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Abstract
The spatial organization of biofilm bacterial communities can be influenced
by several factors, including growth conditions and challenge with antimicro-
bials. Differential survival of clusters of cells within biofilms has been
observed. In this work, we present a variety of methods to identify, quantify
and statistically analyse clusters of live cells from images of two Salmonella
strains with differential biofilm forming capacity exposed to three oxidizing
biocides. With a support vector machine approach, we showed spatial sepa-
ration between the two strains, and, using statistical testing and high-
performance computing (HPC), we determined conditions which possess
an inherent cluster structure. Our results indicate that there is a relationship
between biocide potency and inherent biofilm formation capacity with the
tendency to select for spatial clusters of survivors. There was no relation-
ship between positions of clusters of live or dead cells within stressed bio-
films. This work identifies an approach to robustly quantify clusters of
physiologically distinct cells within biofilms and suggests work to understand
how clusters form and survive is needed.

Significance statement
Control of biofilm growth remains a major challenge and there is consider-
able uncertainty about how bacteria respond to disinfection within a biofilm
and how clustering of cells impacts survival. We have developed a methodo-
logical approach to identify and statistically analyse clusters of surviving cells
in biofilms after biocide challenge. This approach can be used to understand
bacterial behaviour within biofilms under stress and is widely applicable.

INTRODUCTION

Biocides are crucial for control of microbial contamina-
tion and infection and are used in a wide range of clini-
cal, industrial, veterinary, and domestic settings (Linley
et al., 2012). Whilst many common biocidal agents
have been employed for decades there are still major
gaps in our understanding of mechanisms of action and
resistance.

Oxidizing biocides have a broad spectrum of
activity, similar chemistries, and proposed mechanis

ms of action. The basic mechanism by which
they exert their biocidal activity is thought to be via
damage to cellular macromolecules (Finnegan
et al., 2010). They are usually low molecular weight
compounds able to enter the bacterial cell, thereby
accessing intracellular targets, although there is also
evidence for antimicrobial action exerted at the cell
wall and membrane for some compounds (Finnegan
et al., 2010). The three most used common oxidizing
biocides are hydrogen peroxide, peracetic acid and
sodium hypochlorite.
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Hydrogen peroxide (H2O2) is widely used for disin-
fection, sterilization and antisepsis and degrades into
non-toxic by-products of water and oxygen making it an
attractive choice for any application involving food pro-
duction (Rutala & Weber, 1999). The biocidal activity of
hydrogen peroxide may be due to interactions with
intracellular iron forming iron ions and hydroxyl radicals
(Finnegan et al., 2010) formed by the Fenton reaction.
Several studies have shown hydrogen peroxide to be
responsible for damage to DNA (Henle & Linn, 1997)
proteins (Imlay et al., 1998), amino acids (Dean
et al., 1997), and cell membranes (Baatout et al., 2006;
Brandi et al., 1991; Peterson et al., 1995).

Peracetic acid (PAA) is a peroxide of acetic acid
(Block, 1991). It is soluble in water and exists in equilib-
rium between acetic acid (CH3CO2H), peracetic acid
(CH3CO3H), water (H2O) and hydrogen peroxide
(H2O2). It is a weak acid with a pKa of 8.2 (Unis, 2010).
It has greater oxidizing potential than chlorine or chlo-
rine dioxide and is environmentally safe due to its deg-
radation into non-toxic components (Kitis, 2003). It also
has higher antimicrobial activity than hydrogen perox-
ide (Wagner et al., 2002) and remains active in the
presence of interfering matter including organic mate-
rial such as blood (Russell & McDonnell, 1999). The
mechanism of action of peracetic acid has not been
fully investigated but it has been hypothesised that it
disrupts sulphydryl ( SH) and sulphur (S S) bonds in
biomolecules (Russell & McDonnell, 1999). It has also
been suggested that PAA disrupts the cell wall and cell
membrane by oxidizing structural lipoproteins and
when acting intracellularly may inactivate vital meta-
bolic enzymes and DNA bases (Kitis, 2003).

Chlorine was first discovered by Scheele in 1774
(Rutala & Weber, 1997) and has a wide range of antimi-
crobial activity. Sodium hypochlorite (NaClO) is a salt of
the hypochlorite ion dissolved in water which in solution
can dissociate to give hypochlorous acid. Hypochlorous
acid has considerably more antimicrobial activity than
the hypochlorite ion and is responsible for much of the
antibacterial efficacy (Rossi-Fedele et al., 2011).
Sodium hypochlorite has a broad spectrum of activity
with its primary industrial use being water treatment
(Rutala & Weber, 1997). Proteins, peptides, lipids and
DNA have all been shown to be oxidized by sodium
hypochlorite at physiological pH with C C double
bonds, peptide bonds, peptide groups and thiol groups
susceptible to electrophilic damage (Fukuzaki, 2006).
Notwithstanding this reactivity, it is postulated that the
primary action of the biocide is oxidative damage to
DNA synthesis since low concentrations of sodium
hypochlorite leave protein synthesis far less affected
than DNA synthesis (Russell & McDonnell, 1999).

Concerns have been raised about the possibility of
biocide resistance emerging. It is generally not possible
for bacteria to achieve resistance to in use biocide con-
centrations, but studies have documented strains able
to survive low levels of biocide (tolerance) and identified

mutants isolated after biocide exposure with cross
resistance to antibiotics (Copitch et al., 2010; Karatzas
et al., 2008; Randall et al., 2007; Walsh et al., 2003).
Bacterial biofilms are far more resistant to biocide chal-
lenge than planktonic cells (Bansal et al., 2019; Russo
et al., 2013; Vestby et al., 2009). The reasons for these
significant changes in bacterial susceptibility to biocides
have been proposed to relate to the structure of the
bacterial biofilm and the EPS matrix, altered metabo-
lism in the biofilm phenotype, persister cell generation
and an increase in genetic transfer.

Biofilms as a community of cells encounter a range
of internal and external stresses resulting from nutrient
limitation, waste product secretion, ecological competi-
tion, desiccation, and antimicrobial exposure (Hall-
Stoodley et al., 2004). Biofilms are inherently resilient
to stress (Rode et al., 2020) in part due to the heteroge-
neity of cells and structures within the community, cells
can be spatially organized into clusters and this
has been linked to antimicrobial survival (Wong
et al., 2021). To characterize the spatial distribution of
cells, digital image analysis (Dazzo & Yanni, 2017;
Schillinger et al., 2012), spatial analysis methods such
as Ripley’s K (Hart et al., 2019; Ishkov et al., 2021;
Marchal et al., 2017) and methods for determining spa-
tial randomness such as the Hopkins statistic (Drury
et al., 1993; Espinoza et al., 2012) have been used.
However, methods for evaluating clusterability can vary
significantly and a comprehensive comparison of statis-
tical tests in the biofilm context is currently lacking.

The aim of this study was to employ a combination
of microscopy and statistical approaches to identify cell
survival and the impact of spatial distribution of cells
within a biofilm on biocide susceptibility. We investigate
the effect of three oxidizing biocides against two Salmo-
nella enterica subsp. enterica strains (one serovar
Typhimurium and one Agona) with different biofilm
forming capacities. First, with a support vector machine
approach, we showed spatial separation between the
two strains. Second, we applied five statistical tests,
four of which are new in the biofilm setting, and used
HPC, to evaluate clusterability. Our results indicate that
biocides of medium potency, like NaClO, have a stron-
ger tendency to select for spatial clusters of surviving
cells in S. Typhimurium biofilms. Finally, we showed
that simple visualizations of confocal images can effi-
ciently quantify colocalization between live and dead
cells and that there is no link between the spatial loca-
tions of live and dead clusters of cells within stressed
biofilms.

EXPERIMENTAL PROCEDURES

Bacteria and growth conditions

Two strains of Salmonella were used in this study, Sal-
monella Typhimurium SL1344, a commonly used
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reference strain and Salmonella Agona 3750, a persis-
tent isolate associated with food spoilage kindly pro-
vided by Unilever, UK Strains of S. Agona are
commonly reported as strong biofilm formers, associ-
ated with persistence in food production environments
(Aaron et al., 2018; Diez-Garcia, 2012) and 3750
demonstrated a high capacity for biofilm formation
(Figure S1). Both strains were routinely cultured using
either tryptone soya agar (Oxoid, Basingstoke, UK) or
tryptone soya broth (Oxoid, Basingstoke, UK) and incu-
bated aerobically at 37�C (�1�C), for 24 hours in an
incubator (Memmert INE 600, Schwabach, Germany).
For biocide challenge, a MOPS (3-(N-morpholino) pro-
panesulfonic acid) based minimal medium (VWR, Lut-
terworth, UK) was used to simulate the low nutrient
environment often associated with formation of biofilms
and to limit the presence of organics that the oxidizing
biocides could interact with for susceptibility testing.
Growth media was supplemented with 400 mg/L histi-
dine (Sigma, Dorset, UK) as Salmonella Typhimurium
SL1344 is a histidine auxotroph.

Biocides

Biofilms of both strains were grown for 24 and 48 h on
stainless steel disks in MOPS +400 mg/L histidine at
37�C. Biofilms were either untreated (control) or
exposed to three oxidizing biocides for 20, 40, 60 min:
hydrogen peroxide (H2O2; 25,000 ppm), peracetic acid
(PAA; 30 ppm) or sodium hypochlorite (NaClO;
40 ppm).

All three biocides were bought in solution (Sigma,
Dorset, UK) and the concentration of sodium hypochlo-
rite and hydrogen peroxide were assayed weekly. Per-
acetic acid was not assayed as it was guaranteed by
the manufacturer to remain at the supplied concentra-
tion for 6 months after opening. Neutralisers were used
to quench the activity of the biocide, when investigating
the bactericidal activity of the agent over time. The neu-
tralisers used and their components were 250 ppm cat-
alase for hydrogen peroxide, universal neutraliser for
peracetic acid and 10,000 ppm sodium thiosulphate for
sodium hypochlorite.

Biofilm viability and microscopy

Viability of cells within biofilms after biocide exposure
was determined using a Bioflux microfluidic system
(Fluxion, USA). Bacterial cell suspensions were grown
overnight and diluted to an OD of 0.1 at 600 nm in
MOPS based minimal media +400 mg/L histidine. Fifty
microlitres of this was then used to inoculate flow cells
and bacteria were left in static conditions for 1 h to
attach at room temperature (19 � 1�C). For the dura-
tion of experiments media was supplied to the flow cells
at a flow rate of 0.3 dyne at room temperature

(19 � 1�C). After biofilms were established, at each test
point biocides were introduced into desired flow cells at
a rate of 0.3 dyne for either 20, 40 or 60 min. All experi-
ments were replicated in three independent flow cells.

Biofilms were visualized with both phase contrast
and fluorescent microscopy. Images were taken before
biocide exposure, after biocide exposure and after 24 h
of growth post-biocide exposure. For live/dead staining,
two fluorescent dyes were added to the outlet well:
748 μM PI (Sigma, Dorset, UK) and 10 μM SYTO 9 (Life
Technologies, Leicestershire, UK) diluted in 1 ml in
PBS and flowed to the input well at 2 dyne for 5 min.
Fluorescence images were captured using a Zeiss
LSM 710 Confocor 3 inverted confocal microscope
(Carl Zeiss ltd., Germany) viewed at 63� under oil. The
488 nm laser was used at 30% power and using the
MBS 488/543/633 filter. The range used for SYTO
9 was 500–550 and for PI was 600–650 (Germany) at
63�. Images were taken in triplicate from each flow cell
across different fields of view (the left, middle and right).
For Z-slices, images were taken at intervals of 0.5 μm
across the depth of the biofilm. Biofilms were imaged
after treatment with biocides and compared to replicate,
untreated control biofilms (Figure 1).

Light microscopy images were analysed using the
Bioflux EZ software (Labtech, Sussex, UK) percentage
coverage tool and highlighting three different fields of
view to give an average value for percentage coverage
for quantitative comparison. Fluorescent RGB tiff
images were analysed using ImageJ (National Insti-
tutes of Health, Maryland, USA). Images from the bot-
tom slice of each stack were chosen to avoid and
selection bias and were split into colour channels and
the green and red channels thresholded using the auto-
mated ImageJ thresholding algorithm to identify cells
from background. Particle properties were extracted
using a cut-off of two pixels to identify cells (which are
bigger than this but this was a minimum size to remove
background noise) and particles bigger than this were
recorded to .csv files (particle number, area, mean sig-
nal fluorescence intensity), min and max signal, middle
X and Y coordinates and particle perimeter length
(in pixels) for spatial analysis. Z-stacks were captured,
and slices taken at intervals of 0.5 μm across the depth
of the biofilm. The csv files of the live cells for 19 differ-
ent conditions were used for statistical analysis
(Table S1).

RESULTS AND DISCUSSION

Weak and strong biofilm forming strains
can be distinguished by support vector
machine-based differentiation using
confocal microscopy images

We used confocal microscopy images to identify live
and dead cells (based on staining with SYTO-9 and
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propidium iodide) for two Salmonella strains with differ-
ent biofilm forming capacities (S. Typhimurium SL1344,
a relatively modest biofilm former, and S. Agona 3750,
a strong biofilm forming strain, Figure S1). We then
aimed to compare the ability of each to survive expo-
sure to oxidative biocides. Our first goal was to quantify
differences in biofilm formation from image data. For
each image, the number of particles (cells) were
extracted, added unity and log10-transformed. Mean
and standard error (SE) of flow cell coverage for both
strains at 24 and 48 h are shown in Figure 2 and con-
firmed the expected greater increase in biomass in
strain 3750 versus SL1344 (representative images and
average flow cell coverage are shown in Figure S1).

Support vector machines (SVM) are learning algo-
rithms which aim to identify a function (hyperplane) that
can separate datasets. Biomedical applications of SVM
include the classification of bacterial species to distin-
guish between disease conditions (Yoram et al., 2018)
or the innate fluorescence signatures of microbial cells
(Yawata et al., 2019), prediction of biofilm-inhibiting-
peptides (Gupta et al., 2016), classification of antibi-
otics (Jung et al., 2014) or differentiation of human and
in vitro biofilm transcriptomes (Cornforth et al., 2018).
Here we applied an SVM classifier with radial basis
function (RBF) kernel to differentiate between the weak
(SL1344) and strong (3750) biofilm forming strains
using the mean number of particles from a single 2D
plane of Z-stack for each condition.

The data were split into 58% training (11 data
points) and 42% test (8 data points). We estimated γ,
the RBF kernel parameter, directly from data points in
the training set X �R11�2, using the formula in Li
et al. (2011)

γ¼ 1
τ2
,τ¼ 1

11
2

� �
X11

i < j,j¼2

Xi�Xj

�� ��2,

where jj�jj is the Euclidean distance and τ2 is an esti-
mate of the variance in the data and Xi is the ith obser-
vation used in the sample, consisting of the mean
number of particles at 24 and 48 h in a given Z-stack.

Then, for a fixed γ=0.27, 10-fold cross-validation
was performed to select the best misclassification cost,
C, using the tune function from the e1071 library (https://
cran.r-project.org/web/packages/e1071/index.html). For
the optimal C = 12%, 35% of test observations are sub-
ject to misclassification. The level of prediction accuracy
on the test data is shown by calculating the receiver
operating characteristics (ROC) curve in Figure S2.

The SVM algorithm tries to create a decision bound-
ary such that the separation between two classes of
data is as wide as possible. The misclassified points
and those closest to this hyperplane are the support
vectors. These are shown in Figure 3A as well as the
fitted decision boundary that was generated by the
RBF kernel by learning from data. The data show the

F I GURE 1 Overview of the data analysis workflow
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SVM has generated a clear separation between the
green and blue data points corresponding to the
SL1344 and 3750 biofilms respectively, further confirm-
ing their inherent difference in biofilm formation.

We also performed 10-fold cross-validation for both
parameters γ and C. For γ =0.8, C = 5, the decision
boundary correctly classified all training points.
Although only 15% of test observations are subject to
misclassification and Figure 3B is seemingly more
accurate than Figure 3A, these results are less robust.

This is because several runs of 10-fold cross-validation
are required for correct binary classification.

To evaluate the performance of classification algo-
rithms for Figure 3A, we used leave-out-one cross-
validation (LOO-CV), when a partition is made up of
18 training data and 1 testing. This is a special case of
K-fold validation, when K equals the number of data
points in the set. The parameters γ and cost of con-
straints violation were estimated using the same
approach as above 19 separate times. Except 2, all

F I GURE 2 Mean and SE of the number of particles for 19 different conditions (Table S1). Red and black colours show discrimination
between weak (SL1344) and strong (3750) biofilm forming strains, respectively. To assess whether the underlying 1D probability distributions
between the two strains differ, we performed two-dimensional two-sample Kolmogorov–Smirnov (KS) test, a generalization of the classical KS
test, using the transformed data with coordinates denoting the mean number of particles at 24 h and 48 h (Fasano & Franceschini, 1987). The
difference between the mean number of particles in the 2D space (24 h, 48 h) from strains SL1344 and 3750 was statistically significant. p-
value < 0.01).

F I GURE 3 Decision boundary generated by the SVM classifier and support vectors in diamonds. The mean number of particles could
distinguish between weak and strong biofilm forming strains with relatively high accuracy. γ = 0.27, C = 12 in a, and γ = 0.8, C = 5 in B.
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data points were correctly classified by LOO-CV, thus
predicting a high (89.5%) classification accuracy. Our
results show that the SVM approach could accurately
distinguish between strains with different biofilm form-
ing capacities using confocal image data at 24 and
48 h, regardless of treatment.

Microbial colonies within Salmonella
biofilms are non-randomly distributed

Non-random spatial organization of cells and matrix
components are believed to contribute to the persis-
tence of biofilm communities as these structures pro-
vide structurally distinct microenvironments as well as
promoting physiological heterogeneity of cells within a
community (Petersen et al., 2019). In support of this, a
non-uniform distribution of surviving cells within Salmo-
nella biofilms after biocide challenge was observed by
confocal microscopy (Figure S3) and this differed
between test biocides. We used both spatial random-
ness tests (Hopkins statistic), multimodality tests
(Classic Dip test and Classic Silverman test) and
related tests on reduced versions of the data (PCA Dip
and Dip-dist) to study and evaluate the clusterability of
survivor positions in the different conditions. These
tests were applied to the 2D plane of Z-stack.

Hopkins statistic tests for spatial randomness and
evaluates if any feature is distributed non-randomly
across the data set (Hopkins & Skellam, 1954;
Lawson, 1990). Although Hopkins may be preferred
when small clusters are of interest (Adolfsson
et al., 2017), it has only been used in a few biofilm- or
receptor aggregate-related studies. Examples are stud-
ies on the interaction of latex particles with P. aeruginosa
(Drury et al., 1993) and the quantification of clustering of
membrane proteins labelled with gold nanoparticles
(Espinoza et al., 2012). The ‘hopkins’ function from the
clusterend R package (Adolfsson et al., 2017) was used
to calculate the Hopkins statistic for each of our condi-
tions, which distinguishes non-clustered from moderately
or highly clustered distributions.

The Classic Dip test rejects the null hypothesis of
unimodality if the empirical distribution is sufficiently dif-
ferent from the closest possible uniform one (Hartigan &
Hartigan, 1985). The Classic Silverman test is based on
the kernel density estimate and it will reject the assump-
tion of unimodality if a mixture of distinct Gaussian distri-
butions is required to produce the underlying empirical
distribution (Silverman, 1981). The ‘modetest’ function
from the multimode R package (https://cran.r-project.
org/web/packages/multimode/multimode.pdf) and the
‘dip.test’ from the diptest R package (https://cran.r-
project.org/web/packages/diptest/diptest.pdf) were used
for Silverman’s mode estimation method and Hartigan’s
dip statistic.

PCA Dip (Dip test on principal components) and
Dip-dist (Dip test on pairwise distances) uses the clas-
sic Dip test to test whether the first principal component
is multimodal (Adolfsson et al., 2017) or to test for clus-
ters on a set of pairwise distances (Kalogeratos &
Likas, 2012). The codes for PCA Dip and Dip-dist were
implemented using the diptest R package by using the
first principal component and the matrix of pairwise
distances.

We ran all five methods with default parameters in a
series of simulations to evaluate the clusterability of
data using HPC. For the multimodality tests 1000 runs
for the Classic Dip test, PCA Dip, Dip-dist and 100 runs
for the Classic Silverman test were performed. The per-
centage of data sets on which the tests yielded a p-
value less than 0.05 was recorded, indicating that the
test rejected the assumption of unimodality at 5% sig-
nificance level. For unambiguously unclusterable image
datasets, the proportion of rejections corresponds to a
Type I error (the rate of incorrectly classifying uncluster-
able data sets as clusterable) (Adolfsson et al., 2017).

For the Hopkins statistic, clusterability can be
inferred from a threshold based on the Beta distribution.
Under a null hypothesis, the test statistic H will follow a
Beta distribution with both parameters equal to n, the
number of data points sampled (Adolfsson et al., 2017;
Hopkins & Skellam, 1954; Lawson, 1990). Hence, the
Beta statistic should be compared to the Beta quantile
qα(n,n) α, which is defined as the probability of conclud-
ing that the data is clustered, assuming it was gener-
ated without clusters, that is, p(H < qα(n,n)) is 100α%.
The recommended sampling rate for n is 5%–10% of
the data (Lawson, 1990). We randomly sampled 10%
of the data in a series of 1000 runs and following
(Adolfsson et al., 2017), we used a one-sided test
with α = 0.05.

Each of these methods can capture the structure of
the data differently, to take a consistent approach, we
considered data from a given experimental condition
clusterable if a replicate has at least 25 particles and
the clusterability fraction exceeds 80% in at least two
biological replicates of the same condition by at least
one of the five tests. It is defined as the proportion of p-
values less than 0.05 out of all runs. The summary of
conditions where cluster structure was detected by this
criterion is in Table 1. The (1)–(3) denote the replicates
of a given condition.

Altogether 8 out of the 19 conditions possessed a
sufficient cluster structure and were meaningfully parti-
tioned in at least one of the time points (24 h or 48 h).
In Table 1, replicates without clustering structure were
omitted, thus giving a total of 22 images across 8 condi-
tions. All five tests had a very high clusterability fraction
(>95%) except Classic Silverman and Dip-dist for the
SL1344 20 min NaClO 48 h (2) and SL1344 40 min
NaClO 48 h (1) samples.
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The Classic Dip and Silverman tests showed differ-
ences in clustering between conditions, for example,
SL1344 20 min NaClO 24 h (2–3) samples have a rela-
tively small number of sparsely distributed particles,
and thus, methods that account for outlier robustness
like Dip test, may be more effective. In contrast,
SL1344 20 min H2O2 48 h (1–3), SL1344 20 min
NaClO 48 h (1–2) and SL1344 48 h control (1 and 3)
samples had many uniformly distributed particles and
as such, methods that allow for small clusters like Sil-
verman test may be more appropriate (Adolfsson
et al., 2017).

The Hopkins statistic performed consistently with
the Classic Dip test, except for the 3750 20 min PAA
24 h condition. The PCA Dip and Dip-dist methods had
a high clusterability fraction (>80%) for at least one
sample across four conditions (SL1344 20 min NaClO
24 and 48 h counted once). Although PCA Dip and Dip-
dist are mostly recommended for clustering of high-
dimensional data sets (Adolfsson et al., 2017), they
were able to detect a clustering structure in samples
where the Classic Dip was not. We conclude that

classic multimodality tests complemented with their
counterparts on reduced versions of the data, might be
preferred to analyse the spatial distribution of live cells.

We assessed the degree of clusterability in each
condition by the number of times high clusterability frac-
tion (>80%) was detected across replicates by the 5 sta-
tistical tests in Table 1 (Figure 4).

Clustering of survivors under stress is not
random

Previous studies have shown a high level of bacterial
survival in biofilms treated with NaClO and H2O2 (Flach
et al., 2016; Lin et al., 2011). This was also the case
here (Figure S4) and we identified a non-uniform distri-
bution of live cells by analysing confocal microscopy
images. Figure 4 shows that SL1344 biofilms treated
with biocides of medium to low potency (NaClO, H2O2)
for 20–40 min possess an inherently clustered struc-
ture. Changing the length of dosing from 20 to 40 min
affected clustering significantly for NaClO-treated strain

TAB LE 1 Conditions where clustering of survival cells was identified by statistical tests

Hopkins’s
test

Classic
dip

Classic
Silverman PCA dip Dip-dist

1000 runs 1000 runs 100 runs
1000
runs

1000
runs

Images p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 Number of particles

SL1344 20 min H2O2 48 h (1) 100% 1521

SL1344 20 min H2O2 48 h (2) 100% 1425

SL1344 20 min H2O2 48 h (3) 100% 1515

SL1344 20 min NaClO 24 h (2) 100% 100% 98

SL1344 20 min NaClO 24 h (3) 100% 100% 162

SL1344 20 min NaClO 48 h (1) 99% 650

SL1344 20 min NaClO 48 h (2) 83% 591

SL1344 40 min NaClO 48 h (1) 100% 100% 100% 81.2% 751

SL1344 40 min NaClO 48 h (2) 100% 832

SL1344 40 min NaClO 48 h (3) 100% 100% 100% 685

SL1344 40 min PAA 24 h (1) 100% 28

SL1344 40 min PAA 24 h (2) 100% 100% 35

SL1344 40 min PAA 24 h (3) 100% 35

SL1344 40 min H2O2 48 h (1) 97.8% 100% 95% 96

SL1344 40 min H2O2 48 h (2) 100% 421

SL1344 40 min H2O2 48 h (3) 100% 401

SL1344 48 h control (1) 99% 1307

SL1344 48 h control (2) 100% 1195

SL1344 60 min NaClO 48 h (1) 95.6% 100% 100% 100% 582

SL1344 60 min NaClO 48 h (3) 100% 382

3750 20 min PAA 24 h (1) 100% 47

3750 20 min PAA 24 h (3) 100% 100% 25

Note: The percentage represents the clusterability fraction, that is, the proportion of p-values less than 0.05 out of all runs.
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SL1344 biofilms at 48 h. The mean number of particles
in an image was smaller for the 20 min than for the
40 min NaClO treatment (675.3 and 756, respectively).
This is not surprising, given the reduced duration of
exposure time to NaClO. The statistical tests also
revealed that there is clustering of live cells present in
untreated SL1344 biofilms at 48 h which becomes
more marked. This phenomenon has been observed
before in other single-species biofilms (Kara
et al., 2007) and is likely to reflect the underlying struc-
ture resulting from cells embedded in an extracellular
polysaccharide matrix (EPS), which can stimulate clus-
ter formation.

There was however a noticeable lack of clustering
detected in 3750 biofilms except the 3750 20 min PAA
24 h condition, (which had a relatively low bacterial sur-
vival due to the high potency of PAA). In our system,
time had a large impact on the clusterability of image
data sets from 3750 biofilms exposed to biocides of
medium to low potency. This may reflect the decrease
in biocide efficacy against the more robust biofilms
formed by 3750 for 48 h compared to 24 h, resulting in
a low level of selection for survivors which would be
consistent with some other studies (Stewart, 2015). We
postulate that the formation of cell clusters provides
protection against less potent oxidative biocides and
that this becomes more pronounced as exposure is
prolonged. Clustering was also more obvious in weaker
biofilm forming strains where fewer cells are surviving.
The transient (24 h) and more mature (48 h) cell clus-
ters are depicted in Figure 5 (using the same data as
depicted in Figure 2).

Given the identical treatment conditions between
the two strains, one unexpected result in Figure 5 is
that at 24 h strain SL1344 biofilms appear to survive
biocide exposure better than strain 3750. This is an
anomalous result since the opposite would be expected
given the relatively weaker biofilm formation of this
strain (Figure 2 and S1). This transient growth advan-
tage might be linked to metabolic switching observed in
Martins et al. (2013) and consequently, increased
growth and cell aggregation to withstand concentra-
tions of oxidizing biocides.

Analysis of single images from a biofilm can be
complicated by blurring as they are taken as slices
through a three-dimensional structure, 3D or 2D visuali-
zation of clusters can help resolve this and help analy-
sis of whether clusters are spaced randomly. Figure 6A
shows the green channel (live cells) of SL1344 grown
for 48 h and exposed to NaClO for 40 min. Figure 6B
shows the 3D histogram of the Z-stack image, the num-
ber of bins was chosen such that the maximum number
of particles in a bin is 13, as suggested by a novel
methodology based on hierarchical clustering
(Espinoza et al., 2012) that quantifies the numbers and
sizes of clusters by computing an intrinsic distance.
Two points belong to the same cluster if they are closer
than this distance. This method was used in Figure 6C,
where the clusters are enclosed by their convex hulls.
Clustering analysis indicates that 456 out of the total
685 data points are in clusters, at the intrinsic distance
dI = 12.8218, and the three largest cluster sizes are
13, 11 and 10. About 67.5% of the 456 extracted data
points were in clusters of sizes 2–4, and there were

F I GURE 4 The relative degree of clustering observed in the eight conditions. This shows clustering was most likely in biofilms formed by
SL1344 (weak) compared to 3750 (strong)
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21 clusters of sizes at least 5. This is in line with obser-
vations that mono-species biofilms of Salmonella tend
to form scattered single-cell or small clusters
(Gonzalez-Machado et al., 2018; Pang et al., 2017).

Spatial point pattern analysis allows us to classify
spatial distributions of the green channel particles in
Figure 6A. A powerful tool for examining spatial inde-
pendence across scales is Ripley’s K-function which
has been applied to quantify the spatial distribution of
bacteria within the biofilm in several studies (Hart
et al., 2019; Ishkov et al., 2021; Marchal et al., 2017).
The univariate form of Ripley’s K-function (where only
one type of point is considered) is.

K rð Þ¼ A
n2

Xn

i ≠ j

wij rð ÞIij rð Þ,

where n is the number of points inside a region of area
A, wij is the edge effect correction factor. The indicator
function Iij defines whether a point pj is inside a neigh-
bourhood r of point pi or not based on the Euclidean
distance between the points pi and pj. Appropriate
edge correction can improve the power of the statistical
tests (Yamada & Rogerson, 2003). We used the spat-
stat R package (https://cran.r-project.org/web/
packages/spatstat/index.html) which has different

estimates of Ripley’s K-function built in. Since these
curves lie above the theoretical K-function K rð Þ¼ πr2,
the point pattern in Figure 6D is clustered.

Live and dead cells are not colocalized

We used Imaris 14.0.0 (Bitplane, South Windsor, CT,
USA) to quantify colocalization between live and dead
cells on a given Z-stackimage in order to understand
whether distinct clusters differed in their chances of sur-
vival. The colocalization uses a statistical approach
developed by Costes et al. (2004), which is done by
estimating simultaneously the maximum threshold of
intensity for the green and red channels below which
particles exhibit no correlation. The main advantage of
Costes method is that it automatically quantifies coloca-
lization in any region of the image without user inter-
vention. Imaris has been widely used to analyse image
stacks for Salmonella in a variety of biofilm and immune
host (Burton et al., 2014) settings. We used two main
methods of colocalization analysis for the significant
conditions, co-occurrence and correlation. Co-occur-
rence-based colocalization analyses such as Mander’s
coefficient, determine the extent of spatial overlap
between green and red fluorescent channels.
Correlation-based colocalization analyses such as

F I GURE 5 Mean and SE of the number of particles for 19 different conditions. Colours denote cell clusters at 24 h or 48 h. cluster structure
is present in 72.7% of the conditions associated with strain SL1344 in at least one of the time points. Squares around the data points represent
3750 biofilms and points with no squares represent SL1344 biofilms
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Pearson’s coefficient, describe the degree to which the
abundance of the spatially overlapping channels are
related to each other. Both approaches have different
strengths and weaknesses (Aaron et al., 2018).

Table S2 summarizes the Imaris output features for
the clusterable confocal images such as quantification
of colocalization between the two channels and for the
individual channels green and red channel thresholds.
There was no evidence of colocalization between the
two channels, suggesting that live and dead bacteria
establish spatially distinct regions within a Salmonella
biofilm. This shows that clustering of survivors is not
simply an artefact of where cells have produced most
biomass. The colocalization of green channel particles
alone was above 46% for all clusterable confocal
images, except SL1344 20 min NaClO 24 h (2–3) and
3750 20 min PAA 24 h (1 and 3). The colocalization of
the corresponding red channel particles was under
35%, except for SL1344 20 min NaClO 48 h (1) and
SL1344 40 min PAA 24 h (2).

The Pearson correlation coefficient (PCC) expresses
to what degree signal intensity variation in green chan-
nel can be explained by the related variation in the red
channel, assuming a linear relationship. Consistently
medium-to-high positive PCC values were measured for

SL1344 20 min H2O2 48 h (1–3), SL1344 20 min NaClO
48 h (1–2), SL1344 40 min NaClO 48 h (1–3), SL1344
40 min H2O248 h (1–3) cases (PCC >0.4). Interestingly,
all these cases occur in SL1344 biofilms treated at 48 h
with biocides of medium to low potency for 20–40 min.

The Mander’s coefficient accounts for the signal
intensity of particles in each of the channels. Mg is the
co-occurrence fraction of green colour with red colour
and vice versa for Mr. Except for SL1344 20 min NaClO
24 h (3) and SL1344 40 min PAA 24 h (2), all other
clusterable confocal images have Mg <0.24 and
Mr <0.19. These results indicate a low extent of co-
occurrence between live cells (and similarly, for dead
cells) showing initial seeding is probably not related to
final viability.

CONCLUSIONS

This work demonstrates in controlled conditions the dif-
ferences in efficacy between three common oxidizing
biocides against biofilms of 2 Salmonella strains and
established that bacterial survival is strain, exposure
time and biocide dependent. This shows that designing
effective biocidal regimes requires data from diverse

F I GURE 6 (A) Confocal image (maximum projection Z-stack) of replicate (3) from the most clusterable condition 1344 40 min NaClO 48 h.
(B) 3D histogram representing the number of green channel particles extracted from z-slices from the same condition with a maximum of
13 particles in a bin. (C) Plots of the clusters enclosed by their convex hulls, at the intrinsic distance dI = 12.8218, following the methodology
developed in Unis (2010). (D) Ripley’s K-function Kpois compared with estimates of the K-function based on different edge correction methods:
Translation correction (Ktrans), Ripley’s isotropic correction (Kiso), border correction (Kbord), using the Kest function from the spatstat R
package. Deviations between the empirical K curves and the true value of K for a completely random (Poisson) point process, Kpois = πr 2, may
suggest spatial clustering
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strains to ensure adequate coverage of potentially
more tolerant strains when in a biofilm context. Improv-
ing our understanding of differences in how strains
respond to biocidal challenges shows that testing bio-
cide regimes should include use of strains with different
biofilm formation capacities as well as different biocide
concentrations to predict efficacy.

One of the most popular supervised learning
methods, SVM with RBF kernel, has been applied for
binary classification of strains as weak or strong biofilm
formers. We conducted 10-fold and leave-out-one
cross-validations to test the model, and performed
SVM assessment, by evaluating sensitivity and speci-
ficity. We note that increasing sensitivity and specificity
lowers the probability of type II and type I error, respec-
tively. We expect other algorithms to perform similarly
and although we did not show the results, we also tried
a random forest which resulted in a similar perfor-
mance. (With only 18 data points, we do not anticipate
classification algorithms to vary a lot in performance.)
Given 3D confocal microscopy data of thick biofilms
and enough samples for given biofilm-forming strains
or treatments, a PCA-SVM classifier might also be
used to extend the analysis. A similar technique involv-
ing different antibiotics has been applied in Yoram
et al. (2018).

Most statistical approaches addressing the spatial
distribution of biofilm cells rely on spatial analysis
methods such as Ripley’s K, and to a lesser extent on
methods of spatial randomness such as Hopkins statis-
tic. In addition to these two methods, we applied multi-
modality tests (Classic Dip test and Classic Silverman
test) and related tests on reduced versions of the data
(PCA Dip and Dip-dist), supported by clusterability frac-
tion, to evaluate clusterability in both strains. Although
computationally expensive, the advantage of our
approach is to calculate the clusterability fraction, that
could be compared across different conditions, at the
same level of significance. We hope to extend this
approach to coupling data describing particle counts
and certain chemical entities (e.g., metabolites, autoin-
ducers), obtained by confocal microscopy.

Survival within biocide treated biofilms was not uni-
form which supports previous work suggesting large
numbers of cells are sacrificed in a process of impeding
biocide penetration (Diez-Garcia, 2012). However, clus-
tering of survivors was seen even in relatively immature
biofilms (e.g., SL1344 at 24 h) which makes differential
susceptibility between clusters more likely than a physi-
cal protective effect. The clustering observed is likely to
reflect differences between clusters that are imprinted
as the initial seeding of microcolonies by individual
cells. Differences in genotype, gene expression or
other epigenetic features which vary between clusters
are probably related to likelihood of survival.

This study demonstrates clear differential behaviour
of clusters of cells in terms of survival within biofilms as

well as outlining a framework to identify and quantify
clusters of live or dead cells. The mechanistic basis
which dictates differential survival of these clusters is
uncertain and future work to study gene content,
expression and behaviour of single cells within clusters
is needed. Understanding how clusters establish, differ-
entiate from each other and survive stress will help
develop strategies to control biofilm formation and is an
important future goal.
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