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1 Introduction

A fruitful way to engineer supersymmetric conformal field theories (SCFTs) is to compactify
higher-dimensional SCFTs. An important paradigm [1] is to consider a SCFT on the product
of flat spacetime with a compact manifold and then, in order to preserve supersymmetry,
switch on background magnetic fluxes which encapsulate a partial topological twist of
the SCFT. In favourable situations, the system will then flow to a new SCFT at low
energies. If the parent SCFT field theory has a large N holographic dual one can study the
resulting renormalisation group (RG) flow holographically by appropriately constructing
dual supergravity solutions. In fact such holographic solutions provide an important tool in
establishing whether or not the compactified SCFT flows to a new SCFT in the IR.

Recently it has been appreciated that this well studied paradigm can be modified in
two interrelated ways. Firstly, one can relax the condition that the compact space is a
manifold and instead consider orbifolds. In particular, starting with [2], there has been
considerable work studying SCFTs compactified on a spindle, a two-dimensional orbifold
which is topologically a two sphere but with conical deficit angles at the north and south
poles. Secondly, supersymmetry is no longer realised by the standard topological twist.
For spindles with an azimuthal symmetry, which is the class that has been studied, there
are just two ways to preserve supersymmetry called the “twist” and the “anti-twist” [3],
which are characterised by the R-symmetry flux through the spindle. The twist is in the
same topological class as the standard topological twist but there are some differences: for
example the spinors on the spindle that are associated with the preserved supersymmetry
are no longer constant and chiral. The anti-twist on a spindle is a new way of preserving
supersymmetry.

The analysis of [2] was in the context of N = 1, d = 4 SCFTs which are dual to
AdS5 × SE5 solutions of type IIB supergravity, that are then reduced on a spindle. It
was shown that these give rise to N = (0, 2), d = 2 SCFTs that are dual to AdS3 × Y7
solutions of type IIB supergravity, first found in [4], where Y7 is a smooth seven-dimensional
manifold consisting of a fibration of the five-dimensional Sasaki-Einstein manifold, SE5,
over the spindle Σ. These supergravity solutions, which are all in the anti-twist class, were
constructed as AdS3 ×Σ solutions of D = 5 minimal gauged supergravity and then uplifted
on SE5 to type IIB. It is particularly interesting that for SE5 in the regular class, the
orbifold singularities of the spindle are eliminated after uplifting to the type IIB solutions.
For the specific case of N = 4, d = 4 SYM, one can include additional background magnetic
fluxes on the spindle and the corresponding AdS3 × Σ solutions can be constructed using
the D = 5 STU theory [3, 5, 6]. The STU theory arises as a consistent truncation of type
IIB on S5 and has a bosonic content consisting of a metric, U(1)3 gauge fields and two
neutral scalars [7]. In this setting it was shown that in addition to anti-twist solutions [5, 6],
twist solutions [3] are also possible depending on the value of the magnetic fluxes and the
deficit angles on the spindle. In all of these examples, it is straightforward to calculate the
central charge of the d = 2 SCFT from the gravity solution. This can be compared with a
field theory calculation that uses anomaly polynomials and c-extremisation [8], and one
finds exact agreement.
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Similar investigations of SCFTs in d = 3, 5, 6 dimensions that are compactified on a
spindle have also been made [9–16]. Furthermore, compactifying on higher-dimensional
orbifolds is also possible [17] (see also [18]): in particular, the case of the N = (0, 2), d = 6
SCFT arising on M5-branes and then reduced on four-dimensional orbifolds, including a
spindle fibred over a spindle, was studied in [17]. The goal of the present paper is to report
on an investigation of the d = 4 Leigh-Strassler (LS) SCFT compactified on a spindle.

Recall that the LS fixed point is a strongly coupled N = 1, d = 4 SCFT which was
identified in [19]. It can be obtained as the IR end point of an RG flow that starts in the UV
from SU(N) N = 4 SYM theory with the addition of a mass deformation for one of the three
adjoint chiral superfields. The LS fixed point has SU(2)×U(1)R global symmetry which
is inherited from the SU(4) R-symmetry of N = 4 SYM. In the large N limit the LS fixed
point is holographically dual to an AdS5 × S5

LS solution first found in [20, 21]. Moreover,
the holographic RG flow solution that starts from AdS5 × S5 in the UV, dual to the mass
deformed N = 4 SYM, and then flows to AdS5 × S5

LS in the IR was constructed in [22].
An analysis of the LS theory placed on R1,1 × Σg with a standard topological twist, where
Σg is a Riemann surface of genus g, was made in [23]. For genus g > 1, by constructing
AdS3×Σg solutions of a sub-truncation D = 5 maximal supergravity it was shown that the
compactified LS theory flows to an N = (0, 2), d = 2 SCFT in the IR in the large N limit.

Here we consider the d = 4 LS theory placed on R1,1 × Σ where Σ is a spindle with an
azimuthal symmetry. Using the same sub-truncation of D = 5 maximal gauged supergravity
that was used in [23] we will construct an associated class of supersymmetric AdS3 × Σ
solutions. After uplifting to type IIB these give rise to a new class of AdS3 × Y7 solutions,
with Y7 a smooth manifold consisting of an S5 fibration over Σ, that are dual to a new class
of N = (0, 2), d = 2 SCFTs. A novel feature is that the D = 5 gauged supergravity solution
contains both neutral and charged scalar fields. Ensuring that the charged scalars are regular
at the poles of the spindle requires a generalisation of the analysis of [3]. While we have
constructed some analytic AdS3×Σ solutions to the BPS equations, the generic solutions, all
of which are in the anti-twist class, have been constructed numerically. However, remarkably,
we are able to show that the central charge can be expressed analytically in terms of the
deficit angles of the poles and the magnetic flux through the spindle. This enables us to
make a comparison with a field theory calculation associated with the LS theory using
anomaly polynomials and c-extremisation, and we find exact agreement.

The plan of the rest of the paper is as follows. In section 2 we introduce the D = 5
supergravity model that we use to construct the new solutions. In section 3 we present
the AdS3 × Σ ansatz of interest and analyse the resulting BPS equations, which consist of
a set of coupled ODEs. We identify conserved charges as well as elucidate the boundary
conditions that are required in order to obtain an AdS3 × Σ solution with appropriately
quantised fluxes and regular scalar fields. This allows us to obtain an analytic expression
for the central charge and also the fluxes in terms of the boundary conditions. In section 4
we present the analytic solutions as well as discuss the numerically constructed solutions.
Section 5 carries out a field theory computation of the central charge. We conclude with
some discussion in section 6, including some outlook on the possibility of constructing RG
flow solutions that would connect with our new solutions.
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We have five appendices. In appendix A we discuss how the supergravity model arises
from a truncation of maximal D = 5 gauged supergravity, with some small differences in
detail with regard to [24] and other papers. Our discussion in the appendix is for a more
general class of theories, as in [25], that maintain three gauge fields and two neutral scalar
fields, as in the STU model, plus four complex scalar fields. We also discuss a truncation
to minimal D = 5 gauged supergravity that is associated with the AdS5 LS fixed point
which allows us to construct the analytic AdS3 × Σ solutions. In appendix B we derive
the BPS equations for the AdS3 ansatz of interest. We also show that the BPS equations
can be recast as supersymmetric D = 4 Janus-like equations of the type discussed in a
D = 5 context in [26] which provides a helpful alternative perspective. In appendix C we
generalise the analysis of supersymmetric spindles given in [3] to include charged complex
scalar fields. In appendix D we analyse the possibility of having specific charged conformal
Killing spinors on R1,1 × Σ, which would naturally arise on the boundary of putative RG
flow solutions from AdS5 to AdS3 × Σ, finding that they only arise in the context of the
standard topological twist. In appendix E we recall some features of the analytic AdS3 × Σ
solutions of the STU model and discuss how RG flows from these fixed points to the new
fixed points might be possible.

2 The supergravity model

We will use a U(1)3 ⊂ SO(6) consistent truncation of maximal gauged supergravity in
D = 5 that keeps a metric, three gauge fields A(1), A(2), A(3), two real and neutral scalars
α, β and a single complex scalar field ζ ≡ ϕeiθ which is charged with respect to a specific
linear combination of the three U(1)’s. This model was used in [23] and can be obtained
as a truncation of a more general class of models with four charged scalar fields that was
presented in [24, 25] (see appendix A for further discussion). The bosonic part of the
Lagrangian, in a mostly minus signature, is given by

L = −1
4R+ 1

2(∂ϕ)2 + 1
8 sinh2 2ϕ (Dθ)2 + 3(∂α)2 + (∂β)2 − P

− 1
4
[
e4α−4βF (1)

µν F
(1)µν + e4α+4βF (2)

µν F
(2)µν + e−8αF (3)

µν F
(3)µν

]
+ 1

2ε
µνρσδF (1)

µν F
(2)
ρσ A

(3)
δ , (2.1)

where

Dθ ≡ dθ + g
(
A(1) +A(2) −A(3)

)
. (2.2)

The scalar potential P is given by

P = g2

8

[(
∂W

∂ϕ

)2
+ 1

6

(
∂W

∂α

)2
+ 1

2

(
∂W

∂β

)2]
− g2

3 W
2 , (2.3)

where W is the “superpotential” defined by

W = −1
4
[
(e−2α−2β + e−2α+2β − e4α) cosh 2ϕ+ (e−2α−2β + e−2α+2β + 3e4α)

]
. (2.4)
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Notice that the model has a Z2 symmetry

β → −β, A(1) ↔ A(2) . (2.5)

The gravity theory (2.1)–(2.4) is not supersymmetric but we can determine the condi-
tions needed to be satisfied in order that a solution preserves some of the supersymmetry
of the maximal gauged supergravity theory. From the gravitino variations we require(

∇µ − iQµ −
ig

6 Wγµ −
1
12Hνρ(γνργµ + 2γνδρµ)

)
ε = 0 , (2.6)

where ε is a complex D = 5 Dirac spinor, ∇µ = ∂µ + 1
4ωµabγ

ab and

Hµν ≡ e2α−2βF (1)
µν + e2α+2βF (2)

µν + e−4αF (3)
µν ,

Qµ ≡ −
g

2(A(1)
µ +A(2)

µ +A(3)
µ )− 1

4(cosh 2ϕ− 1)Dµθ . (2.7)

We highlight that the supersymmetry parameters are charged just with respect to the
R-symmetry gauge field given by

ARµ ≡ −g(A(1)
µ +A(2)

µ +A(3)
µ ) , (2.8)

and have charge 1/2. Also, notice that for vanishing complex scalar, ϕ = 0, we have
ARµ = 2Qµ. Vanishing of the remaining supersymmetry variations is guaranteed if[

γµ∂µα+ ig

12∂αW −
1
12(e2α−2βF (1)

µν + e2α+2βF (2)
µν − 2e−4αF (3)

µν )γµν
]
ε = 0 ,[

γµ∂µβ + ig

4 ∂βW −
1
4(−e2α−2βF (1)

µν + e2α+2βF (2)
µν )γµν

]
ε = 0 ,[

γµ∂µϕ+ ig

2 ∂ϕW + i∂ϕQµγ
µ
]
ε = 0 . (2.9)

This gravity model admits the maximally supersymmetric AdS5 vacuum solution with
vanishing scalar fields and the AdS5 metric having radius squared equal to 4/g2. Within
the associated dual N = 4 SYM theory we can identify the scalar fields α, β with bosonic
mass deformations living in 20′ of SO(6) and ζ with fermionic mass deformations living
in the 10 of SO(6). If Xa are the six real scalars and λ one of the four fermions of N = 4
SYM theory then we have, schematically,

∆ = 2 : α ↔ tr(X2
1 +X2

2 +X2
3 +X2

4 −X2
5 −X2

6 ) ,
β ↔ tr(X2

1 +X2
2 −X2

3 −X2
4 ) ,

∆ = 3 : ζ ↔ tr(λλ+ cubic in Xa) , (2.10)

where ∆ is the conformal scaling dimension of the operator. It also admits1 a supersymmetric
LS AdS5 solution [20] with radius squared equal to 9/(24/3g2) with

e6α = 2, e2ϕ = 3 , β = 0 , (2.11)
1The model also admits an SU(3) invariant AdS5 solution which does not preserve supersymmetry and is

known to be unstable [25].
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and, of course, vanishing gauge fields. This solution preserves SU(2)×U(1)R symmetry and,
after uplifting to type IIB [21], are dual to the d = 4, N = 1 LS SCFT [19]. As is well known
there is an RG flow between N = 4 SYM, deformed by the relevant fermion mass operator
with ∆ = 3 given in (2.10), and the corresponding holographic solution was found in [22].

It is also helpful to consider some further truncations of the gravity model. If we set
the charged scalar field to zero, ζ = 0, in (2.1) we obtain the STU model [7], with two
real scalars α, β and three gauge-fields. From the STU model, we can further truncate to
minimal D = 5 gauged supergravity by setting all gauge fields equal A(1) = A(2) = A(3) as
well as setting the real scalars to zero α = β = 0. In particular, the AdS3×Σ solutions of the
STU model [3] (extending [5, 6]) and of minimal gauged supergravity [2] arise in this model,
and can be uplifted on S5 to obtain solutions of type IIB, as discussed in those papers.

There is also a different way to truncate to D = 5 minimal gauged supergravity,
associated with the LS fixed point. One sets the scalar fields as in (2.11) and also sets
A(1) = A(2) = 1

2A
(3) (see appendix A.5). Thus, the AdS3 × Σ solutions of minimal gauged

supergravity [2] can be uplifted on S5 in a different way to that discussed in [2] and are
dual to new d = 2, N = (0, 2) SCFTs; we shall discuss this further in section 4.1. We can
also relax this truncation by just setting A(1) = A(2) as well as β = 0. This model preserves
SU(2) × U(1)R symmetry. It contains the LS fixed point solution and also the RG flow
solution that starts off with the vacuum AdS5 in the UV and ends at the LS AdS5 solution
in the IR. One might have thought that this “LS truncation” would be a good starting
point to construct additional AdS3 × Σ solutions but, as it turns out, there are no further
solutions in this sector. Thus, we continue with the larger truncation (2.1)–(2.4) which
preserves U(1)×U(1)R symmetry, which we refer to as the extended LS truncation.

3 AdS3 ansatz

We are interested in constructing AdS3 × Σ solutions lying within the ansatz

ds2 = e2V ds2(AdS3)− (f2dy2 + h2dz2) ,

A(i) = a(i)dz , (3.1)

where ds2(AdS3) is a unit radius metric on AdS3 and V, f, h, a(i) are functions of y only.
Notice that we can use different gauge choices for f by changing the y coordinate and later
we will choose2 “conformal gauge” with f = eV . We also assume that the scalar fields
α, β, ϕ are functions of y only. To avoid PDEs, from the gauge equations of motion we
must then take the phase of the complex scalar field, θ, to be linear in z, θ = θ̄z, with θ̄ a
constant. In particular, we then have

Qµdx
µ ≡ Qzdz , (3.2)

with Qz = Qz(y).
2If we dimensionally reduce on the z direction one gets a Janus-type ansatz in a conformal gauge as

discussed in appendix B.2.
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We are particularly interested in solutions where Σ, the space parametrised by (y, z),
is a compact spindle with an azimuthal symmetry generated by ∂z. Compactness can be
achieved by taking y ∈ [y1, y2], with h(yi) = 0 and z to be a periodic coordinate. The
precise boundary conditions on the other fields at the poles of the spindle, located at y = yi
will be discussed below. We will be interested in such AdS3 × Σ solutions that preserve
supersymmetry and hence are dual to d = 2 N = (0, 2) SCFTs. The associated BPS
equations will be summarised below.

We will utilise an orthonormal frame

ea = eV ēa, e3 = fdy, e4 = hdz , (3.3)

where ēa is an orthonormal frame for ds2(AdS3). The frame components of the field
strengths can then be written as

F
(i)
34 = f−1h−1(a(i))′ . (3.4)

It will be very helpful to note that with this ansatz, two of the equations of motion for
the gauge fields can be immediately integrated. Explicitly, we find the gauge equations of
motion are equivalent to

e3V
(
e4α−4βF

(1)
34 − e

4α+4βF
(2)
34

)
= EF ,

e3V
(
e4α−4βF

(1)
34 + e4α+4βF

(2)
34 + 2e−8αF

(3)
34

)
= ER ,

(e3V−8αF
(3)
34 )′ = −e3V fh−1 g

4 sinh2 2ϕDzθ , (3.5)

where EF and ER are constants and Dzθ = (θ̄ + ga(1) + ga(2) − ga(3)).

3.1 BPS equations

To analyse the Killing spinor equations3 we use the orthonormal frame given in (3.3). We
next decompose the Clifford algebra via

γm = Γm ⊗ σ3, γ3 = 1⊗ iσ1, γ4 = 1⊗ iσ2, (3.6)

with Γm = (σ2, iσ3, iσ1) gamma matrices in D = 3. We write the Killing spinor as

ε = ψ ⊗ χ , (3.7)

with ψ a two component spinor on AdS3 which satisfies

Dmψ = i

2κΓmψ , (3.8)

with κ = ±1 determining the chirality of the supersymmetry of the dual d = 2 SCFT i.e.
N = (0, 2) or (2, 0). After some analysis, summarised in appendix B, we find that the two
component spinor χ can be written in the form

χ = eV/2eisz
(

sin ξ
2

cos ξ2

)
, (3.9)

3The analysis is somewhat similar to that of [25] who considered double wick rotated backgrounds with
the AdS3 factor replaced by an S3.
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where the constant s is the gauge-dependent charge of the spinor under the action of the
azimuthal Killing vector ∂z. Notice, for later use, that at points where ξ = 0 the spinor χ has
negative chirality with respect to σ3, while when ξ = π the spinor χ has positive chirality.

The solutions of interest to us have sin ξ not identically equal to zero. Then, as we
show in the appendix B, for points with sin ξ 6= 0 the BPS equations associated with these
Killing spinors can be written in the form

f−1ξ′ = gW cos ξ + 2κe−V ,

f−1V ′ = g

3W sin ξ ,

f−1α′ = − g

12∂αW sin ξ ,

f−1β′ = −g4∂βW sin ξ ,

f−1ϕ′ = −g2
∂ϕW

sin ξ ,

f−1h
′

h
= 1

sin ξ

(
2κe−V cos ξ + gW

3 (1 + 2 cos2 ξ)
)
, (3.10)

along with the two constraint equations

(s−Qz) sin ξ = −1
2gWh cos ξ − κhe−V ,

g

2∂ϕW cos ξ = ∂ϕQz sin ξh−1 . (3.11)

Furthermore the field strength components in the orthonormal frame are given by

e2α−2βF
(1)
34 = − g

12[4W − ∂αW + 3∂βW ] cos ξ − κe−V ,

e2α+2βF
(2)
34 = − g

12[4W − ∂αW − 3∂βW ] cos ξ − κe−V ,

e−4αF
(3)
34 = −g6[2W + ∂αW ] cos ξ − κe−V . (3.12)

3.2 Integrals of motion

An important observation is that we can integrate a combination of the BPS equations.
Specifically, by calculating the derivative of he−V we deduce that

he−V = k sin ξ , (3.13)

where k is a constant. This shows that at points where h vanishes, which will correspond
to the poles of the spindle in the solutions of interest, sin ξ also vanishes. It is also helpful
to notice that from (3.10), (3.11) we can then also write the equation for ξ′ as

ξ′ = −2k−1(s−Qz)(e−V f) , (3.14)

while the two constraints (3.11) can now be written in the form

(s−Qz) = −k
[1

2gWeV cos ξ + κ

]
,

g

2∂ϕW cos ξ = k−1e−V ∂ϕQz . (3.15)

– 7 –
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We can also use the expressions for the field strengths (3.12) to rewrite the two integrals
of motion (3.5), arising from the gauge field equations of motion, to obtain

ER = e2V [2geV cos ξ − 2κ(e−4α + e2α cosh 2β)] ,
EF = 2κe2V e2α sinh 2β . (3.16)

3.3 Boundary conditions for spindle solutions

It is convenient to now work in conformal gauge with

f = eV , (3.17)

so that the metric takes the form

ds2 = e2V [ds2(AdS3)− ds2
Σ] , (3.18)

with

ds2
Σ = dy2 + k2 sin2 ξdz2 , (3.19)

and the constant k defined in (3.13).
We are interested in constructing supersymmetric solutions where ds2

Σ is a metric on a
spindle with an azimuthal symmetry, which is specified by two relatively prime integers
nN , nS ≥ 1. The poles are taken to lie at y = yN,S and with deficit angles 2π(1 − 1

nN,S
),

respectively, and z is a periodic coordinate with period ∆z which we fix to be

∆z = 2π . (3.20)

In order to ensure that the gauge fields gA(i) are connections on U(1) orbibundles over Σ
we need to impose that the magnetic fluxes through the spindle are suitably quantised:

1
2π

∫
Σ
gF (i) = pi

nNnS
, pi ∈ Z , (3.21)

as discussed in [3] and also summarised in appendix C. This normalisation is fixed by how
the D = 5 solution is uplifted on S5 to give a type IIB solution4 and ensures that we will
obtain an AdS3 × Y7 solution with Y7 a smooth manifold consisting of an S5 bundle over
the spindle Σ [3].

A novel feature in the present set up is the presence of the complex scalar field ζ

which is charged under a particular linear combination of the three U(1)’s. We analyse the
boundary conditions that need to be imposed on such scalars in appendix C, extending the
analysis of [3]. We show there that if ζ is non-vanishing at a pole then we must have the
gauge invariant condition Dθ = 0 at that pole:

ϕ|N,S 6= 0 ⇒ Dθ|N,S = 0 , (3.22)
4From the uplifting formula (2.1) of [7] we see that [gAi]them is a canonically normalised U(1) connection

since their φi are periodic coordinates on S5 with periods ∆φi = 2π. By comparing their (2.9) with our (2.1)
we conclude that gus = 2gthem, A(i)

us = 1/2Aithem and hence [gA(i)]us is canonically normalised.

– 8 –
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respectively. Furthermore, in the case that ζ is non-vanishing at both poles, which is the
case that we shall study,5 the associated U(1) flux through the spindle must vanish:

1
2π

∫
Σ
g(F (1) + F (2) − F (3)) = 1

2π

∫
Σ
d(Dθ)

= 0 . (3.23)

Given that the R-symmetry flux is quantised, as we recall in a moment, we just need to
impose one more condition to ensure that the general flux quantisation conditions (3.21)
are satisfied for all gauge-fields.

We now consider the fermions. The coupling of the fermions to the R-symmetry gauge
field AR, defined in (2.8), is exactly the same as in [3]. There are then two cases, the twist
and the anti-twist, which are specified by the R-symmetry flux:

1
2π

∫
Σ
FR ≡ 1

2π

∫
Σ
−g(F (1) + F (2) + F (3)) = ±nN + nS

nNnS
, Twist ,

= ±nS − nN
nNnS

, Anti-twist . (3.24)

The ± signs refer to the chirality of the spinors at the poles, as we make more precise below,
and we recall that for the twist class, the spinors have the same chirality at the two poles
while for the anti-twist class they have opposite chirality.

The behaviour of the R-symmetry gauge field and the azimuthal charge of the spinor
at the poles, which depends on the choice of gauge, was discussed in [3]. From (2.7) we
note that at the poles of the spindle the R-symmetry gauge field is equal to 2Qµ; this is
obviously true if the complex scalar vanishes at the pole, but it is also true if it doesn’t
since, as noted above, in this case we demand that Dθ = 0 at the pole. Recall, that s
is the azimuthal charge of the Killing spinor, in a given gauge. Then from (2.36), (2.37)
of [3] (see also the discussion in appendix C) we can conclude that the behaviour of the
gauge-invariant quantity s−Qz at the poles can be taken to satisfy

(s−Qz)|N = ± 1
2nN

, (s−Qz)|S = ∓ 1
2nS

, Twist ,

(s−Qz)|S = ± 1
2nS

, Anti-twist . (3.25)

With these general comments in mind, we will analyse the BPS equations in more
detail. In doing so we will recover some of these results directly. However, remarkably, we
will be able to achieve significantly more, almost completely fixing the behaviour of all fields
at the poles. Furthermore, we will be able to obtain an analytic expression for the central
charge of the dual field theory in terms of the spindle data (nN , nS) for both the twist
and the anti-twist class. Consistency of the resulting conditions will in fact eliminate the
possibility of any twist solutions, leaving us just with the possibility of anti-twist solutions.
The existence of such solutions can be demonstrated numerically, as we discuss in section 4.

5It would be interesting to determine whether or not there are spindle solutions where the complex scalar
vanishes at just one of the poles.
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3.3.1 Analysis of the BPS equations

We begin by noting that at the poles of the spindle we have k sin ξ → 0 and hence, taking
k 6= 0 we have cos ξ → ±1. We write cos ξN,S = (−1)tN,S , with tN,S ∈ {0, 1}. The poles are
located at y = yN,S and we label them so that yN < yS and y ∈ [yN , yS ]. By assumption,
the deficit angles at the poles are 2π(1− 1

nN,S
), with nN,S ≥ 1, and hence from the metric

we should demand that |(k sin ξ)′|N,S = 1
nN,S

. It is convenient to use the symmetry (B.31)
to fix

h ≥ 0 , ⇔ k sin ξ ≥ 0 , (3.26)

using (3.13). We then must have (k sin ξ)′|N > 0 and (k sin ξ)′|S < 0. With y ∈ [yN , yS ] we
therefore impose

(k sin ξ)′|N,S = (−1)lN,S
nN,S

, lN = 0, lS = 1 . (3.27)

From the general analysis of [3] we know that there are two classes to consider, the
twist and the anti-twist. In the twist class the preserved spinors have the same chirality at
the two poles while in the anti-twist class they have opposite chirality. Thus, we have6

cos ξ|N,S = (−1)tN,S ; Twist: (tN , tS) = (1, 1) or (0, 0),
Anti-Twist: (tN , tS) = (1, 0) or (0, 1) . (3.28)

Next, from the BPS equation (3.14) we have (k sin ξ)′ = −2 cos ξ(s−Qz) and hence we
can write

(s−Qz)|N,S = 1
2nN,S

(−1)lN,S+tN,S+1 , (3.29)

exactly as in (3.25). We can now obtain an expression for the R-symmetry flux. From (2.7)
we have 1

2F
R = dQ + d(1

4(cosh 2ϕ − 1)Dθ). Given our ansatz and integrating over the
spindle, the second term on the right hand side will not contribute since either ϕ = 0 at a
pole or if not then Dzθ = 0 at that pole as in (3.22) (see appendix C). The contribution
from the first term can be evaluated using (3.29) and we obtain

1
2π

∫
Σ
FR ≡ 1

2π

∫
Σ
−g(F (1) + F (2) + F (3)) = nN (−1)tS+1 + nS(−1)tN+1

nNnS
, (3.30)

exactly as in (3.24).
Continuing, we next note that ∂ϕQz = −1

2 sinh 2ϕDzθ and hence using the same
argument as in the previous paragraph, we deduce that ∂ϕQz = 0 at the poles. From the
BPS constraint (3.15) we then deduce ∂ϕW = 0 at the poles. Thus,

∂ϕQz|N,S = ∂ϕW |N,S = 0. (3.31)

6In the anti-twist case we could utilise the symmetry (B.33) and a relabelling of the poles to reduce to
either (tN , tS) = (1, 0) or (tN , tS) = (0, 1), but to simplify the presentation we don’t do that.
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It is interesting to point out that we can reach this conclusion another way: from the BPS
equation for ϕ in (3.10), we see that whenever sin ξ = 0 we require ∂ϕW to also vanish to
ensure that ϕ stays finite. Thus, at a pole we deduce ∂ϕW |N,S = 0 and hence from (3.15)
∂ϕQz|N,S = 0 also.

To make further progress we will now assume that the complex scalar is non-vanishing
at both poles which implies (see appendix C)

ϕ|N , ϕ|S 6= 0 , ⇒ Dzθ|N = Dzθ|S = 0 . (3.32)

This immediately implies that the flux of the U(1) which the complex scalar is charged
under must vanish, as in (3.23):

1
2π

∫
Σ
g(F (1) + F (2) − F (3)) = (Dzθ)|ySyN = 0 . (3.33)

With the R-symmetry flux quantised as in (3.30), we just need to impose one more condition
to ensure that the general flux quantisation condition (3.21) is satisfied for all gauge-fields.

Proceeding, given (3.32), the second condition in (3.31) and the expression for W
in (2.4) imply that

(e6α − 2 cosh 2β)|N,S = 0 , ⇒ W |N,S = −e4α|N,S . (3.34)

We now want to examine the value of the conserved charges ER, EF , given in (3.16), at both
poles. It is convenient to first define two quantities

M(1) ≡ ge4αeV , M(2) ≡ −2κ+ 2M(1) cos ξ , (3.35)

and for future reference we note thatM(1) > 0. We then notice from (3.16) that we can write

ER =
M2

(1)
g2

[
−κ+M(2)e

−12α
]

+ κe2V+2α(e6α − 2 cosh 2β) ,

(EF )2 =
M4

(1)
g4

[
1− 4e−12α

]
+
M4

(1)
g4 e−12α

[
4 cosh2 2β − e12α

]
, (3.36)

and observe that the second term on the right hand side vanishes at the poles, for both lines,
as a consequence of (3.34). Furthermore, using (3.34) and the first constraint equation
in (3.15) we deduce that at the poles

M(1)|N,S = 2(−1)tN,Sκ− 1
knN,S

(−1)lN,S ,

M(2)|N,S = 2κ− 2
knN,S

(−1)lN,S+tN,S . (3.37)

We can now evaluate ER at each of the two poles and, being constant, these values must
be equal to each other. The same applies to (EF )2 and so we deduce that αN,S are fixed
by solving a set of linear equations:(

−4M4
(1)|N 4M4

(1)|S
M2

(1)|NM(2)|N −M2
(1)|SM(2)|S

)(
e−12αN

e−12αS

)
=
(

M4
(1)|S −M

4
(1)|N

−κM2
(1)|S + κM2

(1)|N

)
. (3.38)
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We now take stock of these results. For a given κ = ±1, consider fixing spindle data
nN , nS , tN,S , along with the constant k. Solving (3.38) then allows us to obtain α at both
poles of the spindle, αN,S , in terms of (nN , nS , tN,S , k). We can then also obtain7 β and V at
both poles using (3.34) and the definition ofM(1) in (3.35). Notice from (3.36) we must have

0 < e−12αN,S ≤ 1/4 , (3.39)

and this restricts the allowed range of k for given spindle data nN , nS , tN,S . We also highlight
that from (3.37), the values of α, β and V at the poles just depend8 on the combinations
knN and knS .

Thus, for each κ = ±1, given spindle data nN , nS , tN,S and the constant k satisfying
the above constraint, we have specified the values of α, β, V at both poles. We also have ξ
at both poles from (3.28). We therefore just need to specify the value of ϕ at one of the
poles, and recall we have assumed that this is non-vanishing, in order to obtain a solution
to the BPS equations. We will construct such solutions numerically in section 4. Before
doing that we will show that further progress can be made by analysing the fluxes.

3.3.2 Fluxes

We now show, remarkably, that we can obtain expressions for the overall fluxes of the
three gauge fields on the spindle in terms of the spindle data at the poles as expressed in
the previous subsection in terms of nN , nS , tN,S , k. Furthermore, we will be able to invert
these and obtain an expression for k in terms of nN , nS , tN,S and the quantised flavour flux
pF ≡ p1 − p2, where pi are defined in (3.21).

We first note that we can use the BPS equations (3.10) to re-express the field
strengths (3.12) as total y derivatives of expressions that depend only on the scalar fields,
warp factors, the angle ξ and k:

F (i)
yz = (a(i))′ = (I(i))′ , (3.40)

where

I(1) ≡ 1
2ke

V cos ξ e−2α+2β , I(2) ≡ 1
2ke

V cos ξ e−2α−2β , I(3) ≡ 1
2ke

V cos ξ e4α . (3.41)

In appendix B.1 we comment on how we obtained these expressions. This immediately
allows us to express the fluxes in terms of pole data:

pi
nNnS

≡ 1
2π

∫
Σ
gF (i) = g I(i)

∣∣∣S
N
. (3.42)

On the other hand, we can use the expressions from the previous subsection to relate
these expressions at the poles to nN , nS , tN,S , k as follows:

I(1)|N,S = 1
2(I0 ± I∆)|N,S ,

I(2)|N,S = 1
2(I0 ∓ I∆)|N,S ,

I(3)|N,S = I0|N,S , (3.43)
7Notice that the sign of EF is the sign of κβ. Therefore, for any solution for αN,S , one gets two possible

boundary conditions of β for a given κ.
8The two-forms F34e

3 ∧ e4 evaluated at the poles have an additional explicit dependence on k.
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where

I0|N,S ≡
1
2gkM(1)|N,S(−1)tN,S ,

I∆|N,S ≡
1
2gkM(1)|N,S(−1)tN,S

√
1− 4e−12αN,S , (3.44)

and the ± sign in (3.43) depends on the chosen sign of β (see footnote 7 and we also
note that we could fix this sign using the symmetry (2.5) if desired). Notice that I0|SN is
independent of k, and in fact

gI0|SN = 1
2(I(1) + I(2) + I(3))|SN = 1

2
nN (−1)tS + nS(−1)tN

nNnS
,

(I(1) + I(2) − I(3))|N,S = 0 , (3.45)

in agreement with the overall R-symmetry flux and vanishing of the flux of the broken U(1),
respectively. Furthermore, proper quantization conditions for all three fluxes then imply
the following:

1. p3 = nNnS gI0|SN ∈ Z. This condition depends only nN , nS , and is satisfied as long
as nN (−1)tS + nS(−1)tN is even.

2. pF ≡ p1 − p2 = sign(β)nNnS gI∆|SN ∈ Z. This condition translates to a condition on
k.

3. Notice that p3 = 2p1 − pF and hence p3, pF are both even or both odd.

We can now invert the above relations to obtain k in terms of nN , nS , tN,S and pF . To
this end, we first note that from (3.44) we have

I∆|N,S = g

2k
(−1)tN,S
M(1)|N,S

|EF | , (3.46)

where EF is the conserved charge given in (3.36). Using the fact that EF is conserved and
in particular the same value at the two poles, we have

gI∆|SN = g2

2 k|EF |
[

(−1)tS
M(1)|S

− (−1)tN
M(1)|N

]
= g2|EF |

(−1)tN+tS+1

M(1)|SM(1)|N

(
gI0|SN

)
, (3.47)

and thus
p2
F

p2
3

=
(M(1)|N )2

(M(1)|S)2 (1− 4e−12αN ) . (3.48)

We also note that sign(β) = sign(pF )sign(p3)(−1)tN+tS+1. Using the previous expressions for
M(1) and e−12α at the poles expressed in terms of nN , nS , tS and k obtained by solving (3.38),
we can invert this expression and find an expression for k. In the twist class, labelled by tN
as in (3.28), we find

k = κ(−1)1+tN (nN + nS)2(n2
N − nNnS + n2

S)− 4nNnSp2
F

nNnS(nN − nS)
(
3(nN + nS)2 + 4p2

F

) , Twist , (3.49)

while for the anti-twist class, labelled by tN as in (3.28), we get

k = κ(−1)tN (nN − nS)2(n2
N + nNnS + n2

S) + 4nNnSp2
F

nNnS(nN + nS)
(
3(nN − nS)2 + 4p2

F

) , Anti-Twist . (3.50)
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3.3.3 Central charge

We now obtain an expression for the central charge of the dual d = 2, N = (0, 2) SCFT. We
first note that the five-dimensional Newton’s constant is given by (G(5))−1 = N2g3/(4π).
This is associated with the AdS5 × S5 vacuum solution, dual to N = 4 SYM with gauge
group SU(N), having an a-central charge aN=4 = πR3/8G(5) = N2/4, where recall that
the radius of the AdS5 space for this solution is R = 2/g. Similarly the LS AdS5 solution
with radius RLS = 3/(22/3g) gives an a-central charge aLS = 27N2/128. The three-
dimensional Newton’s constant for a theory admitting a unit radius AdS3 solution is then
(G(3))−1 = (G(5))−1∆z

∫ yS
yN
eV |fh|dy (not using conformal gauge (3.17) here) and the d = 2

central charge is given by c = (3/2)(G(3))−1.
We next note the remarkable result that the integrand appearing in the central charge

can again be expressed as a total derivative,

eV fh = ke2V f sin ξ = − k

2κ
(
e3V cos ξ

)′
, (3.51)

and hence the central charge can be expressed in terms of data at the poles. Recall that
we have been working in conformal gauge (3.17) so that the integrand appearing in the
central charge integral is e2V |h|. Recall, furthermore, that we used a symmetry of the BPS
equations to set h ≥ 0 in (3.26) and so we can remove the absolute value in the integrand.
We thus obtain

c = 6N2
(
g

2

)3 (
− k

2κ

)
[e3V cos ξ]SN

= −3N2k

8κ (M3
(1)|Se

−12αS (−1)tS −M3
(1)|Ne

−12αN (−1)tN ) , (3.52)

where we used ∆z = 2π. Using the results for k and M(1) in terms of nN , nS , tS and pF
from the previous subsections, we can now get expressions for the central charge in terms
of these parameters.

For the twist case we find

c = κ(−1)tN+1 3(nS + nN )
[
(nN + nS)2 − 4p2

F

] [
3(nN + nS)2 + 4p2

F

]
32nNnS

[
(nN + nS)2(n2

N − nNnS + n2
S)− 4nNnSp2

F

]N2 . (3.53)

By construction c > 0. Recall that we also have M(1)|N,S > 0 and in addition that
0 < e−12αN,S ≤ 1/4 from (3.39). Remarkably we find that these inequalities eliminate the
twist case completely!

On the other hand for the anti-twist case we find

c = κ(−1)tN 3(nN − nS)
[
(nN − nS)2 − 4p2

F

] [
3(nN − nS)2 + 4p2

F

]
32nNnS

[
(nN − nS)2(n2

N + nNnS + n2
S) + 4nNnSp2

F

]N2 . (3.54)

Imposing exactly the same positivity conditions we just mentioned, imposes the following
constraints for the anti-twist class:

tN = 0, κ > 0, or tN = 1, κ < 0 ⇒ (nN − nS) > 2|pF | ≥ 0 ,
tN = 0, κ < 0, or tN = 1, κ > 0 ⇒ (nS − nN ) > 2|pF | ≥ 0 . (3.55)
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We also recall from the conclusions listed just below (3.45) that in order for p3 to be an
integer we require nN −nS to be even and p3, pF are both even or both odd. The individual
fluxes for these anti-twist solutions can be expressed in the form

p1 = (−1)tN nS − nN4nNnS
+ pF

2 ,

p2 = (−1)tN nS − nN4nNnS
− pF

2 ,

p3 = (−1)tN nS − nN2nNnS
. (3.56)

We find it remarkable that we have been able to obtain these results without solving the
BPS equations. Our numerical investigations indicate that providing the above conditions
are satisfied then a spindle solution to the BPS equations in the anti-twist class with
properly quantised flux does in fact always exist.

For the special case that we set pF = 0, we obtain

c = κ(−1)tN 4(nN − nS)3

3nNnS(n2
N + nNnS + n2

S)
aLS , (3.57)

where aLS = 27N2/128 is the a-central charge of the d = 4 LS SCFT. We also recall from
point 3 below (3.45) that for this case nN − nS must be divisible by 4 to ensure that we
have properly quantised fluxes. In fact for the pF = 0 case there is an associated class
of analytic AdS3 × Σ solutions to the BPS equations, as we discuss in the next section.
Notice that the central charge (3.57) for these solutions has the same form as other type IIB
solutions obtained by uplifting solutions of minimal gauged supergravity on Sasaki-Einstein
spaces [2].

4 Solving the BPS equations

4.1 Analytic solutions for pF = 0

When pF = 0 we can find analytic AdS3 × Σ solutions in the anti-twist class by utilising
the truncation to minimal D = 5 gauged supergravity that is associated with the LS AdS5
solution (see appendix A.5) and the class of AdS3 × Σ solutions given in [2]. Note that
these solutions are not given in the conformal gauge (3.17).

Specifically we find that the following solves the general BPS equations given in (3.10)–
(3.11) along with (3.12). We set the scalars to have the same values as in the LS AdS5
vacuum solution,

e6α = 2, e2ϕ = 3 , β = 0 , (4.1)

and set θ = 0. The metric and gauge fields are given by

ds2 = 9
24/3g2

[4y
9 ds

2(AdS3)− y

q(y)dy
2 − q(y)

36y2 c
2
0dz

2
]
,

A(1) = A(2) = 1
2A

(3) = −
[
c0κ

8g

(
1− a

y

)
+ s

2g

]
dz , (4.2)
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and we also have

sin ξ = −
√
q(y)

2y3/2 , cos ξ = κ
3y − a
2y3/2 . (4.3)

The function q(y) is the cubic

q(y) = 4y3 − 9y2 + 6ay − a2 , (4.4)

where the constant a and the constant c0 given in (4.2) are given by

a = (nS − nN )2(2nS + nN )2(nS + 2nN )2

4(n2
S + nSnN + n2

N )3 ,

c0 = 2(n2
S + nSnN + n2

N )
3nSnN (nS + nN ) . (4.5)

We take nS > nN with y ∈ [yN , yS ] where yN , yS are the two smallest roots of the cubic
q(y) given by

yN = (n2
S + nSnN − 2n2

N )2

4(n2
S + nSnN + n2

N )
, yS = (n2

N + nSnN − 2n2
S)2

4(n2
S + nSnN + n2

N )
. (4.6)

The central charge of the dual d = 2 SCFT can be calculated directly from this solution
and we precisely recover (3.57) for the case (−1)tN+1κ = +1.

4.2 Numerical solutions for pF 6= 0

We now use the results of section 3.3 to numerically construct AdS3 × Σ solutions to the
BPS equations in the anti-twist class when pF 6= 0. In section 3.3, which we recall used the
conformal gauge (3.17), we showed how given spindle data nN , nS , tS and for each κ = ±1,
we can obtain the values of α, β, V and ξ at both poles of the spindle. Furthermore, for a
specified value of the flux pF the integration constant k is fixed via (3.50). Thus, we can
search an AdS3 × Σ solution by specifying the value of ϕ at one of the poles, integrating
the BPS equations and then looking for a solution for which sin ξ vanishes for some other
finite value of the coordinate y.

More explicitly, we start the integration at y = yN , say, and for convenience we take
yN = 0. At this pole we have sin ξ = 0 by assumption. For generic values of ϕ at y = 0
we find that solving the BPS equations with a given k and initial values for all functions
as described above leads to solutions which do not have another finite value of y = yS for
which sin ξ = 0 and hence will not give rise to a solution with Σ a compact spindle (in fact
the solutions have divergent ϕ at some finite value of y). We therefore need to scan over a
range of initial values for ϕ in order to find the compact spindle solutions. When we do find
such a solution then our procedure automatically guarantees that the fluxes are all suitably
quantised. We have carried out this procedure for about 100 different values9 of nN , nS , pF
and provided that the condition given in (3.55) is satisfied we have always found an explicit

9Note that the symmetry (2.5) can be used to flip the sign of pF .
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Figure 1. An AdS3 × Σ solution in the anti-twist class with nN = 1, nS = 7 and pF = 1. In the
left panel we have plotted the metric functions eV and h while in the right panel we have plotted
the three scalar functions α, β and ϕ.

(nN , nS) Value of (ϕN , ϕS)
(1,5) pF = 0: ( 1

2 ln 3, 1
2 ln 3);

(1,7) |pF | = 1: (0.50516, 0.51895);
(1,9) pF = 0: ( 1

2 ln 3, 1
2 ln 3); |pF | = 2: (0.44938, 0.47913);

(1,11) |pF | = 1: (0.53187, 0.54025); |pF | = 3: (0.40487, 0.44471);
(1,13) pF = 0: ( 1

2 ln 3, 1
2 ln 3); |pF | = 2: (0.50093, 0.52388);

|pF | = 4: (0.37019, 0.41593);
(3,7) pF = 0: ( 1

2 ln 3, 1
2 ln 3);

(3,11) pF = 0: ( 1
2 ln 3, 1

2 ln 3); |pF | = 2: (0.45936, 0.46794);
(3,13) |pF | = 1: (0.53441, 0.53747); |pF | = 3: (0.41749, 0.43002);
(5,9) pF = 0: ( 1

2 ln 3, 1
2 ln 3);

(5,11) |pF | = 1: (0.51118, 0.51257);
(5,13) pF = 0: ( 1

2 ln 3, 1
2 ln 3); |pF | = 2: (0.46175, 0.46547);

Table 1. Values of the scalar field ϕ at the north and south pole, (ϕN , ϕS), for some representative
AdS3×Σ solutions for spindle data nN , nS and flavour flux pF . In general we have nS−nN even. The
pF = 0 solutions exist when nS−nN is divisible by four; these are the analytic solutions of section 4.1.

(and unique) spindle solution. This provides strong evidence that the condition (3.55) is
sufficient for the anti-twist solutions to exist.

We have used the numerically constructed AdS3 × Σ solutions to directly calculate
the central charge by carrying out the integral discussed in section 3.3.3. Our numerical
solutions are such that we find agreement with the analytic result (3.54) to the numerical
accuracy that we used, roughly of order 10−8. In figure 1 we have plotted the metric
and scalar functions for a representative example with nN = 1, nS = 7 and pF = ±1.
For this example we found the explicit value of the scalar field at the poles are given by
ϕ|N ∼ 0.50516 and ϕ|S ∼ 0.51895.

In table 1 we have presented the values of ϕ at the poles for a few more illustrative
solutions. Recall that we require nS − nN to be even and that pF = 0 solutions exist when
nS − nN is divisible by four. The individual fluxes are given in (3.56).
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5 Field theory analysis

In this section we analyse the N = 1 d = 4 LS SCFT compactified on a spindle. Assuming
that the resulting theory flows to an N = (0, 2) d = 2 SCFT at low energies, we can calculate
the central charge using anomaly polynomials and c-extremisation. The calculation runs
along similar lines to [2].

The LS SCFT has U(1)R × SU(2) symmetry. We want to focus on an abelian subgroup
of the flavour symmetry, U(1)F ⊂ SU(2). From table 2 of [23], in the large N limit we have

Tr(R3) = 3N2

4 , T r(RF 2) = −N
2

4 , T r(R2F ) = Tr(F 3) = 0 , (5.1)

where the trace is over chiral fermions. We can thus write the 6-form anomaly polynomial
for the LS theory, in the large N limit, as

ALS = N2

8 [c1(R)3 − c1(R)c1(F )2] , (5.2)

where c1(R) and c1(F ) are the first Chern classes for the U(1)R and U(1)F bundles.
We now consider the LS theory compactified on a spindle Σ with an azimuthal symmetry,

specified by relatively prime integers nN , nS ≥ 1, and background magnetic fluxes for both
U(1)R, consistent with supersymmetry, and U(1)F . We want to carry out c-extremisation [8]
for the resulting d = 2 theory allowing for a mixing of the U(1)R, U(1)F and U(1)J
symmetries, where J generates azimuthal rotations on the spindle.

We let y, z parametrise the spindle with y ∈ [yN , yS ] and ∆z = 2π. Following [2] we
introduce connection one-forms

A (R) = ρR(y) (dz +AJ ) , A (F ) = ρF (y) (dz +AJ ) , (5.3)

with curvatures F (R) = dA (R), F (F ) = dA (F ) where

F (R) = ρ′R(y)dy ∧ (dz +AJ ) + ρR(y)FJ ,

F (F ) = ρ′F (y)dy ∧ (dz +AJ ) + ρF (y)FJ , (5.4)

and FJ = dAJ . We have the flux conditions

1
2π

∫
Σ

F (R) = [ρR]ySyN = pR
nNnS

,

1
2π

∫
Σ

F (F ) = [ρF ]ySyN = pF
nNnS

, (5.5)

with pR, pF ∈ Z.
There are two possibilities, the twist and the anti-twist [3]. We will work in a gauge for

the R-symmetry in which the spinors on the spindle are independent of the z coordinate
and we can write

ρR(yN ) = (−1)tN
nN

, ρR(yS) = (−1)tS+1

nN
, (5.6)

– 18 –



J
H
E
P
1
0
(
2
0
2
2
)
0
6
7

with pR = (−1)tS+1

nN
+ (−1)tN+1

nS
. We have tN = (0, 1) and tS = tN for the twist case and

tS = tN + 1 for the anti-twist case. From the expression for the flavour symmetry flux we
can write

ρF (yN ) = α0, ρF (yS) = pF
nNnS

+ α0 , (5.7)

where α0 is arbitrary; we will se that α0 will drop out of the final expressions for the
central charge.

The curvature forms F (R),F (F ) define corresponding first Chern classes c1(LR) =
[F (R)/2π], c1(LF ) = [F (F )/2π], and similarly we define c1(J ) = [FJ /2π]. Following [2],
to obtain the d = 2 anomaly polynomial A2d we make the following substitution in the
d = 4 anomaly polynomial A4d:

c1(R)→ c1(R) + 1
2c1(LR) , c1(F )→ c1(F ) + c1(LF ) , (5.8)

and then integrate over Σ. Here the factor of 1/2 arises because10 the field theory R-
symmetry generator is normalised so that the supersymmetry generator has charge 1,
whereas the expressions in (5.6) are for when it has charge 1/2, as in our earlier supergravity
calculation. Performing the integral we find11

A2d =
∫

Σ
A4d = N2

8

{
c1(R)2

(3
2[ρR]ySyN

)
− c1(F )2

(1
2[ρR]ySyN

)
+ c1(J )2

(1
8[ρ3

R]ySyN −
1
2[ρRρ2

F ]ySyN
)
− c1(R)c1(F )(2[ρF ]ySyN )

+ c1(R)c1(J )
(3

4[ρ2
R]ySyN − [ρ2

F ]ySyN
)
− c1(F )c1(J )([ρRρF ]ySyN )

}
. (5.9)

Assuming that the LS theory compactified on a spindle flows to a SCFT in the IR we can
determine the d = 2 superconformal R-symmetry and central charge via c-extremisation [8].
Specifically, the d = 2 superconformal R-symmetry extremises the trial function

ctrial = 3 tr γ3R
2
trial , (5.10)

where

Rtrial = R+ xF + εJ , (5.11)

with x and ε parametrising the mixing with the flavour symmetries. Now the coefficient of
1
2c1(Li)c1(Lj) in A2d is Trγ3QiQj where the global symmetry Qi is associated to the U(1)
bundle Li and γ3 is the d = 2 chirality operator. From (5.9) we therefore have

ctrial = 3N2

4

[ 3
2[ρR]ySyN − x

2
(1

2[ρR]ySyN
)

+ ε2
(1

8[ρ3
R]ySyN −

1
2[ρRρ2

F ]ySyN
)

− x(2[ρF ]ySyN ) + ε

(3
4[ρ2

R]ySyN − [ρ2
F ]ySyN

)
− xε([ρRρF ]ySyN )

]
. (5.12)

10If the supercharge has charge 1 with respect to the gauge field AR, then it has charge 1/2 with respect
to 2AR.

11Note that we can rewrite this expression as a “gluing formula” analogous to section 4.1 of [5].
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We can now extremise with respect to x, ε and then get a prediction for the central
charge. First consider the twist case with tS = tN . We find the on-shell central charge is
given by

c = (−1)tN+1 3(nS + nN )
[
(nN + nS)2 − 4p2

F

] [
3(nN + nS)2 + 4p2

F

]
32nNnS

[
(nN + nS)2(n2

N − nNnS + n2
S)− 4nNnSp2

F

]N2 . (5.13)

This extremum occurs at

ε∗ = (−1)tN (nN − nS)nSnN (3(nS + nN )2 + 4p2
F )

[(nS + nN )2(n2
S − nSnN + n2

N )− 4nSnNp2
F ]
,

x∗ = (−1)tN+1 (nS + nN )2(nN − 2nS)pF + 4nNp3
F

(nS + nN )2(n2
S − nSnN + n2

N )− 4nSnNp2
F

− α0ε∗ . (5.14)

Notice that α0 has dropped out of the expression of the on-shell central charge. Furthermore
note that there is a preferred value for α0 for which x∗ = 0. Remarkably, the result for the
central charge for the twist case given in (5.13) is exactly the same as the gravity result (3.53)
with κ = +1 (which has been implicitly assumed in the field theory computation). However,
we recall that there are, in fact, no supergravity solutions for the twist case.

Also, still for the twist case, notice that when we set nS = nN = 1 we find that at the
extremal point we have

c = (−1)tN+1 3N2

4 (3 + p2
F ), ε∗ = 0, x∗ = pF . (5.15)

We can now compare with the calculation for the case of a topological twist on an S2 as
discussed in [23]. Setting their genus g = 0, if we identify our flavour x mixing parameter
with their ε and our pF /2 with their b (which they note is half integer valued for g = 0 just
below their (2.12)), then we get exact agreement for the on-shell central charge,12 up to an
overall sign. In fact we must have tN = +1 for (5.15) to be positive.

We now consider the anti-twist case with tS = tN + 1. We find the on-shell central
charge is given by

c = (−1)tN 3(nN − nS)
[
(nN − nS)2 − 4p2

F

] [
3(nN − nS)2 + 4p2

F

]
32nNnS

[
(nN − nS)2(n2

N + nNnS + n2
S) + 4nNnSp2

F

]N2 . (5.16)

This result agrees exactly with the gravity calculation (3.54) κ = +1, and we recall that
supergravity solutions do exist for the anti-twist case. This extremum occurs at

ε∗ = (−1)tN+1 (nN + nS)nSnN (3(nS − nN )2 + 4p2
F )

(nN − nS)2(n2
S + nSnN + n2

N ) + 4nSnNp2
F

,

x∗ = (−1)tN (nN − nS)2(nN + 2nS)pF + 4nNp3
F

(nN − nS)2(n2
S + nSnN + n2

N ) + 4nSnNp2
F )
− α0ε∗ . (5.17)

12We also note that if we set ε = 0 at the start of the above calculation along with nN = nS = 1 then we
would find an off-shell central charge ctrial = (−1)tN +1 3N2

4 (3 + 2(−1)tN pFx− x2), which similarly aligns
with the result in [23].

– 20 –



J
H
E
P
1
0
(
2
0
2
2
)
0
6
7

Note in the special case when we set pF = 0, we get the on-shell results

c = (−1)tN 9(nN − nS)3

32nSnN (n2
S + nSnN + n2

N )
N2 ,

ε∗ = (−1)tN+1 3(nS + nN )nSnN
n2
S + nSnN + n2

N

,

x∗ = −α0ε∗ , (5.18)

in alignment with (3.57).

6 Discussion

We have constructed a new class of supersymmetric AdS3 × Σ solutions of the extended
LS model, a sub-truncation of D = 5 maximal gauged supergravity. All of the solutions
lie within the anti-twist class. After uplifting to D = 10 these give rise to supersymmetric
AdS3 × Y7 solutions of type IIB supergravity with Y7 a compact manifold that consists of
an S5 fibration over the spindle Σ. The fact that the orbifold singularities of the spindle
disappear in the uplift to Y7 is a consequence of the fact that the U(1)3 fluxes in the D = 5
solution have been suitably quantised [2, 3, 9].

A remarkable aspect of our analysis of the BPS equations is that we derived analytic
expressions for the overall fluxes of the three gauge fields on the spindle in terms of the
spindle data at the poles as well as an integration constant k. Furthermore, this enabled
us to obtain an analytic expression for the central charge of the dual SCFT expressed in
terms of the deficit angles of the poles and the flavour magnetic flux through the spindle.
It would be desirable to have a better understanding as to why this was possible, as it
seems likely that it will also apply in the context of some other supersymmetric solutions of
supergravity theories.

The AdS3 × Y7 solutions are dual to a new class of N = (0, 2), d = 2 SCFTs and we
have calculated the associated central charge in the large N limit. We have also made
a direct comparison with a field theory computation. Specifically, we considered the LS
d = 4 SCFT compactified on a spindle and, assuming that the resulting theory flows to an
N = (0, 2) SCFT in the IR, we computed the central charge using anomaly polynomials
and c-extremisation. Remarkably we find exact agreement with the gravity computation.

It is curious that all of the new AdS3 × Σ solutions lie within the anti-twist class. This
is despite the fact that the associated field theory computation for the central charge does
not seem to rule out the twist case. This situation is somewhat parallel to the analysis of the
LS theory compactified on a Riemann surface of genus g, Σg [23]. It was shown in [23] that
c-extremisation does not obviously rule out the genus g = 0 or g = 1 cases and yet AdS3×Σg

solutions were only found for g > 1. It seems likely that these results are not unrelated.
It would be very interesting to construct black string solutions of type IIB supergravity

that started off at the AdS5 × S5
LS solution in the UV and ended up at the new AdS3 × Y7

solutions in the IR. The spindle horizon indicates that such black strings should be
accelerating. However, there are obstacles in constructing such solutions in a straightforward
way. One might hope for solutions within gauged supergravity that preserves supersymmetry
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along the flow as well as preserving the azimuthal symmetry of the spindle and the flavour
symmetry preserved by the IR solution. Correspondingly the conformal boundary should
be of the form R1,1 ×Σ and preserve these symmetries. One can consider the simplest class
of AdS3 × Σ solutions with vanishing flavour flux, pF = 0, which have been constructed
analytically using minimal D = 5 gauged supergravity [2]. For this class no black string
solutions of minimal gauged supergravity are known to exist. If they do exist, then the
conformal boundary of such black string solutions should admit d = 4 conformal Killing
spinors charged under the R-symmetry [27–29]. However, in appendix D we show that
such Killing spinors only lie within the twist class (in fact the usual topological twist)
and not the anti-twist class. Perhaps black string solutions can be constructed within a
bigger truncation of gauged supergravity or in type IIB supergravity itself, allowing for
more general deformations on the boundary and relaxing one or more of the conditions of
supersymmetry, azimuthal and flavour symmetry.

Similar issues have been encountered for the class of supersymmetric AdS2×Σ solutions
of D = 4 minimal gauged supergravity in the anti-twist class [9]. There it was shown
that a general class of magnetically charged and accelerating black hole solutions in AdS4
do in fact exist which approach AdS2 × Σ solutions in the near horizon limit. However,
the solutions that approach the supersymmetric locus have the peculiar feature that the
conformal boundary gets pierced by an acceleration horizon and degenerates into two pieces,
each realising supersymmetry via a topological twist, but a different one on each component.
It was also shown that for a more general class of accelerating black hole solutions with the
addition of electric charge and rotation, solutions to the conformal Killing spinor equation
do exist [9] and furthermore there are additional potential connections with a locus of
complex solutions as discussed in [11]. It is clearly desirable to have a better understanding
of anti-twist black hole and black string solutions.

In a complementary direction, it is also interesting to ask if there are RG flows that
connect the new AdS3 × Σ solutions of the extended LS model with the analytic AdS3 × Σ
solutions of the STU model [3, 5, 6]. For this to be possible we should demand that the
fluxes through the spindle are the same for both solutions. This implies that we should
consider the sub-class of STU models which have vanishing flux for the U(1) that is carried
by the complex scalar in the extended LS model. In appendix E we show that imposing
this condition on the solutions of the STU model eliminates the twist class, in alignment
with the fact that we don’t find any twist solutions of the extended LS model. On the
other hand one finds that there is a family of anti-twist solutions in the STU model with
the same restrictions on the spindle data and fluxes as in the extended LS model solutions.
Furthermore, we find that central charge of these STU model solutions is always bigger
than the central charge of the extended LS model solutions. This strongly suggests that
there should be supersymmetric RG flows that start off with the STU solutions in the UV
and end up at the extended LS solutions in the IR.

A final comment is that it would be interesting to further analyse the geometry of Y7 in
the uplifted AdS3×Y7 solution. There has been significant recent progress in understanding
the GK geometry [30, 31] on AdS3×Y7 solutions of type IIB supergravity, dual to N = (0, 2)
d = 2 SCFTS, which only have non-vanishing five-form flux, starting with [32]. The new
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AdS3×Y7 solutions will have additional fluxes switched on and it would be very interesting to
cast the geometry in the language of [33]. Indeed this exercise could lead to the construction
of additional new classes of solutions.
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A Gauged supergravity truncations

We use conventions consistent with those of maximal SO(6) D = 5 gauged supergravity
in [34] with (+−−−−) signature. Motivated by the D = 3 + 2 split of the solutions that
we are interested in, a convenient basis for the Clifford algebra is given by

γ0 = σ2 ⊗ σ3, γ1 = iσ3 ⊗ σ3, γ2 = iσ1 ⊗ σ3 ,

γ3 = 1⊗ iσ1, γ4 = 1⊗ iσ2, (A.1)

with γ01234 = −1. Defining C = −C−1 = −iγ0γ4 and B = +B−1 = −iγ4, we have
CγAC

−1 = +γTA and BγAB−1 = +γ∗A. As in [34] a symplectic Majorana spinor εa, with
a = 1, 2 satisfies εa = C(ε̄a)T , with ε̄a = (εa)†γ0, where we raise and lower symplectic indices
using Ωab = Ω[ab] = (Ωba)∗, with ΩabΩbc = δca. For the SO(7) gamma matrices used in [34],
we take the explicit realisation given in appendix C.1 of [22].

Our starting point is the consistent Kaluza-Klein truncation of maximal SO(6) gauged
supergravity discussed in [25], extending [24]. It can be constructed in a two step procedure.
One first considers a Z2×Z2 ⊂ SO(6) invariant sector which gives rises to an N = 2 gauged
supergravity theory with two vector multiplets and 4 hypermultliplets (18 scalars in total).
Then one utilises an additional Z4 ⊂ SO(6) × SL(2), as in [24], to further truncate the
hypermultiplets. One is then left with a theory whose bosonic content consists of a metric,
three gauge fields A(1), A(2), A(3), two real and neutral scalars α, β that live in the N = 2
vector multiplets, and four complex and charged scalar fields ζj = eiθj tanhϕj that are
maintained from the hypermultiplets and parametrise13 the coset [SU(1, 1)/U(1)]4.

We have obtained this truncation using an ansatz for the SO(6) gauged supergravity
fields as in [24], but with some adjustments (also slightly differing from [36]). The 42
scalars parametrise the non-compact coset space E6(6)/USp(8) and can be characterised by
a 27×27 matrix VABab. The action of the Lie algebra of E6(6) can be displayed using a basis
adapted to the maximal subgroup SL(6,R)×SL(2,R) ⊂ E6(6). Specifically, the infinitesimal
E6(6) transformations acting on the vector space ẑAB = (ẑIJ , ẑIα), with I, J, . . . = 1, . . . , 6

13This should not be confused with the model of [35], also used in [26], with scalars parametrising the
same coset.
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and α, β, . . . = 1, 2 can be written (consistent with (A.35)and (A.36) of [34])

δẑIJ = −ΛKI ẑKJ − ΛKJ ẑIK +
√

2ΣIJKβ ẑ
Kβ ,

δẑIα = 1√
2

ΣKLIαẑKL + ΛIK ẑKα + Λαβ ẑIβ . (A.2)

Here, ΛI
J , Λα

β are real, traceless and generate SL(6,R) and SL(2,R), respectively, and
ΣIJKα is real and antisymmetric in IJK.

Similar to [24], we next introduce 6 real Cartesian coordinates xI and 2 real Cartesian
coordinates yα. We define the differential form14

Σ = 1
6ΣIJKαdx

I ∧ dxJ ∧ dxK ∧ dyα . (A.3)

Next we introduce four complex coordinates: z1 = x1 + ix2, z2 = x3 − ix4, z3 = x5 − ix6

and z4 = y1− iy2 (note the difference in z4 from [24]). We then define the following 4-forms
(note again the differences from [24]):

Υ1 ≡ −dz1 ∧ dz2 ∧ dz3 ∧ dz4 , Υ2 ≡ −dz1 ∧ dz̄2 ∧ dz̄3 ∧ dz4 ,

Υ3 ≡ −dz̄1 ∧ dz2 ∧ dz̄3 ∧ dz4 , Υ4 ≡ −dz̄1 ∧ dz̄2 ∧ dz3 ∧ dz4 . (A.4)

The parametrisation of the scalar coset in the truncated theory is then obtained by writing
the Σ tensor as (note the normalization used here):

Σ = 1
4
√

2

( 4∑
i=1

ζiΥi + c.c.
)
, (A.5)

where ζi = ϕie
iθi are 4 complex scalars, and the Λ tensor as

Λ = diag (−α+ β,−α+ β,−α− β,−α− β, 2α, 2α) , (A.6)

where α, β are two real scalars. The SO(6) gauge fields lie in a U(1)3 ⊂ SO(6) sector and
specifically, we take

A =



0 −A(1)

A(1) 0
0 A(2)

−A(2) 0
0 −A(3)

A(3) 0


. (A.7)

Finally, we set the two-forms to zero. Note these definitions are consistent with invariance
under Z2 × Z2 × Z4 as discussed in [24], which ensures the consistency of the truncation.
The 27-bein and other supergravity tensors are then derived as explained in [34].

14Note that in [24] there was a factor of 1/12 here instead; the difference is compensated in our normalisation
in (A.5).

– 24 –



J
H
E
P
1
0
(
2
0
2
2
)
0
6
7

The bosonic part of the Lagrangian of the resulting truncated model, in a mostly minus
signature, is given by

L = −1
4R+

4∑
j=1

[1
2(∂ϕj)2 + 1

8 sinh2 2ϕj (Dθj)2
]

+ 3(∂α)2 + (∂β)2 − P

− 1
4
[
e4α−4βF (1)

µν F
(1)µν + e4α+4βF (2)

µν F
(2)µν + e−8αF (3)

µν F
(3)µν

]
+ 1

2ε
µνρσδF (1)

µν F
(2)
ρσ A

(3)
δ ,

(A.8)

where

Dθ1 =
(
dθ1 + gA(1) + gA(2) − gA(3)

)
,

Dθ2 =
(
dθ2 + gA(1) − gA(2)

µ + gA(3)
)
,

Dθ3 =
(
dθ3 − gA(1) + gA(2) + gA(3)

)
,

Dθ4 =
(
dθ4 − gA(1) − gA(2) − gA(3)

)
. (A.9)

The scalar potential P is given by

P = g2

8

 4∑
j=1

(
∂W

∂ϕj

)2

+ 1
6

(
∂W

∂α

)2
+ 1

2

(
∂W

∂β

)2
− g2

3 W
2 , (A.10)

where W is the superpotential defined by

W = −1
4
[
(e−2α−2β + e−2α+2β − e4α) cosh 2ϕ1 + (−e−2α−2β + e−2α+2β + e4α) cosh 2ϕ2

+ (e−2α−2β − e−2α+2β + e4α) cosh 2ϕ3 + (e−2α−2β + e−2α+2β + e4α) cosh 2ϕ4
]
.

(A.11)

The model has various discrete symmetries, generalising those mentioned in section 3 of [26],
for example. These include

β → −β, ζ2 ↔ ζ3, A(1) ↔ A(2) , (A.12)

and

α→ 1
2(−α+ β), β → 1

2(β + 3α), ζ1 ↔ ζ3, A(1) ↔ A(3) . (A.13)

The model admits the maximally supersymmetric AdS5 vacuum solution with the AdS5
metric having radius squared equal to 4/g2. Within the dual N = 4 SYM theory we identify
the scalar fields α, β with bosonic mass deformations living in 20′ of SO(6) and ζj with
fermionic mass deformations living in the 10 of SO(6). If Xa are the six real scalars and λj
the four fermions of N = 4 SYM theory then, schematically, we have [24]:

∆ = 2 : α ↔ tr(X2
1 +X2

2 +X2
3 +X2

4 −X2
5 −X2

6 ) ,
β ↔ tr(X2

1 +X2
2 −X2

3 −X2
4 ) ,

∆ = 3 : ζj ↔ tr(λjλj + cubic in Xa) , j = 1, 2, 3, 4 , (A.14)

where ∆ is the conformal scaling dimension of the operator.
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The truncated model (A.8)–(A.11) is not supersymmetric as it has incomplete N = 2
hypermultiplets. However, we can determine the conditions that need to be satisfied in
order that a solution preserves some of this N = 2 supersymmetry. We start with the
N = 8 supersymmetry variations of the maximal theory [34] given by

δψµa = ∇µεa +Qµa
bεb −

1
6 gWabγµε

b − 1
6 Hνρ ab

(
γνργµ + 2γνδρµ

)
εb ,

1√
2
δχabc = γµPµabcd ε

d − 1
2 g Adabc ε

d − 3
4 γ

µνHµν [ab εc] , (A.15)

with ∇µ = ∂µ + 1
4ωµabγ

ab. We have Wab = Wba, Hνρab = Hνρ[ab], Aabcd = Aa[bcd] and
Qµab = Qµ(ab), where Qµab ≡ ΩbcQµa

c and Ωab is the symplectic form, which we choose to
be as in (C.5) of [22]. As in [22, 25], the N = 2 supersymmetry variations can be obtained
by considering the eigenvalues of the Wab tensor. Indeed there is a symplectic pair of such
spinors ηa(k), k = 1, 2, satisfying

Wab η
b
(k) = W ηa(k) , k = 1, 2 , (A.16)

with W as in (A.11). Explicitly we have

ηb(1) = 1
2(−1, 0, 1, 0, 0, 1, 0, 1) ,

ηb(2) = 1
2(0,−1, 0,−1,−1, 0, 1, 0) . (A.17)

Note that we have Ωab η
b
(1) = −ηa(2), Ωab η

b
(2) = ηa(1) and ηa(k)η

a
(l) = δ(k)(l). We can also define

Qµ ≡ Qµabηa(1)η
b
(2) = −Qµabηa(2)η

b
(1) ,

Hνρ ≡ Hνρabη
a
(1)η

b
(2) , (A.18)

and we note Qµabηa(1)η
b
(1) = Qµa

bηa(2)η
b
(2) = 0. The N = 2 supersymmetry parameters are

then given by a pair of symplectic Majorana spinors ε̂1, ε̂2, defined by

εa = ηa(1)ε̂1 + ηa(2)ε̂2, ⇒ εa ≡ Ωabε
b = −ηa(2)ε̂1 + ηa(1)ε̂2. (A.19)

Finally, it is convenient to parametrise the N = 2 supersymmetry variations by a complex
Dirac spinor defined by ε ≡ ε̂1 + iε̂2.

Using these ingredients we find that the vanishing of the gravitino variations in (A.15)
lead to the N = 2 supersymmetry conditions(

∇µ − iQµ −
ig

6 Wγµ −
1
12Hνρ(γνργµ + 2γνδρµ)

)
ε = 0 , (A.20)

with W as in (A.11),

Hµν = e2α−2βF (1)
µν + e2α+2βF (2)

µν + e−4αF (3)
µν ,

Qµ = −g2(A(1)
µ +A(2)

µ +A(3)
µ )− 1

4(cosh 2ϕ1 − 1)Dµθ1 −
1
4(cosh 2ϕ2 − 1)Dµθ2

− 1
4(cosh 2ϕ3 − 1)Dµθ3 + 1

4(cosh 2ϕ4 − 1)Dµθ4 , (A.21)

and note the sign of the last term.
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Carrying out a similar procedure for the N = 8 gaugino variations in (A.15), we find
the supersymmetry conditions associated with N = 2 gaugino variations are given by[

γµ∂µα+ ig

12∂αW −
1
12(e2α−2βF (1)

µν + e2α+2βF (2)
µν − 2e−4αF (3)

µν )γµν
]
ε = 0 ,[

γµ∂µβ + ig

4 ∂βW −
1
4(−e2α−2βF (1)

µν + e2α+2βF (2)
µν )γµν

]
ε = 0 , (A.22)

while those for the N = 2 hyperino variations are given by[
γµ∂µϕj + ig

2 ∂ϕjW + i∂ϕjQµγ
µ
]
ε = 0 . (A.23)

If we set the four charged scalars to zero, ζj = 0, we obtain the STU model; see
section A.4 below. From the STU model, we obtain the truncation to minimal D = 5
gauged supergravity by setting all gauge fields equal A(1) = A(2) = A(3). There is a second
way to reduce to minimal gauged supergravity associated with the LS AdS5 solution as we
discuss in section A.5.

We also note that there is an overlap with the ten scalar model of [35]. If we set ζj
to be purely imaginary we obtain a six scalar model. This can be obtained from [35] by
setting their αi = 0 (with the αi associated with boson masses in N = 4 SYM of the form
tr(X2

1 −X2
2 ), tr(X2

3 −X2
4 ) and tr(X2

5 −X2
6 )) as well as ϕ = 0 (dual to the gauge coupling).

Note that one should identify α, β here with −β1,±β2 in [35].

A.1 The extended LS subtruncation

This sub-truncation, which was also used in [23], is the one that is utilised in the paper. It
is obtained by further setting three of the charged fields to zero:

ϕ2 = ϕ3 = ϕ4 = θ2 = θ3 = θ4 = 0 . (A.24)

It keeps three gauge fields, one complex scalar,15 ζ1 = ϕ1e
iθ1 along with the two real

scalars α, β. This truncation is invariant under a U(1) × U(1)R subgroup of the global
SU(4) symmetry of the maximal gauge supergravity. More precisely, we first decompose
SU(3) × U(1)1 ⊂ SU(4) and then further decompose SU(2) × U(1)2 ⊂ SU(3) and define
U(1)R to be the diagonal subgroup of U(1)1 ×U(1)2.

For this truncation we have

W = 1
4
[
−2(e−2α−2β + e−2α+2β) cosh2 ϕ1 + e4α(−3 + cosh 2ϕ1)

]
,

Qµ = −g2(A(1)
µ +A(2)

µ +A(3)
µ )− 1

4(cosh 2ϕ1 − 1)Dµθ1 , (A.25)

with Dθ1 =
(
dθ1+gA(1)+gA(2)−gA(3)

)
. Clearly ζ1 is uncharged under the linear combina-

tion of gauge transformations δ(A(1),A(2),A(3)) = Λ(1,−1,0) as well as δ(A(1),A(2),A(3)) =
Λ(1,1,2). Moreover, from (2.8) we see that the former is a U(1) flavour symmetry, while
the latter is a U(1) R-symmetry.

15In the text we have dropped the subscript on ϕ1 and θ1.
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This truncation contains the supersymmetric LS AdS5 fixed point solutions given by

e6α = 2, cosh(2ϕ1) = 5
3 , (A.26)

with β = 0 and vanishing gauge fields. These solutions preserves SU(2)×U(1)R symmetry.
If we further truncate by setting A(1) = A(2) as well as β = 0 then we obtain a model
that preserves SU(2) × U(1)R symmetry which contains the metric, two gauge fields, a
complex scalar ζ1 and a real scalar field α, and also contains the LS fixed points. Further
setting the gauge fields to zero leads to an SU(2) × U(1)R invariant model with metric,
and two real scalar fields, α,ϕ1, which was used in [22] to construct the RG flow from the
maximally supersymmetric vacuum to the LS fixed point. One might refer to this as the LS
sub-truncation. The model of interest here, defined by (A.24), preserves a smaller amount
of the global symmetry, namely U(1) × U(1)R, and more fields, so we refer to it as the
extended LS sub-truncation.

From the extended LS truncation we can further reduce in two different ways to minimal
D = 5 gauged supergravity as we discuss in sections A.4 and A.5.

There is also overlap with the model considered in section 3.1 of [26].

A.2 The N = 2∗ subtruncation

This sub-truncation is obtained by setting

ϕ1 = ϕ4 = θ1 = θ4 = 0 , β = 0 ,

ϕ2 = ϕ3 , θ2 = θ3 , A(1)
µ = A(2)

µ . (A.27)

It thus keeps two gauge fields, one complex scalar ζ2 and one real scalar α. For this model
we have

W = −1
2(2e−2α + e4α cosh 2ϕ2) ,

Qµ = −g2(2A(1)
µ +A(3)

µ )− 1
2(cosh 2ϕ2 − 1)Dµθ2 , (A.28)

with Dθ2 =
(
dθ2 + gA(3)

)
.

When we set A(1) = 0, the truncation is invariant under an SU(2)R×U(1)′ subgroup of
the SU(4) symmetry of the maximal gauged supergravity. More precisely, we first decompose
SU(2)1×SU(2)2×U(1) ⊂ SU(4), with SU(2)1 and SU(2)2 rotating ζ1,4 and ζ2,3, respectively,
and then the SU(2)R factor is the SU(2)1 factor. The U(1)′ factor is a subgroup of SU(2)2
and the gauge field A(3) is associated with the U(1) factor. With A(1) 6= 0 the truncation is
invariant under an U(1)R ×U(1)′

For this particular truncation any solution to the equations of motion with A(1) = 0
that satisfies the supersymmetry equations (A.20)–(A.23) will preserve twice as much
supersymmetry in the full N = 8 gauged supergravity theory. This is indicated by
calculating the W tensors of [34].

The truncated theory (A.27) overlaps with the SU(2)×U(1) invariant sub-truncation
of maximal gauged supergravity [37], which is an N = 2 supergravity theory coupled to one
vector multiplet and one hypermultiplet, and there is also overlap with the model considered
in section 3.3 of [26].
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A.3 The SO(3) subtruncation

This sub-truncation is obtained by taking:

ϕ1 = ϕ2 = ϕ3 , θ1 = θ2 = θ3 ,

A(1)
µ = A(2)

µ = A(3)
µ , α = β = 0 . (A.29)

This keeps one gauge field A
(1)
µ and two complex scalar fields ζ1, ζ4. The truncation is

invariant under an SO(3) ⊂ SU(3) ⊂ SU(4) subgroup. For this model we have

W = −3
4(cosh 2ϕ1 + cosh 2ϕ4) .

Qµ = −3g
2 A

(1)
µ −

3
4(cosh 2ϕ1 − 1)Dµθ1 + 1

4(cosh 2ϕ4 − 1)Dµθ4 , (A.30)

with Dθ1 =
(
dθ1 + gA(1)

)
and Dθ4 =

(
dθ4 − 3gA(1)

)
.

There is overlap with this model and the model considered in section 3.2 of [26].

A.4 Truncation to the STU model

The truncation to the STU model to minimal gauged supergravity is obtained by setting
all of the charged scalars to zero:

ϕi = θi = 0 , (A.31)

to get a D = 5 Lagrangian with P given by

P = −4g2(e−4α + e2α−2β + e2α+2β) . (A.32)

If we set g = 2 and take F (i) → 1
2F

(I) we get the same normalisations of the STU model
used in [3], provided that we identify the neutral scalars α, β here with, respectively,
ϕ1/(2

√
6),−ϕ2/(2

√
2) there.

Further setting

α = β = 0, A(1) = A(2) = A(3) , (A.33)

we obtain a D = 5 Lagrangian given by

L = 1
4
[
−R+ 3g2 − 3F (3)

µν F
(3)µν + 2εµνρσδF (3)

µν F
(3)
ρσ A

(3)
δ

]
. (A.34)

This can also be obtained from the extended LS truncation. If we set g = 2 and take
F (3) → 1

3F we get the same normalisations of the minimal D = 5 gauged supergravity
model used in [2].
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A.5 Truncation to minimal gauged supergravity via LS

An alternative way to truncate to minimal D = 5 gauged supergravity is associated with
the LS AdS5 solution. We set

e6α = 2, cosh 2ϕ1 = 5
3 , β = 0, ϕ2 = ϕ3 = ϕ4 = θi = 0 ,

A(1) = A(2) = 1
2A

(3) , (A.35)

to obtain

L = 1
4

[
−R+ 210/3g2

3 − 3
24/3F

(3)
µν F

(3)µν + 1
2ε

µνρσδF (3)
µν F

(3)
ρσ A

(3)
δ

]
. (A.36)

This model can also be obtained from the extended LS truncation. If we set g = 3
22/3 and

take F (3) → 22/3

3 F we get the same normalisations of minimal D = 5 gauged supergravity
as used in [2].

B Supersymmetry variations

B.1 Derivation of the BPS equations

Here we analyse the supersymmetry variations (A.20) for the AdS3 ansatz given in (3.1).
The analysis is somewhat similar to the derivation of BPS equations for backgrounds with
the AdS3 factor replaced with an S3 that were studied in [25].

We use the orthonormal frame given in (3.3). We also use the gamma matrices given
in (A.1) and write the Killing spinor as

ε = ψ ⊗ χ , (B.1)

with ψ a two component spinor on AdS3 which satisfies

Dmψ = i

2κΓmψ , (B.2)

where κ = ±1 and Γm = (σ2, iσ3, iσ1) are gamma matrices in D = 3, with mostly minus
signature.

By considering the components of the gravitino variation (A.20) that are tangent to
the AdS3 directions we deduce[

−
(
3κe−V +H34

)
γ34 + 3V ′f−1γ3

]
ε = igWε . (B.3)

For this to have nontrivial solutions the left hand side must have eigenvalue +igW , which
requires that the two coefficients live on a circle and so we can write[

cos ξγ34 + sin ξγ3
]
ε = +iε , (B.4)

where

−3κe−V −H34 = gW cos ξ , 3V ′f−1 = gW sin ξ . (B.5)
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The projection condition can then be solved by writing

ε = e
ξ
2γ

4
η, γ3η = +iγ4η . (B.6)

Notice from (B.5) we have ∂zξ = 0. We also observe that at ξ = 0, π the spinors have a
definite chirality with respect to γ34 = −i(1⊗ σ3):

ξ = 0, π γ34ε = ±iε. (B.7)

We next consider the components of the gravitino variation (A.20) in the y direction.
After a little work we can write this as[

∂y −
1
2V
′ + 1

2
(
∂yξ + fH34 + κfe−V

)
γ4
]
η = 0 , (B.8)

where we used (B.5). From the components in the z direction we deduce[
∂z − iQz + i

2f
−1h′ cos ξ − i

3H34h sin ξ

+ i

(
−1

2f
−1h′ sin ξ + gWh

6 − 1
3H34h cos ξ

)
γ4
]
η = 0 . (B.9)

An expression of the form (a1 + a2γ
4)η = 0 implies that a2

1 + a2
2 = 0. Thus,

from (B.8), (B.9) we can deduce

η = eV/2eiszη0 , (B.10)

where η0 is independent of y and z, along with the conditions

∂yξ + fH34 + κfe−V = 0 ,

(s−Qz) + 1
2f
−1h′ cos ξ − 1

3H34h sin ξ = 0 ,

−1
2f
−1h′ sin ξ + gWh

6 − 1
3H34h cos ξ = 0 . (B.11)

From these we deduce

f−1h′ = gWh

3 sin ξ − 2(s−Qz) cos ξ ,

hH34 = gWh

2 cos ξ + 3(s−Qz) sin ξ , (B.12)

and from the first of (B.5) we then have

(s−Qz) sin ξ = −1
2gWh cos ξ − κhe−V , (B.13)

and hence

H34 = −gW cos ξ − 3κe−V ,
f−1∂yξ = gW cos ξ + 2κe−V . (B.14)
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When sin ξ 6= 0, we can solve for (s−Qz) and also write

f−1h
′

h
sin ξ = 2κe−V cos ξ + gW

3 (1 + 2 cos2 ξ) . (B.15)

Proceeding in the same way, from the gaugino variations we deduce

f−1α′ + g

12∂αW sin ξ = 0 ,

f−1β′ + g

4∂βW sin ξ = 0 , (B.16)

and

g∂αW cos ξ − 2
(
e2α−2βF

(1)
34 + e2α+2βF

(2)
34 − 2e−4αF

(3)
34

)
= 0 ,

g∂βW cos ξ − 2
(
−e2α−2βF

(1)
34 + e2α+2βF

(2)
34

)
= 0 . (B.17)

From these last two expressions, recalling the definition of H34 from (A.21), and using (B.12)
as well as the expression for (s−Qz) in (B.13), we obtain the following expressions for the
components of the field strengths in the orthonormal frame

e2α−2βF
(1)
34 = g

6

[
W + 1

2(∂αW − 3∂βW )
]

cos ξ + h−1(s−Qz) sin ξ ,

= − g

12[4W − ∂αW + 3∂βW ] cos ξ − κe−V ,

e2α+2βF
(2)
34 = − g

12[4W − ∂αW − 3∂βW ] cos ξ − κe−V ,

e−4αF
(3)
34 = −g6[2W + ∂αW ] cos ξ − κe−V . (B.18)

From the hyperino equations (A.23) we obtain

f−1∂yϕj + g

2∂ϕjW sin ξ + ∂ϕjQz cos ξh−1 = 0 ,
g

2∂ϕjW cos ξ − ∂ϕjQz sin ξh−1 = 0 . (B.19)

Notice that for each ϕj that is identically zero, ϕj ≡ 0 (e.g. three of the four scalars in the
extended LS truncation) these equations are trivially satisfied and impose no constraints.

Summary. When sin ξ 6= 0, the BPS equations are given by the following first order
equations

f−1ξ′ = gW cos ξ + 2κe−V ,

f−1V ′ = g

3W sin ξ,

f−1α′ = − g

12∂αW sin ξ ,

f−1β′ = −g4∂βW sin ξ ,

f−1ϕ′j = −g2
∂ϕjW

sin ξ ,

f−1h
′

h
sin ξ = 2κe−V cos ξ + gW

3 (1 + 2 cos2 ξ) , (B.20)
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along with two constraint equations

(s−Qz) sin ξ = −1
2gWh cos ξ − κhe−V ,

g

2∂ϕjW cos ξ = ∂ϕjQz sin ξh−1 . (B.21)

The field strengths are given by

e2α−2βF
(1)
34 = − g

12[4W − ∂αW + 3∂βW ] cos ξ − κe−V ,

e2α+2βF
(2)
34 = − g

12[4W − ∂αW − 3∂βW ] cos ξ − κe−V ,

e−4αF
(3)
34 = −g6[2W + ∂αW ] cos ξ − κe−V ,

H34 = −gW cos ξ − 3κe−V . (B.22)

Along the BPS flow we have

∂yW = −gf sin ξ
[

1
12(∂αW )2 + 1

4(∂βW )2 + 1
2 sin2 ξ

∑
i

(∂ϕiW )2
]
, (B.23)

and hence we see that provided the sign of f sin ξ doesn’t change, then W is monotonic
along the BPS flow.

Interestingly, by examining the derivative of he−V we can find an integral of the BPS
equations:

he−V = k sin ξ , (B.24)

where k is a constant. Eliminating the BPS equation for h we can then write the remaining
BPS equations in the form

f−1ξ′ = −2k−1(s−Qz)e−V ,

f−1V ′ = g

3W sin ξ ,

f−1α′ = − g

12∂αW sin ξ ,

f−1β′ = −g4∂βW sin ξ ,

f−1ϕ′j = −g2
∂ϕjW

sin ξ , (B.25)

and the two constraints can be written

(s−Qz) = −k
(1

2gWeV cos ξ + κ

)
,

g

2∂ϕjW cos ξ = k−1e−V ∂ϕjQz . (B.26)

We now point out two additional observations concerning the BPS equations that are
useful in the analysis of the main text. The first concerns the fluxes and the second the
discrete symmetries of the BPS equations. From the definition of Qµ in (A.21) we can write

∂ϕjQz = ∓1
2 sinh 2ϕjDzθj , (B.27)
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where the upper sign is for j = 1, 2, 3 and the low sign for j = 4. The second constraint
equation in (B.26) is trivial for each specific j for which ϕj = 0. On the other hand when
all ϕj 6= 0 we can write the constraint in the form

Dzθj = ∓
gkeV ∂ϕjW cos ξ

sinh 2ϕj
, (B.28)

and moreover the right hand side is independent of ϕj . This constraint must be consistent
with the BPS equations, and therefore if one differentiates (B.28) one obtains an equality
between a linear combination of the fluxes and a derivative of expressions involving the
other fields. Solving these we deduce that we can write

F (i)
yz = (a(i))′ = (I(i))′ , (B.29)

where

I(1) ≡ 1
2ke

V cos ξ e−2α+2β ,

I(2) ≡ 1
2ke

V cos ξ e−2α−2β ,

I(3) ≡ 1
2ke

V cos ξ e4α . (B.30)

Now (B.28) is not valid when some of the ϕj = 0. However, we find that the expressions
for the fluxes in (B.29), (B.30) still hold.

It is also helpful to observe that there are several symmetries of the BPS equations.
The first is

h→ −h , z → −z , (B.31)

with Qz → −Qz, s → −s, a(i) → −a(i), k → −k and F (i)
34 → +F (i)

34 . This transformation
leaves the frame invariant. We use this symmetry in the text to fix h ≥ 0. The second
symmetry is

ξ → −ξ + π, κ→ −κ, z → −z , (B.32)

with Qz → −Qz, s → −s, a(i) → −a(i) and F (i)
34 → −F

(i)
34 . Also cos ξ → − cos ξ, sin ξ →

+ sin ξ. This changes the frame e3 → −e3. Notice that this changes the sign of κ and hence
the chirality of the preserved supersymmetry of the d = 2 SCFT i.e. whether it is N = (0, 2)
or N = (2, 0). We will not utilise this symmetry in our analysis in the text. The third
symmetry is

ξ → −ξ, y → −y, z → −z (B.33)

with Qz → −Qz, s→ −s, a(i) → −a(i), k → −k and F (i)
34 → +F (i)

34 . This changes the frame
e3 → −e3. Finally we also have the Z2 symmetry given in (2.5):

β → −β, A(1) ↔ A(2) . (B.34)
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B.2 Rewriting the BPS equations in a D = 4 Janus form

Starting from the AdS3 ansatz given in (3.1), it is evident that by reducing on the direction
parametrised by z, one obtains a Janus type ansatz for a D = 4 gauged supergravity theory.
Thus, one might expect that the BPS equations derived in appendix B.1 can be written as
supersymmetric D = 4 Janus-like equations of the type discussed in a D = 5 context in [26].
Here we show that this is indeed the case and also use it to provide (in the next subsection)
another perspective on the conserved charges arising from the gauge field equations of
motion given in (3.5) for the extended LS model.

To make the connection, we first define

eṼ ≡ eV h1/2, ξ̃ = π

2 − ξ . (B.35)

In addition, for simplicity, we will use the “conformal” gauge in the D = 4 Janus ansatz by
taking

f = eV . (B.36)

We make the following redefinitions,

X1 ≡
1
2he

−2α+2β , X2 ≡
1
2he

−2α−2β , X3 ≡
1
2he

4α , (B.37)

and then define the following D = 4 complex scalars

zi ≡ Xi − i a(i), i = 1, 2, 3 . (B.38)

These scalars are taken to parametrise three hyperbolic half-planes, with metric given by

dzidz̄i

2(zi + z̄i) . (B.39)

We then define the D = 4 Kähler potential and superpotential as follows:

K = −
3∑
i=1

log(zi + z̄i) = −3 log h , (B.40)

V = g

2Wh+ i(s−Qz)

= −1
4 cosh(2ϕ1)

[
gz1 + gz2 − gz3 − iθ̄1

]
− 1

4 cosh(2ϕ2)
[
gz1 − gz2 + gz3 − iθ̄2

]
− 1

4 cosh(2ϕ3)
[
−gz1 + gz2 + gz3 − iθ̄3

]
− 1

4 cosh(2ϕ4)
[
gz1 + gz2 + gz3 + iθ̄4

]
+ is− i

4(θ̄1 + θ̄2 + θ̄3 − θ̄4) . (B.41)

Note that the superpotential is holomorphic with respect to zi, but not with respect to ϕj ,
which are considered as real scalars here and s, θ̄i are constants. It is also useful to note
that if we define

A ≡ i

6[∂ziK(zi)′ − ∂z̄iK(z̄i)′] , (B.42)
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then we have

A = −1
3e

VH34 , ∂y ξ̃ = −3A+ κ . (B.43)

Finally, as in [26] we define the auxiliary complex field B via

B ≡ 1
2e
K/2VeṼ+iξ̃ . (B.44)

After a bit of work, it is now possible to rewrite the equations (B.20)–(B.22) in the
form

Ṽ ′ − iκ = 2B ,

(zi)′ = −2Kīi
∇z̄īV
V

B̄ ,

ϕ′j = −2
∂ϕjV
V

B̄ ,

B′ = 2FBB̄ , (B.45)

where ∇ziV = ∂ziV + ∂ziKV, and:

F ≡ 1−Kij̄∇ziV
V
∇z̄j̄V
V
−
∣∣∣∣∂ϕiVV

∣∣∣∣2 . (B.46)

Note that, since ϕj are real, the equation for ϕ′j in (B.45) implies a set of constraints,
i.e.

Im(∂ϕj logVB̄) = 0 , (B.47)

and furthermore the consistency of these constraints with the equations depends on the
superpotential and Kähler potential satisfying a condition similar to (5.17)-(5.18) of [26],
which they indeed satisfy, as expected.

It is also illuminating to express the D = 4 action arising from dimensional reduction
of the D = 5 action (A.8) on the z direction, in terms of K and V . For simplicity, and since
it is not relevant for our ansatz, we set the D = 4 gauge-field arising from the D = 5 metric
to be zero and write ds2

5 = h−1ds2
4 − h2dz2. We also write θi = θ̄iz where θ̄i are constants.

From (A.8) we then find

√
g5L =

√
−g4

−1
4R4 + 1

2Kij̄∂z
i∂z̄j̄ +

4∑
j=1

1
2(∂ϕj)2 − P4d

 , (B.48)

where

P4d = 1
2e
K
[
Kij̄∇ziV∇z̄j̄V +

∑
i

|∂ϕiV|2 − 3|V|2
]
. (B.49)

An interesting feature of P4d is that it is independent of s, even though V depends on s.
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B.3 Conserved charges from the Janus type equations

It is interesting to see how the conserved charges that we obtained from the D = 5 equations
of motion for the gauge fields in (3.5) can be derived within the framework of the Janus
type equations of the previous subsection. We follow the arguments in sections 2 and 3.1
of [38], with some generalisations.

We consider the continuous global symmetries of the reduced D = 4 theory of the
previous subsection, focussing on symmetries of the Kähler manifold, parametrised by the zi,
which do not act on the real fields ϕi. As in [38] it is convenient to introduce the notation

K̃ ≡ K + logV + logV . (B.50)

We start by considering a symmetry generated by a holomorphic Killing vector l on
the Kähler manifold. In general, we require that both the scalar manifold metric, Kij̄ , and
the scalar potential, P4d, are invariant under the symmetry generated by l. However, it is
not necessary that K̃ is invariant and instead we demand the weaker condition that

li∂iK̃ + lī∂īK̃ = r(z, ϕ) + r̄(z̄, ϕ) , (B.51)

where r is a holomorphic function of zi. If the symmetry is a flavour symmetry, K̃ is
invariant and r(z, ϕ) = 0. However, if it is an R-symmetry, then r 6= 0. The invariance of
the potential,

li∂iP4d + lī∂īP4d = 0 , (B.52)

implies a condition that the function r must satisfy. There is a real moment map µ associated
with the Killing vector given by

µ = ili∂iK̃ − ir . (B.53)

As usual, associated with the Killing vector l there is a conserved current for the full
equations of motion. For the ansatz in (3.1), with fields just depending on the y coordinate,
we deduce that the y component of this current is independent of y and hence constant.
Thus, we deduce that the Noether charge

E ∝ √g4g̃
yy
4

(
Kij̄∂y z̄

j̄li +Kjī∂yzjlī
)
, (B.54)

is a constant of motion. Using the BPS equations, one can show that for BPS solutions this
conserved charge can be recast in the form

E = e2Ṽ [−κµ+ 2 Re(rB)] . (B.55)

In fact, as a check, one can directly verify that this charge is indeed conserved using the
BPS equations and the condition (B.52).

Consider now the D = 4 model with ϕi = 0, which can be obtained by the dimensional
reduction of the D = 5 STU model. This model has 3 U(1) global symmetries, generated
by the 3 Killing vectors:

l(i) = i
∂

∂zi
+ c.c. . (B.56)

– 37 –



J
H
E
P
1
0
(
2
0
2
2
)
0
6
7

The moment maps and r functions associated with these symmetries are given by

µi = 1
2Xi

, r1 = r2 = r3 = − ig2V . (B.57)

Two combinations of these symmetries are flavour symmetries, which can be taken to be,
for example, l(1) − l(2) and l(1) + l(2) − 2l(3). Notice that for these symmetries r1 − r2 = 0
and r1 + r2 − 2r3 = 0. The third combination is an R-symmetry, which can be taken to be
l(1) + l(2) + 2l(3), with r1 + r2 + 2r3 = −2ig/V . One can now immediately write down three
conserved charges of the BPS equations using (B.55).

We can also consider D = 4 models with ϕi 6= 0. Formally, associated with the l(i) we
now have

µi = 1
2Xi

,

r1 = − ig4V [cosh(2ϕ1) + cosh(2ϕ2)− cosh(2ϕ3) + cosh(2ϕ4)] ,

r2 = − ig4V [cosh(2ϕ1)− cosh(2ϕ2) + cosh(2ϕ3) + cosh(2ϕ4)] ,

r3 = − ig4V [− cosh(2ϕ1) + cosh(2ϕ2) + cosh(2ϕ3) + cosh(2ϕ4)] . (B.58)

Here we have included all of the ϕi in these expressions, even though when some of them
are turned on, some or all of these symmetries are broken. Thus, one should only consider
the linear combinations of the above that correspond to conserved symmetries in each
sub-truncation.

For example, we can consider the extended LS sub-truncation that we focus on in the
main text. In this sub-truncation, we take ϕ2 = ϕ3 = ϕ4 = 0. Thus, one symmetry out of
the above three is broken, and one is left with U(1)×U(1)R symmetry. The flavour U(1)
symmetry is generated by the combination l(1) − l(2), with the corresponding moment map
and r function given by

µ = e−h̃
[
e2α−2β − e2α+2β

]
= −2

h
e2α sinh(2β), r = 0 . (B.59)

Thus, we obtain the following conserved charge:

ELSF = 2κe2V e2α sinh(2β) . (B.60)

The U(1)R R-symmetry is generated by the combination: l(1) + l(2) + 2l(3), with the
corresponding moment map and r function given by

µ = 2
h

[
e2α cosh(2β) + e−4α

]
, r = −2ig

V
. (B.61)

Thus, we obtain the following conserved charge:

ELSR = e2V
[
−2κ(e2α cosh(2β) + e−4α) + 2geV cos ξ

]
. (B.62)

These have been derived using the conformal gauge, but the results are independent of this
gauge choice. Also notice that ELSF and ELSR are in precise agreement with (3.16) that were
obtained in the main text using the D = 5 equations of motion for the gauge fields.
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C Complex scalars on spindles

An analysis of spinors and U(1) orbibundles on spindles with azimuthal symmetry was
carried out in [3], in the context of gauged supergravity. Here we extend this discussion to
include the possibility of having scalar fields that are charged with respect to the gauge
fields. We follow the same approach as [3] and we refer to that paper for more details.

Let Σ be a spindle with azimuthal symmetry with metric16

ds2 = dρ2 + f2(ρ)dϕ2 , (C.1)

where ∆ϕ = 2π. There are conical deficits specified by relatively prime, positive integers
nN , nS , for the north and south poles, which are located at two zeroes of f . Any U(1)
principle orbibundle with connection one-form A and field strength F = dA, has a quantised
flux of the form17

1
2π

∫
Σ
F = λ

nNnS
= p− mN

nN
+ mS

nS
, (C.2)

with λ ∈ Z and p ∈ Z, mN ∈ ZnN , mS ∈ ZnS . The integer λ uniquely specifies the bundle.
Covering the spindle with north and south pole patches, the gauge-field in each of these
patches can be written

AN = mN

nN
dϕ+AN(0), AS = mS

nS
dϕ+AS(0), (C.3)

where AN(0), A
S
(0) are regular one-forms which, in particular, vanish at the poles, and the flat

connection pieces capture the orbibundle data. On the overlap these are patched together
with a U(1) gauge transformation:

AN = AS + pdϕ . (C.4)

The total space of this bundle is a smooth three-manifold M3 (a lens space). On M3
we can use coordinates (ψN , ρN , ϕN ) and (ψS , ρS , ϕS) on the north and south pole patches
with ∆ψN = ∆ψS = 2π. These coordinates can be related by an SL(2,Z) transformation
to new coordinates on the covering space of M3: for example in the north pole patch
ψN = χN −mN φ̂, ϕ = nN φ̂, with ∆χN = ∆φ̂ = 2π and the orbifold identification on the
covering space is given by the twisted identification (χN , φ̂) ∼ (χN +2πmN/nN , φ̂+2π/nN ).
Furthermore the connection one-form dψN +AN = dχN +AN(0) is now a globally defined
one-form in this patch.

We now consider a complex scalar field ζ which has charge r ∈ Z, i.e. ζ is a section
of a line bundle Lr, with A a connection one-form on L. The scalar field is also taken to
have a definite charge with respect to ∂ϕ, generating the azimuthal rotations on the spindle.
Importantly this charge depends on the choice of gauge. In the two patches we have

ζN = fN (ρN )eiQNϕ, ζS = fS(ρN )eiQSϕ, (C.5)
16In this section only, we will use ϕ to be a coordinate on the spindle to exactly match with the notation

in [3].
17Note that in the main text the three U(1) field strengths gF (i) have the same normalisation as (C.2).

Also note that we should identify λ (and not p) with the pi in the text.
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where QN , QS is the azimuthal charge in each patch. Patching these on the overlap we have

ζN = eiprϕζS , ⇒ QN = QS + pr . (C.6)

Using (C.2) we can also write(
QN −

rmN

nN

)
=
(
QS −

rmS

nS

)
+ rλ

nNnS
. (C.7)

We now consider the issue of regularity of the scalar field at the poles. As in the
discussion of spinors in [3], this can be analysed by noting that ζ arises from a complex
function on M3 with a definite phase eirψ. Then moving to the (χ, φ̂) coordinates on M3,
for which the gauge field is a regular one-form in each patch, we find the complex scalar on
M3 has the form

ζN = fN (ρN )einN φ̂(QN−
rmN
nN

)
eirχN ,

ζS = fN (ρS)einS φ̂(QS−
rmS
nS

)
eirχS . (C.8)

Regularity at each pole is now the statement that

ζN (0) 6= 0 ⇒ QN −
rmN

nN
= 0, ⇔ QN − rAN (0) = 0 .

ζS(0) 6= 0 ⇒ QS −
rmS

nS
= 0, ⇔ QS − rAS(0) = 0 , (C.9)

where in the last expressions in each line we have assumed the pole is located at ρN,S = 0
in each patch. Notice in particular, that if the scalar is non-vanishing at both poles then
from (C.7) we must have a trivial bundle: λ = 0. All of the above applies to any U(1)
symmetry, whether it is an R-symmetry or a flavour symmetry.

We also recall that our Killing spinors are charged just under the R-symmetry. We
normalise so that the Killing spinors have R-charge 1/2. In the twist case the Killing
spinor has the same chirality at both poles and the R-symmetry U(1) orbibundle has
λ = ±(nS + nN ). For the anti-twist case the spinor has opposite chiralities at the two poles
and λ = ±(nS − nN ). From (C.2) these can be solved by taking p = 0, mN = ∓1 and
mS = ±1 for the twist and mS = ∓1 for the anti-twist; these are not unique integers but
mN ∈ ZnN and mS ∈ ZnS are unique. With this choice we have

Ã ≡ AN = AS , (C.10)

is a globally defined one-form except at the two poles where it is singular:

Ã|N = ∓ 1
nN

dϕ, Ã|S = ± 1
nS
dϕ , Twist ,

Ã|S = ∓ 1
nS
dϕ , Anti-twist . (C.11)

In this particular gauge, the Killing spinor is uncharged with respect to L∂ϕ .
We now make some further comments connecting the above discussion with the analysis

in the text in the context of multiple charged scalars ζj . For the complex scalars in our
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AdS3 ansatz (3.1) we can identify the gauge-dependent charges Q appearing in (C.5) with
the θ̄j . The condition (C.9) is then the statement that if a scalar ζj 6= 0 at a pole, then we
must have Dθj = 0 at the pole, which is a gauge-invariant condition.

Now at the poles 2Qµ is equal to the R-symmetry gauge field ARµ in (2.8), since the
difference vanishes either because the complex scalar field vanishes at the pole or, if it
doesn’t, because then Dθj = 0 at the pole. Furthermore, our definition of the gauge field
ARµ means that it appears in the gravitino variation in exactly the same way as in eq. (2.1)
of [3]. Now from eq. (2.36) of [3] we have that QN −AN (0)/2 = ±1/(2nN ) where here QN
is the azimuthal charge of the spinor and AN is the R-symmetry gauge field in the north
pole patch. In the language of this paper, and recalling that we have taken ∆z = 2π, this
means that at the north pole we have the gauge invariant condition

(s−Qz)|N = ± 1
2nN

. (C.12)

Furthermore, eq. (2.37) of [3] implies that at the south pole we have

(s−Qz)|S = ∓ 1
2nS

, Twist ,

(s−Qz)|S = ± 1
2nS

, Anti-twist . (C.13)

D Conformal Killing spinors on R1,1 × Σ

Consider compactifying a general N = 1, d = 4 SCFT on a spindle i.e. placing the SCFT on
R1,1 × Σ and preserving both ISO(1, 1) symmetry and azimuthal symmetry on the spindle.
We focus on the universal case when there is just R-symmetry flux through the spindle i.e.
we set any possible flavour flux to zero. One can preserve supersymmetry if the background
metric and R-symmetry gauge field, A, admits solutions to the conformal Killing spinor
equation [29]

Dµε = 1
4Γµ /Dε , (D.1)

where here ε is a Weyl spinor and Dε = (d + 1
4ωabΓ

ab − inA)ε and n is a convenient
normalisation factor.

Introduce an orthonormal frame eA = (dx0, dx1, f(y)dy, h(y)dz), with A = 0, 1, 2, 3 and
take the R-symmetry gauge field to be A = a(y)dz. Since Dµε = ∂µε for xµ = x0, x1, we
find that (D.1) is equivalent to solving

∂x0ε = 1
2Γ0 /̃Dε , ∂x1ε = 1

2Γ1 /̃Dε , D̃aε = 1
2Γa /̃Dε , (D.2)

where D̃a is the covariant derivative on the two-dimensional space Σ parametrised by y, z
and /̃D = Γ2D̃2 + Γ3D̃3. The first two equations imply

∂x0ε = Γ0Γ1∂x1ε , (D.3)
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and so if we decompose ε = ε+ + ε− with Γ0Γ1ε± = ±ε± we deduce ε± = ε±(x±, y, z) where
x± = x0 ± x1. The first two equations in (D.2) can then be written as

∂+ε+ = 1
2Γ1 /̃Dε− , ∂−ε− = 1

2Γ0 /̃Dε+ . (D.4)

The first equation implies that ε+ can at most be linear in x+, but that would be inconsistent
with ε− being just a function of x− in the second equation. We thus conclude that ε± and
hence ε is independent of x±: ∂x0ε = ∂x1ε = 0. From (D.2) we conclude we are in fact
looking for covariantly constant Killing spinors on Σ satisfying D̃µε = 0. The y component
implies ∂yε = 0 and this just leaves us to solve the z component which reads

Dzε =
(
∂z − ina−

1
2f
−1h′Γ23

)
ε = 0 . (D.5)

This can be solved by taking ε = eiszε0 along with

s− na = ±1
2f
−1h′ , (D.6)

where ε0 is a constant spinor satisfying the chirality condition Γ23ε0 = ±iε0. This is the
standard topological twist. In particular it is not possible to solve (D.1), with the above
assumptions in the anti-twist sector, which is the sector for which solutions of D = 5
minimal gauged supergravity can be found [2].

E The analytic spindle solutions of the STU model

The STU sub-truncation of (2.1) admits analytic spindle solutions. In general there are
both anti-twist [5, 6] and also twist solutions [3]. Rather than repeat the analysis of [3] in
the notation of this paper, in this appendix we follow exactly the same notation of [3], with
spindle data given by relatively prime integers n1, n2 ≥ 1, and U(1)3 magnetic fluxes given
by pi/(n1n2) with pi ∈ Z. We also note that [3] used a different signature and furthermore
the solutions are not in the conformal gauge of (3.17). The anti-twist solutions have

Anti-twist: p1 + p2 + p3 = n2 − n1, p1, p2, p3 > 0 , (E.1)

while the twist solutions have

Twist: p1 + p2 + p3 = −(n1 + n2), n2 > n1 and two pi > 0 , (E.2)

with n2 > n1. The central charge is given by

cSTU = 6p1p2p3
n1n2s

N2 , (E.3)

with

s = n2
1 + n2

2 − (p2
1 + p2

2 + p2
3) . (E.4)
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We are interested in whether there could be RG flows from any of these solutions to
the new AdS3 × Σ solutions of the extended LS model. Such RG flow solutions would
necessarily have the same magnetic fluxes through the spindle and hence, we should impose
that the fluxes associated with the broken U(1) vanish: p1 + p2 − p3 = 0. In the twist
case, we immediately have p3 = p1 + p2 = −1

2(n1 + n2) and with n1, n2 > 0 we cannot
have two pi > 0. Thus, there are no twist solutions of the STU model in this sector. This
is in alignment with the fact that in this paper we have demonstrated there are no twist
solutions in the extended LS model.

In the anti-twist case, imposing p1 + p2 − p3 = 0 implies p3 = p1 + p2 = 1
2(n2 − n1).

In particular n2 − n1 is necessarily even. These solutions can be parametrised in terms of
n2, n1 and pF ≡ p1 − p2, say. The condition that all pi > 0 requires

n2 − n1 > 2|pF | . (E.5)

For this class of AdS3 solutions of the STU model we can calculate the central charge of
the dual SCFT using (E.3) and find

cSTU = 3(n2 − n1)((n2 − n1)2 − 4p2
F )

2n1n2(5n2
1 + 6n1n2 + 5n2

2 − 4p2
F )

. (E.6)

This family of AdS3 solutions of the STU model has fluxes that can be identified with
the fluxes of the family of anti-twist solutions of the extended LS model in (3.55): for
(−1)tNκ > 0 we should identify (nN , nS) with (n2, n1) while if (−1)tNκ < 0 we should
identify (nN , nS) with (n1, n2) (here it is helpful to recall footnote 6). Interestingly the
central charge (E.6) of the STU model is always greater than the central charge of the
extended LS model (3.54). This strongly suggests that there should be a supersymmetric
RG flow that starts out in the UV with the STU model AdS3 solutions and ends up in the
IR with the solutions of the extended LS model.

Note, in particular, that the special class of solutions of the extended LS model with
pF = 0 for which analytic AdS3×Σ solutions were constructed in section 4.1, can in principle
be reached by an RG flow starting from solutions of the STU model, but the latter are not
the STU model solutions that lie in minimal D = 5 gauged supergravity as described in
section A.4. This can be understood as a simple consequence of matching the fluxes.
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