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Abstract
The small airways dysfunction (SAD) asthma phenotype is characterised by narrowing of airways < 2 mm in diameter between 
generations 8 and 23 of the bronchial tree. Recently, this has become particularly relevant as measurements of small airways 
using airway oscillometry for example, are strong determinants of asthma control and exacerbations in moderate-to-severe 
asthma. The small airways can be assessed using spirometry as forced expiratory flow rate between 25 and 75% of forced 
vital capacity (FEF25–75) and has been deemed more accurate in detecting small airways dysfunction than forced expira-
tory volume in 1 s (FEV1). Oscillometry as the heterogeneity in resistance between 5 and 20 Hz (R5–R20), low frequency 
reactance at 5 Hz (X5) or area under the reactance curve between 5 Hz and the resonant frequency can also be used to assess 
the small airways. The small airways can also be assessed using the multiple breath nitrogen washout (MBNW) test giving 
rise to values including functional residual capacity, lung clearance index and ventilation distribution heterogeneity in the 
conducting (Scond) and the acinar (Sacin) airways. The ATLANTIS group showed that the prevalence of small airways 
disease in asthma defined on FEF25–75, oscillometry and MBNW all increased with progressive GINA asthma disease stages. 
As opposed to topical inhaler therapy that might not adequately penetrate the small airways, it is perhaps more intuitive that 
systemic anti-inflammatory therapy with biologics targeting downstream cytokines and upstream epithelial anti–alarmins 
may offer a promising solution to SAD. Here we therefore aim to appraise the available evidence for the effect of anti-IgE, 
anti-IL5 (Rα), anti-IL4Rα, anti-TSLP and anti-IL33 biologics on small airways disease in patients with severe asthma.

Keywords  Small airways · Severe asthma · FEF25–75 · Oscillometry · Multiple breath nitrogen washout · Omalizumab · 
Mepolizumab · Reslizumab · Benralizumab · Dupilumab · Tezepelumab · Itepekimab

Introduction

The small airways dysfunction (SAD) asthma phenotype 
is characterised by narrowing of airways < 2 mm in diam-
eter between generations 8 and 23 of the bronchial tree [1]. 
Recently, this has become particularly relevant as meas-
urements of small airways using airway oscillometry for 
example, are strong determinants of asthma control and 
exacerbations in moderate-to-severe asthma [2]. The small 
airways can be assessed using spirometry as forced expira-
tory flow rate between 25 and 75% of forced vital capacity 
(FEF25–75) and has been deemed more accurate in detecting 
small airways dysfunction than forced expiratory volume in 

1 s (FEV1) [3]. Having said that FEF25–75 is rather volume 
dependent in terms of ensuring patients breathe out all the 
way to residual volume and as such is considered to be more 
variable.

Oscillometry as the heterogeneity in resistance between 
5 and 20 Hz (R5–R20), low frequency reactance at 5 Hz 
(X5) or area under the reactance curve (AX) between 5 Hz 
and the resonant frequency can also be used to assess 
the small airways [4]. X5 and AX are thought to reflect 
peripheral lung compliance which is reduced in patients 
with SAD. Oscillometry has advantages over spirometry in 
being effort independent, being more associated with type 
2 inflammation and having higher sensitivity with regards 
to bronchodilator responses [5, 6]. In patients with mod-
erate-to-severe persistent asthma not taking biologics the 
presence of abnormal values of either R5–R20 ≥ 0.10 kPa/
L/s or AX ≥ 1.0 kPa/L were associated with worse disease 
control as ACQ score [7]. Using computational model-
ling, it has previously been shown that R5–R20 is a direct 
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measure of anatomical narrowing of the small airways [8]. 
Contemporaneously, it has been determined that combin-
ing both spirometry and oscillometry measurements might 
better identify moderate-to-severe asthma patients with 
worse control and more frequent exacerbations [9, 10].

The small airways can also be assessed using the mul-
tiple breath nitrogen washout (MBNW) test giving rise to 
values including functional residual capacity, lung clear-
ance index and ventilation distribution heterogeneity in 
the conducting (Scond) and the acinar (Sacin) airways 
[11]. The ATLANTIS group showed that the prevalence 
of small airways disease in asthma defined on FEF25–75, 
oscillometry and MBNW all increased with progressive 
GINA asthma disease stages [12].

The peripheral airways have previously been termed the 
quiet zone of the lung because they are difficult to assess 
and treat. Conventional high doses of inhaled corticoster-
oids have been shown to be relatively ineffective in manag-
ing distal lung inflammation measured by alveolar nitric 
oxide [13]. This is likely attributed to aerosols comprising 
a larger particle size that have a predilection to deposit 
in the large airways [14]. In one study, adding extra-fine 
HFA–BDP on top of high dose conventional particle flu-
ticasone/salmeterol conferred no improvement in oscil-
lometry small airways function or alveolar NO in patients 
with severe persistent asthma [15]. Over the past decade, 
type 2 biologic therapies have been shown to significantly 
improve exacerbations and other clinical outcomes such as 
disease control, pulmonary function and type 2 biomark-
ers [16, 17].

Here we therefore aim to appraise the available evi-
dence for the effect of systemic biologic therapies on 
small airways disease in patients with severe asthma. We 
searched PubMed and Google Scholar for terms including 
“small airways”, “omalizumab”, “mepolizumab”, “ben-
ralizumab”, “reslizumab”, “dupilumab”, “tezepelumab”, 
“itepekimab”, “FEF25–75”, “oscillometry” and “multiple 
breath nitrogen washout” with abstracts and case reports 
excluded. The aim here is not to perform a systematic 
review or meta–analysis as the investigated outcomes in 
these cited studies are too heterogenous to amalgamate. 
The essential premise here is that the systemic route of 
administration would facilitate delivery of biologics to the 
whole lung including the peripheral airways in the same 
way as oral corticosteroids in patients who are refractory 
to high dose ICS. Given that the airway mucosal surface 
area is proportionately much greater in the distal compared 
to proximal lung, systemic delivery of biologics appears 
to be a cogent way for treating all of the type 2 inflam-
mation in asthmatic airways. Indeed, this may be one of 
the reasons why systemic biologics are so successful at 
improving control in severe asthma patients despite the 
use of high dose inhaled combination therapy.

Omalizumab

Omalizumab is a recombinant humanised anti-IgE mono-
clonal IgG1 antibody that blocks the binding of free IgE to 
its high affinity FcεRI receptor on mast cells and basophils 
[18]. It has the secondary action of binding to membrane 
bound IgE (mIgE) on mIgE-expressing B cells resulting 
in downregulation of IgE production [19]. A Cochrane 
review has demonstrated significant reductions in exacer-
bations and hospitalisations in moderate-to-severe asthma 
[20]. As FcεRI expression is increased throughout the 
large and small airways in severe asthma [21], one might 
postulate that a systemic therapy such as omalizumab 
would confer additional benefit to allergic patients only 
taking topical inhaler therapy.

A retrospective cohort study (n = 110) in adult patients 
with severe eosinophilic allergic asthma showed that 
omalizumab significantly improved FEF25–75 by 8.3% 
over 52 weeks [22]. Another real-life retrospective clini-
cal study (n = 20) of severe asthma patients demonstrated 
that omalizumab significantly improves FEF25–75% by 6% 
but not FEV1% by 4%, over 44 weeks along with clinically 
significant reductions in exacerbations and ACQ scores 
[23]. A prospective observational study (n = 26) also high-
lighted an improvement in alveolar nitric oxide levels in 
severe asthmatics following 48 weeks of omalizumab indi-
cating a potential therapeutic effect on small airways type 
2 inflammation [24]. This is important as uncontrolled 
small airways inflammation is related to airway remodel-
ling and progression of disease [25]. Additionally, patients 
with aspirin exacerbated respiratory disease generally have 
higher levels of type 2 inflammation [26], and in one small 
case series (n = 4) such patients also experienced improve-
ments in FEF25–75% by 30% [27]. No studies have been 
performed looking at the effect of omalizumab therapy on 
other measures of small airways disease.

Mepolizumab, Reslizumab and Benralizumab

Mepolizumab and Reslizumab are humanised IgG1κ and 
IgG4κ monoclonal antibodies, respectively, that exert 
its effect by inhibiting interleukin 5 attachment to the 
IL5Rα receptor on eosinophils [28, 29]. Benralizumab is 
a humanised IgG1κ monoclonal antibody that binds to the 
IL5Rα receptor on eosinophils to prevent IL5 activation 
[30]. Through this shared mechanism of action, suppres-
sion or depletion of eosinophilic activation, proliferation 
and migration is achieved. Due to higher expression of 
IL5 mRNA in the small airways (< 2 mm diameter) in 
asthmatics, one might expect mepolizumab, reslizumab 
and benralizumab therapy to be effective in SAD [31].
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The phase 3b RCT MUSCA demonstrated significant 
improvements in FEF25–75 amounting to 0.123 L/s after 
24 weeks of mepolizumab vs placebo in n = 551 patients 
with severe eosinophilic asthma [32]. Although this is 
the largest study investigating the effect of mepolizumab 
in small airways, MUSCA was not powered a priori on 
FEF25–75 [32]. To support this, two retrospective studies 
(n = 134 and n = 105) independently demonstrated a signifi-
cant improvement in FEF25–75% with mepolizumab in severe 
eosinophilic asthma patients with respective improvements 
of 9.8% and 8.1% [33, 34]. Smaller observational studies 
[23, 35] (n = 31 and n = 30) have shown no improvement in 
FEF25–75% after 24–44 weeks of mepolizumab. However, 
the mean baseline FEF25–75% in these smaller studies were 
higher and therefore there may have been less room for 
improvement.

In a prospective study (n = 18), it was shown that oscil-
lometry low frequency reactance as X5, a measure of periph-
eral lung compliance, significantly improved by 74% one 
month post mepolizumab therapy in severe eosinophilic 
asthma [36]. However, another retrospective study in severe 
asthmatics (n = 30) showed no improvements in R5–R20 
or AX following 10 months of mepolizumab [23]. These 
studies are likely to be underpowered to draw any mean-
ingful conclusions. One prospective cohort study (n = 20) 
showed a significant improvement in small airway function 
after 26 weeks with mepolizumab measured by ventilation 
heterogeneity as Sacin using MBNW in patients with severe 
eosinophilic asthma [37].

In a phase 3 randomised controlled trial (RCT) (n = 205) 
[38], there was a borderline significant trend for iv resli-
zumab 3 mg/kg to improve FEF25–75 over 16 weeks by 
0.233 L/s vs placebo, exceeding the established biological 
variability in severe asthma of 0.21 L/s [39] to infer a clini-
cally relevant treatment effect. An open label extension study 
(n = 1051) has shown that these FEF25–75% improvements 
persist up to 96 weeks on reslizumab in patients with mod-
erate-to-severe eosinophilic asthma [40]. Post hoc analysis 
of 2 phase 3 RCTs (n = 723) in severe eosinophilic asthma 
showed that reslizumab significantly improves FEF25–75 over 
placebo with a mean difference 0.128 L/s [41]. Although 
reslizumab is used in clinical practice to a lesser extent, 
we postulate that these encouraging results can possibly be 
extrapolated to mepolizumab due to the shared immuno-
logical pathway. No studies to date have been performed on 
reslizumab looking at oscillometry or MBNW outcomes.

A multicentre retrospective observational study [42] 
(n = 137) looking at patients with severe eosinophilic 
asthma demonstrated significant improvements in FEF25–75% 
amounting to 17% after 24 weeks of benralizumab. Another 
real-life retrospective observational study [43] (n = 22) 
showed that benralizumab improved FEF25–75 by 0.82 L/s 
over 24 weeks in severe allergic eosinophilic asthma patients 

greatly exceeding the biological variability value [39] for a 
clinically relevant effect. In one prospective observational 
study with benralizumab in severe asthma [44] (n = 19) no 
improvements in R5–R20, X5 and AX were observed after 
24 weeks. Pointedly, patients in this study started with nor-
mal small airways function and therefore one would perhaps 
not expect any improvement.

Dupilumab

Dupilumab is a humanised IgG4 monoclonal antibody that 
targets the IL4Rα receptor to mediate IL4 and IL13 activ-
ity [45]. Interestingly, IL4 and IL13 but not IL5 have been 
shown to induce hyperresponsiveness in isolated small air-
ways [46]. Additionally, more IL4 mRNA expression has 
been found in the small airways of asthmatic versus non-
asthma patients [31].

The phase 3 LIBERTY ASTHMA QUEST trial [47] 
(n = 1902) in uncontrolled moderate-to-severe asthma 
showed that FEF25–75 significantly improved by 0.16 L/s fol-
lowing 52 weeks of dupilumab treatment compared to pla-
cebo. In this regard, a phase 2 RCT [48] (n = 148) in moder-
ate-to-severe asthma also showed that dupilumab improved 
FEF25–75 by 0.19 L/s compared to placebo over 12 weeks 
albeit the significance was not reported here since it was not 
the primary outcome. In another prospective cohort study 
[49] (n = 20) of severe asthma patients with nasal polyps 
treated with dupilumab for 4 weeks there was a significant 
improvement in FEF25–75 of 0.33 L/s exceeding biological 
variability. In terms of airway oscillometry, one retrospec-
tive study [50] (n = 62) in mild-to-moderate asthma with 
concomitant CRSwNP showed that 3 months of dupilumab 
therapy did not significantly change X5.

Tezepelumab

Tezepelumab is a humanised IgG2λ monoclonal antibody 
that blocks the upstream epithelial alarmin thymic stromal 
lymphopoietin (TSLP) from interacting with the TSLP 
receptor complex resulting in dampening of the type 2 
inflammatory response [51]. The phase 2 CASCADE trial 
[52] (n = 110) in moderate-to-severe uncontrolled asthma 
demonstrated no improvement in FEF25–75 or R5–R20 over 
placebo although interestingly tezepelumab resulted in a 
0.56 kPa/L improvement in AX that exceeds the biological 
variability value of 0.39 kPa/L in severe asthma [39].

Itepekimab

Itepekimab is a humanised IgG4 monoclonal antibody with 
anti-alarmin activity against IL-33 resulting in suppression 
of type 2 inflammation [48]. In a phase 2 RCT of moderate-
to-severe asthmatics (n = 148) [48], itepekimab was shown 



	 Lung

1 3

to improve FEF25–75 by 0.170 L/s over 12 weeks compared 
to placebo, which did not exceed the biological variabil-
ity value. In this regard, the same phase 2 RCT [48] with 
combined itepekimab and dupilumab conferred a 0.120 L/s 
improvement in FEF25–75 over placebo which was numeri-
cally less than for itepekimab or dupilumab monotherapy 
alone. This suggests that merely blocking more type 2 
inflammatory pathways may not be the answer. The effect 
of various biologic therapies on FEF25–75 is summarised in 
tabular form (Table 1).

Conclusions

Prospective RCTs with various biologics are now indicated 
which are properly powered on small airway outcomes, 
where patients are selected a priori on the basis of having 
clinically relevant degrees of SAD. We would duly sug-
gest that such patients might exhibit values for spirometry 
as FEF25–75 < 50%, or oscillometry as X5 < −0.20 kPa/L/s, 
R5–20 ≥ 0.10 kPa/L/s or AX ≥ 1.0 kPa/L given that such val-
ues are associated with poor control and more frequent exac-
erbations [9, 53]. Ideally, future studies should take into con-
sideration z-scores for FEF25–75 to account for differences in 
age and height although in a real-life busy clinic it is perhaps 

more pragmatic to use absolute cut offs. Oscillometry in 
particular is easy to perform and effort dependent with vali-
dated biological variability values and is therefore eminently 
suitable for powering such studies in the first instance. In this 
regard, the ongoing SASAM trial (NCT05040997) is using 
small airways disease measured by spirometry, body plethys-
mography, single and multiple breath nitrogen washout and 
impulse oscillometry as novel endpoints and distinct targets 
for mepolizumab. The problem for such a trial is deciding 
on which of the SAD outcomes should be selected as the pri-
mary end point in that patients with asthma may for example 
have relatively well–preserved spirometry with abnormal 
oscillometry [9, 53]. Another study (NCT03976310) is cur-
rently looking at the effects of benralizumab in air trapping, 
which can be considered a surrogate for small airways dis-
ease [10], on high resolution computed tomography imaging 
as the primary outcome. Tezepelumab is also presently being 
studied (NCT05280418) to look at its effect in ventilation 
heterogeneity on hyperpolarised 129Xe magnetic resonance 
imaging as the primary outcome.
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Table 1   Summary of current evidence base for the effect of biologics on forced expiratory flow rate between 25 and 75% of forced vital capacity 
(FEF25–75)

BENRA benralizumab, DUPI dupilumab, ITEPE itepekimab, MEPO mepolizumab, N/A not available, NS non-significant, OMA omalizumab, 
RCT​ randomised controlled trial, RESLI reslizumab, TEZE tezepelumab
a Absolute values provided as improvements compared to placebo for RCTs

Study Type of study Biologic Numbers of patients Baseline 
FEF25–75 (L/s 
or %)

Duration 
of therapy 
(weeks)

Absolute 
improvement 
(L/s or %)a

P value

Huang et al. [22] Retrospective OMA n = 110 55.1% 52 8.3%  < 0.001
Chan et al. [23] Retrospective OMA n = 20 43% 44 6%  < 0.05
Chupp et al. [32] RCT​ MEPO n = 551 0.894 L/s 24 0.123 L/s 0.002
Sposato et al. [33] Retrospective MEPO n = 134 37.4% 47 9.8%  < 0.001
Maglio et al. [34] Retrospective MEPO n = 105 32.7% 24 8.1%  < 0.001
Yılmaz et al. [35] Retrospective MEPO n = 31 45.1% 24 3.6% NS
Chan et al. [23] Retrospective MEPO n = 30 46% 44 6% NS
Bjermer et al. [38] RCT​ RESLI n = 205 N/A 16 0.233 L/s 0.055
Murphy et al. [40] Open label extension RESLI n = 1051 1.6 L/s 96 0.4 L/s N/A
Virchow et al. [41] Post hoc of 2 RCTs RESLI n = 723 1.55 L/s 52 0.128 L/s 0.005
Nolasco et al. [42] Retrospective BENRA n = 137 38% 24 17%  < 0.001
Pelaia et al. [43] Retrospective BENRA n = 22 0.6 L/s 24 0.82 L/s  < 0.001
Castro et al. [47] RCT​ DUPI n = 1902 1.113 L/s 52 0.145 L/s  < 0.001
Wechsler et al. [48] RCT​ DUPI n = 148 N/A 12 0.19 L/s  < 0.05
Pelaia et al. [49] Prospective DUPI n = 20 1.47 L/s 4 0.33 L/s  < 0.01
Diver et al. [52] RCT​ TEZE n = 110 1.26 L/s 28 −0.01 L/s NS
Wechsler et al. [48] RCT​ ITEPE n = 148 N/A 12 0.17 L/s NS
Wechsler et al. [48] RCT​ ITEPE + DUPI n = 148 N/A 12 0.12 L/s NS
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