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ABSTRACT 1

Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by
use of the Green-Naghdi (GN) equations in three dimensions. /A numerical wave tank consisting of deep,
transitional and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of:
ramps with nonuniform profiles and large slopes are used to connect the deep-water side of the tank to
the shallow-water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating
solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of
the domain to minimize the wave reflection back into the domain. The system of equations is solved
numerically in time domain by use of a second-order finite difference approach for spatial discretization,s

and in a boundary-fitted coordinate system, and by use of the Modified Euler method for time marching

*Address all correspondence to M. Hayatdavoodi (MHayatdavoodi@dundee.ac.uk).
TFellow, ASME
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Results include solitary and cnoidal wave surface elevatimhgarticle velocities and are compared with

the existing solutions where possible. Overall very good agreement is observed. Discussion is provided
on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of
the ramps, as well as on the performance of the GN equations in solving these problems.

Keywords. Nonlinear shallow water waves, wave shoaling, refraction and diffraction, Green-Naghdi

equations, solitary wave, cnoidal waves

Introduction

Waves undergo significant deformation as they propagate from deep to coastal water and over variable seafloor.
Wave diffraction and refraction are subjects of great interest to ocean engineers. Linear wave theory, based on the
assumption of small amplitude waves, provides solutions to wave diffraction and refraction in the presence of sim-
plified bathymetry and geometries. In shallow water, however, the water depth is much less than the wavelength,
and the wave amplitude is not necessarily. small when compared to the water depth, and hence the assumption of
a linear free-surface boundary condition may no longer be applicable. Due to the change in water depth, the long
waves undergo significant transformation. The original, nearly sinusoidal, wave profile transforms into waves of
long and flat troughs and isolated and rather.sharp crests.as they enter shallow water. The wave height, speed and
direction of propagation would also change significantly, and these vary with the spatial form of the bathymetry.
Such deformations continue as the water depth decreases, to the limit that the wave becomes asymmetric about
its crest and eventually leads to instabilities resulting in energy attenuation, formation of higher harmonics, and
possibly wave breaking. The nonlinear effects resulting in such wave transformations cannot be captured by the
simplified linear free-surface boundary conditions. Given the climate change and its impact on the frequency
and intensity of extreme events, and the sea-level rise, it is becoming increasingly more important to develop
approaches that can realistically and efficiently analyse wave transformation.in coastal areas, and provide realistic
information about the wave conditions as they approach shores and costal structures.

A common approach to model the nonlinear free-surface boundary condition is to assume that certain impor-
tant features of the fluid domain remain unchanged during wave transformation, and thus to obtain an approximate
solution for the nonlinear boundary conditions. In shallow water, this is achieved by introducing two major scales,
namely nonlinearity (the ratio of wave height to water depths H /h) and dispersion (the ratio of water depth
to wavelengthg = h/A). The unknowns (typically the velocity potential and the free surface) are expanded into

a perturbation series ordered in termsoodinde, the scales or perturbation parameters, typically assumed small
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from the outset. It is then possible for one to decide whathare is more critical, and which terms in the expanso
sion are to be retained and which terms can be discarded, determined based on the physical problem, and hence
obtain an approximate solution to the exact problem. This is the “classical perturbation method” in water wave
mechanics, and is followed by [1-8] and several others afterwards to obtain various forms of theories for nonlinear
wave propagation in shallow water. All methods, following the perturbation approach, arrive at similar, butsnot
identical, equations for the propagation of long waves. Models developed for wave diffraction and refractien in
shallow water based on these approaches are discussed in [9-16], among others. 46

Green and Naghdi [17] proposed yet another fundamentally different approach in studying nonlinear swave
transformation in shallow water based ocantinuum modetypically applied to the theory of plates and shellss
in structural mechanics. The theory is developed based on the directed or Cosserat surface, a deformable:surface
embedded in a Euclidean three-dimensional space to every point of which a deformable vector, called a direstor, is
assigned. The Cosserat surface is three-dimensional in character, but only depends on two spatial dimensins and
time. The directors of the Cosserat surface specify how certain properties are distributed in the third dimension of
thecontinuum modelin this theory, the number of the directors definesltbeelof the theory. 53

In the Level | theory, used in this study, the deformable medium is a body of sheet-like fluid consistingsof a
deformable top (free) surface and a single director attached to each point of the surface. This assumptionsswhich
is the only assumption made about the kinematics of the fluid sheet, is equivalent to the linear distributien of
the vertical velocity along the water column, and hence.(due to the continuity equation) the horizontal vebacity
becomes invariant over the water depth. This makes the Level | theory applicable to propagation of long waves.
See, e.g., [18-22] for discussion on the range of applicability of various forms of the GN equations to nonknear
wave transformation. 60

Given that no perturbation is used in the derivation of the Green-Naghdi (GN hereafter) equations, there:is no
restriction on any scaling ratio, e.g., wave amplitude over the wave length, or alike in this approach, unlike the
classical approximations. The only restriction on the thickness of the fluid sheet is that it is finite, and norzero
(zero water depth leads to a singularity in the equations). There is no need to define velocity potential andshence
irrotationality of the flow is not necessary either. The GN equations are translationally (Galilean) invariant (usalike
the equations presented by [3], among others), satisfy the nonlinear free surface boundary conditions and the
conservation of mass exactly, and postulate the integrated momentum equation. 67

Further flexibility can be given to the directors when deriving the GN equations. This can be achieved by

assuming higher-order functions (polynomial or exponential) for the distribution of the vertical velocity akeng
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the water column. High-level GN equations are applicable teewaropagation in any water depth, see e.g.
[21,23-26]. We note that the boundary conditions are satisfied exactly by the GN equations of any level. That is,
the only difference between the GN equations of different levels is on the velocity field.

The goal of this study is to investigate the effects of spatial and large changes of the bathymetry on the
propagation of nonlinear waves in shallow water by use of the Level | GN equations. The GN model allows
studying the wave transformation while preserving the effect of nonlinearity, dispersion and wave reflection (i.e.,
no need to restrict the wave motion to one direction only). To achieve this, various forms of bottom bathymetry
with three dimensional (3D) effects on the wave field are considered in a systematic manner and discussion is
provided on the wave transformation and effect of the bathymetry changes to the wave field. The 3D ramps are
modified systematically, such that two of them are concave (where the middle of the ramp is deeper than the edges)
and two are convex‘(where the edges of the ramp are deeper than the middle). Otherwise, the ramps dimensions
and slopes, and the upwave and downwave water depths are invariant between these cases. Hence, any difference
observed in transformation of the wave is-due to the shape of the ramp (whether it is concave or convex), and
how the form of the ramps affects-the wave field. The theory and the solution are discussed first, followed by an
introduction to the physical problems under consideration. Results of solitary and cnoidal wave diffraction and

refraction are presented and discussed next and the paper is closed by concluding remarks.

The Green-Naghdi Equations

For an incompressible and inviscid fluid, Green and Naghdi [27] showed that it is possible to derive the gov-
erning equations in a systematic way from the exact three-dimensional equations of an incompressible, inviscid
fluid (Euler’'s equations) by use of a single approximation for the (three-dimensional) velocity field. The assump-
tion is equivalent to the Level | assumption in the direct approach, that is the vertical component of the velocity
field is a linear function of the vertical coordinate (in a Eulerian system) and-that the horizontal components are
invariable in the vertical direction. Such a velocity field allows for rotational flow on the horizontal surface, and
the vorticity component on the horizontal plane does not need to be zero even though the shear flow on the vertical
surfaces are ignored.

We use a Cartesian coordinate systea)x, x3), with the associated orthonormal base vectprsuch that
the x; — X3 plane is the still-water level (SWL) angb is vertically upward. The mass densityof the fluid
and the gravitational acceleratignin the —e, direction, are constant. Subscripts after comma designate partial

differentiation with respect to time or the corresponding spatial direction. Ertekin [28] provided a familiar form
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of the equations given by the mass and momentum conservation as

n7t+{(h+n_a)uj}7j:a,t7 j:1737 (1)
ui+gn7i+%:—g{[2n+a]7ia+[4n—a],in+(h+n—a)[a+2n],i}, i=13, (2)

whereV = uje; + uxer + Uzes is the velocity vectorn(xi,Xs,t) is the free surface elevation measured from the

SWL, a(xy,x3,t) describes the seafloor surface, dnid the time variable. The scalar functigixi, xs,t) is

96

the fluid pressure on the top surface, dgy, x3) is the water depth (measured from the SWL to the stationasy

seafloor). The superposed dot denotes the material derivative, and a double superposed dot is defined as the second

material time derivative.

99

Under the GN theory, the vertical velocitya(xi, X2, X3, 1), integrated pressure across the water deitk,, X3, t), 100

and pressure on the seaflqux;,x3,t) are obtained explicitly by (see e.g. [29, 30])

Up(X1, X2, X3,t) = O+ % (h=a), ©)
POxa,%s,t) = (g (h-+n— (@ + 20 +-3g)+ p(h-+n — a1, @
1 e,t) = (5 ) (h+n—a) (6+i+20)+ p. (5)

In this study we confine our attention to cases where (i) the seaflooris stationaoy(xi.exs,t) = a(xq,X3),

101

102

and (ii) pressure is atmospheric on the top surfacepi.,X3,t) = 0. The surface elevation, is a single-valued 103

function in these equations and hence breaking waves are excluded from this study.

Numerical Solution and Setup

A 3D numerical wave channel is created, where a wavemaker is placed at one end and a wave absesber is
located at the opposite end. The numerical wavemaker generates solitary and cnoidal waves of the GN equiations,

see [28] and [31]. The open-boundary uses Orlanski's condition ( [32]) applied to both surface elevatiam and

horizontal velocity to reduce reflections back into the wave tank.
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The exact nonlinear free surface (kinematic and dynamic) laadeafloor boundary conditions are embed-
ded within the GN equations (1) to (2). On the lateral sides of the wave tank, the channel walls, two types of
boundary conditions are enforced, namely the wall condition for no flux normal to the walls, and the radiation
condition based on the assumption that the velocity and surface elevation vary smoothly near the lateral boundary
to minimize the effect of the lateral walls on the flow field (when the wave refraction and flow i3 tieection

are remarkable near the wall), see [33] for more details.

The system of equations is solved by use of a central-difference method, second order in space, see [28] for
more details. A numerical grid generation is applied to facilitate the use of finite-difference method to solve the
equations in the presence of irregular boundaries. This allows the inclusion of irregular boundaries conveniently by
mapping the physical domain into a rectangular computational domain. An elliptical mesh generation technique
is used, in which a one-to-one ‘mapping is developed between the physical and the computational planes by use
of the Laplace equation. A uniform computational grid system with unit interval spacings is used in the solution
of all the governing equations, which significantly simplifies the use of the finite-difference method, see [34] for

more details.

All problems considered here are symmetric with respect tathex, plane passing through the center line
of the domain, and hence only one half of the domain is analyzed by use of the symmetry condition. To avoid
numerical instabilities, the bathymetries of the cases considered here are slightly smoothed by taking a weighted

average of the depth values of the neighboring points.

Time marching of the solution is achieved iteratively by use of the successive over-relaxation method, see [34]
and references therein for more details. Hereafter, all variables are given in dimensionless form lpy; gsndf
h (water depth upwave of the ramp) as a dimensionally independent set.. A spatial gritixyithAxz = 0.4 is
used for domain discretization. A time stepf= 0.4 is used for all calculations, see [33] and [35] for discussion

on the grid convergence.

The GN model, discussed in this study, has been verified and validated previously for wave propagation over
various forms of uneven bathymetry in two dimensions by [20, 31, 36] for solitary and cnoidal wave propagation
over submerged ramps, bumps and mounts. Results of the equations have also been extensively compared with
laboratory experiments for wave deformation due to fixed (e.g. [34, 37—39]) or floating bodies (e.g. [40]). In this
paper, we will build upon the previous investigations of [33], and confine our attention to the results of the GN

model for nonlinear wave diffraction and refraction.
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Table 1: Amplitude and width of the ramp curves

Case| FLR NCR WCR NXR WXR
Ar 0 10 10 -10 -10
Br 0 12 24 12 24

Results and Discussion 139

We consider the propagation of nonlinear waves of solitary and cnoidal types over uneven bottom bathymetry.
The solitary wave cases provide information about the transformation of very long waves (e.g. tsunami) as they
propagate over uneven ocean ramps of various forms into continental shelves. The cnoidal wave cases are con-
sidered to investigate the deformation of large oscillatory waves, often generated due to storms and sevete atmo-
spheric events, as they propagate over ocean ramps into coastal areas. The shelf consists of a 1:20 flat, linear ramp
(FLR hereafter), gradually connecting the constant water depth to shallow region, whose dimensions areashown
in Fig. 1. To better investigate the 3D effects and wave refraction, we extend the FLR by adding an additional
component across the shelf and consider another four curved-bottom ramps, namely (i) narrow concave ramp
(NCR), (ii) wide concave ramp (WCR), (iii) narrow convex ramp (NXR), and (iv) wide convex ramp (WX#2),
whose dimensions are shown in Fig. 1. The 3D ramp profile, varying both ix, taed x3 directions, is given 149
by f(x3) = Arcos (21x3/BR) for x3 < Br, whereAg andBr are the curve amplitude and width of the 3D curves
of the ramp, respectively, whose values are given in' Table 1 (also shown in Fig. 1). These are similar tasthose
considered by [35], who used Boussinesg-class equations to study the wave refraction and diffraction. Thae 3D
ramps, while allow us to perform a systematic analysis of the effect of uneven bathymetry on wave transformation,
resemble various real-life cases of wave propagation from deep to shallow water. 154

In all cases, computations are performed in 3D, and the domain length is 120, extending fom30 to 1ss
x1 = 90, and its width is 32, fromz = —16 toxz = 16. X3 = 0, the center line of the bathymetry, is the line afs
symmetry in all cases. The ramp starts fregm= 6, and the water depth on the shelf (downwave of the rampjsis

alwaysh; = 0.5. 158

Solitary Waves 159
The solitary wave amplitude is kept constant in all cases considered in this stdy@iL2. The 3D surface 6o
elevation of the waves propagating over the five ramps is shown in Fig. 2. The color bar remains unchanged in

all cases for better comparisons. The wave profile undergoes significant deformation as it propagates aer the
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Fig. 1: Schematic of the five deep-to-shallow ramps consitiar¢his study, and their dimensions. Not to scale.
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shelves. 163

The nonlinearity parameteas, is physically manifested as the tendency of the wave front to steepen duting
the propagation, while the dispersion parameteggauges the tendency of a single wave to disperse into a train:of
oscillatory waves. The relative magnitude of these two parameters, the Ursell numbes /€2, is often used to s
determine which phenomenon (nonlinearity or dispersion) dominates during wave transformation, see [41}: The
solitary wave is stable when the two parameters are in balancé)i.es O(1). The change in the bathymetryss
breaks this balance locally, and hence the wave undergoes deformation to achieve a new stable form. 10

As the wave approaches the ramp, part of the mass and energy is reflected back, and the wave defafmation
begins. The water depth reduces as the wave propagates over the ramp and onto the shelf, resulting in ingreasing
nonlinearity. Hence, in all cases, the amplitude of the main soliton is larger immediately downwave of the:ghelf.
As the wave propagates away from the shelf, dispersion comes into play and results in the formation of second
and third solitons, which separate from the main wave as it propagates over the constant water depth ahave the
shelf. The form of the 3D shelf, of course, plays an important role on the exact form and amplitude of the salitons.

Comparing results of the FLR case to the other four clearly shows the 3D effects, causing asymmetryisf the
wave profile from the center line{ = 0) to the wall of the domainxg = 16), best seen in snapshots taken at times
t =30 and 60 in Fig. 2 (a) - (d). In the concave ramp cases, NCR and WCR, the amplitude of the main saliton
becomes larger along the wall, while for the convex cases, NXR and WXR, the main soliton’s peak is amplified
along the centerline of the domain. This is in line with the classic wave refraction theories (see e.g. [42]), mhere
the lines parallel to the wave crest, obliquely approaching-a ramp, turn.direction such that the angle between the
crest line and the depth contours become smaller, i.e., Snell’s' law. Similarly, in the 3D ramps, the ray linesstlines
perpendicular to the 3D wave crest pointing to the wave propagation-direction) turn towards shallower water as
the wave passes over the curved ramp. 184

The cases with wider curved ramps, WCR and WXR, cause larger differences of the wave amplitude i&cross
the channels when compared to the cases with narrower ramps, NCR and NXR. Downwave from the shelf and
over the constant water depth, the balance between nonlinearity and dispersion is achieved once again@nd the
wave profile becomes nearly identical across the channel, best seen in snapshots takern=a6trreFig. 2 (a) 1ss
-(d). 189

To better assess the effect of the uneven seafloor on the wave field, we look at the snapshots of the hasizontal
and vertical velocities in Figs. 3 and 4, respectively, at the free surface taken at the same four differentidimes.

Shown in Fig. 3, in all cases, the horizontal velocity is at its maximum value under the wave crest, with higher

9 Copyright © by ASME
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<~ 0.15
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<« 0.05
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t=90
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20 02
< 0.15
el 0.1
<« 0.05
<7-20 (b) WCR 0

t=90

20 02
<~ 0.15
-~ 0.1
< 0.05
<20 (d) WXR 0

<*80

<20 02
0.15
0.1
0.05

. (e) FLR 0

Fig. 2: Snapshots of the surface elevation of a solitary waspagating over (a) NCR, (b) WCR, (c) NXR, (d)

WXR, and (e) FLR. The ramp starts froxp = 6. The snapshots are taken at four different times, but plotted on
the samg figure. Copyright © by ASME
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t=90

t=90

t=90

-*80

~T20 02

-~ 0.1

s -0.1
<20 (e) FLR 0.2

Fig. 3: Snapshots of the horizontal velocity of a solitary wax@pagating over (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR. The shapshots are taken at four different times, but plotted on the same figure. The color

bars are kept the same in all figures to allow for better comparisons between cases.
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0.01

< -0.01
<720 (a) NCR -0.02
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0.02
0.01
-0.01
-0.02
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Fig. 4: Snapshots of the vertical velocity of a solitary wavepgamgating over (a) NCR, (b) WCR, (c) NXR, (d)
WXR, and (e) FLR. The shapshots are taken at four different times, but plotted on the same figure. The color
bars are kept the same in all figures to allow for better comparisons between cases.
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magnitudes where the surface elevation is larger. For the paostthe distribution of the harizontal velocity hass
remained invariant by the submerged ramps. When compared to the flat linear ramp (FLR), the distributien of
the vertical velocity is asymmetric from the center line of the channel to the channel walls, see Fig. 4. As the
wave deforms, in the concave cases, NCR and WCR, areas of negative vertical velocity is observed at theilsack of
the wave (best seen at tinhe- 60 in Fig. 4 (a) and (b)), which have larger magnitudes in the wider ramp case,
WCR. The opposite is observed in these regions for the convex cases, i.e. larger positive vertical velocitiesyswvhich
are more remarkable in the wider ramp case, WXR. The horizontal velocity is always larger in areas withitarger
surface elevation. 200

To better investigate the change in the wave profile across the width of the channels (due to the curved ramps),
in Figs. 5to 9, we look at snapshots of surface elevation along the center line and the wall of the channgt. We
keep the height of the vertical ‘axis the same in all these figures for better comparison. In all cases, as mentioned
earlier, the front side of the wave steepens and the wave amplitude grows as the wave approaches the ramp.
Downwave over the shelf, soliton fission-is observed, where two or three solitons are formed and as theswave
propagates, separate from the leading soliton due to differences in their propagation velocity (note that the:goliton
speed predicted by the present theory is- /1 + A,-always critical or supercritical, see [20] and references cited
therein). 208

When compared to the FLR case, in all curved cases, there is a remarkable difference between the wavedprofile
at the center of the domain versus that at the channel wall, best seen at #iésand 60 in Figs. 5-8, which, is210
due to the wave refraction by different curved bathymetries. In the concave cases, NCR and WCR, , wherezmiddle
of the shelf is deeper than the edges, the wave amplitude is larger near the wall, and the opposite is obsetved for
the convex cases, NXR and WXR. At the later stages of soliton propagation.over the sh80,in Figs. 5-8, 2
the amplitude of the main soliton is nearly identical at the center and wall cut of the channel. The amplitude of
the second and third solitons, however, are different at the center and wall cut of the channet ev80;ah the 215
concave cases, the amplitude of the second soliton is larger at the center line, while the opposite is observed in
the convex cases (where the sides of the ramp are deeper than the middle part). Similarly, in the concave eases, at
timet = 80, the second soliton is separated from the main soliton at the center line of the domain while it issstill
part of the main soliton at the channel wall. In the convex cases, the opposite is observed due to the shape of the
ramp, i.e., the second soliton at the wall is separated, but not at the center line. Shown in Figs. 5-9, resultaof the
GN equations are in very good agreement with those obtained by [35] who used the Boussinesq equations.

A comparison of the amplitudes of the firét;) and second4y) solitons, generated due to the propagation ofa

13 Copyright © by ASME
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(a) Center line, t=0.0 (f) wall cut, t=0.0

0.15¢
- 0.1 —GN ,
- -Boussinesq (Schember, 1982)
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0.2 : : : :
(b) Center line, t=20 (g) Wall cut, t=20
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(c) Center line, t=40 (h) Wall cut, t=40
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(e) Center line, t=80 () Wall cut, t=80
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0.1}

n
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Fig. 5: Snapshots of surface elevation of solitary wave propagating over the narrow concave ramp (NCR) at the
center line (a-e) and wall cut (f-), calculated by the GN model and compared with the Boussinesg-class results
of [35].
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(a) Center line, t=0.0 (f) wall cut, t=0.0

0.15;
- 0.1 —GN ,
- -Boussinesq (Schember, 1982)
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0.2

(b) Center line, t=20 (g) Wall cut, t=20

(c) Center line, t=40 (h) Wall cut, t=40
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(d) Center line, t=60 (i) Wall cut, t=60
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(e) Center line, t=80 () Wall cut, t=80
0.15¢ 1

0.1}

n

0.05¢

0 —

Fig. 6: Snapshots of surface elevation of solitary wave propagating over the wide concave ramp (WCR) at the
center line (a-e) and wall cut (f-), calculated by the GN model and compared with the Boussinesg-class results
of [35].

15 Copyright © by ASME



0.2
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Fig. 7: Snapshots of surface elevation of solitary wave propagating over the narrow convex ramp (NXR) at the
center line (a-e) and wall cut (f-), calculated by the GN model and compared with the Boussinesg-class results
of [35].
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Fig. 8: Snapshots of surface elevation of solitary wave propagating over the wide convex ramp (WXR) at the
center line (a-e) and wall cut (f-), calculated by the GN model and compared with the Boussinesg-class results
of [35].
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Table 2: Comparison of the amplitudes of the fist)(and secondAy,) solitons due to propagation of a solitary
wave over a flat linear ramp, obtained by various approadhésthe initial amplitude of the solitary wave.

Results Ai/A A/A
Madsen and Mei 1969 (Experiments) 1.2 0/4
Madsen and Mei 1969 (Boussinesq) 1.66 075

Johnson 1972 (KdV) 1.71 0.66
Johnson 1973 (Analytical) 1.73 0.65
Schember 1982 (Boussinesq) 1.69 0.p9
GN 1.60 0.45

solitary wave over FLR (shown'in Fig. 9) of the GN equations dnud¢ obtained through laboratory experiments

and calculations of [5, 35, 43] isgiven in Table 2. The amplitudes are recorded at approximateB8 from

the leading edge of the shelf. Results are also in good agreement overall with the laboratory measurements of
Madsen and Mei [5] and calculations of Johnson [43,44] (using numerical solution of the KdV equations, as well
as formal asymptotic expansions to obtain analytical expressions for the number of solitons and their amplitudes
as a function of the ramp height and the'initial wave amplitude). The peak of the soliton calculated by the GN
equations are slightly smaller than those reported by [43,44], mainly because wave reflection (as large as about
15% in this case, see [20]) is neglected in the KdV models. Note the difference of all theoretical results when
compared to the laboratory experiments of Madsen and Mei [5], although the GN equations are the closest among
all theoretical solutions. [5] attributed the differences between the numerical and experimental results possibly to
the use of an approximate wave generation technique in the laboratory experiments. In this regard, it may be a

good idea to repeat these experiments in the future.

Cnoidal Wave

In this section, results of the GN model for cnoidal wave propagation over the five bottom ramps are presented.
The dimensionless wave height and wavelengthHare 0.12 andA = 20, respectively. All other variables and
numerical setup are identical to those discussed in the previous sections. Snapshots of the 3D surface elevation
and plane contour views of cnoidal waves propagating over these ramps obtained by the GN model are shown in
Fig. 10. The cnoidal waves deform significantly as they propagate over the ramp into the shelf, and this varies
in different cases. Qualitatively, similar behaviour in wave diffraction and refraction is observed as those of a

solitary wave, with the difference that the incoming waves undergo further deformation due to the interaction
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with the reflected waves (as several waves are present in thainl@tna given time), and with waves of smalless
amplitudes. 244

Seen in the plane contour view of Fig. 10 (a) and (b), the concave ramps have caused slower wave propagation
in the center of the domain when compared to the edges of the domain. In the case of convex ramps, howexer, the
wave propagates faster in the centre of the domain, observed in Fig. 10 (c) and (d). Downwave from the ramp, and
on the shelf with constant water depth, the wave crest gradually recovers into a uniform wave across the domain
width. 249

To further investigate the cnoidal wave diffraction and refraction by the submerged ramps, in Fig. 11,-shap-
shots of surface elevation at the center of the domain is compared with that at the wall cut, for all five.eases
considered here. Deviation between surface elevations at the center and the wall cuts is observed from approxi-
matelyx; = 0, just upwave of the ramp. The concave ramps have resulted in smaller wave amplitudes at thesentre
of the domain and larger amplitudes near the walls, seen in Fig. 11 (a) and (b). The convex ramps have opposite
effect on the change of the wave amplitude across the domain width, i.e., the wave amplitude in the center of
the domain is larger than that near the walls, shown in Fig. 11 (c) and (d). The change in wave amplitade is
invariant with the domain width for the linear flat ramp (Fig. 11 (e)), and this is expected. Higher harmonies: are
generated due to the propagation of the waves over the ramps, the amplitude of which varies across the width of
the domain and dependent on the shape of the ramps (concave vs convex). Downwave on the shelf, the main wave

peak separates itself from the second harmonic. 260

Concluding Remarks 261

A 3D model for nonlinear wave propagation in shallow water and over uneven bathymetry is developed:based
on the Level | GN equations. A 3D numerical wave tank is created and a flat, linear ramp is considered ia this
study. To further investigate the 3D effects on the wave refraction, four extensions are added systematically4o the
flat shelf, creating concave and convex ramps of different widths. The model is used to study solitary and esoidal
wave diffraction and refraction due to various forms of 3D bathymetry that are observed in real-life. 266

Through the results obtained from the GN model, it is observed that the waves undergo significant deformation
as they propagate over the ramps. Common across all cases, the wave amplitude initially increases due to the
stronger nonlinearity. The growth of the wave amplitude across the channel width varies depending on thesshape
of the ramp, such that for concave cases, the wave amplitude is larger at the channel walls, while the wavsdin the

center line is larger for the convex cases. Downwave of the ramp, soliton fission is observed, where second (and
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274

275

276

sometimes third) solitons are formed. Again the shape of ttte/bieetry has a significant effect on the magnitude

of the second (and third) solitons.

It is concluded that the GN equations, capturing nonlinearity, dispersion and wave reflection, which also

satisfy the boundary conditions exactly, are a remarkable alternative to perturbation-based methods, and a very

efficient alternative to computational fluid dynamics models to study wave transformation in coastal areas.
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Fig. 9: Snapshots of surface elevation of solitary wave propagating over the flat linear ramp (FLR), calculated by
the GN model and compared with the Boussinesg-class results of [35].
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