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Abstract:  

Mobile edge computing (MEC) provides an effective solution to help the Internet of Things (IoT) devices 

with delay-sensitive and computation-intensive tasks by offering computing capabilities in the proximity of 

mobile device users. Most of the existing studies ignore context information of the application, requests, 

sensors, resources, and network. However, in practice, context information has a significant impact on the 

offloading decisions. In this paper, we consider context-aware offloading in MEC with multi-user. The 

contexts are collected using autonomous management as the MAPE loop in all offloading processes. Also, 

federated learning (FL)-based offloading is presented. Our learning method in mobile devices  (MDs) is deep 

reinforcement learning (DRL). FL helps us to use distributed capabilities of MEC with updated weights 

between MDs and EDs. The simulation results indicate our method is superior to local computing, offload, 

and FL without considering context-aware algorithms in terms of energy consumption, execution cost, 

network usage, delay, and fairness. 
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1. Introduction 

In recent years, data production in various scientific and industrial fields and the limitation of resources to 

process has resulted in the need for a rich processing environment outside of the user’s equipment. This led 

to creating the cloud computing environment with almost endless physical and virtual processing resources 

[1]. In computation offloading to the cloud, we face problems due to the large distance of end-users to the 

cloud; for example, in cases where we need a real-time response, such as healthcare, waiting for receiving a 

response from the cloud can pose serious problems. A computational offloading was proposed to solve this 

problem in the fog environment to create a computational level closer to the end-users [2, 3]. For several 

years, a new trend was emerging and putting cloud computing functions on the network's edge. One of the 

incentives for this approach is the mass production of network EDs (including Wi-Fi router and access point 

station). Due to the significant processing power of these devices, high-throughput and delay-sensitive 

functions can be implemented. This process model is called mobile edge computing (MEC) [4]. This 

technology is developed by the European telecommunications standards institute (ETSI) [5]. The main focus 

of the MEC is on radio access networks (RANs) in 4G and 5G cellular networks. 

MEC has advanced features like latency, user proximity, high bandwidth, and location awareness 

[6]. These enable MEC to run many new types of applications and multi-region services, such as business 

and health, augmented reality, video streaming services, and more [7]. At MEC, the user's distance is much 
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closer than the user's distance to the cloud. One of the key technologies of MEC is computational offloading. 

This can be examined from both single-user and multi-user aspects. In a single-user computational state, at 

any given moment, a user can offload the computing task. In contrast, in multi-user computational 

offloading, multiple users are allowed to move their tasks to other computing layers simultaneously. As a 

difference between these two states in the multi-user offloading, one module with different data related to 

different users can be offload to EDs or the cloud. Since in the single-user mode, each module has got 

specific data. Therefore, it can be offload by the user. In the single-mode, there is no need for any data 

management for users. Although many works have been done in computational offloading in recent years, 

the concept of context-awareness has been used very limitedly [8] in past research. Our meaning about 

context is using the properties of offloading, application, mobile, sensors, network and media, and resources. 

The context in computing offloading decisions will be very influential because of mobile conditions like 

location, network status, and available computing resources [9]. 

One of the issues that arise in offloading is intelligent tools to detect current or underlying conditions 

and implement context-based behavior [10, 11]. This ability can be referred to as context-awareness. As soon 

as they make a network available, they perform the offload without considering whether the offloading is in 

their favor or not. The computational burden is not always beneficial to obtain the required level of 

efficiency and benefit offloading. Here we are investigating to improve the delay and energy consumption by 

the proposed offloading method. The distributed nature of MEC requires an appropriate offloading method. 

For this purpose, the FL can be useful in this regard. FL can coordinate the training process among multiple 

MDs. The DRL technique can solve the offloading problem. The DRL technique is very efficient in finding 

the optimal offloading policy in MEC. Since DRL needs much processing, thus the DRL agent has to be 

carefully designed and implemented. Some challenges [12] and their solutions in FL are as follows. 

- The whole training dataset is not accessible. This challenge is created for the nature of distributed 

computation, and it can provide the privacy of data for all users. 

- Slow and unstable communication. Based on the proposed 

approach, MDs are not completely dependent on EDs. As some nodes become offline, only the weights are 

less trained or updated later, but the task performing or offloading is done continuously. 

- The trade-off between privacy guarantees and system performance. The computation tasks can be 

encrypted by a fast and trusted cryptography algorithm in IoT. 

- Interference among MDs (The MDs may be geographically close to each other. This introduces an 

interference issue when they update local models to the server. As such, channel allocation policies may 

need to be combined with the resource allocation approaches to address the interference issue). DRL can be 

considered to model the dynamic environment of MEC and make optimized decisions.  

- Comparisons with other distributed learning methods. Some methods use neural networks up to a cut layer, 

or others ignore to transmit weights to an aggregating server. FL has a more straightforward implementation 

since the participants and the FL server run the same global model in each cluster. 

- Learning convergence. We improve this challenge with the loss function, as mentioned in the DRL 

algorithm. 
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- Size of model updates. The combinations of weights and contexts help us to reduce the size of model 

updates.  

Because real systems and environments are multi-user and not single-user, we use multipurpose 

computing offloading in our approach. Since these users are located in different locations and conditions, 

thus the offloading decision should be made with the knowledge of context and the existing conditions. This 

strategy solves the problems shown above, and to improve the service efficiency in computational 

offloading, we propose a multi-user conditioned MEC system that changes the conditions of a mobile 

computing resource. In this research, after presenting a three-tier architecture (IoT devices, edge servers, and 

cloud), the desired content is collected using autonomous management (MAPE control loop) defined at the 

edge level (Monitor phase), where we consider some important contexts in this area, using application 

context, mobile devices, sensors, networks, edge servers, and media. These contexts are analyzed (Analysis 

phase) and to help make decisions about offloading. These contexts send to our context-aware algorithm then 

a subsystem (Planning phase) executes the offloading instruction (Execution phase). The question that can be 

asked here is whether to use the concept of context-awareness in computational offloading in a multi-user 

MEC. As the context information is exchanged, the FL is implemented, and the updated weights related to 

the DRL algorithm are shifted between MDs and EDs. Our key contributions in this paper are as follows:  

1. We provide a MAPE control loop on the MEC architecture to decide whether to run local or offload 

computations to edge or cloud. This loop executes in the lifetime of the network and updates all 

parameters in the problem space. Also, we use context information of the application, sensors, 

resources, edge servers, and network. These updated contexts improve the offloading process. 

2. For optimal use of the distributed capability of MEC, we present an FL-based offloading algorithm. 

It uses the DRL to train the MDs and sends the updated weights to EDs and the cloud. It causes 

lower data transmission from MDs to EDs and protects the users’ information. 

3. The proposed approach evaluates based on some metrics: energy consumption, execution cost, 

network usage, delay, and fairness. The results show our proposed method outperforms the original, 

offloading, and FL without context methods.  

The rest of this paper is organized as follows. In section 2, related works are summarized. The system 

model and network architecture are presented in section 3. In section. 4, we explain our offloading 

algorithms in detail. In Section 5, the evaluation results of our proposed algorithms are presented and 

compare with other methods. Finally, in Section 6, the conclusion is discussed, and suggestions are made for 

future work. 

2. Related works 

In recent years, many studies have been performed about MCC [13, 14] and MEC [4]. We classify these 

works to multi-user and context-aware offloading as follows. Also, we collect and analyze some researches 

about FL. 

2.1. Multi-user offloading  

There are some research works about multi-user offloading [15,16,17,18]. Here, we mention these papers 
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based on their objectives and methods. Researchers studied different objectives such as energy consumption 

[19,44], computation delay [20], QoS (Quality of service), latency, and accuracy [21,22]. According to [16], 

as with cloud services such as PaaS (platform as a service), IaaS (infrastructure as a service), SaaS (software 

as a service), cloud computing offloading is also considered as a service (OaaS) in cloud computing. Unlike 

the client-server method, which the client always requests from the server for the result of a computational 

task, in the computational offloading method, only when it is needed. The proposed method captures and 

records user preferences, the current status of devices such as battery level, network bandwidth, CPU speed, 

free memory, and so on. The simulation results show that computation offloading to a more robust device 

can improve runtime instead of executing close to the user device.  

Some researchers minimized the cost under constraints and solve the offloading problem in multi-

user MEC by backtracking, genetic algorithm, and greedy strategies [18]. Paper [23] investigates the 

computational offloading with an efficient energy scheme in a multi-user fog computing system. In this 

paper, queuing is used to model the execution processes on mobile and fog devices. The problem of efficient 

energy optimization is formulated to minimize energy consumption conditional on delay constraints. A 

distributed algorithm called ADMM (based on the periodic multiplier method) is presented to solve the 

formulated problem. The simulation shows higher performance than other existing designs. The authors in 

[44] solved a multi-objective scheduling problem to optimize time and energy consumption. They could 

improve the objectives by a whale optimization algorithm in the MCC. Paper [45] also worked on the energy 

consumption and also cost for computation offloading of workflow applications in MEC. This research has 

been presented by a Non-dominated Sorting Genetic Algorithm (NSGA). The results were better than no 

offloading and cloud offloading methods. 

It has been argued in [24] that although computational offloading can reduce power consumption on 

mobile devices, it may delay further execution, including sending time between mobile devices and cloud 

servers. According to theoretical analysis, a multi-objective optimization problem is formulated with 

reducing energy consumption, execution delay, and payment cost, by finding the optimal computational 

offloading and transmission power for each mobile device. 

The results show decreasing in the mentioned objectives. 

In [25], a mixed-integer linear programming (MILP) optimization model was used. This paper 

considers two types of cloud patches: the local cloud patch and the global cloud patch, which have higher 

capabilities. The model presented in this paper reduces energy consumption while imposing a significant 

amount of delay. 

Researchers in [26] provides some disadvantages of cloud processing such as high latency and 

unstable QoS (Data dissemination, routing between mobile devices, and cloud servers). Assuming different 

real-time computing tasks on different devices, each task is decided to either run locally on the device itself 

or be offloaded to one of the edge servers or the cloud server. This paper examines low-complexity 

computing offloading policies to minimize the quality of MEC network service assurance of mobile devices' 

power consumption. Their method is superior to other compared approaches. 
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2.2. Context-aware offloading 

Considering context information in the offloading problem is done based on different objectives and network 

architectures such as energy-saving and execution time [27], and latency [28] in MCC [29,30] and MEC. The 

paper [31] proposed a framework that supports mobile applications with computational offload capability for 

aware conditions. First, a design pattern was proposed to enable the application to be offloaded on demand. 

Second, an estimation model was presented to select the appropriate cloud source for offloading 

automatically. The third is a framework implemented on both the server and client-side. It includes three 

modules: service selection module, computational offload, and runtime management. The evaluation results 

and comparison with traditional offshore samples show that the proposed approach can improve runtime and 

power consumption for highly computational applications.  

In [32], an offloading middleware is presented to the aggregate cloud by considering energy level, 

processing power, runtime, and network bandwidth. In this paper, the resource allocation problem is 

formulated as a multi-objective optimization that aims to optimize the completion time of the task and the 

energy consumption of all participating mobile devices by satisfying the task boundary. An NSGA-II is used 

to obtain the beam solution set. Second, a multi-attribute decision-making (MADM) technique is used to 

determine the best compromise solution based on the entropy technique and weighting for a priority order. 

Evaluation Results show that the proposed method manages well the compromise between completion time 

and energy consumption. 

The researchers in [46] analyzed the context‑aware energy optimization for services on MDs. Their 

evaluation was based on three supervised machine learning methods as naïve Bayesian, decision tree, and 

random forest. They provided this result that using the machine learning method is better than others for 

reducing the service execution time and the energy consumption in MCC. 

In [33], a fault-tolerant aware mobility offloading (MAFO) approach is presented that collects 

network information and user mobility over time and uses the Markov chain of the user’s visited networks in 

different possible paths. It also predicts the stoppage time of each network based on user mobility. The 

evaluation results show that improvements in time and energy consumption. Authors in [34] have suggested 

a framework called Thinkair that simplifies developers’ work to migrate their smartphone apps to the cloud. 

It uses the concept of smartphone virtualization in the cloud and provides method level computational 

offload. It focuses on the resilience and scalability of the cloud and enhances the power of cloud computing 

by implementing a parallelization approach using multiple virtual machines. The results show that better 

performance and lower power consumption than similar non-parallel methods. In [35], a framework is 

considered to decide whether to offload a given method to cloud servers. In this paper, a field-aware 

decision-making algorithm is designed, implemented, and evaluated called CADA, which uses user contexts 

and historical metrics to optimize the performance of mobile devices with various optimization criteria such 

as short response time. The evaluation results demonstrate the high accuracy of CADA algorithm prediction 

and improving response time and energy consumption.  

2.3. FL-based offloading 

Using cooperative models have shown good performance in the IoT devices [36]. FL is a cooperative-based 
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method that can be used in MEC. Here we first try to present a conceptual view of FL and then provide some 

offloading problems that are solved by FL. 

FL allows users of devices to collaboratively train a shared model while keeping data privacy on 

devices. Thus, FL can be used as an enabling technology for ML model training at MEC. In fact, each device 

can process its task by a learning model. This can happen on all devices. After that, all devices can share 

their experience together. As a result, we will have a global model by aggregating all learning models. This 

is very important that in this cooperation, any private data not transferred between devices.  

Generally, there are two main entities in FL as N data owners as {1,2,…,N} and the model owner (FL 

server). According to Fig. 1, in the initialization as step 1, the FL server specifies the hyperparameters of the 

global model and the training process, e.g., learning rate. Then, in step 2, each data owner i (Mobile device) 

train a local model 𝑤𝑖 and send it to the FL server (Controller). In step 3, all collected local models in the FL 

server are aggregated 𝑤 = ⋃ 𝑤𝑖𝑖∈𝑁 . Steps 2 and 3 are repeated until the global loss function converges or a 

desirable training accuracy is achieved [12]. 

Since the offloading methods in MEC need a real distributed algorithm; thus, FL is an excellent way 

to this purpose. In [37], the authors presented an FL-based offloading in MEC. DRL algorithms executed in 

MDs and updated weights transfer between MDs and ED. Their used parameters were energy consumption 

and transmission time. The results show a better result than centralized DRL. Because in centralized DRL, 

the tasks are waiting in a queue to get resources of devices. It might a number of tasks be dropped due to 

insufficient resources. Nevertheless, FL can offload some tasks to other devices. This causes a lower drop 

task in devices. 

A group of researchers proposed an aggregation model of EDs in the Cloud by FL. They used the 

difference of convex functions (DC) representation for sparse and low-rank function [38]. It is demonstrated 

that the novel method was able to select more devices than other benchmark approaches. The paper [39] is 

presented based on a distributed DRL in MEC for caching and communication operations. This research 

includes three parts, information collecting, cognitive computing, and request handling. The results show 

some improvements in utility for the user equipment. This study is well-done; however, it could have 

evaluated and compared with other state-of-the-art methods. 

FL is also used to make decisions about computation offloading and energy allocation in MEC [40]. 

Here, a DRL-based algorithm is proposed to maximize the expected long-term utility. This method has better 

results than the centralized and greedy-based offloading algorithms.  

As stated in the introduction section's contribution list, the main idea of this research is to use MAPE 

and FL-based offloading algorithm. Context information has been used in the previous works. We have tried 

to offload the modules with these contexts in the controlled MAPE loop with our distributed algorithm to 

improve the mentioned objectives. We try to compare our results with new researches. Also, federated 

learning is very close to the distributed learning paradigm. In previous works, DRL or DL has been used in 

each device, and devices have not any relation together. We solve this problem with federated learning. 

The summary of offloading algorithms is categorized by technique, objectives, architecture, pros, 

and cons in Table 1. 
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Table 1: Summary of offloading algorithms (ET: execution time. Arc: Architecture). 

Ref Technique Objectives Arc. Pros Cons 

[31] FL-DRL 

Energy and  

transmission 

time 

MEC 

Cooperative model with 

improve bandwidth 

crowding 

Using only one ED 

 

[32] 

 

FL-DC 

 

Accuracy 

and  

number of 

devices 

Edge- 

Cloud 

 

Selecting maximum 

devices 

 

Ignoring edge computing 

objectives 

[16] 

 

Backtracking, genetic  

the algorithm, and 

greedy 

Cost MEC 

 

Minimizing cost 

 

Time-consuming method 

[34] FL-DRL 
long-term 

utility 
MEC 

Analysis DRL parameters 

and 

energy efficiency 

Ignoring privacy evaluation 

[23] 
LP, 

deep learning 
ET, Energy MEC 

 

Improve network service 

quality and 

reduce mobile device 

power consumption 

 

Long run time of the 

proposed algorithms 

[21] Queuing 
Delay, cost, 

and energy 
Fog 

 

Increasing performance 

with testing 

transmission time in the 

worst condition 

 

Non-optimal method in 

global goals 

[14] 

Oaas and 

matching 

algorithm 

Cost Fog 

 

Real tools for offloading 

 

Ignoring computational 

offloading time delay 

[20] 
Queuing 

and ADMM 

Delay, 

energy 
Fog 

 

Cell-level alignment, 

offloading with minimized 

power consumption 

 

Solving the problem only up 

to 

the level of servers and 

override local 

implementation and 

dump computing load to the 

cloud 

[22] MILP Energy MEC 

 

MILP for force 

optimization of large-scale 

and MEC without delay 

limits defect 

 

The routing process of 

requests 

through the hierarchical 

cloud patch network only 

tolerates 

a significant amount of 

delay, 

limited capabilities of the 

cloud patch system 

[26] 

Game theory, 

context (Network 

connection, 

runtime status) 

Energy, ET MCC 

 

Decreasing ET and energy 

consumption 

 

High complexity and 

no comprehensive method 

[28] 

 

Markov chain, contexts 

(User mobility, device, 

program, cloud server, 

mobile network) 

Energy, ET MCC 

 

 

Fault tolerance, low energy 

consumption, and ET 

 

 

Non-comprehensive 

evaluation 

[27] 

 

OMMC, NSGAII, 

TOPSIS, contexts 

(Device context, 

processing power, 

Delay, 

energy, 

deadline 

MEC 

 

Good result with the trade-

off 

between completion time 

and energy consumption 

 

Ignoring method’s 

complexity 
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Ref Technique Objectives Arc. Pros Cons 

CPU usage, 

network bandwidth) 

[29] 

 

Thinkair and 

contexts (Hardware, 

software, network 

condition, energy 

estimation model) 

Cost, ET, 

energy 
MCC 

 

 

Resource allocation based 

on requests, 

parallel reconstruction of 

VMs 

 

 

Unsuitable for IoT 

applications 

[30] 

 

CADA and contexts 

(Signal  

strength, 

transmission time, 

time-of-day, 

and location) 

Energy, ET MEC 

 

 

Using daily time for 

offloading, 

decreasing energy 

consumption and ET 

 

 

Weak energy model 

 

3. System model and problem formulation 

In this section, we present the architecture and system model. Fig. 1 shows the three-layer architecture of our 

proposed system. This model includes some sections as follows. 

 

Fig. 1: The architecture and system model 

3.1. IoT 

The IoT component is at the very bottom of the architecture, including communication devices that are 

connected through heterogeneous networks. In general, it aims to collect and process data through IoT 

devices to extract patterns and discover patterns or to perform predictive analysis or optimization and make 

smarter, more timely decisions. However, mobile devices are considered because of the problem of 

offloading. The data is first collected by the IoT devices described in this framework, and each user sends 
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their requests to the queue according to the data collected. 

3.2. Controller 

This component plays the role of the master node in our hierarchical model. This component is located at the 

edge command center and is at the top edge of the edge. This component itself is a robust edge resource that 

manages resources and sourcing for requests from the lower layer. That decides whether the request will be 

executed on the same edge layer or delivered to the cloud layer based on the users’ context and existing 

resource conditions (existing edge server features) or if the request is to be in the edge layer. Run this 

component to make it a proper edge server component that can execute the request if the submission is sent 

and must be moved to the cloud, the cloud component transmits the request to the gateway. 

3.3. Edge server 

The edge layer component consists of several edge server components that play the role of a slave in our 

hierarchical approach. These components send information about their processing and storage capabilities to 

the edge server controller component. This component selects one of them to execute the desired request by 

matching the context information and resource capability. 

3.4. MAPE 

This component, which is the main component of our framework, includes components (monitor, analyze, 

plan, and execute). This component collects available conditions and resources available and extensions of 

the IoT devices. Mapping these tasks examines the available resources and decides whether to execute them 

on the edge layer or offload the super layer's computation.  This component rests on the edge server 

controller component. Our context-aware algorithm is implemented in this component. To achieve 

autonomous computing, IBM has proposed a reference model for autonomous loops, known as the MAPE-K 

loop, which has four components (monitor, analyze, plan, execute) [41]. These four components, under 

common knowledge in the MAPE-K autonomous loop, an intelligent agent understands its environment 

through sensors and uses these perceptions to determine what actions to take in the environment. All four 

phases, covered by common knowledge they connect and exchange information. 

3.4.1 Monitor 

 In the monitoring phase, the properties of the environment are recorded by the sensors. The data is 

first received through sensors and intelligent equipment, and according to the data received, a request for 

execution is made. Our systems and priorities are categorized and, if they are in accordance with the 

circumstances, these requests are planned for implementation in the third phase (planning). 

3.4.2 Analysis 

 The analysis phase deals with the processing of metrics collected from the monitoring phase, and by 

processing these metrics, it obtains data on the status of the current productivity of the system and forecasts 

of future needs so that, if necessary, an appropriate response is obtained. In the analysis phase, warnings and 

threats are considered. Any violation of the level of needs defined in the analysis phase is considered. 



10 

3.4.3 Planning 

 In the third phase, as planning, based on the tables created in the previous two phases, an 

appropriate decision is made that leads to offloading or local computing. 

3.4.4 Execution 

 The fourth phase, as execution-only, executes the planned third phase (execution) instructions. In 

fact, it is responsible for executing the programs approved by the analysis phase. We propose a hierarchical 

model for the proposed system, in which the edge layer plays a node (Master) in which all four phases of the 

MAPE loop are implemented, and the other nodes play a role (Slave). With this smart, autonomous solution, 

decentralized collections are managed in a centralized system. Integrating a centralized and distributed 

strategy can be important as an innovative strategy. Autonomous loop computing (MAPE) decision-making 

autonomously leads to better management of resources, reduced response time to heavily time-dependent 

applications and requests, and reduced system latency. 

3.5. Cloud 

When requests from the edge server controller component are decided to go to the cloud layer, they are sent 

directly to the cloud gateway and through it go into the cloud and, depending on which server the requests 

are to be processed, go to the server’s dedicated queue. Finally, when it is time to move to the servers to do 

their job, depending on request processing and storage type. 

3.6. Case study 

The VR-GAME (Virtual reality Game) application is a human-based game. According to the workflow of 

this application, EEG signals send to the client module. The client module sends consistent data to the 

concentration calculator module. The client module updates the game display to the player. The coordinator 

module gathers and distributes measured concentration among players [42].  

 

 

Fig. 2: Application of virtual reality game 

The EEG value could be used to determine the interval between two sensed signals. Based on the 

application part of Figure 2, the EEG sensor, display actuator, and client module are placed in the mobile 

device. The concentration calculator and the coordinator modules can be placed in the EDs or cloud. 

The main problem of this paper is the offloading of modules as {M1, M2, . . . , Mk} to edge servers as {ED1, 

ED2, . . . , EDn} or Cloud. The problem formulation is explained as follows. The symbols used in this paper 

are defined in Table 2.  

Table 2: Symbol definition 
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Symbol Definition 

 

gi 

 

se
i 

ftr
i 

d 

Pi 

Ui 

Up
i 

T1 

T2 

TD 

UMIPS 

TAM 

Ec 

Tn 

Ph 

N 

C 

Sc 

Tlu 

RM 

 

Ul 

MIPSA
k 

m1 

m2 

TED 

MIPSk 

TMA 

Li 

Si 

N' 

Tmax 

Tst 

Ta 

ET 

Ts 

NRT 

Q 

xj 

A 

R 

 

 

Q(S,a)i
m 

CPU cycles for processing the task 

Number of energy units 

Commonly adopted effective switched capacitance 

Channel gain between the MD and an ED in epoch i 

Transmission power 

Transmission data size 

Power of ith ED 

Utilization of ith FD 

Utilization in the previous updates time 

The time frame of datacenter 

The time frame of host 

Difference between current and last process time 

Utilization of MIPS 

Total allocated MIPS 

Current energy consumption 

Current time 

Host power in last utilization 

Number of FDs 

Execution cost 

System clock 

Last utilization update time 

Rate per MIPS 

Number of processors in a host 

Last utilization 

Allocated MIPS of kth processor in the host 

Number of all processors and allocated processors 

Number of allocated processors 

ED’s execution time 

MIPS of kth processor in the host 

Total allocated MIPS of the host 

Total latency 

The total size of ith tuple 

Total number of tuples 

Maximum simulation time 

Tuple start time 

Average CPU time of the tuple type 

Emitting time of a tuple 

Sending time of a module to another module 

Number of receipt tuple types 

The number of devices contributed to the offloading 

Energy consumption of jth device 

Selected action by the agent 

Reward value 

Learning rate 

Importance of the next rewards 

Q update value 

 

 

3.7. Local execution time 

If the required resources in MDs are provided, thus we can calculate the time consumption locally. This 

value calculates in each episode i. In Eq. (1), μ is CPU cycles for processing the task. Finally, 𝜔 is the 

commonly adopted effective switched capacitance that depends on the architecture of chips [37,47]. 

According to [47], 𝜔 can be given by ∑ 𝛼𝑖 ∗ 𝐶𝐿𝑖 ∗ ∆𝑉𝑖
𝑁
𝑖=1 , where 𝐶𝐿𝑖 is the physical capacitance, 𝛼𝑖 is the 

activity weighting factor, each averaged over the N nodes in the circuit. Also, ∆𝑉𝑖 is the voltage change. It is 

required to explain, the 𝜔 value is calculated by the simulator. 
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𝑇𝑖 =
𝜇

√
1

𝜔 ∗ 𝜇

 

(1) 

3.8. Data rate between MDs and EDs 

 If the MD wants to communicate with an ED, and a wireless link is established for them. The achievable data 

rate calculates by Eq. (2). Here, A is the power of interference plus noise. Sei is the channel gain between the 

MD and an ED in epoch i [37]. This channel gain is static and independently taken from the state of MD. 

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑖 = 𝜔 ∗ 𝑙𝑜𝑔2 (1 +
𝑠𝑖

𝑒 ∗ 𝑓𝑖
𝑡𝑟

𝐴
) (2) 

The transmission power is calculated by ftr
i as Eq. (3). BWi is the bandwidth of ED in epoch i.where  

d is the transmission data size required for offloading a module. 

𝑓𝑖
𝑡𝑟 =

𝐵𝑊𝑖

𝑑
 (3) 

3.9. Edge server’s power consumption 

The power consumption of each ED is presented here. According to this equation, an edge server with more 

power than the rest of the edge servers is a candidate for an offloading destination. 

𝑃𝑖 = 𝑃𝑖
𝑐 + 𝑇1 + 𝑇2 (4) 

In Eq. (4), Pc
i is the current power of FD and T1 is the energy consumption of the datacenter in the 

current time.  

𝑇2 = 𝑈𝑖
𝑝

+
𝑈𝑖 − 𝑈𝑖

𝑝

2
∗ 𝑇𝐷 (5) 

In Eq. (5), Ui is the utilization of ith FD. Up
i is the utilization in the previous updates time. TD is the 

time difference between the current time and the last process time.  

𝑈𝑖 =
𝑈𝑀𝐼𝑃𝑆

𝑇𝐴𝑀
 (6) 

The total allocated MIPS of all processing elements is updated as EQ. (7). 

𝑇𝐴𝑀 = ∑ ∑ 𝑃𝐸𝑀𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

 (7) 

Where TAM is the total allocated MIPS of an ED that is less than or equal to MIPS of that ED 

(TAM ≤ EDMIPS). 

𝑈𝑖
𝑝

=
𝑈𝑀𝐼𝑃𝑆

𝑃

𝑇𝐴𝑀
 (8) 

In Eqs. (6) and (8), Up
i is the utilization value in the previous time, UMIPS is the utilization of MIPS, 

and TAM is the total allocated MIPS [42]. 

3.10. Edge server’s execution time 

MIPS calculates the runtime of modules in edge servers. The number of commands that any edge server can 
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handle given its current workload is considered its current capacity. Therefore, according to Eq. (9), each 

module can capture and run it at TED, where MIPS is the million executable operations that an edge server 

can run per second. 

𝑇𝐸𝐷 =
1

𝑀𝐼𝑃𝑆
 (9) 

3.11. Edge server’s bandwidth 

Each ED includes some hosts as follows. 

{𝐻𝑜𝑠𝑡1, 𝐻𝑜𝑠𝑡2, … , 𝐻𝑜𝑠𝑡𝑛} ∈ 𝐸𝐷𝑖 (10) 

The main properties of hosts are RAM, bandwidth, storage, and PEs. In a host, as Eq. (11): 

𝐵𝑊𝐿𝑜𝑤𝑒𝑟 ≤ ∑ 𝐵𝑊𝑖

𝑁

𝑖=1

≤ 𝐵𝑊𝑈𝑝𝑝𝑒𝑟 (11) 

Where BWLower is the lower bandwidth, and BWUpper is the upper bandwidth of each ED. BWi is the 

bandwidth of ith host. N is the number of hosts. The total bandwidth of all hosts in each ED is between 

BWLower and BWUpper. 

4. The proposed approach 

As stated above, our goal is to apply the concept of context knowledge to a multi-user mobile edge 

computing system. The proposed framework for the context-aware system can be described as follows. In 

this system, we have two types of variables: independent variables and dependent variables. Independent 

variables are all input variables that the system receives in the form of transactions and does not interfere 

with their calculation, such as the types of fields that surround the environment. Dependent variables are 

variables that are obtained by using independent variables as inputs to the proposed system. Delay and 

energy consumption are those variables. The following sections describe the various tasks in MAPE.  

4.1. MAPE 

The MAPE control loop consists of four phases the monitor, analyze, plan, and execute. We explain them as 

following steps: 

4.1.1 Monitoring: This section monitors and collects input modules. This is basically the context 

monitor component of our system. The inputs include all requests received from IoT devices and fields 

collected from the environment which enter modules. The request is received with a unique identifier. This 

request can be either computation or data. In this section, independent parameters such as QoS and SLA are 

also monitored and written to the knowledge database. We consider the contexts to include application, 

mobile device, sensors, network, and media. 

- Offloading contexts: Request id, requester name, sensitivity type (resource-based or time-based), QoS, and 

SLA requirements. Based on context information, the QoS depends on data rate between MDs and EDs as Eq. 2, 

edge power consumption an Eq. 4, and edge server’s execution time introduced in Sec. 3.6.4.  

- Application contexts: Total executed modules, runtime, allocated memory, priorities of modules, and 

source type. 
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𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 ≤ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 (12) 

According to Eq. (12), the ith module has got more priority than the jth module if the module is 

before the jth module in the application's workflow. 

- Mobile contexts: Average frequency of CPU, average CPU usage, and battery level. The CPU usage 

depends on the MIPS of each CPU. 

- Sensor contexts: Sensor id, location, latency, destination module, tuple type, and transmission time. 

- Network and media context: Cellular communication and bandwidth mode, Wi-Fi communication mode, 

cellular connectivity signal, and Wi-Fi.  

- Resource contexts: Resource state, identification, memory, and storage. 

All of these fields are stored in our knowledge bank's context database to be used later in the 

computing offloading operations. 

4.1.2 Analysis: This component deals with the processing of metrics collected from the monitor 

component, and by processing these metrics, it obtains data on the status of current system productivity and 

forecasts of future needs. In this phase, QoS and SLA are considered. If a resource is assigned to a 

computing request, and this results in a breach of service quality, the analyst must detect this and issue the 

necessary alert. The second phase of the loop performs such analyzes. This department has a close 

relationship with the knowledge bank and is constantly exchanging information with it. The analysis phase's 

output contexts are resource id, offloading request-id, QoS, and SLA types. 

4.1.3 Planning: This part contains the decision module of our system. Using the information from 

the previous section, this section makes the final decision on whether to offload or execute locally through 

the knowledge bank. This component decides whether to offload and if so, how to send the task to the 

appropriate infrastructure under the current circumstances. The decision module includes two components of 

the cost estimation module and the context-aware decision algorithm. This method finds the best destination 

for offloading the requester modules to edge-server or cloud. We present two offloading methods as 

MUCAO and FLUCO as following. 

4.1.3.1 MUCAO 

Our first method for finding the best destination for offloading is based on a conditional technique. 

Algorithm 1 includes two sections as initialization and MAPE. In the initialization section, firstly, mobile 

devices, cloud, applications are created. Secondly, edge servers are built based on the number of departments 

and mobiles. Finally, the application is submitted to the edge server controller, and iFogsim is started. In the 

MAPE section, four phases execute continuously. In the monitoring phase, the context of modules, sensors, 

tuples, network interfaces, mobile devices, cloud, and edge servers are collected. In the analysis phase, the 

cost of execution in the local device, edge server, and cloud is calculated, and the network interface state is 

checked. In the planning phase, the availability of local devices, edge servers, and cloud are checked. 

Finally, the current module offloads to the best destination in the execution phase, which is obtained in the 

planning phase or locally executed. 
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              Algorithm 1 MUCAO 

1: Create Mobile devices, Cloud, application (Modules, Edges, Tuples, Workow). 

2: for i = 1 to DepartmentMax do 

3:    for j = 1 to MobileMax do 

4:        Edge server (Node name, MIPS, Ram, Storage, upper BW, lower BW, busy 

power, and idle power). 

5:    end for 

6: end for 

7: Submit applications. 

8: Start iFogsim. 

9: while Modules enter from MDs do 

10:   Monitor: 

11:       Collect context of modules, sensors, tuples, network interfaces, mobile 

devices, cloud, and edge servers. 

12:   Analyze: 

13:       Calculate cost of execution in local device, edge server, and Cloud. 

14:       Check network interface state. 

15:   Plan: 

16:   if Available(Local device) then 

17:       if Available(Cloud) then 

18:         Decision = MinCost(Local device,Cloud). 

19:         Break. 

20:      else 

21:         Decision = local device. 

22:      end if 

23:   else 

24:       if Available(Wi-Fi) then 

25:           if Available(Edge server) & Available(Cloud) then 

26:                Decision = MinCost(Local,Edge,CLoud). 

27:           end if 

28:       end if 

29:   end if 

30: Execute: 

31:   Offload module based on Decision. 

32: end while 

33: Stop iFogsim. 

4.1.3.2 FLUCO 

The second proposed approach is based on the DRL. The DRL approach aims to learn the optimal 

MEC offloading policy from past experience. We try to extend this method to the distributed system. Our 

offloading algorithm implements in the MDs. The EDs and cloud devices analyze the updated weights from 

MDs. Then, each MD can decide to offload tasks to the best devices for execution. Here, we define the 

module offloading by DRL’s agent as a tuple:  

𝐴𝑔𝑒𝑛𝑡 = (𝑀, 𝑆, 𝐴, 𝑄) (13) 

In Eq. (13), M is the set of modules’ attributes for allocation by agent, S is the set of all environment 

states, A is the set of actions like local execution, FDs, or Cloud, and Q is the quality function that learning 

algorithm can select the best destination for module execution by that. These parameters use for the agent’s 

action and calculated by Eq. (14). 

𝑄: 𝑋𝑖 ∗ 𝐴 → ℝ (14) 

Here, xi is based on Eq. (15), A is the selected action by the agent, and R is the reward.  

𝑥𝑖 = (𝑧1(𝑥), 𝑧2(𝑥), … , 𝑧𝑛(𝑥)) ∈ 𝑋𝑧 (15) 
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As Eq. (16), each agent can explain modules and environments by Z. 

𝑍 = 𝑀 ∪ 𝑆 = {𝑧1, 𝑧2, … , 𝑧𝑛} (16) 

 The Q update function is as Eq. (17). α ∈ (0, 1) is the learning rate,  γ∈ (0, 1) show the importance of 

the next rewards. 

𝑄(𝑆, 𝑎)𝑚
𝑖 = 𝑄(𝑆, 𝑎)𝑚

𝑖 + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝛼𝑄(𝑆′, 𝑎′)𝑚
𝑖 − 𝑄(𝑆, 𝑎)𝑚

𝑖 ]  (17) 

According to DRL, the maximum value of Q(S, a)𝑚
𝑖  based on action a is 1-𝜖, and other actions have 

𝜖 probability. Using a greedy policy [43] technique is to avoid local optimum in the learning algorithms. A 

reward function evaluates agent operations [43]. This function should be able to generate output very quickly 

so that learning and problem solving can be done without delay. The reward function in the proposed 

approach is as Eq. (18). 

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑃𝑖

𝑇𝑖
 (18) 

Where Pi is the available power of ith FD and Ti is the execution time of a module in ith FD. Since power 

and execution time values are in different ranges, a logarithmic function is used to normalize them in [0,1]. 

Thus 𝑃𝑖 =
log 𝑃𝑖

10
 𝑎𝑛𝑑 𝑇𝑖 =

log 𝑇𝑖

10
. 

 

DRL algorithm: 

The pseudo-code of the DRL is as Algorithm 2. The learning algorithm is executed for all modules. Then, 

the Q-table is initialized by 0. For all episodes, the possible actions and Q values of them are calculated, and 

the best action is selected by arg max Q. State S' is transferred to state S. Here, the best destination for each 

module is selected. After calculation of the reward function, updating the operation of Q and saving episodes 

in memory is done. 

Algorithm 2 DRL 

1: for m = 1 to LastModuleInQueue do 

2:       Initialize Q(S,a). 

3:       for i = 1 to EpisodeLast do 

4:             Set S to S0. 

5:             for j = 1 to SLast do 

6:                   Select best a by calculation arg max Q. 

7:                   Action a, visit r and S'. 

8:                   Calculate Q(S, a)i
m as Eq. (17). 

9:                   Transfer S to S'. 

10:                  end for 

11:            end for 

12:            Select a destination device for each 

module. 

13:            Calculate real-time reward. 

14:            Save S, r, S', and  in memory. 

15:            Train Q policy by training samples. 

16:            Update Q. 

17:            Save the current episode in memory. 

18: end for 
 

Based on our approach, the DRL does not execute in EDs for three reasons.  
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1) The jeopardize of accessing personal data of MDs.  

2)  Encryption algorithms can protect data, but communication with the EDs weaken MDs’ privacy.  

3) Transferring a lot of data from MDs to EDs causes a lot of bandwidth consumption and burden wireless 

channels. We face another challenge. If the DRL agent runs on each MD, it will consume a lot of energy and 

time. For solving this problem, we have to explain, our proposed method is not based on the separate 

learning of each MD, and we use the distribution capability of the MEC. In fact, we propose FL for 

distributed training DRL agents. As a result, we will save a lot of energy. 

FLUCO algorithm: 

In FL-based offloading, each ED is a controller to coordinate some MDs. Each MD can execute a DRL agent 

with less computation burden. FL does three steps:  

1) Send the DRL agent’s parameters from the ED. 

2) MDs use to download data from EDs for upgrading their model. 

3) Send updated DRL agent’s parameters from MDs to ED (model aggregation). FL works in a parallel 

manner. This increases the performance of the system. To design an optimal control policy on FL, we have 

to maximize the expected long-term utility as Eq. (19). 

𝐺(𝐸, 𝑈) = lim
𝑁→∞

1

𝑁
∑ 𝑔

𝑁

𝑖=1

(𝐸𝑖 , 𝑈(𝐸𝑖)|𝐸1 = 𝐸) (19) 

Where E is the network size, U is the system utility, Ei is the initial network size, g(0) is the immediate utility 

at epoch i that is calculated based on the reward function in DRL. Based on the mentioned approach as 

Algorithm 2, DRL agents execute in MDs; training is done, local execution or offloading to best ED are 

done. Finally, trained weights upload to EDs. EDs do not execute DRL agents and only update and aggregate 

their weights and send them to MDs. The weights aggregate by Eq. (20). 

𝑊𝑟+1 = ∑ (
𝐶𝑟

𝑖

𝐶𝑟
∗ 𝑊𝑟+1

𝑖 )

𝑆𝑒𝑡𝐿𝑎𝑠𝑡

𝑘=1

 (20) 

Where Wr+1 is the weight in the next round, SetLast is the last set of available MDs, Ci
r is the context of ith 

MD in round r, and Wi r+1 is the weight ith module in the next round. This process does continuously. Thus, 

the computation task executes in MDs or offload to the best ED based on the DRL agent result. One ED is 

used in some FL-based offloading methods, and model updates of all MDs transfer to ED. This has many 

challenges for bandwidth, congestion, centralized issues, privacy, etc. We propose multi ED in the MEC and 

update all EDs according to MDs' download information, which benefits MEC capabilities. 

 Algorithm 3 FLUCO 

1: Create Mobile devices, cloud, application (Modules, EDs, 

    Tuples, Workflow). 

2:  for x = 1 to DepartmentMax do 

3:        for y = 1 to MobileMax do 

4:              Create ED (Node name, MIPS, Ram, Storage, 

upper BW, lower BW, busy power, and idle power). 

5:             Initialize the DRL agent with random weights W0 

in the current ED. 

6:               Initialize the gross training times T0. 
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7:        end for 

8: end for 

9: for M = 1 to MDsLast do 

10:      Initialize the contexts CM
0 

11:      Initialize the DRL WM
0 

12:      Download W0 from the closest ED. 

13:      WM
0 = W0. 

14: end for 

15: Submit applications. 

16: Start iFogsim. 

17: while Modules enter from MDs do 

18:        for r = 1 to rLast do 

19:              Monitor: 

20:              Collect the context of modules, sensors, tuples, 

network interfaces, mobile devices, cloud, and edge servers. 

21:                Analyze: 

22:               Setr = random set of available MDs. 

23:               for i = 1 to SetLast do 

24:               Fetch Wr from ED as Wi
r = Wr. 

25:               Update context Ci
rounr. 

26:               Plan: 

27:              Train the DRL agent with Wi
r on Ci. 

28:               Upload trained Wi
r+1 to the closest ED. 

29:               Notify the ED the time's Tr of local training. 

30:               end for 

31:               for j = 1 to EDLast do 

32:                     Receive all model updates. 

33:                     Update Tj
r . 

34:                     Aggregate by Eq. (20). 

35:                 end for 

36:            end for 

37:            Execute: 

38:           Offload modules based on the FDL result. 

39: end while 

40: Stop iFogsim. 
 

The output contexts of the planning phase are Offloading request id, resource type, offloading destination, 

and considered media for the relationship with a resource. 

4.1.4 Execution: The final responsible for executing the commands in the execution section. In this section, 

computations offload to other machines. This section is closely related to the equipment and resources and 

stores the latest state of the resources previously mentioned in the knowledge bank for future use. This 

section includes our task manager component. The task manager collects information such as (method 

entries, libraries needed to execute the task, the network address of the download location), and puts it into 

an offloading package. The manager decides to run a hand over the task locally or sends it to the top layers 

as edge servers or cloud. The output contexts of the planning phase are offloading request-id, resource type, 

offloading destination, and considered media for relation with the resource. 

5. Evaluation 

The performance of our proposed methods is presented in this section. The simulation environment in this 

research is the iFogsim library [42]. This simulator has got classes to implement resource management 

strategies. We have extended some classes as the ModulePlacementEdgeward for offloading, controller for 

more output metrics. Also, the VRGAMEFOG class is customized based on the architecture of this paper. We 

simulate the proposed algorithm and compare the results with other scheduling methods as follows. 
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- Original: In this method, the computations in MDs execute locally. Thus, the computations do not offload 

to edge servers or the cloud. Since modules continuously need to execute, MDs might not have enough 

resources. As a result, some modules wait in a queue of resources, and delay will increase. 

- Offload: In this technique, the destination of tasks or modules is calculated based on the order of edge servers or 

cloud in the network [15]. Context-aware is not considered in this method. Here, all devices are in a list, and the 

controller assigns those modules that need resources to the elements of this list in order. This method is not 

optimal due to ignoring the properties of devices, applications, and network environment. Maybe a device in the 

first of the list selects for an offload. However, some devices in the middle or last of the list are the best 

destination for offloading modules. 

- MUCAO: This algorithm is one of our proposed algorithms. It is an improved offload technique in [15]. 

We add context-aware to that work. As we presented in the proposed approach section, this method is based 

on a MAPE loop and uses the execution cost in MDs, EDs, and cloud. Considering context awareness of 

devices, applications, and network environment leads to find the best device for offloading modules. 

- FLO: As a state-of-the-art algorithm, FLO is an FL-based algorithm based on DRL [37]. FLO used one 

ED. Using one ED converts the computing architecture to the cloud. If the number of modules that need 

resources increase in MDs, just one ED might not answer all offloading requests. As a result, some modules 

wait for a long time. There are two differences between this work and our proposed algorithm. FLUCO uses 

many numbers of EDs. Also, we provide the context-aware.  

We run the simulation by 3 departments and 4 mobile devices. The comparisons are based on the best results 

of algorithms with the same configuration for each case study.  

5.1. Simulation configuration 

Here, we present the VRGAMEFOG application configuration in edges, devices, connection latency, and 

hosts in Tables 3, 4, and 5, respectively. In Table 3, Pr is the periodicity (mS) of edges.  

Table 3: VR game application edge configuration 

Source Module 
Destination 

Module 
Pr 

Tuple CPU length  

(B) 

Tuple new length  

(B) 

EEG Client 0 3000 500 

Client Concentration Calculator 0 3500 500 

Concentration Calculator Coordinator 100 1000 1000 

Concentration Calculator Client 0 14 500 

Coordinator Client 100 28 1000 

client Display 0 1000 500 

The host configuration is as follows. The architecture is x86, OS is Linux, Storage is 106B, BW is 

104 BS, VM model is Xen, the cost is 3 $, cost per memory is 0.05 $, cost per storage is 0.01 $, and time 

zone is 10. Table 4 shows the parameters of devices including MIPS, RAM (KB), UpBW (Upper bandwidth 

by kilobyte per second), DownBW (Down bandwidth by kilobyte per second), level in the hierarchical 

topology, the rate per MIPS, busy, and idle power (Megawatt). 

Table 4: Devices configuration 

Device MIPS Ram Uplink BW Downlink BW Lv Rate per MIPS Busy Power Idle Power 

Cloud 44800 40000 100 10000 0 0.01 1648 1332 
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Controller 2800 4000 10000 10000 1 0 107339 834333 

EDs 2800 4000 10000 10000 2 0 107339 834333 

MDss 500 1000 10000 10000 3 0 8753 8244 

Table 5: Connection latency 

 

Device Name Device Name Latency (mS) 

Cloud Proxy – Server 100 

Proxy – Server Department (Gateway) 4 

Department (Gateway) Mobiles 4 

EEG sensor Mobile 6 

Display EEG sensor 1 

 

Table 6 shows three different mobile types that have been used in this work. Type A is an Apple 

iPhone 11, type B is a Samsung Galaxy S10, and type C is a Huawei P30 pro. Their properties include CPU, 

memory, and battery. In this table, MT is a mobile type. 

 Table 6: Mobile types 

 

 

Brand CPU 

(GHz) 

RAM 

(MB) 

Battery 

(mA) 

A Apple iPhone 11 6*2.96 4000 3110 

B Samsung Galaxy S10 8*2.30 8000 3400 

C Huawei P30 pro 8*2.03 8000 4200 

 

5.2. Metrics 

To analyze our proposed approach and compare it with other offloading algorithms, we consider some 

metrics like energy consumption, total execution cost, total network usage, delay, and Jain index.  

5.2.1 Energy consumption: The energy consumption is calculated by Eq. (21) for all edge servers 

and cloud when they have serviced the input modules. 

𝐸 = 𝐸𝑐 + (𝑇𝑛 − 𝑇𝑙𝑢) ∗ 𝑃ℎ (21) 

We calculate the edge server's energy consumption by the power of all hosts in a certain time frame of 

execution. Where Ec is energy consumption in the current state, Tn is the current time, Tlu is the update time 

at the last utilization, and Ph is the power of a host in the last utilization. To calculate the total energy 

consumption, we have to sum all edge servers and the cloud's energy. 

5.2.2 Total execution cost: 

To obtain the execution cost, we calculate the total MIPS of hosts by the time frame. The time frame is 

calculated by the difference between the current time of simulation and the last utilization time. 

𝐶𝑜𝑠𝑡 = ∑ [𝐶 + (𝑆𝐶 − 𝑇𝑙𝑢) ∗ 𝑅𝑀 ∗ 𝑈𝑙 ∗ ∑ 𝑀𝐼𝑃𝑆𝑘

𝜔

𝑘=1

]

𝑁

𝑖=1

 (22) 

In Eq. (22), N is the number of edge servers, C is the execution cost, SC is the system clock or 

current time of simulation, Tlu is update time at the last utilization, RM is the rate per MIPS that is different 

for each inter-module edges, and TM is the total MIPS of the host. Ul is the last utilization (Ul) that is 



21 

calculated by Eq. (23). Where MIPSA
K and MIPSK are the allocated MIPS and MIPS of the kth processor in 

the host, and m1 and m2 are the number of all processors and allocated processors in a host, respectively. 

𝑈𝑙 = 𝑀𝑖𝑛(1,
∑ 𝑀𝐼𝑃𝑆𝑘

𝐴𝑚2
𝑘=1

∑ 𝑀𝐼𝑃𝑆𝑘
𝑚1
𝑘=1

) (23) 

5.2.3 Total network usage 

Since tuples define the relationships between modules, thus resources’ usages depend on the transferred 

tuples’ size at a certain time. Total network usage is based on Eq. (24). 

𝑇𝑁𝑈 =
∑ (𝐿𝑖 ∗ 𝑆𝑖)𝑁′

𝑖=1

𝑇𝑚𝑎𝑥
 (24) 

In Eq. (24), Li and Si are the latency and size of ith tuple overall, N' is the total number of tuples, and 

Tmax is the maximum simulation time. 

5.2.4 Application Delay 

The delay of application execution is calculated by the system clock and the end time of a tuple. 

𝑇𝑇𝑁 = {

𝑆𝐶 − 𝑇𝑠𝑡                                 𝑖𝑓 𝑇𝑎 = 0,
𝑇𝑠𝑡 ∗ 𝑁𝐸𝑇 + (𝑆𝐶 − 𝑇𝑠𝑡)

𝑁𝐸𝑇 + 1
          𝑖𝑓 𝑇𝑎 ≥ 0

 (25) 

The end time of the tuple is calculated by Eq. (25). Where Tst is the tuple start time, SC is the system 

clock, (SC-Tst) is the execution time, and NET is the number of executed tuple types. Ta is the average CPU 

time based on the tuple type. CC is the system clock, and ET is the emitting time of a tuple. Ts is transfer 

time between two modules. 

𝑇𝑇𝑅 =
𝑇𝑠𝑡 ∗ 𝑁𝑅𝑇 + 𝑆𝐶 − 𝑇𝑠

𝑁𝐸𝑇 + 1
 (26) 

The tuple receipt time is based on Eq. (26). NRT is the number of receipt tuple types. Application delay is 

calculated by the difference time between tuple end time in a module and tuple receipt time in another 

module. 

5.3. Fairness 

We evaluate the fairness of the offloading method based on the Jain index [32], which is computed as: 

𝐽𝑎𝑖𝑛𝐼𝑛𝑑𝑒𝑥 =
(∑ 𝑥𝑗

𝑄
𝑗=1 )2

𝑄 ∗ ∑ 𝑥𝑗
2𝑄

𝑗=1

 (27) 

Q is the number of devices that contributed to the offloading, and xj is the jth device's energy consumption. 

The Jain index is between 
1

𝑄
  and 1; a better offloading method has a more Jain index. 

5.4 Comparison scenarios 

This section categorizes our scenarios to analyze the proposed approach and other algorithms. Table 7 shows 

four different scenarios. Where Scenario 1 is based on a different number of users. Scenario 2 is considered 

for four different module sizes. Scenario 3 is for comparing the methods based on four mobile types. Also, 
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we compare our proposed approach with others based on different intervals. The reason for using the values 

introduced in the diagram is according to the type of application. Since this application is introduced in the 

iFogsim emulator, so it comes with values by default. We tried to consider less and more of these parameters 

to get a good estimate in terms of scalability, number and type of mobile devices, and module size. 

Table 7: Comparison scenarios 

No. Description Values 

Scenario 1 Number of users 1, 3, 7, 10 

Scenario 2 Module size (MB) 1000, 2000, 5000, 10000 

Scenario 3 Mobile types AB, AC, BC, ABC 

Scenario 4 Interval (ms) 100, 200, 500, 1000 

5.5 Scenario 1: Comparison of offloading performance based on the number of users 

One of the parameters to show the performance of the offloading methods is the number of users. Here, we 

compare the energy consumption, total execution cost, network usage, and delay of MUCAO in MEC by the 

number of users. As can be seen in Figs. 3, 4, 5, 6, and 7, there are values of the number of users by 1, 3, 7, 

and 10 in the horizontal axis. 

Fog devices serve multiple users simultaneously. On the other hand, given the number of resources 

these devices have, when the number of users reaches a certain size, they reach a degree of optimization. 

This means that devices can perform resource management operations more efficiently. Due to the 

hierarchical structure of the network and users' distribution, it will be possible to improve the results even 

with the increase of users, which can be seen in the results. 

5.5.1 Energy consumption based on the number of users 

The analysis of Fig. 3 shows that the energy consumption of MUCAO is less than the original and offload 

methods. MUCAO can decrease energy consumption in a higher number of users. As this figure, the 

maximum energy consumption is on the number of users by 7 for the original method by 1.635 * 107 MJ. 

The minimum value is on the number of users by 10 for the FLUCO method by 1.58 * 107 MJ. This result 

shows that the FL-based method with distributed structure causes less energy consumption than others. Also, 

adding context-awareness information to FLO and using more than one ED cause to create a better method 

as FLUCO for energy efficiency. The reason for the improvement is a distributed algorithm of FLUCO that 

executes in multi EDs. The FLUCO causes MDs with lower resources to transfer more of their modules to 

EDs. As a result, the workload in the network has been distributed in a balanced way. There is not much 

difference between the energy consumption of methods with increasing the number of users. Since FLUCO 

distribute modules in the network, and also the capacity of devices is restricted. Thus the number of modules 

in devices cannot increase. Finally, we have not got more computations to calculate energy consumption for 

them. 
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Fig. 3: Energy consumption based on the number of users 

5.5.2 Total execution cost based on the number of users 

The cost is one of the important metrics in this work. We can see in Fig. 4 with increasing the number of 

users from 3 to 7, and 10 causes increasing cost in original and offload methods. MUCAO has a balanced 

cost than these methods in many users with fluctuating between 4.12 *106 $ and 4.15  * 106 $. Additionally, 

FLUCO with minimum energy consumption less than FLO and MUCAO is placed in the first rank of total 

execution cost. This result shows that with the increase in the number of users and distribution in the 

environment, the FLUCO has managed the cost well and brings economic savings. The main reason for this 

improvement is our distributed algorithm in some EDs that cause choosing the best device with high 

performance and minimum delay. 

 

Fig. 4: Total execution cost based on the number of users 

5.5.3 Network usage based on the number of users 

Fig. 5 shows that MUCA than original and offload methods can increase network usage by considering 

context-awareness. As this figure, the higher number of users could not increase this metric so much. The 

reason for this result is the best matching of offload destination instead of first matching. MUCAO has used 

network resources better with higher performance than these two methods. On the other hand, by being 

superior to others, FLUCO and FLO managed resources better. Since the main idea of these methods is 

distribution; as a result, the modules can offload to a wide range of devices. That is why all devices in the 
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network are almost busy with minimum free time. FLUCO and FLO can be an obstacle for wasting time in 

devices. 

 

Fig. 5: Network usage based on the number of users 

 

5.5.4 Delay based on the number of users 

The delay of the application loop by MUCAO has a slight decrease except in users 3. These results are better 

than original and offload methods. As Fig. 6, the maximum delay is related to the original method in the 

number of users by 7. The minimum value is related to FLUCO in the number of users by 10. This showed 

that using context information and distributed algorithms cause to fast executing of requests and offloading 

process. This means MDs using FLUCO can quickly find the best destination to offload their modules and 

save more time. 

 

 

Fig. 6: Delay based on the number of users 

 

5.5.5 Jain index based on the number of users 

We provide the fairness of offloading algorithms by Jain index value in Fig. 7. Since the original method has 

not any offloading thus, we compare others. As we mentioned, this metric uses the energy consumption and 

the number of edge servers that contribute to offloading. The maximum Jain index is related to FLUCO in 

the number of users by 10. This shows in FLUCO; more edge servers are used to offload modules. Also, this 

result proves better load balancing in the FLUCO than others. As we mentioned in Eq. (27), energy 



25 

consumption is an important parameter here. The results also show that devices' proposed approaches cause 

to devices have a good cooperative for offloading modules from MDs to the best devices. 

 

Fig. 7: Jain index based on the number of users 

 

5.6 Scenario 2: Comparison of offloading performance based on module size 

The module size is another metric for evaluating the offloading methods in this work. Based on Figs. 8, 9, 

10, 11, and 12, there are module size’s values by 1000, 2000, 5000, and 100000 in the horizontal axis.  

5.6.1 Energy consumption based on module size 

According to Fig. 8, the module size hasn’t more effect on energy consumption. The original, offload, and 

MUCAO show almost equal energy consumption. On the other hand, FLUCO and FLO have got better 

results. This means using distributed structure and context awareness can improve the energy consumption of 

the system. Since EDs and cloud resources have more capacities than MDs, different modules can be 

offloaded and executed to the upper layer in the network. Also, regarding more devices and widely 

distributed modules, the modules size has not got a considerable change in energy consumption. 

 

Fig. 8: Energy consumption based on module size 
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5.6.2 Total execution cost based on module size 

 Since different module sizes have no changes in energy consumption for original, offload, and MUCAO, as 

Fig. 9, the execution cost is without changes in different module sizes. The context-awareness of application, 

devices, and network environment allows MDs to have more selections for offloading their modules. As a 

result, the execution cost that is based on MIPS of devices calculates in a wide range. As a result, this has not 

got a lot of effects totally. However, FLUCO with minimum execution cost is the best method in comparison 

with others.  

 

Fig. 9: Total execution cost based on module size 

5.6.3 Network usage based on module size 

Fig. 10 shows that the minimum network usage is related to the original method in 2000 B by 1.125 * 

FLUCO places 105 MB and its maximum value in 1000 B and network usage by 1.15 * 105. Increasing 

module size causes increasing network usage. Also, in comparison with FLO, our proposed method as 

FLUCO, can improve network size. We need to explain increasing the module size causes raising total 

network usage, but this happens until a specific module size because EDs and cloud capacity is more than 

MDs. Thus, total network usage will not have many changes. 

 

Fig. 10: Network usage based on module size 
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5.6.4 Delay based on module size 

As shown in Fig. 11, increasing the module size causes a decrease in the delay of methods. The reason for 

decreasing delay in the original method is the local execution of modules. Also, we should consider some of 

the modules might not execute locally for not being enough resources. Of course, by this way, the energy 

consumption of MDs will be increase. Since edge servers have more capacity than module sizes, they can 

execute offloaded modules in less time. Also, FLUCO has better results than others in module sizes by 2000 

and 5000 B. In module size 1000 and 10000 B, FLUCO has got a little improvement than FLO. This shows 

that a distributed algorithm can manage and offload them to the best devices when module size increases. 

 

Fig. 11: Delay based on module size 

5.6.5 Jain index based on module size 

In Fig. 12, the fairness of the offloading method is between 0.6 and 0.8. However, the range of this metric in 

MUCAO is between 0.8 and 1.0. This proves MUCAO with considering context information is fairer than 

the offloading method. On the other hand, using distributes algorithms, and more EDs convert FLUCO to the 

best algorithm, among others. This means the energy consumption of all devices in the network was in a 

distributed manner. Also, decreasing the delay of modules cause all devices to consume less energy, so that 

the proposed approaches are better in this case. 

 

Fig. 12: Jain index based on module size 
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5.7 Scenario 3: Comparison of offloading performance based on mobile types 

Figs. 13, 14, 15, 16, 17 are based on different mobile types, as shown in Table 6. 

5.7.1 Energy consumption based on mobile types 

Analysis of energy consumption based on mobile types shows better results of FLUCO than others in all 

states AB, AC, BC, ABC. The results in Fig. 13 proves the diversity of mobiles can cause less energy 

consumption by the proposed method. FLUCO, with minimum energy consumption of about 1.58*107 MJ, is 

the best method than others. This method shows that a distributed algorithm in different devices can offload 

modules with less energy consumption. Also, heterogeneous devices with different configurations have got 

required resources for local computation. 

 

Fig. 13: Energy consumption based on mobile types 

5.7.2 Total execution cost based on mobile types 

According to Fig. 14, using different mobile types decreases total cost in all methods. FLUCO has better 

results than others. More capacity of CPU, memory, and battery causes mobile devices to execute more 

modules locally. This process decreases the offloading cost. Another reason for improving the FLUCO can 

be fair offloading in a wide range of devices. Thus, decreasing the cost in a device and distributing fair 

offloading to other devices can present lower cost. 
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Fig. 14: Total execution cost based on module size 

 

 

5.7.3 Network usage based on module types 

Based on Fig. 15, network usage has a gradual increase by different mobile types. We can see in this figure 

that the FLUCO has maximum network usage in mobile type BC by 2.6 * 105 KB. Thus, diversity in mobile 

types has a direct effect on network usage. Using a distributed structure of the network causes more network 

usage in the MEC. This means the FLUCO with a distributed method can use many devices in the network 

and the number of jobless devices will decrease. 

 

Fig. 15: Network usage based on module types 

 

5.7.4 Delay based on module types 

Fig. 16 shows that delay in all mobile types AB, AC, and BC has sensitive changes. FLUCO has a minimum 

delay equal to 226.2 mS on mobile type ABC. The results prove that the increase in the diversity of MDs 

causes more challenges in delay. The distributed algorithms as FLO and FLUCO can do better than others. 

FLUCO has got less delay when the mobile type is AC. The reason for this improvement can be the context 

awareness in FLUCO than FLO. 
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Fig. 16: Delay based on module types 

5.7.5 Jain index based on module types 

The fairness metric shows that FLUCO has the best results in all mobile types. Also, Fig. 17 proves the 

minimum fairness is related to the offloading method in mobile type AB by 0.6. Thus, distributed multi-user 

context-aware is a suitable offloading method in MEC. In fact, if the offloading method can place the 

modules on a wide range of devices, we will have a fairway.  

 

Fig. 17: Jain index based on module types 

5.8 Scenario 4: Comparison of offloading performance based on interval 

Offloading’s interval shows the time distance between the resource management process. We control the 

workflow to the system by interval value. The energy consumption, total execution cost, network usage, 

delay, and Jain index are evaluated by offloading’s intervals equal to 100, 200, 500, and 1000 mS. We set 

these values for the spacing between the input data goes back to the type of application. Since the application 

is intended to process input data in an average of 200 mS. Therefore, we consider numbers in the same 

range. 

5.8.1 Energy consumption based on interval 

Fig. 18 proves that our proposed MUCAO and FLUCO methods can decrease energy consumption than the 

original, offload, and FLO methods. FLUCO with 1.57* 107 MJ is the best than others. Thus, FLUCO is very 



31 

suitable for offloading in the VRGAMEFOG application. Since the interval value means the distance time 

between the resource management process, increasing that causes the offloading method will have more time 

for process or offloading modules to best devices. As a result, we can see; generally, the FLUCO used this 

chance better than others. 

 

 

 

Fig. 18: Energy consumption vs interval 

 

5.8.2 Total execution cost based on the interval 

Analysis of execution cost by all offloading methods shows that interval equals 500 causes more energy 

consumption. According to Fig. 19, the minimum execution cost of 4.9 * 106$ is related to FLUCO by 

interval 200 mS. The worst execution is related to the original method by 4.18 * 106$ in the interval of 500 

mS without any offloading. The results prove the superiority of the distributed algorithm over others in 

MEC. The fair using of resources in devices causes less cost, so FLUCO with the capability of distribution 

and context awareness has better results than others. 

 

 

Fig. 19: Total execution cost vs interval 

 

5.8.3 Network usage based on interval 

The results of the simulation show the competition between all methods. They cause to near network usage 

values in the interval by 100, 500, and 1000 mS. Fig. 20 indicates, in the average stats, FLUCO is the best 
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offloading method than others. The main reason for this improvement is the distributed structure of FLUCO, 

also using the properties of devices, application modules, and environment are important in context-

awareness. 

 

 

 

Fig. 20: Network usage vs interval 

 

5.8.4 Delay based on the interval 

Based on Fig. 21, the MUCAO method has a gradual increase in the delay parameter when the interval is 

grown. Of course, this MUCAO is an excellent method in intervals by 100 and 200 mS. According to this 

figure, the original method has the worst result in the interval by 1000 mS. The offload method has a 

fluctuated result with the lowest in the interval of 200 mS and higher in the interval by 500 mS. More 

analysis shows that FLO and FLUCO have got lower delays than others. The results show that these two 

methods can quickly offload the modules to the best devices with minimum delay. Of course, the lowest 

delay equal 226.3 mS, is related to FLUCO in an interval of 200 mS. 

 

 

Fig. 21: Delay vs interval 

 

5.8.5 Jain index based on interval 

According to Fig. 22, MUCAO and FLUCO have a gradual increase in the Jain index with maximum 

fairness in interval of 1000 mS. However, the offloading method has fluctuated values, and it could 
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approximately close to MUCAO in 1000 mS. However, FLUCO with the highest Jain index is better than 

others. This proves that a distributed algorithm can be a fair offloading method. Thus, the dynamic context-

awareness and distributed structure of the proposed algorithm can improve the performance of MEC. 

 

 

Fig. 22: Delay vs interval 

6 Conclusion 

Computation offloading in MEC is faced with many challenges. In this paper, we investigate context-aware 

offloading by considering multi-user. We also present a distributed algorithm as FLUCO to got close to the 

MEC structure. To solve this problem, a MAPE loop is used in all offloading processes. Our method helps 

MDs to offload their modules to edge servers or cloud if they can not execute those locally with less cost. 

The results show that FLUCO is superior to original, offload, MUCAO, and FLO methods in energy 

consumption by 2%, 2%, 2.1%, and 0.7% in total execution cost by 3%, 3%, 2.34%, and 1.08% network 

usage by 2%, 2%, 1.21%, and 0.001% delay by 0.01%, 0.01%, 0.005%, and 0.001% and 0.002%, 

respectively. Also, FLUCO is fairer than offload, MUCAO, and FLO methods in the Jain index by 18%, 

4.01%, and 1.6%, respectively. These results prove that our proposed offloading algorithm with context-

aware information and distributed structure could improve the network performance in the mentioned 

metrics. As future work, we work on MEC with FL-based methods on other case studies. Cooperative mobile 

crowding is another challenge of FL in MEC for more research. FL is vulnerable to communication security 

issues such as Distributed Denial-of-Service (DoS) and jamming attacks. Also, we will research on the 

protection of data privacy for MEC  users. 
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