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A B S T R A C T   

Conclusively linking local, episodic enhancements in greenhouse gas concentrations to a specific emission source 
can be challenging, particularly when faced with multiple proximal sources of emissions and variable meteo
rology, and in the absence of co-emitted tracer gases. This study demonstrates and evaluates the efficacy of using 
machine-learning tools to detect episodic emissions of methane (CH4) from a shale gas extraction facility in 
Lancashire (United Kingdom). Two machine-learning tools (rmweather and Prophet) were trained using a two- 
year climatological baseline dataset collected prior to gas extraction operations at the facility. The baseline 
dataset consisted of high-precision trace gas concentrations and meteorological data, sampled at 1 Hz contin
uously between 2016 and 2019. The models showed good overall predictive capacity for baseline CH4 con
centrations, with R2 values of 0.85 and 0.76 under optimised training conditions for rmweather and Prophet, 
respectively. CH4 concentrations were then forecast for an 18-month period from the onset of operations at the 
shale gas facility (in 2018). Forecast values were compared with true measurements to detect anomalous de
viations that may indicate the presence of new emission events associated with the operational facility. Both 
models successfully detected two periods in which CH4 emissions were known to have occurred (December 2018 
and January 2019) via anomalous deviations between modelled and measured concentrations. This work 
demonstrates the application of machine-learning models for the detection of CH4 emission events from newly 
built industrial sources, when used in combination with real-time atmospheric monitoring and a baseline dataset 
collected prior to installation.   

1. Introduction 

The introduction of a new atmospheric emission source (such as a 
new industrial facility) can adversely impact the local atmospheric 
environment, which may be of concern for local air quality, human 
health, and greenhouse gas emissions accounting (Manisalidis et al., 
2020). However, detecting, interpreting and quantifying the impact of a 
novel emission source can be difficult, especially in the absence of a 
comparative historical or long-term dataset prior to its installation. 
Furthermore, the relationship between local meteorology and pollutant 
concentration is dynamic. It can therefore be difficult to determine if 

short-term changes in pollutant concentrations are due to the direct 
impact of a new emission source, or due to a shift in local or regional 
weather patterns and extant sources upwind (Rao and Zurbenko, 1994; 
Libiseller et al., 2005; Wise and Comrie, 2005; Grange et al., 2018). 

An atmospheric baseline climatology provides a set of measurement 
data that are statistically representative of the typical local environ
mental background conditions when collected over sufficiently long 
time periods (typically >12 months, Shaw et al., 2019). Such baselines 
can facilitate the identification of new (and future) atmospheric emis
sion sources introduced subsequent to the baseline, which may perturb 
local atmospheric composition on a short-term or long-term basis. An 
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atmospheric baseline allows for the incremental impacts of a novel 
polluting activity to be quantitatively assessed, helping to inform policy 
decisions concerning environmental protection and compliance with 
industry regulation, such as environmental permit requirements. 

A number of recent studies have employed machine-learning tools to 
diagnose and interpret patterns and changes in local atmospheric 
composition. For example, Grange et al. (2018) used a random forest 
(RF) model to examine patterns in meteorology and particulate matter 
over 20 years of atmospheric measurements in Switzerland. By nor
malising the particulate matter data to meteorology (effectively 
removing the influence of varying meteorological conditions), Grange 
et al. (2018) were able to diagnose typical conditions that led to elevated 
and harmful concentrations of local particular matter. The same 
weather-normalisation approach was used to detect the influence of 
specific air quality policy interventions on atmospheric concentrations 
of SO2 and NOx in the UK (Grange and Carslaw, 2019). Their 
machine-learning procedure highlighted reductions in NO2 and NOx that 
were not otherwise readily observable in the raw concentration data. 
Similarly, Vu et al. (2019) used de-trended air quality data to assess the 
impact of clean air policy interventions on Beijing air quality, finding 
significant reductions in particulate matter, NO2, SO2 and CO despite 
large variability in year-on-year meteorology. 

In addition to meteorological normalisation, predictive RF models 
have been used to forecast a counterfactual dataset (or business-as-usual 
scenario) based on patterns in historical data, following an intervention 
or event that caused a change to the prevailing environmental condi
tions. Such an approach can aid in quantifying the impact(s) of an event, 
through comparisons against real-world measurements. For example, 
the air quality impacts of severe Australian wildfires were quantified by 
using a RF machine-learning algorithm to predict pollutant concentra
tions in the absence of wildfires (Ryan et al., 2021). Further, the fore
casting of counterfactual datasets have found considerable application 
in diagnosing the air quality impacts caused by the COVID-19 pandemic 
as a result of lockdown measures introduced throughout 2020 (e.g. Cole 
et al., 2020; Grange et al., 2021; Petetin et al., 2020; Grange et al., 2021; 
Lovrić et al., 2021; Shi et al., 2021; Wyche et al., 2021). Some studies 
have used both meteorological normalisation and counterfactual pre
diction jointly: Brancher (2021) used meteorological normalisation to 
interpret reductions in O3 caused by a lockdown in Vienna, as well as 
business-as-usual predictions to quantify those changes. Alternative 
machine-learning approaches also exist: for example, Topping et al. 
(2020) used an open-source time-series forecasting model (Prophet) to 
interpret a reduction in NO2 concentrations during the COVID-19 
lockdown in the city of Manchester, UK. Together, these studies show 
the predictive power of machine learning in deconvolving meteorolog
ical influences to understand drivers of emission source change. How
ever, previous studies have focussed on detecting and analysing 
reductions in air quality indicators, and have not assessed the feasibility 
of using machine learning for identifying pollutant increases as a result 
of newly introduced emission sources. Identifying new (or changing) 
emission sources is crucial for establishing impacts on air quality and 
greenhouse gas emissions. However, increases in air pollution can often 
be difficult to attribute directly to a specific emission source, especially 
in the presence of multiple polluting sources. Variable meteorology can 
further complicate analysis. Machine learning offers a practical tool for 
deconvolving complex atmospheric datasets, and aiding in the detection 
and attribution of atmospheric pollution to new emission sources. 

In this study, we explore the potential for using machine-learning 
tools to detect the influence of a new or episodic emission source, 
using known emission events from hydraulic fracturing in Lancashire 
(United Kingdom) as a case study to demonstrate capability (Shaw et al., 
2020; Shah et al., 2020). Machine learning, when suitably configured 
and evaluated, offers a versatile and accessible tool for atmospheric data 
analysis and interpretation, which may not necessarily require specialist 
expertise in atmospheric science. This could make such tools useful to 
industry and regulators for leak detection and monitoring purposes. 

2. Methods 

2.1. Observational data 

The observational data used in this work were measured at a fixed- 
site monitoring station located near to Preston New Road (PNR) in Lit
tle Plumpton, Lancashire (United Kingdom). Fig. 1 shows the atmo
spheric monitoring station location on private land adjacent to an 
exploratory shale gas facility. The monitoring station has been in 
operation since February 2016, recording meteorological parameters 
(wind speed, wind direction, air temperature, and atmospheric pressure) 
alongside concentrations of atmospheric methane (CH4), carbon dioxide 
(CO2), nitrogen oxides (NOx; NO and NO2), ozone (O3) and particulate 
matter. The monitoring station is 430 m to the east of the shale gas fa
cility (constructed between 2016 and 2018), which began operational 
(exploratory) hydraulic fracturing in October 2018. The position of the 
monitoring station was selected to be downwind in the prevailing wind 
direction (westerly in the UK) of the facility. Meteorological data were 
measured using a Lufft WS-500UMB compact weather station with a 2D 
sonic anemometer for wind speed and wind direction. Greenhouse gas 
(CH4 and CO2) mole fractions (henceforth concentrations) were 
measured using an Ultra-portable Greenhouse Gas Analyzer (UGGA; Los 
Gatos Research Inc., USA), calibrated in the field using three gas stan
dards traceable to the World Meteorological Organisation (WMO) 
greenhouse gas scales. The UGGA air inlet was positioned 3 m above 
ground. For more information regarding the monitoring station opera
tion, instrumentation, calibration and data quality control procedures, 
see Shaw et al. (2019) and Purvis et al. (2019). The atmospheric data 
collected were a component of a wider environmental monitoring pro
gramme that also included ground and surface water monitoring, and 
seismic monitoring (see Ward et al., 2017, 2018, 2019, 2020; Smedley 
et al., 2022). 

A 1-min average atmospheric baseline dataset derived from the 
measurements at the monitoring facility has previously been reported 
and interpreted for diurnal, weekly, seasonal, and inter-annual trends 
and statistics for CH4 and CO2 concentrations (see Shaw et al., 2019). 
Statistical analyses of the baseline data were used to define specific 
threshold concentration criteria (described in Shaw et al., 2019), 
exceedances of which represented statistically anomalous events. The 
thresholds were set as the 99th percentile values for three variables 
calculated during the baseline period. The three variables were: the 
hourly-average CH4 concentration, the CH4:CO2 ratio, and the product 
of wind speed and CH4 concentration. Thresholds were calculated for 
each calendar month to account for seasonal variability in the mea
surements. Hourly-periods in which all three of these 99th percentile 
thresholds were exceeded were flagged for further examination. The 
thresholds were exceeded in December 2018 and January 2019, coin
cident with operator-reported venting of CH4 from the flare stack at the 
nearby shale gas facility. Although the Shaw et al. (2019) threshold 
criteria were successfully used to detect and quantify CH4 emissions in 
this instance, the statistical criteria defined in Shaw et al. (2019) may 
have limited applicability to other locations of interest (e.g. other shale 
gas sites) and may potentially miss small or short-term anomalous 
emission events. With suitable training data and optimization, 
machine-learning tools can provide a dynamic, universal, and auto
mated method to overcome the limitations of more fixed statistical 
criteria. 

Fig. 2 shows 10-min average CH4 and CO2 concentrations measured 
from 1 February 2016 through to 31 December 2019 at the PNR moni
toring site (Fig. 1). The CH4 data exhibited an underlying baseline 
similar to the northern-hemispheric background (~1900 ppb over this 
period) and expected seasonality, with intermittent but strong short- 
term enhancements (occasionally >20 ppm over background). These 
transient features were the result of local pollution episodes and other 
emission sources upwind, with some influence from long-range trans
port from remote urban sources. The largest CH4 concentrations were 
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typically associated with low wind speeds (<2 m s− 1) and easterly or 
northerly winds, during which measurements were influenced by 
emissions from the nearby cattle farm, a major source of CH4 (see Shaw 
et al., 2019 and Lowry et al., 2020). The CO2 data showed expected 
seasonal variation in CO2 background as a result of biospheric respira
tion, but was again dominated by transient spikes in concentration ex
pected to be associated with local sources. 

It is challenging to readily identify the known CH4 emission event in 
January 2019 from the CH4-concentration time series alone (see Fig. 2). 
In other words, other local CH4 sources (such as a nearby dairy farm and 
local waste facilities) often manifested similar (or greater) concentration 

enhancements in time series data. These extraneous sources resulted in 
CH4 concentrations that obscured those resulting from the emission 
event, making detection difficult. However, by simultaneously exam
ining complementary data such as wind direction, meteorology, and 
other trace gases, it is possible to differentiate sources. This concept was 
successfully realised by Shaw et al. (2019) using the measurement sta
tistics. This work evaluates a more generalised machine-learning 
approach for the same event detection task. The case study here is 
limited to CH4 venting at the PNR shale gas site in 2018 and 2019 as a 
moratorium on the use of hydraulic fracturing was announced by the UK 
Government in November 2019, subject to future safety evaluation. 

2.2. Machine learning tools 

Many different machine-learning models exist, and have been used 
widely in environmental studies (Zheng et al., 2021). Two 
machine-learning tools (rmweather and Prophet) were chosen for this 
work, and were used to derive statistical relationships between atmo
spheric CH4 concentrations and complementary input parameters as a 
function of time. These two tools were selected as they were both freely 
and publicly available, with comprehensive and easy-to-follow in
structions, and therefore potentially easily accessible to industry and 
regulatory stakeholders. The rmweather model was built specifically to 
handle atmospheric measurements. Data measured prior to operational 
activity at the shale gas facility (between 1 April 2016 and 30 June 2018; 
shown highlighted in blue in Fig. 2) were used to train the 
machine-learning tools to develop predictive models for forecasting CH4 
based on the prevailing meteorological conditions in the absence of 
operational shale gas activity. The training dataset consisted of 27 
months of data. 

The trained models were then used to forecast a counterfactual (or 
business-as-usual) time-series of CH4 concentrations, involving periods 
of known operational site activity, using the auxiliary observational data 
(meteorological and CO2 concentration) as input parameters. The 
counterfactual dataset represents an alternate reality in which the shale 
gas facility was never operational. From the perspective of the models, 

Fig. 1. Location of the fixed-site monitoring station (red circle), cattle farm, and shale gas extraction facility (blue rectangle) in Little Plumpton, Lancashire, UK 
(Google Maps © 26/11/2018). The monitoring station is approximately 430 m to the east of the shale gas facility boundary, and 100 m north of Preston New Road. 
The buildings 100 m to the east of the measurement site are part of a dairy and cattle farm. Other potential sources of CH4 pollution include: leaks from natural gas 
infrastructure on Preston New Road, a motorway (M55; 1.3 km to the north), and a landfill site (2.6 km to the southwest) (see Lowry et al. (2020) for more details). 

Fig. 2. 10-minute mean CH4 and CO2 concentrations between February 2016 
and December 2019 measured at the PNR monitoring station. The blue high
lighted region indicates the data used to train the machine-learning tools. Data 
used to test the models for CH4 prediction were randomly selected (and with
held) from the training data. Data after the training period could have been 
impacted by emissions from the shale gas facility, and were compared against 
model predictions. The known emission event from the shale gas site is shown 
highlighted in yellow (January 2019). 
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the counterfactual dataset is in the future. The counterfactual dataset 
consisted of 18 months of data (from 1 July 2018 and up to the end of 
2019). This counterfactual dataset was then compared with the 
measured dataset to test the capability of the machine-learning tools for 
forecasting the measured CH4, and to identify perturbations from the 
baseline due to emissions from known operational activities at the shale 
gas facility. This allows us to test how a known emission source mani
fests in the measured data, compared with its absence in the predicted 
data. The following section describes the two machine learning tools 
used and their configuration for the tests in this study. 

2.2.1. rmweather 
The rmweather package utilises a random forest (or decision forest) 

machine learning approach to deconvolve the relationships between 
meteorological variables and air pollutant concentration (see Grange 
et al. (2018) for more detail on the rmweather model). The relationship 
between a pollutant’s concentration and additional, non-meteorological 
variables (such as another pollutant) can also be analysed. 

The rmweather tool randomly assigned 20% of observations within 
the training data as testing data. The other 80% of the training data was 
used to train the model. The test data was withheld from training pro
cedures, and was used to assess model performance. The rmweather tool 
was applied to the training data (Fig. 2) with the following variables 
used as predictors for CH4 concentration: date, day-of-year, weekday, air 
temperature, wind direction, wind speed, CO2 concentration, and sur
face atmospheric pressure. Different time resolutions, or time-averaging 
periods, were investigated to determine the optimal data frequency for 
maximising model fit and minimising errors (see Fig. 3). Additional 
model hyperparameters were also varied iteratively to determine the 
optimal parameters for maximising model fit and minimising error (see 
Supplementary Information Section 1). 

2.2.2. Prophet 
Prophet is a time-series forecasting model used to decompose tem

poral trends in data (see Taylor and Letham (2018) for a description of 
the model algorithm). Time-series forecasting approaches fit data 
against yearly, weekly, and daily periodicity. Prophet is an open-source 
time-series forecasting model developed for this purpose for Face
book™. Time-series forecasting models are generally used to analyse 
non-linear trends to predict future growth whilst allowing for seasonal 

effects. The model is capable of deconvolving the impacts of additional 
parameters, known as regressors, such as meteorological variables. The 
forecast trend prediction was set to assume zero growth as forecasting 
was only necessary for ~18 months post training. Such year-on-year 
changes are negligible compared to the magnitude of transient emis
sion events, which typically result in many ppm enhancements (three 
orders of magnitude greater than mean annualised global growth). 
However, a zero annual growth assumption would not be appropriate if 
applied over longer (e.g. decadal) timescales. 

The Prophet tool was applied to the training data (Fig. 2) with the 
following variables used as regressors (predictors) for CH4 concentra
tion: air temperature, wind direction, wind speed, CO2 concentration, 
and atmospheric pressure, in addition to fits against daily, weekly, and 
yearly periodicity. The effect of model hyperparameters was tested to 
optimise model performance (see Supplementary Information Section 
2). 

3. Results and discussion 

3.1. Model development and model performance 

The two machine-learning models were trained using 27 months of 
observational data measured at the PNR site. Here we evaluate model 
performance in terms of predictive accuracy for the test set of data – a set 
of randomly selected observations withheld from the training data. 
Testing here was performed on a standard modern desktop computer as 
a simple qualitative example. The test data provide an independent 
dataset that is representative of the broader training data, and can be 
used for model validation (Bennett et al., 2013). 

Fig. 3 shows time-series comparisons of measured and model- 
predicted CH4 concentrations for the test set of data. It should be 
noted that the test data is a set of randomly selected observations from 
within the training period (as described in Section 2.2.1). This conven
tional approach to evaluating model performance using randomised 
data subsets (Bennett et al., 2013) may be expected to negatively affect 
the accuracy of Prophet predictions as Prophet is fundamentally based on 
forecasting time-series of continuous, evenly distributed data. Results of 
an alternative testing strategy, in which the models were tested against a 
period of continuous data, is presented in Supplementary Information 
Section 5. For the purposes of presenting a direct comparison between 

Fig. 3. Time-series of 30-min average a) measured and rmweather predicted CH4 in the test set; b) ratio of measured-to-rmweather-predicted CH4, representing model 
bias; c) measured and Prophet predicted CH4 in the test set, and; d) ratio of measured-to-Prophet-predicted CH4, representing model bias. 
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the models, the Prophet model output shown here was trained using a 
time-averaging period of 30 min, despite this not being the optimal 
period for Prophet model performance (see Supplementary Information 
Section 3). 

The rmweather model performed well when predicting the test set 
observations, and generally captured patterns in CH4 throughout the 
training period. Mean absolute error was 55.4 ppb (median = 18.9 ppb), 
and mean absolute percentage error was 2.2% (Table S1). The overall 
mean bias was − 0.24 ppb, indicating a marginal under-prediction 
relative to measurements. The model generally performed better at 
lower CH4 concentrations (i.e. those typical of background conditions) 
with absolute error increasing with increasing CH4 concentration 
(Fig. S4). This is likely due to the scarcity of high CH4 concentration 
events, and the relatively rare conditions associated with them (easterly 
winds, low wind speeds, low atmospheric boundary layer etc.). The 
measured-to-predicted ratio shown in Fig. 3b provides a continuous 
indication of model prediction relative to the measurements. Ratio 
values greater than 1.0 indicate model under-prediction relative to the 
measurements, and values less than 1.0 show model over-prediction 
relative to measurement. However, there were data for which the 
model underestimated CH4 by factors of up to 2.0. These excursions 
occurred for the highest measured CH4 concentrations (>4000 ppb), 
suggesting that the model was unable to fully capture transient events 
based on meteorological conditions alone. This was likely due to unusual 
emission events from local sources impacting local CH4 concentrations 
abnormally. 

Prophet also did performed reasonably well predicting CH4 in the test 
set (Fig. 3), although metrics were slightly worse than those for 
rmweather (Table S1). Mean absolute error was 136 ppb (median = 80.5 
ppb), and mean absolute percentage error was 5.7%. As for rmweather, 
Prophet showed greater capacity for predicting lower CH4 concentra
tions, typical of background conditions (Fig. S4). As was the case for 
rmweather, there was no clear temporal bias in Prophet predictions, with 
the model doing a reasonable job throughout the training data and 
across different seasons. Prophet also underestimated many of the 
highest CH4 concentrations, and to a greater extent than rmweather. 

Fig. 4 shows smoothed histogram density plots of the distribution of 
CH4 concentrations within the test set of data, both as measurements, 
and as values predicted by rmweather and by Prophet. There was a clear 
overlap between the density of CH4 concentrations predicted by 
rmweather and the measurements, with the distributions almost identical 
across background CH4 values (those around 2000 ppb), and the long 
tail distribution of CH4 enhancements (those >2000 ppb). Prophet did 
not capture the same distribution. Although the mode of the Prophet CH4 

distribution was accurate, the model appeared to smear the density 
distribution about the mode relative to that observed for the measure
ments. Prophet also modelled lower CH4 than those measured, even 
predicting concentrations that would be highly unusual in the tropo
sphere given the global CH4 background value. 

Fig. 5 shows the relationships between measured and predicted CH4 
concentration, and the measured-to-predicted ratios plotted as a func
tion of wind direction. The scatter plot confirms the underestimation by 
the models of the largest measured CH4 concentrations, as observed in 
Fig. 3. The slopes of the linear regression were 0.81 and 0.53 for 
rmweather and Prophet respectively. These values indicate un
derestimations of CH4 concentration enhancements, with much greater 
underestimation by the Prophet model. Model prediction for background 
CH4 concentrations (~2000 ppb) was much better. R2 values of 0.85 for 
rmweather and 0.53 for Prophet indicate reasonable model fit (Table S1). 

A wind rose plot for rmweather demonstrates very little model bias 
with respect to wind direction - most of the measured-to-predicted ratio 
values were between 0.95 and 1.05 with the majority of values outside 
of this range occurring under easterly wind conditions. This is expected 
to be due to the nearby dairy farm, a major source of CH4 that may not 
always operate in a consistent and predictable manner. On the other 
hand, rmweather performed exceptionally well for westerly wind di
rections, with a large proportion of measured-to-predicted ratios be
tween 0.99 and 1.01, as well as very few ratios greater than 1.05 or less 
than 0.95. This is expected to be due to the relatively clean (in terms of 
CH4 pollution) and well-mixed air sampled from the west (Shaw et al., 
2019) and is encouraging for accurate model forecasting beyond the 
training period. For Prophet, many of the underestimates of CH4 
occurred during easterly winds, with an almost equal amount of un
derestimation and overestimation of CH4 occurring during westerly 
winds. 

Fig. 6 shows a hierarchy of the importance, or correlation, of vari
ables towards CH4 prediction, as output by the rmweather package. The 
importance values output by rmweather are defined as the permutation 
importance differences of prediction error, and are unit less. These 
statistics represent the increase in prediction ability after the inclusion 
of each explanatory variable, and therefore give an indication of the 
importance of each variable for representing the dependent variable 
(CH4, in this case) in a random forest model. The lower plots show the 
partial dependencies of the individual variables towards CH4 over their 
respective ranges, where each of the other variables were fixed to their 
mean values. CO2 and wind direction data showed the greatest corre
lation with CH4, with the influence of the nearby cattle and dairy farm 
clearly visible in the high CH4 concentrations diagnosed when wind 
directions were roughly 90◦ (easterly), as expected. Atmospheric pres
sure, wind speed and weekday had the least influence on CH4, with only 
a small impact across most of their ranges of values. This is expected as 
sources of CH4 are not typically limited to weekday human activity (such 
as traffic volume, which may be expected to be more associated with 
CO2). 

The overall good predictive capacity demonstrated here for both 
rmweather and Prophet indicates that machine-learning models are able 
to use measured data to estimate CH4 concentrations. CH4 concentration 
prediction was typically better for background values, which may be 
expected due to the high density of those values in the dataset. CH4 
concentration enhancements were typically underestimated (by 20% for 
rmweather, and 50% for Prophet) but were still reasonable considering 
the transient and relative rarity of such events. Importantly, these results 
are remarkable considering the models have no knowledge of local 
emission sources, in terms of their location, their relative strength, or 
their temporal patterns in emissions. Model improvements could 
potentially be made upon including ancillary data such as emission 
source information (which would require flux analysis), or even by 
including other atmospheric data such as NOx or O3. 

The following section will analyse the performance of the machine- 
learning models for forecasting CH4 beyond the training data (into the 

Fig. 4. Density plot of the distribution of CH4 concentrations within the test set 
data, as measurements, and as rmweather and Prophet predictions. 
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future, from the model’s perspective). In this case, the forecasts repre
sent a “business-as-usual” scenario, in which the conditions and CH4 
emission sources present in the training data persist, and therefore the 
forecast is counterfactual to the measured data. 

3.2. Forecasting CH4 and emission detection 

The trained and optimised machine-learning models were used to 
forecast CH4 beyond the training period (after 1 July 2018), corre
sponding to a period of time in which the shale gas facility became 
operational and exploratory hydraulic fracturing began. As the models 
were trained in the absence of these activities, any deviation between 
model-forecast CH4 and actual measured CH4 may be indicative of 
emissions from this new CH4 source. 

Fig. 7 shows a comparison of measured CH4 and counterfactual CH4 
concentrations forecast by both rmweather and Prophet. For the most 
part, both models continued to correctly predict CH4 data beyond the 
training period, including many of the short-term CH4 enhancements, 
despite some difficulties in simulating the precise magnitudes. The 
models’ performance decreased when forecasting CH4 concentrations 
beyond the training period, with R2 values of 0.60 and 0.46 for 
rmweather and Prophet respectively (Fig. S7). However, it should be 
noted that decreased performance would be expected as this period in
cludes CH4 emissions for which the models were not trained to predict. 
The central panels of Fig. 8 show the measured-to-forecast ratio as a 
function of time, to give an indication of model deviation from the 
measurements. rmweather appeared to overestimate background CH4, 
forecasting background CH4 concentrations approximately 20 ppb 

greater than those measured. Overestimation was also particularly clear 
in Prophet forecasts for summer 2019. rmweather overestimations could 
be a result of the irregular annual increase in global CH4 background 
concentration (Dlugokencky, 2022) but it is unknown as to what caused 
overestimations in Prophet forecasts. Therefore, it is recommended that 
machine-learning models be trained on at least 12-months of data in 
order to capture any seasonal cycle, with an additional caveat that even 
training on several years of data may not improve long-term forecasts if 
inter-annual growth is highly variable. 

Filtering the measured-to-forecast ratio values for westerly wind 
directions (270◦ ± 45◦) allows for analysis of only those periods that 
may have been influenced by CH4 emissions from the shale gas facility 
(the potential new source of CH4 emission) introduced in mid-2018. The 
mean measured-to-forecast ratio under westerly wind conditions was 
0.97 (±0.06 at 1σ) and 0.99 (±0.06 at 1σ) for rmweather and for Prophet 
respectively, indicating improved predictive capacity for CH4 during 
periods of westerly winds (relative to all data). This is likely a result of 
the dominance of well-mixed but clean Atlantic airflow (with little 
variability in CH4) from the west (Shaw et al., 2019), and correlates with 
the performance observed during model testing above. 

Whilst the counterfactual CH4 forecast by both machine-learning 
tools showed reasonable agreement with measurements, a number of 
instances where the models substantially underestimated the measured 
CH4 occurred within the 18-month period, indicated by clear excursions 
in the measured-to-forecast ratio to values greater than 1.5 (Fig. 7 
westerly winds plots). Two distinct periods of excursions were imme
diately obvious, occurring in December 2018 and January 2019, 
consistent with the two periods of known CH4 emission. This clearly 

Fig. 5. a) Scatter plot of measured and rmweather-predicted CH4 for the test set. The solid line shows the linear regression through the data, and the dotted line 
indicates a 1:1 fit; b) Wind rose plot of measured-to-predicted ratios for rmweather. The radii of the wedges indicate the percentage of values occurring in each wind 
direction; c) scatter plot of measured and Prophet-predicted CH4 for the test set, and; d) wind rose plot of measured-to-predicted ratios for Prophet. 
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Fig. 6. Top panel; hierarchy of variable importance towards predicting, or correlation with, CH4 at PNR, determined by the rmweather package. Bottom panels; 
partial dependencies of each of the variables, showing the determined variability in CH4 concentration across each variable’s range of values (assuming all other 
variables are fixed at their mean value). 

Fig. 7. Time-series of 30-min average a) measured and rmweather forecast CH4 after development of the shale gas facility; b) ratio of measured-to-rmweather-forecast 
CH4; c) measured and Prophet forecast CH4 after development of the shale gas facility, and; d) ratio of measured-to-Prophet-forecast CH4. 
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demonstrates that the machine learning models are capable of identi
fying anomalous emission events, the primary goal of this study. These 
two periods emissions are shown in detail in Fig. 8. 

Fig. 8 shows a comparison of measured and forecast (rmweather and 
Prophet) CH4 in December 2018 and January 2019. Local residents re
ported emissions of ‘vapours’ from the shale gas facility on the morning 
of December 7th, 2018 via a local social media group. The operator 
reported performing flowback operations on a shale gas well between 
10th and 16th January 2019 (see Shaw et al., 2020). Enhancements in 
CH4 were measured during both of these periods, coincident with 
westerly winds at the time. Neither of the models were able to accurately 
forecast the CH4 during these events, predicting CH4 concentrations of 
roughly 2000 ppb (consistent with the global CH4 background) rather 
than enhancements of ~5000 ppb (averaged over 30-min). This 
discrepancy strongly indicates the prevalence of a new emission source 
that was not present during the training period. The models under
estimated the CH4 by up to a factor of 2.5 during the flowback period 
(Jan 10th – 16th), as indicated by the measured-to-forecast ratios. 

The same two periods of CH4 enhancements were also identified 
using the manually derived threshold criteria described by Shaw et al. 
(2019) and Shaw et al. (2020). However, such threshold criteria require 
specialist proficiency and expertise in the interpretation of meteorology 
and atmospheric chemistry. This study demonstrates the use of 
machine-learning tools for the same purpose, and for reaching the same 
conclusion, but with clear advantages in usability, repeatability, and 
versatility for other measurement locations. Machine-learning tools and 
the prediction of counterfactual observations could be used to improve 
automated “alarm” systems, to alert operators to the presence of unex
pected and dangerous pollutant emissions. Such systems could allow for 
rapid responses to reduce leaks and equipment failure. 

4. Conclusions 

This work demonstrates the use of two machine-learning approaches 
for the identification of transient CH4 emissions associated with hori
zontal hydraulic fracturing for shale gas extraction in Lancashire (United 
Kingdom). In principle, the methods demonstrated here should be 
applicable for the detection of any atmospheric pollutant, in conjunction 

with real-time monitoring and a representative baseline dataset 
collected prior to the introduction of any new emission source. The 
approach is beneficial for interpreting the incremental change of new 
emission sources and their local environmental impact, which can 
address concerns surrounding human health, air quality, and green
house gas emissions. Machine-learning approaches can offer a versatile 
and user-friendly tool for identifying and interpreting new emission 
sources, via the rapid processing of large datasets to deconvolve 
parameter relationships. 

In this study, two independent machine-learning approaches were 
tested: rmweather, a random forest model, and Prophet, a time- 
forecasting model. These machine-learning models were trained on 27 
months of baseline data measured prior to the development of the shale 
gas facility. The tools were then used to forecast counterfactual CH4 for 
an 18-month period after shale gas extraction operations began. Fore
cast and prediction procedures were rapid, with both models taking less 
than 30 min to process the four years of measurement data on a standard 
desktop computer. 

Both models showed capability for predicting the measured CH4, 
with optimised R2 values of 0.85 and 0.76 for rmweather and for Prophet 
respectively. Both models were proficient at identifying transient en
hancements in CH4 as a result of pre-existing emission sources. Both 
models demonstrated efficacy for detecting new sources of CH4 emission 
through the significant deviation of the forecast counterfactual CH4 
from the measured CH4 during periods of known emission from the shale 
gas facility. We recommend the use of rmweather for emission detection 
applications as it performed better for atmospheric data analysis, and 
random forest tools do not rely entirely on decomposing temporal data 
trends that may exhibit high variability over short time scales. However, 
we acknowledge that other machine-learning algorithms also exist 
which have not been tested here for their applicability for detecting 
episodic atmospheric emissions. Future work should examine the effi
cacy of a wider variety of machine-learning models for this application. 
Future work could also examine the potential of using extraneous data, 
measured beyond a single-site monitoring station, to further constrain 
parameter relationships. For example, measurements of global back
ground CH4 could potentially be used to improve characterisation of the 
local CH4 background. To conclude, machine-learning tools offer a 

Fig. 8. Time-series of 30-min average a) measured and rmweather forecast CH4 in December 2018 and January 2019; b) ratio of measured-to-rmweather-forecast CH4; 
c) measured and Prophet forecast CH4 in December 2018 and January 2019, and; d) ratio of measured-to-Prophet-forecast CH4. Highlighted areas indicate periods in 
which CH4 emissions were known to have occurred (as reported by the operators). 
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rapid, reliable, and low-effort approach for detecting and identifying the 
impacts of new emission sources, and may find potential use as an 
automated alert system for unexpected and dangerous pollutant 
emissions. 
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