
Maher et al., Sci. Transl. Med. 14, eabk3445 (2022)     23 February 2022

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

1 of 10

C O R O N A V I R U S

Predicting the mutational drivers of future SARS-CoV-2 
variants of concern
M. Cyrus Maher1*, Istvan Bartha1, Steven Weaver2, Julia di Iulio1, Elena Ferri1, Leah Soriaga1, 
Florian A. Lempp1, Brian L. Hie3,4, Bryan Bryson4,5, Bonnie Berger3,6, David L. Robertson7, 
Gyorgy Snell1, Davide Corti1, Herbert W. Virgin1,8,9, Sergei L. Kosakovsky Pond2, Amalio Telenti1*

SARS-CoV-2 evolution threatens vaccine- and natural infection–derived immunity and the efficacy of therapeutic 
antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in 
SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising 
epidemiology, evolution, immunology, and neural network–based protein sequence modeling and identified pri-
mary biological drivers of SARS-CoV-2 intrapandemic evolution. We found evidence that ACE2-mediated trans-
missibility and resistance to population-level host immunity has waxed and waned as a primary driver of 
SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator 
characteristic curve = 0.92 to 0.97) mutations that will spread, at up to 4 months in advance, across different 
phases of the pandemic. The behavior of the model was consistent with a plausible causal structure where epide-
miological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to 
forecast mutations that will spread in the future and characterize how these mutations affect the binding of ther-
apeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could ap-
pear in emerging SARS-CoV-2 variants of concern. We validated this result against Omicron, showing elevated 
predictive scores for its component mutations before emergence and rapid score increase across daily forecasts 
during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently 
dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
evolution presents an ongoing challenge to public health. Tens of 
thousands of mutations have arisen in the SARS-CoV-2 genome as 
the pandemic has progressed. Understanding the relative impor-
tance of mutations in viral proteins, particularly those of relevance 
for antiviral immunity, is key to allocating preparedness efforts. 
Mutations in the viral Spike protein have received particular atten-
tion because Spike is the target of antibody-mediated immunity and 
is the primary antigen in current vaccines (1). As of 1 December 2021, 
there are 10,381 distinct amino acid substitutions, insertions, or dele-
tions in Spike sequences from the Global Initiative on Sharing Avian 
Influenza Data database (2). These mutations occur at all but one posi-
tion in the protein, in different combinations, creating more than 
160,000 unique Spike protein sequences. A small subset of these mu-
tations are components of “variants being monitored” (VBMs), “variants 
of interest” (VOIs), or “variants of concern” (VOCs), as classified by 
the U.S. Centers for Disease Control and Prevention (CDC) (3). 
The distinction between VOIs and the higher alert VOCs is whether 
a negative clinical impact is suspected or confirmed. VBMs are variants 
that would be classified as VOCs if not for low prevalence.

Early statistical and algorithmic identification of the key Spike 
amino acid changes contributing to future putative VBM/VOI/VOCs 
are of clear benefit to public health strategy. These predictions could 
enhance the identification of vulnerabilities for antibody-based ther-
apeutics, vaccines, and diagnostics. Predicting future successful muta-
tions would extend the time available to develop proactive responses 
at earlier stages of spread. It would also complement existing fore-
casting efforts that seek to predict overall SARS-CoV-2 incidence, 
hospitalizations, and death over time (4–6). Focus on the success of 
individual mutations rather than genomic variants also facilitates 
longer-term forecasting. The combinatorics of modeling genomic 
variants quickly becomes intractable. As a toy example, for a pro-
tein of length 1200, there are more than 250 million distinct se-
quences that differ by only two amino acid changes. By focusing on 
amino acid success from the outset, we rely on common and largely 
correct assumptions about independence between mutations and 
are able to leverage more information per mutation, thus extending 
the timeline on which evolution can be meaningfully forecast.

There is a robust and expanding set of analyses characterizing the 
features of amino acid mutations of SARS-CoV-2. Studies have iden-
tified the emergence of variants with altered biological or antigenic 
properties (7–9) and characterized them using low-throughput methods 
(10, 11). Deep mutational scanning elucidates the in vitro biological 
effects of all single-site amino acid substitutions in a fixed genomic 
backbone (12–14). Others have characterized the distribution of im-
munodominant sites across the viral proteome (15, 16) and estimated 
the fitness of viral sequences using neural natural language processing 
(NLP) applied to protein sequences (17).

We sought here to build upon these data and approaches to forecast 
the mutations that will spread from season to season. We hypothe-
sized that this would also allow us to identify the dominant biologi-
cal drivers of viral evolution over short-term time scales. These two 
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goals are mutually reinforcing: The features that are most useful for 
forecasting can be inferred as measuring viral fitness. Conversely, a 
better understanding of evolutionary dynamics can make modeling 
more accurate and robust. To accomplish these goals, we described 
patterns of rapid mutation spread both globally and within the 
United States and elucidated the relative predictive importance of 
amino acid mutational features comprising immunity, transmissi-
bility, evolution, language model, and epidemiology. Next, we used 
data from previous infection waves to train and back-test a forecast-
ing model that anticipates future spreading mutations and illustrated 
how forecasted mutations could differentially affect clinical anti-
bodies. We extended this analysis to forecast mutations, specifically 
on the Delta lineage, across the whole SARS-CoV-2 proteome. As 
the number of Omicron sequences increases, such a targeted analy-
sis could be repeated for that lineage as well.

Biological and epidemiological features of SARS-CoV-2 
mutations that spread
For the purpose of developing the models, we defined “spreading” 
amino acid mutations as a specified fold change in frequency across 
multiple countries, comparing time windows before and after a 
chosen date (Fig. 1). These mutations could be substitutions, inser-
tions, or deletions (2). Within each country, we tabulated the num-
ber of sequences containing the mutation being modeled, versus 

those that did not, in the 3 months before and after a date of interest 
(Fig. 1A). For each mutation, we calculated a fold change and an 
associated comparison adjusted P value. Mutations with a signifi-
cant Benjamini-Hochberg adjusted P value (q  <  0.05) from any 
country were retained. This set was further filtered using the follow-
ing empirical criteria, all of which had to be met to define a muta-
tion as spreading: a fold change from baseline of at least 10.0 in at 
least one country, a fold change of at least 2.0 across three or more 
countries, and a minimum global frequency of 0.1% in the later 
time window. We highlight that the sequences used to calculate fold 
change from baseline and minimum frequency were all collected af-
ter those used for model training or feature calculation, with no over-
lap or interleaving between the two datasets. Performance was assessed 
over time by repeating this analysis in shifting or sliding time win-
dows covering the whole data collection period, which corresponded 
to the 3 months before the desired forecast start date (Fig. 1B). As-
sessed data windows ranged from January to March 2020 to June to 
August 2021.

This definition of spreading mutations captured the expansion of 
VOI/VOCs globally (fig. S1A) and the growth of a number of lesser-​
known mutations (fig. S1B). Implicit in a mutation-centric approach 
to forecasting is the assumption that mutations accumulate in a man-
ner that is approximately independent or, at least, that their interactions 
can be averaged out when looking across all genomic backgrounds. 

A B

C

Fig. 1. Predicting mutation spread. (A) Analyzing performance at baseline and over time. The core analysis consists of three steps. First, creating a working definition 
for spreading mutations. Second, calculating features that can predict future spread using a window of prior data. Third, having constructed models on training data, run 
prediction of future spread (forecast), and interpret the results. (B) Performance was assessed over time by repeating this analysis in sliding time windows covering the 
whole data collection period. (C) The most predictive metrics within each feature group at baseline (see Table 1 and table S1) were ranked by performance within the 
receptor binding domain (RBD), where the most data are available and for the Spike. (D) RBD classification accuracy over time for the top GISAID-based feature (Epi Score) 
and the top transmission and immune variables (Table 1). AUROCs in (D) are smoothed with a rolling window of two analysis periods. FEL, fixed effects model for detect-
ing site-wise selective pressure.
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To test for violations of this implicit assumption, we tested for linkage 
between all pairs of spreading mutations (fig. S2). Enrichment for 
co-occurrence between pairs of mutations at a rate of greater than 
eightfold was observed for fewer than 5% of mutation pairs. Thus, we 
find that (pairwise) independence between mutations is a useful and 
approximately correct simplifying assumption.

We next determined which features of amino acid mutations are 
informative for predicting their spread at baseline (Table 1 and data 
file S1). Within the receptor binding domain (RBD) of Spike, we 
found that angiotensin converting enzyme 2 binding affinity was a 
useful predictor of mutation spread [area under the receiver operator 
characteristic curve (AUROC) = 0.85; Fig. 1C]. Another useful predictor 
was the change in in vitro expression of Spike mutants (AUROC = 0.82; 
fig. S3A). Among measures of immune escape, the binding contribu-
tions of known antibody epitopes (antibody binding score) to anti–
SARS-CoV-2 antibodies were predictive of mutation spread (AUROC = 
0.71; Fig. 1C), whereas CD4+ or CD8+ T cell immunogenicity did not 
offer substantial explanatory power for mutation spread (AUROC = 
0.52 to 0.62; fig. S3A). We found that NLP scores for sequence plau-
sibility (grammaticality) (17) were similarly predictive to deep mutational 
scanning data (AUROC = 0.82; Fig. 1C). The best evolutionary fea-
ture for prediction of spread (AUROC = 0.86; Fig. 1C) was obtained 
from fixed effects likelihood (FEL) (18) from the HyPhy package 
(www.hyphy.org) (19), which tests for pervasive negative or posi-
tive selection across the internal branches of a phylogenetic tree.

The highest predictive performance, however, was obtained from 
epidemiological features, that is, variables that more directly mea-
sure sampled mutation counts (Table 1). The most predictive variable 
in this feature category was “Epi Score,” the exponentially weighted 
mean ranking across the other epidemiological variables (mutation 
frequency, fraction of unique haplotypes in which the mutation occurs, 
and the number of countries in which it occurs), with AUROC = 
0.99. This score captures both lineage expansion and recurrent mu-
tation that occurs in multiple variant lineages by convergent evolution. 
We note that the utility of recurrent mutation signals is consistent 
with recent findings that convergent evolution plays a substantial 
role in SARS-CoV-2 adaptation (20). As observed for the RBD alone, 
within Spike, we also obtained the best predictive performance with 
epidemiologic (AUROC = 0.96) and evolutionary (AUROC = 0.84) 
measures (Fig. 1C). The performance of other feature sets for Spike 
is presented in fig. S3B.

We next sought to interrogate the robustness of this approach to 
changes in the underlying drivers of SARS-CoV-2 evolution. For ex-
ample, it has been hypothesized that selection due to immune pres-
sure has increased with time as more individuals became immune 
through infection or vaccination (20). For example, the Gamma P.1 
lineage is thought to have spread rapidly in Brazil largely because of 
immune selection in a population with high seroprevalence (21). We 
measured the predictive performance of antibody binding scores, 
which quantify the predicted percent contribution of each Spike site 

Table 1. Summary of analytical features. A total of 48 parameters for 14 variables were created for five feature groups. These features capture evolutionary, 
immune, epidemiologic, transmissibility, and language model predictors of mutation spread. A detailed description of all parameters is included in data file S1. 
MOE, molecular operating environment. SHAPE, selective 2′-hydroxyl acylation analyzed by primer extension. 

Feature group Variable Meaning Source or reference Number of  
parameters

Evolution Positive selection (FEL and MEME) Parameters from FEL and MEME HyPhy (19) 11

Codon-SHAPE RNA SHAPE constraint Manfredonia et al. (32) 3

Viral entropy Shannon entropy at each codon position for an 
amino acid site

This work 3

Immune CD8 epitope escape The frequency of SARS-CoV-2 mutations in 
cytotoxic lymphocyte epitopes

Agerer et al. (15) 1

CD8 response The percent and average CD8+ T cell response to an 
epitope in patients

Tarke et al. (33) 2

CD4 response The percent and average CD4+ T cell response to an 
epitope in patients

Tarke et al. 2021 (33) 2

Antibody binding score The estimated percent contribution of a site to binding 
of the indicated antibody, as estimated by MOE

This work 17

Maximum escape fraction in vitro The maximum escape fraction across all conditions 
for that mutation

Greaney et al. (34) 1

Epidemiology Variant frequency The percent of sequences with the mutation Calculated from GISAID (2) 1

Fraction of unique haplotypes The fraction of unique Spike haplotypes in which a 
mutation is observed

Calculated from GISAID (2) 1

Number of countries The number of countries where it has been 
observed.

Calculated from GISAID (2) 1

Epi Score The exponentially weighted mean rank across the 
other epidemiology variables

Calculated from GISAID (2) 1

Transmissibility RBD expression change Change in RBD expression due to the mutation Starr et al. (13) 1

ACE2 binding change The change in binding affinity for ACE2 Starr et al. (13) 1

Language model Language model Grammaticality and semantic change of a mutation Hie et al. (17) 2
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to antibody affinity. We took this metric as a proxy for B cell immuno-
dominance (Table 1) (22). Taking the maximum of this value across 
antibodies at a given site yielded the maximum antibody binding 
score. The predictiveness of this metric increased from nearly un-
informative early in the pandemic (P value for difference from ran-
dom = 0.53) to an AUROC of 0.75 (P < 1 × 10−4; fig. S2C) for predicting 
spreading mutations during the third wave of the pandemic (Fig. 1D). 
Predictiveness subsequently decreased again to 0.64 by summer of 
2021, coincidental with the emergence of Delta. However, we found that 
epidemiological features maintained their performance, achieving 
AUROCs of 0.92 to 0.97 over multiple evaluation periods (Fig. 1D).

Last, we trained models to predict spreading mutations using all, 
or various subsets of, the features identified above. We used logistic 
regression with baseline features as inputs. The best predictors were 
epidemiologic features (AUROC = 0.98) and positive selection fea-
tures (AUROC = 0.83; fig. S4A). The performance of the full model 
was comparable to the non–model-based performance of Epi Score 
(fig. S4B). Therefore, to simplify reproducibility and further mini-
mize the risk of overfitting, we used Epi Score to predict mutation 
spread going forward. We found that taking the top 5% of muta-
tions according to their Epi Score achieved reasonable sensitivity 
(~50%) and maintained a positive predictive value of between 20 
and 60% across time windows (fig. S5). Given that an average of 
~3% of observed mutations are spreading at any point in time, this 
represents more than a 300-fold improvement in sensitivity and a 
6- to 20-fold improvement in positive predictive value relative to 
random selection.

In summary, immunity, transmissibility, evolution, language model, 
and epidemiologic features all effectively predicted mutation spread. 
The methodology captured changes to the underlying selective forces 
over the course of the pandemic. We found that epidemiologic fea-
tures, in particular, display superior accuracy and maintain it over time.

Examining global dynamics and the emergence of VOCs
To determine whether local or global dynamics drive mutation 
spread, we examined whether spreading mutations in the United States 
were better predicted by global or United States–only epidemiological 
values. We tested the performance of Epi Score across four waves of 
the pandemic. We found that mutations were predicted with an 
AUROC above 0.85 up to 11 months in advance, both within the 
United States and globally. Global epidemiology metrics were best 
overall and were generally more predictive of country-level muta-
tion spread than the country-level metrics themselves (fig. S6).

To illustrate the practical utility of Epi Score using global fea-
tures, we assessed how early we would have been able to forecast the 
spread of Spike mutations that define current and former CDC 
VOCs, VOIs, and VBMs (n = 50 defining mutations). To be conser-
vative, we defined the date that a mutation was first forecast as the 
earliest date at which it was predicted to spread in two subsequent 
analysis periods. Of the 50 mutations (Fig. 2A), the median time 
between when a mutation was forecast to spread and when it reached 
1% frequency was 5 months. The maximum was 20 months, where-
as the minimum was 0 months for D614G because this mutation 
had already reached a frequency of 69% by the first forecast pe-
riod. The distribution of these forecast intervals is presented in 
Fig. 2B.

Y145H was forecast to spread starting in July of 2021. This mu-
tation is now a defining mutation of AY.4.2, a spreading sublineage 
of the Delta VOC. As of October 2021, AY.4.2 accounted for 8.5 
to 11.3% of samples in the United Kingdom. Estimated growth rates 
remain slightly higher for AY.4.2 than for Delta, and the household 
secondary attack rate was higher for AY.4.2 cases than for other 
Delta cases (23). On the basis of these observations, we conclude that 
our approach was able to predict key mutations, across all current and 
former VOC/VOI/VBMs, several months in advance. Early warning 

Fig. 2. Early detection of variant mutations. (A) Depiction of where in their 
growth trajectories current and former VOC/VOI mutations were first forecast to 
spread. Dotted lines denote the part of the curve where the variant had not yet 
been forecast to spread. Solid lines denote the period after first forecast. Delta-
defining variants are shown by thick lines. Mutations are presented in genomic 
order. (B) The number of months between when the mutations presented in (A) 
were forecast and when they reached a prevalence of 1% globally.
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of mutations in current VOCs, VOIs, and VBMs would have been 
possible before reaching worrisome degrees of global spread.

Understanding performance through a causal lens
Seeking to understand the high predictive performance of epidemi-
ologic features, we constructed a directed acyclic graph to represent 
the hypothesized causal relationships and to probe whether relative 
trends in performance were consistent with the expectations that 
follow from this model (Fig. 3A). We proposed that epidemiologic 
features mediate the relationship between viral fitness and mutation 
spread. Our rationale was that, if a mutation’s contribution to viral 
fitness was sufficient to drive it to appreciable prevalence at one time 
point (as measured by global frequency and geographic distribu-
tion) and in the context of many genetic backgrounds, then it would 
likely drive it to higher prevalence in the future as well (unless it were 
outcompeted by a more fit adaptation or the fitness landscape changed). 
This type of mediated relationship (fitness ⇒ current prevalence ⇒ 
future prevalence) implies that epidemiological prevalence features 
will capture information from both known and unknown drivers of 
selection.

If the causal model were reasonable, then we would expect first 
that variables, whose causal effects are mediated, as defined above, 
should predict epidemiologic variables at a comparable or even greater 
accuracy compared to spreading mutations. This is illustrated by 
comparing the first and second columns of Fig. 3B. We observed 
that, with the exception of the maximal antibody binding score, all 
top variables predicted Epi Scores better than they predict mutation 
spread. The lower predictiveness of maximal antibody binding score 
for Epi Scores would be consistent with a slight time lag effect due 
to shifting evolutionary pressures.

A second criterion for mediation is that information from these 
variables should not substantially complement the predictiveness of 
the epidemiologic variables alone. In other words, there should be 
little or no additional information that other inputs provide rela-
tive to the epidemiologic variables. We assessed this by comparing 
the AUROCs of two-variable models in Fig. 3B (column 3) with the 
AUROC for Epi Score alone (0.983). The only nominal AUROC 

increase for a complemented model was observed for the evolutionary 
measure FEL (0.984). We did not find statistically significant com-
plementarity with Epi Score for this or any other variable, either within 
the RBD or across full length Spike (see “Mediation analysis” sec-
tion in the Supplementary Materials and table S1).

Our examination of mediated causal relationships begins by as-
suming a causal graph based on prior knowledge. Such an approach 
is common to many causal inference methods (24) and represents a 
well-understood limitation of these methods (24). Therefore, we con-
sidered this as a tool to more systematically analyze the plausibility 
of our results. Although it is generally difficult to verify the struc-
ture of proposed causal graphs, our findings support the concept 
that epidemiological variables mediate the effects of other classes 
of explanatory variables, and this may explain their high predic-
tive accuracy.

Emergence and spread of Omicron
While this work was in revision, we were confronted with the emer-
gence in late November 2021 of the Omicron (B.1.1.529/21K) vari-
ant. Despite the low frequency of many of the individual mutations 
that define the major haplotype of Omicron (median allele frequency 
of 0.00046), we observed high Epi Score values across Spike (median 
Epi Score of 9.51) (Fig. 4A). A benefit of the computational simplicity 
of Epi Score is that predictions can easily be updated on a daily basis. 
We therefore sought to move beyond single–time point Epi Scores 
to examine trends in Epi Score across time for the Omicron mutations. 
The time analysis showed that the Omicron Spike mutations had pro-
gressively higher Epi Score values long preceding the acceleration 
that characterized the emergence of Omicron in November 2021 
(Fig. 4B). We additionally found that the spread of Omicron was 
rapidly reflected in the raising Epi Scores of its mutations and that 
daily forecasts allowed the identification of trending scores.

As an independent approach to assess the singularity of Omicron, 
we also examined the evolutionary nature of the Omicron muta-
tions using our language model. Omicron had a grammaticality change 
between that of Alpha and Delta but the highest semantic change (pre-
dicted antigenic shift) of any SARS-CoV-2 lineage (fig. S7). Omicron’s 

A B

Fig. 3. Epi Score mediates effects captured by other data sources. (A) Causal model: Muta-
tion fitness drives viral prevalence at time 1 (as measured by global frequency, geographic and 
haplotype distribution, and Epi Score). Language model score or evolutionary metrics are sum-
maries of GISAID data and therefore are shaped by mutation prevalence. Prevalence at time 1 
predicts prevalence at time 2, which ultimately leads to mutation being defined as spreading. 
Therefore, prevalence at time 1 (as captured by Epi Score) mediates the effects of the biological 
variables that enhance viral fitness through transmissibility or escape adaptation. (B) To quan-
titatively test for mediation, we assessed whether variables were better at predicting muta-
tions in the top 5% of Epi Scores compared to spreading mutations for time 2 versus time 1. 

“Combo AUC” refers to the combined AUC of that variable with Epi Score. Significant improvements of the combined model over that of Epi Score alone would indicate 
complementarity and therefore predictive information not captured by Epi Score alone. Ab, antibody.
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semantic change score was twice that of both Alpha and Delta, con-
sistent with high levels of mutation and immune escape adaptation.

Forecasting spreading mutations in Spike 
and proteome-wide
Building upon the accurate prediction of spreading mutations across 
different waves of the pandemic, we next leveraged Epi Score on cur-
rent data to forecast mutations that may contribute to VOIs and VOCs 
over the coming months. Because global metrics outperformed metrics 
restricted to the United States, even for forecasting within the United 
States, we focused on global forecasting. We considered shortening 
our feature calculation window to further mitigate the effects of shift-
ing evolutionary dynamics. However, we found that longer feature 
calculation windows improved performance across all prediction win-
dows (fig. S8).

As an application of the forecasting analysis, we examined how fore-
casted mutations intersected with the binding sites of clinical antibodies 

as of 19 October 2021. 
We found wide variation 
in the number of fore-
casted mutations per an-
tibody epitope (Table 2), 
ranging from 10 muta-
tions for Celltrion’s CT-
P59 to two low-frequency 
mutations for Vir-7831 
(sotrovimab), which was 
designed to be more ro-
bust to viral evolution by 
targeting a region that is 
conserved across corona-
viruses (25). The two mu-
tations in the epitope of 
sotrovimab, A340S and 
R346K, do not limit neu-

tralization (25, 26). As an additional proof of concept, we focused our 
attention on Spike S494P, a mutation reported to have enhanced 
binding affinity to ACE2 (27) and to reduce neutralization by three- 
to fivefold in some convalescent sera (27). We found that the S494P 
mutation decreases neutralization potential of clinical therapeutic 
antibodies: Ly-CoV555 (bamlanivimab), CT-P59, and, to a lesser ex-
tent, REGN10933 (casirivimab) (Fig. 5).

Last, to demonstrate the flexibility and extensibility of our approach, 
we forecasted the spread of mutations specifically on the Delta ge-
nomic background across the full SARS-CoV-2 proteome. Because 
the components of Epi Score can be calculated for any mutation where 
sequencing data are available, extension to the full proteome is trivial 
and not computationally taxing. It can also be reasonably calculated 
on any subset of sequences to determine which mutations are most 
likely to spread on the basis of their characteristics within that sub-
set (or lineage). Therefore, it is also straightforward to adapt this ap-
proach to produce lineage-specific forecasts.

Figure 6A shows a Manhattan-style plot of Epi Scores across the 
full SARS-CoV-2 genome. The plot highlights all mutations at pos-
itively selected sites [fixed effects model for detecting site-wise selective 
pressure (FEL); false discovery rate (FDR) < 0.05] that currently oc-
cur at a frequency over 0.1% on a Delta background. We found 151 
such mutations, distributed across the proteome. The mutation den-
sity was 1.8 per 100 amino acids across the whole proteome, with a 
rate varying from 0 to 12.3 across SARS-CoV-2 proteins (Fig. 6B). 
By this measure, the highest mutational density was identified in 
ORF3/NS3, an accessory protein that is reported to modulate auto-
phagosome-lysosome fusion (ORF3a) (28) and antagonize interferon 
(Orf3b) (29). Spike was close to average, with a density of 2.3 muta-
tions per 100 amino acids. On the basis of the Epi Score ranking, the top 
five mutations for potential to spread were Spike:G142D, Spike:T95I, 
NSP3:A1711V, N:Q9L, and NSP2:K81N. All mutation Epi Scores proteome-​
wide are presented in data file S2.

In summary, we established a method for predicting spreading 
mutations and applied it to forecast future contributors to putative 
VOCs/VOIs/VBMs. These predictions yield mutations known to be 
important from in vitro data. We conclude that this approach can 
anticipate spreading mutations many months in advance. We find 
that a subset of forecast mutations could have implications for the 
continued efficacy of clinical antibodies but that the level of these 
effects varies widely. We then extended our analysis to encompass 

BA

Fig. 4. Emergence and spread of Omicron. (A) The Epi Scores of 37 Omicron-defining mutations are shown as of 8 December 2021 (red 
dots). (B) Although some of the mutations in Omicron already had high Epi Scores and were widely spread, emergent mutations were 
distinguished by the progressively increasing Epi Score between April 2020 and August 2021 preceding the rapid acceleration at the end 
of 2021. Shown are mean and confidence interval Epi Score values. Other: Epi Score of all other mutations in the SARS-CoV-2 Spike.

Table 2. Forecasted mutations for therapeutic antibodies. Forecasted 
mutations, as of 19 October (including VOC mutations) were intersected 
with the binding epitopes of therapeutic monoclonal antibodies. 
Mutations were included if they were in sites contributing at least 1% of 
the total binding energy for a given antibody, as estimated by MOE 
program. Mutations known to decrease antibody EC50 more than fivefold 
are colored orange. Mutations in purple indicate that neutralization is 
decreased less than fivefold (https://covdb.stanford.edu/page/
susceptibility-data), whereas gray values indicate untested antibody and 
mutation combinations. 

Clinical therapeutic 
antibody Forecasted mutations in epitopes

VIR-7831 (sotrovimab) A344S, R346K

LY-CoV016 (etesevimab) K417T, K417N, L455F

REGN10987 (imdevimab) R346K, K444N, G446V

LY-CoV555 
(bamlanivimab)

L452R, L452Q, V483F, E484K, E484Q, F490S, 
S494L, S494P

REGN10933 (casirivimab) K417T, K417N, L455F, G476S, S477I, T478K, 
E484K, E484Q, F490S

CT-P59 K417T, K417N, L452R, L452Q, L455F, E484K, 
E484Q, F490S, S494L, S494P
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A

B

Fig. 5. S494P mutation decreases neutralization potential of three clinically approved therapeutic antibodies. (A) VSV-SARS-CoV-2 pseudovirus was generated on 
the basis of the “Wuhan-Hu-1” sequence with either the D614G mutation or D614G and S494P mutations. Virus neutralization was measured in a microneutralization as-
say on Vero E6 cells. Example results from one repeat are shown. (B) Median effective concentration (EC50) values and fold changes were calculated from two independent 
experiments. S309 is the parent molecule of VIR-7831, which had been previously evaluated on the S494P variant and showed no change in neutralization (25). mAb, 
monoclonal antibody.

Fig. 6. Manhattan-style plot of Epi Scores across the SARS-CoV-2 Delta proteome. (A) For vi-
sualization purposes, Epi Scores have been calculated as z scores, which correlate to the default, 
rank-based calculation as a Spearman R > 0.99. Points highlighted in color occur at a frequency 
over 0.1% on a Delta background (B.1.617.2 + AY lineages) and occur at significantly positively 
selected sites (FEL FDR-adjusted q value < 0.05). All mutations occurring at over 80% frequency, in 
the lineages accounting for >80% of all Delta cases, were excluded from the visualization. Thus, 
the plot serves to highlight variants predicted to spread and under positive selection in the cur-
rent Delta background (for a complete listing, see data file S2). (B) The rate per 100 amino acids of 
highlighted forecasted mutations from (A), per gene in the SARS-CoV-2 proteome.
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the full SARS-CoV-2 proteome and to produce Delta and informative 
Omicron forecasts. This work also suggests that there is considerable 
potential for spreading mutations located outside Spike, underlining 
the importance of forecasting methods that can be applied across 
the whole viral proteome.

DISCUSSION
We established a working definition for spreading mutations and lev-
eraged this definition to deliver a systematic analysis of amino acid 
features predictive of mutation spread. This yielded a simple, ex-
plainable, and accurate approach for forecasting mutations several 
months in advance across multiple pandemic waves. Calculating this 
scoring was also efficient enough to enable daily forecast updates on 
millions of sequences using only a laptop. Although this strategy re-
quired nothing more than genomic surveillance data, we also high-
lighted the value of the complete mapping of epitopes, in vitro deep 
site-directed mutagenesis, and downstream functional experimen-
tal validation. Confidence in the prediction of spreading mutations 
came through retrospectively evaluating multiple waves of the pan-
demic and verifying consistency with experimental data and with a 
plausible causal framework. Furthermore, long observed lags be-
tween the earliest warning signals and high population frequency of 
current mutations in VOCs, VOIs, and VBMs gave further support 
for using forecasting to anticipate the spread of future concerning 
mutations. Although this approach will be limited in its ability to 
anticipate mutations that appear and rise to high frequencies within 
a short time frame, we found this to be a rare occurrence.

We evaluated epidemiologic features aggregated in the Epi Score 
such as mutation frequency and the distribution of mutations across 
countries and fraction of unique haplotypes across which a muta-
tion occurs. We explored other predictors, including the rate of in-
crease of each of these features, but did not find that they improved 
performance. We note that the fraction of unique haplotypes shared 
similarities to phylogenetic measures of recurrent mutation. How-
ever, there is considerable lack of phylogenetic resolution in these 
calculations, so the number of recurrent mutations is a statistically 
“noisy” measure, depends strongly on the method used to build phy-
logenies, and is very expensive to compute. The fraction of unique 
haplotypes, on the other hand, is fast to compute, can be perfectly 
estimated, and will increase with both recurrent mutation and single-​
lineage expansion; both of which are indicative of a positive contri-
bution to fitness.

Omicron emerged as the paper was completing the review pro-
cess. Despite the limited numbers of viral sequences available as of 
December 2021, we observed a distinctive pattern of Omicron mu-
tations that, despite low frequency of many individual mutations, 
already had high Epi Score values. It is also notable that, for all mu-
tations, high Epi Score values antedated the emergence of Omicron, 
although those mutations had not yet converged on the same haplo-
types. We interpret these data as indicative that individual mutations 
were endowed with advantageous properties in the viral genome 
even before their co-occurrence on the Omicron Spike.

There are limits to this study; general prediction of viral evolution 
is fundamentally an intractable problem. The current work only ad-
dresses a simpler question: predicting which mutations will increase 
in frequency over some threshold in the near future based on the 
analysis of their recent patterns of spread. Thus, the study predicts 
spread of existing mutations but not a true emergence of previously 

unobserved mutations. In addition, it is difficult to predict which 
lineages (major viral haplotypes) will spread because this would re-
quire the complex projection of growth of multiple mutations together. 
These limitations notwithstanding, the data on Omicron suggest that 
successful lineages may be defined by the convergence of mutations 
that, individually, exhibited high Epi Score values and other features 
that signal adaptive evolution.

Although this work forecasts which mutations will spread, the 
success of a given mutation does not necessarily result in clinical or 
public health consequences. Therefore, we posit that the value of the 
predictions is to prioritize mutations for functional screening. Here, 
we demonstrate how a subset of spreading mutations differentially 
affect clinical antibodies. We also extended the analysis to encom-
pass the whole viral proteome. By this approach, we identified spread-
ing amino acid replacements in other viral proteins and highlighted 
positions under strong positive selection. Given the limited under-
standing of the role of non-Spike regions of the proteome in driving 
the pandemic, we believe that those non-Spike mutations should be 
prioritized for understanding their role in evading innate immunity 
and increasing the replication of SARS-CoV-2 and, more generally, 
for their contribution to viral fitness. We intend for these results to 
provide a foundation for future improvement. Although we have shown 
that Epi Score is robust to shifting evolutionary dynamics, perform
ance can be monitored in real time, and, if necessary, retuned to 
capture novel behavior as now shown with the emergence of Omicron. 
This approach can also be generalized and improved upon to stay 
ahead of evolutionary cycles for other pathogens (30), when suffi-
ciently rich and representative genomic sampling is available.

MATERIALS AND METHODS
Study design
We hypothesized that the pattern of SARS-CoV-2 spread could be es-
timated from the large GISAID viral sequence database. Specifically, 
we hypothesized that one or more variables comprising biological, 
immunological, epidemiological, and genomic (including language) 
features could be identified as drivers of spread. The current work to 
define spreading amino acid mutations was based on viral sequences 
and metadata obtained from GISAID EpiCoV project (www.gisaid.
org/). We developed predictive models and expressed predictive per-
formance using the AUROC. A total of 4,487,305 sequences were 
analyzed. Prediction was performed using forward feature selection 
followed by logistic regression. The criterion for forward selection 
was cross-validated AUROC of the logistic regression model within 
the training set. Feature selection and model fitting were performed 
separately within each fold of the outer cross-validation loop. Logis-
tic regression was chosen because of its sample efficiency.

Statistical analysis
Spreading mutations were defined on the basis of a Fisher’s exact 
test for frequency fold change per country, adjusted for multiple 
comparisons, followed by filters for rate of spread (maximum fold 
change of at least 10; fold change > 2 in three or more countries), 
and a minimum prevalence of 0.1%. We estimated epistasis using 
point-wise mutual information, which corresponds to the log ratio 
of the observed prevalence of a pair to the expected prevalence as-
suming independence. The most predictive variable, Epi Score was 
defined as the exponentially weighted mean ranking across the other 
epidemiological variables (mutation frequency, fraction of unique 
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haplotypes in which the mutation occurs, and the number of coun-
tries in which it occurs). For NLP neural network features, we used 
the grammaticality and semantic change scores reported by (17) in 
which a bidirectional long short-term memory model was trained 
on Spike sequences from GISAID and GenBank. Natural selection 
features were generated using mixed effects model of evolution 
(MEME) (31) and FEL (18) methods implemented in the HyPhy 
package (version 2.5.31) (19). Mediation analysis was based on the 
Baron and Kenny test. The list of forecast mutations was generated 
by calculating Epi Scores on the most recent 3 months of data and 
taking the top 5% of mutations, a cutoff chosen on the basis of em-
pirical analyses.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abk3445
Materials and Methods
Figs. S1 to S8
Table S1
Data files S1 to S3

View/request a protocol for this paper from Bio-protocol.
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Forecasting SARS-CoV-2 mutation spread
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations that increase greatly in frequency are
of potential importance for both antiviral immunity and the adoption of public health precautions. Maher et al. built a
pipeline to predict which individual amino acid mutations in SARS-CoV-2 will become more prevalent over the coming
months. This model looks at the changing prevalence of mutations averaged over the haplotypes on which they occur
and can be applied to just the Spike protein or proteome-wide. The authors were able to validate their model by looking
at the emergence of Omicron. This pipeline may help researchers forecast the driver mutations that may appear in
future SARS-CoV-2 variants of concern.
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