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ABSTRACT 1

Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by2

use of the Green-Naghdi (GN) equations in three dimensions. A numerical wave tank consisting of deep,3

transitional and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of4

ramps with nonuniform profiles and large slopes are used to connect the deep-water side of the tank to5

the shallow-water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating6

solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of7

the domain to minimize the wave reflection back into the domain. The system of equations is solved8

numerically in time domain by use of a second-order finite difference approach for spatial discretization,9

and in a boundary-fitted coordinate system, and by use of the Modified Euler method for time marching.10

∗Address all correspondence to M. Hayatdavoodi (MHayatdavoodi@dundee.ac.uk).
†Fellow, ASME

1 Copyright c© by ASME



Authors Accepted Manuscript; 

Not Copy-edited by the Journal.

Results include solitary and cnoidal wave surface elevation and particle velocities and are compared with11

the existing solutions where possible. Overall very good agreement is observed. Discussion is provided12

on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of13

the ramps, as well as on the performance of the GN equations in solving these problems.14

Keywords: Nonlinear shallow water waves, wave shoaling, refraction and diffraction, Green-Naghdi15

equations, solitary wave, cnoidal waves16

Introduction17

Waves undergo significant deformation as they propagate from deep to coastal water and over variable seafloor.18

Wave diffraction and refraction are subjects of great interest to ocean engineers. Linear wave theory, based on the19

assumption of small amplitude waves, provides solutions to wave diffraction and refraction in the presence of sim-20

plified bathymetry and geometries. In shallow water, however, the water depth is much less than the wavelength,21

and the wave amplitude is not necessarily small when compared to the water depth, and hence the assumption of22

a linear free-surface boundary condition may no longer be applicable. Due to the change in water depth, the long23

waves undergo significant transformation. The original, nearly sinusoidal, wave profile transforms into waves of24

long and flat troughs and isolated and rather sharp crests as they enter shallow water. The wave height, speed and25

direction of propagation would also change significantly, and these vary with the spatial form of the bathymetry.26

Such deformations continue as the water depth decreases, to the limit that the wave becomes asymmetric about27

its crest and eventually leads to instabilities resulting in energy attenuation, formation of higher harmonics, and28

possibly wave breaking. The nonlinear effects resulting in such wave transformations cannot be captured by the29

simplified linear free-surface boundary conditions. Given the climate change and its impact on the frequency30

and intensity of extreme events, and the sea-level rise, it is becoming increasingly more important to develop31

approaches that can realistically and efficiently analyse wave transformation in coastal areas, and provide realistic32

information about the wave conditions as they approach shores and costal structures.33

A common approach to model the nonlinear free-surface boundary condition is to assume that certain impor-34

tant features of the fluid domain remain unchanged during wave transformation, and thus to obtain an approximate35

solution for the nonlinear boundary conditions. In shallow water, this is achieved by introducing two major scales,36

namely nonlinearity (the ratio of wave height to water depth,σ = H/h) and dispersion (the ratio of water depth37

to wavelength,ε = h/λ). The unknowns (typically the velocity potential and the free surface) are expanded into38

a perturbation series ordered in terms ofσ andε, the scales or perturbation parameters, typically assumed small39
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from the outset. It is then possible for one to decide whetherσ or ε is more critical, and which terms in the expan-40

sion are to be retained and which terms can be discarded, determined based on the physical problem, and hence41

obtain an approximate solution to the exact problem. This is the “classical perturbation method” in water wave42

mechanics, and is followed by [1–8] and several others afterwards to obtain various forms of theories for nonlinear43

wave propagation in shallow water. All methods, following the perturbation approach, arrive at similar, but not44

identical, equations for the propagation of long waves. Models developed for wave diffraction and refraction in45

shallow water based on these approaches are discussed in [9–16], among others. 46

Green and Naghdi [17] proposed yet another fundamentally different approach in studying nonlinear wave47

transformation in shallow water based on acontinuum modeltypically applied to the theory of plates and shells48

in structural mechanics. The theory is developed based on the directed or Cosserat surface, a deformable surface49

embedded in a Euclidean three-dimensional space to every point of which a deformable vector, called a director, is50

assigned. The Cosserat surface is three-dimensional in character, but only depends on two spatial dimensions and51

time. The directors of the Cosserat surface specify how certain properties are distributed in the third dimension of52

thecontinuum model. In this theory, the number of the directors defines theLevelof the theory. 53

In the Level I theory, used in this study, the deformable medium is a body of sheet-like fluid consisting of a54

deformable top (free) surface and a single director attached to each point of the surface. This assumption, which55

is the only assumption made about the kinematics of the fluid sheet, is equivalent to the linear distribution of56

the vertical velocity along the water column, and hence (due to the continuity equation) the horizontal velocity57

becomes invariant over the water depth. This makes the Level I theory applicable to propagation of long waves.58

See, e.g., [18–22] for discussion on the range of applicability of various forms of the GN equations to nonlinear59

wave transformation. 60

Given that no perturbation is used in the derivation of the Green-Naghdi (GN hereafter) equations, there is no61

restriction on any scaling ratio, e.g., wave amplitude over the wave length, or alike in this approach, unlike the62

classical approximations. The only restriction on the thickness of the fluid sheet is that it is finite, and nonzero63

(zero water depth leads to a singularity in the equations). There is no need to define velocity potential and hence64

irrotationality of the flow is not necessary either. The GN equations are translationally (Galilean) invariant (unlike65

the equations presented by [3], among others), satisfy the nonlinear free surface boundary conditions and the66

conservation of mass exactly, and postulate the integrated momentum equation. 67

Further flexibility can be given to the directors when deriving the GN equations. This can be achieved by68

assuming higher-order functions (polynomial or exponential) for the distribution of the vertical velocity along69
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the water column. High-level GN equations are applicable to wave propagation in any water depth, see e.g.70

[21,23–26]. We note that the boundary conditions are satisfied exactly by the GN equations of any level. That is,71

the only difference between the GN equations of different levels is on the velocity field.72

The goal of this study is to investigate the effects of spatial and large changes of the bathymetry on the73

propagation of nonlinear waves in shallow water by use of the Level I GN equations. The GN model allows74

studying the wave transformation while preserving the effect of nonlinearity, dispersion and wave reflection (i.e.,75

no need to restrict the wave motion to one direction only). To achieve this, various forms of bottom bathymetry76

with three dimensional (3D) effects on the wave field are considered in a systematic manner and discussion is77

provided on the wave transformation and effect of the bathymetry changes to the wave field. The 3D ramps are78

modified systematically, such that two of them are concave (where the middle of the ramp is deeper than the edges)79

and two are convex (where the edges of the ramp are deeper than the middle). Otherwise, the ramps dimensions80

and slopes, and the upwave and downwave water depths are invariant between these cases. Hence, any difference81

observed in transformation of the wave is due to the shape of the ramp (whether it is concave or convex), and82

how the form of the ramps affects the wave field. The theory and the solution are discussed first, followed by an83

introduction to the physical problems under consideration. Results of solitary and cnoidal wave diffraction and84

refraction are presented and discussed next and the paper is closed by concluding remarks.85

The Green-Naghdi Equations86

For an incompressible and inviscid fluid, Green and Naghdi [27] showed that it is possible to derive the gov-87

erning equations in a systematic way from the exact three-dimensional equations of an incompressible, inviscid88

fluid (Euler’s equations) by use of a single approximation for the (three-dimensional) velocity field. The assump-89

tion is equivalent to the Level I assumption in the direct approach, that is the vertical component of the velocity90

field is a linear function of the vertical coordinate (in a Eulerian system) and that the horizontal components are91

invariable in the vertical direction. Such a velocity field allows for rotational flow on the horizontal surface, and92

the vorticity component on the horizontal plane does not need to be zero even though the shear flow on the vertical93

surfaces are ignored.94

We use a Cartesian coordinate system(x1,x2,x3), with the associated orthonormal base vectorsei, such that

the x1 − x3 plane is the still-water level (SWL) ande2 is vertically upward. The mass densityρ of the fluid

and the gravitational accelerationg, in the−e2 direction, are constant. Subscripts after comma designate partial

differentiation with respect to time or the corresponding spatial direction. Ertekin [28] provided a familiar form
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of the equations given by the mass and momentum conservation as

η,t +{(h+η−α)u j}, j = α,t , j = 1,3, (1)

u̇i +gη,i +
p̂,i
ρ

=−1
6
{[2η+α],iα̈+[4η−α],iη̈+(h+η−α)[α̈+2η̈],i} , i = 1,3, (2)

whereV = u1e1+ u2e2 + u3e3 is the velocity vector,η(x1,x3, t) is the free surface elevation measured from the95

SWL, α(x1,x3, t) describes the seafloor surface, andt is the time variable. The scalar function ˆp(x1,x3, t) is 96

the fluid pressure on the top surface, andh(x1,x3) is the water depth (measured from the SWL to the stationary97

seafloor). The superposed dot denotes the material derivative, and a double superposed dot is defined as the second98

material time derivative. 99

Under the GN theory, the vertical velocity,u2(x1,x2,x3, t), integrated pressure across the water depth,P(x1,x3, t), 100

and pressure on the seafloor ¯p(x1,x3, t) are obtained explicitly by (see e.g. [29,30]) 101

u2(x1,x2,x3, t) = α̇+
(x2+h−α)
(η+h−α)

(η̇− α̇) , (3)

P(x1,x3, t) =
(ρ

6

)

(h+η−α)2(α̈+2η̈+3g)+ p̂(h+η−α) , (4)

p̄(x1,x3, t) =
(ρ

2

)

(h+η−α)(α̈+ η̈+2g)+ p̂. (5)

In this study we confine our attention to cases where (i) the seafloor is stationary, i.e.α(x1,x3, t) = α(x1,x3), 102

and (ii) pressure is atmospheric on the top surface, i.e. ˆp(x1,x3, t) = 0. The surface elevation,η, is a single-valued 103

function in these equations and hence breaking waves are excluded from this study. 104

Numerical Solution and Setup 105

A 3D numerical wave channel is created, where a wavemaker is placed at one end and a wave absorber is106

located at the opposite end. The numerical wavemaker generates solitary and cnoidal waves of the GN equations,107

see [28] and [31]. The open-boundary uses Orlanski’s condition ( [32]) applied to both surface elevation and108

horizontal velocity to reduce reflections back into the wave tank. 109
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The exact nonlinear free surface (kinematic and dynamic) and the seafloor boundary conditions are embed-110

ded within the GN equations (1) to (2). On the lateral sides of the wave tank, the channel walls, two types of111

boundary conditions are enforced, namely the wall condition for no flux normal to the walls, and the radiation112

condition based on the assumption that the velocity and surface elevation vary smoothly near the lateral boundary113

to minimize the effect of the lateral walls on the flow field (when the wave refraction and flow in thex3 direction114

are remarkable near the wall), see [33] for more details.115

The system of equations is solved by use of a central-difference method, second order in space, see [28] for116

more details. A numerical grid generation is applied to facilitate the use of finite-difference method to solve the117

equations in the presence of irregular boundaries. This allows the inclusion of irregular boundaries conveniently by118

mapping the physical domain into a rectangular computational domain. An elliptical mesh generation technique119

is used, in which a one-to-one mapping is developed between the physical and the computational planes by use120

of the Laplace equation. A uniform computational grid system with unit interval spacings is used in the solution121

of all the governing equations, which significantly simplifies the use of the finite-difference method, see [34] for122

more details.123

All problems considered here are symmetric with respect to thex1−x2 plane passing through the center line124

of the domain, and hence only one half of the domain is analyzed by use of the symmetry condition. To avoid125

numerical instabilities, the bathymetries of the cases considered here are slightly smoothed by taking a weighted126

average of the depth values of the neighboring points.127

Time marching of the solution is achieved iteratively by use of the successive over-relaxation method, see [34]128

and references therein for more details. Hereafter, all variables are given in dimensionless form by use ofρ, g and129

h (water depth upwave of the ramp) as a dimensionally independent set. A spatial grid with∆x1 = ∆x3 = 0.4 is130

used for domain discretization. A time step of∆t = 0.4 is used for all calculations, see [33] and [35] for discussion131

on the grid convergence.132

The GN model, discussed in this study, has been verified and validated previously for wave propagation over133

various forms of uneven bathymetry in two dimensions by [20, 31, 36] for solitary and cnoidal wave propagation134

over submerged ramps, bumps and mounts. Results of the equations have also been extensively compared with135

laboratory experiments for wave deformation due to fixed (e.g. [34, 37–39]) or floating bodies (e.g. [40]). In this136

paper, we will build upon the previous investigations of [33], and confine our attention to the results of the GN137

model for nonlinear wave diffraction and refraction.138
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Table 1: Amplitude and width of the ramp curves

Case FLR NCR WCR NXR WXR

AR 0 10 10 -10 -10

BR 0 12 24 12 24

Results and Discussion 139

We consider the propagation of nonlinear waves of solitary and cnoidal types over uneven bottom bathymetry.140

The solitary wave cases provide information about the transformation of very long waves (e.g. tsunami) as they141

propagate over uneven ocean ramps of various forms into continental shelves. The cnoidal wave cases are con-142

sidered to investigate the deformation of large oscillatory waves, often generated due to storms and severe atmo-143

spheric events, as they propagate over ocean ramps into coastal areas. The shelf consists of a 1:20 flat, linear ramp144

(FLR hereafter), gradually connecting the constant water depth to shallow region, whose dimensions are shown145

in Fig. 1. To better investigate the 3D effects and wave refraction, we extend the FLR by adding an additional146

component across the shelf and consider another four curved-bottom ramps, namely (i) narrow concave ramp147

(NCR), (ii) wide concave ramp (WCR), (iii) narrow convex ramp (NXR), and (iv) wide convex ramp (WXR),148

whose dimensions are shown in Fig. 1. The 3D ramp profile, varying both in thex1 andx3 directions, is given 149

by f (x3) = ARcos2(2πx3/BR) for x3 ≤ BR, whereAR andBR are the curve amplitude and width of the 3D curves150

of the ramp, respectively, whose values are given in Table 1 (also shown in Fig. 1). These are similar to those151

considered by [35], who used Boussinesq-class equations to study the wave refraction and diffraction. The 3D152

ramps, while allow us to perform a systematic analysis of the effect of uneven bathymetry on wave transformation,153

resemble various real-life cases of wave propagation from deep to shallow water. 154

In all cases, computations are performed in 3D, and the domain length is 120, extending fromx1 = −30 to 155

x1 = 90, and its width is 32, fromx3 = −16 tox3 = 16. x3 = 0, the center line of the bathymetry, is the line of156

symmetry in all cases. The ramp starts fromx1 = 6, and the water depth on the shelf (downwave of the ramp) is157

alwaysh1 = 0.5. 158

Solitary Waves 159

The solitary wave amplitude is kept constant in all cases considered in this study atA= 0.12. The 3D surface 160

elevation of the waves propagating over the five ramps is shown in Fig. 2. The color bar remains unchanged in161

all cases for better comparisons. The wave profile undergoes significant deformation as it propagates over the162
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Fig. 1: Schematic of the five deep-to-shallow ramps considered in this study, and their dimensions. Not to scale.
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shelves. 163

The nonlinearity parameter,σ, is physically manifested as the tendency of the wave front to steepen during164

the propagation, while the dispersion parameter,ε, gauges the tendency of a single wave to disperse into a train of165

oscillatory waves. The relative magnitude of these two parameters, the Ursell numberUr = σ/ε2, is often used to 166

determine which phenomenon (nonlinearity or dispersion) dominates during wave transformation, see [41]. The167

solitary wave is stable when the two parameters are in balance, i.e.Ur = O(1). The change in the bathymetry168

breaks this balance locally, and hence the wave undergoes deformation to achieve a new stable form. 169

As the wave approaches the ramp, part of the mass and energy is reflected back, and the wave deformation170

begins. The water depth reduces as the wave propagates over the ramp and onto the shelf, resulting in increasing171

nonlinearity. Hence, in all cases, the amplitude of the main soliton is larger immediately downwave of the shelf.172

As the wave propagates away from the shelf, dispersion comes into play and results in the formation of second173

and third solitons, which separate from the main wave as it propagates over the constant water depth above the174

shelf. The form of the 3D shelf, of course, plays an important role on the exact form and amplitude of the solitons.175

Comparing results of the FLR case to the other four clearly shows the 3D effects, causing asymmetry of the176

wave profile from the center line (x3 = 0) to the wall of the domain (x3 = 16), best seen in snapshots taken at times177

t = 30 and 60 in Fig. 2 (a) - (d). In the concave ramp cases, NCR and WCR, the amplitude of the main soliton178

becomes larger along the wall, while for the convex cases, NXR and WXR, the main soliton’s peak is amplified179

along the centerline of the domain. This is in line with the classic wave refraction theories (see e.g. [42]), where180

the lines parallel to the wave crest, obliquely approaching a ramp, turn direction such that the angle between the181

crest line and the depth contours become smaller, i.e., Snell’s law. Similarly, in the 3D ramps, the ray lines (lines182

perpendicular to the 3D wave crest pointing to the wave propagation direction) turn towards shallower water as183

the wave passes over the curved ramp. 184

The cases with wider curved ramps, WCR and WXR, cause larger differences of the wave amplitude across185

the channels when compared to the cases with narrower ramps, NCR and NXR. Downwave from the shelf and186

over the constant water depth, the balance between nonlinearity and dispersion is achieved once again and the187

wave profile becomes nearly identical across the channel, best seen in snapshots taken at timet = 60 in Fig. 2 (a) 188

-(d). 189

To better assess the effect of the uneven seafloor on the wave field, we look at the snapshots of the horizontal190

and vertical velocities in Figs. 3 and 4, respectively, at the free surface taken at the same four different times.191

Shown in Fig. 3, in all cases, the horizontal velocity is at its maximum value under the wave crest, with higher192
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Fig. 2: Snapshots of the surface elevation of a solitary wave propagating over (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR. The ramp starts fromx1 = 6. The snapshots are taken at four different times, but plotted on

the same figure.10 Copyright c© by ASME
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Fig. 3: Snapshots of the horizontal velocity of a solitary wavepropagating over (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR. The snapshots are taken at four different times, but plotted on the same figure. The color

bars are kept the same in all figures to allow for better comparisons between cases.
11 Copyright c© by ASME
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Fig. 4: Snapshots of the vertical velocity of a solitary wave propagating over (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR. The snapshots are taken at four different times, but plotted on the same figure. The color

bars are kept the same in all figures to allow for better comparisons between cases.
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magnitudes where the surface elevation is larger. For the mostpart, the distribution of the horizontal velocity has193

remained invariant by the submerged ramps. When compared to the flat linear ramp (FLR), the distribution of194

the vertical velocity is asymmetric from the center line of the channel to the channel walls, see Fig. 4. As the195

wave deforms, in the concave cases, NCR and WCR, areas of negative vertical velocity is observed at the back of196

the wave (best seen at timet = 60 in Fig. 4 (a) and (b)), which have larger magnitudes in the wider ramp case,197

WCR. The opposite is observed in these regions for the convex cases, i.e. larger positive vertical velocities, which198

are more remarkable in the wider ramp case, WXR. The horizontal velocity is always larger in areas with larger199

surface elevation. 200

To better investigate the change in the wave profile across the width of the channels (due to the curved ramps),201

in Figs. 5 to 9, we look at snapshots of surface elevation along the center line and the wall of the channel. We202

keep the height of the vertical axis the same in all these figures for better comparison. In all cases, as mentioned203

earlier, the front side of the wave steepens and the wave amplitude grows as the wave approaches the ramp.204

Downwave over the shelf, soliton fission is observed, where two or three solitons are formed and as the wave205

propagates, separate from the leading soliton due to differences in their propagation velocity (note that the soliton206

speed predicted by the present theory isU =
√

1+A, always critical or supercritical, see [20] and references cited207

therein). 208

When compared to the FLR case, in all curved cases, there is a remarkable difference between the wave profile209

at the center of the domain versus that at the channel wall, best seen at timest = 40 and 60 in Figs. 5-8, which, is210

due to the wave refraction by different curved bathymetries. In the concave cases, NCR and WCR, , where middle211

of the shelf is deeper than the edges, the wave amplitude is larger near the wall, and the opposite is observed for212

the convex cases, NXR and WXR. At the later stages of soliton propagation over the shelf,t = 80 in Figs. 5-8, 213

the amplitude of the main soliton is nearly identical at the center and wall cut of the channel. The amplitude of214

the second and third solitons, however, are different at the center and wall cut of the channel even att = 80; in the 215

concave cases, the amplitude of the second soliton is larger at the center line, while the opposite is observed in216

the convex cases (where the sides of the ramp are deeper than the middle part). Similarly, in the concave cases, at217

time t = 80, the second soliton is separated from the main soliton at the center line of the domain while it is still218

part of the main soliton at the channel wall. In the convex cases, the opposite is observed due to the shape of the219

ramp, i.e., the second soliton at the wall is separated, but not at the center line. Shown in Figs. 5-9, results of the220

GN equations are in very good agreement with those obtained by [35] who used the Boussinesq equations.221

A comparison of the amplitudes of the first (A1) and second (A2) solitons, generated due to the propagation of a222

13 Copyright c© by ASME
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Fig. 5: Snapshots of surface elevation of solitary wave propagating over the narrow concave ramp (NCR) at the
center line (a-e) and wall cut (f-j), calculated by the GN model and compared with the Boussinesq-class results

of [35].
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Fig. 6: Snapshots of surface elevation of solitary wave propagating over the wide concave ramp (WCR) at the
center line (a-e) and wall cut (f-j), calculated by the GN model and compared with the Boussinesq-class results

of [35].

15 Copyright c© by ASME



Authors Accepted Manuscript; 

Not Copy-edited by the Journal.

0

0.05

0.1

0.15

0.2

(a) Center line, t=0.0 (f) Wall cut, t=0.0

0

0.05

0.1

0.15

0.2

(b) Center line, t=20 (g) Wall cut, t=20

0

0.05

0.1

0.15

0.2

(c) Center line, t=40 (h) Wall cut, t=40

0

0.05

0.1

0.15

0.2

(d) Center line, t=60 (i) Wall cut, t=60

0 20 40 60 80

0

0.05

0.1

0.15

0.2

(e) Center line, t=80

0 20 40 60 80

(j) Wall cut, t=80

Fig. 7: Snapshots of surface elevation of solitary wave propagating over the narrow convex ramp (NXR) at the
center line (a-e) and wall cut (f-j), calculated by the GN model and compared with the Boussinesq-class results

of [35].
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Fig. 8: Snapshots of surface elevation of solitary wave propagating over the wide convex ramp (WXR) at the
center line (a-e) and wall cut (f-j), calculated by the GN model and compared with the Boussinesq-class results

of [35].
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Table 2: Comparison of the amplitudes of the first (A1) and second (A2) solitons due to propagation of a solitary
wave over a flat linear ramp, obtained by various approaches.A is the initial amplitude of the solitary wave.

Results A1/A A2/A

Madsen and Mei 1969 (Experiments) 1.2 0.4

Madsen and Mei 1969 (Boussinesq) 1.66 0.75

Johnson 1972 (KdV) 1.71 0.66

Johnson 1973 (Analytical) 1.73 0.65

Schember 1982 (Boussinesq) 1.69 0.59

GN 1.60 0.45

solitary wave over FLR (shown in Fig. 9) of the GN equations and those obtained through laboratory experiments223

and calculations of [5, 35, 43] is given in Table 2. The amplitudes are recorded at approximatelyx1 = 33 from224

the leading edge of the shelf. Results are also in good agreement overall with the laboratory measurements of225

Madsen and Mei [5] and calculations of Johnson [43,44] (using numerical solution of the KdV equations, as well226

as formal asymptotic expansions to obtain analytical expressions for the number of solitons and their amplitudes227

as a function of the ramp height and the initial wave amplitude). The peak of the soliton calculated by the GN228

equations are slightly smaller than those reported by [43, 44], mainly because wave reflection (as large as about229

15% in this case, see [20]) is neglected in the KdV models. Note the difference of all theoretical results when230

compared to the laboratory experiments of Madsen and Mei [5], although the GN equations are the closest among231

all theoretical solutions. [5] attributed the differences between the numerical and experimental results possibly to232

the use of an approximate wave generation technique in the laboratory experiments. In this regard, it may be a233

good idea to repeat these experiments in the future.234

Cnoidal Wave235

In this section, results of the GN model for cnoidal wave propagation over the five bottom ramps are presented.236

The dimensionless wave height and wavelength areH = 0.12 andλ = 20, respectively. All other variables and237

numerical setup are identical to those discussed in the previous sections. Snapshots of the 3D surface elevation238

and plane contour views of cnoidal waves propagating over these ramps obtained by the GN model are shown in239

Fig. 10. The cnoidal waves deform significantly as they propagate over the ramp into the shelf, and this varies240

in different cases. Qualitatively, similar behaviour in wave diffraction and refraction is observed as those of a241

solitary wave, with the difference that the incoming waves undergo further deformation due to the interaction242
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with the reflected waves (as several waves are present in the domain at a given time), and with waves of smaller243

amplitudes. 244

Seen in the plane contour view of Fig. 10 (a) and (b), the concave ramps have caused slower wave propagation245

in the center of the domain when compared to the edges of the domain. In the case of convex ramps, however, the246

wave propagates faster in the centre of the domain, observed in Fig. 10 (c) and (d). Downwave from the ramp, and247

on the shelf with constant water depth, the wave crest gradually recovers into a uniform wave across the domain248

width. 249

To further investigate the cnoidal wave diffraction and refraction by the submerged ramps, in Fig. 11, snap-250

shots of surface elevation at the center of the domain is compared with that at the wall cut, for all five cases251

considered here. Deviation between surface elevations at the center and the wall cuts is observed from approxi-252

matelyx1 = 0, just upwave of the ramp. The concave ramps have resulted in smaller wave amplitudes at the centre253

of the domain and larger amplitudes near the walls, seen in Fig. 11 (a) and (b). The convex ramps have opposite254

effect on the change of the wave amplitude across the domain width, i.e., the wave amplitude in the center of255

the domain is larger than that near the walls, shown in Fig. 11 (c) and (d). The change in wave amplitude is256

invariant with the domain width for the linear flat ramp (Fig. 11 (e)), and this is expected. Higher harmonics are257

generated due to the propagation of the waves over the ramps, the amplitude of which varies across the width of258

the domain and dependent on the shape of the ramps (concave vs convex). Downwave on the shelf, the main wave259

peak separates itself from the second harmonic. 260

Concluding Remarks 261

A 3D model for nonlinear wave propagation in shallow water and over uneven bathymetry is developed based262

on the Level I GN equations. A 3D numerical wave tank is created and a flat, linear ramp is considered in this263

study. To further investigate the 3D effects on the wave refraction, four extensions are added systematically to the264

flat shelf, creating concave and convex ramps of different widths. The model is used to study solitary and cnoidal265

wave diffraction and refraction due to various forms of 3D bathymetry that are observed in real-life. 266

Through the results obtained from the GN model, it is observed that the waves undergo significant deformation267

as they propagate over the ramps. Common across all cases, the wave amplitude initially increases due to the268

stronger nonlinearity. The growth of the wave amplitude across the channel width varies depending on the shape269

of the ramp, such that for concave cases, the wave amplitude is larger at the channel walls, while the wave in the270

center line is larger for the convex cases. Downwave of the ramp, soliton fission is observed, where second (and271
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sometimes third) solitons are formed. Again the shape of the bathymetry has a significant effect on the magnitude272

of the second (and third) solitons.273

It is concluded that the GN equations, capturing nonlinearity, dispersion and wave reflection, which also274

satisfy the boundary conditions exactly, are a remarkable alternative to perturbation-based methods, and a very275

efficient alternative to computational fluid dynamics models to study wave transformation in coastal areas.276
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Fig. 9: Snapshots of surface elevation of solitary wave propagating over the flat linear ramp (FLR), calculated by
the GN model and compared with the Boussinesq-class results of [35].
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Fig. 10: 3D (left column) and contour plain view (right column)snapshots of the surface elevation of cnoidal
waves propagating over (a) NCR, (b) WCR, (c) NXR, (d) WXR, and (e) FLR, taken at time t=200. The ramp

starts fromx1 = 6.
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Fig. 11: Snapshots of surface elevation of cnoidal waves propagating over the (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR, at the centre line (black solid line) and wall cut (blue dash line) of the domain, taken at time

t=200.
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