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Abstract

The timely handling of passengers is critical to efficient airport and airline operations. The pandemic requirements mandate
adapted process designs and handling procedures to maintain and improve operational performance. Passenger activities in the
confined aircraft cabin must be evaluated to potential virus transmission, and boarding procedures should be designed to minimize
the negative impact on passengers and operations. In our approach, we generate an optimized seat allocation that considers pas-
sengers’ physical activities when they store their hand luggage items in the overhead compartment. We proposed a mixed-integer
programming formulation including the concept of shedding rates to determine and minimize the risk of virus transmission by
solving the NP-hard seat assignment problem. We are improving the already efficient outside-in boarding, where passengers in
the window seat board first and passengers in the aisle seat board last, taking into account COVID-19 regulations and the limited
capacity of overhead compartments. To demonstrate and evaluate the improvements achieved in aircraft boarding, a stochastic
agent-based model is used in which three operational scenarios with seat occupancy of 50%, 66%, and 80% are implemented. With
our optimization approach, the average boarding time and the transmission risk are significantly reduced already for the general
case, i.e., when no specific boarding order is specified (random boarding). If the already efficient outside-in boarding is used as a
reference, the boarding time can be reduced by more than 30% by applying our approach, while keeping the transmission risk at
the lowest level.

Keywords:
aircraft boarding, mixed-integer programming, optimized seat allocation, stochastic agent-based model, COVID-19, hand luggage

1. Introduction

Worldwide economic sectors were severely hit by the coro-
navirus outbreak (COVID-19). In the aviation sector, at the be-
ginning of February 2020, the outbreak started to negatively
impact the number of worldwide flights [1, 2]. International
Civil Aviation Organization (ICAO) reported a 25.81 percent
to 71.78 percent decrease in the number of flights from March
2020 to December 2020 compared to the last year [2]. This un-
precedented decline in the number of flights is because flights
require many passengers to spend time in the aircraft cabin,
which exposes them to a high risk of infection. This consid-
erable chance of infection along with the notorious history of
the aviation industry in previous pandemics, i.e., MERS-CoV,
reduced the willingness of passengers to involve in air trav-
els in the current outbreak [3–5]. Airlines are required to take

∗Corresponding author.
E-mail address:: michael.schultz@unibw.de (Michael Schultz)

prompt action to accommodate the outbreak situation to ensure
passengers (health safety [6]). The international air transporta-
tion association (IATA) medical advisory group suggests so-
cial distancing measures, also introduced as physical distanc-
ing, among passengers to reduce the chance of infection. This
measure includes sufficient distancing among passengers while
seated, during check-in, and through the boarding process [7].
World health organization (WHO) and European Union Avi-
ation Safety Agency (EASA) also emphasize the importance
of social distancing measures to reduce the rate of infections
among people who share the same activities [8, 9]. Accord-
ing to the instruction published by EASA, “airplane operators
should ensure, to the extent possible, physical distancing among
passengers”. Some recent studies stressed that the ideal practice
of social distancing among passengers requires a well-defined
seating assignment methodology as well as the willingness of
passengers to practice social distancing guidelines [10, 11].

Fig. 1 illustrates the main considerations for the airplane
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1. Introduction

Worldwide economic sectors were severely hit by the coro-
navirus outbreak (COVID-19). In the aviation sector, at the be-
ginning of February 2020, the outbreak started to negatively
impact the number of worldwide flights [1, 2]. International
Civil Aviation Organization (ICAO) reported a 25.81 percent
to 71.78 percent decrease in the number of flights from March
2020 to December 2020 compared to the last year [2]. This un-
precedented decline in the number of flights is because flights
require many passengers to spend time in the aircraft cabin,
which exposes them to a high risk of infection. This consid-
erable chance of infection along with the notorious history of
the aviation industry in previous pandemics, i.e., MERS-CoV,
reduced the willingness of passengers to involve in air trav-
els in the current outbreak [3–5]. Airlines are required to take
prompt action to accommodate the outbreak situation to ensure
passengers (health safety [6]). The international air transporta-
tion association (IATA) medical advisory group suggests so-
cial distancing measures, also introduced as physical distanc-
ing, among passengers to reduce the chance of infection. This
measure includes sufficient distancing among passengers while
seated, during check-in, and through the boarding process [7].

World health organization (WHO) and European Union Avi-
ation Safety Agency (EASA) also emphasize the importance
of social distancing measures to reduce the rate of infections
among people who share the same activities [8, 9]. Accord-
ing to the instruction published by EASA, “airplane operators
should ensure, to the extent possible, physical distancing among
passengers”. Some recent studies stressed that the ideal practice
of social distancing among passengers requires a well-defined
seating assignment methodology as well as the willingness of
passengers to practice social distancing guidelines [10, 11].

Fig. 1 illustrates the main considerations for the airplane
boarding and seating assignment problem while the studies fo-
cusing on this problem can be similarly categorized. The in-
volvement of COVID-19 measures in this problem primarily
focuses on some of the considerations including the boarding
strategies (individual, group), level of seat occupancy, and in-
dividual passenger characteristics. Concerning the individual
characteristics, there are studies that incorporate the passen-
gers’ carry-on bags into the aircraft boarding and seating as-
signment problem without the consideration of COVID-19 mea-
sures as the number of bags can affect the walking speed of
passengers and luggage storage time and therefore affect the
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overall boarding time [12–15]. For example, if passengers’
luggage is distributed evenly in the cabin, boarding time can
also be reduced [12].

Figure 1: Different aspects of Airplane Boarding and Seating Assignment Prob-
lem with the consideration of the COVID-19 measures

With respect to the COVID-19 measures, physical activi-
ties with higher intensity, such as storing luggage, may increase
the risk of virus transmission to passengers who are at a close
distance [16]. Therefore, while missing in the current litera-
ture, the consideration of passengers’ carry-on luggage can as-
sist in an optimized assignment of passengers to seats to reduce
the chance of virus transmission among passengers. The gap
in previous work to analyze the effect of carry-on bags on the
physical distancing of passengers in seat allocation and board-
ing sequences is our primary research focus for this work.

Our research makes two new and important contributions.
First, we provide a theoretical approach by developing a model
that accounts for seat assignment and passenger boarding se-
quence, considering the utilization of the capacity-limited over-
head compartment. This is a significant contribution, as recent
studies emphasize the relevance of physical interactions for the
virus transmission (cf. [16–19]). We focus on outside-in board-
ing sequence, which has already been evaluated as very efficient
since it eliminates unfavorable passenger interactions within the
seat rows (window seat is boarded first, followed by middle seat
and aisle seat). However, we will also show that our approach
leads to a significant improvement in general cases (random
boarding sequence).

As the overhead compartments become more utilized dur-
ing boarding, passengers must put in the additional physical
effort to first rearrange the luggage in the compartment to make
room for their own luggage. Second, with respect to a method-
ological contribution, we researched the combination of opti-
mization and simulation approaches to handle the aircraft board-
ing problem under COVID-19 requirements, providing the op-
timized seat allocations and boarding sequences. Here, the pro-
posed mixed-integer programming (MIP) optimization problem

provides a solution for the passenger seat assignment. Given the
high complexity of the MIP problem, we develop a genetic al-
gorithm to obtain near-optimal solutions. Finally, the stochastic
and agent-based simulation approach determines and evaluates
appropriate passenger boarding sequences based on the given
seat assignment.

The paper is structured as follows. After providing a rele-
vant background in the literature review (Section 2), we intro-
duce our optimization model for the seat assignment problem
in Section 3 assuming an outside-in boarding sequence, which
already reduces additional passenger interaction during seating.
In Section 4, we design a genetic algorithm to solve the NP-hard
seat assignment problem. Therefore, we provide operators for
mutation, crossover, migration, and elitism and solve three use
cases with different seat loads. The resulting seat allocations
are input for the following agent-based simulation approach,
which is used to determine the appropriate boarding sequence
(Section 5), considering passenger interactions, virus transmis-
sions risk, and the increased utilization of the overhead during
the boarding progress. In our approach, we have not yet im-
plemented a feedback loop from the sequence optimization to
the seat assignment model. This will be part of future research
work. Finally, our contribution ends with a conclusion and out-
look in Section 6 .

2. Literature review

The brief literature review is organized in three subsections,
with a focus on common optimization fields, aircraft board-
ing, and particular challenges related to pandemic requirements
(e.g., physical distance).

2.1. Optimization strategies
The development of mathematical modelling and optimiza-

tion approaches has been suggested by many researchers in dif-
ferent areas such as production planning [20–22], location allo-
cation problems [23–25], supply chain designing [26–28], evac-
uation planning [29–31], vehicle routing problems [32–34], air
transportation problems [35–37], and boarding and disembark-
ing problems [13, 18, 19, 38–40].

A variety of techniques are proposed to address aircraft board-
ing problem, such as linear and mixed-integer programming
(MIP) [13, 41–43], meta-heuristic algorithms [38, 44], discrete
simulation [12, 45–47], grid-based simulation [48, 49], agent-
based and stochastic modeling [14, 50, 51]; and empirical ex-
periments [52].

2.2. Aircraft boarding
The aircraft boarding studies focuses on minimizing the board-

ing time of passengers to decrease airline operation cost in-
curred by aircraft turnaround time [53, 54]. This research di-
rection can be classified concerning the boarding assumptions
and modeling techniques. There are studies that assume that
the jet bridges are used to transfer passengers from the board-
ing gate to aircraft [12–14, 42, 43, 51, 55, 56] while others con-
sider apron buses for passengers commuting to aircraft [57–59].
Studies address this problem:
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1. under different level of seat occupancy [14, 15, 60–62]
2. with the assumption of passengers boarding through one

door or both front and rears doors of an aircraft [59, 63–
65],

3. concerning individual characteristics of passengers includ-
ing walking time and number of carry-on bags [42, 54,
60, 66],

4. assuming passengers traveling in groups [18, 44, 46, 67],
and

5. considering seating assignment [43, 62, 68].

2.3. Aviation management during coronavirus outbreak

Researchers have been studying the impact of the corona-
virus pandemic from the beginning to better understand its con-
sequences. Concerning coronavirus related studies in the avi-
ation industry, the focus was set on the collapse in air travel
demand and airport charges [3], global airline industry [69] and
airlines’ employment [70], and estimation and projection of air
traffic evolution and its socio-economic impact [4]. The pan-
demic has significant implications for airport capacity and ser-
vice levels [6], and in particular, for the future of aircraft han-
dling operations due to (post-)pandemic requirements [53]. In
this context, new technologies are needed to efficiently deter-
mine passenger locations in indoor environments and confined
aircraft cabins [71]. As physical distancing measure exhibits
a great opportunity to reduce the spread of coronavirus among
people [72], this measure has been studied in a broad range of
scientific works including political, economic, and social chal-
lenges [73], and ethical aspects of physical distancing [11, 74].

The pandemic requirements, in particular the requirement
for sufficient distances between passengers or groups of pas-
sengers, have a lasting effect on the process flows and times for
boarding and disembarking. The primary objective is to mini-
mize the risk of transmission as far as possible and to develop
appropriately adapted processes [11, 16, 75]. To address the
situation where passengers travel in groups, a new analytical
approach was designed to optimize the seating layout of pas-
sengers to minimize the spread of virus [18]. The developed
approach was also used by the authors to study an optimized
passenger disembarkation process considering COVID-19 reg-
ulations [19]. In this context, the developed model not only
optimizes the boarding and disembarkation time but also mini-
mizes the risk of virus transmission.

3. Optimization model

We build the optimization model for the passenger seating
assignment problem based on an outside-in sequence of board-
ing in which the window-seat passengers board first. It is fol-
lowed by the boarding of middle-seat passengers and aisle-seat
passengers, respectively. We use outside-in here because the
problem of additional interaction during seating, e.g., passen-
gers must leave their seats when window seat passengers arrive
last, is already solved. Note that the model can be easily ad-
justed to consider other strategies for boarding passengers, for

instance, to an optimal individual, back-to-front staggered se-
quence of passengers, which is a border case of the outside-in
boarding strategy (cf. [18, 48, 62]).

Relaxing known boarding sequence will add to the com-
plexity of the formulation with little insight into the effect of
passengers’ carry-on bags on the virus spread. Therefore, we
keep the assumption that the boarding sequence is known. This
assumption is in line with [13] as they assume the sequence of
boarding is known when they focus on seating assignment of
passengers with carry-on bags.

Based on the assumptions of the seating assignment prob-
lem, we list sets, parameters, and decision variables. We define
the number of rows, columns, the number of carry-on bags, and
interaction types as I, J, B, and R respectively. Our use case
is for a single-aisle aircraft with 174 seats, which is typical of
most of the Airbus A320 and Boeing B737 family aircraft in
service and which is used as a reference case in several research
studies. The number of rows and columns are I = 29 and J = 6
and we assume that the number of bags for each passenger can
range between zero and two.

Notation Definition
Sets and Indexes
i Index set of row i ∈ {1, 2, . . . ,I}
j Index set of column j ∈ {1, 2, . . . ,J}
b Index set of the number of bags

b ∈ {1, 2, . . . ,B}
r Index set of interaction type during the flight

r ∈ {1, 2, . . . ,R}
r′ Index set of interaction type during storing the

bags r′ ∈ {1, 2, . . . ,R′}

Parameters
Bagb Number of passengers who has (b − 1) bag(s)
SRflight

r Related flight shedding rate for interaction r
when passengers are seated during flight

SRstore
r′ Related storing shedding rate for interaction r′

when a passenger stores bag(s)
Normflight The coefficient to normalize the value of the

summation of flight shedding rates for each pas-
senger.

Normstore The coefficient to normalize the value of the
summation of storing shedding rates for each
passenger.

M Big positive value (here we suppose it takes 2)

Decision Variables
xi jb Binary variable, equals one if a passenger with

the (b − 1) number of bag(s) is seated in a seat
in row i and column j; equals zero otherwise

dstore
i jb The summation of shedding rates, that other

passengers can cause when they are storing
bags, for a passenger who is seated in a seat in
row i and column j having (b − 1) bag(s)

dflight
i j The summation of shedding rates that the other

passengers can cause for a passenger, who is
seated in a seat in row i and column j during
the flight
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3.1. Transmission risk

We optimize the passenger boarding process and seat allo-
cation, considering the boarding time and the risk associated
with passenger interaction during movements in the aisle, stor-
ing luggage in the overhead compartment, and seating.

Transmission risk can be defined by proximity to the index
case and duration of contact time. Our approach is based on
a transmission model [76], which defines the spread of SARS-
CoV2 coronavirus as a function of (continuous) distance, using
different distance measures [77]. Here, the probability of a per-
son n being infected by a person m is described by (1).

Pn = 1 − exp

−θ
∑

m

∑

t

SRm,t inm,t tnm,t

 (1)

defined by:

Pn Probability of person n to receive an infectious dose. Not
“infection probability”, which depends highly on the im-
mune response of the affected person.

θ Calibration factor for the specific disease.

SRm,t Shedding rate, the amount of virus the person m spreads
during the timestep t.

inm,t Intensity of the contact between n and m during the timestep
t, which corresponds to their distance.

tnm,t Time person n interacts with person m at timestep t.

Considering this idea, we define the shedding rate SR as a
normalized bell-shaped function (2) with z ∈ (x, y) for both lon-
gitudinal and lateral dimensions, respectively. The parameters
are a (scaling factor), b (slope of leading and falling edge), and
c (offset) to determine curve shape.

SRxy =
∏

z∈(x,y)

(
1 +
|z − cz|

az

2bz
)−1

(2)

SR was calibrated in a prior study [16] based on the trans-
mission events of an actual flight [78]. We have applied the
corresponding parameter setting with ax = 0.6, bx = 2.5, cx =

0.25, ay = 0.65, by = 2.7, and cy = 0. This causes the foot-
print in the y-direction (lateral to the direction of motion) to
be smaller than in the x-direction (in the direction of motion).
When passengers reach their seat row and start to store the hand
luggage or enter the seat row, the direction of movement is
changed by 90◦, heading to the aircraft window. Finally, the
individual probability for virus transmission Pn corresponds to
Θ, the specific intensity per timestep (3).

Pn = Θ SRxy α (3)

In accordance with [16], Θ is set to 1
20 , which means a pas-

senger reaches the maximum probability of Pn = 1 after stand-
ing 20 s in closest distance in front of an infected passenger
(SRxy = 1). The parameter α ∈ {1, 2} is 1 and changed to 2
when the passenger stores the luggage or enters the seat row.

This doubled shedding rate reflects the higher physical activi-
ties within a short distance to surrounding passengers. Since
the probability Pn is limited to 100%, it is set to this value if the
value determined by (3) is greater than 1.

This spatially continuous approach is applied to the agent-
based simulation model to evaluate different boarding sequences
(see Section 5). For mixed-integer optimization, we consider
corresponding discretized shedding rates for two distinctive sit-
uations: when a passenger is seated (flight shedding rates) and
when the passenger is storing luggage (store shedding rates).

3.1.1. Flight shedding rates
If an infected passenger seats to different columns, then the

passengers around him/her could receive different amount of
virus. For instance in Fig. 2, when a passenger seated in row
i = 20 and column D (aisle), we compute the shedding rate for
the passenger that might seat in the same row (i = 20 at column
C (aisle, SRflight

5 ), E (middle, SRflight
1 ), and F (window, SRflight

4 ))
and previous row i− 1 = 19 (column C (aisle, SRflight

6 ), D (aisle,
SRflight

2 ), and E (middle, SRflight
3 )).

Figure 2: Types of passenger interactions (orange) in the aircraft cabin around
the infected passengers (red) considering different seat positions: besides
(SRflight type 1 and type 4), in front (SRflight type 2), diagonally in front (SRflight

type 3), and across the aisle (SRflight type 5 and type 6) [18].

Concerning the former situation, we followed the six fight
shedding rate types provided in [18], considering an aisle/ seats
width of 0.4m and a seat pitch of 0.8m. Thus, the shedding rate
when a passenger is seated are: SRflight

1 = 0.99987, SRflight
2 =

0.9226, SRflight
3 = 0.9126, SRflight

4 = SRflight
5 = 0.6833, and

SRflight
6 = 0.6315.

3.1.2. Store shedding rates
We define the second type of shedding rates for the passen-

gers when they are storing their bags. The first shedding rate
was defined just based on the distances between two passen-
gers. The second type defines not only the distance between a
passenger who keeps his luggage and another passenger who
sits earlier (see Fig. 3), but also the number of pieces of lug-
gage that are already in the overhead bins. The store shed-
ding rate when a passenger is storing its bags are: SRstore

1 =
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0.6833, SRstore
2 = 0.1951, SRstore

3 = 0.6315, SRstore
4 = 0.1803,

and SRstore
5 = 0.9126. The store shedding rate types 3, 4, and

5 relate to infected passengers of the previous or next row that
could create target passengers (14E, 9F, and 20D). For example,
for passenger 9F, we consider the infected passenger (coded
red) in the aisle, who might seat in 8D, 8E, or 8F. However,
when s/he is storing the bags, the distance to the orange-coded
passenger (9F), is the same and we consider type 4 for this
circumstance. Also, the store shedding rate types 1 and 2 are
created where a passenger (orange-coded) is infected by an-
other passenger (red-coded) who seats in the same row but af-
ter orange-coded passenger, when red-coded passenger stores
its bags (see Fig. 3). We show the type of interactions with a
number in orange-coded seats here. For example, infected pas-
senger 17D, shown as a red-coded passenger, creates interaction
type 1 for passenger 17E (orange-coded) when (s)he is storing
bags. In addition, the seats of infected passengers in the aisle
are shown in Fig. 3 with pink color cells.

Figure 3: Types of passenger interactions (orange) in the aircraft cabin for the
passengers (9F, 11F, 14E, 17E and 20D) considering different distances of the
infected passengers who are storing their bag(s) in the aisle (red).

Here, we face three situations in general. In the first case,
we calculate the second shedding rate for a passenger who seats
in the window seat (i.e., column A or F). In the second case, the
passenger seats on the middle seat (i.e., column B or E), and
finally who seats on the aisle seat (i.e., column C or D). As the
strategy that we used to board the passengers is outside-in, we
can define the storing shedding rate.

In an exemplary boarding process, we show how to calcu-
late the sum of storing shedding rates. Fig. 4 indicates the dif-
ferent interactions that happen for target passengers who seat
at the window (8F), middle (16E), and aisle (24D) seats. We
just highlight the right side of the aisle because for the left side,
the process is the same. First for the passenger who seats on
8F (window seat). To calculate the storing shedding rate for
this passenger, we use (4), which includes the three elements
associated with the outside-in boarding.

dstore
8,6,b = SRPhase 1 + SRPhase 2 + SRPhase 3 (4)

The first element is defined based on the first phase of board-
ing passengers, i.e., for passengers sitting at the window (col-
umn F), near the orange passenger (seat 8F). The second ele-
ment is used to calculate the shedding rates of passengers sit-
ting in middle seats (column E), and the last element includes
the shedding rates of passengers sitting in aisle seats (column
D).

Phase 1. In (5) we calculate the corresponding shedding rate
for window-seated passengers.

SRPhase 1 = 0.25
B∑

b′=2

(b + b′) SRstore
4 {x7,6,b′ + x9,6,b′ } (5)

We use the coefficient of 0.25 because, we consider 0.5
probability for those two infected passengers, 7F and 9F, be-
cause they could be seated sooner or later than the orange-coded
passenger (see Fig. 4). Also, it multiplies another 0.5, because
they seat in the previous or next row. In this formulation, we
consider b + b′ which is the sum of bags of the target passenger
(8F) and infected passengers (7F and 9F). The number of bags
of them is important and when the number of bags is greater
therefore the risk indicator will be increased. Therefore, we de-
fine this coefficient in the formulation. Finally, we have two
binary decision variables for passengers 7F and 9F with (b′−1)
bags. SRstore

4 is the shedding rate based on the distance between
the target passenger and infected passengers when they are stor-
ing their bags in the aisle. In Fig. 4, target passengers are shown
with orange cells, infected passengers who are seated with pink
cells, and infected passengers who are in the aisle and trying to
store their bags with red cells.

To calculate the correct value of storing shedding rate for
the target passenger with seat 8F in Fig. 4, we need to calculate
the shedding rates that passengers who seat in the middle and
aisle seats of rows 7, 8, and 9 in the next phase of boarding in
the sum of store shedding rates.

If we want to calculate the sum of store shedding rate for
another target passenger in the middle seat (16E), we have the
same formulation, the only difference is instead of SRstore

4 , we
use SRstore

3 because for example, when infected passenger 15E
or 17E is storing its bags, the distance between the infected
passengers with the target passengers are different. Obviously,
SRstore

3 is greater than SRstore
4 . Also, we have like this situa-

tion for another target passenger who seats in 24D. In other
words, the passenger with seat 23D leads to storing shedding
rate SRstore

5 for that passenger. Also, SRstore
5 is greater than SRstore

3
because of the distance. We can see these concepts in Fig. 3 as
well when the distance of target passenger 9F to infected pas-
senger 8D/ 8E/ 8F is greater than the distance of target passen-
ger 14E to infected passenger 15D/ 15E.

Phase 2. In the second phase of boarding, passengers located
at middle seats store their luggage. Thus, we need to extend (5)
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Phase 1

Phase 2

Phase 3
7F 9F

15E 17E

23D 25D

7E 8E 9E

15D 16D 17D
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2928272625242322212019181716151413121110987654321

2928272625242322212019181716151413121110987654321

2928272625242322212019181716151413121110987654321

Figure 4: The process of boarding infected passengers (red-coded) near target passengers (orange-coded) in three phases where they are storing their bags

and add new elements (6).

SRPhase 2 =0.5
B∑

b′=2

(b + b′) SRstore
4 {x7,5,b′ + x9,5,b′ }

+

B∑

b′=2

(b + b′) SRstore
2 {x8,5,b′ }

(6)

In the right hand of this equation, we calculate the sum of
shedding rates that passengers of middle seats can lead. This
part is defined based on passengers with seats 7E and 9E (with
shedding rates type 4) and the last part (with shedding rates type
2), is defined based on the location of the passenger with seat
8E in Fig. 4. The order of these three passengers is not impor-
tant, as they can all transfer viruses to the destination passenger
in seat 8F if they have baggage. The main reason is that we
use the outside-in strategy for the boarding phase. Therefore,
they seat after the target passenger with seat 8F. In addition,
for that passenger, we need to calculate the shedding rates that
passengers of aisle seats can lead. We explain it in phase 3.

Also, we have a similar situation for the target passenger at
seat 16E and three passengers with seats 15D, 16D, and 17D.
We consider shedding rate type 3, SRstore

3 , for passengers with
seats 15D and 17D and shedding rate type 1, SRstore

1 , for pas-
senger with seat 16D that spread for that target passenger. Like
the last part, we can see this concept in Fig. 3 as well. These
two types of store shedding rates are shown with the number of
orange-coded passengers there.

Phase 3. The last element considers aisle-seated passengers
(7). For the proposed target passenger (seat 8F), these passen-
gers are in seats 7D, 8D, and 9D.

SRPhase 3 =0.5
B∑

b′=2

(b + b′) SRstore
4 {x7,4,b′ + x9,4,b′ }

+

B∑

b′=2

(b + b′) SRstore
2 {x8,4,b′ }

(7)

Also, we use the same shedding rate, SRstore
4 , for passengers

7D, 7E, 7F, 9D, 9E, 9F for target passenger 8F because where
they are storing their bags, the distances between each on them
and passenger 8F is the same.

3.2. Constraints

To understand the equations, we explain below how we model
the most important constraints, first with respect to the shedding
rates during luggage storage. The notations and definitions of
parameters and decision variables are defined as follows.

The proposed mixed-integer linear programming model for
the problem is introduced with (9)-(37). In the objective func-
tion, we minimize the summation of flight and store shedding
rates of all passengers in (8). If there is an empty seat, we do
not calculate the shedding rates here, based on the constraint
(9). Constraint (10) guarantee that each passenger only has one
choice between 0, 1, or 2 bags. The number of passengers who
have (b − 1) bags is determined by constraint (11).

Equations (12)-(21) were already defined and successfully
implemented in [18]. We follow this approach and update these
equations according to our requirements. We add a coefficient,
Normflight = 1

4.8209 , which helps us to create the normalized
value of the summation of flight shedding rates for each pas-
senger. With (12)-(16), we calculate the sum of flight shedding
rates for passengers who seat in the first row. The row count
starts with i=1 (no row number 0). In fact, we restricted the
number of rows because passengers sitting in the previous row
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are important for calculating the flight shedding rate. The sum
of flight shedding rates of passengers who seat from the second
row to the last row is calculated based on (17)-(21).

The constraints (22) and (23) guarantee to compute the stor-
ing shedding rates for passengers with window seats (i.e., col-
umn A, F, or j=1, 6). For example, for the passenger who seats
on a window seat (8F) we calculate the storing shedding rates
in the last part and indicate in Fig. 4 with details. The storing
shedding rates for passengers with middle seats (i.e., column B,
E, or j=2, 5) are calculated by constraints (24) and (25) and cal-
culated for passengers with aisle seats by constraint (26). Simi-
larly, we use a coefficient, Normflight = 1

9.7833 , which helps us to
create the normalized value of the summation of storing shed-
ding rates for each passenger. This value, like flight shedding
rate, is the maximum shedding rate that can occur for a passen-
ger when the passenger and the other passengers who seat near
that passenger, have 2 bags.

To calculate the sum of storing shedding rates for passen-
gers of window seats, middle seats and aisle seats, constraints
(27-28), constraints (29-30) and constraint (31) are considered,
respectively. Similarly, constraints (32-33), constraints (34-35)
and constraint (36) are defined to compute the sum of storing
shedding rates for passengers of window seats, middle seats
and aisle seats in the last row of the cabin. In addition, we
do not need to consider the shedding rates for the next row be-
cause they are seated on the last row. Finally, the range of the
decision variable is defined in constraint (37).

To calculate the store shedding rates, we had two options;
the first option is the definition of a couple of constraints which
include distance and bags of two groups of passengers. The
second option is the proposed model in this study. We decided
not to use the first option because in valuing this kind of pa-
rameter, we need to calculate too many combinations and more
complexity should be considered because the formulation in-
cludes two arrays of three numbers. Each number shows the
number of bags. Suppose that on the right side of the cabin in
row i we have (b, b’, b”) which are the number of bags of pas-
sengers who sit in columns D, E, and F in the row i. Therefore,
we have 3*3*3=27 combinations for the right side of a seat row.
Then, if we just accept just a gap between the number of rows of
one, therefore we have (number of rows-1=28)*27*27=20412
combinations for the right side of the cabin. Also, we should
consider for the left side to find out all acceptable combinations
and value them. Therefore, we decided to use the formulation
that includes x and y of two passengers and multiply by the sum
of bags of the passengers.

4. Results of the proposed approach

Several small to medium-sized problems are designed to
validate the model. These problems are solved with solver
Gurobi in Python and the optimal solutions are determined.
Fig. 5 shows the result of the smallest problem solved, where
the number of rows is 4 and a seat load of 50% is assumed.
Furthermore, three passengers without luggage, six passengers
with one piece of luggage, and three passengers with two pieces
of luggage are considered. The run time for this use case is less

than 1 minute and the value of the objective function is 2.99.
However, if the size of the problem is increased to medium size
(e.g., 10 seat rows), the solver can no longer find the solution in
a reasonable time (more than 10 hours [18]).

In the exemplary use case (Fig. 5) with 4 rows, we can see
three different parts as follows.

Part 1 - Passenger who sits in seats row 1 and column F
(1F) receive the normalized storing shedding rate from
passenger 2F when storing two bags.

Part 2 - Passengers who sit in seats 1A, 4A, and 4F re-
ceive the normalized storing shedding rate from passen-
gers 1B, 3A, and 4E, respectively.

Part 3 - Passengers who sit in seats 1F and 2F receive the
normalized storing shedding rate from passenger 1D at
the same time.

After these three parts, we can calculate the optimal values
of received store shedding rates of these passengers; Passenger
1A and 4F (two bags): 0.0598; passenger 1F (one bag): 0.0537;
passenger 2F (two bags): 0.0414; passenger 3A and 4A (one
bag): 0.009. Also, in the last part of Fig. 5, after the boarding
process, we can calculate the flight shedding rates based on op-
timal seat allocation. For example, the sum of normalized flight
shedding rates for passenger 1A is 0.207 and for passenger 1D
it is 0.141.

As the seat layout problem is a kind of NP-hard problem,
we design a novel genetic algorithm (GA) to solve the model
for the real size problem, such as an Airbus A320 seat layout
with 29 seat rows (i = 29) and 6 seats per row ( j = 6). The seat
layout problem was solved by meta-heuristic algorithms such
as GA [38, 47]. Regarding the ability of GA to solve the inte-
ger linear programming we use it to find optimal/near-optimal
solutions for real size problems. A computer with the specifi-
cations of the Core i7- 10610U CPU, 1.80 GHz, 32 GB Ram,
and Matlab R2013 are used to run the GA code.

4.1. Chromosome structure
To create the initial generation, first, we define the solutions

of chromosome structure as follows.

C =



y1,1 y1,2 y1,3 y1,4 y1,5 y1,6
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6
... ... ... ... ... ...

y29,1 y29,2 y29,3 y29,4 y29,5 y29,6



with yi, j = b if xi, j,b = 1, otherwise zero

The arrays of the matrix take values of 0, 1, 2, or 3. If seat
(i, j) is not assigned to any passengers, we consider yi, j = 0.
If there is a passenger with no bag, we consider yi, j = 1. If
there is a passenger with a bag or 2 bags, we consider yi, j =

2 and yi, j = 3, respectively. The fitness function is defined
based on the original objective function. When developing a
first generation and new solutions for the next generations, the
generated solutions are always feasible. Also, GA operators
such as selection, crossover, mutation, and migration generate
the next generation from the current generation at each stage.
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min
I∑

i=1

J∑

j=1

dflight
i j +

I∑

i=1

J∑

j=1

B∑

b=1

dstore
i jb (8)

dflight
i j +

B∑

b=1

dstore
i jb ≤ 2

B∑

b=1

xi jb ∀ i, j (9)

B∑

b=1

xi jb ≤ 1 ∀ i, j (10)

I∑

i=1

J∑

j=1

xi jb = Bagb ∀ b (11)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
1 xi( j+1)b′ + SRflight

4 xi( j+2)b′ }
]
≤ dflight

i j ∀ i = 1, j = 1 (12)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

SRflight
1 {xi( j−1)b′ + xi( j+1)b′ }

]
≤ dflight

i j ∀ i = 1, j = 2, 5 (13)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
4 xi( j−2)b′ + SRflight

1 xi( j−1)b′ + SRflight
5 xi( j+1)b′ }

]
≤ dflight

i j ∀ i = 1, j = 3 (14)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
5 xi( j−1)b′ + SRflight

1 xi( j+1)b′ + SRflight
4 xi( j+2)b′ }

]
≤ dflight

i j ∀ i = 1, j = 4 (15)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
4 xi( j−2)b′ + SRflight

1 xi( j−1)b′ }
]
≤ dflight

i j ∀ i = 1, j = 6 (16)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
2 x(i−1) jb′ + SRflight

3 x(i−1)( j+1)b′ + SRflight
1 xi( j+1)b′ + SRflight

4 xi( j+2)b′ }
]
≤ dflight

i j ∀ i ≥ 2, j = 1 (17)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
3 x(i−1)( j−1)b′ + SRflight

2 x(i−1) jb′ + SRflight
3 x(i−1)( j+1)b′ + SRflight

1 xi( j−1)b′ + SRflight
1 xi( j+1)b′ }

]
≤ dflight

i j

∀ i ≥ 2, j = 2, 5 (18)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
3 x(i−1)( j−1)b′ + SRflight

2 x(i−1) jb′ + SRflight
6 x(i−1)( j+1)b′ + SRflight

4 xi( j−2)b′ + SRflight
1 xi( j−1)b′

+ SRflight
5 xi( j+1)b′ }

]
≤ dflight

i j ∀ i ≥ 2, j = 3 (19)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
6 x(i−1)( j−1)b′ + SRflight

2 x(i−1) jb′ + SRflight
3 x(i−1)( j+1)b′ + SRflight

5 xi( j−1)b′ + SRflight
1 xi( j+1)b′

+ SRflight
4 xi( j+2)b′ }

]
≤ dflight

i j ∀ i ≥ 2, j = 4 (20)

M


B∑

b=1

xi jb − 1

 + Normflight
[ B∑

b′=1

{SRflight
3 x(i−1)( j−1)b′ + SRflight

2 x(i−1) jb′ + SRflight
4 xi( j−2)b′ + SRflight

1 xi( j−1)b′ }
]
≤ dflight

i j ∀ i ≥ 2, j = 6 (21)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i−1) jb′) + x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i−1)( j−1)b′ + x(i+1)( j−1)b′ + x(i−1)( j−2)b′ + x(i+1)( j−2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j−1)b′ + x(i)( j−2)b′ }

]
≤ dstore

i jb ∀ b, 2 ≤ i ≤ 28, j = 6 (22)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i−1) jb′) + x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i−1)( j+1)b′ + x(i+1)( j+1)b′ + x(i−1)( j+2)b′ + x(i+1)( j+2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j+1)b′ + x(i)( j+2)b′ }

]
≤ dstore

i jb ∀ b, 2 ≤ i ≤ 28, j = 1 (23)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i−1) jb′ + x(i+1) jb′ } +

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j−1)b′ }

+ 0.5
B∑

b′=2

(b + b′)SRstore
3 {x(i−1)( j−1)b′ + x(i+1)( j−1)b′ }

]
≤ dstore

i jb ∀ b, 2 ≤ i ≤ 28, j = 5 (24)
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M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i−1) jb′ + x(i+1) jb′ } +

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j+1)b′ }

+ 0.5
B∑

b′=2

(b + b′)SRstore
3 {x(i−1)( j+1)b′ + x(i+1)( j+1)b′ }

]
≤ dstore

i jb ∀ b, 2 ≤ i ≤ 28, j = 2 (25)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
5 {x(i−1) jb′ + x(i+1) jb′ }

]
≤ dstore

i jb ∀ b, 2 ≤ i ≤ 28, j = 3, 4 (26)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i+1)( j−1)b′ + x(i+1)( j−2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j−1)b′ + x(i)( j−2)b′ }

]
≤ dstore

i jb ∀ b, i = 1, j = 6 (27)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i+1)( j+1)b′ + x(i+1)( j+2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j+1)b′ + x(i)( j+2)b′ }

]
≤ dstore

i jb ∀ b, i = 1, j = 1 (28)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
3 {x(i+1)( j−1)b′ }

+

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j−1)b′ }

]
≤ dstore

i jb ∀ b, i = 1, j = 5 (29)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i+1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
3 {x(i+1)( j+1)b′ }

+

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j+1)b′ }

]
≤ dstore

i jb ∀ b, i = 1, j = 2 (30)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
5 {x(i+1) jb′ }

]
≤ dstore

i jb ∀ b, i = 1, j = 3, 4 (31)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i−1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i−1)( j−1)b′ + x(i−1)( j−2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j−1)b′ + x(i)( j−2)b′ }

]
≤ dstore

i jb ∀ b, i = 29, j = 6 (32)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
4 {x(i−1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
4 {x(i−1)( j+1)b′ + x(i−1)( j+2)b′ }

+

B∑

b′=2

(b + b′)SRstore
2 {x(i)( j+1)b′ + x(i)( j+2)b′ }

]
≤ dstore

i jb ∀ b, i = 29, j = 1 (33)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i−1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
3 {x(i−1)( j−1)b′ }

+

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j−1)b′ }

]
≤ dstore

i jb ∀ b, i = 29, j = 5 (34)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
3 {x(i−1) jb′ } + 0.5

B∑

b′=2

(b + b′)SRstore
3 {x(i−1)( j+1)b′ }

+

B∑

b′=2

(b + b′)SRstore
1 {x(i)( j+1)b′ }

]
≤ dstore

i jb ∀ b, i = 29, j = 2 (35)

M


B∑

b′=1

xi jb′ − 1

 + Normstore
[
0.25

B∑

b′=2

(b + b′)SRstore
5 {x(i−1) jb′ }

]
≤ dstore

i jb ∀ b, i = 29, j = 3, 4 (36)

xi jb ∈ {0, 1}, dflight
i j , dstore

i jb ≥ 0 ∀ i, j, b (37)
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Figure 5: The optimal solution of small-size problem (numbers show the num-
ber of bags)

4.2. Mutation operators

The roulette wheel as our selection operator guarantees that
the solution with a better (i.e., lower) fitness function has a bet-
ter chance to select for the following GA operators such as mu-
tation and crossover. Five different operators are designed to
implement mutation, as follows.

To create the offspring from the parents, we use the cross-
over operator. Firstly, we select a solution and then create a
new solution from it. In the first type, we select a non-zeros ar-
ray and then substitute it with a zero array. We randomly select
two non-zero arrays and then change their values in the second
mutation operator. In the third and fourth types, we change the
arrays of two random rows and columns. Also, we change the
location of a random array with a value of 2 or 3 to a zero-
window seat location (i.e., column 1 or 6).

Selected solution First new solution



0 3 2 1 0 1
1 0 3 1 0 0
... ... ... ... ... ...

2 0 0 3 0 2





3 0 2 1 0 1
1 0 3 1 0 0
... ... ... ... ... ...

2 0 0 3 0 2



Second solution Third new solution



0 3 1 2 0 1
1 0 3 1 0 0
... ... ... ... ... ...

2 0 0 3 0 2





1 0 3 1 0 0
0 3 2 1 0 1
... ... ... ... ... ...

2 0 0 3 0 2



Fourth solution Fifth new solution



3 0 2 1 0 1
0 1 3 1 0 0
... ... ... ... ... ...

0 2 0 3 0 2





0 3 2 1 0 1
1 0 3 1 0 0
... ... ... ... ... ...

2 0 0 2 0 3



4.3. Crossover operator

We divide the rows of the aircraft into four different parts:
from row 1 to 7, from row 8 to 14, from row 15 to 21, and from
row 22 to 29. The first offspring receives their genes related to
parts 1 and 3 from the first parent and parts 2 and 4 from the
second parent. Similarly, the second offspring gets the 1 and 3
from the second parent and so on.

Row Parent 1 Parent 2


1
...
7
8
...
14
15
...
21
22
...
29





3 0 2 1 0 1
... ... ... ... ... ...

2 2 1 1 3 0
0 1 1 1 0 3
... ... ... ... ... ...

1 3 0 1 0 0
2 0 0 3 2 2
... ... ... ... ... ...

2 3 0 3 0 1
0 0 3 1 1 1
... ... ... ... ... ...

3 1 0 3 1 2





1 3 0 1 2 1
... ... ... ... ... ...
1 1 3 0 1 3
2 0 2 0 1 2
... ... ... ... ... ...
0 2 0 1 0 3
1 3 1 2 3 1
... ... ... ... ... ...
1 0 3 2 0 0
0 2 1 2 3 0
... ... ... ... ... ...
1 1 3 1 3 1



Row Offspring 1 Offspring 2


1
...
7
8
...
14
15
...
21
22
...
29





3 0 2 1 0 1
... ... ... ... ... ...

2 2 1 1 3 0
2 0 2 0 1 2
... ... ... ... ... ...
0 2 0 1 0 3
2 0 0 3 2 2
... ... ... ... ... ...

2 3 0 3 0 1
0 2 1 2 3 0
... ... ... ... ... ...
1 1 3 1 3 1





1 3 0 1 2 1
... ... ... ... ... ...
1 1 3 0 1 3
0 1 1 1 0 3
... ... ... ... ... ...

1 3 0 1 0 0
1 3 1 2 3 1
... ... ... ... ... ...
1 0 3 2 0 0
0 0 3 1 1 1
... ... ... ... ... ...

3 1 0 3 1 2



When the first generation is created, all solutions are feasi-
ble because the number of passengers with a specific value of
bags (e.g., 29 passengers with two bags) is determined. Each
solution is a matrix of size 29 by 6 (number of rows is 29 and
number of columns is 6). The arrays of the matrix could take
the values of 0 (empty seat), 1 (passenger without bag), 2 (a
passenger with a bag), or 3 (a passenger with two bags). For
the first generation, we start with a zero matrix, and then we
select 29 zero arrays and substitute them with the value of 3,
which means they have 2 bags and so on. Each solution in the
first generation of GA has 29 arrays of one, 58 arrays of two,
29 arrays of three, and 58 arrays of zero when the GA is run for
the second scenario. The only important constraint in the GA is
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the number of these values to have feasible solutions in the first
generation. The new solutions for the next generations are al-
ways feasible. Two important operators are implemented here,
mutation and crossover. In mutation, we always create a fea-
sible solution because we change the location of two non-zero
arrays or select a non-zero array to put it in a zero array and
then the first array takes zero. In the crossover operator, solu-
tions take their arrays from two parents. Based on this operator,
infeasible solutions might be generated. We use a strategy to
modify these solutions to have always feasible solutions. For
example, instead of having a solution with 29 arrays of one, 58
arrays of two, 29 arrays of three, and 58 arrays of zero, after im-
plementing the crossover, we have a solution with 28 arrays of
one, 59 arrays of two, 27 arrays of three and 60 arrays of zero.
We need to have another one in the solution. Thus, we ran-
domly select one of the zeros and assign it to one. As a result,
we have 29 arrays of one, 59 arrays of two, 27 arrays of three,
and 59 arrays of zero. The final step is selecting two arrays
which are randomly taken 2 and 0 and assigning them the value
of three. We reach the main assumption, which is 29 arrays of
one, 58 arrays of two, 29 arrays of three, and 58 arrays of zero.
The feasible solutions will be generated when creating the next
generation from the current one under different operators.

4.4. Additional operators

To enable to transfer of a given (low) percentage of the cur-
rent generation to the next, the operators elitism and migration
are implemented. The best solutions based on fitness function
are transferred to the next generation under the elitism oper-
ator, which guarantees the best solution in each generation is
equal to or better than the best solution in the previous gener-
ation. The migration operator enhances the population’s genes
by adding randomly generated sequences, which expands diver-
sity and accelerates the algorithm’s convergence. Both opera-
tors are defined by a share of the population size. We consider
the following parameters of GA: population size = 200, genera-
tions = 1,000, mutation rate = 30%, crossover rate = 50%, and
elitism and migration rates = 10%.

4.5. Application scenarios

Here we define three strategies in terms of the number of
seats assigned to passengers and the number of bags that pas-
sengers have as follows.

Scenario 1. Seat load of 50% which means 87 passengers in-
cluding 22 passengers without bags, 43 passengers with a bag,
22 passengers with two bags, and 87 empty seats (Fig. 6).

2928272625242322212019181716151413121110987654321

22 43 22 87Scenario 1 (50% seat load)

Figure 6: Scenario 1.

Scenario 2. Seat load of 66% which means 116 passengers in-
cluding 29 passengers without bags, 58 passengers with a bag,
29 passengers with two bags, and 58 empty seats (Fig. 7).

2928272625242322212019181716151413121110987654321

29 58 29 58Scenario 2 (66% seat load)

Figure 7: Scenario 2.

Scenario 3. Seat load of 80% which means 140 passengers in-
cluding 35 passengers without bags, 70 passengers with a bag,
35 passengers with two bags, and 34 empty seats (Fig. 8).

2928272625242322212019181716151413121110987654321

35 70 35 34Scenario 3 (80% seat load)

Figure 8: Scenario 3.

The GA results in Fig. 8 best highlights how our approach
works. Passengers without a bag are seated in the aisle seats
(i.e., columns C and D), so they will not stay long in the aisle
for baggage storing. Consequently, passengers with one bag
and two bags sit in middle/aisle seats and while they stow their
luggage, only a few seats in front of them are occupied by other
passengers. Both configurations reduce the transmission risk
for all already seated passengers. Further, the algorithm results
in a balanced distribution of compartment utilization per side
(left/ right of the aisle and per row (front/ middle/ rear part of
the aircraft). Considering the corresponding scenario assump-
tions, a maximum of 4 pieces of hand luggage are stored in the
respective overhead compartment.

The run time of each scenario is lower than 5 minutes. The
best fitness values for the three scenarios are 26.3963, 61.4913,
and 104.2342, respectively. For example, the run time of the
second scenario is 74.4 seconds, and fitness values for both best
and average fitness function for each generation are shown in
Fig. 9. The proposed GA converges to the near/optimal solution
in the 826th generation.
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Figure 9: The evolutionary diagram for the Second Scenario

In the next step, we will use the derived seat allocations
as input for a boarding simulation. Depending on different
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boarding sequences, the impact of increasingly utilized over-
head compartments on passenger boarding time and virus trans-
mission risk will be evaluated.

5. Agent-based simulation model

The individual movement behavior of passengers in the air-
craft cabin is modeled by a validated, stochastic cellular au-
tomaton approach, which covers short (e.g., avoid collisions,
group behavior) and long-range interactions (e.g., tactical way-
finding), as well as the stochastic nature of passenger move-
ments [14, 79]. This cellular automaton model is based on an
individual transition matrix, which contains transition proba-
bilities for a passenger to move to adjacent positions around the
current location [80].

5.1. Grid-based transition approach for passenger movements

The implemented cellular automaton model considers op-
erational conditions of aircraft and airlines (e.g., seat load fac-
tor, conformance to the boarding procedure) as well as the non-
deterministic nature of the underlying passenger processes (e.g.,
hand luggage storage) and was calibrated with data from the
field [51]. The cellular automaton for aircraft boarding and dis-
embarkation is based on a regular grid (Fig. 10), which consists
of equal cells with a size of 0.4 x 0.4 m, where a cell can ei-
ther be empty or contain exactly one passenger. Passengers can
only move one cell per timestep or must stop if the cell in the
direction of movement is occupied.

1 3 5 7 29272523... ...

front door rear door

seat row

seat aisle

Figure 10: Grid-based aircraft model with 29 seat rows and 6 seats per row
(reference layout for single-aisle, narrow-body configurations). Layout shows
one door in use for disembarkation.

The boarding progress consists of a simple set of rules for
the passenger movement: (a) enter the aircraft at the assigned
door (based on the current boarding scenario), (b) move for-
ward from cell to cell along the aisle until reaching the as-
signed seat row, and (c) store the luggage (aisle is blocked for
other passengers) and take the seat. The storage time for the
hand luggage depends on the individual number of hand lug-
gage items. The seating process depends on the constellation
of already used seats in the corresponding row. The agents
are sequenced concerning the active boarding strategy. From
this sequence, a given percentage of agents are taken out of the
sequence (non-conforming behavior) and inserted into a posi-
tion, which contradicts the strategy (e.g., inserted into a differ-
ent boarding block).

The maximum, free walking speed in the aisle is 0.8 m/s
[81], so a simulation timestep is 0.5 s. In each simulation step,
the list of passengers to be updated is randomly shuffled to em-
ulate a parallel update behavior for the discrete time-dynamics

(random-sequential update) [79, 80]. The boarding time is de-
fined as the time between the first passenger entering the air-
craft and the time the last passenger is seated. Each boarding
scenario is simulated 125,000 times, to achieve statistically rel-
evant results defined by the average boarding time. Further de-
tails regarding the general stochastic model, parameter setups,
and the simulation environment are provided in [14].

To minimize the risk of virus transmission, a physical dis-
tance between passengers is required. The International Avia-
tion Transport Association demands a distance of at least 1 me-
ter [82] and the Federal Aviation Administration a minimum
of 6 feet (2 meters) [83]. Considering the cellular automaton
model with a grid of 0.4 x 0.4 m cells, and to maintain com-
parability of our results with preliminary studies [16, 18, 53],
the minimum physical distance was set to 1.6 m (4 cells). At
this point, we assume that passengers are informed that 1.6 m
corresponds to the distance of 2 seat rows, which offers proper
visual guidance. To assess the overall transmission risk of a
given scenario, in every simulation run one passenger is ran-
domly marked as infected. During each timestamp, the indi-
vidual transmission risk is calculated and updated for each pas-
senger based on the continuous transmission risk approach de-
fined in Section 3.1. After completion of a simulation run, all
individual risks are summed up. The average values from the
125,000 simulation runs are used as the representative values
for the transmission risk of the corresponding scenario.

The application of different seat assignments and boarding
sequences result in different passenger interactions and utiliza-
tion of overhead compartments within the simulated aircraft
cabin environment, thus increasing/decreasing the observed board-
ing times and transmission risks. Seat assignment and boarding
sequence are input parameters for the agent-based simulation
and must be defined before a simulation run starts. Even if
optimization algorithms are implemented in the simulation en-
vironment itself (cf. [48, 84], they are not used in this study.
While the seat assignment comes from the optimization per-
formed above (see Section 4), the improved outside-in boarding
sequences were taken from a previous research study [18].

5.2. Hand luggage and compartment utilization
A common modelling approach for the time needed to store

hand luggage items in the overhead compartment (tstore items) is
given with (38) and was used in several research studies [13, 68,
85]. The individual number of items npax increases the number
of already stored items nbin, and tstore items is calibrated with the
parameter a and scaled with a time dimension ∆t (e.g., sim-
ulation step size). This approach leads to increasingly longer
times, both with a higher number of individual items and with
a higher number of already stowed luggage. However, the ca-
pacity limit of the overhead compartment is not considered.

tstore items =

(
a +

nbin + npax

2
npax

)
∆t (38)

An idea motivated by the Pollaczek-Khintchine equation
(39) allows to overcome this limitation by considering the uti-
lization ρ = λ/µ. Eq. (39) generally describes the average
waiting time tw in a queue with arrival rate λ, capacity µ, and
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variance for arrivals σ [86, 87]. If we are assuming that σ2

and µ are constant, we could simplify the equation to a term
which considers the arrival rate λ (in our case, the number of
individual items npax), utilization of overhead compartment ρ in
percent, and the calibration parameter a.

tw =
λ
(
σ2 + 1

µ2

)

2 (1 − ρ)
=

a λ
1 − ρ (39)

Like (38), tstore items increase in (39) with a higher number of
individual items but also with a higher utilization of the com-
partment. When the capacity is almost reached, the correspond-
ing strong increase in storage times is now effectively consid-
ered, but ρ = 1 results in tstore items = ∞. We set ρmax = 0.9 for
the calculation and further assume 6 as maximum capacity nmax
for the overhead compartment, with one bigger and one smaller
item for each passenger. Considering the previously described
assumptions, (40) is derived. It may be noted that

∑i npax, i con-
siders the utilization of the overhead compartment including the
items the current passenger i stores.

tstore items, i =
a npax, i

1 − min
(
ρmax,

∑i npax, i

nmax

) (40)

The passengers in the scenario populations possess 0, 1, or
2 hand luggage items with a probability of 25%, 50%, and 25%
respectively. A general distribution of times for storing the hand
luggage is derived from field trials and fitted to a Weibull distri-
bution with the parameters α = 1.7 and β = 16 s (Fig. 11, black
dashed line [51]).
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new distribution

Figure 11: Times needed to store hand luggage items with increasing utilization
of the overhead compartment: fitting of new time distribution regarding to a
field trials reference.

This distribution is used as reference to calculate the param-
eter a = 2.4 s/bag from (40) using the baggage item distribution
in the assumed population. For example, the time for storing
two items in the overhead compartment increases from 7.2 s,
9.6 s, 14.4 s, 28.8 s, to 48 s when the overhead compartment
already contains 0, 1, 2, 3, and 4 items, respectively (Fig. 12).

0 1 2 3 4 5 6
utilization of overhead compartment (including npax)

0

10

20

30

40

50

tim
e 

(s
)

avg. fit: f(x) = exp(x/1.56) 1
store 0 item
store 1 items
store 2 items

Figure 12: Times needed to store hand luggage items with increasing utilization
of the overhead compartment: individual time to store hand luggage items de-
pending on the number of individual items and final utilization of compartment.
The black line illustrates the average progressive time growth.

Consequently, the maximum time (storing six items in the
compartment) is 7.2 s + 14.4 s + 48 s = 69.6 s, which happens if
all passengers from one side of a seat row (three seats) carrying
two hand luggage items (probability of 1.56%).

5.3. Implementation and evaluation of scenarios

For the assessment of the scenarios, a random boarding pro-
cedure (randomly distributed seats and no specific boarding or-
der) was implemented as a reference case. This allows evaluat-
ing both the effect of the optimized seat allocation and the ad-
ditional improvement due to an optimized boarding sequence.
In Fig. 13 (top), a random boarding sequence is shown, where
darkly marked seats are filled first, and lightly marked seats are
filled last.

In the (common) outside-in strategy, passengers are divided
into three groups according to their seating position. Passengers
with window seats board first and those with aisle seats board
last (Fig. 13, center). This simple three-group approach does
not consider any particular order of passengers within a group.
This approach reduces the negative impact of interactions in
the seat row when passengers must leave the seat row to allow
following passengers to take their seats located closer to the
window.

In the proposed optimized outside-in strategy, passengers
are additionally sorted in each group, corresponding to a stag-
gered approach from the back to the front of the aircraft [18].
Taken the first boarding group (window seats) as an example,
the list of seats from the back to the front (29F, 28F, .., 1F) is
separated into sublists (29F, 26F, 23F, 20F, 17F, 14F, 11F, 8F,
5F, 2F), (28F, 25F, 22F, 19F, 16F, 13F, 10F, 7F, 4F, 1F), (..).
These partial lists must account for the requirement of a physi-
cal distance between passengers, which we have realized in the
implementation by spacing them 3 rows apart. This additional
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sorting of passengers into groups reduces the likelihood of pas-
sengers passing each other, e.g., a passenger from row 20 must
wait for the passenger in front of him/her who has a seat in
row 10. Also, the left and right sides of the cabin are boarded in
an alternating and staggered pattern to further reduce negative
passenger interactions (Fig. 13, below).

front back

1A

optimized outside-in
29F

random

front back

1A

29F

outside-in

front back

1A

29F

Figure 13: Three implemented boarding strategies, with a random, outside-in,
and optimized outside-in sequence. Boarding is based on the designated color
sequence, with dark seats being used first and light seats last.

Finally, there are two seat assignments, optimized layout
and randomly distributed seats, and three passenger boarding
sequences, sorted by ascending complexity: random, outside-
in, and optimized outside-in. The results of the passenger board-
ing simulation are shown in Table 1. As mentioned earlier, each
scenario is simulated 125,000 times, with a new random board-
ing sequence and seat allocation in the corresponding scenarios
provided for each simulation run. The average value for the
overall transmission risk, the sum over all individual transmis-
sion risk, and the average boarding time are reported in Table 1.
For each of the three scenarios, a reference implementation is
simulated with a random seat layout and random boarding se-
quence, with the average boarding time set as a benchmark at
100%. Regarding this benchmark, it can be seen that both the
implementation of the outside-in procedure and the optimized
seat allocation led to a reduction in boarding time and a reduc-
tion in the transmission risk.

As previous research has shown, the introduction of an outside-
in sequence speeds up passenger boarding even without the im-
plementation of appropriate seat layouts. Thus, the boarding
time is reduced by 21%, 24%, and 26% for scenarios 1, 2, and 3,
respectively (random seats, random sequence to random seats,
outside-in). In this case, the transmission risk is reduced from
0.02 to 0. If only the optimized seat layout is applied, consider-
ing a random boarding sequence, the boarding time is reduced
by 12%, 9%, and 3% for these scenarios. The transmission
risk is reduced by 50% to 0.01. A combined approach of us-
ing the common outside-in and the newly developed optimized
seat layout results in 34%, 39%, and 41% boarding time re-
duction, accompanied by a transmission risk of 0. As the seat
load factor increases from scenario 1 to 3, the combined imple-

mentation leads to even greater improvements at realistic load
factors. If in a final step, the order of passengers in each group
is also optimized (optimized outside-in), boarding time can be
further improved by up to 20%.

5.4. Compartment utilization model

The application of the developed compartment utilization
approach (Section 5.2) shows that, if the increased storage time
at higher utilization is not considered, boarding time reduction
is overestimated by 30% on average (relative to a boarding time
of the corresponding random boarding case). This shows quite
clearly how much the results in this case depend on the mod-
eling approach chosen. The general error of the applied agent-
based model was determined to be about 5% [51], so overesti-
mation is significant and cannot be considered a general model
uncertainty. If the achieved results are compared by absolute
values, the overestimation of boarding time reduction with the
old approach (no compartment utilization) is 16% at average,
but still significant. It can therefore be assumed that models
that do not consider the degree of utilization of the baggage
compartment tend to overestimate the impact of new procedure
designs.

6. Discussion and outlook

To handle the aircraft boarding problem under COVID-19
requirements, we researched the combination of optimization
and simulation approaches providing optimized seat allocations
and boarding sequences [18, 19, 39]. In these studies, we imple-
mented shedding rates [16] to calculate a transmission risk in-
dicator, addressing the potential spread of viruses in the aircraft
cabin. We had not considered the utilization of the overhead
compartment until now, however, in smaller experiments we
were able to determine that this aspect has a significant effect
on passenger boarding efficiency, particularly under COVID-19
requirements.

We started our approach with the commonly used outside-in
boarding strategy since this strategy already reduces the passen-
ger interactions in the seat rows. We see baggage storage as a
time-consuming, physical activity, which leads to a higher risk
of virus transmission in the aircraft cabin. Therefore, we first
develop a new mathematical model to calculate two types of
shedding rates, namely when passengers are seated and when
they store their luggage. As the boarding is an NP-hard type,
we design a genetic algorithm to solve the problem. Three op-
erational scenarios with a seat load of 50%, 66%, and 80% are
defined and the resulting seat allocations are used as input for a
stochastic agent-based model to evaluate the average boarding
time and transmission risk. The stochastic agent-based sim-
ulation demonstrates that the provided seat allocations result
in a reduction in boarding times and transmissions risk, even
when no specific boarding sequence is provided. However, if
the recommended outside-in boarding is implemented and the
boarding sequence is additionally optimized, the boarding time
can be significantly reduced by more than 50% compared to
the random reference and by more than 30% compared to the
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Scenario Seat allocation Boarding strategy Average trans- Average boarding
mission risk time (%)

1 (50% seat load) optimized layout optimized outside-in 0.00 46
outside-in 0.00 66
random sequence 0.01 88

references: random seats outside-in 0.00 79
random sequence 0.02 100

2 (66% seat load) optimized layout optimized outside-in 0.00 45
outside-in 0.00 61
random sequence 0.01 91

references: random seats outside-in 0.00 76
random sequence 0.02 100

3 (80% seat load) optimized layout optimized outside-in 0.00 41
outside-in 0.00 59
random sequence 0.02 97

references: random seats outside-in 0.00 74
random sequence 0.02 100

Table 1: Simulation of appropriate boarding strategies for the defined scenarios. For each scenario, combinations of (non) optimized seat allocation and (non)
optimized boarding sequence are analyzed.

outside-in reference. In these cases, the transmission risk has
remained at the lowest level.

Our research results indicate that the process of baggage
storage in the aircraft cabin has a significant impact on the
process efficiency in terms of boarding time minimization and
transmission risk mitigation. At the same time, there is still a
high potential for optimization and a need for implementation.
The next steps could be to determine the expected number of
hand luggage items in real-time as well as the utilization sta-
tus of the overhead bins during boarding. In addition to pre-
operation optimization, this could also lead to dynamic control
of the boarding sequence during operations.

The COVID-19 epidemic has drastically reduced the num-
ber of passengers transported. The resulting low seat load fac-
tors have mitigated the negative impact of legal requirements
(e.g., physical distances) on passenger handling processes (e.g.,
boarding times) to a certain degree. The planned aircraft turnaround
times were met due to the reduced number of passengers. With
the expected normalization of the air traffic sector, it will no
longer be possible to comply with these times. Assuming that
pandemic requirements are an obligatory task to be managed by
airlines and airport operators, intelligent and operationally rel-
evant solutions must be provided. Passengers should no longer
simply board an aircraft, but be guided through an adaptive, op-
timized layout and boarding process. Digitization already offers
an appropriate technological basis for the exchange of informa-
tion between passengers and operators, e.g., seat location, num-
ber of hand luggage items, group size, or dynamic position data.
With our concept, new digital approaches could be realized not
only to offer (location-based) services for passengers but also
to implement sustainable improvements in passenger handling.
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- The aircraft boarding problem is solved under COVID-19 requirements by a combination of 

optimization and simulation approaches. 

- The process of baggage storage, including the increasing utilization of compartments, is asso-

ciated with additional physical activity of passengers (higher virus transmission) and requires 

optimization.  

- A transmission risk indicator is implemented to determine optimized seat allocation (mixed-

integer programming, genetic algorithm) and corresponding passenger boarding sequence 

(agent-based model). 

- The process of the recommended outside-in boarding can be more than 30\% compared to 

the outside-in reference. 

- Derived seat allocation, based on outside-in boarding, has reduced virus transmission, and 

improved passenger boarding sequence has reduced boarding time by 30%. 
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