 we may

assume that 1 ⩽ nd ⩽ LK + 1. Let Ψ(x) := ∃ΣLK+1.(Φσ1 ∧ ¬∃x
′Φσ2 ), where

∃Σk.χ stands for the disjunction of all oGF-formulas stating that there exists
a path from x along relations in Σ of length at most k to a tuple where χ
holds. To construct Fd consider the tree decomposable model Ar of O with tree
decomposition (T, E,bag) and root r such that Ar ⊨ Φ0(c0) for some constant
c0 with bag(r) = {c0} and for every cl(K)-type Ψ1(x1) realized by some c with
[c] = bag(t) and K type Ψ2(x2) coherent with Ψ1(x1) there exists a successor
t ′ of t in T such that Ψ1(x1) ∪ Ψ2(x2) is realized in bag(t) ∪ bag(t ′) under
an assignment µ of the variables [x1] ∪ [x2] such that µ(x1) = c1, except if
Ψ1 ∧ ¬∃x′Ψ2 (with x′ the sequence of variables in x2 which are not in x1) is
equivalent to Φσ1 ∧¬∃x

′Φσ2 and distAr
(bag(t),bag(r)) ⩽ Nd + LK + 1. Observe

that

Ar ⊨ Ψ(e) for all e with distAr
(c0, e)⩽ Nd

Ar ⊨ ¬Ψ(e) for all e with distAr
(c0, e)> Nd + 2(LK + 1).

Moreover, Ar contains a strict path R1(e1), . . . , Rnd
(end
), . . . , Rnd

(end+2Nd
) from

e0 ∈ [e1] to c0 ∈ [end+2Nd
] such that Φ0(x) is realized in e0. Then Fd is obtained

from Ar by renaming e0 to d.

Finally, C is obtained by hooking Fd at d to B⩽ℓD′ for all d ∈ L.

C is a model of K since Φ0(x) is realized in e0 and d. Moreover, it clearly satisfies
Condition (a). For Condition (b) assume d ∈ L is as above. Let ϕd(x) = ∀ΣNd .Ψ
where ∀Σk.χ stands for ¬∃Σk.¬χ. Then C ⊨ ϕd(c0) and by construction no
node that is not in dom(Fd) satisfies ϕd . Condition (b) now follows from the
fact that there exists a path from d to a node satisfying ϕd that is shorter than
any such path in C from any other node in B⩽ℓD′ to a node satisfying ϕd . Then,
(∗) is proved.

Finally, it only remains to prove that if (∗) holds, then for appropriately defined C,
all a ∈ E+, and sufficiently large ℓ, (Da,a) ̸⪯ℓoGF,Σ (C,bA), which would conclude
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the proof. Let a ∈ E+ be fixed. If (DaI0
,aI0
) ̸→ (A,bA

I0
) for some I0 associated to

some E ∈ K , then, (DaI0
,aI0
) ̸⪯ℓoGF,Σ (C,bC

I0
) for some ℓ by (∗), so (Da,a) ̸⪯ℓoGF,Σ

(C,bA) for some ℓ. Now assume the contrary, i.e. that (DaI0
,aI0
)→ (A,bA

I0
) for

all I0 associated with any E ∈ K . We know that (Da,a) ̸→ (A,bA). One of those
conditions hold.

1. (Dai
, ai) ̸⪯ℓoGF,Σ (C, bC

i ) for some i ∈ X .
2. Some ai , a j with i ̸= j and i, j ∈ X are connected in D.
3. Some ai, i ∈ X and a ∈ [aI0

] with I0 linked to some E ∈ K are connected
in D.

4. Some a ∈ [aI0
] and a′ ∈ [aI ′0

] with I0, I ′0 linked to distinct E ∈ K are
connected in D.

In all these cases it follows that (Da,a) ̸⪯ℓoGF,Σ (C,bA), for sufficiently large ℓ. ⊣

2.100. As in the ALCI case, we immediately get the following corollary, as well
as a polynomial reduction from projective to non-projective separability, giving
us complexity bounds.

2.101. Corollary. sepp
w(GF,GF) = sepp

w(GF,L) for any FO-fragment L ⊇ UCQ.

2.102. Corollary. Weak projective and non-projective (GF,GF)-separability are
2EXP-complete in combined complexity.

Proof. We then only need to show this for projective separability. The lower
bound is immediate from satisfiability of GF-knowledge bases [G99]. The upper
bound is immediate from the complexity of UCQ-evaluation on GF-knowledge
bases [BGO14]. ⊣
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D′

B≤ℓD′d

identify

c0

Nd
+ LK

+ 1

Φ
σ
1
↛ Φσ2

Φ
σ
1
→ Φ

σ
2

Nd

Nd
+ 2(LK

+ 1)

2Nd

Ψ

¬Ψ

d ′

Fd′′

¬ϕd

(Nd′ > Nd)(Nd′′ < Nd)

d ′′

cA

bA

N
d ′

N
d ′ +

2(L
K +

1)

2N
d ′

¬ϕd

N
d ′ +

2(L
K +

1)−
N

d

Fd′

Fd

Φ σ
1 →

Φ σ
2

L K
+ 1

¬Ψ
¬ϕd ...

F′d

R1

Rnd

Rnd Rnd−1

d

Construction of C in the proof of Theorem 2.99.



2.6. Undecidability for (ALC,EL(I)) 110

§ 2.6. UNDECIDABILITY FOR (ALC,EL(I))

[BKLRWZ19] showed undecidability of the following problem for L ∈ {EL,ELI},
in which we replaced tree-shaped CQs by EL(I)-concepts.

▶ Given ALC-knowledge bases K1 = (O1,D),K2 = (O2,D) such that
cons(D) = {a}, does K1 ⊨ C(a) imply K2 ⊨ C(a) for any L-concept
C?

We can reduce that problem to weak full (ALC,EL(I))-separability to obtain
the following.

2.103. Theorem. Let LO ⊇ALC and LS ∈ {EL,ELI}. Then weak full (LO,LS)-
separability is undecidable.

For the reduction, let K1 = (O1,D) and K2 = (O2,D) be ALC-knowledge bases
such that cons(D) = {a}. Let A1, A2, B be fresh concept names and a1, a2, b be
fresh constants. Let Da1

,Da2
,Db be obtained by replacing a in D by a1, a2, b

respectively. Let K0 = (O0,D0) where O0 = (O1)|A1
∪ (O1)|A2

∪ (O2)|B and
D0 = Da1

∪Da2
∪Db ∪ {A1(a1), A2(a2), B(b)}. The following lemmas then hold.

2.104. Lemma. The following hold for any ELI concept C.

If K0 ⊨ C(a1), then C does not contain A2 or B.
If K0 ⊨ C(a2), then C does not contain A1 or B.
If K0 ⊨ C(b), then C does not contain A1 or A2.

Proof. All 3 proofs are similar so we only prove the first statement. Let AA,1 ⊨
((O1)|A1

,Da1
), AA,2 ⊨ ((O1)|A2

,Da2
) and AB ⊨ ((O2)|B,Db). One can assume

w.l.o.g. that a2, b /∈ dom(AA,1), a1, b /∈ dom(AA,2) and a1, a2 /∈ dom(AB). One

can also assume A
AA,1

2 = BAA,1 = A
AA,2

1 = BAA,2 = AAB
1 = AAB

2 = ;. Let A0 =
AA,1 ⊎AA,2 ⊎AB. Then A0 ⊨ K0 and A0 ⊭ C(a1) if A2 or B occurs in C , because
no node in AA0

2 or BA0 is reachable from a1 in A0 and C is an ELI-concept. ⊣

The following lemma is straightforwardly checked.

2.105. Lemma. The following hold for any ELI concept C.

K0 ⊨ C(a1) ⇔ ((O1)|A1
,Da1

) ⊨ C(a1)

K0 ⊨ C(a2) ⇔ ((O1)|A2
,Da2

) ⊨ C(a2)

K0 ⊨ C(b) ⇔ ((O2)|B,Db) ⊨ C(b)
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A1 /∈ sig(C) ⇒
�

K1 ⊨ C(a) ⇔ ((O1)|A1
, {A(a1)}) ⊨ C(a1)

�

A2 /∈ sig(C) ⇒
�

K1 ⊨ C(a) ⇔ ((O1)|A2
, {A(a2)}) ⊨ C(a2)

�

B /∈ sig(C) ⇒
�

K2 ⊨ C(a) ⇔ ((O2)|B, {A(b)}) ⊨ C(b)
�

Proof of Theorem 2.103. We now show that (K0, {a1, a2}, {b}) is weaklyL-separable
iff there exists an L-concept C such that K1 ⊨ C(a) and K2 ⊭ C(a). Suppose
(K0, {a1, a2}, {b}) is weakly separated by some L-concept C . By 2.104, C does
not contain A1, A2, B. By 2.105, K1 ⊨ C(a) and K2 ⊭ C(a). Conversely, suppose
K1 ⊨ C(a) and K2 ⊭ C(a). Since A1, A2, B do not occur in K1, they do not
occur in C . Then 2.105 yields K0 ⊨ C(a1), K0 ⊨ C(a2) and K0 ⊭ C(b) from
K2 ⊭ C(a). ⊣

_____

If the ontology language is reduced, we can reach decidability. [FJLPW19] shows
that full weak (EL(I),EL)-separability is EXP-complete in both combined and
data complexity, and full weak (ELI,ELI)-separability is undecidable. The
former is proved using a model-theoretic characterisation based on universal
models and simulations. The latter is proved by a reduction from a tiling
problem, inspired by the proof in [BKLRWZ19] that CQ-entailment between
ALC-knowledge bases is undecidable.



Chapter 3

Full strong separability

We now switch from weak to strong separability, while still assuming full sig-
nature. Recall there is no distinction between projective and non-projective
separability in the strong case (Prop. 1.60). As in the weak case, it appears that
UCQ matches FO’s separating power on any labeled FO-knowledge base and the
same UCQ witnesses it, although the proof’s essence is different. We establish
that equivalence by model-theoretically characterising the problem. That charac-
terisation induces a crucial reduction from full strong separability to satisfiability,
in contrast to the one from full weak separability to query evaluation. It is in fact
even more fruitful than its weak counterpart: it implies that (L,L)-separability
coincides with (L,FO)-separability for L ∈ {ALC,ALCI,GF,FO2}, whereas this
was not true for ALC and FO2 in the weak case. Explicit separating formulas
also follow in each case.

Contents

3.1 Reduction to satisfiability with FO 113

3.2 ALC(I)-ontologies 114

3.3 GF-ontologies 116

3.4 FO2-ontologies 119

Using the connection with satisfiability, we obtain the following completeness
results for full signature strong (LO,LS)-separability where LO = LS is displayed
in the left column.

COMBINED DATA

;
Never separableEL

ELI
ALC EXP CONP

ALCI EXP CONP

GF 2EXP CONP

FO2 NEXP CONP

FO Undecidable
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§ 3.1. REDUCTION TO SATISFIABILITY WITH FO

We characterize strong (FO,FO)-separability in terms of knowledge base un-
satisfiability and show that strong (FO,FO)-separability coincides with strong
(FO,UCQ)-separability. Let D be a database and let a = (a1, . . . , an) and b =
(b1, . . . , bn) be tuples of constants in D. We write Da=b to denote the database
obtained by taking D ∪D′, D′ a disjoint copy of D, and then identifying ai with
the copy b′i of bi for 1⩽ i ⩽ n. For example,

D = {R(a, b), S(b, c), A(a), B(b)}

⇒ Da=b = {R(a, b), S(b, c), A(a), B(b), R(a′, a), S(a, c′), A(a′), B(a)}

where a′, c′ are ‘copies’ of a and c respectively and we identify the copy b′ of b
with a, as depicted below.

a′ b′ c′

{A} {B}

R S
a/b′

b c
{A, B}

{B}

R S

{A}
a′

c′

a b c
{A} {B}

R S R

S

D D′ Da=b

3.1. Theorem. Let (K, E+, E−) be a labeled FO-knowledge base, K = (O,D). The
following conditions are equivalent.

1. (K, E+, E−) is strongly UCQ-separable;
2. (K, E+, E−) is strongly FO-separable;
3. For all a ∈ E+ and b ∈ E−, the knowledge base (O,Da=b) is unsatisfiable.
4. The UCQ
∨

a∈E+ q(Da,a) strongly separates (K, E+, E−).

Proof. (1)⇒ (2), (2)⇒ (3), and (4)⇒ (1) are straightforward. It remains to
prove (3)⇒ (4). Thus assume that

∨

a∈E+ q(Da,a) does not strongly separate
(K, E+, E−). Then there exist a model A of K, a ∈ E+, and b ∈ E− such that
A ⊨ q(Da,a)(bA), witnessed by some homomorphism h. One can easily interpret
the constants of Da=b in such a way that A becomes a model of Da=b: let A′ be
a model of identical domain and interpretation of relations as A, and such that
(c′)A

′
= cA and cA

′
= h(c) for all c ∈ cons(D). Then A′ ⊨ Da=b and therefore

A′ ⊨ (O,Da=b). ⊣

Theorem 3.1 immediately implies Corollary 3.2, in the same way that Theorem
2.1 implies Corollary 2.2.
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3.2. Corollary. seps(FO,LS) = seps(FO,FO) for any FO-fragment LS containing
UCQ.

The link between separability and satisfiability established in Theorem 3.1 also
provides complexity bounds for separability with any ontology language that
contains UCQ, in particular GNF. Recall that GNF has a 2EXP-complete sat-
isfiability problem [BCS15] in combined complexity and NP-complete in data
complexity.

3.3. Corollary. For any FO-fragment LS that contains UCQ, strong (GNF,LS)-
separability is 2EXP-complete in combined complexity and CONP-complete in data
complexity.

We next study strong (L,L)-separability for L ∈ {ALC,ALCI,GF,FO2}. In every
case, we show that strong (L,L)-separability coincides with strong (L,FO)-
separability. We can thus use the upper bound from KB unsatisfiability provided
by Theorem 3.1 and the lower bound from Remark 1.63 to obtain complexity
bounds.

§ 3.2. ALC(I)-ONTOLOGIES

By characterizing strong (ALC,ALC)-separability and (ALCI,ALCI)-separability,
we show they respectively coincide with strong (ALC,FO)-separability and
(ALCI,FO)-separability (as in the weak case). Then, the reduction to unsatisfia-
bility obtained in the previous section can also be applied here.

Let L ∈ {ALC,ALCI}.

3.4. Theorem. For every labeled L-knowledge base (K, E+, E−), the following
conditions are equivalent.

1. (K, E+, E−) is strongly L-separable.

2. (K, E+, E−) is strongly FO-separable.

3. tpK(A, aA) ̸= tpK(B, bB) for all a ∈ E+, b ∈ E− and A,B ⊨ K.

4. The L-concept (
d

t1)⊔ · · · ⊔ (
d

tn) strongly separates (K, E+, E−),

t1, . . . , tn being the K-types realizable in (K, a) for some a ∈ E+.

5. tpO(A, aA) ̸= tpO(B, bB) for all a ∈ E+, b ∈ E− and A,B ⊨ K.

6. The L-concept (
d

t1)⊔ · · · ⊔ (
d

tm) strongly separates (K, E+, E−),

t1, . . . , tm being the O-types realizable in (K, a) for some a ∈ E+.
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Proof. (1) ⇒ (2), (3) ⇒ (4) (4) ⇒ (1), (5) ⇒ (3), (5) ⇒ (6) and (6) ⇒ (1)
are straightforward. We prove (2)⇒ (3) and (3)⇒ (5). To show (2)⇒ (3),
let K = (O,D) and assume that (3) does not hold, i.e. there exist models
A and B of K and a ∈ E+, b ∈ E− such that tpK(A, aA) = tpK(B, bB). We
prove that (O,Da=b) is satisfiable. This implies that (K, E+, E−) is not strongly
FO-separable, by Theorem 3.1. With (c′)B = cB for all c ∈ cons(D), B is a
model of the database D′ from the definition of Da=b. Define the model C as
A⊎B in which aA and b′B are identified, as depicted below. Using the fact that
tpK(A, aA) = tpK(B, b′B) and a simple induction on the structure of concepts
C , it easily follows that for all C ∈ sub(O) and d ∈ dom(C), d ∈ CC⇔ d ∈ CA

if d ∈ dom(A) and d ∈ CC ⇔ d ∈ CB if d ∈ dom(B). Then, C ⊨ O follows
from A,B ⊨ O. It is also clear from its definition that C ⊨ Da=b. To show
(3)⇒ (5), suppose that ¬(5) is witnessed by some A,B, a, b but (3) holds. Then
tpK(A, aA) and tpK(B, bB) can only differ with respect to some concept names
A1, . . . , An ∈ rel1 that do not occur in O. Assume w.l.o.g. that a ∈ AA

1 ∩ · · · ∩ AA
n

and b /∈ AB
1 ∪ · · · ∪ AB

n . Then, the model B′ obtained from B by adding b to AB
i

for each i ∈ {1, . . . , n} is, just like B, a model of K, since A1, . . . , An do not occur
in O. Then, tpK(A, aA) = tpK(B

′, bB′) i.e. (3) is negated. ⊣

aA b′BA B

Note that (6) of Theorem 3.4 provides concrete separating concepts. They are
trivial and do not provide a good generalization of the examples. However, their
size is at most 2p(||O||), p a polynomial, and does not depend on D.

From Theorem 3.4 and Theorem 3.1 we immediately obtain an analogous result
to Corollary 2.29.

3.5. Corollary. For any FO-fragment LS ⊇ UCQ,

seps(ALC,ALC) = seps(ALC,LS),

seps(ALCI,ALCI) = seps(ALCI,LS).

As announced in the introduction, from the combination of Theorem 3.4 and
equivalence (2)⇔ (3) of Theorem 3.1 we also freely obtain complexity bounds
from satisfiability. Recall that satisfiability of L-knowledge bases is EXP-complete
in combined complexity and NP-complete in data complexity forL ∈ {ALC,ALCI}.

3.6. Corollary. For any FO-fragment LS ⊇ UCQ and LO ∈ {ALC,ALCI}, full
signature strong (LO,LS)-separability is EXP-complete in combined complexity and
CONP-complete in data complexity.
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§ 3.3. GF-ONTOLOGIES

With a similar characterization to the ALC(I) one, we find that strong (GF,GF)-
separability coincides with strong (GF,FO)-separability. Rigorously, the equiv-
alence between (3) and (4) require two intermediate equivalences as in the
ALC(I) case. We omit them, as their proof is the same.

Let K-types be defined in this context as cl(K)-types in the context of full signa-
ture (GF,GF) weak separability, but simply from the set sub(K) (closure under
subformulas and single negation of K) instead of cl(K), i.e. without conditions
(1) and (2) from Definition 2.93.

3.7. Theorem. For every labeled GF-knowledge base (K, E+, E−), the following
conditions are equivalent.

1. (K, E+, E−) is strongly GF-separable;

2. (K, E+, E−) is strongly FO-separable;

3. tpK(A,aA) ̸= tpK(B,bB) for all A,B ⊨ K and a ∈ E+,b ∈ E−;

4. The GF-formula (
∧

Φ1(x))∨ · · · ∨ (
∧

Φn(x)) strongly separates (K, E+, E−),
with Φ1(x), . . . ,Φn(x) being the O-types realizable in (K,a) for some a ∈ E+.

Proof. Only (2) ⇒ (3) is not trivial. It is proved similarly. We assume ¬(3),
assume without loss of generality that witnessing models A,B are disjoint and
B ⊨ D′, then construct a model C by identifying aA

i with b′i
B for all i. It is then

clear that C ⊨ Da=b. It only remains to show C ⊨O. One easily sees that, to show
C ⊨ O, it suffices to show that for all c guarded in C (note that, by definition,
[c] ⊆ dom(A) or [c] ⊆ dom(B)), tpK(C,c) = tpK(A,c) if [c] ⊆ dom(A) and
tpK(C,c) = tpK(B,c) if [c] ⊆ dom(B). We prove it inductively. The atomic case
is straightforward by definition of relations in C. The conjunction and negation
cases are trivial. For the existential case, suppose without loss of generality
[c] ⊆ dom(A) as the proof is identical in the case [c] ⊆ dom(B). Suppose
A ⊨ ∃y(R(c,y) ∧ ϕ(c,y)) for some R ∈ rel and ϕ ∈ sub(O). It immediately
follows, by definition and induction hypothesis, that C ⊨ ∃y(R(c,y)∧ϕ(c,y)).
Conversely, suppose C ⊨ ∃y(R(c,y)∧ϕ(c,y)) and that the existential quantifier is
witnessed by some c′ in C. By definition of C, C ⊨ R(c,c′) implies [c′] ⊆ dom(A)
or [c′] ⊆ dom(B). If [c′] ⊆ dom(A), then, by definition and induction hypothesis,
A ⊨ R(c,c′)∧ϕ(c,c′). If [c′] ⊆ dom(B), then [c] ⊆ [a] = [b] so [c] ⊆ dom(B).
Then B ⊨ ∃y(R(c,y)∧ϕ(c,y)). As we assumed tpK(A,a) = tpK(B,b) we have
tpK(A,c) = tpK(B,c) thus A ⊨ ∃yR(c,y)∧ϕ(c,y)). ⊣

In the same way we obtained Corollaries 3.5 and 3.6 for ALC(I), we obtain
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the following. Recall that deciding satisfiability of GF-knowledge bases is 2EXP-
complete in combined complexity and NP-complete in data complexity.

3.8. Corollary. Full signature strong (GF,GF)-separability coincides with strong
(GF,L)-separability for all FO-fragments L ⊇ UCQ. It is 2EXP-complete in com-
bined complexity and CONP-complete in data complexity.

We can formulate another characterization that has a counterpart in the full sig-
nature weak case (Thm. 2.90). It shows that, in the strong case too, separability
with GF coincides with separability with the fragment oGF of GF (Def. 1.46).
However, the arguments are different.

3.9. Theorem. Let (K, E+, E−) be a labeled GF-knowledge base. Then the following
conditions are equivalent.

1. (K, E+, E−) is strongly oGF-separable;
2. (K, E+, E−) is strongly GF-separable;
3. (A,aA) ̸∼GF,sig(K) (B,bB) for all A,B ⊨ K,a ∈ E+,b ∈ E−;
4. (A,aA) ̸∼oGF,sig(K) (B,bB) for all A,B ⊨ K,a ∈ E+,b ∈ E−.

Proof. The implications (1)⇒ (2) and (4)⇒ (3) are trivial. Moreover, (2)⇒ (3)
and (1)⇒ (4) are immediate from Lemma 1.49. We prove below (3)⇒ (2),
(4)⇒ (1), and (3)⇒ (4). We start with the first implication; the proof of the
second is analogous. Suppose (K, E+, E−) is not strongly GF-separable. Set the
following.

Γ+ := {ϕ(x) ∈ GF(sig(K)) | ∀a ∈ E+ : K ⊨ ϕ(a)}
Γ− := {ϕ(x) ∈ GF(sig(K)) | ∀a ∈ E− : K ⊨ ϕ(a)}.

In what follows we use the fact that Γ+ and Γ− are closed under conjunction.
We say that a set Γ of GF formulas is satisfiable in a w.r.t. a knowledge base
K = (O,D) if the extended (possibly infinite) knowledge base K′ = (O,D ∪
{ϕ(a) | ϕ(x) ∈ Γ }) is satisfiable.

Claim 1. (1) There exists a ∈ E+ such that Γ+ ∪ Γ− is satisfiable in a
w.r.t. K.
(2) There exists a ∈ E− such that Γ+ ∪ Γ− is satisfiable in a
w.r.t. K.

We prove (1), the proof of (2) is dual. Assume Γ+ ∪ Γ− is not satisfiable in
any a ∈ E+ w.r.t. K. Then Γ− is not satisfiable in any a ∈ E+ w.r.t. K. By
compactness, there exist ϕa(x) ∈ Γ− such that K ⊨ ¬ϕa(a), for all a ∈ E+.
We then get the desired contradiction, as K ⊨ ¬(

∧

b∈E+ ϕb)(a) for all a ∈ E+
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and K ⊨ (
∧

b∈E+ ϕb)(a) for all a ∈ E−. Now, let Γ0 = Γ+ ∪ Γ− and consider
an enumeration ϕ1,ϕ2, . . . of all GF(sig(K)) formulas that do not belong to Γ0.
Then we inductively set Γi+1 = Γi ∪ {ϕi+1} if there exist a ∈ E+ and b ∈ E− such
that Γi ∪ {ϕi+1} is satisfiable in both a and b w.r.t. K. Set Γi+1 = Γi ∪ {¬ϕi+1},
otherwise.

Claim 2. For all i > 0: there are a ∈ E+ and b ∈ E− such that Γi∪{ϕi+1}
is satisfiable in both a and b w.r.t. K or there are a ∈ E+ and
b ∈ E− such that Γi ∪ {¬ϕi+1} is satisfiable in both a and b
w.r.t. K.

Assume Claim 2 has been proved for i − 1. Let, without loss of generality,
Γi = Γ+ ∪ Γ− ∪ {ϕ1, . . . ,ϕi}. Assume Claim 2 does not hold for i. Then, again
without loss of generality, there is no a ∈ E+ such that Γi ∪{ϕi+1} is satisfiable in
a w.r.t. K and there is no b ∈ E− such that Γi ∪{¬ϕi+1} is satisfiable in b w.r.t. K.
By compactness, there exists ϕ ∈ Γ− such that K ⊨ ϕ′(a) for all a ∈ E+, where
ϕ′ = ((ϕ ⊓ϕ1 ⊓ · · · ⊓ϕi)→¬ϕi+1). Then, by definition, ϕ′ ∈ Γ+. Then ϕ′ ∈ Γi
so there is no b ∈ E+ such that Γi is satisfiable in b w.r.t. K - contradiction.

Let Γ =
⋃

i⩾0 Γi. Then there exist models A and B of K and a ∈ E+ and
b ∈ E+ such that A ⊨ ϕ(a) for all ϕ ∈ Γ and B ⊨ ϕ(b) for all ϕ ∈ Γ . Thus,
(A,a)≡GF(sig(K)) (B,b). By Theorem 1.7 we may assume without loss of gener-
ality that A and B are ω-saturated. By Lemma 1.49, we obtain (A,a)∼GF,sig(K)

(B,b), as required.

(3)⇒ (4). Suppose there are models A and B of K and a ∈ E+,b ∈ E− such
that (A,aA) ∼oGF,sig(K) (B,bB). Obtain B′ by adding a disjoint copy of A to
the connected component of bB in B. Clearly, (A,aA) ∼oGF,sig(K) (B′,bB′), as
the witnessing connected guarded bisimulation can be extended to a guarded
bisimulation by adding all partial isomorphisms between A and its copy in B′.
Then, B′ ⊨ K since B′ ⊨ D (clearly) and one can verify that A and B′ satisfy the
same GF(sig(K))-sentences to establish B′ ⊨O. It suffices to consider sentences
of the formψ = ∃y(α(y)∧ϕ(y)). We inductively assume that (∗) all subsentences
of ψ are satisfied in A iff they are satisfied in B′. Suppose first thatψ is satisfied
in A. Since A is a submodel of B′ and by (∗),ψ is also satisfied in B′. Conversely,
assume that ψ is satisfied in B′ and let c be such that B′ ⊨ α(c)∧ϕ(c). If c is
in the copy of A in B′, then ψ is also satisfied in A, due to (∗). If c is connected
to bB, then A ⊨ψ by bisimulation. ⊣

It follows from Theorem 3.7 that the minimal size of strongly separating GF-
formulas is at most 22p(||O||)

, p a polynomial, and thus does not depend on the
database. A variation shows that is not the case for separating oGF-formulas: as
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in the weak case (2.92), using oGF for separation instead of GF can come at the
expense of much larger formulas.

3.10. Example. Let K = (O,D) be the GF-knowledge base (expressed in ALC
with the universal role1)

O =















A1 ⊑ ∀S.A1

A2 ⊑ ∀R.A2

E2 ⊓ A1 ⊑ ∃u.B
E1 ⊓ A2 ⊑ ¬∃u.B















D =







A1(a0), R(a0, c1), . . . , R(cn−1, cn),
E1(cn), A2(b0), E2(c′n),
S(b0, c′1), . . . , S(c′n−1, c′n)







In GF (in fact in ALC with the universal role) (K, {a0}, {b0}) is strongly separated
by the formula (A1⊓A2⊓¬∃u.B)⊔(A1⊓¬A2). In contrast, any strongly separating
formula in oGF has guarded quantifier rank at least n: there exist A, B ⊨ K
(depicted below) such that (A, aA

0 )∼
n−1
oGF,sig(K) (B, bB

0 ).

a0

R
R

S
S

{A1, A2}

{A1, A2}
{A1, A2, E1}

{A1, A2}
{A1, A2}

b0
S S

{A2} {E2}

f

A

b0

R
R

S
S

{A1, A2}

{A1, A2}
{A1, A2}

{A1, A2, E2}
{A1, A2}

a0
R R

{A1} {E1}

f

B

{B}

c1 cn

d1 dn

c1 cnd1 dn

§ 3.4. FO2-ONTOLOGIES

We show that unlike its weak counterpart, full signature strong (FO2,FO2)-
separability is decidable and coincides with strong (FO2,FO)-separability. The
proof strategy is the same as for ALCI and GF thus we first need a suitable
notion of K-type for FO2-KBs. Existing such notions, such as the ones defined
in [GKV97], are not strong enough for our purposes, so we define and work
with a more powerful notion. We can then once more establish a theorem that
parallels Theorem 3.4 and show that strong separability has the same complexity
as non-satisfiability of KBs, both in combined complexity (CONEXP-complete)
and in data complexity (CONP-complete).

We start by introducing appropriate types for FO2-KBs. Recall that we assume

1A role u such that uA = dom(A)2 for any model A, see [BHLS17] for example.
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that FO2 uses unary and binary relation symbols only and that positive and
negative examples are tuples of length ⩽ 2.

3.11. Definition. Assume that K = (O,D) is a FO2-knowledge base. Let cls(K)
denote the union of the closure under single negation and swapping the variables
x , y of the set of subformulas of K and {R(x , x), R(x , y), A(x) | R ∈ sig(K)∩
rel2, A∈ sig(K)∩rel1}. The K1-type of a pointed model (A, a), denoted tpK(A, a),
is the set of all formulas ψ(x) ∈ cls(K) such that A ⊨ ψ(a). We denote by
Tx(K) the set of all K1-types. We say that t(x) ∈ Tx(K) is realized in (A, a)
if t(x) = tpK(A, a). Denote by t(x)[y/x] the set of formulas obtained from
t(x) by swapping y and x . The K2-type of a pointed model (A, a, b), denoted
tpK(A, a, b), is the set of all

R(x , y) if A ⊨ R(a, b)
R(y, x) if A ⊨ R(b, a)
¬R(x , y) if A ̸⊨ R(a, b)
¬R(y, x) if A ̸⊨ R(b, a)
x = y, y = x if a = b
¬(x = y),¬(y = x) if a ̸= b

where R ∈ sig(K). We denote by Tx ,y(K) the set of all K2-types. We say that
t(x , y) ∈ Tx ,y(K) is realized in (A, a, b) if t(x , y) = tpK(A, a, b). For t(x) ∈
Tx(K), we set t(x)=1 = ∀y(

∧

t(y) → (x = y)). The extended K2-type of a
pointed model (A, a, b), denoted tp∗K(A, a, b), is the conjunction of

(1) tpK(A, a, b)∧ tpK(A, a)∧ tpK(A, b)[y/x];

(2) ∃y(tpK(A, a, c) ∧ tpK(A, c)[y/x]) for any c ∈ dom(A) \ {a, b} such that
tpK(A, c) is realized only once in A;

(3) ∃x(tpK(A, c, b) ∧ tpK(A, c)[x/y]) for any c ∈ dom(A) \ {a, b} such that
tpK(A, c) is realized only once in A;

(4) ¬∃x
∧

t(x), for any t(x) ∈ Tx(K) not realized in A;

(5) ∃x(
∧

t(x)∧ t(x)=1) if t(x) ∈ Tx(K) is realized exactly once in A;

(6) ∃x(
∧

t(x)∧¬t=1(x)) if t(x) ∈ Tx(K) is realized at least twice in A;

(7) ∃x y
∧

tpK(A, c, d) ∧ tpK(A, c) ∧ tpK(A, d)[y/x] for any c ̸= d such that
tpK(A, c) and tpK(A, d) are realized only once in A.

We denote by T ∗x ,y(K) the set of all extended K2-types. We say that t(x , y) ∈
T ∗x ,y(K) is realized in (A, a, b) if t(x , y) = tpK(A, a, b). The extended K1-type
of a pointed model (A, a) is defined in the same way with tpK(A, a, b) and
tpK(A, b)[y/x] removed in Point 1 and with Point 3 completely removed. We
also define the realization of such types by pointed models as expected.
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3.12. Theorem. For every labeled FO2-knowledge base such that the tuples in
E+ ∪ E− have length i ∈ {1,2}, the following are equivalent.

1. (K, E+, E−) is strongly FO2-separable.

2. (K, E+, E−) is strongly FO-separable.

3. For all A,B ⊨ K, a ∈ E+,b ∈ E−, aA and bB do not realize the same
extended Ki-type.

4. The FO2-formula (
∧

t1)∨· · ·∨(
∧

tn) strongly separates (K, E+, E−),
t1, . . . , tn being the extended Ki-types realizable in (K,a) for some
a ∈ E+.

Proof. Assume that the tuples in E+ and E− have length two (the other case
is proved similarly). Implications (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (1) are
straightforward. For (2)⇒ (3) assume that Condition 3 does not hold. Thus,
there are a = (a1, a2) ∈ E+ and b = (b1, b2) ∈ E− and models A and B of K such
that the extended 2-types of (A,a) and (B,b) coincide. We assume without loss
of generality that A,B are disjoint and that B ⊨ D′. We show that there exists a
model C of (O,Da=b). Then, by Theorem 3.1, (K, E+, E−) is not FO-separable.
Before defining C, assume that aA

1 ≠ aA
2 . The case aA

1 = aA
2 is similar and omitted.

Then, by the first conjunct of extended types and since K2-types contain equality
assertions, bB

1 ≠ bB
2 . By Points 5 and 6, A and B realize exactly the same

K1-types once. Let K denote the set of such types.

We define C from A and B by first identifying aA
i with bB

i for all i ∈ {1, 2} and
all c ∈ dom(A) with d ∈ dom(B) whenever c and d realize the same K1-type
from K. Then C is well defined by the conjuncts in Points 1, 2, 3, and 7 of
the definition of extended types. Set cC = cA for all constants c ∈ cons(D) and
(c′)C = (c′)B for all constants c′ ∈ cons(D′) (from the definition of Da=b). It
remains to define the K2-type realized by (c, d) in C for c ∈ dom(C)\dom(B) and
d ∈ dom(C) \ dom(A). Assume such a (c, d) is given. Then the type tpK(B, d) is
realized in A, by the formulas in Point 5 and 6 of the definition of extended types.
Then let d ′ ∈ dom(A) such that tpK(A, d ′) = tpK(B, d). We may assume that
d ′ ̸= c as tpK(B, d) is realized at least twice in both A and in B. Now interpret
the relations R ∈ sig(K) in C in such a way that tpK(C, d, c) = tpK(A, d ′, c).

One can show that C is a model of (O,Da=b). It is clear by definition that
C ⊨ Da=b. We prove that for all c ∈ dom(A) ∪ dom(B) and all ϕ(x) ∈ cl(K)
we have A ⊨ ϕ(c) iff C ⊨ ϕ(c) if c ∈ dom(A) and B ⊨ ϕ(c) iff C ⊨ ϕ(c) if
c ∈ dom(B). It is straightforward to check the cases where ϕ(x) = R(x) for
R ∈ sig(K) and where ϕ(x) is a boolean combination of formulas subject to the
induction hypothesis. Now suppose ϕ(x) = ∃yϕ′(x , y).
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1. Suppose c ∈ dom(A) \ dom(B).

(⇒) Suppose A ⊨ ϕ(c). Then A ⊨ ϕ′(c, d) for some d ∈ dom(A). Being an
FO2 formula with at most two free variables, ϕ′(x , y) is a boolean combination
of formulas of the form R(x , y), R(y, x), ϕ′′(x), ϕ′′(y) where R is either a
relation in sig(K) or the equality symbol and ϕ′′ ∈ cl(K). We have A ⊨ R(c, d)
iff C ⊨ R(c, d) for any pair c, d ∈ dom(A) by definition of semantics in C. For
the other types, we know A ⊨ ϕ′′(e) iff C ⊨ ϕ′′(e) for any e ∈ dom(A), from
the induction hypothesis on formulas with at most 1 free variable. Therefore
C ⊨ ϕ(c).

(⇐) Suppose C ⊨ ϕ(c). Then C ⊨ ϕ′(c, d) for some d ∈ dom(C). Suppose
d ∈ dom(A). The same argument as in the above subcase giving A ⊨ ϕ(c)⇒
C ⊨ ϕ(c) also gives the converse when c ∈ dom(A) \ dom(B) and d ∈ dom(A).
Suppose d ∈ dom(B) \ dom(A). Keep the notation for subformulas of ϕ′(x , y).
By definition of C, there exists d ′ ∈ dom(A) such that tpK(B, d) = tpK(A, d ′)
and tpK(C, c, d) = tpK(A, c, d ′). Then C ⊨ R(c, d) iff A ⊨ R(c, d ′). By induction
hypothesis, C ⊨ ϕ′′(c) implies A ⊨ ϕ′′(c) and C ⊨ ϕ′′(d) implies B ⊨ ϕ′′(d), thus
A ⊨ ϕ′′(d ′) since tpK(B, d) = tpK(A, d ′). Therefore we do have A ⊨ ϕ′(c, d ′),
so A ⊨ ϕ(c).

2. Suppose c ∈ dom(B) \ dom(A).

(⇒) Suppose B ⊨ ϕ(c). We get C ⊨ ϕ(c) via the same proof as for A ⊨ ϕ(c)⇒
C ⊨ ϕ(c) when c ∈ dom(A) \ dom(B).

(⇐) Suppose C ⊨ ϕ(c). Then C ⊨ ϕ′(c, d) for some d ∈ dom(C). Suppose
d ∈ dom(B). We get C ⊨ ϕ(c) via the same proof as the proof of C ⊨ ϕ′(c, d)⇒
A ⊨ ϕ(c) when c ∈ dom(A) \ dom(B) and d ∈ dom(A). Suppose d ∈ dom(A) \
dom(B). Keep the notation for subformulas of ϕ′(x , y). By definition of C,
there exists c′ ∈ dom(A) such that tpK(B, c) = tpK(A, c′) and tpK(C, c, d) =
tpK(A, c′, d). Then C ⊨ R(c, d) iff A ⊨ R(c′, d). By induction hypothesis, C ⊨
ϕ′′(d) iff A ⊨ ϕ′′(d) and C ⊨ ϕ′′(c) iff B ⊨ ϕ′′(c), thus A ⊨ ϕ′′(c′) since
tpK(B, c) = tpK(A, c′). Therefore we do have A ⊨ ϕ(c′), thus B ⊨ ϕ(c), since
tpK(B, c) = tpK(A, c′).

3. Suppose c ∈ dom(A)∩ dom(B).

There are again two subcases to distinguish. By definition of C, elements in the
intersection are either of types realized once, or equal to aC

i for i ∈ {1,2}. If
c ∈ {aC

1 , aC
2}, then tpK(C, c) is possibly realized more than once.

3.1. Suppose tpK(C, c) is realized once.

(⇒) Suppose A ⊨ ϕ(c). Then A ⊨ ϕ′(c, d) for some d ∈ dom(A). Same proof as
for the implication A ⊨ ϕ(c)⇒ C ⊨ ϕ(c) when c ∈ dom(A) \ dom(B). Suppose
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B ⊨ ϕ(c). By the same argument, we get C ⊨ ϕ(c).

(⇐) Suppose C ⊨ ϕ(c). We want to prove both A ⊨ ϕ(c) and B ⊨ ϕ(c). We have
C ⊨ ϕ′(c, d) for some d ∈ dom(C). Suppose d ∈ dom(A) \ dom(B). The proof is
then the same as the proof of C ⊨ ϕ(c)⇒ A ⊨ ϕ(c) when c ∈ dom(A) \ dom(B)
and d ∈ dom(A). We get A ⊨ ϕ(c), thus also B ⊨ ϕ(c) since tpK(A, c) =
tpK(B, c). Suppose d ∈ dom(B) \ dom(A). The same proof as above applies to
give B ⊨ ϕ(c) and then A ⊨ ϕ(c) since tpK(A, c) = tpK(B, c).
Now suppose d ∈ dom(B)∩ dom(A).

a) Suppose tpK(C, d) is realized once. Keep the notation for subformulas of
ϕ′(x , y). On unary subformulas ϕ′′(c), by induction hypothesis, C ⊨ ϕ′′(c)
iff A ⊨ ϕ′′(c) and iff B ⊨ ϕ′′(c) and same for d. As for binary relations
and equality, C ⊨ R(c, d) implies either A ⊨ R(c, d) or B ⊨ R(c, d), by
definition of semantics in C. It is sufficient to complete the proof to show
that A ⊨ R(c, d) and B ⊨ R(c, d) are equivalent. Suppose A ⊨ R(c, d). Since
a and b have the same extended type, it holds thatB ⊨ ∃x y

∧

tpK(A, c, d)∧
tpK(A, c) ∧ tpK(A, d), point 7 of the definition of extended type. Any
element in the intersection dom(A) ∩ dom(B) has its type realized only
once in C, so c is the only element in B satisfying tpK(A, c) and d is the
only element in B satisfying tpK(A, d), since their types are both realized
only once. Thus, tpK(B, c, d) = tpK(A, c, d), therefore B ⊨ R(c, d). The
converse is proved the same way. We have then proved that C ⊨ ϕ(c)
implies both A ⊨ ϕ(c) and B ⊨ ϕ(c).

b) Suppose d = aC
i for some i = 1,2. Keep the notation for subformulas of

ϕ′(x , y). On unary subformulas ϕ′′(c), by induction hypothesis, C ⊨ ϕ′′(c)
iff A ⊨ ϕ′′(c) and iff B ⊨ ϕ′′(c) and same for d. As for binary relations
and equality, C ⊨ R(c, d) implies either A ⊨ R(c, d) (i.e A ⊨ R(c, aA

i ))
or B ⊨ R(c, d) (i.e B ⊨ R(c, bB

i )), by definition of semantics in C. It is
sufficient to complete the proof to show that A ⊨ R(c, d) and B ⊨ R(c, d) are
equivalent. We get tpK(B, c, d) = tpK(A, c, d) the equivalence by condition
2 and 3 of the definition of extended type, thus the equivalence. We have
then proved that C ⊨ ϕ(c) implies both A ⊨ ϕ(c) and B ⊨ ϕ(c).

3.2. Suppose c ∈ {aC
1 , aC

2} and tpK(C, c) is realized more than once.

(⇒) By the same argument as in the other case, we have that A ⊨ ϕ(c) and
B ⊨ ϕ(c) both imply C ⊨ ϕ(c).

(⇐) Suppose C ⊨ ϕ(c). We want to prove both A ⊨ ϕ(c) and B ⊨ ϕ(c). We have
C ⊨ ϕ′(c, d) for some d ∈ dom(C). Suppose d ∈ dom(A) \ dom(B). The proof is
then the same as the proof of C ⊨ ϕ(c)⇒ A ⊨ ϕ(c) when c ∈ dom(A)∩ dom(B)
and d ∈ dom(A) \ dom(B) and tpK(C, c) is realized once. We get A ⊨ ϕ(c),
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thus also B ⊨ ϕ(c) since tpK(A, c) = tpK(B, c). Suppose d ∈ dom(B) \ dom(A).
The same proof as above applies to give B ⊨ ϕ(c) and then A ⊨ ϕ(c) since
tpK(A, c) = tpK(B, c).
Now suppose d ∈ dom(B)∩ dom(A).

a) Suppose tpK(C, d) is realized once. Keep the notation for subformulas of
ϕ′(x , y). On unary subformulas ϕ′′(c), by induction hypothesis, C ⊨ ϕ′′(c)
iff A ⊨ ϕ′′(c) and iff B ⊨ ϕ′′(c) and same for d. As for binary relations
and equality, C ⊨ R(c, d) implies either A ⊨ R(c, d) (i.e A ⊨ R(aA

i , d))
or B ⊨ R(c, d) (i.e B ⊨ R(bB

i , d)), by definition of semantics in C. It is
sufficient to complete the proof to show that A ⊨ R(c, d) and B ⊨ R(c, d) are
equivalent. We get tpK(B, c, d) = tpK(A, c, d) the equivalence by condition
2 and 3 of the definition of extended type, thus the equivalence. We have
then proved that C ⊨ ϕ(c) implies both A ⊨ ϕ(c) and B ⊨ ϕ(c).

b) Suppose d = aC
i for some i = 1,2. Keep the notation for subformulas of

ϕ′(x , y). On unary subformulas ϕ′′(c), by induction hypothesis, C ⊨ ϕ′′(c)
iff A ⊨ ϕ′′(c) and iff B ⊨ ϕ′′(c) and same for d. As for binary relations and
equality, C ⊨ R(c, d) implies either A ⊨ R(c, d) or B ⊨ R(c, d), by definition
of semantics in C. It is sufficient to complete the proof to show that A ⊨
R(c, d) and B ⊨ R(c, d) are equivalent. We get tpK(B, c, d) = tpK(A, c, d)
by condition 1 of the definition of extended type since both are constants,
thus the equivalence. We have then proved that C ⊨ ϕ(c) implies both
A ⊨ ϕ(c) and B ⊨ ϕ(c).

⊣

merged points

A B
c d

d ′

Through similar intermediate equivalences to the ones omitted in the context of
GF, strongly separating formulas are of size at most 22p(||O||)

(instead of simply
22p(||K||)

), p a polynomial. Once more, complexity bounds follow from the link
between separability and satisfiability. Recall that satisfiability of FO2-knowledge
bases is NEXP-complete in combined complexity and NP-complete in data com-
plexity.

3.13. Corollary. Strong (FO2,FO2)-separability coincides with strong (FO2,LS)-
separability for all FO-fragments LS ⊇ UCQ. It is NEXP-complete in combined
complexity and CONP-complete in data complexity.



Chapter 4

Restricted weak separability

Starting from this section, we now add a signature to the input and require
separating formulas to be expressed in that signature. This makes it possible to
exclude features that one would consider irrelevant. We consider description
logics in DLIO as well as decidable fragments of FO like GF and FO2. Recall
from the Preliminaries chapter that in the context of restricted signatures, one
can still define a notion of “projectivity” as the allowance of symbols outside of
the knowledge base’s signature.
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Many results from the full signature case do not hold in the restricted case. It
was shown in Chapter 2 that in the full signature case, unions of conjunctive
queries had the same weakly-separating power as first-order formulas (Thm.
2.1) and, under ALCI ontologies, as projective ALCI formulas (Cor. 2.29).
With restricted signatures, those equivalences do not hold:

4.1. Example. Let K1 = (O1,D1) and K2 = (O2,D2), where O1 = {A⊑ ∃R.B ⊓
∃R.¬B}, O2 = {A ⊑ ∀R.B}, D1 = {A(a), R(b, c)} and D2 = {A(a), C(b)}. Then
(K1, {a}, {b}) is not UCQ({R})-separable but is weakly separated by the FO({R})-
formula ∃y∃y ′(R(x , y)∧R(x , y ′)∧¬(y = y ′)). (K2, {a}, {b}) is not UCQ({R, B})-
separable but is weakly separated by ∀R.B, an ALC({R, B})-concept.

In Section 4.1 we give model-theoretic characterisations for projective sepa-
rability in DLIO and discuss some corollaries. In Section 4.2 we observe that
it follows from our main characterisation theorem that projective ALCI and
ALCO-separability can be non-projectively captured by a language combining
UCQs and DLs. In Section 4.3, we make the crucial observation that for the
DLs we consider, restricted separability is tightly connected to the problem
of deciding conservative extensions. That reduction implies 2EXP-hardness
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for projective (ALC,ALC) and (ALCI,ALCI)-separability. In Section 4.4, we
prove a matching 2EXP upper bound via tree automata and the bisimulation
characterisation. In Section 4.5, we prove undecidability of projective weak
(ALC,ALCO)-separability if constants are allowed as helper symbols. This is
done via reduction from an undecidable tiling problem. We then use the same
tiling problem to show that (ALC,ALCFIO)-separability is undecidable, both
in the projective and non-projective case.

Listed below are combined complexity results in the case where the ontology
language and the separation language coincide. The results we obtain in the
following section are contrasted with the ones from the weak, full signature
case.

Conservative extensions are undecidable in GF [JLMSW17], but the strategy we
use in DLIO to bound the complexity of separability from below with deciding
conservative extensions cannot be applied in GF to obtain undecidability of
separability. It is shown nonetheless in [JLPW21] that (non-)projective weak
restricted (LO,LS)-separability is undecidable for any LO that contains GF3

and LS that contains ALC, by adapting the proof used in [JLMSW17] to show
undecidability of conservative extensions in GF.

prj+full full prj+rstr

ALC NEXP ? 2EXP

ALCI NEXP NEXP 2EXP

ALCO ? ? 3EXP [JLPW21]
GF 2EXP 2EXP Undec [JLPW21]
FO2 Undec Undec Undec

§ 4.1. SEMANTIC CHARACTERISATION IN DL

It is straightforward to translate the bisimulation-based charaterisation from the
full signature case (see Theorem 2.16) to the restricted case, both for projective
and non-projective separability. However, unlike in the full signature case, the
condition we obtain for restricted projective separability (in (2) of Theorem
4.2) is inconvenient for studying its complexity, so we also reformulate it (in
(3)) in a way that is well-suited to automata-based decision procedures. That
reformulation does not hold for ALCIO as separation language, as infinite
outdegree forest models can be forced. We do not provide such a reformulation
for the non-projective case as its complexity is out of the scope of this thesis:
it appears from Chapter 2 that insisting on non-projective separability is a
source of significant technical difficulties while not always delivering more
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natural separating concepts. As our main aim is to study the impact of signature
restrictions on separability, which is another source of technical challenges, we
leave the non-projective case open.

As in the full signature case, we assume without loss of generality that the set of
negative examples is a singleton.

4.2. Theorem. Let L ∈ DLIO\ALCIO. Let (K, E+, {b}) be a labeled L-knowledge
base and Σ ⊆ sig(K). The following conditions are equivalent.

1. (K, E+, {b}) is projectively L(Σ)-separable using only rel1 as helper symbols.

2. There exists an L-forest model A ⊨ K of finite outdegree and Σ′ ⊆ rel1 \sig(K)
such that for all B ⊨ K, a ∈ E+, (B, aB) ̸∼L,Σ∪Σ′ (A, bA).

3. There exists an L-forest model A ⊨ K of finite outdegree such that for all
B ⊨ K, a ∈ E+, (B, aB) ̸∼ f

L,Σ (A, bA).

Proof. (1)⇒ (2) and (2)⇒ (1) are proved as in the full signature case.
For (2)⇒ (3), take an L-forest model A and Σ′ such that (2) holds. We show
that (3) holds for A as well. Suppose for contradiction that there exists B ⊨ K,
a ∈ E+ and a functional Σ-bisimulation f witnessing (B, aB)∼ f

L,Σ (A, bA). As
Σ′ ∩ sig(K) = ;, we may assume without loss of generality that B does not
interpret any symbol in Σ′. We expand B into a model B′ by setting AB′ to be
all d ∈ dom( f ) such that f (d) ∈ AA, for all A∈ Σ′. The contradiction ensues, as
f clearly witnesses (B′, aB′)∼L,Σ∪Σ′ (A, bA).

(3)⇒ (2). Take an L-forest model A of K of finite outdegree such that (3) holds.
We may assume without loss of generality that A only interprets symbols in
sig(K). Define A′ by expanding A as follows. Take for any d ∈ dom(A) a fresh
concept name Ad and set AA′

d = {d}. Then (2) holds for A′ and Σ′ = {Ad | d ∈
dom(A)}. ⊣

Theorems 4.2 fails for ALCIO. A counterexample is given by the following.

4.3. Example. Let K = (O,D), with

Σ= {c, R0, S, R}

D = {A(a), B(b), C(c), R0(b, c)}

O =



























C ⊑ ∃R−0 .A→ A0

C ⊑ ∃S.⊤⊓∀S.(E ⊓ ∃R.(E ⊓ ∃S−.⊤))
A0 ⊑ ∃S.∃S−.(A0→∃S.∃R.∃S−.¬A0)
C ⊑ ¬A⊓¬B
E ≡ ¬A⊓¬B ⊓¬C





























4.1. Semantic characterisation in DL 128

1. (K, {a}, {b}) is non-projectively weakly separated by the ALCIO(Σ) concept
D = ¬∃R0.∀S.(∀S−.{c} ⊓ ∀R.∀S−.{c}): suppose for contradiction that there
exists A ⊨ K such that A ⊭ D(a). Then (aA, cA) ∈ RA

0 . That, by O, implies
cA ∈ AA

0 and thus cA ∈ (∃S.∃S−.(A0 → ∃S.∃R.∃S−.¬A0))A, contradicting cA ∈
(∀S.(∀S−.{c} ⊓∀R.∀S−.{c}))A. Then, K ⊭ D(b) is straightforwardly witnessed
by the model depicted below. An explicit definition is given by dom(A) =
{a, b, c} ∪ {ai : i ⩾ 0} and

AA
0 = ; (B′)A = ;

AA = {a}= aA RA
0 = {b, c}

BA = {b}= bA RA = {(ai , ai+1) : i ≥ 0}
CA = {c}= cA SA = {(c, ai) : i ≥ 0}

b c

. . .

. . .

R0
a

S S S

R R

A B
C

2. For every ALCIO-forest model A of K of finite ALCIO-outdegree there exists
a model B of K such that (B, aB) ∼ f

ALCIO,Σ (A, bA). Let A ⊨ K. We construct
B as follows. Let dom(B) = dom(A), aB = bB = bA, cB = cA, AB = {aB},
AB

0 = CB = {cB}, and BB = BA. Let ρB = ρA for all role names ρ. Clearly,
(A, bA) ≃Σ (B, aB), as B only differs from A with respect to symbols outside
of Σ. It is clear that B ⊨ D. We then check that B ⊨ O. The first inclusion is
clearly satisfied as CB = AB

0 = {c
B}. The second and fourth inclusion are clearly

satisfied by B as they are by A. Assume the third inclusion is not satisfied. Then,
by AB

0 = {c
B}, the second inclusion and C(c) ∈ D, there is an infinite RA-chain of

nodes distinct from cA, aA, bA all of which are in relation (S−)A to cA. Then either
A is not an ALCIO-forest model (as it contains a cycle between nodes distinct
from interpretations of constants) or it does not have finite ALCIO-outdegree,
witnessed by cA.

With ALCIO, condition (2) from Theorem 4.2 is too strong to be equivalent to
(1), but removing the finite outdegree requirement from (2) would make it too
weak, as shown by the following example.

4.4. Example. Let Σ= {c, R0, S, R} and K = (O,D) with

D = {A(a), B(b), C(c), R0(b, c)}
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O =















C ⊑ ∃R−0 .A→ A0

A0 ⊑ (∃S.⊤⊓∀S.∃R.∃S−.A0)→∃S.B′

B′ ⊑ ∃R−.B′

C ⊑ ¬A⊓¬B















1. (K, {a}, {b}) is not weakly projectively ALCIO(Σ)-separable using concept
names as helper symbols.

Let A ⊨ K. We show there exists B ⊨ K such that (B, aB)≡ALCIO,Σ∪Σ′ (A, bA),
where Σ′ = rel1 \ sig(K). Let B0 be defined as A except that aB0 = bA, AB0 =
{aB0}, AB0

0 = CB0 = {cB0}, and BB0 = {bB0}, and we define B′B0 according to
a case distinction. Suppose cB0 /∈ (∃S.⊤⊓∀S.∃R.∃S−.A0)B0 . Then set B′B0 = ;.
Then B0 is a model of K and the identity is a Σ-isomorphism between B0

and Suppose cB0 ∈ (∃S.⊤⊓∀S.∃R.∃S−.A0)B0 . As AB0
0 = {c

B0}, the set t(x) =
{s(c, x)} ∪ {R(y1, x), R(y2, y1), R(y3, y2), . . .} is finitely satisfiable in B0, so it
is realized in an elementary extension B1 of B0. That implies there exists
an infinite R−-chain a′1, a′2, . . . in B1 with (cB1 , a′1) ∈ SB1 . Let B be obtained
from B1 by defining the extension of B′ as {a′i : i ≥ 1}. Then, B ⊨ K and
(A, bA)≡ALCIO,Σ∪Σ′ (B, aB), which concludes the proof.

2. There exists A ⊨ K such that (B, aB)≁ALCIO,Σ (A, bA) for all B ⊨ K.

Consider the model A depicted in Example 4.3. It is immediate that A ⊨
K. If (B, aB) ∼ALCIO,Σ (A, bA), then, as c, S, R, R0 ∈ Σ, bA ∈ (∃R0.({c} ⊓
∃S.⊤ ⊓ ∀S.∃R.∃S−.{c}))A implies aB ∈ (∃R0.({c} ⊓ ∃S.⊤ ⊓ ∀S.∃R.∃S−.{c}))B

and aB ∈ (∃R0.(A0 ⊓ ∃S.⊤⊓∀S.∃R.∃S−.A0))B as cB ∈ AB
0 , in virtue of the fact

that {A(a), C(c), R0(a, c)} ⊆ D and C ⊑ ∃R−0 .A→ A0 ∈ O. Then, by O’s second
inclusion we get aB ∈ (∃R0.∃S.B′)B while bA /∈ (∃R0.∃S.B′)A. By the third
inclusion, aB then has a R0-successor with an S-successor from which starts an
infinite R−-chain, while bA does not. A Σ-bisimulation including (aB, bA) is then
impossible, as {R0, S, R} ⊆ Σ.

In DLIQ, Theorem 4.2 also holds if role names are allowed as helper symbols.

4.5. Theorem. LetL ∈ {ALC,ALCI}. Restricted weak projective (L,L)-separability
is invariant under the addition of role names as helper symbols.

Proof. We employ the characterization of projective separability given in Theo-
rem 4.2. Observe that the following conditions are equivalent.

1. There exists an L(Σ∪ ((rel1 ∪ rel2) \ sig(K)))-concept C such that K ⊨ C(a)
for all a ∈ E+ and K ̸⊨ C(b).

2. There exists an L-forest model A of K of finite outdegree and a set Σ′ ⊆
(rel1 ∪ rel2) \ sig(K) such that (B, aB) ̸∼L,Σ∪Σ′ (A, bA) for any B ⊨ K and
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a ∈ E+.

It suffices to show that (2) is equivalent to (3) of Theorem 4.2. The right to
left direction is proved exactly as in the context of Theorem 4.2. For a proof
of the converse by contradiction, assume that there exists an L-forest model A
of K satisfying (2) above for Σ′ but not (3) of Theorem 4.2. Let B ⊨ K and f
witness (B, aB)∼ f

L,Σ (A, bA) for some a ∈ E+. We modify B to obtain a model
B′ of K such that (B′, aB′)∼L,Σ∪Σ′ (A, bA) and thus obtain a contradiction. B′

is obtained from B by first assuming without loss of generality that B does not
interpret any symbol in Σ′ and then

▶ taking the disjoint union B ⊎ A′ of B and a copy A′ of A that does not
interpret any symbol in Σ′;

▶ observing that the function g = f ∪ id, where id maps every node in A′

to its copy in A, is a functional and surjective L(Σ)-bisimulation between
B∪A′ and A;

▶ setting AB′ = g−1(AA) for all A ∈ rel1 ∩ Σ′ and RB′ = g−1(RA) for all
R ∈ rel2 ∩Σ′.

Then g is a (functional) L(Σ∪Σ′)-bisimulation between B′ and A. ⊣

The above result fails when nominals are involved in the separation language, i.e.
adding role names to the definition of projectivity can turn inseparable labeled
KBs into separable ones.

4.6. Example. Let K = (O,D), where O = {A0 ⊓ ∃R.⊤ ⊑ ⊥, B ⊑ ∀R.A},
D = {R(c, a), A0(a), A0(b)} and Σ = {c, B, A}. Then, assuming RI /∈ sig(K),
(K, {a}, {b}) is not projectively ALCIO(Σ)-separable with only rel1 for helper
symbols, but theALCO(Σ∪{RI})-concept ∃RI .({c}⊓B)→ A separates (K, {a}, {b}).

However, in that case, a single additional role name suffices to capture separa-
bility.

4.7. Theorem. Let L ∈ {ALCO,ALCIO}, (K, E+, {b}) be a labeled L-knowledge
base and Σ ⊆ sig(K). Let RI be a fresh role name and let K′ be the extension of K
with ∃RI .⊤⊑ ∃RI .⊤. Then the following conditions are equivalent.

1. (K, E+, {b}) is projectively L(Σ)-separable with rel1 ∪ rel2 as helper symbols.
2. (K′, E+, {b}) is projectively L(Σ ∪ {RI})-separable with only rel1 as helper

symbols.

Proof. Assume that L = ALCO. As (2) trivially implies (1), we show the con-
verse. Assume (1). Let A ⊨ K be an L-forest model of finite outdegree and
let Σ′ ⊆ (rel1 ∪ rel2) \ sig(K) such that (B, aB) ̸∼L,Σ∪Σ′ (A, bA) for all B ⊨ K
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and a ∈ E+. Assume for contradiction that there does not exist any such model
if Σ∪Σ′ is replaced by Σ ∪ {RI}. Obtain A′ from A by setting RA′ = ; for
all R ∈ rel2 ∩ Σ′ and RA′

I = {(b
A, cA) | c ∈ cons(D)} ∪

⋃

R∈rel2 RA. Then A′ is
an L-forest model of K of finite outdegree. Thus, by assumption there exists
B ⊨ K and a ∈ E+ such that (B, aB)∼ f

L,Σ∪{RI }
(A′, bA′). Let f be the functional

L(Σ∪ {RI})-bisimulation witnessing this. Then f is surjective, as A is a forest
model with only one connected component (all constants are connected via
RI). Now obtain B′ from B by setting AB′ = f −1(AA) for all A ∈ rel1 ∩Σ′ and
RB′ = f −1(RA) for all R ∈ rel2∩Σ′. Then f is a functional L(Σ∪Σ′)-bisimulation
between (B′, aB′) and (A, bA), hence the contradiction.

Assume that L=ALCIO. Then we cannot use Theorem 4.2 as it does not hold
for ALCIO. However, if one replaces L-forest models of finite outdegree by
ω-saturated models, then Theorem 4.2 holds for ALCIO. Now exactly the same
proof can be done for ALCIO as for ALCO using ω-saturated models instead
of forest models. ⊣

§ 4.2. HYBRID UCQS

We introduce, for L a description logic, the languages CQL and UCQL, as well as
their rooted counterparts CQL

r and UCQL
r . They consist of (resp. rooted) UCQs

where atomic predicates are replaced by L-concepts. The added expressive
power of UCQs to L allows to non-projectively separate instances that would
otherwise only be projectively separable. The canonical example of a loop on
the positive example, which requires projectivity for any of the considered DLs,
is easily dealt with by UCQs. We show in Theorems 4.16 and 4.18 that for the
selected combinations of ontology and separation languages, those projectively
separable instances are in fact exactly all that can non-projectively be separated
by UCQL

r .

4.8. Definition. Let L be a description logic. Let CQL denote the language of all
FO-formulas ϕ(x) = ∃yψ(x ,y) where ψ is a conjunction of atoms C(t), C an
L-concept, or R(t1, t2) with t, t1, t2 variables, and x is the single free variable of
ϕ(x). Let UCQL denote the language of all finite disjunctions of CQL formulas
sharing the same unique free variable. Let CQL

r denote the formulas ϕ(x) in
CQL that are L-rooted in x and similarly for UCQL

r .

4.9. Note that UCQL, like UCQ, is not syntactically closed under conjunction.
We still safely treat it as an FO-fragment, as every conjunction is equivalent to a
UCQL-formula.
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The following example shows how languages of the form UCQL
r can also help

give more elegant non-projective solutions to instances that cannot be separated
non-projectively in a ‘natural way’ by description logics in DLIOQ.

4.10. Example. Let Σ = {R, S, T , A} and K = (O,D), where O = {B ⊑ ∀T.A} and

D =
�

R(a, c), S(a, c), R(b1, d), S(b1, d),

R(b2, e), S(b2, e), B(c), B(e), B( f )
	

(cf. figure)

a c b1 d b2
e

f

{B}

{B}
{B}

R R
R

s s s

Then (K, {a}, {b1, b2}) is Σ-separated by ∃y R(x , y) ∧ S(x , y) ∧ (∀T.A)(y) ∈
CQALC

r . The ‘simplest’ ALC-conceptΣ-separating (K, {a}, {b1, b2}) is (∃R.∀T.A)⊓
(∀R.X →∃S.X ), where X is fresh.

For the main result we need the following basic properties, combining homo-
morphisms and bisimulations to semantically characterize logical implication in
CQL and CQL

r .

4.11. Definition. Let (A, a), (B, b) be two pointed models, and D such that
a ∈ D ⊆ dom(A). Let L ∈ and Σ a signature. Then a CQL(Σ)-homomorphism
with domain D between (A, a) and (B, b) is a Σ-homomorphism h : A|D →
B such that h(a) = b and (A, a′) ∼L,Σ (B, h(a′)) for all a′ ∈ D. We write
(A, a)→D,L,Σ (B, b).

We write

1. (A, a)⇒CQL,Σ (B, b) if A ⊨ ϕ(a) implies B ⊨ ϕ(b) for all ϕ(x) in CQL(Σ),

2. (A, a)⇒CQL
r ,Σ (B, b) if A ⊨ ϕ(a) implies B ⊨ ϕ(b) for all ϕ(x) in CQL

r (Σ),

3. (A, a)⇒mod
CQL,Σ

(B, b) if (A, a)→D,L,Σ (B, b) for all finite D ⊆ dom(A),

4. (A, a)⇒mod
CQL

r ,Σ
(B, b) if (A, a)→D,L,Σ (B, b) for all finite D ⊆ dom(A) such

that the Σ-reduct of A|D is L-rooted in a.

4.12. Lemma. Let L ∈ DLIO, (A, a) and (B, b) be pointed models and Σ a
signature.

1. (A, a)⇒mod
CQL,Σ

(B, b) implies (A, a)⇒CQL,Σ (B, b).

2. (A, a)⇒mod
CQL

r ,Σ
(B, b) implies (A, a)⇒CQL

r ,Σ (B, b).

Proof. The proof for (2) contains the proof for (1). Assume the premice of (2)
and let ϕ(x) be a formula in CQL

r (Σ) such that A ⊨ ϕ(a). Then there exists a
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mapping h from the set var(ϕ) of variables in ϕ(x) to A such that h(x) = a, if
R(y, z) is a conjunct of ϕ(x), then (h(y), h(z)) ∈ RA, and if C(y) is a conjunct of
ϕ(x), then h(y) ∈ CA. Let D = h[var(ϕ)]. Then the Σ-reduct of A|D is L-rooted
in a and, by definition of⇒mod

CQL,Σ
, we have aΣ-homomorphism h′ : A|D→B such

that h′(a) = b and (A, c) ∼L,Σ (B, h′(c)) for all c ∈ D. Then, by Lemma 1.25,
h′ ◦ h(y) ∈ CB if C(y) is a conjunct of ϕ. Thus, B ⊨ ϕ(b), as required. The
proof for CQL is the same except that the one does not need to observe that the
Σ-reduct of A|D is L-rooted in a. ⊣

4.13. Lemma. Let L ∈ DLIO, (A, a) and (B, b) be pointed models and Σ a
signature.

1. (A, a)⇒mod
CQL,Σ

(B, b) iff (A, a)⇒CQL,Σ (B, b) if B is ω-saturated.

2. (A, a) ⇒mod
CQL

r ,Σ
(B, b) iff (A, a) ⇒CQL

r ,Σ (B, b) if B is ω-saturated or has
finite outdegree.

Proof. The proof for (2) contains the proof for (1). Given the previous Lemma,
it is sufficient to prove only one implication. Assume that (A, a)⇒CQL

r ,Σ (B, b).
To show that (A, a) ⇒mod

CQL
r ,Σ
(B, b), let D be such that the Σ-reduct of A|D is

L-rooted at a. Consider the set of formulas qA
D that is obtained by regarding the

nodes d in D as variables xd and taking (xd1
, xd2
) if (d1, d2) ∈ RA, R ∈ Σ, and

C(xd) if d ∈ CA for C ∈ L(Σ). If follows from (A, a)⇒CQL
r ,Σ (B, b) that every

finite subset of qA
D is satisfied in B under an assignment mapping xa to b. If

B is ω-saturated, then qA
D is satisfied in B. If B has finite outdegree then this

can be shown directly using the condition that the Σ-reduct of A|D is rooted
in a. Let v be the satisfying assignment. Then h : D → B defined by setting
h(d) = v(xd) is a Σ-homomorphism, h(a) = b, and (A, c)∼L,Σ (B, h(c)) for all
c ∈ D, as required. The implication for CQL also follows, as saturation of B
implies satisfaction of qA

D regardless of whether the Σ-reduct of A|D is rooted in
a. ⊣

From this point on, we ignore any separation language containing ALCIO and
any ontology language containing ALCO: our aim is to show that hybrid UCQs
can non-projectively capture projective separability in DL. The characterisation
from 4.2 is crucial to establish that connection. As shown in Section 4.1 we
are still unaware of any such characterisation for ALCIO, and we show that
the main theorem linking hybrid UCQs to DLs fails when the ontology contains
constants.

Prior to stating the main theorem, it now suffices to characterize separability in
rooted hybrid UCQs using the model-theoretic tools introduced above.
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4.14. Proposition. Let (LO,LS) be either (ALCI,ALCI) or (ALC,ALCO). Let
(K, E+, {b}) be a labeled LS-knowledge base and Σ ⊆ sig(K). The following condi-
tions are equivalent.

1. (K, E+, {b}) is non-projectively UCQLS
r (Σ)-separable;

2. There exists anLS-forestA ⊨ K of finiteLS-outdegree such that (B, aB) ̸⇒mod
CQ

LS
r ,Σ

(A, bA) for all B ⊨ K and a ∈ E+.

Proof.
(1) ⇒ (2). Let ϕ(x) in UCQLS

r (Σ) such that K ⊨ ϕ(a) for all a ∈ E+ and
K ̸⊨ ϕ(b). Then there exists A ⊨ K such that A ̸⊨ ϕ(b). Using the same
arguments as in Lemma 1.25, we may assume w.l.o.g. that A is an LS-forest
model of finite LS-outdegree. Then, (B, aB) ̸⇒CQ

LS
r ,Σ (A, bA) implies (2) by

Lemma 4.12.
(2) ⇒ (1). Suppose ¬(1). Let A be any LS-forest model of K of finite

LS-outdegree and set Γ = K ∪ {¬ϕ(x) | ϕ(x) ∈ UCQLS
r (Σ),A ⊨ ¬ϕ(bA)}.

We show that, by compactness, Γ is satisfiable with x = a for some a ∈ E+.
Assume for contradiction that it is not satisfiable. Then for any a ∈ E+ there
exists a finite subset Γ ′a of Γ such that Γ ′a is not satisfiable with x = a. Then
Γ ′ =
⋃

a∈E+ Γ
′
a is not satisfiable with x = a, for any a ∈ E+. We may assume that

Γ ′ = K∪{¬ϕ1(x), . . . ,¬ϕn(x)}. Then K ⊨
∨

i ϕi(a) for all a ∈ E+. Observe that
∨

i ϕi ∈ UCQLS
r . Thus, as we assume ¬(1), K ⊨

∨

i ϕi(b). Hence A ⊨
∨

i ϕi(b)
and so there exists i such that A ⊨ ϕi(b). We have derived a contradiction. Let
B be a model of K satisfying Γ in some a ∈ E+. We can assume without loss
of generality that B is ω-saturated (cf. Thm 1.7), as if it is not we can simply
take one of its elementary extensions. By definition, (B, aB)⇒CQ

LS
r ,Σ (A, bA).

By Lemma 4.12, (B, aB)⇒mod
CQ

LS
r ,Σ
(A, bA), i.e. ¬(2). ⊣

We now come to the central result of this section: that UCQLS
r can non-projectively

capture projective separability with LS , for some DL instances of LO,LS . We start
with Theorem 4.16, where LO = LS =ALCI. To prove it, we require the notion
of ‘k-unfolding’ of a structure in which we do not only unfold into a tree-like
structure but also take k copies of every successor.

4.15. Definition. We define the k-unfolding B⩽k
d of a model B at d ∈ dom(B)

as follows, for any k > 0.

1. The domain of B⩽k
d is the set W of all words w = d0R0(d1, i1) · · ·Rn−1(dn, in)

such that d0 = d, (di , di+1) ∈ RB
i for all i < n, and i j ⩽ k for all j ⩽ n,

where all Ri ∈ rel−2 . Let tail(w) = dn.

2. AB⩽k
d =
�

w ∈W : tail(w) ∈ AB
	

for all A∈ rel1.
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3. RB⩽k
d =
�

(w1, w2) ∈W 2 : ∃d ∈ dom(B), i ⩽ k with w2 = w1R(d, i)
	

for all
R ∈ rel−2 .

4.16. Theorem. Let (K, E+, {b}) be a labeled ALCI-knowledge base and Σ ⊆
sig(K). Then the following conditions are equivalent.

1. (K, E+, {b}) is projectively ALCI(Σ)-separable;
2. (K, E+, {b}) is non-projectively UCQALCI

r (Σ)-separable.

Proof. It suffices to show that (3) of Theorem 4.2 and (2) of Lemma 4.14 are
equivalent.

(⇒) Assume first that (3) of Theorem 4.2 holds for A. For a model C of K
we denote by DC,a

Σ the maximal Σ-connected component of aC in C|DC , where
DC = {cC | c ∈ cons(D)}. To show that (2) of Lemma 4.14 holds, we show that
(B, aB) ̸→dom(DB,a

Σ ),ALCI,Σ (A, bA) for allB ⊨ K and all a ∈ E+. For contradiction
assume there exist B ⊨ K, a ∈ E+ and h witnessing the negation. We aim
to respectively convert B and h into a new model B′ of K and a functional
bisimulation witnessing (B′, aB′) ∼ f

L,Σ (A, bA), thus deriving a contradiction.
Let k be the maximum over the ALCI-outdegrees of the nodes in A. We define B′

from B by removing all nodes d not in DB from it and attaching the k-unfolding
B⩽k

d to d, for any d ∈ DB. Now there is a functional ALCI(Σ)-bisimulation
f between (B′, aB′) and (A, bA): to define f , extend h with, for every d ∈
cons(DB,a

Σ ), functional bisimulations witnessing (B⩽k
d , d)∼ f

ALCI,Σ (A, h(d)).
(⇐) Assume that (3) of Theorem 4.2 does not hold and let A be an ALCI-forest

model of K of finite outdegree. Then, there exists B ⊨ K and a ∈ E+ such that
(B, aB)∼ f

ALCI,Σ (A, bA). Then we can regard the restriction of f to any subset
D of dom(B) as a Σ-homomorphism h such that clearly (B, c)∼ALCI,Σ (A, h(c))
for all c ∈ D. Thus, (B, aB) →D,ALCI,Σ (A, bA). But then (2) of Lemma 4.14
does not hold for A. ⊣

Theorem 4.16 also applies to (ALC,ALCO)-separability. We thus need an analo-
gous notion of k-unfolding, adapted to the ALCO case, i.e. that does not create
distinct copies of an element interpreting the same constant.

4.17. Definition. We define the directed k-unfolding omitting Σ-individuals,
B
Σ,⩽k
d , of a model B at d ∈ dom(B) as follows, for any k > 0.

1. The domain of Bd is the set W of all words w = d0R0(d1, i1) · · ·Rn−1(dn, in)
such that d0 = d, (di , di+1) ∈ RB

i for all i < n, and i j ⩽ k for all j ⩽ n,
where all Ri ∈ rel2 and dn /∈ {cB : c ∈ cons ∩Σ} if R0, . . . , Rn−1 ∈ Σ. Let
tail(w) = dn.

2. AB
Σ,⩽k
d =
�

w ∈W : tail(w) ∈ AB
	

for all A∈ rel1.
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3. RB
Σ,⩽k
d =
�

(w1, w2) ∈ W 2 : ∃d ∈ dom(B), i ⩽ k with w2 = w1R(d, i)
	

for
all R ∈ rel2.

4.18. Theorem. Let (K, E+, {b}) be a labeled ALC-knowledge base andΣ ⊆ sig(K)
a signature. Then the following conditions are equivalent.

1. (K, E+, {b}) is projectively ALCO(Σ)-separable;
2. (K, E+, {b}) is non-projectively UCQALCO

r (Σ)-separable.

Proof. Again it suffices to show that (3) of Theorem 4.2 and (2) of Lemma 4.14
are equivalent. For (⇐) the proof is as for ALCI.

(⇒) Assume first that (3) of Theorem 4.2 holds for A. We show that A

witnesses (2) of Lemma 4.14. Assume that for all n > 0 there exist B ⊨ K
and a ∈ E+ such that for all D ⊆ dom(B) of cardinality ⩽ n such that the Σ-
reduct of A|D is ALCO-rooted in aB we have (B, aB)→D,ALCO,Σ (A, bA). Let S
denote the set of constants c ∈ cons(D)∩Σ such that there is an ALC(Σ)-path
from bA to cA in A. For any c ∈ S let nc be the length of the shortest such
path and let m=

∑

c∈S nc|cons(D)|. Let D0 ⊆ dom(B) be minimal such that the
Σ-reduct of B|D is rooted in aB and D0 contains all cB with c ∈ cons(D) ∩Σ
such that there is an ALC(Σ)-path from aB to cB. As (B, aB)∼ALCO,Σ (A, bA),
the individuals we obtain are exactly those in S and |D0| ⩽

∑

c∈R nc. Obtain
D from D0 by adding all nodes cB with c ∈ cons(D) such that there exists an
ALC(Σ)-path from a node in D0 through DB to cB. Then |D| ⩽ m. Thus, we
have (B, aB)→D,ALCO,Σ (A, bA). Let h be the Σ-homomorphism witnessing this.
Now let k be the maximal ALC-outdegree of a node in A and define a model B′

from B by

1. removing all nodes d not in DB,
2. attaching B

Σ,⩽k
d to d for any d ∈ DB,

3. adding (w, cB) to the interpretation of R if (tail(w), cB) ∈ RB and c ∈ Σ.

Then one can show that (B′, aB)∼ f
ALCO,Σ (A, bA), witnessed by the extension

of h with the functional bisimulations witnessing (BΣ,⩽k
d , d)∼ f

ALCO (A, h(d)) for
every d ∈ D. ⊣

Theorem 4.18 does not hold when the ontology contains nominals:

4.19. Example. Let K = (O,D), where O = {{a} ⊑ ∀R.{a},⊤⊑ ∃R.⊤}, and D =
{A(a), R(b, b)}. Then (K, {a}, {b}) is projectively separated by the ALC({R})-
concept X →∀R.X with X a fresh concept name, but it is not non-projectively
UCQALCO

r ({R})-separable.
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§ 4.3. CONSERVATIVE EXTENSIONS

We now look into the computational complexity of projective restricted (L,L)-
separability for L ∈ DLIO. While both complexity bounds usually followed from
a link between separability and query evaluation in the full signature case, in
the restricted case a lower bound is given by the link with deciding conservative
extensions. Throughout this section we assume that for projective separability,
only concept names are allowed as helper symbols. Recall that it does not impact
separability if L does not contain nominals. In consequence, we also consider
that sig only denotes the concept names occurring in a syntactic object, instead
of the more general definition given in the Preliminaries.

4.20. Definition. For L-ontologies O and O′, we say that O∪O′ is a conservative
extension of O in L if O ∪ O′ ⊨ C ⊑ D implies O ⊨ C ⊑ D for all inclusions
C ⊑ D of L-concepts such that sig(C)∪ sig(D) ⊆ sig(O). Projective conservative
extensions in L are defined in the same way except that we only require (sig(C)∪
sig(D)) ∩ sig(O ∪O′) ⊆ sig(O). If O ∪O′ is not a conservative extension of O
in L, then there exists an L(sig(O))-concept C satisfiable w.r.t. O, but not w.r.t.
O ∪O′. We call such a concept C a witness concept for O and O′.

4.21. Theorem. Let L ∈ DLIO. Deciding (resp. projective) conservative extensions
in L is polynomial-time reducible to the complement of restricted weak (resp.
projective) (L,L)-separability.

Proof. Assume L-ontologies O and O′ are given. Let

atomO = {A | A∈ sig(O)∩ rel1}

∪ {{a} | a ∈ sig(O)∩ cons}

∪ {∃R.⊤ | R ∈ sig(O)}

If L admits inverse roles, let it also contain ∃R−.⊤, for R ∈ sig(O). We may
assume that there exists a concept name A∈ atomO such that O ⊨ A≡ ¬C for
some C ∈ atomO. Indeed, if no such A exists, pick any X ∈ atomO, add A⊑ ¬X ,
X ⊑ ¬A to O to obtain O1. Then clearly O1∪O′ is a conservative extension of O1

in L (projectively or, respectively, non-projectively) iff O ∪O′ is a conservative
extension of O in L (projectively or, respectively, non-projectively).

We consider the case L =ALCO, which subsumes the case L =ALC, and whose
development is easily adaptable to the ALCI(O) case. Recall the definition of
relativization C|A to a concept name A of a concept C , and O|A of an ontology
(Def. 2.3). Observe that the relativization of an inclusion to a concept name
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A is satisfied in A whenever AA = ;. Fix A, D, D′, a, b, S fresh (without loss of
generality) and define

OA =O|A∪ {{c} ⊑ A | c ∈ sig(O)∩ cons}

∪ {A⊑ ∀R.A | R ∈ sig(O)∩ rel2}

(O ∪O′)D
′
= (O ∪O′)|D′ ∪ {D′ ⊑ ∀S.D′}

∪ {D′ ⊑ ∀R.D′ | R ∈ sig(O)∩ rel2}

O∗ =OA∪ (O ∪O′)D
′

∪ {D ⊓ E ⊑ D′ | E ∈ atomO}

D = {A(b), D(a), S(a, c) | c ∈ cons∩ sig(O ∪O′)}

K = (O∗,D)

It now suffices to prove the following claim.

(∗) O ∪O′ is a (resp. projective) conservative extension of O in
ALCO iff (K, {a}, {b}) is not (resp. projectively)ALCO(sig(O))-
separable.

We consider the projective case. The non-projective case is similar and omitted.
Consider an ALCO(Σ)-concept C , where sig(O) ⊆ Σ and Σ \ sig(O) ⊆ rel1. We
use and prove the following three claims.

1. C is satisfiable w.r.t. O iff there exists B ⊨ K such that bB ∈ CB.

Assume that C is satisfiable w.r.t. O. let A ⊨O and d ∈ CA. We define a model B
of K satisfying C in bB: let dom(B) = dom(A)∪{a}∪ (cons∩ (sig(O′))\ sig(O)),
bB = d, cB = c for all c ∈ {a} ∪ (cons ∩ (sig(O′) \ sig(O))), AB = dom(A),
SB = SA ∪ {(a, cA) | c ∈ cons ∩ (sig(O′∪O))}, DB = {a} and D′B = ;. On
everything else let A be unchanged. Then B is a model of K satisfying C in bB.
The converse direction of (1) is clear.

2. If C is satisfiable w.r.t. O ∪O′, then there exists B ⊨ K such that aB ∈ CB.

Suppose that C is satisfiable w.r.t. O ∪ O′, witnessed by the pointed model
(A, d). We define a model B of K satisfying C in aB: set dom(B) = dom(A).
We interpret b arbitrarily and set AB = DB = D′B = dom(B). Finally, let
SB = SA ∪ {(a, cA) | c ∈ cons ∩ sig(O ∪ O′)}. Then B is a model of O ∪ O′

satisfying C in aB.

3. Let E ∈ atomO. If there exists a model A of K such that aA ∈ (E ⊓ C)A, then
E ⊓ C is satisfiable w.r.t. O ∪O′.

Let E ∈ atomO and assume that E ⊓ C is satisfied in a model A of K at aA. Then
aA ∈ (D ⊓ E)A and therefore aA ∈ D′A since D ⊓ E ⊑ D′ ∈O ∪O′. Hence E ⊓ C
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is satisfiable w.r.t. O ∪O′ as it is satisfied in A w.r.t. (O ∪O′)D
′
.

We now prove (∗).
(⇒) Suppose that (K, {a}, {b}) is projectively ALCO(sig(O))-separable and

let C be a separating concept. Then, there is a modelA of K such that bA ∈ (¬C)A.
By (1), ¬C is satisfiable w.r.t. O. Moreover, there is no model A of K with
aA ∈ (¬C)A. By (2), ¬C is not satisfiable w.r.t. O ∪O′. Hence, ¬C is a witness
concept for O,O ∪O′.

(⇐) Assume that O ∪O′ is not a projective conservative extension of O in
ALCO and let C witness this. By our assumption on atomO, there exists E ∈
atomO such that E ⊓ C is also satisfiable w.r.t. O, but not satisfiable w.r.t. O∪O′.
Thus, by (1), there exists a model A of K such that bA ∈ (E ⊓ C)A and, by (3),
there does not exist a model A of K such that aA ∈ (E ⊓ C)A. Thus, (K, {a}, {b})
is projectively ALCO(sig(O))-separable, namely by ¬(E ⊓ C).

To adapt the proof to the presence of inverse roles, it suffices to add A⊑ ∀R−.A
to KA for any R ∈ sig(O)∩ rel2. ⊣

The lower bound for restricted weak separability immediately follows for ALC
and ALCI: it is known that deciding (non-projective) conservative extensions in
L ∈ {ALC,ALCI} is 2EXP-hard [GLW06,LWW07] and that conservative extensions
and projective conservative extensions coincide in logics that enjoy the Craig
Interpolation Property [JLMSW17], which ALC and ALCI do. For ALCO, which
does not (consider the inclusion {a} ⊓ ∃R.{a} ⊑ {b} → ∃R.{b}), it is proved
in [JLPW21] that deciding projective conservative extensions is 3EXP-complete
and that deciding non-projective conservative extensions is 3EXP-hard. The
upper bound is still open.

4.22. Corollary.

1. Weak (projective) restricted (ALC,ALC) and (ALCI,ALCI) separability are
2EXP-hard in combined complexity.

2. Weak (projective) restricted (ALCO,ALCO)-separability is 3EXP-hard in
combined complexity.

§ 4.4. 2EXP UPPER BOUND FOR ALC(I)

We then focus on the upper bound for projective separability. We concentrate
on ALCI; the case of ALC is similar and simpler. The idea is to use two-way
alternating tree automata (2ATA) [V98] to decide (3) of Theorem 4.2. More
precisely, given (K, E+, {b}) andΣ, we construct a 2ATA A such that the language
recognized by A is non-empty iff there is an ALCI-forest model A of K as
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described in (3) of Theorem 4.2. A proof of similar nature gives a 3EXP upper
bound for (ALCO,ALCO) in the projective case [JLPW21].

4.4.1. 2ATAs and proof strategy

4.23. Definition. Let a tree be a non-empty (and potentially infinite) set of
words T ⊆ (N \ 0)∗ closed under prefixes. A node w ∈ T is a successor of v ∈ T
if w = v · i for some i ∈ N. w is an ancestor of v if w is a prefix of v. A tree
is binary if every node has either zero or two successors. For an alphabet Θ,
a Θ-labeled tree is a pair (T,τ) with T a tree and τ : T → Θ a node labeling
function. A two-way alternating tree automaton (2ATA) over binary trees is a
tuple A = (Q,Θ, q0,δ,Ω) where Q is a finite set of states, Θ is the finite input
alphabet, q0 ∈Q is the initial state, δ is a transition function as specified below,
and Ω : Q → N is a priority function. The transition function maps a state q
and some input letter θ ∈ Θ to a transition condition δ(q,θ ) which is a positive
Boolean formula over the truth constants true and false and transitions of the
form q, 〈−〉q, [−]q, ◊q, □q where q ∈Q.

The semantics are defined in terms of runs in the usual way [V98]: let A =
(Q,Θ, q0,δ,Ω) be a 2ATA and (T,τ) a Θ-labeled tree. A run for A on (T,τ) is a
T ×Q-labeled tree (Tr , r) such that ϵ ∈ Tr , r(ϵ) = (ϵ, q0) and for all y ∈ Tr with
r(y) = (x , q) and δ(q,τ(x)) = ϕ, there is an assignment v of truth values to the
transitions in ϕ such that v satisfies ϕ and

1. if v(p) = 1, then r(y ′) = (x , p) for some successor y ′ of y in Tr ;

2. if v(〈−〉p) = 1, then x ≠ ϵ and there is a successor y ′ of y in Tr with
r(y ′) = (x · −1, p);

3. if v([−]p) = 1, then x = ϵ or there is a successor y ′ of y in Tr such that
r(y ′) = (x · −1, p);

4. if v(◊p) = 1, then there is a successor x ′ of x in T and a successor y ′ of y
in Tr such that r(y ′) = (x ′, p);

5. if v(□p) = 1, then for every successor x ′ of x in T , there is a successor y ′

of y in Tr such that r(y ′) = (x ′, p).

Let γ = i0i1 · · · be an infinite path in Tr and denote, for all j ⩾ 0, with q j the
state such that r(i0 · · · i j) = (x , q j). The path γ is accepting if the largest number
m such that Ω(q j) = m for infinitely many j is even. A run (Tr , r) is accepting if
all infinite paths in Tr are accepting. Finally, a tree is accepted if there is some
accepting run for it. We use L(A) to denote the set of all Θ-labeled binary trees
accepted by A.
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4.24. Theorem ( [V98]). The emptiness problem, which asks whether L(A) = ;
for a given 2ATA A, can be decided in exponential time in the number of states of
A.

The use of tree automata is enabled by the fact that (3) of Theorem 4.2 refers
to forest models of K. Forest models can be encoded in labeled trees using
an appropriate alphabet. Intuitively, each node in the tree corresponds to an
element in the forest model and the label contains its type, the connection to its
predecessor, and connections to individuals from D.

We first devise a 2ATA B (of polynomial size) that recognizes the finite outdegree
forest models of K. It then suffices to construct, for each a ∈ E+, a 2ATA Aa such
that Aa accepts A iff

(∗a) there exists B ⊨ K such that (B, aB)∼ f
ALCI,Σ (A, bA).

Indeed, a 2ATA that recognizes the language L(B)∩
⋂

a∈E+ L(Aa) is as required,
where L denotes the complement of L:

L(B)∩
⋂

a∈E+ L(Aa) = ; iff (K, E+, {b}) is not projectively ALCI(Σ)-separable.

We obtain the desired 2ATA A from B and the Aa, as complementation and
intersection of 2ATAs involve only a polynomial blowup:

4.25. Lemma (Folklore). Given 2ATAs A1,A2, we can compute in polynomial
time a 2ATA

1. A1 such that L(A1) = L(A1) and the number of states of A1 equals the
number of states of A1;

2. A such that L(A) = L(A1)∩L(A2) and the number of states of A is 1+n1+n2,
ni the number of states of Ai .

4.4.2. Encoding models as input

In order to work with tree automata, we need to encode ALCI-forest models of
K of finite ALCI-outdegree as input to the tree automata. Since 2ATAs run over
binary trees, we need to appropriately encode the arbitrary outdegree. More
precisely, we use the alphabet Θ defined by

Θ = {◦} ∪ (rel−2 ∩ sig(K))× 2cons∪(sig(K)∩rel1) × 2F ,

where F = (rel−2 ∩ sig(K)) × cons(D). Intuitively, a node w ∈ T with τ(w) =
(R, M , F) encodes an element that satisfies precisely the concepts in M ; moreover,
F describes its connections to elements in cons(D) and R is the “incoming role”.
The symbol ‘◦’ is a label for dummy nodes that we need for encoding arbitrary
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finite outdegree into binary trees: we simply introduce as many intermediate
◦-labeled nodes as needed to achieve the required outdegree at each node, as
depicted below.

[◦]

Additional conditions are required from trees to be able to represent forest
models. We call such trees well-formed:

4.26. Definition. Let (T,τ) be a Θ-labeled tree. We call (T,τ) well-formed if

1. for every a ∈ cons(D), there is a unique element wa ∈ T such that τ(wa) =
(R, M , F) for some R, F and a ∈ M ;

2. for every w ∈ T with τ(w) ̸= ◦, either w = wa for some a, and all ancestors
of w are labeled with ◦, or w has an ancestor wa, for some a.

4.27. Remark. For each w ∈ T with τ(w) ̸= ◦, let w↑ denote the unique ancestor
w′ of w in T (if existing) such that τ(w′) ̸= ◦ and τ(w′′) = ◦ for all w′′ between
w′ and w. A well-formed Θ-labeled tree (T,τ) gives rise to a model Aτ with
dom(Aτ) = {w ∈ T | τ(w) ̸= ◦} as follows:

aAτ = wa

AAτ = {w ∈ T | τ(w) = (S, M , F) and A∈ M}
RAτ = {(w↑, w) | τ(w) = (R, M , F) and w↑ defined} ∪

{(w, w↑) | τ(w) = (R−, M , F) and w↑ defined} ∪
{(w, wa) | τ(w) = (S, M , F) and (R, a) ∈ F}

for all a ∈ cons, A∈ rel1, R ∈ rel2, and where wa denotes an arbitrary element of
A if a ∈ cons \ cons(D).

Conversely,

4.28. Lemma. Every ALCI-forest model A ⊨ K of finite ALCI-outdegree can be
encoded (up to isomorphism) as a well-formed Θ-labeled tree.

Proof. We start with a not-necessarily binary well-formed Θ-labeled tree (T,τ)
that encodes A; (T,τ) can easily be made binary by introducing intermediate
◦-labeled nodes. Let D = {aA | a ∈ cons(D)} and associate sets Md , Fd to every
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element d ∈ dom(A) by taking

Md = {A∈ sig(K) | d ∈ AA}

∪ {a ∈ cons(D) | d = aA}

Fd = {(R, e) | (d, e) ∈ RA, eA ∈ D}

To start the construction of (T,τ), we set τ(ϵ) = ◦ and add a successor wd of ϵ
for every d ∈ D and label it with τ(wd) = (S, Md , Fd) for an arbitrary fresh role
name S. For the rest of the construction, let Ad , d ∈ D be the L-trees which exist
since A is an L-forest model of K. Recall that Ad is rooted at d. Now (T,τ) is
obtained by exhaustively applying the following rule.

(∗) If we is defined for an element e of some Ad and f is a successor
of e in Ad with w f undefined, add a fresh successor w f of we to T
and set τ(w f ) = (R, M f , F f ) where R is the unique role such that
(e, f ) ∈ RA.

⊣

4.4.3. Recognising adequate models

By intersection, we first construct a 2ATA that recognises precisely the forest
models of K. First, one that recognises the well-formed trees, then one that
recognises models of D among well-formed trees, and finally one that recognises
finally models of O among well-formed trees.

4.29. Lemma. For any ALCI-knowledge base K, we can construct in time poly-
nomial in ||K|| a 2ATA A0 that recognises exactly the well-formed Θ-labeled trees.

Proof. We define the 2ATA A0 = (Q,Θ, q0,δ,Ω) as follows. LetΩ send every state
to 0, which implies by definition that any infinite path in any run is accepting.
Let Q = {q0} ∪ {qa | a ∈ cons(D)}. For all a, b ∈ cons(D) and θ ∈ Θ,

δ(q0,θ ) =







□qa if θ = (R, M , F) and a ∈ M
□q0 if θ = ◦
⊥ otherwise.

δ(qa,θ ) =

�

⊥ if θ = (R, M , F) and b ∈ M
□qa otherwise.

Let (T,τ) be a Θ-labeled tree. If (T,τ) is well-formed, it is straightforward to
construct an accepting run (Tr , r) of A on (T,τ), considering that the nodes wa

(using notation from Def 4.26) can only be descendants of ◦-labeled nodes and
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are unique for each a ∈ cons(D). If (T,τ) is not well-formed, it is also routinely
checked that any run (Tr , r) of A on (T,τ) would need to contain a node x such
that r(x) = (w,⊥) for some w ∈ T , which would contradict the existence of the
run itself. ⊣

4.30. Lemma. There exists a 2ATA AD that recognises a well-formed Θ-labeled
tree (T,τ) iff Aτ ⊨ D.

Proof. Let w ∈ T and (R, M , F) = τ(w) such that there exists a ∈ cons(D)∩M .
Denote by (Ca) the condition stating that for all A∈ rel1, R ∈ rel2 and b ∈ cons(D),
A(a) ∈ D implies A∈ M , R(a, b) ∈ D implies (R, b) ∈ F and R(b, a) ∈ D implies
(R−, b) ∈ F . We define the 2ATA AD = (Q,Θ, q0,δ,Ω) as follows. Let Ω send
every state to 0. Let Q = {q0} and for all (R, M , F) ∈ Θ,

δ(q0,◦) = □q0

δ(q0, (R, M , F)) =

�

⊤ if ∃a s.t. {a}= cons(D)∩M and (Ca)
⊥ otherwise.

⊣

Finally, we omit the cumbersome (but of similar essence) proof that one can
recognise models of O.

4.31. Lemma. Let O be an ontology, that we may assume w.l.o.g. such that
O = {⊤ ⊑ C} for some ALCI concept C in negation normal form. There exists a
2ATA AO that recognises a well-formed Θ-labeled tree (T,τ) iff Aτ ⊨O.

The final block of the proof is now to construct, for any given a ∈ E+, a 2ATA
Aa that recognises exactly well-formed trees corresponding to models satisfying
(∗a). We first replace (∗a) with an equivalent condition for which we are able to
devise an appropriate 2ATA.

4.32. Definition. For any pointed database (D, a), we write (Da, a)→Σc (A, bA)
if there is a Σ-homomorphism h from the maximal Σ-connected component Da

of a in D to A such that h(a) = bA and there is a K-type td for each d ∈ cons(Da)
such that

(i) there exists Bd ⊨O with tpK(Bd , d) = td and (Bd , d)∼ALCI,Σ (A, h(d));
(ii) (O,D′) is satisfiable, where D′ = D ∪ {C(d) | C ∈ td , d ∈ cons(Da)}.

We consider an extended notion of database in (ii), i.e. any set of the form D ∪
{C1(a1), . . . , Cn(an)} where a1, . . . , an ∈ cons and C1, . . . , Cn are ALCI-concepts.
The semantics of extended databases is defined in the expected way.
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4.33. Lemma. For all ALCI-forest models A ⊨ K and a ∈ E+, condition (∗a) is
equivalent to (Da, a)→Σc (A, bA).

Proof.
(⇐) Let A ⊨ K be a forest model and a ∈ E+ with (Da, a)→Σc (A, bA), wit-

nessed by some Σ-homomorphism h and K-types td , d ∈ cons(D). For each
d let Bd ⊨ O such that (Bd , d) ∼ALCI,Σ (A, h(d)). We may assume without
loss of generality that the Bd are tree-shaped with root d and that the bisim-
ulations are functions fd (because of tree-shapedness). We then define B by
attaching Bd to Da at d for each d ∈ cons(Da) and taking the disjoint union
with a model of (O,D \Da). Then B ⊨ K and f =

⋃

d∈cons(Da)
fd is a functional

ALCI(Σ)-bisimulation between B and A.
(⇒) Let A,B ⊨ K and a ∈ E+ such that (B, aB) ∼ f

ALCI,Σ (A, bA), witnessed
by some function ALCI(Σ)-bisimulation f . Then the restriction f|cons(D) and
types td = tpK(B, dB), for all d ∈ cons(D) witness (Da, a)→Σc (A, bA). ⊣

It only remains to show that for each a ∈ E+, there exists a 2ATA Aa such that
Aa accepts a well-formed Θ-labeled tree (T,τ) iff (Da, a)→Σc (A, bA). Moreover,
Aa can be constructed in double exponential time in ||K|| and has exponentially
many states. See [JLPW21] for a sketch of the construction and proof of cor-
rectness. The 2EXP upper bound follows as non-emptiness can be decided in
exponential time.

§ 4.5. UNDECIDABILITY RESULTS

In [JLPW21], a 3EXP upper bound for weak restricted projective (ALCO,ALCO)-
separability is provided assuming constants are not allowed as helper symbols,
matching the 3EXP lower bound given in 4.22 by the reduction from deciding
projective conservative extensions. We now show that if constants are allowed,
complexity goes from 3EXP-complete to undecidable, and that undecidability
holds even with ALC ontologies. A rather direct corollary of that proof is
that for any L that contains ALCFIO, weak restricted projective and non-
projective (ALC,L)-separability are also undecidable. Note that to prove this,
we could not use the fact that deciding conservative extensions in ALCFIO is
undecidable [LWW07] as the relativization strategy used previously fails in this
case.

4.34. Theorem. Restricted weak projective (ALC,ALCO)-separability is undecid-
able if constants are admitted as helper symbols.

The proof is by a reduction of the following undecidable tiling problem
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4.35. Definition. A finite rectangular tiling system S = (T , H, V, R, L, T, B) consists
of a finite set T of tiles, horizontal and vertical matching relations H, V ⊆ T × T ,
and sets R, L, T, B ⊆ T of right tiles, left tiles, top tiles, and bottom tiles. A solution
to S is a triple (n, m,τ) where n, m⩾ 1 and τ : {0, . . . , n}× {0, . . . , m} → T such
that the following hold.

(τ(i, j),τ(i + 1, j)) ∈ H for all i < n and j ⩽ m,

(τ(i, j),τ(i, j + 1)) ∈ V for all i ⩽ n and j < m,

τ(0, j) ∈ L and τ(n, j) ∈ R for all 0⩽ j ⩽ m,

τ(i, 0) ∈ B and τ(i, m) ∈ T for all 0⩽ i ⩽ n.

We show how to convert a tiling system S into a labeled ALC-knowledge base
(K, E+, E−) and signature Σ such that S has a solution iff (K, E+, E−) is projec-
tively ALCO(Σ)-separable with individual names as additional helper symbols.

4.36. Definition. Let S = (T , H, V, R, L, T, B) be a finite rectangular tiling system.
Let the ontology OS consist of the following inclusions.

1. Every grid node is labeled with exactly one tile and the matching conditions
are satisfied:

⊤⊑
⊔

t∈T
(t ⊓

l

t ′∈T, t ′ ̸=t

¬t ′)

⊤⊑
l

t∈T

(t → (
⊔

(t,t ′)∈H

∀Rx .t ′ ⊓
⊔

(t,t ′)∈V

∀R y .t ′))

2. The concepts left, right, top, bottom mark the borders of the grid in the
expected way:

bottom⊑ ¬top⊓∀Rx .bottom⊓
⊔

t∈B
t

right⊑ ∀R y .right⊓
⊔

t∈R
t

left⊑ ¬right⊓∀R y .left⊓
⊔

t∈L
t

top⊑ ∀Rx .top⊓
⊔

t∈T
t

¬top≡ ∃R y .⊤

¬right≡ ∃Rx .⊤

3. There is an infinite outgoing Rx/R y -path starting at Q or some grid cell
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does not close in the part of the model reachable from Q:

Q ⊑ ∃Rx .Q ⊔ ∃R y .Q ⊔ (∃Rx .∃R y .P ⊓ ∃R y .∃Rx .¬P)

4. Q is triggered by A1 ⊓ D:
A1 ⊓ D ⊑Q

Now let Ks = (OS ,DS), with

DS = {A1(a), Y (b), D(o), left(o),bottom(o)}

Σ= {o, Rx , R y , left, right, top,bottom}

4.37. Lemma. If the tiling system S has a solution, then (KS , {a}, {b}) is projec-
tively ALCO(Σ)-separable, using constants as helper symbols.

Proof. Let τ be a solution for S, of dimensions n, m. We show the labeled
knowledge base (KS , {a}, {b}) is separated by ¬G, where G is an ALCO(Σ ∪
cons \ cons(K)) concept defined in the following way, for all i ⩽ n−1, j ⩽ m−1.
Informally, satisfying G means being the bottom left corner of an n×m grid,
regardless of tiles.

G = {o} ⊓ G0,0

Gn,m = {an,m} ⊓
l

i′⩽n, j′⩽m
(i′, j′ )̸=(n,m)

¬{ai′, j′} ⊓ right⊓ top

Gn, j = {an, j} ⊓
l

i′⩽n, j′⩽m
(i′, j′ )̸=(n, j)

¬{ai′, j′} ⊓ ∃R y .Gi, j+1 ⊓∀R y .Gi, j+1 ⊓ right

Gi,m = {ai,m} ⊓
l

i′⩽n, j′⩽m
(i′, j′ )̸=(i,m)

¬{ai′, j′} ⊓ ∃Rx .Gi+1, j ⊓∀Rx .Gi+1, j ⊓ top

Gi, j = {ai, j} ⊓
l

i′⩽n, j′⩽m
(i′, j′ )̸=(i, j)

¬{ai′, j′} ⊓ ∃Rx .Gi+1, j ⊓∀Rx .Gi+1, j ⊓ ∃R y .Gi, j+1 ⊓∀R y .Gi, j+1

1) We first show that KS ⊨ ¬G(a). Let A ⊨ G(a). Then, A ⊨ {o}(a), so if A ⊨ K
then A ⊨ (A1 ⊓ D)(a) and consequently A ⊨Q(a). Then, by definition of O(S),
either the Rx/R y connected component of aA in A contains an infinite path
(of elements satisfying Q), or it contains an element satisfying ∃Rx .∃R y .P ⊓
∃R y∃Rx .¬P. Both options contradict A ⊨ G(a): in any model B of G, the
connected component of oB for the signature σ = {Rx , R y , {ai, j}i⩽n, j⩽m} is
uniquely determined up to σ-isomorphism by the structure depicted
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2) We then show that KS ⊭ ¬G(b). We define a model A of KS and G(b).

dom(A) = {ai, j : (i, j) ∈ {0, . . . , n} × {0, . . . , m}}

RA
x = {(ai, j , ai+1, j) : (i, j) ∈ {0, . . . , n− 1} × {0, . . . , m}}

RA
y = {(ai, j , ai, j+1) : (i, j) ∈ {0, . . . , n} × {0, . . . , m− 1}}

Let oA = bA = a0,0 ̸= aA. Let AA
1 = {a

A}, DA = {bA}, aA
i, j = ai, j for all (i, j) ∈

{0, . . . , n} × {0, . . . , m}.

leftA = {a0, j : 0⩽ j ⩽ m}

rightA = {an, j : 0⩽ j ⩽ m}

topA = {ai,m : 0⩽ i ⩽ n}

bottomA = {ai,0 : 0⩽ i ⩽ n}

For every t ∈ T let tA = {ai, j : (i, j) ∈ τ−1(t)}. Clearly G(b), D(S) are satisfied.
The tiling axioms of O(S) are satisfied as τ is a solution for S. The axioms
involving Q, P are satisfied, as QA ⊆ (A1 ⊓ D)A = ;. ⊣

...

...

...

...

...

{a0,0} {an,0}

{a0,1}

{a0,m} {an,m}

{an,1}

o z z1

z′1 z2 = z′2

4.38. Lemma. If S has no solution, then for every model A of KS, there exists a
model B of KS such that (A, bA) is Σ-isomorphic to (B, aB).

Proof. Let A ⊨ KS. Suppose bA ̸= oA. Let dom(B) = dom(A), aB = bB = bA,
EB = EA for every concept name E, RB = RA for every role name R. Then it
is clear that B is a model of KS and that (A, bA) is Σ-isomorphic to (B, aB).
Now suppose bA = oA. We define an intermediary model B′ as follows. Let
dom(B′) = dom(A), aB′ = bB′ = bA, EB′ = EA for every concept name E,
RB′ = RA for every role name R /∈ {Q, P} and QB′ = PB′ = ;. Let B be the model
obtained from B′ after applying the following algorithm: start with B = B′.
If there exists an infinite Rx chain from oB then update QB by adding every
element of that chain. Else, if there exists an infinite R y chain from oB then
update QB by adding every element of that chain. If there are no such chains,
then there exists an Rx chain (oB, a1,0, . . . , an,0) of maximal length and an R y

chain (oB, a0,1, . . . , a0,m) of maximal length in B. In that case, let a0,0 = oB and
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i← 1, j← 1
while PB = ; and j ⩽ m,
while PB = ; and i ⩽ n,
if ∃d ̸= d ′ with (ai−1, j , d) ∈ RB

x and (ai, j−1, d) ∈ RB
y ,

PB← PB ∪ {d}
otherwise, pick d s.t. (ai−1, j , d) ∈ RB

x and (ai, j−1, d) ∈ RB
y

d ← ai, j

i← i + 1 if i < n
j← j + 1 if j < m and i = n
i← 1

If i = n and j = m, then the restriction of B to {ai, j : 0 ⩽ i ⩽ n, 0 ⩽ j ⩽ m}
induces a solution for S, given by the tiling function mapping each (i, j) to the
unique t ∈ T such that ai, j ∈ tB. As we assumed S had no solution, (i, j) then
cannot reach the value (n, m) after termination of the algorithm. So, either there
exists an infinite Rx (or R y) chain starting from oB, or PB ̸= ;. In the latter
case, by definition of the algorithm, there exist ai, j and d, d ′ such that d ≠ d ′,
(ai+1, j , d) ∈ RB

y , (ai, j+1, d ′) ∈ RB
x , d ∈ PB, d ′ /∈ PB. Therefore, B satisfies the

axioms of KS involving Q, P. The tiling axioms of KS are also satisfied by B, as
they are by A and as (A, bA)≃Σ (B, aB). The Σ-isomorphism follows from B’s
construction and the fact that Q, P /∈ Σ. ⊣

The same tiling problem as for ALCO can be used to show undecidability of
separability with any extension of ALCFIO under ALC-ontologies. By adding
the letter F we denote the extension of a DL with unqualified number restrictions
of the form ⩽ 1.R.⊤, expressing functionality.

4.39. Lemma. If S has a solution, then there is an ALCFIO(Σ)-concept that
non-projectively separates (KS , {a}, {b}).

Proof. Assume that S has a solution consisting of a properly tiled n×m grid.
We design an ALCFIO(Σ)-concept G so that any model of G and K includes a
properly tiled n×m-grid with lower left corner o. For every word w ∈ {Rx , R y}∗,
denote by ←−w the word that is obtained by reversing w and then adding ·− to
each symbol. Let |w|R denote the number of occurrences of the symbol R in
w. Let G = F ⊓ E, where F is the obvious concept stating that (⩽ 1 R) holds
for R ∈ {Rx , R y , R−y , R−x } for all nodes reachable in no more than 2(n+m) steps
along roles Rx , Rx , R y , R−x , and

E = {o} ⊓ ∀Rn+1
x .⊥ ⊓ ∀R⩽n

x .bottom ⊓ ∀Rm+1
y .⊥ ⊓ ∀R⩽m

y .left

⊓
l

w∈{Rx ,R y}∗

|w|Rx<n,|w|R y<m

∃(w · RxR yR−x R−y ·
←−w ).{o}
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It is readily checked that G indeed enforces a grid, as announced. We show that
KS ⊨ ¬G(a) and KS ̸⊨ ¬G(b), thus G separates (K, {a, {b}). Assume first for a
proof by contradiction that there is a model A of K such that A ⊨ G(a). Then
aA = oA and so aA ∈ (A1 ⊓ D)A. But then aA ∈QA. This contradicts the fact that
oA is the origin of an n×m-grid in A. Now for K ̸⊨ ¬G(b). We find a model A
of K with bA ∈ GA since the concept name Q is not triggered at b as A1 is not
true for b. ⊣

To obtain the desired reduction, we only need the implication given in the above
lemma, as its converse already follows from Lemma 4.38. Undecidability ensues.

4.40. Theorem. For any FO-fragment L containing ALCFIO, (non-)projective
restricted weak (ALC,L)-separability is undecidable.



Chapter 5

Restricted strong separability

In this section we focus on the case of strong separability, still assuming the
signature of a separating concept to be part of the input. We mainly look at
FO,DLIO,GF and FO2.
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As in the full signature case and by virtue of the same arguments (Prop. 1.60),
projectivity does not affect strong separability. We first observe that restricted
strong separability can be seen as an interpolation existence problem between
two formulas encoding the knowledge base. It can then also be seen as an entail-
ment problem if the separation language has the Craig Interpolation Property. If
not, we can use recent results on the complexity of interpolant existence [AJ-

MOW21, JW21]. Listed below are combined complexity results in the case where
the ontology language and the separation language coincide. The results we
obtain in the following section are contrasted with the ones from the strong, full
signature case.

FULL RESTRICTED

ALC EXP 2EXP

ALCI EXP 2EXP

ALCO ? 2EXP

GF 2EXP 3EXP

FO2 NEXP [2EXP, CON2EXP]
GNF 2EXP 2EXP
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§ 5.1. INTERPOLATION

We show that restricted strong separability can be reduced to a problem of
interpolation existence.

5.1. Definition. Given FO-formulas ϕ(x),ψ(x) and a fragment L of FO, we say
that an L-formula χ(x) is an L-interpolant of ϕ,ψ if ϕ(x) ⊨ χ(x), χ(x) ⊨ψ(x),
and sig(χ) ⊆ sig(ϕ) ∩ sig(ψ). We say that L has the CIP (Craig Interpolation
Property) if for all L-formulas ϕ(x),ψ(x) such that ϕ(x) ⊨ψ(x), there exists
an L-interpolant of ϕ,ψ.

As in the strong full signature case, we work without loss of generality with la-
beled knowledge bases containing only one positive example a and one negative
example b (Rem. 1.62). We show that a separating formula can then be seen
as an interpolant between two formulas ϕK,Σ,a and ¬ϕK,Σ,b, where ϕK,Σ,a and
ϕK,Σ,b encode the knowledge base; one from the positive example’s “point of
view” and the other from the negative example’s.

5.2. Definition. Let (K, {a}, {b}) be a labeled FO-knowledge base andΣ ⊆ sig(K).
Obtain KΣ,a from K by

1. replacing all X ∈ (rel1 ∪ rel2) \Σ by fresh symbols Xa,
2. replacing all constants c ̸∈ Σ∪ {a} by fresh variables xc ,
3. replacing a by x for a single fresh variable x ,
4. adding x = a if a ∈ Σ.

Let ϕK,Σ,a(x) = ∃z(
∧

KΣ,a), where z is the sequence of free variables in KΣ,a

without the variable x and (
∧

KΣ,a) is the conjunction of all formulas in KΣ,a.
KΣ,b(x) and ϕK,Σ,b(x) are defined in the same way, with a replaced by b.

5.3. Example. To illustrate Proposition 5.4, let Σ = {R} and K = (O,D), with
O = {A⊑ ∀R.¬A} and D = {A(a), R(b, b)}. Then, ¬R(x , x) strongly Σ-separates
(K, {a}, {b}) and is an interpolant for ϕK,Σ,a, ¬ϕK,Σ,b where

ϕK,Σ,a(x) = ∃xb R(xb, xb)∧ Aa(x)∧∀yz(R(y, z)∧ Aa(y)→¬Aa(z))
ϕK,Σ,b(x) = ∃ya R(x , x)∧ Ab(ya)
︸ ︷︷ ︸

D

∧∀yz (R(y, z)∧ Ab(y)→¬Ab(z))
︸ ︷︷ ︸

O

.

The reduction is then straightforward from the definition.

5.4. Proposition. Let (K, {a}, {b}) be a labeled FO-knowledge base, Σ ⊆ sig(K) a
signature, and LS a fragment of FO. Then, for any formula ϕ(x) in LS , ϕ strongly
Σ-separates (K, {a}, {b}) iff ϕ is an LS-interpolant for ϕK,Σ,a(x),¬ϕK,Σ,b(x).
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Proof. Suppose ϕ strongly separates and let us show that it is an LS-interpolant.
First, sig(ϕ) ⊆ Σ ⊆ sig(ϕK,Σ,a)∩ sig(ϕK,Σ,b) as ϕ can be assumed w.l.o.g to be
non-projectively separating. To show ϕK,Σ,a(x) ⊨ ϕ(x), suppose A ⊨ ϕK,Σ,a(d)
for some d ∈ dom(A). Then, A′ ⊨ K where A′ is defined as A except for
aA′ = d and cA

′
= v(xc) where v is an assignment witnessing A ⊨ ϕK,Σ,a(d).

Then A′ ⊨ ϕ(aA′) as K ⊨ ϕ(a), so A ⊨ ϕ(d). The same argument shows that
if A ⊨ ϕK,Σ,b(d) for some pointed model (A, d), then A ⊨ ¬ϕ(d) using the
fact that K ⊨ ¬ϕ(b), hence ϕ(x) ⊨ ¬ϕK,Σ,b(x). Conversely, suppose ϕ is an
interpolant. Then, for any A ⊨ K we have A ⊨ ϕK,Σ,a(aA), thus A ⊨ ϕ(aA).
Similarly, A ⊨ ¬ϕ(bA). ⊣

As FO has the CIP [Cr57], the existence of an FO-interpolant (thus of a separating
FO-formula) can be reduced to an entailment problem between the two encoding
formulas.

5.5. Theorem. Let (K, {a}, {b}) a labeled FO-knowledge base and Σ ⊆ sig(K).
Then (K, {a}, {b}) is strongly FO(Σ)-separable iff ϕK,Σ,a(x) ⊨ ¬ϕK,Σ,b(x).

If O is in GNF, then ϕK,Σ,a and ϕK,Σ,a are in GNF. In that context, if constants
are excluded from Σ, we can reduce the existence of a GNF separating formula
(and thus of an FO one) to GNF-satisfiability by Theorem 5.5, as GNF without
constants has the CIP [BBC13]. We thus get a 2EXP upper bound that matches
the lower bound, which also follows from satisfiability (Rem. 1.63).

5.6. Corollary. If constants are excluded, sepΣ,s(GNF,GNF) = sepΣ,s(GNF,FO)
for all Σ ⊆ sig(K), and the associated decision problem is 2EXP-complete in com-
bined complexity.

If O is expressed in L ∈ DLIO, the encodings ϕK,Σ,a and ϕK,Σ,b are not guaran-
teed to be in L. Then, the above corollary does not immediately apply. We next
show it is possible to work around this problem by adjusting the encodings.

§ 5.2. DLIO ONTOLOGIES

We now restrict the ontology language to DLIO. We first show that, in this
context, Theorem 5.5 provides an EXP upper bound on (L,FO)-separability
as we can translate ϕK,Σ,a(x) ⊨ ¬ϕK,Σ,b(x) into a satisfiability condition in
ALCIOu, decidable in exponential time. It matches the EXP lower bound given
by satisfiability of ALC-knowledge bases (Rem. 1.63).

5.7. Corollary. For any L ∈ DLIO, restricted strong (L,FO) is EXP-complete.
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Proof. First observe that ϕK,Σ,a(x) ⊨ ¬ϕK,Σ,b(x) iff ϕK,Σ,a(x) ∧ ϕK,Σ,b(x) is
not satisfiable. Then, obtain CK,Σ,a from K by taking the conjunction of all
∀u.(C → D) for any C ⊑ D ∈ O, all ∀u.({c} → ∃R.{d}) for any R(c, d) ∈ D,
all ∀u.({c} → A) for any A(c) ∈ D and then replacing all concept and role
names X /∈ Σ by fresh and distinct symbols Xa, all constants c /∈ Σ ∪ {a} by
fresh and distinct constants ca, the constant a by a fresh constant m if a ∈ Σ,
and adding {m} ↔ {a} as a conjunct. Define CK,Σ,b in the same way with a
replaced by b. Then ϕK,Σ,a(x)∧ϕK,Σ,b(x) is satisfiable if the ALCIOu-concept
{m} ∧ CK,Σ,a ∧ CK,Σ,b is satisfiable. ⊣

5.2.1. Boolean Hybrid CQs

It follows from Theorem 5.5 that one can use FO theorem provers such as
Vampire [HHKV12] to compute strongly separating formulas. FO is arguably
too powerful, however, to serve as a useful separation language for labeled
description logic knowledge bases. It is then natural to look for a fragment of
FO that is needed to obtain a strongly separating formula in case that there is a
strongly separating formula in FO. By taking the closure BoCQALCIO of CQALCIO

under Boolean connectors one obtains a sufficiently powerful language, at least
if the knowledge base does not admit nominals. As BoCQALCIO is included
in GNF, it is decidable. Note that FO is considered here with constants. This
subsection is dedicated to proving the following theorem.

5.8. Theorem. Let (K, {a}, {b}) be a labeled ALCI-knowledge base and Σ ⊆
sig(K). Then (K, {a}, {b}) is strongly FO(Σ)-separable iff it is strongly BoCQALCIO(Σ)-
separable.

We use the next Lemma to prove Theorem 5.8.

5.9. Lemma. Let (K, {a}, {b}) be a labeled ALCI-knowledge base and Σ ⊆ sig(K).
If (K, {a}, {b}) is not BoCQALCIO(Σ)-separable, then there exist pointed models
(A, d) and (B, e) such that A ⊨ ϕK,Σ,a(d) and B ⊨ ϕK,Σ,b(e) and such that
(A, d)⇔mod

CQALCIO ,Σ
(B, e).

Proof. Suppose (K, {a}, {b}) is not BoCQALCIO(Σ)-separable. Let Γ be the set of
all ψ(x) in BoCQALCIO(Σ) such that ϕK,Σ,a(x) ⊨ψ(x). Then Γ ∪{ϕK,Σ,b(x)} is
satisfiable: if not, then by compactness there exists a conjunction ϕ of formulas
in Γ such that ϕ ⊨ ¬ϕK,Σ,b. But then ϕ is a separating BoCQALCIO(Σ)-formula,
as ϕ ∈ Γ implies K ⊨ ϕ(a) and ϕ ⊨ ¬ϕK,Σ,b implies K ⊨ ¬ϕ(b). Let (B, e)
witness it. Let Ψ be the set of all ψ(x) in BoCQALCIO(Σ) such that B ⊨ψ(e).
By compactness and assumption we can assume (B, e) is wlog such that Ψ ∪
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{ϕK,Σ,a(x)} is satisfiable by some (A, d) (that is, that there exists at least one
such (B, e)). Otherwise, Γ ∪{ϕK,Σ,b(x)} ⊨ ϕK,Σ,a(x), i.e. ϕK,Σ,b(x) ⊨ ϕK,Σ,a(x),
contradicting inseparability. By definition, (A, d) and (B, e) are such that A ⊨
ϕK,Σ,a(d) andB ⊨ ϕK,Σ,b(e) and (A, d)⇔CQALCIO ,Σ (B, e). Finally, we conclude
by assuming without loss of generality (modulo taking elementary extensions)
that A and B are ω-saturated (cf. Theorem 1.7). ⊣

Proof of Theorem 5.8. The “if” direction is trivial. For the converse direction, as-
sume that the left condition holds. By assumption and Theorem 5.5, ϕK,Σ,a(x) ⊨
¬ϕK,Σ,b(x). Assume there does not exist a separating formula in BoCQALCIO(Σ).
By Lemma 5.9, there exist pointed models (A, d) and (B, e) such that A ⊨
ϕK,Σ,a(d) and B ⊨ ϕK,Σ,b(e) and such that (A, d)⇔mod

CQALCIO ,Σ
(B, e). Now take

assignments va from the variables of ϕK,Σ,a into A witnessing A ⊨ ϕK,Σ,a(d) and
vb from the variables of ϕK,Σ,b into B witnessing B ⊨ ϕK,Σ,b(e). Let Da and Db

be the images of va in A and of vb in B, respectively. By definition, we have
Σ-homomorphisms

▶ ha : A|Da
→ B such that ha(d) = e and (A, c) ∼ALCIO,Σ (B, ha(c)) for all

c ∈ Da;
▶ hb : B|Db

→ A such that hb(e) = d and (B, c) ∼ALCIO,Σ (A, hb(c)) for all
c ∈ Db.

It also immediately follows from (A, d)⇔mod
CQALCIO ,Σ

(B, e) that for any c ∈
dom(A) there exists c′ ∈ dom(B) such that (A, c) ∼ALCIO,Σ (B, c′), and vice
versa. We use this fact to merge A and B to a single model C and show in Lemma
5.11 that it witnesses inseparability. ⊣

5.10. Definition. We define the bisimulation product C of A and B as follows.

dom(C) = {(c, c′) ∈ dom(A)× dom(B) | (A, c)∼ALCI,Σ (B, c′)}

(c, c′) ∈ AC if c ∈ AA (equiv. if c′ ∈ AB) for all A∈ Σ

(c, c′) ∈ AC if c ∈ AA for all A∈ sig(ϕK,Σ,a) \Σ

(c, c′) ∈ AC if c′ ∈ AB for all A∈ sig(ϕK,Σ,b) \Σ

((c1, c′1), (c2, c′2)) ∈ RC if (c1, c2) ∈ RA and (c′1, c′2) ∈ RB for all R ∈ Σ

((c1, c′1), (c2, c′2)) ∈ RC if (c1, c2) ∈ RA for all R ∈ sig(ϕK,Σ,a) \Σ

((c1, c′1), (c2, c′2)) ∈ RC if (c′1, c′2) ∈ RB for all R ∈ sig(ϕK,Σ,b) \Σ

cC = (cA, cB) for all c ∈ Σ

5.11. Lemma. C ⊨ (ϕK,Σ,a ∧ ϕK,Σ,b)(d, e), i.e. the pointed model (C, (d, e))
witnesses inseparability of (K, {a}, {b}).
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Proof. We can view KΣ,a as the union of OΣ,a and DΣ,a, where OΣ,a is a copy
of O in which all concept and role names X ̸∈ Σ have been replaced by fresh
symbols Xa, and DΣ,a is a copy of D in which every concept and role name X ̸∈ Σ
is replaced by Xa and in which every individual c ̸∈ Σ ∪ {a} is replaced by a
variable xc,a and a is replaced by x . Moreover, x = a is added if a ∈ Σ. KΣ,b

can be viewed accordingly with a replaced by b. By taking the conjunction of all
members of DΣ,a and existentially quantifying over all variables distinct from x
we obtain a formula in CQALCIO. We first show that C ⊨OΣ,a ∪OΣ,b, for which
it suffices to show that (1) the projection pa : C→ A defined by pa(c, c′) = c is
an ALCIO(sig(ϕK,Σ,a))-bisimulation between C and A and (2) the projection
pb : C → B defined by pb(c, c′) = c′ is an ALCIO(sig(ϕK,Σ,b))-bisimulation
between C and B. The proof of (1) and (2) is straightforward and omitted. It
follows from (1) and (2), A ⊨OΣ,a and B ⊨OΣ,b that C ⊨OΣ,a ∪OΣ,b. Next we
lift the variable assignments va and vb from A (resp. B) to C:

v̄a(xc) = (va(xc), ha(va(xc)) for all variables of the form xc in ϕK,Σ,a,

v̄b(yc) = (vb(yc), hb(vb(yc)) for all variables of the form yc in ϕK,Σ,b,

v̄a(x) = v̄b(x) = (va(x), vb(x)).

It is then clear that C ⊨v̄a
DΣ,a(d, e) and C ⊨v̄b

DΣ,b(d, e), which, with C ⊨
OΣ,a ∪OΣ,b, implies C ⊨ (ϕK,Σ,a ∧ϕK,Σ,b)(d, e). ⊣

5.2.2. 2Exp-completeness for DLIO

We now show that for all L ∈ DLIO, restricted strong (L,L)-separability is 2EXP-
complete in combined complexity. The foundation for the proofs of both bounds
is given by results from [AJMOW21] on the complexity of interpolant existence in
description logics. As mentioned above, one may not immediately apply those
complexity results in combination with Theorem 5.8, as ϕK,Σ,a and ϕK,Σ,b are
not necessarily in L. We thus introduce a different notion of interpolant. We
first prove the upper bounds.

5.12. Definition. Let L ∈ DLIO. Let O1,O2 be L-ontologies, C1, C2 be L-
concepts, and Σ = sig(O1, C1) ∩ sig(O2, C2). An L-interpolant for the L-tuple
(O1,O2, C1, C2) is an L(Σ)-concept C such that O1 ⊨ C1 ⊑ C and O2 ⊨ C ⊑ C2.

5.13. Theorem ( [AJMOW21]). Let L ∈ {ALCO,ALCIO}. Then deciding whether
an L-interpolant exists for L-tuples (O1,O2, C1, C2) is 2EXP-complete.

It now suffices to introduce the following notation.
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5.14. Definition. Let L ∈ DLIO, (K, {a}, {b}) be an L-knowledge base with
K = (O,D) and Σ ⊆ sig(K). Let LO denote the extension of L by nominals (if L
contains nominals already then set LO = L). We define an LO-ontology OK,Σ,a

from K, that consists of the ontology

O ∪ {{c} ⊑ ∃R.{d} | R(c, d) ∈ D}
∪ {{c} ⊑ A | A(c) ∈ D}

from which are replaced all concept or role names X /∈ Σ by a fresh symbol Xa,
all constants c /∈ Σ∪ {a} by fresh and distinct constants ca, and the constant a
by a fresh constant ma. If a ∈ Σ then {ma} ≡ {a} is added. OK,Σ,b is obtained
from K in the same way by replacing a by b.

5.15. Theorem. For all L ∈ DLIO, restricted strong (L,L)-separability is in 2EXP.

Proof. Observe that an LO(Σ)-concept strongly separates (K, {a}, {b}) iff it is an
LO-interpolant for the LO-tuple OK,Σ,a, OK,Σ,b, ma,¬mb. If L contains nominals
(i.e. LO = L), then the upper bounds follow immediately from Theorem 5.13.
If L does not contain nominals, then we may assume that Σ does not contain
constants. Then OK,Σ,a and OK,Σ,b do not share any constants and therefore an
L(Σ)-concept strongly separates (K, {a}, {b}) iff it is an LO-interpolant for the
LO-tuple OK,Σ,a, OK,Σ,b, ma,¬mb; the upper bound follows again. ⊣

We now come to the lower bounds. We first give a model-theoretic characteriza-
tion of strong L-separability using L-bisimulations.

5.16. Lemma. Let L ∈ DLIO, (K, {a}, {b}) be a labeled L-knowledge base and
Σ ⊆ sig(K). Then (K, {a}, {b}) is strongly L(Σ)-separable iff (A, aA)≁L,Σ (B, bB)
for all A,B ⊨ K.

Proof. The left to right implication is immediate as bisimulation implies logi-
cal equivalence. For the converse, assume (K, {a}, {b}) is not strongly L(Σ)-
separable. Let

Γa = {C ∈ L(Σ) | K ⊨ C(a)}
Γb = {C ∈ L(Σ) | K ⊨ C(b)}

For any set of concepts Γ we say that Γ is satisfiable in a w.r.t. K if (O,D∪{C(a) |
C ∈ Γ }) is satisfiable. We show that Γa ∪ Γb is satisfiable in a and b w.r.t. K. We
only show it for a as the proof is dual for b. Assume it is not satisfiable. Then
(O,D ∪ {C(a) | C ∈ Γb}) is not satisfiable. By compactness there exists D ∈ Γb
such that K ⊨ ¬D(a). But K ⊨ D(b) by definition, so ¬D is a separating concept,
which is the desired contradiction. Now let Γ0 = Γa ∪ Γb and let C1, C2, . . . be an
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enumeration of all L(Σ)-concepts such that Ci /∈ Γ0. For all i ≥ 0 let

Γi+1 =

�

Γi ∪ {Ci+1} if Γi ∪ {Ci+1} is satisfiable in a w.r.t. K,
Γi ∪ {¬Ci+1} otherwise.

We now show that, for all i ≥ 1, either Γi∪{Ci+1} is satisfiable in a and b w.r.t. K
or Γi ∪ {¬Ci+1} is satisfiable in a and b w.r.t. K. Assume that is proved for i − 1.
Assume w.l.o.g. that Γi = Γ0∪{C1, . . . , Ci}. Assume w.l.o.g. for contradiction that
Γi ∪ {Ci+1} is not satisfiable in a w.r.t. K and that Γi ∪ {¬Ci+1} is not satisfiable
in b w.r.t. K. By compactness, there exists D ∈ Γb such that K ⊨ D′(a), where
D′ = (D ⊓ C1 ⊓ · · ·⊓Ci) → ¬Ci+1. Then D′ ∈ Γa by definition. Then D′ ∈ Γi,
so Γi is not satisfiable in b w.r.t K, which is the desired contradiction. Let
Γ∞ =
⋃

i>0 Γi . Then there exists A,B ⊨ K such that A ⊨ C(aA) and B ⊨ C(bB)
for all C ∈ Γ∞. Thus, (A, aA) ≡L,Σ (B, bB). We can assume A and B are
ω-saturated by Theorem 1.7 and the fact that elementary extensions preserve
types. Then, (A, aA)∼L,Σ (B, bB) by Lemma 1.25. ⊣

As part of the lower bound proof for interpolant existence in [AJMOW21], it
is proved that for an L-ontology O and database D of the form {R(a, a)} it is
2EXP-hard to decide whether there exist models A and B of (O,D) such that
(A, aA)∼L,Σ (B, d) for some d ̸= aB. 2EXP-hardness of separability immediately
follows.

5.17. Theorem. For all L ∈ DLIO, restricted strong (L,L)-separability is 2EXP-
hard in combined complexity.

Proof. Suppose such L, K = (O,D), Σ, and a are given. Let b be a fresh constant
and A1, A2 fresh concept names. Add A1(a) and A2(b) to D to obtain D′ and
add A1 ⊑ ¬A2 to O to obtain O′. Then there exist models A and B of (O,D)
such that (A, aA)∼L,Σ (B, d) for some d ̸= aB iff there exist models A and B of
(O′,D′) such that (A, aA)∼L,Σ (B, bB). ⊣

§ 5.3. GF AND FO2 ONTOLOGIES

We now look at restricted strong FO and GF (resp. FO2)-separability of GF (resp.
FO2)-labeled knowledge bases. Assume a labeled L ∈ {GF,FO2}-knowledge
base (K, {a}, {b}) with K = (O,D) is given. Let Σ be a signature. Then ϕK,Σ,a

andϕK,Σ,b defined in 5.2 are also in L. Upper bounds for (GF,FO) and (FO2,FO)-
separability then follow, by CIP of FO, from the complexity of their respective
satisfiability problems. Matching lower bounds are also guaranteed by satisfia-
bility, as usual (Rem. 1.63).
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5.18. Theorem.

▶ Restricted strong (GF,FO)-separability is 2EXP-complete.
▶ Restricted strong (FO2,FO)-separability is CONEXP-complete.

Now, GF [HM02] and FO2 [Co69] do not enjoy the CIP so we cannot replicate
Corollary 5.6 to get complexity bounds for (GF,GF) and (FO2,FO2)-separability.
Instead, we use recent results by [JW21], namely that interpolant existence
in GF is decidable in 3EXP, and interpolant existence in FO2 is decidable in
CON2EXP. The lower bounds follow from a simple reduction from interpolation
to separability. Then, Theorems 5.20 and 5.21 focus on the upper bounds.

5.19. Reduction from interpolation to separability. Letϕ(x),ψ(x) be GF-formulas
(resp. FO2), Σ = sig(ϕ) ∩ sig(ψ), D = {A(a), B(b)} with A, B /∈ Σ and O =
{∀xA(x)→ ϕ(x),∀xB(x)→¬ψ(x)}. It is then straightforward that if ϕ(x) and
ψ(x) admit an interpolant, then ((O,D), {a}, {b}) is strongly GF(Σ)-separable
(resp. FO2) by that interpolant. Conversely, if some χ(x) Σ-separates, then it
follows from K ⊨ χ(a) and A, B /∈ sig(χ) that ϕ(x) ⊨ χ(x) and ¬ψ(x) ⊨ ¬χ(x).

We move on to the upper bounds. As we aim to apply results on the complexity
of interpolant existence that have been proved for GF and FO2 without constants,
we cannot use constants in the construction of the encodings. Then, the previous
encodings are not in GF (resp. FO2) and we devise new ones.

5.20. Theorem. Restricted strong (GF,GF)-separability is 3EXP-complete.

Proof. Assume a labeled GF-knowledge base (K, {a}, {b}) with K = (O,D) is
given and Σ is a relational signature. Consider the formulas ϕK,Σ,a and ϕK,Σ,b

from Definition 5.2. To obtain GF-formulas ϕGF
K,Σ,a and ϕGF

K,Σ,b, take fresh rela-
tion symbols RD,a, RD,b ∈ rel|cons(D)|. Add RD,a(y) to KΣ,a when constructing
ϕK,Σ,a(x), where y is an enumeration of the variables in KΣ,a. Do the same
to construct ϕGF

K,Σ,b(x), using RD,b instead of RD,a. The formulas ϕGF
K,Σ,a and

¬ϕGF
K,Σ,b are in GF and play the same role as the formulas ϕK,Σ,a and ϕK,Σ,b. In

particular, for any formula ϕ, ϕ strongly Σ-separates (K, {a}, {b}) iff ϕ is an
interpolant for ϕGF

K,Σ,a(x),¬ϕ
GF
K,Σ,b(x). The complexity upper bound now follows

from [JW21]. ⊣

5.21. Theorem. Restricted strong (FO2,FO2)-separability is in CON2EXP and
2EXP-hard.

Proof. For every c ∈ cons(D) let Ac ∈ rel1 \ sig(K). Let ϕ2
K,Σ,a =
∧

O ∧ Denc,
where Denc is the conjunction of the following formulas in which every R ∈
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rel∩ (sig(K) \Σ) is replaced by a fresh symbol Ra.

∃xAc(x)∧∀x∀y(Ac(x)∧ Ac(y)→ x = y) for all c ∈ cons(D)

∃x∃yR(x , y)∧ Ac(x)∧ Ac′(y) for all R(c, c′) ∈ D

∃xA(x)∧ Ac(x) for all A(c) ∈ D

Aa(x)

Define ϕ2
K,Σ,b in the same way with a replaced by b and where the unary

relation symbols A′c used to encode constants c are disjoint from the unary
relation symbols used for this purpose in ϕ2

K,Σ,a. Then we have that ϕ2
K,Σ,a

and ϕ2
K,Σ,b are in FO2 and a formula ϕ strongly Σ-separates (K, {a}, {b}) iff it

is an interpolant for ϕ2
K,Σ,a(x),¬ϕ

2
K,Σ,b(x). The complexity upper bound now

follows from the result that interpolant non-existence in FO2 is decidable in
N2EXP [JW21]. ⊣



Conclusion

In this thesis I have presented model-theoretic and computational perspectives on
the separability of labeled data points by logical formulas in an ontology-mediated
setting. This work tackles fundamental questions in the area of logical supervised
learning. It is arguably the first heavy effort in that direction. Equivalence or
undecidability results can be of immediate interest to applied research. Non-trivial
observations on the links between separability and well-known decision problems
offer much potential to be exploited beyond what is achieved here. Numerous other
languages remain to be discussed, both as ontology or separation languages. Below
are other possible directions for future work.

Unique Name Assumption. The UNA is not made anywhere except in the full weak
projective case for description logics admitting number restrictions. While it has no
effect on some results, as mentioned in the introduction to Chapter 2, other results
fail under the UNA. Notably, the characterisation of full weak (FO,FO)-separability
given in Theorem 2.1 fails in Example 1.54 if b and a are swapped: (K, {b}, {a})
is then weakly separated by ∃y∃z(y ̸= z) ∧ citizen_of(x , y) ∧ born_in(x , z). In
that same example, if O is augmented with an axiom stating that born_in and
citizen_of are functional, then, under UNA, (K2, {a}, {b}) is strongly separated
by ∃yborn_in(x , y) ∧ citizen_of(x , y). Then, the characterisation of strong FO-
separability given in Theorem 3.1 also fails under UNA. On the other hand, it
remains open whether our results for ALCQ(I) hold without the UNA.

Constants. Another generalization can be made to the case where constants are
admitted in the ontology or separation languages, which we do not consider here
except for description logics containing nominals in Chapter 4. It is an arguably
relevant approach to look for differences between positive and negative examples in
terms of how they relate to specific other individuals. Clearly one would still need
to exclude constants from E+ ∪ E−, which would otherwise trivialize the problem.

Length restrictions. Separability can be investigated with formula length or quanti-
fier depth as part of the input parameters, or fixed beforehand. Shorter concepts
are preferable for better generalization and readability. [F19] looked at the decision
problem of full weak (EL,EL)-separability with concepts of fixed role depth k. In
combined complexity, the problem is polynomial for k = 0 and NP-complete for
k ⩾ 1.

Other possible directions include looking for instances of separability where at least
data complexity is tractable –possibly by considering inexpressive languages– and
imposing some restrictions on E+, E− such as assuming that they partition the space
of examples (definability of E+) or ask further that E+ be a singleton (existence of a
referring expression for it, cf. [TW19] for related work).



The following appendices summarize all non-trivial results involving separating
power (appendix 1) and complexity (appendix 2).

Appendix 1: Results on separating power

I. Full weak separability case
For LS ,L′S ⊇ UCQ,

1. sepw(FO,LS) = sepp
w(FO,LS) = sepp

w(FO,L′S)

2. sepp
w(FO2,FO2) ̸= sepw(FO2,FO)

3. sepp
w(ALCI,ALCI) = sepp

w(ALCI,LS)

4. sepp
w(GF,GF) = sepp

w(GF,oGF) = sepp
w(GF,LS)

5. Whenever a labeled ALCI-knowledge base is weakly projectively ALCI
separable, then a single fresh concept name suffices for separation.

6. Whenever a labeled GF-knowledge base is weakly projectively GF separable,
then a single fresh relation symbol suffices for separation.

II. Full strong separability case
For LS ⊇ UCQ,

1. seps(FO,LS) = seps(FO,FO)

2. seps(ALC,ALC) = seps(ALC,LS)

3. seps(ALCI,ALCI) = seps(ALCI,LS)

4. seps(GF,GF) = seps(GF,oGF) = seps(GF,LS)

5. seps(FO2,FO2) = seps(FO2,LS)

III. Restricted weak separability case
1. Let L ∈ {ALC,ALCI}. Restricted weak projective (L,L)-separability is

invariant under the addition of role names as helper symbols.

2. Whenever a labeled ALCO-knowledge base is weakly projectively ALCO
separable using rel1 ∪ rel2 as helper symbols, then a single fresh role name
suffices for separation.

3. sepp
w,Σ(ALCI,ALCI) = sepw,Σ(ALCI,UCQALCI

r ) for all Σ

4. sepp
w,Σ(ALC,ALCO) = sepw,Σ(ALC,UCQALCO

r ) for all Σ

IV. Restricted strong separability case

seps,Σ(ALCI,FO) = seps,Σ(ALCI,UCQALCIO
r ) for all Σ



Appendix 2: Results on complexity

I. Full weak separability case
For LS ⊇ UCQ,

1. (Non-)proj. (GNF,LS) 2EXP-complete

2. (Non-)proj. (FO2,FO2) undecidable

3. (Non-)proj. (FO2,FO) undecidable

4. Proj. (ALC,ALC) NEXP-complete, PSPACE-complete in data

5. (Non-)proj. (ALCI,LS) NEXP-complete (combined & data)

6. Proj. (ALCQ,ALCQ) NEXP-complete (with UNA)

7. Proj. (ALCQI,ALCQI) EXP-complete NEXP-complete (with UNA)

8. (Non-)proj. (GF,LS) 2EXP-complete (combined & data)

9. (ALC,EL(I)) undecidable

II. Full strong separability case
For LS ⊇ UCQ,

1. (ALC,LS) EXP-complete, CONP-complete in data

2. (ALCI,LS) EXP-complete, CONP-complete in data

3. (GF,LS) 2EXP-complete, CONP-complete in data

4. (FO2,LS) NEXP-complete, CONP-complete in data

III. Restricted weak separability case
1. Proj. (ALC,ALC) 2EXP-complete

2. Proj. (ALCI,ALCI) 2EXP-complete

3. Proj. (ALCO,ALCO) 3EXP-complete (rel1 ∪ rel2 as helper symbols)

4. Proj. (ALC,ALCO) undecidable (rel1 ∪ rel2 ∪ cons as helper symbols)

5. (Non-)proj. (ALC,LS) undecidable for LS ⊇ALCFIO

IV. Restricted strong separability case
For L ∈ DLIO,

1. (L,FO) EXP-complete

2. (L,L) 2EXP-complete

3. (GF,FO) 2EXP-complete

4. (FO2,FO) CONEXP-complete

5. (GF,GF) 3EXP-complete

6. (FO2,FO2) in CON2EXP, 2EXP-hard
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