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Abstract

Video surveillance outputs di�erent portrait information of scenes such as crime investigation,
security system, automatic driving system, and environmental monitoring. Recently, deep learning
based video surveillance is also an essential topic in computer vision. �e speci�c tasks include
object tracking, video object segmentation, salient object detection, and video salient object
detection. �us, this thesis studies salient object detection and segmentation in video surveillance,
mainly on video object segmentation and salient object detection.

In video object segmentation, we study the case of given the �rst frame’s mask and try to
design a network that can adapt to di�erent object appearance variations. �erefore, this thesis
proposes a framework based on the non-local a�ention mechanism to localize and segment the
target object in the current frame, referring to both the �rst frame with its given mask and the
previous frame with its predicted mask. Our approach can achieve 86.5% IoU on DAVIS-2016 and
72.2% IoU on DAVIS-2017, with a speed of 0.11s per frame.

�en for salient object detection, this thesis focuses on scribble annotations. However, scribbles
fail to contain enough integral appearance information. To solve this problem. A local saliency
coherence loss is proposed to assist partial cross-entropy loss and thereby help the network
learn more complete object information. Further, A self-consist mechanism is designed to help
the network not sensitive to di�erent input scales. Our method can achieve comparable results
compared with fully supervised methods. Our method achieves a new state-of-the-art performance
on six benchmarks (e.g. for the ECSSD dataset: �V = 0.8995, ⇢b = 0.9079 and MAE = 0.0489).

Lastly, co-salient object detection is also studied. Recent methods explore both intra- and inter-
image consistency through an a�ention mechanism. We �nd that existing a�ention mechanisms
can only focus on limited related pixels. �us, we propose a new framework with a self-contrastive
loss to mine more related pixels to obtain comprehensive features. Our method obtains 0.598 for
maximum F-measure for COCA.

In this way, the tasks in this thesis are well handled and our methods can serve as new baselines
for future works.

KeyWords: Video Object Segmentation, Salient Object Detection, Co-salient Object Detection,
Pixel Matching, A�ention Mechanism, Feature Mining
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Chapter 1

Introduction

1.1 Research Motivation

Video surveillance is closely linked with people’s life. �ey are usually used for di�erent purposes.
One important role of video surveillance is to provide security containing protection against the�,
burglaries and other crimes. �is kind of video surveillance can provide evidence and help �nd
the criminals. Additionally, video surveillance can be used for tra�c monitoring. In this way, the
tra�c �ow can be improved and accidents can be monitored. Further, video surveillance can also
be used for private monitoring for baby care or pet care, etc. As shopping online becomes more
and more popular, young people tend to apply video surveillance to monitor the delivery to protect
against stealing their goods or other crimes. Besides that, automatic drive is gaining a�ention
nowadays. Video surveillance is one of the important technologies to recognize road condition,
parking condition or other demands for video understanding. �erefore, video surveillance is an
important security application and needs to adapt for di�erent demands.

In recent years, with the development of deep neural network, video surveillance is also a major
topic in computer vision tasks. �e major task about video surveillance in computer vision is video
understanding, including object detection, object tracking, object segmentation, action recognition,
video retrieval, etc. As illustrated in Fig. 1.1,among these tasks, video object segmentation (VOS)
contributes a lot. It distinguishes each pixel into foreground and background to provide a pixel-level
observation of target object. In this case, it can assist video object tracking, action recognition and
video retrieval. However, VOS faces many crucial problems from the dynamic target object, such as
appearance variation, and occlusion. Moreover, when the background is noisy, the models tend to
fail to distinguish foreground and background. In this case, it is di�cult for VOS models to capture

1
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Video surveillance in computer vision
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Video object segmentation: pixel-level tracking, 
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in video sequences.
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Figure 1.1: Relationships of the tasks in this thesis.
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clear and complete target object. Usually, the target objects in VOS are salient objects and they are
contrast to their surroundings. �en, one possible solution is to involve salient object detection
(SOD) to utilize saliency information as an indicator [112, 5, 77, 113]. Saliency information can
help �lter background and complement foreground information for cases without good foreground
reference masks. Additionally, saliency maps have been used in many image processing tasks,
such as semantic segmentation [102, 53], lesion segmentation [3], person search [49] and image
retrieval [107]. Additionally, to help understand the correspondence in VOS, co-salient object
detection (CoSOD), which extends SOD segment the common objects among a group of relative
images, is studied. CoSOD can help provide a global cue which is the appearance consistency to
model the target foreground object. For example, some works [11, 27] treat the video frames as
a group of images containing relative objects and adopt CoSOD to mine co-existed foreground
objects. Nevertheless, CoSOD methods should be further designed to mine more comprehensive
features if applied to VOS for be�er performance, especially when there are noisy frames [131].
�us, this thesis also conduct experiments on CoSOD to design a method for be�er appearance
consistency.

As shown in Fig. 1.2 (a), video object segmentation (VOS) aims to segment all the pixels
belonging to the target object. Speci�cally, given the target object in the �rst frame, VOS needs
to localize the target object in the following frames and segment all the pixels of the object in
each frame. It usually su�ers from occlusion, object appearance variation, blur, scale variation and
other challenges [126]. Additionally, VOS is computation complexity as it needs to tackle video
sequences, especially when the sequence is long. �erefore, this thesis focuses on how to obtain
great performance and keep high e�ciency at the same time.

�en, salient object detection targets at �nding the object that can a�ract people in a image
and is illustrated in Fig. 1.2 (b). Although recent approaches have achieved great performance, they
need large annotations, even introducing extra datasets like edge detection dataset for smooth
boundary. Moreover, sparse labelling becomes increasingly popular in recent years to save label
time. However, it is di�cult for sparse labelling to reveal the structure and shape of target objects.
�us, how to design a model can learn to predict smooth and integral objects without help of extra
dataset or post-process is important for salient object detection.

Finally, co-salient object detection is an extension of salient object detection. Co-salient object
detection needs to detect and segment the common object through a group of image, which can be
seen as formulating human a�ention from multiple perspectives as shown in Fig. 1.2 (c). �e most
key challenging in CoSOD is how to establish intra-image and inter-image consistency to �nd
the common objects due to the lack of classi�cation information. Although existed deep learning
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based methods have obtained outstanding performances, they rely on extra information to learn
discriminative co-salient features, such as extra salient object detection training-set or classi�cation
information. �erefore, we consider thoroughly exploring the intrinsic characteristics of co-salient
objects and background to link both intra-image and inter-image consitency.

1.2 Research�estions

In this thesis, plenty of research questions about conducted tasks are dealt with. Di�erent research
questions are discussed in di�erent chapters as following:

In chapter 3, fast pixel matching video object segmentation task is studied. Video object
segmentation, aiming to segment the foreground objects given the annotation of the �rst frame,
has been a�racting increasing a�entions. Many state-of-the-art approaches have achieved great
performance by relying on online model updating or mask-propagation techniques. However,
most online models require high computational cost due to model �ne-tuning during inference.
Most mask-propagation based models are faster but with relatively low performance due to failure
to adapt to object appearance variation. In this case, the main research question is how to design
a framework to obtain higher performance with fast speed.

In chapter 4, structure consistent weakly supervised salient object detection is analyzed.
Sparse labels have been gaining much a�ention in recent years, especially scribble annotations.
However, the performance gap between scribble supervised and fully supervised salient object
detection methods is huge, because that the scribbles cannot provide appearance and integral
boundary information. To solve this problem, most previousworks adopt complex trainingmethods
like introducing extra dataset for boundary prediction and post-process for be�er predictions.
�erefore, the main research in this task is how to predict accurate saliency maps with only
scribble annotations and how to eliminate post-process or multi-stage training for simpli�cation.

In chapter 5, comprehensive feature mining for co-salient object detection is further explored.
Co-salient object detection, with the target of detecting co-existed salient objects among a group
of images, is gaining popularity. Recent works use the a�ention mechanism to link the appearance
consistency through di�erent images. However, their methods lead to incomplete even incorrect
responses for target objects. �ey also need extra information like extra salient object detection
and classi�cation to help learn co-saliency. �us, the main research question here is how to enlarge
the responses to mine more comprehensive co-salient features for be�er predictions without the
help of extra information.
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Figure 1.2: �e main tasks in this thesis: (a) video object segmentation; (b) salient object detection,
(c) co-salient object detection.
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1.3 Main Contributions

�e main contributions of this thesis are the analysis of video object segmentation, salient object
detection and co-salient object detection. All this three tasks are binary segmentation. How
to predict target maps without classi�cation information is discussed and new frameworks are
designed for each task to make the best of given information and realize the improvement of
performances.

Fast Pixel Matching for Video Object Segmentation. We are aiming to design a new
model to make a good balance between speed and performance. We propose a novel NPMCA-net,
which directly localizes foreground objects based on mask-propagation and non-local a�ention
mechanism to match pixels in reference and current frames. Since we bring in information of
both �rst and previous frames, our network is robust to large object appearance variation, and
can be�er adapt to occlusions. Extensive experiments show that our approach can achieve a new
state-of-the-art performance with a fast speed at the same time (86.5% IoU on DAVIS-2016 and
72.2% IoU on DAVIS-2017, with speed of 0.11s per frame) under the same level comparison.

Structure Consistent Weakly Supervised Salient Object Detection. We propose a one-
round end-to-end training approach for weakly supervised salient object detection via scribble
annotations without pre/post-processing operations or extra supervision data. Since scribble
labels fail to o�er detailed salient regions, we propose a local coherence loss to propagate the
labels to unlabeled regions based on image features and pixel distance, so as to predict integral
salient regions with complete object structures. We design a saliency structure consistency loss as
self-consistent mechanism to ensure consistent saliency maps are predicted with di�erent scales of
the same image as input, which could be viewed as a regularization technique to enhance the model
generalization ability. Additionally, we design an aggregation module (AGGM) to be�er integrate
high-level features, low-level features and global context information for the decoder to aggregate
various information. Extensive experiments show that our method achieves a new state-of-the-art
performance on six benchmarks (e.g. for the ECSSD dataset: �V = 0.8995, ⇢b = 0.9079 and MAE
= 0.0489), with an average gain of 4.60% for F-measure, 2.05% for E-measure and 1.88% for MAE
over the previous best methods on this task.

Comprehensive Feature Mining for Co-salient Object Detection. We aim to mine
comprehensive co-salient features with democracy and reduce background interference without
introducing any extra information. To achieve this, we design a democratic prototype generation
module to generate democratic response maps, covering su�cient co-salient regions and thereby
involving more shared a�ributes of co-salient objects. �en a comprehensive prototype based
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Chapter Task Input Output Level of 
Supervision

3 Video object 
segmentation Video frames Object segmentation 

map Fully supervised

4 Salient object detection Single image Saliency map Weakly supervised

5 Co-salient object 
detection Group of images Co-saliency map Fully supervised

Figure 1.3: Tasks studied in this thesis.

on the response maps can be generated as a guide for �nal prediction. To suppress the noisy
background information in the prototype, we propose a self-contrastive learning module, where
both positive and negative pairs are formedwithout relying on additional classi�cation information.
Besides, we also design a democratic feature enhancement module to further strengthen the co-
salient features by readjusting a�ention values. Extensive experiments show that our model
obtains be�er performance than previous state-of-the-art methods, especially on challenging
real-world cases (, for CoCA, we obtain a gain of 2.0% for MAE, 5.4% for maximum F-measure,
2.3% for maximum E-measure, and 3.7% for S-measure) under the same se�ings.

1.4 �esis Outline

�e rest of this thesis is arranged as follows. Chapter � provides a brief literature review of each
task conducted in this thesis. �e basic se�ings of chapter 3 ⇠ chapter 5 are listed in Fig. 1.3.
Chapter 3 introduces the task of video object segmentation. It deals with video frames under fully
supervision and use a�ention mechanism to match pixels from reference frames and current frame,
so as to localize the target object in current frame. Next, Chapter 4 describes the task of salient
object detection. It tackles single image and trains the network through scribble annotations in
an end-to-end learning style. A�er that, chapter 5 explores co-salient object detection. �is task
needs to detect the common objects from multiple images under the fully supervision. It studies
how to mine comprehensive features of common object and predict clean and complete co-salient
object masks. All the three tasks belong to the binary segmentation. �e outputs are binary masks.
‘1’ for foregrounds and ‘0’ for backgrounds. �en, chapter 6 gives a gathering conclusion of above
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tasks and recommends some future researches.



Chapter 2

Literature Review

In this chapter, a literature review is introduced about the tasks conducted in this thesis, mainly
about video object segmentation, salient object detection and co-salient object detection.

2.1 Video Object Segmentation

Video object segmentation (VOS) is one of the fundamental and challenging tasks in video under-
standing. It aims to track the target object and classify each pixel of the frame into foreground
or background. It can be further applied into other video understanding tasks like video object
tracking, action recognition and video retrieval. �us, it plays important role in autonomous
driving , auto-mated surveillance or other video-related scenes.

Video object segmentation only cares about the target object. �is task does not concern
the speci�c categories of the target object. According to the number of target objects, VOS can
be classi�ed into two sub-tasks. One is single-object video object segmentation as shown in
Fig. 2.1 (a). It only tracks and segments one object in a video sequence. Another one is multi-
object segmentation like in Fig. 2.1 (b). It needs to track and segment multiple target objects and
distinguish each instance, such as the ’Fish’ sample in Fig. 2.1 (b). In such case, it can be also
de�ned as instance video object segmentation. Additionally, VOS can be fundamentally divided
into two categories based on how many human interference are involved during inference: 1)
semi-automatic video object segmentation; 2) automatic video object segmentation.

9



10 Siyue Yu

(a)

(b)

Test video Test video

Single-object video object segmentation

Test video Test video

Multi-object video object segmentation

Figure 2.1: Two sub-tasks of video object segmentation: (a) single-object video object segmentation;
(b) multi-object segmentation.

2.1.1 Semi-automatic Video Object Segmentation

Semi-automatic video object segmentation, also called semi-supervised video object segmentation
or one-shot video object segmentation [115]. In this task, there are hints for target object. �e
location of the target object is given and the designed model needs to track and segment the given
target for the remainder frames. �ere are typically four kinds of hints as shown in Fig. 2.2. �e
most common one is the mask of the �rst frame. all the pixels belonging to the target object
are labelled like in Fig. 2.2 (a). In such case, it is also known as pixel-wise tracking or mask
propagation [115]. In this se�ing, the methods usually use the �rst frame or previous frames’
predictions as reference to guide the target segmentation on current frame. Additionally, bounding
box is a kind of fast annotation to indicate the target object. �ere is a rectangular to label the
target object like in Fig. 2.2 (b). Although bounding box saves labelling cost, it is di�culty to
provide detail information of target object, such as appearance, shape or boundary. With the
increase a�raction on multi-modal, language hints also introduced into video object segmentation.
In such case, there is at least one sentence to describe the target object as shown in Fig. 2.2 (c).
�en, the cross models between image feature and language feature are fused to generate the target
feature and predict the corresponding masks. �e involved language information can help localize
and detect the whole regions of target object. Besides, it can help save pixel-level labelling cost.
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⋱Nothing given

Test videoInitialization

Figure 2.3: Automatic video object segmentation. �ere is no target object information for
initialization. �e model needs to detect the object �rst.

However, it is also hard for caption to re�ect the detail appearance of the object target. Methods
in this sub-task also needs to learn how to acquire the smooth boundary and complete appearance
prediction. Further, in industrial, cooperating with user guidance throughout the video sequence is
gaining interest, which is known as interactive video object segmentation. In Fig. 2.2 (d), we shown
the example of this se�ing. Users can draw di�erent scribbles on the target object and background
in a certain frame to guide the network to track and segment the labelled target object. Although
interactive video object segmentation can allow users to specify the segmentation constraints, it
requires the algorithms to response to these constraints quickly for good use experience.

2.1.2 Automatic Video Object Segmentation

Automatic video object segmentation is also called unsupervised video object segmentation or
zero-shot video object segmentation [115]. In this kind of se�ing, there is no any initialization as
shown in Fig. 2.3. �e algorithm needs to detect the target object according the consistency across
frames. In this se�ing, VOS approaches need to search the target object through cross-frame
consistency �rst, then segment the target object in all the frames. Moreover, there is nothing
can help provide appearance cues. It is di�cult to get smooth and complete object masks. Some
methods [54] propose to choose the best reference frame instead of directly use the �rst frame
as the reference frame since not all the �rst frames can provide the complete and transparent
appearance of a target object. Additionally, AGS [114] veri�es the consistency of visual a�ention
behavior among human observers and they introduce dynamic �xation data to train a initial video
a�ention module to detect the target object �rst.
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Image

Prediction

Figure 2.4: �e input images and outputs of salient object detection.

To sum up, main challenges of video object segmentation is how to obtain excellent segmenta-
tion masks for the dynamic objects, containing appearance variation, occlusion, scale variation,
re-appearing a�er disappearing for some frames, blur, and long-range position change in succes-
sion frames. Further, VOS is computing complexity. �erefore, strong and e�cient models are
desired to be proposed. In this thesis, we dedicate to the semi-automatic video object detection
with the given mask of the �rst frame. We �nd that previous methods use online �ne-tuning to
help their methods learn appearance variations. However, online �ne-tuning slows the inference.
Mask-propagation based methods are more e�cient, but their performances are lower. �erefore,
we try to design a framework with both good performance and high e�ciency.

2.2 Salient Object Detection

Salient object detection can be a upstream task for video understanding as it targets at modelling
how human a�ention system works. It can help provide the target hint for video object segmenta-
tion and other binary segmentation tasks. �is technique can further be applied in the automatic
driving, crime tracking or abnormal detection in video surveillance.

Salient object detection(SOD) originates from eye �xation prediction [8] to �nd out the most
salient object in the picture that can deeply a�ract human eyes [45, 111]. For one image, there
always exists at least one pixel that can a�ract human eyes at the �rst glance. Understanding and
modeling such ability, which is de�ned as visual a�ention or visual saliency, are fundamental and
popular subjects in psychology, neurobiology, cognitive science, and computer vision [111]. In the
�rst instance, eye �xation prediction (FP) [100] is �rst proposed to mimic this process and learn
human a�ention mechanism. FP comes from cognitive and psychology communities and it aims
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at detecting the �xation positions when people observing a single image [111].
In contrast, SOD task needs to detect the salient object and synchronously segment all the

pixels belonging to the salient object. �us, in SOD, given one image, the task needs to predict
the corresponding saliency map as shown in Fig 2.4. �e �rst research of SOD is from the model
proposed by I�i, et al [40]. �ey propose an initial model to implement computational frameworks
and psychological theories of bo�om-up a�ention by considering center-surround mechanisms
for scene understanding. Note that, bo�om-up means using low-level and image-based outliers
and conspicuities [7]. �en, �xation is used to verify the saliency hypothesis and as evaluation
tool [85, 9]. A�er that, saliency detection is de�ned as a binary segmentation task in [70, 1].
Recently, due to the explosion of convolutional neural networks, hand-cra�ed features can be
eliminated and center bias knowledge can be alleviated [8]. �erefore, SOD can be divided into
two categories: 1) traditional methods and, 2) deep learning based methods. Traditional methods
make use of low-level features and certain heuristics to detect the salient objects, like image
contrast [15], background prior [120] and generic objectness [4]. With the rapidly development of
convolution neural networks, SOD transfers from traditional methods into deep learning based
methods. Deep learning based methods can improve performance with high e�ciency.

2.2.1 Traditional Methods

Traditional methods for SOD o�en consider intrinsic characteristics to locate the salient pixels.
�en, a series of contrast based saliency detection methods have been proposed. Cheng and et
al [15] also follow the bo�om up data driven saliency detection. �ey �nd that saliency depends
more on its contrast to the nearby regions and less on distant regions, and thereby propose a global
contrast based method to separate the target salient object from its surroundings [15]. Additionally,
Ma and Zhang [76] propose a fuzzy growing method for saliency detection based on local contrast
analysis. Besides, Perazzi and et al [87] design high-imensional Gaussian �lters to measure pixel-
accurate saliency map that can uniformly cover the target object and separate foreground and
background smoothly. In addition to image contrast, Some works use center-surround contrast
to localize salient regions. In [51], Kullback-Leibler divergence between distributions of features
like intensity color and orientation is deployed to compute center-surround contrast. Besides, a
cost-sensitive max-margin classi�cation is designed to model center-surround contrast in [61].
�ey treat center patch as a positive sample and surrounding patches as negative samples. �en,
a trained cost-sensitive support vector matching (SVM) is applied to separate center patch and
surrounding patches to determine the saliency of the center patch. Besides that, distinctiveness of
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(b) Groundtruth (c) Scribble (d) Bounding box

‘Dog’

(e) Image-level 
category

‘Yellow happy 
dog in the car’

(f) Image caption

Different level of supervision

Figure 2.5: Di�erent level of supervision in salient object detection. (a) Input image; (b) Pixel-level
annotation, where each pixel has its label; (c) scribble annotation, where there is the red line
represents the salient object and the green line represents the background; (d) Bounding box,
where there is a rectangular, inside is salient object and outside is background; (e) Image-level
category label, the category of the salient object is labelled; (f) Image caption, where there is a
sentence to describe the salient object.

complementary cues like texture and structure are introduced to further help detect the salient
objects. In [79], they argue that the salient object should satisfy that their local neighborhood
is distinctive in both color and pa�ern. �us, they propose to use principal component analysis
(PCA) to re�ect the inner structure of data to represent the distinctness of regions. Additionally, a
salient object can also be implied by saptial distribution prior, de�ned as the more widely spread
the color is distributed in the image, the less possible it is for this color to be contained in the
salient object. A center prior means that salient object is tend to appear in the center of the image.
On the opposite, backgroundness prior assumes that background region is composed of a narrow
border of the image. In this case, traditional methods of salient object detection devote to make
the best of contrast between features of salient object and background. It is based on the de�nition
of salient object and how human a�ention is revealed on the salient object.

2.2.2 Deep Learning Based Methods

Deep learning based salient object detection approaches usually train convolution neural networks
(CNN) to learn the salient characteristics and predict the corresponding binary saliency maps
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of input images. Speci�cally, given an input image set � = {G=,~=}#==1, where G= is the input
image, ~= is the corresponding groundtruth for supervision, and # is the total number of training
images. �en, the goal of learning is to �nd the model can minimize the prediction error between
predictions and groundtruth. Due to the rapid development of CNN, di�erent network architectures
have been designed for SOD, which can be classi�ed into four categories: MLP-based, FCN-based,
hybrid network-based, and capcule-based [111].

MLP-based methods. �ey use multi-layer perceptron (MLP) as clasi�er to predict saliency
maps. �e inputs are deep CNN features of superpixels/pathes [144, 52, 33] orobject proposals [58,
108]. MLP-methods are time-consuming and fail to explore saptial information. �erefore, FCN-
based methods are adopted for the e�ciency.

FCN-based methods. �ey use FCN architecture [74] to extract image features and lead to a
end-to-end spatial saliency representation learning. [111]. �e single feed-forward process helps
save both training and inference time with high e�ciency.

Hybrid network-based methods. �en, the hybrid network-based methods combine the
MLP-based and FCN-based subnets. �ese methods target at edge preserving. However, the
combining of both pixel-level and region-level tends to increase computational complexity, though
the performance can be improved.

Capsule-based methods. Finally, the capsule-based methods are based on the fresh familiy
of neural networks, called Capsule [34]. Capsules consist of a group of neurons which use vectors
instead of scalar values in CNN as bridges to link inputs and outputs. In this case, the features can
be comprehensively modeled.

In addition to network architectures, SOD methods can also be classi�ed into either fully-
supervised or weakly-/unsupervised methods.

Fully Supervised Methods. Fully-supervised methods provide the pixel-level labelling is like
(b) in Fig. 2.5. Each pixel will be labelled as ‘1’ for salient object and ‘0’ for background. �is kind
of annotations is time-consuming and expensive. Moreover, networks trained with pixel-level
annotations are easy to over�t and they tend to predict terrible saliency maps when it comes to
real-life images [111].

Weakly-/Unsupervised Methods. In order to save laborious manual labelling, some weak
supervision levels are explored, including image-level category labels, image captions, scribbles,
bounding boxes, and predictions from traditional methods as a kind of unsupervision. For image-
level category labels, the category of the salient object is labelled as di�erent classi�cations, as
demonstrated in Fig. 2.5 (e). Image-level labels can provide the coarse location of the salient object
using class activate map [57]. �en, the generated rough pixel-level probability map is re�ned by
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iteratively training [57]. Image-level supervised methods usually consider using CRF to further
�ne-tune the predictions for be�er performance. To help models learn more information about
both the target salient object itself and the surroundings around it, image captions are introduced
since they can provide comprehensive descriptions of target object, as shown in Fig. 2.5 (f). For
example, MSW [130] designs a caption generation network to make the network search the entire
object to predict captions. In this way, the network can capture entire salient object compared with
image-level labels. However, the captions also describe the background, such as ‘car’ in Fig. 2.5
(f). In this case, the network may also pay a�ention to the irrelevant background pixels and lead
to inaccurate predictions. Except for the language-level labels, scribbles shown in Fig. 2.5 (c) are
proposed because it is convenient and fast. It takes only 1 ⇠ 2 seconds to label one image [134].
�us, scribbles are gaining a�raction in recent years. However, scribbles cannot provide object
boundary information as the annotations do not entirely cover the object. WSSA [134] adopts
an extra edge detection task to auxiliary the network predicting smooth boundaries. Further,
they design a scribble boosting scheme to rectify the predictions iteratively. Finally, the re�ned
predictions are treated as pseudo labels to train their network to learn high-quality saliency maps.
Additionally, bounding boxes like (d) in Fig. 2.5 are another widely used in weak supervision.
Bounding boxes can o�er correct localization of target objects but lack shape and boundary
information of target objects. In [32], the authors �rst use Grabcut to generate pseudo labels with
bounding box supervision. �en, the proposed saliency network is trained through pseudo labels.
Although bounding boxes can �lter signi�cant complex backgrounds, it is di�cult for them to
supply detailed target features. �ereby, [72] combines bounding box supervision with pseudo
labels predicted by unsupervised methods or traditional methods, where there are no grountruth.
�ey re�ne the pseudo labels in the light of bounding boxes. �en for unsupervised methods,
there is no any groundtruth. Nothing is given except for the input images for training. In this case,
pseudo labels are adopted. Pseudo labels refer to the predictions from traditional methods. �e
coarse maps can help the network learn basic salient knowledge. Nevertheless, if only dependent
on the given rough labels, it is di�cult for the network to learn enough salient information as there
are many errors. It is easy to over-�t to the wrong salient regions. �erefore, how to generate clean
pseudo labels is crucial in the level of unsupervision. For example, SVF [133] fuses multiple weak
by fast saliency models to obtain more substantial pseudo supervision. Further, they gradually
infer the di�culty of each training image to re�ect the reliability of pseudo labels. �ey establish
a curriculum learning to generate con�dent pseudo labels for �nal training gradually.

In this thesis, we focus on scribble supervision. Scribbles are easy to be labelled compared
to pixel-level annotations. However, it is di�cult for scribbles to provide integral supervision
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for object appearance, although it can indicate both the coarse salient regions and background
regions. Recent scribble supervised methods rely on extra boundary supervision and complex
training procedures to learn integral object information. �erefore, we try to design an end-to-end
learning procedure without using extra information and eliminate post-process.

2.3 Co-Salient Object Detection

Co-salient object detection (CoSOD) is the extension of salient object detection. It can link di�erent
images and aim to detect the objects belonging to the same category or the same object from a
group of relative images. CoSOD can be regarded as adding correspondence into SOD [17]. It
devotes to linking the objects from the same class in di�erent images. �erefore, CoSOD can help
provide appearance consistency from di�erent frames in video surveillance.

Co-salient object detection contains two main tasks. One is within-image co-salient object
detection, and another is co-salient object detection among a group of images. For within-image
co-salient object detection, which is shown in 2.6 (a), it devotes to detecting the salient objects
of the same class in a single image and synchronously segmenting the target objects. Within-
image co-salient object detection can help detect multiple instances of the same category in
an image and thereby more accurate and reliable features can be learnt for object recognition
and detection [127]. �erefore, In [127], they �rst generate multiple object proposals for target
objects. �en, they design an optimization algorithm to select proposals of common objects. �ey
consider that common objects should share similar appearance features and low spatial overlap
for their selection. Finally, the selected proposals are fused by their clustering-based algorithm
and low-rank based algorithm.

In addition to within-image co-salient object detection, co-salient object detection among
multiple images is another relative task. As illustrated in Fig. 2.6 (b), this task focuses on detecting
and segmenting the co-existed object from di�erent images. In this thesis, We only pay a�ention
to co-salient object detection across multiple images and following CoSOD mainly means this
case. Co-saliency can indicate the common visual a�ention among a group of images. To detect
co-saliency is a computational process. �e desired algorithm needs to infer both the intra-image
consistency and inter-image consistency without the category information. Note that intra-image
consistency de�nes the consistency of pixels of the target object in each image. On the other
hand, the inter-image consistency is used to link the feature consistency across di�erent images of
the same group. �ese two informative cues are the basic characteristics that co-saliency should
satisfy. Although CoSOD aims to detect common objects from a certain class, category information
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（a） (b)

Figure 2.6: Di�erent co-salient object detection tasks. (a) Within-image co-salient object detection,
where common salient objects are detected and segmented in the same single image; (b) Co-salient
object detection among a group of images, where co-existed salient objects from the same category
need to be detected and segmented among a group of images, usually over 2 images.

is not provided. �is is one of the di�culties of the CoSOD task. Existing CoSOD approaches
mainly focus on three key problems: 1) how to extract excellent feature representation for image ,
2) how to acquire valuable characteristics for co-salient objects, and 3) how to design frameworks
to formulate co-saliency with high e�ciency [131].

In the initial co-salient object detection methods, low-level features, like color histograms,
Gabor �lter, or SIFT descriptor, are introduced, because these features are considered to share
a certain consistency [131]. In [59], color and texture are deployed to represent region aspects
of local appearance. Color features are from the RGB, Lab, and YCbCr color spaces, and texture
features are from histograms of patchwords. �en, a co-multilayer graph is designed, where
the node-pair distance is computed as similarity to re�ect consistency. Besides, in [73], �ey
propose a hierarchical segmentation based model for co-saliency detection. �ey use regional
histograms, generated by quantizing each color channel in the Lab color space, to measure regional
similarities between region pairs. �ey also use regional contrasts within each image to evaluate
intra-saliency. In addition to low-level features, high-level features can embed more semantic
information. Speci�cally, high-level features here mean deep layers of a CNN. �erefore, high-
level features are not limited by appearance variation, shape variation, scale, or luminance of the
common objects. �us, high-level features can provide more deep concept-level characteristics of
target objects. Moreover, they can help the network learn both semantic inter-image consistency
and intra-image consistency. Additionally, high-level features can help distinguish di�erent objects



20 Siyue Yu

from the view of semantic information. However, there is no detailed information in high-level
features. It is di�cult to determine a speci�c instance based on semantic information. For example,
if the co-salient object is the same person but around a crowd of people, high-level features can
only provide the information of human but cannot distinguish di�erent people. In this case, low-
level features can be adopted to separate di�erent people. �ereby, both low-level and high-level
features are useful in co-salient object detection. �ey can not only individually handle CoSOD,
but also cooperate with each other.

In recent years, deep learning based co-salient object detection models have achieved great
performance. Most of them try to mine hidden pa�erns and learn discriminative feature repre-
sentation. Some works establish graphs to model the relationship among pixels from a group of
images [138, 44, 42, 37, 119, 43], then the co-salient objects can be mined with consistent features.
Some works adopt extra salient object detection to mine salient objects �rst and then conduct
CoSOD [140, 46, 139]. Besides, SAEF [101] proposes to use saliency proposals generated by unsu-
pervised deep learning based models �rst and then conduct CoSOD according to those proposals.
Other works [25, 143, 136] try to formulate shared a�ributes among input images to re�ect the
co-salient pixels and use classi�cation information as a supplement of semantic information. In
CoEGNet [23], edge detection is used for be�er structure prediction. More information on CoSOD
can be found in surveys[24, 131, 17].

In CoSOD, the main challenges is how to link both intra- and inter-image consistency. Recent
methods adopt a�ention mechanism to localize the common objects. However, their methods can
only response limited pixels. �ey are highly dependent on extra training-set and classi�cation
information to learn more discriminative co-salient features. �erefore, in this thesis, we thor-
oughly explore the intrinsic characteristics of co-salient objects and background to realize CoSOD
without using the SOD dataset or extra classi�cation information.



Chapter 3

Fast Pixel Matching for Video Object
Segmentation

Video object segmentation, which helps predict pixel-level foreground and background masks, is
a fundamental task in video understanding. It can assist other tasks by providing observation of
the target object, like how the target changes in sequences in video surveillance. In this chapter, a
new framework for mask-propagation based semi-automatic video object segmentation is studied,
where the �rst frame’s pixel-level mask is given as an indicator of the target object. �e task
needs to detect and segment the target object in the following video sequence. We deploy an
a�ention mechanism in a spatial direction to realize pixel matching between the reference frame
and current frame to localize the target object in the current frame. �en a channel a�ention
mechanism is deployed to enhance the matched feature further. Our method can obtain both
outstanding performance and high e�ciency.

3.1 Motivation

Video object segmentation (VOS) has been a�racting increasing a�ention in recent years due to
its signi�cance in video understanding. �e aim of this task is to track the target object from the
�rst frame to the end of the video sequence and segment all the pixels belonging to the tracked
target object, which faces problems of object occlusion and appearance variance.

To tackle these problems, some studies adopted online-training mechanism [10, 78, 105, 86].
Given the ground-truth mask of the �rst frame in a test video, they used it to �ne-tune the model
to obtain the object appearance. In the following inference process, they used the predicted masks

21
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Figure 3.1: �e IoU score (J ) versus running time on each frame (B) for various VOS approaches
on the DAVIS-2016 validation set. Our model can keep a good balance between performance and
e�ciency.

to further �ne-tune their models. With �ne-tuning, the models can adapt to object appearance
change, though, the online learning process is time-consuming and ine�cient.

Recently, boosted by the rapid development of mask-propagation based VOS models [123,
47, 65], a be�er balance between speed and accuracy is reached. �e core idea of these methods
is to use the estimated mask of the previous frame to guide the model to make segmentation
prediction for the current frame. For example, Perazzi et al. [86] proposed to use guidance of
previous predicted mask as guidance for the network to learn mask prediction and it proposed a
combination of o�ine and online training method to train the model. �ey �rstly used static image
datasets for o�ine training, and then used the �rst frame of a test video sequence to �ne-tune the
model. Oh et al. [123] proposed a Siamese encoder-decoder network with guidance of the previous
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mask to produce the target object probability map. Johnander et al. [47] o�ered an appearance
module which utilized a class-conditional mixture of Gaussians to model the foreground object
appearance for mask prediction. Sun et al. [97] considered both the mask of previous frame and
the optical �ow to predict target mask. �ese approaches are usually faster than online training
based VOS methods, but they are less adaptive to object appearance variation.

Both online training and mask-propagation based VOS models have limitations, a balance
between segmentation accuracy and running speed is crucial for VOS. Early mask-propagation
based networks use current frame with previous estimated mask [86] or adding �rst frame with
its provided mask as reference information [123] to directly predict the segmentation mask of
current frame. Additionally, Sun et al. [97] used optical �ow to build relationship between the
previous and the current frames. Di�erent from these methods, we design an a�ention-based
pixel-matching module to �nd the pixels belonging to the target object in the current frame based
on the feature similarity between the current frame and reference frames. In order to capture
the object feature without the interference of background, we choose to mask it out and discard
the background pixels. However, the target object is varying frame by frame, such process will
cause large object appearance variation. �erefore, we choose to use both the �rst frame and the
previous frame as references to provide object information for our pixel-matching module.

With the target object’s appearance information, we need to determine the target object
location, in terms of mask, in the current frame. We design our model based on mask-propagation
to keep e�ciency, where the non-local structure [116] is adopt to generate the object mask
using the obtained target object’s appearance information. Speci�cally, we design a video object
segmentation model called Non-local Pixel-Matching network with Channel A�ention (NPMCA-
net), which includes a newly designed pixel-matching module and a channel a�ention module.
�e pixel-matching module is designed to match pixels between the target frame and the reference
frames with given ground-truth mask or estimated mask. �e channel a�ention module is used to
augment the matched feature map to achieve be�er decoding. Extensive experiments have shown
that our network can achieve a new state-of-the-art performance without loss of e�ciency. To
be�er display the accuracy and speed trade-o�, we plot our IoU score versus speed in Fig. 3.1. Our
NPMCA-net can achieve both high performance and high e�ciency at the same time. Our main
contribution is summarized as follows:

• We propose a video object segmentation model (NPMCA-net) that strikes a good balance
between accuracy and running speed. �e model does not rely on online �ne-tuning
technique, so as to lower the computational demands, yet it can adaptively catch the target
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object’s appearance variation by using both image and predicted mask information in the
previous frame.

• Our proposed non-local pixel-matching module can e�ectively predict the target object
mask by aggregating multi-frame information. Moreover, the proposed model also provides
high level interpretability by visualizing the obtained feature maps.

• Our model achieves new state-of-the-art performances on DAVIS-2016 (IoU: 86.5%) and
DAVIS-2017 (IoU: 72.2%) datasets, using the same experimental se�ing.

3.2 Method

Our motivation is to make VOS model adaptive to object appearance variation and occlusion, and
keep a high e�ciency at the same time. �erefore, we design a new mechanism by matching the
pixels in target frame and reference frames (�rst and previous frames) to acquire the predicted
mask for the target frame.

3.2.1 Video Object Segmentation Architecture

Given a video with annotated mask for the �rst frame, we need to segment the rest frames
according to the given mask. In VOS, object appearance is o�en changing frame by frame for
the video object segmentation task. �us, it is not su�cient if we only care about the object
appearance in the �rst frame, especially when large object appearance variation occurs in the
middle of the video.

As illustrated in Fig. 3.2, we provide three di�erent kinds data for the three encoders: the
target frame encoder takes the current frame with the estimated labels of the previous frame as
4-channel input [123]; two parameter-shared reference frame encoders take the �rst frame and the
previous frame as input, respectively. Note that when providing data for reference frame encoders,
background pixels from the �rst frame and the previous frame are removed using groundtruth
(�rst frame) or estimated mask (previous frame). Whist for the target frame encoder, background
pixels are not masked-out since the masks for the current and previous frames are di�erent. �en,
the feature maps of reference and target frames are extracted by respective encoders. In this way,
we can obtain the changing object appearance information and target frame features.

Following that, the feature maps are input into our non-local pixel-matching module. �e
target feature map is matched with the feature maps from two references using our newly designed
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non-local pixel-matching module to localize the target objects. In this process, the target feature
is matched with two references one by one, individually. �erefore, there are two output feature
maps: one is the matched feature map of the target frame with the �rst frame, and the other one
is the matched feature map of target with previous frame. With the help of the previous frame,
our network can adapt to object appearance variation, since the gap between the current and
previous frames are smaller than that between the current and �rst frame. On the other hand, if
we only consider the previous frame, for the occlusion case, the model will lose the initial object
appearance for frames a�er the occlusion.

A�er that, the channel a�ention module is applied to strengthen features by allocating di�erent
weights for each feature channel. Once the features are matched and enhanced, the obtained two
feature maps are concatenated, where a 3 ⇥ 3 convolution layer is used to fuse the two feature
maps. Finally, the fused feature map is decoded by the decoder to predict and output the target
object masks. Our method can be viewed as an encoder-decoder process, which can directly obtain
the segmentation mask of current frame without any post-processing.

3.2.2 Non-Local Pixel Matching with Channel Attention

Our NPMCA-net contains two parts, including a non-local pixel-matching module (NLPMM)
and a channel a�ention module (CM). �e CM is in series with the NLPMM. �e NLPMM is
a non-local structure which can match pixels over the whole feature map. And CM conducts
self-a�ention through the channel dimension instead of the spatial dimension to strengthen the
feature representation. With the combination of these two modules, our network can obtain
feature representations of the foreground objects for the target frame. �e details are discussed as
follows.

Non-Local Pixel-Matching Module. �e non-local pixel-matching module is one main
module of our NPMCA-net, which is used to obtain object appearance of the target frame and
localize the target object simultaneously by matching the feature maps of the reference frames and
the target frame. Di�erent from the matching process using convolution layers [94] or using metric
learning to pull in similar embedding vectors and push away di�erent embedding vectors [104, 12],
we directly compute similarities between pixels. �e framework of NLPMM is illustrated in
Fig.3.4(a). �e inputs of this module are the feature map of reference frame and the feature map of
target frame (de�ned as 5A4 5 2 R�⇥, ⇥⇠ and 5C0A 2 R�⇥, ⇥⇠ , where � ,, ,⇠ are the height, width,
and channel number, respectively) extracted from respective encoders. In order to reduce memory
and improve e�ciency for our approach, once feature maps are fed into the module, a 3 ⇥ 3
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Figure 3.3: (a) �e process of similarity computation (Eq.(3.1)). �e two reduced feature maps
are reshaped into 5A4 5 2 R#⇥⇠

4 and 5C0A 2 R⇠
4 ⇥# , and the similarity is computed by the matrix

multiplication. (b)�e process of target object matching and localization (Eq.(3.3)).
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Figure 3.4: (a) Framework of non-local pixel-matching module (NLPMM). Our NLPMM has two
inputs,including the reference feature map and the target feature map. �e output is the matched
feature map. (b) Visualization of output feature map from NLPMM. �e matched feature map can
coarsely acquire the foreground object appearance and its location.
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convolution layer with padding is used to reduce the channel number of input feature maps from
⇠ to ⇠/4, the new feature maps are with size 5A4 5 2 R�⇥, ⇥⇠

4 and 5C0A 2 R�⇥, ⇥⇠
4 , respectively.

A�er that, the two reduced feature maps are reshaped to 5A4 5 2 R#⇥⇠
4 and 5C0A 2 R#⇥⇠

4 , where
# = � ⇥, . �e similarity between pixels in the two feature maps is computed:

( = 5A4 5 5 )C0A , (3.1)

with ( (8, 9) measuring the similarity between 8C⌘ position on reference feature map and 9C⌘ position
on target feature map. �e similarity of each pixel is calculated in a non-local way, where all
positions of the two feature maps are included. Meanwhile, it computes the relation between
two spatial pixels from two temporal frames because the inputs are from a temporal sequence.
�erefore, it is a space-temporal similarity calculation. A�er that, instead of directly using the
calculated result, we apply so�max to normalize the non-local similarity map ( , and obtain ( 0

(( 0 2 R#⇥# , # = � ⇥, ), with its element value ( 0(8, 9) being

( 0(8, 9) = 4G? (( (8, 9))Õ#
8=1 4G? (( (8, 9))

. (3.2)

With Eq.(3.1) and Eq.(3.2), we can generate the relations between any two pixels in the target
feature map and the reference feature map. �e pixel pair with a large similarity value has high
probability belonging to the same pixel of one foreground object. In this case, we can not only
match the object appearance but also localize the object. Finally, the new matched feature map
5<0C2⌘43 is calculated by a matrix multiplication between the transpose of the reduced reference
feature map 5A4 5 and the non-local similarity map ( 0 ,

5<0C2⌘43 = 5 )A4 5 (
0. (3.3)

Finally, the matched feature map is reshaped back to 5<0C2⌘43 2 R�⇥, ⇥⇠
4 .

�e coarse mask of the target frame can be obtained by the matrix multiplication between
the reference feature map and the similarity map, namely, we can use Eq.(3.3) to obtain the
pixels of foreground objects in the target frame. To more intuitively understand the matching
and localization process, we show the process in Fig.3.3. Fig.3.3(a) shows how the similarity
map is computed, and Fig.3.3(b) displays how the matching process can also accomplish the
localization. �erefore, we can obtain foreground object appearance and its location at the same
time. Besides, visualization of the output of our non-local pixel-matching module is shown in
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Fig.3.4(b). It can be found that this matching module is able to localize the object and mask the
target object appearance. �e highlighted part (warm color) in the “matched with frame T-1”
be�er demonstrates the matched pixels for the target object. When there is only frame 0 to be
referred, it is di�cult for the network to �nd out the pixels for the moving object in the case of
large appearance variation.

Channel Attention Module. We adopt a channel a�ention module a�er the non-local pixel-
matching module to strengthen the feature representation of foreground object in this task. �e
details of our channel a�ention module is illustrated in Fig.3.5(a). �e input for this module 58= is
the output feature map of non-local pixel-matching module, i.e., 58= = 5<0C2⌘43 and 58= 2 R�⇥, ⇥⇠

4 .
In order to compute the inter-dependencies between di�erent channels, 58= is �rst reshaped into
58= 2 R#⇥⇠

4 , where # = � ⇥, . �en the channel a�ention map � 2 R⇠
4 ⇥⇠

4 is computed by:

� = 5 )8= 58=, (3.4)

�0(8, 9) = 4G? (�(8, 9))Õ#
8=1 4G? (�(8, 9))

, (3.5)

where �(8, 9) measures the relationship between 8C⌘ channel and 9C⌘ channel of 58= . �en matrix
multiplication is applied to get the strengthened feature map. Mathematically, the strengthened
feature is:

5� = 58=�0. (3.6)

�en the strengthened feature map 5� is reshaped back into the size of input feature map,
i.e., 5� 2 R�⇥, ⇥⇠

4 . �e �nal output of channel a�ention module is the weighted sum of the
strengthened feature map and the module input feature map 58= :

5>DC = W 5� + 58=, (3.7)

where W � 0 is a learned parameter. We do not apply any convolution layer in the channel
a�ention map. �e channel a�ention map is in series with the non-local pixel-matching module
to strengthen the representation of feature map instead of adopting a parallel mode in [28]. �is
module can help further lay stress on the channels which are more related to the semantic of the
target object. In this case, the features can be further strengthened. Some visualizations of the
output feature map of the channel a�ention module are displayed in Fig.3.5(b).
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Figure 3.5: (a) Framework of channel a�ention module (CM). �e input of CM is the output of
NLPMM (matched feature map), and it outputs the strengthened feature map. (b) Visualization of
Output feature map from CM. CM is able to strengthen the feature representation.
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3.2.3 Two-stage Training Method

We take two-stage training for our network. Firstly, we pre-train our NPMCA-net through static
images. �en, we use the video object segmentation datasets to �ne-tune the model. We use IoU
loss in [65, 64] and Adam [50] optimizer with randomly cropped resolution of (256 ⇥ 432) patches
for both pre-training and �ne-tuning. All experiments are running on one NVIDIA GeForce 2080
Ti GPU.

Pre-training on static images. Pre-training on static images for video object segmentation
is becoming popular recently since it can help the network adapt to di�erent foreground object
appearance. We follow several successful practice in [123, 86, 82] to pre-train our network by
applying random a�ne transformation on static images. Speci�cally, we apply di�erent random
a�ne transformation on both the foreground from one dataset and the background from another
dataset to simulate a video sequence. We use saliency datasets MSRA10K [15], ECSSD [124],
segmentation datasets Pascal VOC dataset [20] and COCO [67]. In this case, the network can
be adapted to di�erent object appearance and categories, so as to avoid easy over-��ing. For
pre-training, we set a �xed learning rate as 14-5.

Fine-tuning on videos. �en, we �ne-tune the pre-trained model on video object segmenta-
tion dataset. We only use DAVIS-17 [90] training set for �ne-tuning. During training, we sample
three frames in temporal order to obtain temporal information. In order to acquire big variation of
object appearance for a long time, we randomly skip frames for sampling. �e maximum random
skip is 5 and the learning rate for �ne-tuning is set as 14-6.

3.2.4 Inference

Our network is based on the assumption that the ground-truth mask of the �rst frame is given for
semi-supervised video object segmentation. In other words, the �rst frame is set as the reference
frame for all the rest frames. �erefore, to make our network e�cient, we only compute the
feature map of the �rst frame once for a test video clip. Following the architecture of our approach,
we use previous frame with predicted segmentation mask as another reference frame. We also
follow [123] to set three di�erent scale sizes and compute their average as the �nal output.

Multi-object case. We use so�max aggregation [123] to so�ly combine multiple objects.
Finally, the output probability map is computed by:

%8,< =
?8,</(1 � ?8,<)Õ"
9=0 ?8, 9/(1 � ?8, 9 )

, (3.8)
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where ?8,< is the output probability of instance< at position 8 .< = 0 is for background and" is
the total number of instances. We use Eq.(3.8) to compute the probability map of multi-objects
and apply it to next frame inference.

3.3 Experiment

3.3.1 Implementation Details

Encoder. We design three encoders based on ResNet-50 [31] for three inputs (two references and
one target). Like [123], the target frame encoder takes 4-channel inputs and two reference frame
encoders take 3-channel inputs. Instead of using res5 in [123], we take res4 as the �nal encoded
feature map, whose channel number is 1024. �is is because the feature map of res5 is with low
resolution, making it inaccurate for small objects. On the other hand, three res5 encoders will
cause large memory occupation.

Decoder. A�er the fusion layer, the fused feature map is �nally fed into the decoder. Similar
to [123], the decoder also takes the encoder stream through skip-connection as input to produce
the mask. With the help of skip-connection, the high resolution feature can replenish the missing
information. Finally, the feature map is gradually upsampled with a factor of two till it reaches
the same size as input.

3.3.2 Experiment Results

We evaluate our network on video object segmentation datasets, DAVIS-2017 [90], DAVIS-2016 [88]
and SegTrack-v2 [56]. �e evaluation metrics include mean intersection-over-union (IoU) of
predicted mask and the ground-truth (J ), contour accuracy between contour points on predicted
mask and the ground-truth (F ), and the average of the two metrics (J&F ).

DAVIS-2017. DAVIS-2017 is a multi-object dataset. �ere are 90 videos in total, 60 for training
and 30 for validation. We evaluate our method on its validation set. �e comparison results with
recent state-of-the-art approaches are shown in Table 3.1. �e results are listed from the lowest
score of J to the highest score. �e upper part is from approaches with online-learning or with
optical �ow. It can be found that our method achieves comparable scores with the best performing
ones. Our score is slightly lower than PReMVOS [75], but PReMVOS needs longer running
time than all other approaches because both online-learning and optical �ow need expensive
computational cost. We reach the best performance compared with all other methods without
online-learning or optical �ow. It can be demonstrated that our NLPMM can realize �nd out where
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the target object is in current frame. Further, we directly using masked-out object as the input
for reference, making our model less sensitive to the in�uence of backgrounds while focusing on
the object itself. By doing this, our method can capture enough object features. Besides, using
the masked-out objects of the �rst frame and the previous frame as references provides enough
information for handling appearance variation.

DAVIS-2016. DAVIS-2016 contains 50 videos (30 for training and 20 for validation) for single-
object video object segmentation. We report comparison results of the validation set in Table 3.2.
It can be found that our approach achieves be�er performance than the methods using pixel-
matching or metric learning, such as PLM [94], PML [12], FEELVOS [104], and RGMP [123]. We
also obtain higher score than other methods without online learning. For metric J , our method
is 1.7% higher than STM [82], whist for the contour accuracy, our method is 0.8% lower than
STM [82], this might be caused by the adopted IoU loss. Moreover, our results are competitive with
online-learning based methods. According to the running time listed in Table 3.2, our approach
can achieve a good balance between accuracy and e�ciency. It demonstrates that our NLPMM is
able to localize moving objects with masked-out object references. Additionally, pre-training with
statistic images also helps network to adapt to di�erent object classes. In this way, our approach
does not rely on online training to learn the object information of current video.

SegTrack v2. We also evaluate our network on the SegTrack v2 [56] dataset. �e results are
shown in Table 3.3. It can be found that our network also achieve competitive performance on
SegTrack v2 dataset under the same level comparison. �erefore, our network has competitive
generalization ability. Our performance even defeat MSK [86] and MaskRNN [38], where online
training is used. We set the same training dataset as DMM-net. it can be seen that our method can
obtain comparable results with DMM-net. However, we obtain lower performance than DyeNet.
�is phenomenon may be caused by the fact that they use template matching, which predicts
bounding box of the target object �rst then conduct segmentation. In this way, much background
noise can be reduced. In the SegTrack v2 dataset, there are several videos with the background
very similar to the target object. In such cases, template can be�er decrease the disturbance of
background. However, for other datasets, such as, DAVIS17, DAVIS16, such conditions are not
satis�ed, the performance of DyeNet is lower than ours, as reported in Table 3.1 and Table 3.2.

3.3.3 �alitative Results

�alitative results on two DAVIS datasets are shown in Fig. 3.6 and Fig. 3.7. For each displayed
video, we choose 5 frames with the cases of large object appearance variation or occlusion. It can
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Table 3.1: Evaluation on DAVIS-17 validation set. ‘OL’ denotes online-learning. ‘OF’ means using
optical �ow. Our NPMCA-net obtains a score of 3% higher than STM [82].

Method OL OF J (%) F (%) J&F (%) Time (s)

OSVOS [10] X 56.6 63.9 60.3 10

OnAVOS [105] X 61.6 69.1 65.4 13

OSVOS-S [78] X 64.7 71.3 68.0 4.5

AGSS-VOS [65] X 64.9 69.9 67.4 -

CINN [6] X 67.2 74.2 70.7 >120

PReMVOS[75] X X 73.9 81.8 77.8 -

VideoMatch[39] 56.5 68.2 62.4 0.35

MAARU [29] 61.3 65.3 63.3 0.13

RANet [118] 63.2 68.2 65.7 -

RGMP [123] 64.8 68.6 66.7 0.28

DIPNet [36] 65.3 71.6 68.5 -

A-GAME [47] 67.2 72.7 70.0 -

DMM-Net [129] 68.1 73.3 70.7 -

FEELVOS [104] 69.1 74.0 71.6 0.51

STM [82] 69.2 74.0 71.6 -

TVOS [142] 69.9 74.7 72.3 0.027

NPMCA-net (Ours) 72.2 77.4 74.8 0.25
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Table 3.2: Evaluation on DAVIS-16 validation set. ‘OL’ denotes online-learning. ‘OF’ means using
optical �ow. Our NPMCA-net can even achieve a bit higher performance than methods with
online-learning.

Method OL OF J (%) F (%) J&F (%) Time (s)

MSK [86] X X 79.7 75.4 77.6 12

OSVOS [10] X 79.8 80.6 80.2 7

MaskRNN [38] X X 80.7 80.9 80.8 -

CINN [6] X 83.4 85.0 84.2 >30

Lucid [48] X X 83.9 82.0 83.0 -

PReMVOS [75] X X 84.9 88.6 86.8 >30

OSVOS-S [78] X 85.6 86.4 86.0 4.5

OnAVOS [105] X 86.1 84.9 85.5 13

DyeNet [62] X 86.2 - - 2.32

PLM [94] 70.0 62.0 66.0 0.3

PML [12] 75.5 79.3 77.4 0.28

VideoMatch[39] 81.0 - - 0.32

FEELVOS [104] 81.1 82.2 81.7 0.45

RGMP [123] 81.5 82.0 81.8 0.13

A-GAME [47] 82.0 82.2 82.1 0.07

MAARU [29] 83.9 83.8 83.9 0.12

RANet [118] 85.5 85.4 85.5 0.13

DIPNet [36] 85.8 86.4 86.1 0.92

STM [82] 84.8 88.1 86.5 0.15

NPMCA-net (Ours) 86.5 87.3 86.9 0.11
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Table 3.3: Evaluation on SegTrack v2. �e IoU peformance for the baseline methods are from
[123] and [129]. ‘OL’ denotes online-learning.

Method OL IoU (%)

OnAVOS [105] X 66.7

MSK [86] X 70.3

MaskRNN [38] X 72.1

CINN [6] X 77.1

Lucid [48] X 77.6

RGMP [123] 71.1

DIPNet [36] 73.8

DMM-Net [129] 76.7

DyeNet [62] 78.3

NPMCA-net (Ours) 76.1
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Table 3.4: Training methods analysis on DAVIS-2017 validation set. �e two-stage training method
helps our NPMCA-net be�er adapt to di�erent categories. With only DAVIS-2017 training set, the
network is easy to get over-��ing.

Training Method J (%) F (%)

Pre-train only 65.7 71.3

Fine-tuning only 41.0 43.9

Full Training 72.2 77.4

be found that our model can handle di�erent challenges. For example, our model performs well
with large object appearance variation cases like in row 2 and 3 in Fig. 3.6 and row 1 in Fig. 3.7.
Besides, our model can also segment each object when they are occluded by background as shown
in row 1 in Fig. 3.6 and row 2, 3 in Fig. 3.7. �e qualitative comparison between our model and
other methods are shown in Fig. 3.8.

3.3.4 Ablation Studies

Two-stage training method.

We �rstly conduct the ablation study for the two-stage training method, and the results are
displayed in Table 3.4. It is surprising to �nd that the performance of pre-train-only case is much
be�er than �ne-tune-only case. Both the intersection-over-union score (J ) and the contour
accuracy (F ) of pre-train-only are almost 25% larger than of �ne-tuning-only. It proves that
two-stage training is necessary. If we only train on DAVIS-2017, the categories are far less enough.
It can also be found that our approach will perform be�er when more categories are used for
training. �e combination of pre-train and �ne-tuning achieves the best performance, because
pre-training help our model adapt to large categories and �ne-tuning help our model to obtain
temporal information and adapt to video sequence.

Di�erent Modules.

We also conduct ablation experiments with some components disabled or removed, and the results
are displayed in Table 3.5. We test three di�erent combinations of the channel a�ention module
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Table 3.5: Network module analysis on DAVIS-2017 validation set. ‘CM’ denotes to the channel
a�ention module, and ‘PM’ denotes that the input of current frame with the predicted mask from
the previous frame.

CM PM J (%) F (%)

1 X 68.8 73.7

2 X 66.9 72.6

3 X X 72.2 77.4

and the use of the predicted mask from the previous frame. If we remove our channel a�ention
module, the IoU score and the contour accuracy are 3.4% and 3.7% lower than the full combination,
respectively. �erefore, we can conclude that the channel a�ention module can strengthen the
feature representation to help our network be�er adapt to foreground pixels. On the other hand, if
we take out the predicted mask from the previous frame, the IoU score and the contour accuracy
are 5.3% and 4.8% lower than the full combination, respectively, which proves that the predicted
mask from the previous frame can guide our network to segment the foreground object. Overall,
the full NPMCA-net achieves the best performance. It demonstrates that the channel a�ention
module and the use of the predicted mask for the previous frame bene�t from each other.

Encoder Setting.

Finally, we conduct the ablation study on the se�ing of encoders with only training with DAVIS-
2017 dataset. we conduct the experiment to show the necessity of the parameter-shared encoder
for the two references and di�erent encoder for the target frame. �e results is shown in Table 3.6.
‘One encoder’ denotes to use same encoder for the three inputs and ‘Two encoders’ denotes to
parameter-shared se�ing. It can be found that with only one encoder, the result is almost 5% lower
than the two-encoder se�ing. VOS aims to segment the target object from the �rst frame to the end.
To capture consistent reference object feature information, we set parameter-shared encoder for
the �rst frame and previous frame (where background is masked out). Parameter-shared can map
the input reference features into the same representation space, thereby the two reference frames’
information can be equally treated. Additionally, parameter-shared can reduce parameters for
training. If we use just one encoder for the �rst, the previous and the target frames, the network
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Table 3.6: Encoder se�ings analysis on DAVIS-2017 validation set. ‘One encoder’ denotes to using
same encoder for all the inputs ‘Two encoders’ denotes to the se�ing of parameter-shared only
for the reference frames.

Encoder Se�ing J (%) F (%)

One encoder 34.7 38.6

Two encoders 41.0 43.9

74 75 76

07 08 1500

00

Figure 3.9: Limited Cases of Our Network

will be confused, because the encoder for the current frame needs to encode both image and
previous predicted mask information, where the background is not masked out. However, for
the �rst and the previous frames, the background is masked out, and we only use the foreground
pixels of the frames.

3.3.5 Limitation Discussion

Some failure cases from our model are shown in Fig. 3.9. When foreground objects are overlapped,
our model tends to produce incorrect segmentation for those occluded objects, especially when
the overlapped objects are with the same category. Nevertheless, if the foreground objects are
well separated a�erwards, our model can adjust to the correct tracking and segmentation status
due to the use of the �rst frame information, like in row 1 of Fig.7. �is example shows that our
method can catch back to the target object a�er occlusion. However, when there is occlusion for
multi-objects, especially when the targets are in the same category, our method will be confused
and lose the target (like in the second row of Fig. 7). To overcome this limitation, we consider that
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we can generate some prototypes to represent each object and push away their feature distances
to make the network be sensitive to di�erent object in the future.

3.4 Conclusions

In this chapter, we have proposed a new video object segmentation network NPMCA-net, which
combines a non-local pixel-matching module and a channel a�ention module in series connection.
Our network achieves the state-of-the-art performance on both DAVIS-2017 and DAVIS-2016
validation set. Additionally, our NPMCA-net has a good generalization ability. Moreover, our
network does not need any post-processing, so as to keep a good balance between accuracy and
e�ciency. In the future,we consider that we can generate some prototypes to represent each object
and push away their feature distances to make the network be sensitive to di�erent object.



Chapter 4

Structure Consistent Weakly
Supervised Salient Object Detection

Salient object detection can reveal human a�ention when looking at a picture. �is task can help
o�er foreground information to �lter noise from the background. �e saliency prediction can give
a target hint for video object segmentation when there are no reference target masks. �erefore,
in this chapter, the task of salient object detection is studied. Although excellent performance
has been achieved recently, it needs signi�cant pixel-level annotations. To save annotation cost,
we focus on weakly supervised salient object detection which is supervised by scribbles. �e
intrinsic characteristic of an object, which is the consistency of RGB information and position
information, is considered to help the network learn integral salient object structures. Our method
can complement the limited information provided by scribbles.

4.1 Motivation

Salient object detection (SOD) aims to detect the most a�ractive regions in an image according to
the human perception. It can be further applied in di�erent computer vision tasks, such as image-
sentence matching [41], image segmentation [96] and image retrieval [107]. In the last decade,
deep learning based salient object detection algorithms [13, 68, 91] have become popular due to
their superior performance. �ese methods usually design di�erent modules to help their networks
learn be�er feature representations for saliency prediction. However, they are highly dependent
on pixel-wise saliency labels, which are time-consuming and costly with manual annotations.

In recent years, sparse labeling methods have a�racted much a�ention. Many weakly su-

45
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GT WSSA Ours

747
447
108 MSWImage

Figure 4.1: Our predicted saliency maps are compared with that of other weakly supervised
methods. From le� to right: Input image; Ground-truth; MSW [130]; WSSA [134]; Ours.

pervised salient object detection methods have been proposed to improve label e�ciency while
maintaining model performance. Image level labels are utilized in some methods [109, 57] to learn
salient object detection. However, these works usually use image-level tags for saliency localization
and then further train their models with predicted saliency maps through multiple-stage learning.
Besides, some other works [80, 133] train their models with noisy pseudo labels from handcra�ed
methods and/or predicted maps by other weakly supervised SOD models, where pre-processing
steps are used to clean noisy labels. All above mentioned works need complex training steps to
obtain �nal saliency maps.

Additionally, scribble annotations are proposed recently due to their �exibility to label wind-
ing objects and low-cost compared to annotating per-pixel saliency masks. However, scribble
annotations cannot cover the whole object region or directly provide object structure. �erefore,
edge detection is used in the framework [134] to obtain object boundaries, and the SOD model
is trained with predicted edge maps from other trained edge detection models. However, this
step introduces extra data information into the SOD training process to recover integral object
structure. �e training process of [134] is also complex, as they design a scribble boosting scheme
to iteratively train their model using initial saliency predictions to obtain higher quality saliency
maps.

In this thesis, we aim to tackle the aforementioned issues in existing weakly supervised SOD
methods. Speci�cally, we aim to design a high performance SOD method with scribble annotations
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via one-stage end-to-end training, where no pre/post-processing steps nor extra supervision (e.g.,
edge maps) will be used. To mitigate the issue of poor boundary localization caused by scribble
annotations and partial cross-entropy loss [134], we design a local saliency coherence loss to
provide supervision for unlabeled points, based on the idea that points with similar features and/or
close positions should have similar saliency values. By doing this, we take advantage of intrinsic
properties of an image instead of extra edge or other assisting information to help our model learn
be�er object structure and predict integral salient regions.

Besides, we �nd that weakly supervised SOD models fail to predict consistent saliency maps
with di�erent scales of the same image as input. To handle this problem, we propose a saliency
structure consistency loss, which could be viewed as a regularization technique to enhance the
model generalization ability.

Additionally, global context information can infer the relationship of di�erent salient regions
and help network predict be�er results [13]. High-level features can provide be�er semantic
information and low-level features can capture rich spatial information [35]. In the decoder layers,
we design an aggregation module called AGGM to integrate all information for be�er feature
representations using the a�ention mechanism [93].

With our specially designed loss functions and network structures, our model can predict
saliency maps close to human perception. Some obtained saliency maps are illustrated in Fig. 4.1.
Our method predicts smoother and integral saliency objects even for the challenging cases with
background disturbance, object shadow, and multiple objects. In general, our main contributions
can be summarized as:

• A local saliency coherence loss is proposed for scribble supervised saliency object detection,
which helps our network to learn integral salient object structures without any extra assisting
data or complex training process.

• A self-consistent mechanism is introduced to ensure that consistent saliency masks will be
predicted with di�erent scales of the same image as input. It is an e�ective regularization to
enhance the model generalization ability.

• An aggregation module named AGGM is designed in the encoder-decoder framework for
weakly supervised SOD, which e�ectively aggregates global context information as well as
high-level and low-level features.

• Comprehensive experiments show that our approach achieves a new state-of-the-art per-
formance compared with other scribble supervised SOD algorithms on six widely-used
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benchmarks, with an average gain of 4.60% for F-measure, 2.05% for E-measure and 1.88%
for MAE over the previous best performing method.

4.2 Methodology

4.2.1 Overview

Firstly, the training dataset is de�ned as * = {G=,~=}#==1, where G= is the input image, ~= is the
corresponding label, and # is the total number of training images. Note that, in our task, the label
~= is annotated as scribble.

�e whole network and learning framework are shown in Fig. 4.2. �e network contains an
encoder and a decoder, and the designed aggregation module AGGM is applied in each layer of
the decoder. In this way, the three kinds of information can be be�er propagated into next layers.
Sigmoid function is applied on the output of the decoder to normalize the output saliency values
to [0, 1]. �us, our network receives the input image and outputs the corresponding saliency
map directly. During training, the proposed local saliency coherence loss and saliency structure
consistency loss are applied with the partial cross entropy loss as the dominant loss to supervise
the �nal predicted saliency map. Meanwhile, to facilitate training, we enforce an auxiliary loss,
which includes the local saliency coherence loss and the partial cross entropy loss on each sub-
stage to supervise the intermediate low-resolution saliency maps. Note that the intermediate
low-resolution saliency maps are upsampled to the corresponding scale of G= to supervise the
intermediate low-resolution saliency map. In the following sections, we will discuss the AGGM
and each loss in details.

4.2.2 Aggregation Module

Our network follows an encoder-decoder framework. �e encoder layers learn di�erent features
of the salient regions and further propagate them to the decoder. Since some detailed features
might be diluted, each decoding layer uses output of preceding layer, the features of corresponding
encoding layer and the global context information, which is the �nal output of the encoder, as
inputs to predict salient regions. However, we argue that each input should be allocated to di�erent
weights for each decoding layer as the in�uence of each input are di�erent for di�erent images. To
learn the importance of each input feature by self-learning, our aggregation module is designed
as in Fig. 4.3. 3 ⇥ 3 convolution layers and global average pooling layers are applied to learn the
importance of each input feature. Once the weights are obtained, normalization is applied, which
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Figure 4.3: Framework of AGGM, where ‘GAP’ denotes to global average pooling, ‘⇥’ is multipli-
cation, ‘+’ is addition and ‘/’ is division.

can be wri�en as:
5>DC =

F⌘ 5⌘ +F6 56 +F; 5;
F⌘ +F6 +F;

, (4.1)

where 5⌘ is the high-level feature, 56 is the global context information, and 5; is the low-level
feature. �enF⌘ ,F6 andF; are the obtained corresponding weights. Note that, the size of 5⌘ and
56 are �rst resized into the same size of 5; . With Eq. (4.1), the network can aggregate multi-level
features and with our AGGM, the importance of each feature can be learned by self-learning.

4.2.3 Local Saliency Coherence Loss

For scribble annotations, there are a great number of unlabeled pixels. With only the given scribble
labels, it is hard to learn rich information of salient regions. In addition, there is no category
information in the SOD task, making it more di�cult to learn object structures. �erefore, the
network needs other supervision to get be�er saliency maps with clear object boundaries. In this
case, we design a local saliency coherence loss to help network predict smooth saliency maps
with the scribble annotations. We consider that for pixel 8 and pixel 9 of the same input image, if
they are with similar features or close positions, they tend to have similar saliency scores. On the
other hand, if two points do not share similar features or they are distant from each other, they
are more likely to have di�erent saliency scores. We �rst de�ne the saliency di�erence between
two di�erent pixels 8 and 9 as follows:

⇡ (8, 9) = |(8 � ( 9 |, (4.2)
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where (8 and ( 9 are the predicted saliency scores of pixels 8 and 9 , respectively. We use !1 distance
to directly compute the discrepancy of the saliency scores.

Instead of computing the similarities between any two pixels in an image, which introduces
too much background noise and takes too much GPU memory, we compute the discrepancy of a
reference point with its adjacent points in a : ⇥ : kernel size. However, if we directly compute the
loss using Eq. (4.2), the network fails to distinguish the salient region with background, especially
for the pixels close to the boundaries. For pixels around object boundaries, their saliency scores
are not always similar with their adjacent pixels. �erefore, we set a similarity energy between
two pixels 8 and 9 , which is de�ned based on Gaussian kernel bandwidth �lter [81], to draw close
saliency scores for pixels with similar features and/or with small distance. �en, the �nal local
saliency coherence loss is designed as:

L;B2 =
’
8

’
9 2 8

� (8, 9)⇡ (8, 9), (4.3)

where  8 is the region covered by a : ⇥: kernel around pixel 8 , and � (8, 9) denotes to the following
�lter:

� (8, 9) = 1
F

exp(� k% (8) � % ( 9)k2
2f2%

� k� (8) � � ( 9)k2
2f2�

), (4.4)

where 1/F is the normalized weight, % (·) and � (·) are the position and RGB color of a pixel,
respectively. f% and f� are hyper parameters for the scale of Gaussian kernels. k · k2 is an !2
operation.

�e local saliency coherence loss L;B2 enforces similar pixels in the kernel to share consistent
saliency scores, which further propagates labeled points to the whole image during training. With
the partial cross entropy loss to supervise labeled points, the network can acquire enlarged salient
regions with limited labels without any extra information.

4.2.4 Self-Consistent Mechanism

For a good salient object detection model, saliency maps predicted with di�erent scales of the same
image should be consistent. We de�ne a salient object detection function as 5\ (·) with parameter
\ , and a transformation as ) (·). �en, for an ideal 5\ (G), it should satisfy this equation:

5\ () (G)) = ) (5\ (G)) . (4.5)

However, we �nd that it is di�cult for weakly supervised SOD networks to predict consistent
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Figure 4.4: Comparison of predicted saliency maps for an input image with di�erent scales: (a)
without self-consistent mechanism; (b) with self-consistent mechanism.

saliency maps with di�erent input scales, as shown in Fig. 4.4(a). �erefore, by considering
Eq. (4.5) as a regularization, we design a structure consistency loss on predicted saliency maps
from di�erent input scales, which is de�ned as follows:

LBB2 =
1
"

’
D,E

U
1 � ((�" ((+D,E, (#D,E)

2

+ (1 � U) |(+D,E � ( #D,E |,
(4.6)

where ( # is down-scaled predicted saliency map of a normal input image, (+ is the predicted
saliency map of the same image with down-scaled size, and " is the number of pixels. SSIM
denotes to the single scale SSIM [117, 30] and U = 0.85 [30]. With Eq. (4.6), the network can learn
more information on object structure and enhance generalization ability for di�erent input scales.
As shown in Fig. 4.4(b), with our self-consistent mechanism, the network can adapt to di�erent
scales and predict saliency maps with be�er object structure.

4.2.5 Objective Function

As shown in Fig. 4.2, our �nal loss function is the combination of a dominant loss and auxiliary
losses following GCPANet [13]. Speci�cally, a 3 ⇥ 3 convolution layer is conducted to squeeze
the channel to 1 at each stage of the decoder to compute the saliency scores. �en, our proposed
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losses are used to cooperate with the partial cross entropy loss, which can be wri�en as:

L24 =
’
82Ỹ

�~8;>6~̂8 � (1 � ~8);>6(1 � ~̂8), (4.7)

where ~ denotes for ground-truth, ~̂ is the predicted values and Ỹ is the set of labeled pixels via
scribble annotations.

�e auxiliary loss L0DG and dominant loss L3>< can be wri�en as:

L@
0DG = L24 + VL;B2 @ 2 {1, 2, 3} , (4.8)

L3>< = L24 + LBB2 + VL;B2 , (4.9)

where the hyper-parameter V shares the same value in Eq. (4.8) and Eq. (4.9), and @ in Eq. (4.8)
stands for the index of a decoder layer.

Finally, the overall objective function of our network is:

LC>C0; = L3>< +
3’
@=1

_@L@
0DG , (4.10)

where _@ is to balance the auxiliary loss of each stage, and we take the same value as in GC-
PANet [13].

4.3 Experiments

4.3.1 Implementation Details and Setup

Implementation Details. We use GCPANet [13] with backbone of ResNet-50 [31] pretrained on
ImageNet [19] as baseline. �e partial cross entropy loss (Eq. (4.7)) is computed for background and
foreground individually. F , f% , and f� in Eq. (4.4) are set to 1, 6 and 0.1, respectively. V in Eq. (4.8)
and Eq. (4.9) is set to 0.3. �e model is optimized by SGD with batch size of 16, momentum of 0.9
and weight decay of 5 ⇥ 10-4. Additionally, we use triangular warm-up and decay strategies with
the maximum learning rate of 0.01 and the minimum learning rate of 1 ⇥ 10-5 to train the network
with 40 epochs. During training, each image is resized to 320⇥320 with random horizontal �ipping
and random cropping. In the inference stage, input images are simply resized to 320⇥ 320 and then
fed into the network to predict saliency maps without any post-processing. All experiments are
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Table 4.1: Comparison with other state-of-the-art approaches on 3 benchmarks: ECSSD, DUT-
OMRON, and PASCAL-S. "means that larger is be�er and # denotes that smaller is be�er. �e
best performance on each dataset is highlighted in boldface under di�erent cases of supervision.
‘Sup.’ denotes for supervision information. ‘F’ means fully supervised. ‘I’ means image-level
supervised. ‘S’ means scribble-level supervised. ‘M’ means multi-source supervised and ‘Un’ is for
unsupervised. ‘†’ means two-round training.

ECSSD DUT-OMRON PASCAL-S

Methods Sup. �V " ⇢b " "�⇢ # �V " ⇢b " "�⇢ # �V " ⇢b " "�⇢ #

DGRL [110] F 0.9027 0.9371 0.043 0.7264 0.8446 0.0632 0.8289 0.8353 0.1150

PiCANet [69] F 0.8864 0.9128 0.0464 0.7173 0.8407 0.0653 0.7979 0.8330 0.0750

PAGR[141] F 0.8718 0.8869 0.0644 0.6754 0.7717 0.0709 0.7656 0.7545 0.1516

MLMSNet [121] F 0.8856 0.9218 0.0479 0.7095 0.8306 0.0636 0.8129 0.8219 0.1193

CPD [122] F 0.917 0.925 0.037 0.747 0.866 0.056 0.824 0.849 0.072

AFNet [26] F 0.9008 0.9294 0.0450 0.7425 0.8456 0.0574 0.8241 0.8269 0.1155

PFAN [145] F 0.8592 0.8636 0.0467 0.7009 0.7990 0.0615 0.7544 0.7464 0.1372

BASNet [91] F 0.880 0.916 0.037 0.756 0.869 0.056 0.775 0.832 0.076

GCPANet [13] F 0.9184 0.927 0.035 0.7479 0.839 0.056 0.8335 0.861 0.061

MINet [83] F 0.924 0.953 0.033 0.756 0.873 0.055 0.842 0.899 0.064

SVF [133] Un 0.7823 0.8354 0.0955 0.6120 0.7633 0.1076 0.7351 0.7459 0.1669

MNL [135] Un 0.8098 0.8357 0.0902 0.5966 0.7124 0.1028 0.7476 0.7408 0.1576

ASMO [57] I 0.7621 0.7921 0.0681 0.6408 0.7605 0.0999 0.6532 0.6474 0.2055

WSS [109] I 0.7672 0.7693 0.1081 0.5895 0.7292 0.1102 0.6975 0.6904 0.1843

MSW [130] M 0.7606 0.7876 0.0980 0.5970 0.7283 0.1087 0.6850 0.6932 0.1780

WSSA [134] S 0.845 0.898 0.068 0.679 0.823 0.074 0.772 0.791 0.145

WSSA† [134] S 0.8650 0.9077 0.0610 0.7015 0.8345 0.0684 0.7884 0.7975 0.1399

Ours S 0.8995 0.9079 0.0489 0.7580 0.8624 0.0602 0.8230 0.8465 0.0779
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Table 4.2: Comparison with other state-of-the-art approaches on 3 benchmarks: HKU-IS, THUR,
and DUT-TEST. " means that larger is be�er and # denotes that smaller is be�er. �e best
performance on each dataset is highlighted in boldface under di�erent cases of supervision.
‘Sup.’ denotes for supervision information. ‘F’ means fully supervised. ‘I’ means image-level
supervised. ‘S’ means scribble-level supervised. ‘M’ means multi-source supervised and ‘Un’ is for
unsupervised. ‘†’ means two-round training.

HKU-IS THUR DUTS-TEST

Methods Sup. �V " ⇢b " "�⇢ # �V " ⇢b " "�⇢ # �V " ⇢b " "�⇢ #

DGRL [110] F 0.8844 0.9388 0.0374 0.7271 0.8378 0.0774 0.7989 0.8873 0.0512

PiCANet [69] F 0.8704 0.9355 0.0433 - - - 0.7589 0.8616 0.0506

PAGR[141] F 0.8638 0.8979 0.0475 0.7395 0.8417 0.0704 0.7781 0.8422 0.0555

MLMSNet [121] F 0.8780 0.9304 0.0387 0.7177 0.8288 0.0794 0.7917 0.8829 0.0490

CPD [122] F 0.891 0.944 0.034 - - - 0.805 0.886 0.043

AFNet [26] F 0.8877 0.9344 0.0358 0.7327 0.8398 0.0724 0.8123 0.8928 0.0457

PFAN [145] F 0.8717 0.8982 0.0424 0.6833 0.8038 0.0939 0.7648 0.8301 0.0609

BASNet [91] F 0.895 0.946 0.032 0.7366 0.8408 0.0734 0.791 0.884 0.048

GCPANet [13] F 0.8984 0.920 0.031 - - - 0.8170 0.891 0.038

MINet [83] F 0.908 0.961 0.028 - - - 0.828 0.917 0.037

SVF [133] Un 0.7825 0.8549 0.0753 0.6269 0.7699 0.1071 0.6223 0.7629 0.1069

MNL [135] Un 0.8196 0.8579 0.0650 0.6911 0.8073 0.0860 0.7249 0.8525 0.0749

ASMO [57] I 0.7625 0.7995 0.0885 - - - 0.5687 0.6900 0.1156

WSS [109] I 0.7734 0.8185 0.0787 0.6526 0.7747 0.0966 0.6330 0.8061 0.1000

MSW [130] M 0.7337 0.7862 0.0843 - - - 0.6479 0.7419 0.0912

WSSA [134] S 0.835 0.911 0.055 0.696 0.824 0.085 0.728 0.857 0.068

WSSA† [134] S 0.8576 0.9232 0.0470 0.7181 0.8367 0.0772 0.7467 0.8649 0.0622

Ours S 0.8962 0.9376 0.0375 0.7545 0.8430 0.0693 0.8226 0.8904 0.0487
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(a) (b)

(c) (d)

Figure 4.5: PR-curves and F-measure curves. (a) and (b) are precision curves for DUT-TEST and
DUT-OMORON; (c) and (d) are F-measure curves for DUT-TEST and DUT-OMOTON.
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run on NVIDIA GeForce RTX 2080 Ti. �e total time for training is around 8 hours and inference
speed is around 40 fps.

Datasets. We train our network on scribble annotated dataset S-DUTS [134] and evaluate
our model on six widely-used salient object detection benchmarks: (1) ECSSD [124]; (2) DUT-
OMRON [125]; (3) PASCAL-S [63]; (4) HKU-IS [58]; (5) THUR [14]; (6) DUTS-TEST [109].

Baseline Methods and Evaluation Metrics. Our model is compared with 6 state-of-the-
art weakly supervised or unsupervised SOD methods and 10 fully supervised SOD methods as
baselines. We take three widely-used evaluation metrics for fair comparison: mean F-measure
(�V ), mean E-measure (⇢b ) [22], and Mean Absolute Error (MAE) [18]. We also list PR curves and
F-measure curves in Fig. 4.5.

4.3.2 Comparison with State-of-the-arts

�antitative Comparison. In Table 4.1 and Table 4.2, we compare our approach with other state-
of-the-art approaches. Our method achieves a new state-of-the-art performance among weakly
supervised or unsupervised approaches under all the evaluation metrics. Our one-round training
method obtains an average gain of 4.60% for �V , 2.05% for ⇢b , and 1.88% forMAE, compared with the
previous best two-round trainingmethodWSSA [134]. Besides, our approach is comparable or even
superior to some fully supervised methods, like PiCANet [69], PAGR[141] and MLMSNet [121].
�e PR curves and F-measure curves shown in Fig. 4.5 can re�ect the generalization.

�alitative Evaluation. We demonstrate some samples of our predicted saliency maps
from the ECSSD dataset [124] in Fig. 4.6. It shows that our predicted saliency maps are more
complete and precise compared with previous state-of-the-arts (MSW and WSSA). Moreover,
our approach is more general to di�erent object classes and more robust to the disturbance of
foreground-background (see rows 3 & 4 in Fig. 4.6). In some cases, our approach even performs
be�er than fully supervised methods, such as CPD, BASNet and GCPANet (see rows 3 & 5 in
Fig. 4.6).

4.3.3 Ablation Study

We conduct di�erent ablation studies to analyze the proposed method, including the loss functions
and our aggregation module. �e experiments are evaluated on the DUTS-TEST dataset [109]. We
conduct the experiments by combining di�erent parts of our method. As shown in Table 5.2, our
method obtains the best performance using all the components, which illustrates that all the loss
functions and the AGGM are necessary to realize the one-step training. We use GCPANet [13]
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Table 4.3: Ablation study for our losses and AGGM on DUTS-TEST dataset. ‘Base.’ denotes for
baseline and ‘A.’ denotes for AGGM. Our overall method obtains the best results.

Base. A. LBB2 L;B2 �V " ⇢b " "�⇢ #

1 X 0.707 0.843 0.064

2 X X 0.706 0.845 0.064

3 X X X 0.758 0.873 0.059

4 X X X X 0.823 0.890 0.049

Table 4.4: Ablation study for our proposed AGGM on DUT-OMRON and DUTS-TEST datasets. It
can be seen that our AGGM is compatible to our loss functions.

DUT-OMRON DUTS-TEST

�V" ⇢b" " .# �V" ⇢b" "�⇢#

w/o 0.730 0.845 0.069 0.800 0.877 0.053

w 0.758 0.862 0.060 0.823 0.890 0.049

as our baseline. If the network is directly trained with partial cross entropy loss, the results are
relatively low, as listed in 1 of Table 5.2. �is phenomenon shows that the partial cross entropy
loss is insu�cient for sparse labels. Moreover, comparing our �nal results with the baseline, we
obtain gains of 11.61% for �V , 4.73% for ⇢b and 1.54% for MAE, respectively.

Impact of AGGM. In Table 4.4, we evaluate the in�uence of our aggregation module AGGM
when all the loss functions are enabled. It is interesting to see that using AGGM can obtain an
average gain of 2.56% for �V , 1.52% for ⇢b and 0.63% for MAE on DUT-OMRON and DUTS-TEST.
However, when training without our proposed losses, as listed in 1 and 2 of Table 5.2, our AGGM
contributes li�le compared with the baseline mode. �is phenomenon shows that our AGGM is
complementary with the proposed loss functions for sparse labels.

Impact of Saliency Structure Consistency Loss. We conduct this ablation study by adding
saliency structure consistency loss (LBB2 ) to the baseline (AGGM is enabled). �e results are shown
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Table 4.5: Ablation study for SSIM in the saliency structure consistency loss on DUT-OMRON
and DUTS-TEST. It can be observed that the SSIM in the saliency structrue consistency loss is can
help learn be�er structure information.

DUT-OMRON DUTS-TEST

�V" ⇢b" " .# �V" ⇢b" "�⇢#

w/o 0.670 0.828 0.077 0.735 0.863 0.063

w 0.708 0.841 0.072 0.758 0.873 0.059

in 3 of Table 5.2. Compared with only using partial cross entropy loss, using LBB2 achieves the
improvement of 5.29% for �V , 2.81% for ⇢b and 0.47% for MAE. �erefore, our LBB2 can regularize
partial cross entropy loss and enhance the model generalization ability. Further, we evaluate the
impact of SSIM in Eq. (4.6) which is shown in Table 4.5. We train the network using LBB2 with and
without SSIM separately. �e scores of the three evaluation metrics with SSIM are all higher than
those without SSIM, which indicates that Eq. (4.6) needs SSIM to make be�er prediction.

Impact of Local Saliency Coherence Loss. We list the evaluation of the local saliency
coherence loss (L;B2 ) in Table 5.2. With L;B2 , the network can obtain the best results. Speci�cally,
using L;B2 improves �V from 0.7584 to 0.8226, ⇢b from 0.8732 to 0.8904 and MAE from 0.0589 to
0.0487. It is the new state-of-the-art performance as reported in Table 4.1 and Table 4.2. Since
there is no extra supervision information like edges, such performance demonstrates that our L;B2
can learn integral salient object structures.

4.3.4 Limitation Discussion

We list some failures of our method in Fig. 4.7. It is di�cult for our method to detect the salient
object with noisy background, especially when the background is similar to the foreground. �is
phenomenon may be caused that although our method introduces RGB information to help learn
the more integral appearance of the target object, sometimes the background and foreground may
share similar RGB information. Our method may be misled to wrong predictions when there is
noisy background. To overcome this problem, the extracted features can be involved in our local
saliency coherence loss to help provide more details to guide the predictions because the extracted
features have more semantic information than RGB features.
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Image Pred.

Figure 4.7: Limited Cases of Our Network. ‘Pred.’ means predictions.
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4.4 Conclusions

In this chapter, we have explored one-round training for salient object detection via scribble
annotations. We propose a local saliency coherence loss to supervise unlabeled points. Besides,
we deploy a self-consistent mechanism via saliency structure consistency loss to improve the
network generalization ability. Moreover, we have designed an aggregation module to be�er
integrate multiple levels of features, so as to predict be�er saliency maps for weakly supervised
SOD. Experiments show that our approach outperforms previous state-of-the-arts under di�erent
evaluation metrics on 6 datasets with a signi�cant margin. Furthermore, our proposed loss
functions utilize intrinsic properties of input images to supervise unlabeled points, such that no
extra supervision is introduced.



Chapter 5

Comprehensive Feature Mining for
Co-salient Object Detection

In this chapter, the task of co-salient object detection is studied. We �nd that the a�ention
mechanism can also be applied in this task to search for the pixel of each image, with the highest
probability belonging to the co-salient objects. �en, the detected pixel can be regarded as an
indicator to mine similar pixels for the co-salient object. In such a case, comprehensive co-salient
features can be mined for our framework.

5.1 Motivation

Co-salient object detection (CoSOD) aims to detect the common salient objects among a group of
input images. Unlike salient object detection (SOD), which is to detect the most a�ractive objects
by mimicking human eyes [13, 55, 128, 98, 84, 60, 89, 71], CoSOD focuses on detecting salient yet
co-existed objects among all the input images. In this case, CoSOD faces two main challenges:
1) reduce the interference of noisy background in complex scenes; 2) mine integral co-salient
objects with large appearance variations. Some works introduce extra SOD dataset to provide
saliency guidance [140, 139] or predict saliency maps [46] in order to mask out the co-salient
objects. However, these approaches highly depend on the extra dataset, leading to supererogatory
human e�ort to provide annotations.

Recent approaches [46, 139, 25, 136] try to use a�ention mechanism [103] to strengthen co-
salient features or build feature consistency to formulate the shared a�ributes of co-salient objects
for integral predictions. However, there are two main drawbacks when directly applying a�ention

63
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Figure 5.1: Visualization of response maps. (a) Inputs; (b) Response maps generated by the previous
approach [25]; (c) Ours. It can be seen that ours can cover more co-salient objects.
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mechanism for this task. On the one hand, the response maps re�ecting the shared a�ributes,
obtained in the a�ention mechanism, can only cover limited pixels belonging to co-salient objects,
as shown in Fig. 5.1.(b). In this case, it is di�cult for the model to learn comprehensive shared
a�ributes of co-salient objects. On the other hand, for complex scenes, the a�ention mechanism
tends to focus on the wrong object regions, as shown in the second picture of Fig. 5.1.(b). Some
methods such as GCoNet [25] propose a kind of group collaborative learning by collecting arti�cial
negative group pairs. However, their pairs are grouped based on the auxiliary classi�cation
information, which requires major e�ort to group dissimilar negative category pairs as there is no
clear de�nition of natural discrete object categories in real world [99].

To solve aforementioned issues, we design a novel Democratic Co-salient-Feature-Mining
framework (DCFM). Our DCFM can directly mine more comprehensive features and suppress the
noisy background e�ectively without using extra SOD dataset or classi�cation information. Specif-
ically, in order to mine su�cient co-salient information, we �rst design a democratic prototype
generation module (DPG), where democratic response maps are generated to capture more shared
a�ributes. As shown in Fig. 5.1.(c), our response maps cover more regions of co-salient objects.
�en, a prototype with comprehensive co-salient information can be generated according to the
democratic response maps, which can further guide the model to predict the co-salient objects.

Next, in order to suppress noisy background information in our prototype and avoid introduc-
ing extra classi�cation information, we propose a simple self-contrastive learning module (SCL)
to form positive and negative pairs to �lter noise. We argue that the prototype generated from
original images should be consistent with that generated when the image background regions
are erased, and should be di�erent from that generated when the co-salient objects are erased.
�us, a self-contrastive loss among these prototypes is designed to suppress the in�uence of noisy
background and help the model learn more discriminative features of co-salient objects.

Finally, to further strengthen the detected co-salient features from the above modules, we
design a democratic feature enhancement module (DFE) based on the a�ention mechanism [103].
As mentioned before, the a�ention mechanism tends to focus on a limited number of correlated
features, which fails to provide comprehensive information. �erefore, we readjust the a�ention
values to generate a democratic a�ention map aggregating more correlated pixels for feature
enhancement.

Generally, our main contributions can be summarized as:

• A democratic prototype generation module (DPG) is designed to build response maps cover-
ing su�cient co-salient regions, so as to generate a prototype containing comprehensive
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shared a�ributes as guidance for co-saliency prediction.

• A self-contrastive learning module (SCL) is proposed to help our model reduce the in�uence
of noisy background without relying on additional classi�cation information, where both
positive and negative samples are generated from the image itself.

• A democratic feature enhancement module (DFE) is designed to further strengthen the
co-salient features by adjusting a�ention values to involve more related pixels.

• Extensive experiments show that our method performs be�er than state-of-the-art methods,
especially on challenging real-world cases, such as the CoCA dataset, we obtain a gain of
2.0% for MAE, 5.4% for maximum F-measure, 2.3% for maximum E-measure, and 3.7% for
S-measure under the same se�ings.

5.2 Methodology

5.2.1 Overview

�e CoSOD dataset includes groups of images with labels. Each group is represented as⌧ = {� ,. },
where � = {G=}#==1, . = {~=}#==1, G= is the input image, ~= is the corresponding label, # is the total
number of images in group ⌧ , and all images contain related objects. �e labels are unavailable
during inference. �e model needs to detect the co-existed salient objects in each image of the same
group. In this work, we aim to design a model that can detect the co-salient objects by thoroughly
exploring the shared a�ributes to mine comprehensive co-salient features, and suppress noisy
background through self-contrastive learning without using classi�cation information or extra
SOD dataset.

�e framework of ourmethod and the learning procedure are demonstrated in Fig. 5.2. �ere are
�ve main modules in our network, including a feature extractor, a democratic prototype generation
module (DPG), a self-contrastive learning module (SCL), a democratic feature enhancement module
(DFE), and a decoder. Note that the SCL is only applied for training and will be removed during
inference. �e overall process can be summarized as:

1. Firstly, the feature extractor encodes a group of relative images (# images) as initial features,
which are then proceeded by the DPG to generate a comprehensive co-salient prototype.

2. Meanwhile, to avoid mining noisy information from the background in the prototype, our
SCL is deployed for auxiliary training.
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3. �en, the prototype is fused into the visual features, and the fused features are transmi�ed
into the DFE to strengthen the features further.

4. Finally, the strengthened features are input into the decoder to predict the corresponding
co-saliency maps.

In the following sections, the details about the democratic prototype generation module,
the self-contrastive learning module, and the democratic feature enhancement module will be
discussed, respectively.

5.2.2 Democratic Prototype Generation Module

Our democratic prototype generation module (DPG) mainly contains three parts in series, which
are the residual block, the seed selection block (SSB), and the democratic response block (DRB).

A�er passing the feature extractor, we obtain the initial features F4GC 2 R#⇥⇠⇥�⇥, (⇠ , � ,,
are the channel number, height, and width), which are processed by the residual block �rst to
generate strengthened residual features FA4B :

FA4B = F4GC + 2>=E1⇥1(F4GC ), (5.1)

where 2>=E1⇥1 represents for the 1 ⇥ 1 convolution layer and FA4B 2 R#⇥⇠⇥�⇥, .
�en, the generated features FA4B are passed into the SSB to select the most discriminative

seeds for the co-salient objects in each input image. Next, the selected seeds are correlated with
the residual feature maps to produce the response maps by the DRB. Finally, the response maps
are multiplied with the residual features and averaged to generate the prototype, containing
comprehensive co-salient feature information and guiding following prediction.

Seed Selection Block (SSB).�e SSB is demonstrated in Fig. 5.3. �is block is deployed to
detect each image’s most representative pixel as seed for response map generation. First, the
residual features FA4B are input to our SSB. �en, the a�ention mechanism is employed, in which
two 1 ⇥ 1 convolution layers are deployed to obtain two feature maps, namely  2 R#⇥⇠⇥�⇥,

and & 2 R#⇥⇠⇥�⇥, . A�er reshaping both  and & to shape R#�, ⇥⇠ , the feature similarity map
(() of each pixel is computed as

( =  &>, (5.2)

where ( 2 R#�, ⇥#�, , > means transpose, and each row of ( represents similarities between
one pixel and all pixels of the # inputs.
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�en, we �rst reshape ( into ( 2 R#�, ⇥#⇥�, and choose its maximum similarity value in
each image, to get # maximum similarity values for each pixel. �is process is calculated by

(# -<0G = max
8=1· · ·�,

( [:, :, 8], (5.3)

where (# -<0G 2 R#�, ⇥# . A�erwards, the average of the # maximum similarity values is treated
as the co-salient probability of each pixel,

% =
1
#

#’
==1

(# -<0G [:,=], (5.4)

where % 2 R#�, .

�en, the probability map is reshaped back to % 2 R#⇥�⇥, . We can locate the pixel with the
highest probability of being the co-salient object in each image by

%<0G = max
⌘=1,· · ·�
F=1,· · ·,

% [:,⌘,F], (5.5)

index = 8=3 (%<0G ), (5.6)

where 8=3 (·) means taking out the index of %<0G .

Finally, we take out the feature vectors from the FA4B according to the index in Eq. 5.6 as the
�nal seeds by

⇡ = FA4B (index) . (5.7)

Note that each image will provide one seed vector, and there are totally # seeds. �ese seeds can
represent the essential characteristics of the co-salient objects in each input image and be used for
localization.

Democratic Response Block (DRB). �e DRB is demonstrated in Fig. 5.3. If we directly use
the seeds ⇡ as the prototype, it fails to aggregate comprehensive characteristics of the co-salient
objects. �is is because it is di�cult for limited seeds to express the integral co-existed objects,
especially when there are large appearance variations among the group. �us, we try to involve
more pixels of the co-salient objects to generate a comprehensive prototype by considering the
correlation between each pixel and the seeds ⇡ from SSB.

Speci�cally, we �rst use L2 normalization in channel dimension to obtain the normalized
residual features kFA4B k2 and the normalized seeds k⇡ k2. �en, k⇡ k2 are treated as the kernel to
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conduct convolution on the kFA4B k2:

" = 2>=E k⇡ k2 (kFA4B k2), (5.8)

where" means response maps, 2>=E k⇡ k2 is the convolution with k⇡ k2 as kernel. Since ⇡ has #
seed vectors, the size of response maps become R#⇥#⇥�⇥, a�er Eq. 5.8, with channel dimension
being the number of response maps for each input.

�e �nal democratic response map of each image is computed as the mean value of the #
response maps:

"�nal =
1
#

#’
==1

" [:,=, :, :], (5.9)

where " 5 8=0; 2 R#⇥�⇥, . In this way, more pixels have chance to contribute to the response
maps.

Finally, the prototype (?A>C> 2 R1⇥⇠ ) is generated by

proto = 0E6("�nal � FA4B), (5.10)

where the"�nal is broadcast to the same size as FA4B , � denotes element-wise multiplication, and
0E6(·) means averaging feature vector of all the pixels from all inputs.

5.2.3 Self-Contrastive Learning Module

To further help the DPG to suppress the noise of background, and learn discriminative features
without depending on classi�cation information, a self-contrastive learning module (SCL) is
designed as shown in Fig. 5.2. Our motivation is that the prototype generated by the original
inputs (proto) should be consistent with co-salient prototype generated by inputs where background
is erased (proto2 ), but di�erent from the background prototype generated by inputs where the co-
salient objects are erased (proto1 ). Note that the inputs here are the initial extracted features F4GC
from the feature extractor. �e co-salient prototype and background prototype can be generated
as

proto2 = qDPG(F4GC � . #), (5.11)

proto1 = qDPG(F4GC � (1 � . #)), (5.12)

where qDPG is short for the process of DPG, ‘#’ means downscaling the groundtruth . to the same
size as F4GC then broadcasting to the same channel number.
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�en, proto and proto2 are treated as a positive pair, while proto and proto1 are treated as a
negative pair. A self-contrastive loss is designed to pull together the positive pair and push away
the negative pair. First, we de�ne the cosine-style similarity between the prototypes by

2>B (?1, ?2) = (1 + ?1 · ?2
|?1 | |?2 |

) ⇥ 0.5. (5.13)

A�er that, the self-contrastive loss is de�ned as

2>B2 = 2>B (proto, proto2), (5.14)

2>B1 = 2>B (proto, proto1), (5.15)

LB2 = �;>6(2>B2 + n) � ;>6(1 � 2>B1 + n), (5.16)

where n is a small constant value ensuring non-zero values for ;>6(·) and set as 1 ⇥ 10�5. Our SCL
is only applied during training as an auxiliary loss to help the DPG learn more discriminative
co-salient features. �is part is not used during inference.

5.2.4 Democratic Feature Enhancement Module

We design a democratic feature enhancement module (DFE) to further strengthen the fused co-
salient features from DPG for �nal prediction. Our DFE is based on the a�ention mechanism [103].
We observe that conventional a�ention [103] tends to focus on a limited number of related pixels.
�us, we argue that democracy also ma�ers in this case, and more pixels should be involved in
enhancing the fused features. �us, we try to amplify small positive a�ention values to involve
more pixels for feature enhancement. Negative a�ention values are not considered here as they
usually represent irrelevance. First, we generate the fused features using the guidance of both
response maps and the prototype derived from Eq. 5.9 and Eq. 5.10 in the DPG as

Ffused = FA4B � "�nal + FA4B � ?A>C>, (5.17)

where both the "�nal and proto are broadcast into the same size as FA4B . �erefore, the fused
features by Eq. 5.17 contain both speci�c a�ributes and shared a�ributes.

�e fused features of each input image are enhanced with our DFE individually and indepen-
dently. As shown in Fig. 5.4, the corresponding Ffused is input to a 1⇥ 1 convolution layer followed
by a ReLU activation to obtain F2>=E 2 R⇠⇥�⇥, �rst. A�er that, key, query and value convolutions
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are applied and then reshaped to generate F: 2 R�, ⇥⇠ , F@ 2 R�, ⇥⇠ and FE 2 R�, ⇥⇠ . �en, the
initial a�ention map (�) can be computed by

� = F:F >
@ , (5.18)

where � 2 R�, ⇥�, and > means transpose.

Next, a so�max is applied to � to obtain the normalized a�ention map (�=>A<). Moreover, the
initial a�ention map � is sorted in a descending order to generate the sorting index matrix (/ ). As
we adopt the descending order, the small a�ention values are assigned with large sorting index.
�en, we apply the following formula to amplify the small positive a�ention values,

�A48, 9 =

8>>>><
>>>>:
(/8, 9 + 1)U , if �8, 9 > 0

1, else
, (5.19)

where �A4 denotes the weights for readjusting the a�ention, U is a coe�cient for determining the
degree of ampli�cation, 8 and 9 are the spatial index. �en, the �nal a�ention map is computed by

��nal = �=>A< � �A4 , (5.20)

and the �nal enhanced features can be computed by

F4=⌘ = F2>=E +��nalFE, (5.21)

where the result of��nalFE is �rst reshaped back into the same size as F2>=E . Finally, the augmented
features F4=⌘ are transmi�ed into the decoder to predict the corresponding co-saliency maps.

5.2.5 Objective Function

�e objective function for training is a combination of IoU loss [92, 140] and our self-contrastive
loss in Eq. 5.16. �e IoU loss can be illustrated as

L8>D = 1 � 1
#

’ .̂ \ .
.̂ [ .

, (5.22)
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where .̂ denotes for predictions and . denotes for the groundtruth. �en, the �nal objective
function is

LC>C = L8>D + _LB2 , (5.23)

where _ is to balance IoU loss and self-contrastive loss.

5.3 Experiment

5.3.1 Implementation Details

We use Feature Pyramid Network (FPN) [66] with VGG-16 [95] as our backbone. �e hyper-
parameter U in Eq. 5.19 is 3 and _ in Eq. 5.23 is 0.1. Additionally, we use Adam [50] as our optimizer
to train our model for 200 epochs. �e learning rate is set as 1 ⇥ 10�5 for feature extractor and
1⇥ 10�4 for other parts. �e weight decay is set as 1⇥ 10�4. In each training episode, we randomly
choose one group (16 samples) of relative images. For inference, all samples in each group are
input at one time. �e inputs are resized into 224 ⇥ 224 for both training and inference. �e total
training time is around 3 hours and the inference time is around 84.4 fps. All experiments are run
on one NVIDIA GeForce RTX 2080 Ti.

5.3.2 Dataset and Evaluation Metrics

Dataset. We use COCO-SEG [106], a subset of COCO dataset [67], which contains 9,213 images
from 65 groups for training. We evaluate our method on three popular CoSOD benchmarks:
CoCA [143], Cosal2015 [132] and CoSOD3k [24]. CoCA and CoSOD3k are proposed for challenging
real-world co-saliency evaluation, containing multiple co-salient objects in some images, large
appearance and scale variations, and complex background clu�ers. Cosal2015 is a widely used
large dataset for the evaluation.

Evaluation Metrics. �e evaluation metrics include mean absolute error (MAE) [16], maxi-
mum F-measure (�<0GV ) [2], maximum E-measure (⇢<0Gq ) [22] and S-measure ((U ) [21]. Speci�cally,
the value of MAE is the smaller, the be�er. While others are the larger, the be�er.

5.3.3 Complexity Analysis with State-of-the-art Methods

�e computational complexity of Eq.(2) and Eq.(18) in our paper is $ ((#�, )2) and $ ((�, )2)
respectively. �e increment of FLOPs is small since the input size is small. We list the complexity
comparisons in Table 5.4, ‘†’ means without DFE. Ours can achieve an impressive performance
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Table 5.2: Ablation study for our proposed modules. ‘Base.’ denotes baseline. Our overall method
obtains the best results.

Base. DPG SCL DFE MAE # �<0GV " ⇢<0Gb " (U "

1 X 0.129 0.521 0.735 0.655

2 X X 0.097 0.575 0.763 0.696

3 X X X 0.087 0.592 0.775 0.701

4 X X X X 0.085 0.598 0.783 0.710

Table 5.3: Ablation study for di�erent parts in DPG. ‘RB’ means the residual block. �e overall
process obtains the best performance.

RB SSB DRB MAE # �<0GV " ⇢<0Gb " (U "

1 0.129 0.521 0.735 0.655

2 X 0.124 0.527 0.745 0.659

3 X X 0.126 0.527 0.739 0.657

4 X X X 0.097 0.575 0.763 0.696
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Table 5.4: Complexity comparisons. ‘param.’ denotes the number of parameters. We set 5 inputs
to compute FLOPs.

method FLOPs (G) param. (M) runtime (fps) �<0GV "

CADC [139]ICCV21 457.9 392.8 18.0 0.548

GICD [143]ECCV20 467.6 278.0 40.8 0.513

GCoNet [25]CVPR21 311.5 142.0 116.2 0.544

DCFM†(ours) 313.0 140.5 101.9 0.592

DCFM (ours) 316.6 142.3 84.4 0.598

with fewer FLOPs and parameters compared with CADC [139] and GICD [143]. Besides, ours
can obtain a be�er performance with limited increment of FLOPs and parameters compared with
GCoNet [25], especially for DCFM†. Overall, our method has an impressive performance with
comparable runtime.

5.3.4 Comparison with State-of-�e-Art

Compared Methods. We mainly compare with previous state-of-the-art methods trained on
common single CoSOD training dataset for fair comparison, including CSMG [137], GCAGC [138],
CoEGNet [23], GICD [143], GCoNet [25], and DeepACG [136]. We also list several methods trained
on both CoSOD dataset and SOD dataset, such as CADC [139], ICNet [46] and CoADNet [140].

�antitative Comparison. In Table 5.1, we list the performance comparisons between ours
and previous state-of-the-art methods. It can be seen that our method reaches a new state-of-the-
art performance compared with other approaches under the same se�ings. Speci�cally, for the
two challenging real-world datasets CoCA and CoSOD3k, e.g., for CoCA, we obtain a gain of 2.0%
for MAE, 5.4% for maximum F-measure, 2.3% for maximum E-measure, and 3.7% for S-measure
compared with GCoNet [25]. Moreover, our method can even outperform those trained with extra
SOD dataset on these two datasets, such as ICNet [46] and CADC [139]. For Cosal2015, our method
obtains comparable results with DeepACG [136] and GCoNet [25]. �is phenomenon may be
caused by the fact that both DeepACG [136] and GCoNet [25] use extra classi�cation information
to provide structure information, while our method does not rely on any extra information.
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�alitative Comparison. We also report some qualitative comparisons with state-of-the-art
methods in Fig. 5.5. �e groups are from CoCA dataset. It can be found that our model can predict
more integral and less noisy co-saliency maps compared with others. Speci�cally, when there
are multiple co-salient objects in one image, like the group ‘Strawberry’, our model can detect
all the target objects, compared with CoEGNet [23] and CSMG [137]. In the group ‘Soap bubble’,
ours are sensitive to appearance variations compared with others. When the background noise
level is high, such as the group ‘Pocket watch’, our predictions contain less noise, compared with
GCoNet [25] and GICD [143]. We list more qualitative comparisons with previous sate-of-the-art
methods in Fig. 5.6. It is evident that our predictions are closer to the ground truth. When the
background contains misleading objects, such as the humans in the group ‘Binoculars’, our model
can suppress the noisy information and focus on the targets, compared with GCoNet [25] and
GICD [143]. Additionally, when there are complex background clu�ers, like images in the groups
‘Pillow’ and ‘Tablet’, compared with all other methods, ours are robust to this challenging se�ing.

5.3.5 Ablation Study

We conduct the ablation study of our method on the CoCA dataset by adding one module each
time and treating the network with all our modules removed as the baseline. �e results are
shown in Table 5.2. It can be found that each proposed module contributes a lot. With our DPG,
the performance can increase 3.2% for MAE, 5.4% for maximum F-measure, 2.8% for maximum
E-measure, and 4.1% for S-measure. Our SCL enables further improvement by 1.0% for MAE, 1.7%
for maximum F-measure, 1.2% for maximum E-measure, and 0.5% for S-measure, respectively.
Besides, our model with DFE reach 0.085 for MAE, 0.598 for maximum F-measure, 0.783 for
maximum E-measure, and 0.710 for S-measure. �e new state-of-the-art performance is obtained
when all the modules are included.

Impact of Democratic Prototype Generation Module. �e evaluation of each block of our
DPG is listed in Table 5.3. �e experiment is conducted by adding one block at a time. Compared
with the baseline (row 1), each part of DPG devotes to the �nal results. Speci�cally, if we only
use RB and SSB, where we take the mean of seeds as the prototype, the results are even lower
than the case without SSB, comparing row 2 and 3. On the other hand, with DRB, comparing row
3 and 4, the results will be increased by 2.9% for MAE, 4.8% for maximum F-measure, 2.4% for
maximum E-measure, and 3.9% for S-measure. �is phenomenon can verify that democracy does
ma�er. More co-salient pixels should be enrolled for the comprehensive prototype.

Impact of Self-Contrastive Learning Module. We also evaluate two main parts in our
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Table 5.5: Ablation study for di�erent parts in Eq. 5.16 of SCL. ‘2>B2 ’ denotes the case with only
positive pair for the loss and ‘2>B1 ’ denotes that with only negative pair. DFE is not used.

2>B2 2>B1 MAE # �<0GV " ⇢<0Gb " (U "

1 0.097 0.575 0.763 0.696

2 X 0.093 0.574 0.764 0.695

3 X 0.095 0.583 0.773 0.697

4 X X 0.087 0.592 0.775 0.701

Table 5.6: Ablation study for readjustment in DFE. ‘w/o DFE’ denotes not using DFE, ‘w/o RA’
denotes using DFE without readjustment and ‘w/ RA’ denotes using DFE with readjustment.

MAE # �<0GV " ⇢<0Gb " (U "

1 w/o DFE 0.087 0.592 0.775 0.701

2 w/o RA 0.100 0.567 0.769 0.691

3 w/ RA 0.085 0.598 0.783 0.710
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Figure 5.8: Visualizations of some failed cases.

self-contrastive loss as listed in Table 5.5. We conduct this experiment by removing one part
each time. It can be seen that with only positive pair 2>B2 , by comparing row 1 and 2, we can
get comparable results. With only negative pair 2>B1 , the performance is clearly improved, by
comparing row 1 and 3. �is phenomenon proves that the negative pair is important for removing
background noise. Nevertheless, by comparing row 3 and 4, the contrastive learning with both
positive and negative pairs promotes balanced training for higher results. More analysis can be
found in our supplementary material. Further, we display some response maps in di�erent cases on
the CoCA dataset [143] in Fig. 5.7. Note that this dataset is used for evaluation. "�nal denotes the
normal response maps generated by original inputs,"�nal

2 denotes the co-salient response maps
generated by inputs where the background regions are erased, and"�nal

1 denotes the background
response maps generated by inputs where the co-salient objects are erased. �en, proto, proto2
and proto1 can be derived based on the corresponding response maps. As shown in Fig. 5.7, it
can be found that the"�nal can focus on most regions of the target co-salient objects. Moreover,
comparing"�nal

2 and"�nal
1 , the"�nal

2 can highlight all the related co-salient objects. In contrast,
the"�nal

1 are sensitive to the surroundings of the co-salient objects. In this case, our assumption
of SCL, where proto and proto2 are pulled together while proto and proto1 are pushed away, can be
veri�ed. With our SCL, the model can learn to di�erentiate co-salient features and background
features. �us, the noise information can be suppressed.
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Table 5.7: In�uence of alpha in Eq.(19) in our thesis.

U 0.1 1 2 3 4

�<0GV " 0.578 0.592 0.593 0.598 0.587

Impact of Democratic Feature Enhancement Module. We also experiment on the readjust-
ment of a�ention values in Table 5.6. When the readjustment is removed but using conventional
a�ention in our DFE, the performance is even worse than the case without our DFE, as shown
in row 1 and 2. �us, democracy does ma�er in this module as well. Conventional a�ention
mechanism focusing on limited pixels cannot provide su�cient information for the decoder while
more related pixels should be involved. Additionally, we add the ablation study of alpha in Table 5.7.
�e performance smoothly increases with larger alpha. However, performance decreases when
alpha is too big (U=4). When U>4, the model even fails to be trained. �is is because in this case,
the weight of small positive a�ention values will be much bigger. �us, the a�ention mechanism
will be confused and tend to focus on those small values but neglect original high values.

5.4 Limitation Discussion

We also report some failure cases in Fig. 5.8. As shown in the �gure, it is di�cult for our model to
predict small objects precisely. �is may be caused by the fact that the inputs are resized into the
size of 224 ⇥ 224. �en, with the feature extractor, the size of the output features is 14 ⇥ 14. In this
case, it may cause information lost for small objects. �us, it is di�cult for our model to capture
the corresponding features. �erefore, how to enhance model robustness for small objects is a
direction for our future work.

5.5 Conclusions

In this chapter, we have proposed a new method for CoSOD without using the SOD dataset and
classi�cation information. We design a democratic prototype generation module (DPG) to build
democratic response maps �rst so as to generate a comprehensive prototype as guidance for
further prediction. Moreover, to help suppress noisy background information in the prototype,
we design a self-contrastive learning module (SCL), where both positive and negative pairs are
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generated from the image itself without relying on classi�cation information. Besides, we also
design a democratic feature enhancement module (DFE) to strengthen co-salient features from
DPG for �nal prediction. Both our DPG and DFE show that democracy does ma�er. More related
pixels should be involved for mining comprehensive features for CoSOD.



Chapter 6

Conclusions

6.1 Summary

Video object segmentation and salient object detection are crucial tasks in video surveillance.
Video object segmentation can help video understanding, and salient object detection helps mimic
human a�ention. �us, this thesis devotes to learning about these tasks. We propose a framework
for fast pixel matching between reference and current frames in video object segmentation. We
use the �rst frame with the given mask and the previous frame with the estimated mask as the
references as guidance for target object localization and segmentation. A�er obtaining the matched
features, a channel a�ention mechanism is adopted for further feature enhancement. Further
experiments show that our approach can achieve a new state-of-the-art performance with a fast
speed at the same time (86.5% IoU on DAVIS-2016 and 72.2% IoU on DAVIS-2017, with speed of
0.11s per frame) under the same level comparison.

We propose a local saliency coherence loss for salient object detection under scribble supervi-
sion. �e loss is based on the assumption that points with similar features and/or close positions
should have similar saliency values. In contrast, points with dissimilar feature and/or distinct
positions should have di�erent saliency values. In this case, more integral object features can be
learnt to complement the scribble information. Further, di�erent input scale is considered for con-
sistent structure predictions. Experiments show that our method achieves a new state-of-the-art
performance on six benchmarks (e.g. for the ECSSD dataset: �V = 0.8995, ⇢b = 0.9079 and MAE
= 0.0489), with an average gain of 4.60% for F-measure, 2.05% for E-measure and 1.88% for MAE
over the previous best method on this task.

Last but not least, for co-salient object detection, we propose a novel framework called DCFM

87
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to mine comprehensive co-salient features without the help of extra dataset or classi�cation
information. �e democratic prototype generation module in our method can involve more
related pixels to generate a comprehensive prototype to guide the following layers. Further, a self-
contrastive module is applied to help learn the co-salient information and background information
during training. Finally, a democratic feature enhancement module is designed to strengthen
co-salient features. Extensive experiments show that our model obtains be�er performance than
previous state-of-the-art methods, especially on challenging real-world cases (, for CoCA, we
obtain a gain of 2.0% for MAE, 5.4% for maximum F-measure, 2.3% for maximum E-measure, and
3.7% for S-measure) under the same se�ings.

6.2 Future Works

�ere are still many challenges for future work. For video object segmentation, the critical
problems faced are appearance variation, occlusion, and disappearing. Moreover, these problems
become more serious when the video sequence is long. One possible way is to consider more
reference frames. However, not every frame can o�er a complete and smooth reference. �en,
we consider to add an estimation branch to determine whether the reference frame is quali�ed.
Further, bounding box or unsupervised cases can be studied to save labeling cost.

�en, for weakly supervised salient object detection, the model still faces problems of error
estimation. Our local saliency coherence loss considers each pixel equally. In such way, some
hard pixels are easy to be neglected. �us, we consider to add a con�dence map to reveal the
hard and easy samples to help the network pay more a�ention to hard samples. Additionally, our
self-consist mechanism only cares about scale variation. Other augmentations can be taken into
consideration. Moreover, the smoother boundaries of the salient object should be predicted. �us,
we also consider to add a boundary branch to detect integral and precise contours.

Besides, in co-salient object detection, the computation complexity is high. To overcome this
problem, we will try to use global average pooling as the co-salient semantic guidance to save
the computation of the spatial a�ention mechanism. Besides, the over-��ing of training-set is a
crucial challenge when there is a big domain gap between the test-set and training-set. Existed
methods usually use an extra training-set to help the network learn more categories. However,
such choice will add the cost of annotations. �us, we plan to design a pixel-level contrastive loss
to reveal the contrast between co-salient and background. Further, low-level features can also be
used to distinguish detailed features.

Finally, salient object detection can help provide target object hints for video object segmenta-
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tion. �us, we consider to use saliency detection to help detect the target object �rst for automatic
video object segmentation. However, the pseudo mask of the �rst frame may be not clear or
integral if only referred to the �rst frame. In this case, co-salient object detection can be adopt to
link several frames to help obtain target consistency through di�erent frames for more complete
target object cues. �en, with a good pseudo mask of the �rst frame, the automatic video object
segmentation can be treated as semi-automatic video object segmentation for be�er predictions.
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