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Nomenclature

Superscripts

A � Moore-Penrose pseudo-inverse of matrix A

AT, qT Transpose of matrix A, vector q
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0p� p The p � p matrix of all zero entries

1p� p The p � p identity matrix

x � y The Euclidean dot product; equivalent to xTy

N Number of Monte Carlo observations, i.e. Monte Carlo sample size

n Number of observations, i.e. sample size

p Number of parameters; dimension of Q

Spaces

Y Set or space of possible values for observational data

Q Statistical family

Q Natural parameter space; open subset ofR p
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Thesis Outline

Bayesian statistics treats the parameters of a data generation process as random vari-
ables to describe their uncertainty before and after data are observed. Prior informa-
tion, which could include information from previous observations or expert opinion,
is encoded in the form of a prior distribution on the process parameters. This distri-
bution is updated to a posterior distributionby conditioning on new observations via
Bayes’ Theorem. One may be able to write down the posterior density up to a constant
of proportionality, but often cannot directly compute expectations with respect to the
posterior measure. In applications, posterior expectations are required to compute al-
most all informative quantities including the posterior mean, covariance and predictive
distributions for future data.

The widely-used solution to this problem is Markov Chain Monte Carlo (MCMC),
which computes approximations to expected values Ep (q) ( f (q)) of a function f with
respect to a target distribution p (q). A Markov Chain is constructed whose stationary
distribution is the target, and the quantity of interest is averaged over a simulation of
the chain. The average over the simulated chain is known as the Monte Carlo estima-
tor, which is an asymptotically unbiased approximation to the true expectation. The
variance of the Monte Carlo estimator, and thus the accuracy in the approximation, de-
pends on the autocorrelation of the underlying Markov Chain. Hence Markov Chains
whose autocorrelation quickly decay are desirable.

This thesis studies MCMC algorithms which make use of Differential Geometry on
the parameter space of the model in order to more ef�ciently sample from the posterior
distribution. Geometric structures on statistical models are independent of parameter-
ization, and so sampling algorithms de�ned in terms of these structures have certain
invariance properties under transformations of parameter space.

To demonstrate this point, the left panel of Figure 0.0.1 shows several steps of a
Gibbs sampler on the joint probability density of two correlated random variables q1, q2.
The algorithm samples q1 conditionally on the last value of q2 and vice versa, and hence
the sequence of samples appears to move in parallel to a co-ordinate axis at each step
with right-angles between the lines joining successive samples. For distributions with
high correlation between variables, the Gibbs sampler is known to be inef�cient be-
cause the variance of the conditional distributions is small, and thus the algorithm is
constrained to take small steps. The performance of the sampler is improved under a
reparameterization to a co-ordinate system which is less correlated.
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Figure 0.0.1: Left: Gibbs sampling from a bivariate target distribution. Right: The im-
age of the samples under a nonlinear reparameterization with the transformed density.
Contour lines roughly re�ect boundaries between 10% quantile regions.

The right panel of Figure 0.0.1 shows the image of these samples and the lines join-
ing them under a nonlinear reparameterization

m:=
q2

2q1
s :=

s
1

2q1

Under this change of variable, the target density follows a transformation law involving
the Jacobian determinant; see Corollary B.0.2 in Appendix B. As expected, the �gure
shows that in the new parameterization some lines joining successive samples are not
straight and never meet each other perpendicularly. It seems therefore that straightness
and orthogonality depend on co-ordinates.

In fact, Differential Geometry provides rigorous de�nitions of orthogonality and
straightness without reference to any particular co-ordinate system, and are consis-
tent even under nonlinear changes of variable. These are respectively given by the
Riemannian metric tensorand af�ne connections. The thesis will develop sampling al-
gorithms which move along geodesiccurves, i.e. straight as determined by the af�ne
connections, and intersect orthogonally with respect to a particular Riemannian metric.
Previous authors have used similar ideas to develop successful geometric sampling al-
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gorithms; for example, the Riemannian variants of Hamiltonian Monte Carlo (HMC)
and the Metropolis-Adjusted Langevin Algorithm (MALA) introduced by Girolami
and Calderhead [39] often outperform their non-Riemannian versions, especially for
hierarchical models with high curvature [11].

The algorithms developed in this thesis differ from previous work by making use
of the dual geometryof statistical models studied in the �eld of Information Geometry.
Whereas previous geometric sampling algorithms only use the Levi-Civita connection
which is entirely determined by the Riemannian metric, the novel algorithms presented
in this work use two coupled af�ne connections. There are therefore two ways of mea-
suring �atness or curvature, arising from asymmetry in divergence functions such as
Kullback-Leibler. The inherent dual geometry of a statistical model contains no infor-
mation from any prior distribution, and perhaps for this reason has not been previously
studied for use in Bayesian inference.

The thesis is divided into four parts. Part I discusses geometry for Bayesian infer-
ence; Chapter 1 shows how statistical families may be given a smooth manifold struc-
ture and recasts Bayesian inference in terms of measures on such manifolds. Chapter
2 reviews Differential and Information Geometry in detail, discussing how a metric
tensor and connections are derived from a divergence function between probability
distributions. Chapter 3 presents a novel dual geometry modi�ed to include both prior
and likelihood information for use in sampling, and discusses partitioning of parameter
space into orthogonal submanifolds.

Part II concerns the use of geometry in sampling algorithms; Chapter 4 reviews
MCMC, particularly those algorithms which resample the target distribution within
a submanifold such as the Gibbs sampler and Hamiltonian Monte Carlo. Chapter 5
then presents two novel sampling algorithms called Orthogonal Gibbsand Orthogonal
Gradient, analyzes their behaviour in certain cases and presents numerical results for
several example models. Finally, Part III contains concluding remarks and Part IV is
the collection of appendices.

11



List of Contributions

To my knowledge, the following are all novel contributions.

� Chapter 1 gives a measure-theoretic co-ordinate free treatment of Bayes’ theorem
in Section 1.1.3. Although the discussion is fairly straightforward once all the
terms are introduced in co-ordinate free form, I was not able to �nd a version of
Bayes’ theorem on a manifold in the literature.

� Chapter 2 is mostly a review of differential and Information Geometry, but also
includes some novel results.

� In Theorem 2.5.3, I show that the dual geometry arising from a divergence
function restricted to a submanifold is exactly the dual geometry inherited
from the ambient space in which the submanifold is embedded.

� If a dually-�at geometry is generated by a Bregman generator F in a global
co-ordinate chart, Theorem 2.5.8 shows that a submanifold is e-�at, i.e. au-
toparallel with respect to the primal connection, if and only if the Bregman
divergence in the submanifold generated by the restriction of F corresponds
with the restricted Bregman divergence.

� Chapter 3 suggests a dually-�at geometry for use in MCMC algorithms, called the
Posterior Bregman Geometry, de�ned for any log-concave probability density. In
some cases, the geometry has the same Riemannian metric as that suggested by
Girolami and Calderhead [39].

� Proposition 3.1.2 shows that for exponential family models, the posterior
Bregman divergence is given by the prior Bregman divergence plus the Kullback-
Leibler divergence.

� Theorem 3.1.3 states that under weak conditions, log-concave densities can
be written as exp(� D(q, q0)) up to a multiplicative constant where D is the
p -Bregman divergence and q0 is the mode when it exists.

� In Section 3.3.3, I generalize the mixed co-ordinates of Amari [3], [2] such
that the corresponding foliations are general hyperplanes in primal and dual
co-ordinates.

12



� Theorem 3.3.11 shows that the primal component of generalized mixed co-
ordinates is a primally-af�ne co-ordinate system for the dually-�at geometry
within each �ber of the m-foliation. Furthermore, Theorem 3.3.12 gives an
explicit form for the Bregman generator within the m-�at submanifold or
�ber.

� Chapter 5 introduces novel sampling algorithms which reduce to well-known
methods in speci�c cases.

� Algorithm 4 is a general form of novel Complementary Dual Submanifoldalgo-
rithms that sample a target probability distribution conditioned on Riemannian-
orthogonal e-�at and m-�at submanifolds. The algorithms recurse within the
m-�at submanifold, making use of novel results from Chapter 3.

� Theorem 5.1.1 and Theorem 5.1.2 give explicit disintegrations of the target
density over the general e- and m-foliations. Furthermore, the general algo-
rithm is shown to preserve the target distribution in Theorem 5.1.6.

� Section 5.2 describes a speci�c case calledOrthogonal Gibbs. Complemen-
tary primal and dual variables are recursively sampled conditionally on each
other in a block Gibbs algorithm. Proposition 5.2.1 shows that Orthogonal
Gibbs reduces to the regular deterministic-scan Gibbs sampler when the Eu-
clidean divergence function is used.

� In Section 5.2.2 and Appendix D, I show that for a multivariate Gaussian
target the Orthogonal Gibbs algorithm is equivalent to the Gaussian Elimi-
nation solver for linear systems with a stochastic term in the update to the so-
lution. Corollary 5.2.3 states that this sampling analogue to Gaussian Elimi-
nation produces independent samples from the Gaussian target distribution.

� Section 5.3 describes another speci�c case of the general algorithm in which
one samples the target distribution conditioned onto an e-geodesic in the
direction of the negative log-density of the target, and then from the condi-
tional on the orthogonal m-�at submanifold. I call this algorithm Orthogonal
Gradient.

� In Section 5.3 and Appendix D, I show that for a multivariate Gaussian tar-
get, the Orthogonal Gradient algorithm is equivalent to the Conjugate Gra-
dient solver for linear systems, sampling along search directions instead of
minimizing a cost function.
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Part I

Geometry for Bayesian Inference
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Chapter 1

Bayesian Inference and Statistical
Families

This chapter recasts Bayesian inference in terms of measures on families of data-generating
distributions, which will be treated as smooth manifolds. The special case of exponen-
tial families is examined, which are ubiquitous in statistical models, with several exam-
ples of Bayesian inference problems which will serve as test cases for MCMC later in
the thesis.

1.1 Bayesian Inference in the Geometric Picture

We begin by brie�y describing Bayesian inference and �xing notation to be used through-
out the thesis.

In their book Bayesian Data Analysis [33], Gelman et al divide Bayesian analysis
into three steps:

1. A joint probability model over observable and unobservable variables is con-
structed. Let q = (qi )

p
i= 1 be the p unknowns or unobservables, and y =

�
yj

� n
j= 1 be

the n known or observable variables. The joint probability model is written

p
�
y1, ..,yn, q1, ..,qp

�
� p (y, q)

We use p (�) to denote marginal probability densities or probability mass func-
tions, and p (�j� ) for conditional densities or mass functions, with respect to some
base measure. The probability model describes relationships between variables
according to (e.g.) scienti�c theories, and also encodes one’s uncertainty about
the value of each of the variables. In particular, the conditional density p (yjq)
represents the distribution on observable data conditioned on unknown param-
eters q, and the prior p (q) is a probabilistic representation of uncertainty in the
unknowns. By elementary probability theory, the joint distribution p (y, q) is sim-
ply the product p (yjq)p (q), so these two densities fully specify a joint probability
model assuming they exist with respect to speci�ed dominating measures.
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2. The joint probability model is conditioned on the measured values of observables
y = yobs. Assuming the relevant densities exist, this is described by Bayes’ theo-
rem,

p (qjy = yobs) =
p (yobs, q)
p (yobs)

=
p (yobsjq)p (q)R

p (yobsjq0)p (q0)dq0 (1.1.1)

This conditional distribution of unknowns given knowns is called the posterior
distribution. It represents one’s updated uncertainty, or knowledge, about q given
observed data yobs. The likelihoodis the density p (yobsjq) thought of purely as a
function of q with the observed value of yobs plugged in. The normalizing con-
stant p (yobs) is often a high-dimensional integral, and hence it is usually only
possible to compute the posterior up to a constant of proportionality,

p (qjyobs) µ p (yobs, q) = p (yobsjq)p (q)

assuming the prior and likelihood can themselves be evaluated up to multiplica-
tive constants.

3. The �t of the model to the data is assessed and inferences are drawn using the
posterior distribution. To assess model �t, it is useful to predict new data based
on the updated unknowns, and check how similar predicted and observed data
are. This is achieved using the posterior predictive distribution,

p ( �yjyobs) =
Z

p ( �yjq0)p (q0jyobs)dq0

where �y is a prediction for new data. One could compare a histogram of simulated
data from the posterior predictive with actual observed data, for example - such
diagnostics are known as posterior predictive checks[33].
If the model is deemed reasonable, one may wish to compute quantities of interest
based on the posterior. These are expectations of the form

Ep (qjyobs) [ f (q)] =
Z

f (q)p (qjyobs)dq (1.1.2)

i.e. an average of the functional f with respect to the posterior distribution. For
example, our interest may be in E (qi ) for some i 2 f 1, ..,pg, the mean of qi with re-
spect to the posterior, which represents a �best guess� or point estimate of the un-
known variable qi given observed data. Another example is given by the marginal
variance of qi ,

Varp (qjyobs) [qi ] := Ep (qjyobs)

h
qi

2
i

�
�

Ep (qjyobs) [qi ]
� 2

which can be interpreted as a measure of uncertainty in the value of qi .

The primary computational challenge in Bayesian inference is in computing quanti-
ties of interest (1.1.2). This thesis studies Markov Chain Monte Carlo algorithms, which
approximate quantities of interest by taking the sample mean of a set of simulated
draws from the posterior distribution.
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1.1.1 Reparameterization and Statistical Families

We have described Bayesian inference in terms of conditional densities on unknown
variables given known variables. Here we introduce a different view of Bayesian in-
ference that better suits the geometric picture; the prior and posterior are probability
measures onstatistical familiesof data-generating distributions, which can be viewed as
smooth manifolds, i.e. generalizations of smooth surfaces in Rn.

Firstly, we note that the probability model can be reparameterized by a transforma-
tion of the known or unknown variables. The following is a formal de�nition of the
concept of a change of variable, which we adapt from Munkres [54].

De�nition 1.1.1. Let Q, X � R p be open subsets andh : Q ! X be a bijection such that
both h and its inverse h � 1 are C¥ -smooth, i.e. its partial derivatives of all orders exist
and are continuous on Q. Then h is called a diffeomorphism .

Consider a transformation on the unknown variables q of a probability model,

q ! x := h (q) , h : Q ! X

where h is a diffeomorphism. In this context Q, X � R p are open subsets calledparame-
ter spaces; sets of admissible values for q and x respectively. The thesis will not consider
countable or �nite parameter spaces. Suppose further that data can take values in a set
Y � Rn. Under the transformation h, the conditional density of data given parameters
transforms as a scalar function of q, so that the conditional density given x evaluated at
observed data y = yobs is

p (yobsjx) := p (yobsjq)jq= h � 1(x) for x 2 X (1.1.3)

The marginal distribution p (q), i.e. the prior, is a probability density in q and therefore
transforms according to the change of variable formula for probability densities, stated
in Appendix B as Corollary B.0.2;

p (x) :=
p (q)

jdet[Dh(q)]j

�
�
�
�
q= h � 1(x)

for x 2 X (1.1.4)

where Dh(q) is the derivative matrix of h evaluated at q, i.e. the matrix with ( i, j)-entry

(Dh(q)) i j :=
¶hi

¶qj
(q)

In measure-theoretic language, the transformed density (1.1.4) is the density of the
pushed-forwardprior distribution under the measurable function h, with respect to the
Lebesgue measure onR p. The posterior distribution is represented by the probability
density p (qjyobs), which follows the same change of variable formula;

p (xjyobs) =
p (qjyobs)

jdet[Dh(q)]j

�
�
�
�
q= h � 1(x)
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Substituting Bayes’ rule (1.1.1) for p (qjyobs) and the transformed prior (1.1.4) and con-
ditional density (1.1.3), we �nd

p (xjyobs) =
p (yobsjq) p (q)

p (yobs) jdet[Dh(q)]j

�
�
�
�
q= h � 1(x)

=
p (yobsjx)p (x)

p (yobs)

We see that Bayes’ theorem holds in the transformed variable x. In other words, the
process of Bayesian updating commutes with reparameterization of the model, so using
notation such as p (xjyobs) is justi�ed. In conclusion, any diffeomorphism on the un-
known variables is a reparameterization of a Bayesian model, and the model can there-
fore be represented in in�nitely many equivalent parameterizations. We will therefore
present a formal description of a Bayesian model which is independent of parameteri-
zation.

The observed variables y = yobs are asample, i.e. a realization of a random variable
with some unknown probability distribution q, called the population. One wishes to in-
fer properties of q from the sample y. The space of all probability distributions over the
data is usually too large to work with, and so statisticians work with restricted classes
of distributions called small worlds[10] or families. The prior and posterior are then
probability measures on these families, respectively representing information about the
population before and after data are observed. This leads to the following formal de�-
nition:

De�nition 1.1.2. Let (Y, F ) be a measurable space, whereY � Rn and F is a s-algebra
in Y. A statistical model or statistical family Q on (Y, F ) is a set of probability mea-
sures on (Y, F ).

In this picture, q indexes data-generating probability measures qq 2 Q, where q
ranges over some index set or parameter space. Reparameterization simply means a
change of index, or a change of co-ordinatesto describe the family. For the prior and
posterior to be represented in new co-ordinates, the co-ordinate change must be smooth
and invertible with a smooth inverse, i.e. a diffeomorphism. We assert that inferences
we draw about the population should not depend on parameterization; we are there-
fore interested in families which are invariant under diffeomorphisms. This is the study
of differential geometry and smooth manifolds.

1.1.2 Statistical Families as Smooth Manifolds

We assume that all statistical families studied in the thesis are endowed with the struc-
ture of a smooth manifold, which will be de�ned in this subsection. The concept of a
smooth manifold requires a topology. We will not be speci�c about what the topology
is, and will simply assume that there is a given topology that makes a family Q into a
topological p-manifold. We will comment later on how a statistical family may be given
a topology and smooth manifold structure.
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Before discussing geometry, we require the concept of a smooth manifold. This is
the canvas on which geometry lives; it allows us to formally make sense of what it
means for something to be independent of co-ordinates, and has the interpretation of
being �locally �at� so that small perturbations to a point are elements of a vector space.

Formally, a topological p-manifold Q is a topological space that is Hausdorff, sec-
ond countable and locally Euclidean of dimension p [47]. Roughly, being Hausdorff
and second countable means there are neither too many nor too few open sets. Locally
Euclidean of dimension p means that every point in a manifold has a neighbourhood
that is homeomorphic to an open set in R p. An open subset U � Q that is home-
omorphic to an open subset V � R p is a co-ordinate domain , the homeomorphism
f : U ! V is a co-ordinate map , and the pair (U , f ) is a co-ordinate chart . A collec-
tion of co-ordinate charts whose domains cover Q is called an atlas. Since manifolds
are locally Euclidean of dimension p, every point in a p-manifold is contained in the
domain of some co-ordinate chart, so an atlas must always exist.

In order to do calculus on a manifold, we need to make sense of when functions
f : Q ! R are differentiable or smooth. The following discussion follows Lee’s In-
troduction to Smooth Manifolds [46], in which smoothness is de�ned in terms of co-
ordinate charts. Let (U , f ) be a co-ordinate chart with f : U ! V � R p a co-ordinate
map, and let f : Q ! R be a scalar function on the manifold. Then f has a co-ordinate
representation in the chart

�f : V ! R , �f (x) :=
�

f � f � 1
�

(x) for x 2 V

Since �f is a scalar function on R p, its smoothness is well-de�ned; �f is C¥ -smooth, or
simply smooth, if its partial derivatives of all orders exist and are continuous. So we
could say that f is smooth if its co-ordinate representation in some chart is C¥ -smooth;
however, this may depend on the choice of co-ordinate chart.

To overcome this ambiguity, suppose there exist two co-ordinate charts (U1, f 1) and
(U2, f 2) such that their domain intersection U1 \ U2 is non-empty. Then the composi-
tion

f 2 � f � 1
1 : f 1(U1 \ U2) ! f 2(U1 \ U2)

maps co-ordinates represented in the �rst chart to co-ordinates in the second and is
called the transition map between the two co-ordinate charts. We de�ne the charts to
be smoothly compatible if U1 \ U2 is empty or the transition map f 2 � f � 1

1 is a diffeo-
morphism. An atlas A is smooth if any two charts in A are smoothly compatible. A
smooth atlas is said to be maximal if �it is not properly contained in any larger smooth
atlas. This just means that any chart that is smoothly compatible with every chart in A
is already in A � [46]. In fact, every smooth atlas is contained within a unique maximal
smooth atlas, so it is enough to de�ne a smooth atlas to know that a maximal one exists.

Finally we may de�ne a smooth manifold. A smooth structure on a manifold is a
maximal smooth atlas A , and a smooth manifold (Q, A ) is simply a topological man-
ifold Q equipped with a smooth structure A . This allows for a de�nition of smooth
functions f : Q ! R on a smooth manifold (Q, A ). A chart (U , f ) is called smooth
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when it belongs to the smooth structure. The function f is smooth if for every point
q 2 Q a smooth chart (U , f ) 2 A exists whose co-ordinate domain U contains q, and
the co-ordinate representation �f = f � f � 1 is a smooth function on R p. The set of all
smooth functions on Q is denoted by C¥ (Q).

Example 1.1.3. R p is a smooth manifold when equipped with the Euclidean topology
and a smooth structure containing charts of the form (U , I ) where U is any open set
and I is the identity map. Furthermore, any open subset U is a smooth manifold [46].

We may also de�ne smoothness of maps betweenmanifolds in a similar fashion; the
following de�nition is from Chapter 2 of Lee [46]. Let Q,W be smooth manifolds and
F : Q ! W. For any q 2 Q, suppose there exist smooth charts(U , f 1) on Q with q 2 U
and (V , f 2) on W such that F(U ) � V . Note that �F := f 2 � F � f 1

� 1 is a representation
of F in the given charts; �F(x) is the representation in the second chart of the image
under F of the point whose representation in the �rst chart is x. We say F is smooth
if for any q 2 Q there exist such a pair of smooth co-ordinate charts whose domains
U � Q and V � W have q 2 U and F(V ) � W, such that the co-ordinate representation
�F : f 1(U ) ! f 2(V ) is smooth in the sense of real vector-valued functions. Finally, we
can generalize De�nition 1.1.1 by de�ning F : Q ! W to be a diffeomorphism if it is
bijective and smooth with a smooth inverse, in the sense of smooth functions between
manifolds.

For brevity we will not explicitly refer to the formal structures de�ned above when
they are implied from context. For example, we may treat a point q 2 Q and its co-
ordinates q = f (q) in some chart interchangeably, and keep in mind that the represen-
tation is local. In particular, we often talk of �a point q� where this can refer to a point
in the manifold, a co-ordinate vector in R p, or both.

Parametric Families and The Smooth Manifold Chart Lemma

Our discussion of statistical families as smooth manifolds has thus far been abstract. In
this section we will describe how statistical families can be given a smooth manifold
structure from an existing parameterization.

Example 1.1.4. Let Q be the family of Gaussian probability measures on (R , B(R))
where B(R) is the Borel s-algebra on R ,

Q =
�

1
p

2ps 2
exp

�
�

1
2s2 (x � m)2

�
dl (x) : m2 R , s2 > 0

�
,

where dl is the Lebesgue measure on(R , B(R)) .

This example is typical of how statistical families are speci�ed, i.e. a parameterized
set of probability measures. Although a smooth manifold structure is not yet speci�ed
in this example, clearly the parameterization used to de�ne the family is similar to a
global smooth co-ordinate chart. We will show that there is a unique smooth manifold
structure for which the parameterization provides a global smooth co-ordinate chart.
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In general, we have the following de�nition from Shao [72] for families de�ned in
this way.

De�nition 1.1.5. A set of probability measures Q = f qq : q 2 Qg all on the same
measurable space(Y, F ) is a parametric family if the parameter space Q � R p and
eachqq is a known probability measure whenever q 2 Q is known.

In Example 1.1.4, the parameter space is the open upper-half planeQ = f (m, s2) :
m 2 R , s2 > 0g � R2, and clearly Q is a parametric family. For the parameterization
to provide a valid co-ordinate chart which must be bijective, we clearly require the
following property which is also adapted from Shao [72].

De�nition 1.1.6. A parametric family Q = f qq : q 2 Qg is called identi�able if for any
q1, q2 2 Q such that q1 6= q2, we have qq1 6= qq2.

Continuing the example, the parametric family Q of Gaussians is clearly identi�-
able. In order to show identi�able parametric families are smooth manifolds, we re-
quire the following result which is a simpli�cation of the Smooth Manifold Chart Lemma,
given as Lemma 1.35 in Lee [46].

Lemma 1.1.7. Let Q be a set, and letf : Q ! R p be a bijection between Q and an open subset
f (Q) � R p. Then Q has a unique smooth p-manifold structure such that(f , Q) is a smooth
chart.

Our main result in this section is the following, which essentially states that iden-
ti�able parametric families are naturally smooth manifolds with a global co-ordinate
chart.

Theorem 1.1.8. Let Q = f qq : q 2 Qg be an identi�able parametric family such thatQ � R p

is open. De�ne the mapping

f : Q ! R p, f (qq) := q

then Q has a unique smooth p-manifold structure for which(Q, f ) is a smooth chart.

Proof. We will show that f satis�es the conditions of Lemma 1.1.7. Firstly, f (Q) = Q is
an open subset ofR p by the assumptions of the theorem. It only remains to show that
f is a bijection from Q to Q.

For surjectivity, for any q 2 Q there exists qq 2 Q such that f (qq) = q. Hence
f : Q ! Q is surjective.

For injectivity, suppose f (qq1) = f (qq2) for some qq1, qq2 2 Q. By identi�ability, it
clearly follows that q1 = q2. Hence f is injective.

In conclusion, f : Q ! Q is a bijection where Q � R p is open. Thus by Lemma
1.1.7,Q has a unique smooth p-manifold structure in which (Q, f ) is a smooth chart.
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Example 1.1.9. Continuing Example 1.1.4, the parametric family is

Q =
�

1
p

2ps 2
exp

�
�

1
2s2 (x � m)2

�
dl (x) : m2 R , s2 > 0

�
,

The parameter space of the family Q = f (m, s2) : m2 R , s2 > 0g is an open subset of
R2, namely the open upper-half plane. Furthermore, the family is clearly identi�able.
By Theorem 1.1.8,Q has a unique smooth manifold structure for which the mean and
variance q1 = ( m, s2) de�ne a co-ordinate chart.

There is no canonical reason to parameterize in terms of mean and variance. We can
also de�ne a co-ordinate chart (Q, q2), with

q2(q) =
�

m(q)
1/ s2(q)

�
for all q 2 Q

where q1(q) := ( m(q), s2(q)) are the components of the �rst co-ordinate map. This is
a reparameterization in terms of mean and precision t := 1/ s2. The two charts are
smoothly compatible since the transition map

(q2 � q1
� 1) : Q ! Q

(q2 � q1
� 1)

�
m, s2�

=
�

m,
1
s2

�

is a diffeomorphism. Thus q2 is in the same smooth structure as q1, and hence de�nes
a co-ordinate chart on the smooth manifold structure on Q.

1.1.3 Co-ordinate Free Posterior Distribution

Equation (1.1.1) is Bayes’ theorem for the real-valued unknown variables q, given ob-
served variables y. It assumes the prior and posterior have densities in Rn and refers to
a speci�c parameterization of the conditional density of the data p (yjq). In this section,
we reformulate Bayes’ theorem in terms of probability measures on a statistical family.
Although Bayes’ theorem has been formulated before in measure-theoretic terms, e.g.
by Stuart [74], to our knowledge this is the �rst time in the literature that the posterior
has been stated with reference to a manifold of data-generating measures.

Prior Speci�cation and Densities

Assuming a family Q is a smooth manifold, it has a topology which induces a Borel
s-algebra B(Q); see Rudin [66]. The pair (Q, B(Q)) is a measurable space and so we
can make sense of probability measures on Q. In particular, let m : B(Q) ! [0, 1] be
a prior probability measure on (Q, B(Q)) . We can interpret this measure as weighting
data-generating measuresq 2 Q according to prior information available before data
are observed.

We �rst recall the following de�nition from measure theory.
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De�nition 1.1.10. Let q, n be two positive measures on a measurable space(Y, F ). If
for any measurable set U 2 F ,

n(U ) = 0 ) q(U ) = 0

then q is absolutely continuous with respect to n, and we write q � n. If Y is a count-
able union of sets Ei such that n(Ei ) < ¥ for each i, then n is called s-�nite .

A famous result in Analysis is the Radon-Nikodym Theorem [66], which states that
if q � n then there exists a measurable function h 2 L1(n) such that

q(U ) =
Z

U
hdn

The function h is called the density or Radon-Nikodym derivative of q with respect to
n, and is often written as h � dq

dn.

De�nition 1.1.11. Let n be a positive s-�nite measure on the measurable space (Y, F ).
If the statistical family Q on (Y, F ) is such that q � n for all q 2 Q, then Q is said to be
dominated by n. In this case, theconditional data-generating density of q 2 Q with
respect to n is the Radon-Nikodym derivative

dq
dn

: Y ! R

This de�nition corresponds with our earlier notation of a conditional density p (yjq)
on a variable y 2 Y when the family Q is indexed by q 2 Q.

To summarise, there are two measurable spaces of interest; �rstly, the data space
(Y, F ) where observable data and events live, and secondly the statistical family and
its Borel sets (Q, B(Q)) . A statistician constructs a model, i.e. a statistical family Q of
probability distributions on data space, each element of which is a candidate for the
true distribution which generated the observed data. The prior probability distribution
m is a measure on (Q, B(Q)) that represents prior uncertainty about how likely each
distribution in Q is to generate the data. We can now describe the process of Bayesian
analysis without reference to any particular parameterization.

Joint Distribution

The �rst step of Bayesian analysis outlined in Section 1.1 is to construct a joint prob-
ability distribution over parameters and observable variables. In the co-ordinate free
picture, the joint distribution is a measure on the product space of the statistical family
and data space,

(Q � Y, B(Q) � F )

where B(Q) � F refers to the product s-algebra of B(Q) and F .
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De�nition 1.1.12. Let Q be a statistical family on the measurable space (Y, F ) and let
m : B(Q) ! [0, 1] be a probability distribution over Q. If g : Q ! [0, 1], g(q) = q(A) is
a B(Q)-measurable function for all A 2 F , de�ne the joint probability measure as

(m� Q) : B(Q) � F ! [0, 1]

(m� Q)(U � A) =
Z

U
q(A)dm(q) for U 2 B (Q), A 2 F

Co-ordinate Free Likelihood and Posterior

Let us de�ne the likelihood in a co-ordinate free way.

De�nition 1.1.13. Let Q be a statistical family on a measurable space(Y, F ) dominated
by a measure n. The likelihood function ln with respect to n at a point q 2 Q is the
data-generating density of q evaluated at the observed data yobs,

ln : Q ! R

ln(q) :=
dq
dn

(yobs) for all q 2 Q

Note that this de�nition of likelihood does not depend on any particular co-ordinate
chart. The likelihood can be represented in a co-ordinate chart q in the usual way for
functions on manifolds,

�ln : Q ! R �ln := ln � q� 1

where Q is the image of the q co-ordinate map. This co-ordinate representation agrees
with the usual likelihood function p (yobsjq) assuming the same dominating measure n
and co-ordinate chart q = q(q). We assume the likelihood is a measurable function on
(Q, B(Q)) .

We can now write Bayes’ theorem on a statistical family Q. Let ln be the likelihood
and mthe prior probability measure on Q.

De�nition 1.1.14. The posterior probability measure given y obs, written �m, is de�ned
by the Radon-Nikodym derivative

d �m
dm

(q) =
ln(q)R

Q ln(q0)dm(q0)
(1.1.5)

Thus for a Borel set U 2 B (Q),

�m(U ) =
Z

U

ln(q)R
Q ln(q0)dm(q0)

dm(q)

When specifying the model and doing computations, it is usually easier to work
with prior and posterior densities rather than measures. Prior and posterior densities
on R p are obtained by pushing-forward the probability measures under the co-ordinate
charts and satisfy the usual statement of Bayes’ theorem, as shown in the following
proposition.
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Proposition 1.1.15. Let Q be a p-dimensional smooth statistical family dominated byn, and let
mbe a prior probability measure on Q. Suppose(Q, f ) is a global co-ordinate chart on Q with
co-ordinatesq = f (q) for q 2 Q. If the push-forward ofmunder f admits a Lebesgue density
p (q), then the pushforward of the posterior probability measure�m under f has a Lebesgue
density given by

�ln(q)p (q)
R �ln(q0)p (q0)dq0

where�ln := ln � f � 1 is the co-ordinate representation of the likelihood.

Proof. Firstly, note that since f : Q ! R p is a homeomorphism, both f and f � 1 are
continuous and therefore measurable functions.

The pushed-forward prior and posterior measures under f are respectively de�ned
by

f � m(E) = m
�

f � 1(E)
�

f � �m(E) = �m
�

f � 1(E)
�

for any Borel set E in R p. Substituting De�nition 1.1.14 for �m, we �nd

f � �m(E) = �m
�

f � 1(E)
�

=
Z

f � 1(E)
d �m(q)

=

R
f � 1(E) ln(q)dm(q)
R

Q ln(q0)dm(q0)

Let l p be the p-dimensional Lebesgue density. By the assumptions of the proposition,
the pushed-forward prior measure is p (q)dl p(q). Thus the expression in the previous
equation can be rewritten as

f � �m(E) ==

R
E ln

�
f � 1(q)

�
p (q)dl p(q)

R
f (Q) ln (f � 1(q0)) p (q0)dl p(q0)

since �ln = ln � f � 1, this shows the required result.

1.2 Exponential Families

We narrow our focus to exponentialstatistical families. A common assumption in statis-
tical models is that data are generated by a probability distribution belonging to an
exponential family; many elementary families are exponential, such as the normal,
Bernoulli, binomial, beta and gamma distributions. In Chapter 2, we will show that
geometric structures on exponential families have statistical interpretations.

The following de�nition and subsequent discussion is adapted from Brown [15] and
Shao [72].
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De�nition 1.2.1. Let Q = f �Pxjx 2 Xg for X � Rs be a parametric family on (Y, F )
dominated by a s-�nite measure �n. The family is called a p-dimensional exponential
family if the density of �Px with respect to �n is

d �Px

d �n
(y) = h(y) exp

n
c(x)TT(y) � �y (x)

o
for all x 2 X (1.2.1)

for some functions

� c : X ! R p,

� T : Y ! R p, measurable on (Y, F ),

� h : Y ! R , measurable on (Y, F ),

� �y : X ! R , �y (x) = log
R

Y h(y) exp
�

c(x)Tt(y)
	

dn(y)

Note the de�nition of �y is necessary for eachPx to be a probability measure, i.e.
Px(Y) = 1. The parameter spaceX may not necessarily be a subset ofR p. We also
introduce the following.

De�nition 1.2.2. A parametric family f Pqjq 2 Qg of probability measures on the Borel
sets ofR p is called a p-dimensional standard exponential family if the family is domi-
nated by a s-�nite measure n, Q � R p, and

dPq

dn
(t) = exp

n
qTt � y (q)

o
for all q 2 Q (1.2.2)

where
y : Q ! R , y (q) = log

Z

R p
exp

n
qTt

o
dn(t) (1.2.3)

The parameter q of a standard exponential family is called its natural parameter , Q
is the natural parameter space , and the function y is the cumulant generating function .
Clearly any standard exponential family is an exponential family. Furthermore, the
following proposition shows that one can always transform an exponential family into
a standard one.

Proposition 1.2.3. Let f �Pxjx 2 Xg be a p-dimensional exponential family of probability mea-
sures dominated by as-�nite �n on a measurable space(Y, F ), whereX � Rs. LetT : Y ! R p,
h : Y ! R , andc : X ! R p be as in (1.2.1) for this family. LetQ = f c(x) : x 2 Xg and
de�ne the measure

n(A) :=
Z

T � 1(A)
h(y)d �n(y)

for Borel sets A� R p. Then the family Q= f Pqjq 2 Qg is a p-dimensional standard
exponential family dominated byn, where

Pq(A) :=
Z

A
exp

n
qTt � y (q)

o
dn(t) (1.2.4)

is the push-forward measure of�Px underT whereq = c(x), andy is given by (1.2.3).
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Proof. Firstly, note that the measure n is well-de�ned since T and h are both measur-
able by De�nition 1.2.1. For any Borel set A � R p and measurable f : R p ! R , the
de�nition of n implies that

Z

A
f (t)dn(t) =

Z

T � 1(A)
f (T(y)) h(y)d �n(y) (1.2.5)

In particular, for any x 2 X let f (t) := exp
�
qTt

�
where q = c(x) and take A = R p.

Equation (1.2.5) is then equivalent to

exp (y (q)) = exp ( �y (x)) (1.2.6)

It follows that �y (x) = y (c(x)) for any x 2 X. Dividing (1.2.5) by the non-zero quantity
(1.2.6) for each Borel setA � R p yields

Z

A
exp

�
qTt � y (q)

�
dn(t) =

Z

T � 1(A)
exp

�
c(x)TT(y) � �y (x)

�
h(y)d �n(y)

, Pq(A) = �Px(T � 1(A))

which shows that (1.2.4) is the pushforward of �Px under T for any x 2 X, where q =
c(x). The form (1.2.4) of Pq clearly shows that Q is a standard exponential family.

Suppose a random variable y has a distribution in a parametric family Q = f Pqjq 2
Qg. Recall that a function, or statistic, T(y) is called suf�cient for q if the conditional
distribution of y given T(y) does not depend on q. Suf�cient statistics are interpreted
as containing all of the information about the parameter q contained in a sample y.
By the Neyman Factorization theorem for suf�cient statistics [72], [71], the function T
in De�nition 1.2.1 is suf�cient for the natural parameter q = c(x). This function is
therefore referred to as the suf�cient statisticsof the family. The standard form of an
exponential family describes the distribution of its suf�cient statistics t := T(y).

The standard form of an exponential family is simplest for studying its properties
and geometry. For example, the following proposition proven in Brown [15] shows that
standard exponential families can be af�nely transformed to an equivalent standard
exponential family. This shows the natural parameterization is not unique.

Proposition 1.2.4. Let Q = f Pqjq 2 Qg be a p-dimensional standard exponential family
dominated by as-�nite measuren. For q 2 Q, let t be a random variable with distribution Pq
and de�ne the transformed variable and parameter

t ! t0 = M t + t0 (1.2.7)

q ! q0 = M � Tq + q0 (1.2.8)

where M2 R p� p is non-singular andq0 2 R p. Thent0has the distribution

�Pq0 (A) := Pq

�
M � 1 (A � t0)

�
(1.2.9)
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for Borel sets A� R p, whereq = M T (q0� q0). Furthermore, the parametric family

�Q :=
� �Pq0jq0 2 Q0	

whereQ0 = M � Tq + q0 is a p-dimensional standard exponential family.

The joint distribution of random variables distributed according to measures from
an exponential family belongs to a product exponential family. Suppose two inde-
pendent random variables t1, t2 2 R p have distributions from the same p-dimensional
standard exponential family Q with cumulant generating function y and dominating
measure n, and let t1, t2 respectively have natural parameters q1, q2 2 R p. Their joint
distribution then has density

exp
�

q1
Tt1 + q2

Tt2 � y (q1) � y (q2)
�

with respect to the product measure n � n. This is clearly a 2p-dimensional standard
exponential family with suf�cient statistics t := (t1, t2) 2 R2p. Alternatively, if t1, t2
have the same parameterq 2 R p, they are identically distributed and the joint density
is

exp
�

qT(t1 + t2) � 2y (q)
�

and we only need to rede�ne a suf�cient statistic t = t1 + t2 and the dimension of the
family is the same as the original one. This is made clear in the following example.

Example 1.2.5. The set of Gaussian distributions on the real line f Normal (m, s2) : m2
R , s > 0g is an exponential family. Rearranging the Gaussian density with respect to
the Lebesgue measure gives

p (yjm, s2) = exp
�

�
1

2s2 (y � m)2 �
1
2

log
�
2ps 2�

�

= exp
�

�
y2

2s2 +
ym
s2 �

m2

2s2 �
1
2

log
�
2ps 2�

�
(1.2.10)

Let us �nd the equivalent standard exponential family as per Proposition 1.2.3. De�ne
natural parameters q1 = 1

2s2 and q2 = m
s2 , a cumulant generating function y (q1, q2) :=

q2
2

4q1
+ 1

2 log
�

p
q1

�
, and suf�cient statistics

T(y) = (t1(y), t2(y))T =
�
� y2, y

� T

This is a parabola in R2 parameterized by y. Let n be the push-forward of the one-
dimensional Lebesgue measure under T. Then we can rewrite the parametric family as
a standard exponential family with dominating measure n and natural parameter space
Q = ( 0,¥ ) � R .
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Suppose there aren i.i.d. Gaussian random variables y1, ..,yn each with the same
natural parameters q1, q2. The joint Lebesgue density is

n

Õ
i= 1

exp
�
q1yi

2 + q2yi � y (q)
�

= exp

 
n

å
i= 1

�
q1yi

2 + q2yi � y (q)
�
!

= exp

 

q1

 
n

å
i= 1

yi
2

!

+ q2

 
n

å
i= 1

yi

!

� ny (q)

!

= exp

 

nq1

 
1
n

n

å
i= 1

yi
2

!

+ nq2

 
1
n

n

å
i= 1

yi

!

� ny (q)

!

= exp

 

nq1

 
1
n

n

å
i= 1

t1(yi )

!

+ nq2

 
1
n

n

å
i= 1

t2(yi )

!

� ny (q)

!

In the last line, we have pulled a factor of n out of the suf�cient statistics; this can be
absorbed into the natural parameters with a simple re-scaling, i.e. by applying Proposi-
tion 1.2.4. In this new parameterization, the joint suf�cient statistic is simply the sample
mean of the individual suf�cient statistics, corresponding to the negative second and
positive �rst sample moments. In conclusion, the n data are distributed according to a
two-parameter exponential family.

1.2.1 Minimality and Identi�ability

In this subsection we will identify suf�cient conditions for a standard exponential fam-
ily to have a smooth manifold structure. Recall that Theorem 1.1.8 states that for a
parametric family to have a smooth manifold structure in which its parameterization is
a co-ordinate chart, it is suf�cient for it to be identi�able with an open parameter space.

De�nition 1.2.6. A p-dimensional standard exponential family is called minimal if the
suf�cient statistics T(y) are linearly independent for all y 2 Y, and there does not exist
a (p � 1)-dimensional subspace containing the natural parameter space Q.

The following proposition is shown by Geyer [35].

Proposition 1.2.7. A minimal standard exponential family is identi�able.

By Theorem 1.1.8, it follows that a minimal standard exponential family with an
open parameter space has a unique smooth manifold structure in which the natural
parameterization is a smooth co-ordinate chart.

An exponential family may not contain all possible probability distributions of ex-
ponential form with respect to a given measure. We de�ne the full natural parameter
spaceN to be the set of all permissible natural parameter values, i.e.

N =
�

q 2 R p : y (q) =
Z

R p
exp

�
qTt

�
dn(t) < ¥

�
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The associatedfull exponential family is
�

exp
�
qTt � y (q)

�
dn(t) : q 2 N

	
, and say a

family is full if Q = N . Any s-�nite measure n on Borel subsets ofR p has an associated
full natural parameter space Nn, and therefore induces a standard exponential family
of probability measures. If the natural parameter space Q of an exponential family has
a non-empty interior, i.e. it contains a non-empty open set of R p, then the family is
said to be of full rank . Brown [15] de�nes an exponential family to be regular if its full
natural parameter space N is an open subset ofR p.

Example 1.2.8. Consider the Lebesgue measurel with support restricted to (0,¥ ). The
full natural parameter space is

Nl = N =
�

q 2 R :
Z ¥

0
eqtdl (t) < ¥

�
= ( � ¥ , 0)

The family is therefore regular. The cumulant generating function is y (q) = � log(� q)
for q 2 N . The resulting exponential family is the family of exponential distributions,
i.e.

exp (qt + log(� q)) dl (t) q 2 (� ¥ , 0) t 2 (0,¥ )

This is usually parameterized by a rate parameter r = � q; since r and q are related
by an af�ne transformation, r is also a natural parameter if t is transformed according
to t ! � t. A contrived family with parameter space Q = f� 1, � 2g � N is standard
exponential, but it does not have full rank.

The following example adapted from Amari [3] shows that the family of distribu-
tions whose support are all on the same discrete set is an exponential family.

Example 1.2.9. The set of probability measures on a �nite set Y = f 0, ..,Ng is an expo-
nential family. Let P(y = i) = pi for i 2 f 0, ..,Ng. Of course, there areN + 1 outcomes
with the constraint å pi = 1, so the family must have N degrees of freedom (parame-
ters). For i = 1, ..,N , de�ne natural parameters and suf�cient statistics

qi = log
�

pi

p0

�
Ti (y) =

(
1 y = i
0 y 6= i

Take n to be the counting measure on f 0, ..,Ng. The cumulant generating function is
then

y (q) = � log
Z

exp(qi Ti (y))dn(y) = log

 

1 +
N

å
i= 1

exp(qi )

!

With these de�nitions, it follows that for i = 1, ..,N

exp (q � t( i) � y (q)) = exp (qi � y (q))

=
exp(qi )

1 + å N
j= 1 exp

�
qj

� =
pi / p0

1 + å N
j= 1 pj / p0

= pi

and similarly exp (q � T(0) � y (q)) = p0. So the set of discrete random variables taking
a �nite number of values can be identi�ed with an exponential family.
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1.2.2 Convexity and Legendre Transform

The geometry and properties of exponential families are based on convexity of the nat-
ural parameter space N and cumulant generating function y .

Proposition 1.2.10. For a minimal regular exponential family, the cumulant generating func-
tion y : N ! R is an in�nitely differentiable strictly convex function and the natural parameter
space N is a convex set.

The proof of proposition 1.2.10 is given by Kass and Vos [44], and is based on a
simple application of H ¤older’s inequality. Convexity is not necessarily preserved under
diffeomorphic changes of co-ordinates, so we consider y strictly as a function of natural
parameters q and not as a co-ordinate independent geometric object. However, the
convexity of y gives it the following important property, also proven by Kass and Vos.

Proposition 1.2.11. Lety : N ! R be strictly convex and smooth where N� R p is open and
convex. Then the map

c : R p ! R p c(q) := r y (q)

is a diffeomorphism.

Viewing the exponential family as a smooth manifold, this proposition provides
another global smooth co-ordinate chart. Let (Q, f ) be the co-ordinate chart for the
natural parameterization, and de�ne (Q, �f ), where

�f : Q ! R p �f (q) := ( c � f )(q)

with c(q) = r y (q) as in the proposition. We will denote the co-ordinates in this chart
ash := c(q).

The statistical interpretation of this co-ordinate chart is given by the following the-
orem, which states that r y (q) is the expected value of the suf�cient statistic vector T
under the distribution with natural parameter q.

Theorem 1.2.12. Let Q = f Pqjq 2 Ng be a minimal regular exponential family of probability
distributions on random vectorst with natural parameterq. The expected value of the suf�cient
statistic t under Pq is given by the gradient of the cumulant generating functiony at q,

h := EPq(t(y)) = r y (q) (1.2.11)

Proof. The member of Q with natural parameter q is the distribution

Pq(A) =
Z

A
exp f q � t � y (q)gdn(t)

for Borel sets A � R p. Since the integrand is continuous in q and t, we can differentiate
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under the integral sign. The i th component of the gradient of y is given by

¶y
¶qi =

¶
¶qi log

Z

Rn
exp

�
qTt

�
dn(t) =

1R
Rn exp (qTt) dn(t)

¶
¶qi

Z

Rn
exp

�
qTt

�
dn(t)

=
1

y (q)

Z

Rn

¶
¶qi exp

�
qTt

�
dn(t)

=
Z

Rn
t i exp

�
qTt � y (q)

�
dn(t)

=
Z

Rn
t idPq(t) = EPq(t i )

where t i is the i th component of the vector t. This holds for all i = 1, ..,p and (1.2.11)
follows.

Given this result, we call h the mean parameteror mean co-ordinatesfor the family,
which range over the mean parameter space M := fr y (q)jq 2 Ng.

Example 1.2.13. Continuing from the family of discrete distributions in example 1.2.9,
the mean suf�cient statistic is simply the probability pi ;

hi := EPq(t i (y)) = EPq(di (y)) = pi

By theorem 1.2.12, the gradient of y = log (1 + å i exp(qi )) gives the mapping from
natural to mean parameters,

hk =
¶y
¶qk

=
exp(qk)

1 + å n
i= 1 exp(qi )

In the binary or Bernoulli case where Y = f 0, 1g, this reduces to the sigmoidor expit
function

h =
exp(q)

1 + exp(q)

which is the inverse of the logit function q = log
�

h
1� h

�
.

The Legendre transform associated with y refers to the variable transformation
given by h := r y (q), and also the following transformation of y to a convex function
of h.

De�nition 1.2.14. Let y : N ! R be a strictly convex smooth function on an open
convex set N � R p. The Legendre dual or convex conjugate of y is the function

y � : M ! R (1.2.12)

y � (h) := supq2 N

n
qTh � y (q)

o
(1.2.13)

or equivalently,

y � (h) = qTh � y (q) where q is such that h = r y (q) (1.2.14)

where M = fr y (q)jq 2 Ng.

32



To see that the de�nitions (1.2.14) and (1.2.13) are equivalent, note that sincey is
smooth the supremum in (1.2.13) is attained by q0 2 N depending on h such that

0 = r q

�
qTh � y (q)

� �
�
�
q= q0

= h � r y (q0)

and thus q0 satis�es r y (q0) = h.
The term �dual� refers to the fact that the Legendre transform is an involution; it is

its own inverse, such that the Legendre transform applied to y � and h recovers y and
q, as shown in the following theorem.

Theorem 1.2.15. Let y : N ! R be an in�nitely differentiable, strictly convex function on a
convex set N� Rn. The Legendre dual (1.2.13) satis�es

r qy
�
r hy � (h)

�
= h

wherer h refers to the gradient with respect toh, i.e. the inverse ofc(q) = r qy (q) is c� 1(h) =
r hy � (h). Furthermore, the Legendre dual ofy � (h) is y (q).

Proof. Using the alternative de�nition (1.2.14) of the Legendre dual, The gradient r hy � (h)
has i th component

¶y �

¶hi
=

¶
¶hi

" 
d

å
j= 1

qjhj

!

� y (q)

#

=

 
d

å
j= 1

¶qj

¶hi
hj +

¶hj

¶hi
qj

!

�
d

å
k= 1

¶qk

¶hi

¶y
¶qk

= di
jqj +

d

å
j= 1

¶qj

¶hi
hj �

d

å
k= 1

¶qk

¶hi hk = qi

where q is such that h = r y (q). Hence q = r hy � (h) if and only if h = r y (q). The
Legendre dual of y � is therefore

y �� (q) = hTq � y � (h) where h is such that q = r hy � (h)

= hTq �
�

qTh � y (q)
�

= y (q)

Whenever co-ordinates q and h are related via a Legendre transform in this way, we
will refer to them as primal and dualco-ordinates respectively.

When y is the cumulant generating function of a natural exponential family, the
Legendre dual y � (h) coincides with the negative entropy of the suf�cient statistics t.
Calculating directly,

H (q) := E ( log p (yjq))

= EPq

�
qTt � y (q)

�

= qTEPq (t) � y (q)

= qTr y (q) � y (q) = � y � (ch(q))
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The Hessian of the cumulant generating function r 2y is the Jacobian matrix of the
natural-to-mean diffeomorphism c(q) := r y (q), and also has geometrical and statisti-
cal interpretations. First, we recall the de�nition of Fisher information.

De�nition 1.2.16. Let Q = f Pq : q 2 Qg be a parametric family dominated by a mea-
sure n, such that Pq has density p (yjq) with respect to n. The Fisher information matrix,
or simply Fisher matrix, for the family is the matrix with i-j element

Ii j (q) = EPq

�
¶

¶qi
log p (yjq)

¶
¶qj

log p (yjq)
�

(1.2.15)

The de�nition holds for any statistical family, not just exponential families. Note
that the Fisher matrix can be viewed as a matrix-valued function on the parameter
space I : Q ! R p� p. The matrix plays an important role in statistics; for example, its
inverse appears in the Cramer-Rao lower bound. Under mild conditions, the Fisher
matrix can be written as

I (q) = � EPq

�
r 2

q log p (yjq)
�

(1.2.16)

A proof of this alternative form is given in Chapter 3 of Shao [72].
The following theorem shows that for exponential families, the Fisher matrix is sim-

ply the Hessian of the cumulant-generating function.

Theorem 1.2.17. For a standard exponential family with natural parameterq, the Fisher In-
formation matrix I(q) and the covariance ofT(y) coincide, and are given by the Hessian matrix
of y ,

I (q) = CovPq(t(y)) = r 2y (q)

A proof can be found on page 18 of Kass and Vos [44]. Finally, we note the following
relationship between the Hessian of a convex function and its Legendre dual.

Theorem 1.2.18. Let y : N ! R be a strictly convex function with Legendre dualy � . The
inverse of the Hessian ofy at q is the Hessian matrix ofy � evaluated ath = r y (q), i.e.

r 2
qy (q)r 2

hy � (h) = 1p� p (1.2.17)

Proof. Let h = r y (q) as in the theorem statement. Firstly, by Theorem 1.2.15 we have
q = r hy � (h). The i th component of this is

qi =
¶y �

¶hi (h)

To evaluate the Hessian of y � , note that by the chain rule

¶
¶hj =

p

å
s= 1

¶qs

¶hj
¶

¶qs
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Substituting this into the i-k component of the left-hand side of (1.2.17) and applying
the chain rule gives

p

å
j= 1

¶2y
¶qiqj

¶2y �

¶hj¶hk =
p

å
j= 1

¶
¶qi

�
¶y
¶qj

�
¶

¶hj

�
¶y �

¶hk

�

=
p

å
j= 1

¶hj

¶qi
¶

¶hj

�
qk

�

=
p

å
j= 1

p

å
s= 1

¶hj

¶qi
¶qs

¶hj
¶qk

¶qs

=
p

å
j= 1

¶hj

¶qi
¶qk

¶hj =
¶qk

¶qi = dk
i

which is the i-k component of the right-hand side of (1.2.17).

1.3 Generalized Linear Models

Many statistical families in applications are subsets of other families which are smooth
manifolds in their own right. In Chapter 2 we will discuss subfamilies in more gener-
ality; here we will describe subfamilies called generalized linear models, a common type
of regression model in statistics.

Let Q be a one-dimensional exponential family with suf�cient statistic y and cumu-
lant generating function y (q). Consider n independent observations y := ( yi )n

i= 1 such
that each observation was generated from some distribution Pqi 2 Q. The joint density
or mass function of all observations y for �xed natural parameters q = ( q1, ..,qn) is

p (yjq) =
n

Õ
i= 1

p (yi jqi ) µ exp

 
n

å
i= 1

(yiqi � y (qi ))

!

µ exp

 

y � q �
n

å
i= 1

y (qi )

!

(1.3.1)

where proportionality refers to multiplicative constants independent of q. We see that
the n observations are generated by a distribution Pq in an n-dimensional exponential
family, which we refer to as Qn, with natural parameter q 2 Rn and cumulant generat-
ing function y n(q) := å n

i= 1 y (qi ). Suppose further that for each observation yi we have
a �xed vector xi 2 R p of covariates; one often wishes to �nd a relationship between the
covariates and observations. A generalized linear model (GLM) posits a relationship of
the form

f � 1 (E(yi )) =
p

å
j= 1

b j X i j i = 1, ..,n (1.3.2)
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where f : R ! R is some (usually nonlinear) function called the link, X i j is the j th

component of the i th covariate vector xi , and b j is a coef�cient corresponding to the j th

covariate dimension. The generalized linear model is parameterized by the p coef�-
cients (b j )

p
j= 1 - assuming p < n, this implies the GLM is a p-dimensional family G that

is a subfamily of Qn.
In general, a GLM G is not an exponential family [3]. However a special choice

of link function f doesmake G an exponential family in its own right. Note that by
Theorem 1.2.12, the left hand-side of equation (1.3.2) isf � 1 (hi ) where hi is the i th mean
parameter. Suppose we make f the natural-to-mean mapping of Q, f (qi ) := dy

dq = hi ,
so that

f � 1(hi ) = qi =
p

å
j= 1

b j X i j i = 1, ..,n (1.3.3)

This choice of link function gives a linear relation between the natural parameters
and coef�cients; in vector form the above equation is q = Xb, where X = ( X i j ) is the
design matrixof the GLM and b = ( b j ) is the coef�cient vector. Such a link function f
is called the canonicallink function for the underlying exponential family Q. The vector
form of the GLM relation shows that the set G � Qn is exactly the image of X in natural
co-ordinates.

A GLM with a canonical link function is a p-dimensional exponential family. To see
this, substitute q = Xb into the joint mass/density (1.3.1) of Pq 2 Q;

p (yjb) µ exp

 

y � q �
n

å
i= 1

y (qi )

!

µ exp

 

y � (Xb) �
n

å
i= 1

y

 
p

å
j= 1

X i j b j

!!

µ exp (t(y) � b � �y (b))

where t(y) := XTy is the suf�cient statistic and �y (b) := å n
i= 1 y

�
å p

j= 1 X i j b j

�
is the

cumulant generating function of G.

1.4 Conjugate Priors

The discussion thus far has related entirely to the likelihoodor data-generating distribu-
tion p (yjq). To fully specify a model for Bayesian inference, we require a prior distri-
bution p 0(q) which represents �belief� about the parameters before data are observed.
After observations, we update our �belief� using Bayes’ Theorem,

p 1(q) := p (qjy) µ p (yjq)p 0(q) (1.4.1)

Exponential family likelihoods admit conjugatefamilies of priors; families which are
closed under Bayesian updating according to (1.4.1). For example, choosing a prior
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p 0 2 C where C is a conjugate family of priors for the likelihood p (yjq) implies the
posterior is a member of the same family, p 1 2 C.

For the numerical experiments in this report, we use posterior distributions result-
ing from exponential families or GLM likelihoods with conjugate priors. This may seem
too restrictive, since such models are often very easy to sample from, with dedicated
algorithms for independent sampling - for example the classical conjugate pairs like
Poisson-Gamma or Bernoulli-Beta models. However, the models used in our numeri-
cal experiments are not from any well-known family and are non-trivial to sample. We
use conjugate priors because they provide an easy way to extend the dual geometry
to include prior information. Furthermore, a Diaconis conjugate-exponential posterior
(see below) has a known expectation which can be used to measure the performance of
MCMC. Of course, an eventual goal of the research is to extend the geometric methods
to the broadest class of posterior distributions; conjugate-exponential distributions pro-
vide a simple but non-trivial problem to test and understand our methods before we
extend them. Finally, exponential families or GLMs with conjugate priors are extremely
practical and widely-used statistical models - there are many problems with real data
that can be used to benchmark our methods.

1.4.1 The Diaconis Conjugate Prior

For the standard exponential family p (yjq) µ exp
�
qTy � y (q)

�
, the conjugate prior

introduced by Diaconis and Ylvisaker [25] is

p n0,y0(q) µ exp
n

n0

�
qTy0 � y (q)

�o
(1.4.2)

normalized so that p n0,y0 is a probability density over Q, where n0 > 0 and y0 2 R p are
hyperparameters. This is conjugate to p (yjq), since

p (qjy) µ p (yjq)p n0,y0(q) µ exp
n

qT(y + n0y0) � (1 + n0)y (q)
o

= exp
�

(1 + n0)
�

qT
�

y + n0y0

1 + n0

�
� y (q)

��
(1.4.3)

We see that the posterior density is p n0,y0, i.e. the same form as the prior (1.4.2) with
updated hyperparameters

n0 ! n0 := 1 + n0 y0 ! y0 :=
y + n0y0

1 + n0
(1.4.4)

We can �nd an interpretation for these hyperparameters by incorporating n data f y ig
for i = 1, ..,n. This is equivalent to iterating (1.4.4) n times to yield updated hyperpa-
rameters

n0 ! n0 := n + n0 y0 ! y0 :=
nfly + n0y0

n + n0
(1.4.5)
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where fly = 1
n å n

i= 1 yi is the sample mean of the data. The update n0 ! n0 + n motivates
viewing n0 as aprior sample size. Diaconis and Ylvisaker [25] show that

Eq� p n0,y0(q)

�
Ey� p (yjq) (yjq)

�
= Eq� p n0,y0(q) (r y (q)) = y0 (1.4.6)

This gives an interpretation for the hyperparameter y0; it is a prior prediction for the
mean of the data. When the hyperparameters are updated with an observation, this
is reweighted in (1.4.5) with the true observations according to the prior and observed
sample sizes. Furthermore, we can use this relation to check the convergence of MCMC
to the posterior distribution p 1; we only need to compare the Monte Carlo estimate
1
N å n

k= 1 r y (q(k) ) of the samples q(1) , ..,q(N ) with the true quantity y0 = nfly+ n0y0
n+ n0

.
The Diaconis conjugate simpli�es to the usual conjugate prior for speci�c exponen-

tial families. For example, the Diaconis conjugate prior for the Gaussian model from
example 1.2.5 reduces to the Normal-Inverse Gamma prior; see Section 1.5.2.

1.5 Example Models

This section describes several speci�c models and their properties. The models will be
used as test cases for MCMC algorithms.

1.5.1 A Linear Gaussian Inverse Problem

Suppose a vector-valued observation y 2 R p is distributed according to a multivariate
Gaussian distribution with a known covariance matrix G� 1 and unknown mean m,

yjm� Normal
�

y; m, G� 1
�

In other words, the distribution has a known precision matrix G 2 R p� p, which is
symmetric positive-de�nite. The likelihood function can then be written

p (yjm) µ exp
�

mTGy �
1
2

mTGm
�

up to multiplicative factors not involving m. Clearly this is an exponential family with
natural parameter q := GTm= Gm, and cumulant generating function y (q) = 1

2qTG� 1q.
As expected, mis a mean parameter satisfying m= r y (q) = G� 1q.

We adopt a Gaussian prior in mean parameters for the model,

m� Normal
�

m; m0, L 0
� 1

�

where m0 2 R p is the prior mean and L 0 2 R p� p is the prior precision matrix. A
straightforward calculation shows that the posterior distribution is then

mjy � Normal
�

m; L � 1w , L � 1
�

where L := L 0 + Gis the posterior precision and w := Gy + L 0m0.
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Natural Parameters m, s2 Parameters
Parameters q1 = 1

2s2 , q2 = m
s2 s2 = 1

2q1
, m= q2

2q1
Log Posterior

Density
(Up to additive

constant) n0

�
q1a+ q2b � q2

2

4q1
+ 1

2 log(q1)
�

� n0
2s2

�
(m� b)2 � b2 � a

�

�
�

6+ n0
2

�
log(s2)

Mode �q1 = � 1
2(a+ b2) , �q2 = � b

2(a+ b2) �m= b, �s2 = � n0
n0+ 6(a+ b2)

Table 1.5.1: The normal observation model

1.5.2 Gaussian with Unknown Mean and Variance

Recall from example 1.2.5 that the two-parameter family of Gaussian distributions

y � Normal
�
y; m, s2�

is an exponential family with natural parameters q1 = 1
2s2 , q2 = m

s2 , y (q) = q2
2

4q1
+

1
2 log

�
p
q1

�
, and suf�cient statistics t1(y) = � y2 and t2(y) = y. Consider the Diaconis

conjugate prior for this exponential family:

p 0(q) = exp
�

n0(qTt0 � y (q))
�

for some prior hyperparameters n0 > 0, t0 = ( a, b)T where a < 0 and b 2 R . Pushing
forward this distribution to m, s2 yields

p 0
�
m, s2�

µ exp
�

n0

�
a

1
2s2 + b

m
s2 �

m2

2s2 �
1
2

log
�
2ps 2�

��
det

¶(q1, q2)
¶(m, s2)

= exp
�

� n0

2s2

�
m2 � 2bm� a

�
�

n0

2
log

�
2ps 2�

�
1

2 (s2)3

µ
exp

�
� n0
2s2

�
(m� b)2 � b2 � a

��

q
2p s2

n0

1

(s2)
5+ n0

2

µ
exp

�
� n0
2s2 (m� b)2

�

q
2p s2

n0

exp
�

n0(b2+ a)
2

1
s2

�

(s2)
5+ n0

2

which is a normal-inverse-gamma distribution [33], the usual conjugate prior for normally-
distributed data with unknown mean and variance. The properties of the model are
shown in table 1.5.1. Note that the mode of the distribution in the m, s2 parameteri-
zation depends on the n0 hyperparameter, whereas there is no such dependence for
the mode in the natural parameterization. In particular, the natural parameter mode
( �q1, �q2) transformed to the m, s2 parameterization is

m( �q1, �q2) = b s2( �q1, �q2) = �
�
a+ b2�
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The s2 component here disagrees with �s2; in other words, the process of computing the
mode does not necessarily commute with changes of parameterization. This implies
that the mode or MAP estimatordepends on co-ordinates, and thus cannot be geomet-
ric. In contrast, the maximum likelihood estimator (MLE) is known to commute with
reparameterization [71].

1.5.3 Logistic Regression

Suppose we have a binary responseyi 2 Y = f 0, 1g, so that the underlying exponential
family Q is the 1-simplex discussed in example 1.2.9. The cumulant generating function
is then y (qi ) := log (1 + exp(qi )) and the natural-to-mean diffeomorphism is given by
the expit or sigmoid function,

pi = Ep (yi jqi ) (yi ) = y 0(qi ) =
1

1 + exp(� qi )
= : s(qi )

Here pi := P(yi = 1) = 1 � P(yi = 0) is the mean parameter of the i th observation.
Thus the canonical GLM for Q uses the expit function s as the link function, so that the
link relation (1.3.3) is given by

s� 1(pi ) = qi =
p

å
j= 1

X i j b j

This particular GLM is known as logistic regression. The log-likelihood function is given
by

log p (yjb) =
n

å
i= 1

 
p

å
j= 1

yi X i j b j � log

 

1 + exp

 
p

å
j= 1

X i j b j

!!!

Since it is a canonical GLM, this is a regular exponential family in b. The prior for the
logistic regression coef�cients will depend on the application of interest. A common
choice is a Gaussian prior, in which case the log posterior density takes the form

log p (bjy) =
n

å
i= 1

 
p

å
j= 1

yi X i j b j � log

 

1 + exp

 
p

å
j= 1

X i j b j

!!!

�
1
2

bTL � 1b

i.e. the prior has zero mean and covariance matrix L . This best suits data and covariates
that have been standardized and centered.
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Chapter 2

Information and Differential
Geometry

The previous chapter recast Bayesian inference in a co-ordinate free form. In this chap-
ter, we extend this picture by imposing additional co-ordinate free geometric structure
on statistical families - this is the study of Information Geometry. Concepts such as
curvature, arc-lengths of curves and even the Pythagorean Theorem can be made sense
of for statistical families, and such concepts often have neat statistical interpretations.

We follow the approach of Amari [3] and derive all geometrical structures from a
divergence function. A divergence is a kind of squared distance function which may be
asymmetric in its arguments. In fact, asymmetric divergence functions give rise to an
interesting dualistic structure which is not present in classical Riemannian geometry.

Formal details, including several proofs, are contained in appendix A.

2.1 Tangent Space, Cotangent Space and Tensors

2.1.1 Tangent Vectors

Smooth manifolds are often informally described as generalizations of smooth surfaces
in that they are �locally �at�. In this section we will make this precise; attached to each
point of the manifold is a vector space called tangent space, whose elements are called
tangent vectors. Differential Geometry is essentially described in terms of maps which
act on tangent vectors. We will follow Chapter 3 of Lee [46].

Our aim is to formalize the notion of a directional vector whose base is at a point of
the manifold, similar to how tangent vectors to curves in R p are �attached� to a point of
the curve to which they are tangential. This can be made sense of in terms of derivations
of smooth functions on Q. For a vector v 2 R p, the directional derivative of a smooth
function f : R p ! R at a point q0 2 R p is

r v f (q0) := v � r f (q0) =
d

å
i= 1

vi
¶ f
¶qi

�
�
�
�
�
q= q0

=

 
d

å
i= 1

vi
¶

¶qi

! �
�
�
�
�
q= q0

f
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We might therefore think of v as a real-valued operator acting on smooth functions.
Let V ( f ) := r v f (q0) be this directional derivative operator, which we view as a map
C¥ (R p) ! R where C¥ (R p) is the space of in�nitely-differentiable functions R p ! R .
Then V is a linear operator satisfying the Leibniz(product) rule at q0,

V ( f g) = f (q0)V (g) + g(q0)V ( f ) (2.1.1)

Note that Leibniz rule associates V with the point q0, and hence formalizes the notion
of a tangent vector being attached to a point. Indeed, one can show that the set of
derivations at q0 2 R p forms a p-dimensional vector space with a basis given by the
partial derivatives with respect to each co-ordinate evaluated at q0,

¶i jq0
: C¥ (R p) ! R ¶i jq0

( f ) :=
¶ f
¶qi

�
�
�
�
q= q0

for i = 1, ..,p.
The concept of an operator acting on smooth functions can be generalized to smooth

manifolds, since the notion of a smooth function is well-de�ned (see Section 1.1.2). This
is how tangent vectors on a manifold are de�ned.

De�nition 2.1.1. A tangent vector or derivation at q 2 Q is a linear map X : C¥ (Q) !
R that satis�es the Leibniz rule at q,

X( f g) = f (q)X(g) + g(q)X( f ) for all f , g 2 C¥ (Q)

The set of all tangent vectors at q is called the tangent space to Q at q and is denoted by
TqQ.

Analogously to the space of derivations at a 2 R p, Tangent space forms a vec-
tor space when equipped with the canonical addition and scalar multiplication; for all
X ,Y 2 TqQ, c 2 R and f 2 C¥ (Q) we de�ne

(X + Y)( f ) := X( f ) + Y( f ), (cX)( f ) := cX( f )

which are clearly both tangent vectors in TqQ.

The Differential of a Function and Co-ordinate Basis

Performing explicit calculations with tangent vectors requires a basis. One such basis
is provided by a generalized derivative, called the differential, of a co-ordinate map.
The differential of a map between two manifolds is a linear mapping between their
respective tangent spaces; it is a linear approximation to the map.

De�nition 2.1.2. Let Q, Q0 be smooth manifolds and let F : Q ! Q0 be a smooth map
between them. The differential dF at q 2 Q is the mapping dFq : TqQ ! TF(q)Q0 such
that for all V 2 TqQ, the tangent vector dFq(V ) 2 TF(p)Q0acts on f 2 C¥ (Q0) via

dFq(V )( f ) := V ( f � F)
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Since f : Q0 ! R and F : Q ! Q0 the composition ( f � F) : Q ! R is a smooth
function on Q and hence can be acted on by a tangent vectorV 2 TqQ, and hence dF
is well-de�ned. Lemma A.0.2 states that the differential dFq is a linear isomorphism
whenever F is a diffeomorphism.

An important example of differentials is given by co-ordinate maps. If (U , q) is a
co-ordinate chart, then q : U ! R p is a map between manifolds, since open subsets
of R p are smooth manifolds - see Example 1.1.3. The differential acts on a function
�g : R p ! R via

dqq(V )( �g) = V ( �g � q)

Suppose for example that �g is the co-ordinate representation of a smooth function g :
Q ! R , i.e. �g = g � f � 1. Then clearly

df q(V )( �g) = V ( �g � f ) = V (g � f � 1 � f ) = V (g)

In words, the co-ordinate differential of a tangent vector applied to the co-ordinate rep-
resentation of a smooth function agrees with the tangent vector applied to the �pure�,
i.e. co-ordinate independent, function.

Since the co-ordinate map q : U ! f (U ) is a diffeomorphism onto its range, by
Lemma A.0.2 the differential dqq is a linear isomorphism. Since for any q 2 Q, the
tangent spaceTq(q)R p is a p-dimensional vector space, this implies that TqQ is also p-
dimensional. Furthermore, the differential gives an explicit basis for tangent space as
the following theorem shows.

Theorem 2.1.3. Let Q be a smooth manifold with a co-ordinate chart(U , q) for U � Q. Then
for any q2 Q, a basis for tangent space TqQ is given by the p tangent vectors

¶i jq,q : C¥ (Q) ! R

¶i jq,q( f ) :=
¶

¶qi

�
�
�
�
q= f (q)

�
f � f � 1

�
for all f 2 C¥ (Q), i = 1, ..,p

See Appendix A for a proof.
We refer to the basis f ¶i jq,qj i = 1, ..,pg as the co-ordinate vectors. When the co-

ordinate chart and/or point q 2 Q is clear from context, we will abuse notation slightly
and write the i th co-ordinate vector as ¶i jq or even ¶i .

Tangent vectors have an important interpretation, especially in the context of dy-
namics, of being velocity vectors to curves. As usual, we follow Lee [46]. Let c : J ! Q
be a smooth map, where J � R is an open interval. Such a map is a smooth curveon Q;
for example, the path of a particle around the manifold parameterized by time t 2 J.
De�ne the velocity of c at t = t0 2 Jas the tangent vector c0(t0) 2 Tc(t0)Q,

c0(t0) = dc

 
d
dt

�
�
�
�
t= t0

!

(2.1.2)
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Note that d
dt

�
�
�
t= t0

� ¶
¶t

�
�
�
t= t0

is a tangent vector in Tt0R , and thus is mapped to a vector in

Tc(t0)Q under the differential dc. We consider how the velocity vector acts on a smooth
function f and unroll the de�nitions;

c0(t0)( f ) := dc

 
d
dt

�
�
�
�
t= t0

!

( f )

=
d
dt

�
�
�
�
t= t0

( f � g) = ( f � g)0(t0)

Comparing this to analogous derivatives of functions along curves in Rn, this justi�es
calling c0(t0) a velocity. In fact, any tangent vector V 2 TqQ is the velocity vector of
some smooth curve [46].

The Tangent Bundle and Vector Fields

The disjoint union of tangent spaces indexed by all points q 2 Q is called the tangent
bundle,

TQ := t q2 QTqQ

Elements of the tangent bundle are therefore tuples (q, V ) where q 2 Q and V 2 TqQ.
If Q is p-dimensional, one can show [46] that the tangent bundle is a 2 p-dimensional
smooth manifold. The canonical projectionp : TQ ! Q maps elements of the tangent
bundle to their associated point in the manifold; p ((q, V )) = q. Physically, we can
interpret the tangent bundle as the space of possible positions and velocities for some
particle in Q, that is, the tangent bundle is the state space for second-order dynamics
such as Newton’s laws. We will return to this in our discussion of Hamiltonian Monte
Carlo in Chapter 4.

In R p, we have the notion of vector �elds, i.e. maps R p ! R p which are thought of
as placing a vector at each point of the spaceR p. We generalise this to a manifold as
follows:

De�nition 2.1.4. Let Q be a smooth manifold. A vector �eld is a smooth map X : Q !
TQ such that the image under X of any point q 2 Q is of the form (q, �), i.e.

X � p = Id Q

where Id Q is the identity map on Q.

Since vector �elds are maps between smooth manifolds, their smoothness is well-
de�ned. Formally, the value X(q) of a vector �eld is a tuple (q, V ) in the tangent bundle;
for brevity, we will follow the convention of only writing the tangent vector part of
X(q).

De�nition 2.1.5. The set of all vector �elds on a smooth manifold Q is written X(Q).
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In any co-ordinate chart (U , q), a vector �eld can be expanded in the co-ordinate
vector basis,

X(q) =
p

å
i= 1

X i (q)¶i jq (2.1.3)

In fact, each of the p co-ordinate vectors de�ne vector �elds, called co-ordinate vector
�elds,

¶i : Q ! TQ
¶i (q) = ¶i jq

Furthermore, addition and scalar multiplication of vector �elds are de�ned pointwise
on Q so that equation (2.1.3) can be written more succinctly as X = å p

i= 1 X i¶i . Note
that the notation ¶i does not specify the co-ordinate chart q; expressions involving the
co-ordinate vector �elds should be assumed to hold in any chart over the relevant co-
ordinate domain.

Since each smooth curve has a velocity vector, for any vector �eld X it is natural
to consider curves whose velocity vector matches X at each point. In particular, an
integral curveof a vector �eld X is a smooth map c : J ! Q, Jan interval in R , such that
c0(t) = X(c(t)) for all t 2 J. Clearly, such curves are solutions to ordinary differential
equations determined by the vector �eld when written in co-ordinate form.

Vector �elds can act on smooth functions to produce new smooth functions. Let X
be a vector �eld on a smooth manifold Q, and let f : Q ! R be a smooth function. Then
we may de�ne a smooth function X f whose value at each point q 2 Q is the action of
the tangent vector X(q) 2 TqQ on f ,

X f : Q ! R (X f )(q) = X(q)( f ) (2.1.4)

This construction can be applied recursively; if Y 2 X(Q) is another vector �eld, one
can consider YX f = Y(X f ). Finally, we can also scale a vector �eld by a smooth func-
tion; for X 2 X(Q) and f 2 C¥ (Q), de�ne the vector �eld f X 2 X(Q) by

( f X)(q) = f (q)X(q) for all q 2 Q

2.1.2 Cotangent Vectors

Since tangent spaceTqQ is a vector space, we can study the dual spaceT�
q Q; the set of

linear functionals a : TqQ ! R . This dual space is a vector space calledcotangentspace,
and its elements are called 1-formsor covectors. Elementary linear algebra informs us
that the dual space is also a vector space of the same dimension asTqQ, and hence the
same dimension asQ.

An example of a 1-form is the differential of a smooth function f : Q ! R , which
maps tangent vectors X to their action on f ;

dq f : TqQ ! R
dq f (X) := X( f )

45



This is clearly a linear functional for any smooth f : Q ! R , so d f 2 T�
q Q. Note that

this coincides with De�nition 2.1.2 of the differential of a map between manifolds, if we
identify tangent spaces of R with R itself; see Lee [46].

Just as the co-ordinate vectors, i.e. partial derivatives, form a basis for tangent
spaces, the following proposition shows that the differentials of the co-ordinate func-
tions form a basis for cotangent space which is dual to the co-ordinate vector basis.

Proposition 2.1.6. Let Q be a smooth p-dimensional manifold with q2 Q, and let(U , q) be
a co-ordinate chart whose domain contains q, with co-ordinates labelledqj , j = 1, ..,p. The
differentialsf dqqjgp

j= 1 of the local co-ordinate functions form a basis of cotangent space T�
pQ

that is dual to the co-ordinate tangent vector basisf ¶ig
p
i= 1, i.e. they satisfy

dqqj (¶i ) = ¶i (qj ) = dj
i

for all i, j = 1, ..,p, wheredj
i = 1 when i = j and is0 otherwise.

We refer to the basis in the previous proposition as the co-ordinate differential basisor
simply the dual basis. For any a 2 T�

q Q, it is easy to verify that a = å i a(¶i )dqqi , i.e. the
components of a covector with respect to the dual basis are given by a(¶i ), i = 1, ..,p.

Just as elements ofTqQ are interpreted as tangent vectors to curves, covectors can
be seen as gradients of smooth functions f : Q ! R . For example, the expansion of the
differential of a smooth function in the dual basis is

d fq =
p

å
i= 1

d fq(¶i )dqi =
p

å
i= 1

¶i ( fq)dqi =
p

å
i= 1

¶ �f
¶qi

�
�
�
�
�
q= q(q)

dqi

Put simply, the coef�cients of the differential of f in the dual basis are the compo-
nents of the gradient vector of the co-ordinate representation �f .

As for tangent vectors, we can de�ne the cotangent bundle T� Q as the disjoint union
of all cotangent spaces over all points of the manifold,

T� Q := t q2 QT�
q Q

covectors have a physical interpretation of being momenta; their action on a velocity
vector gives twice the associated kinetic energy. The cotangent bundle is therefore the
state space containing positions and momenta of a physical system or particle.

Einstein Summation Notation

We brie�y describe a convenient notational convention that is regularly used in Differ-
ential Geometry and will be employed throughout the thesis. We will not write sums
over indices (e.g. å p

i= 1) explicitly, and instead assume that any index that appears in
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both �upper� and �lower� positions is summed over. For example, we can expand a
vector �eld X at q 2 Q in some co-ordinate vector basis as

X =
p

å
j= 1

X j¶j � X j¶j

In particular, arrays with upper/lower indices respectively denote the coef�cients of a
tangent/covector with respect to a co-ordinate/differential basis. The basis elements
themselves have indices in the opposite positions.

Statistical Scores

For the case when Q is a family of probability distributions, cotangent space has a
special interpretation.

De�nition 2.1.7. Let Q be a smooth statistical family with dominating measure n. For
a �xed y 2 Y, Let L n,y(q) be the log conditional data-generating density, i.e.

L n,y : Q ! R

L n,y(q) = log
dq
dn

(y) (2.1.5)

De�ne the score at qas the differential of L n,y at q 2 Q,

Sy,q = d(L n,y)q

Note that L n,y is a co-ordinate free de�nition of the log-likelihood. Since the action
of the score on a tangent vector is a function of y, it is a random variable. If y is dis-
tributed according to the distribution q, the same point at which the score is evaluated,
then the random variable has expectation zero.

Proposition 2.1.8. Let Q be a smooth statistical family of probability measures on a data space
Y. Then for any q2 Q and tangent vector V2 TqQ,

Ey� q
�
Sq,y(V )

�
= 0

Proof. Note that Sq,y(V ) = V (L n,y). Choose a co-ordinate chart(U , q) containing q, and
write

V = V i¶i �L n,y(q) = log p (yjq)

Then the action of the score on V follows as:

Sq,y(V ) = V i ¶
¶qi

�
�
�
�
q= q(q)

L n,y = V i ¶
¶qi

�
�
�
�
q= q(q)

log p (yjq)
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Noting that ¶
¶qi log p = 1

p
¶p
¶qi and taking and expectation over y yields:

E
�
Sq,y(V )

�
= V iE

 
¶

¶qi

�
�
�
�
q= q(q)

log p (yjq)

!

= V i
Z 1

p (yjq)

 
¶

¶qi

�
�
�
�
q= q(q)

p (yjq)

!

p (yjq)dn(y)

= V i
Z ¶

¶qi

�
�
�
�
q= q(q)

p (yjq)dn(y)

Exchanging the integral and derivatives, this yields the result;

V i
Z ¶

¶qi

�
�
�
�
q= q(q)

p (yjq)dn(y) = V i ¶
¶qi

�
�
�
�
q= q(q)

Z
p (yjq)dn(y)

= V i ¶
¶qi

�
�
�
�
q= q(q)

(1) = 0

2.1.3 Tensors and Tensor Fields

Just as covectors are linear mapsTqQ ! R , we can consider multilinear maps, i.e. func-
tions of multiple tangent and/or covectors, which turn out to be useful objects in geom-
etry; for example, an inner-product on tangent spaces de�nes concepts such as length
and angles on a manifold, giving rise to Riemannian geometry. The following de�nition
is adapted from Calin and Udris‚te [17].

De�nition 2.1.9. Let Q be a smooth manifold. A type (r, k)-tensor Aq at q 2 Q is a map

Aq : T�
q Q � � � � T�

q Q
| {z }

r times

� TqQ � � � � TqQ
| {z }

k times

! R

which is multilinear, i.e. linear in each of its r + k slots.

Tensors for which r = 0 are known as covariant, whereas tensors with k = 0 are
contravariant.

Example 2.1.10. � Covectors are (0, 1)-tensors, since they are linear functions of a
single tangent vector, TqQ ! R .

� Tangent vectors can be viewed as (1, 0)-tensors, i.e. linear mapsT�
q Q ! R . To see

this, for V 2 TqQ, the value of V on a covector w 2 T�
q Q is simply w(V ). In other

words, the dual space of T�
q Q,

�
T�

q Q
� �

, can be identi�ed with TqQ.
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Tensors have representations with respect to the co-ordinate and differential bases;
we may think of tensors as being multidimensional arrays whose elements are the value
of the tensor applied to each combination of basis vectors/covectors. For example, sup-
pose C is a (1, 2)-tensor, i.e. a function of a single covector w and two tangent vectors
V ,W. Then a simple expansion into basis vectors/covectors and using multilinearity
yields:

C(w, V ,W) = C(widqi , V j¶j ,Wk¶k) = wiV jWk C(dqi , ¶j , ¶k)
| {z }

:= Ci
jk

where as usual Einstein summation notation is used. We de�ne the components of C
with respect to the co-ordinate / differential bases as Ci

jk := C(dqi , ¶j , ¶k); note that
these are the components of a three-dimensional array, with upper indices representing
covector (contravariant) slots and lower indices representing vector (covariant) slots.
Dependence on the point in the manifold q 2 Q is implicit in the above expression.

There is a notion of tensor �eldswhich generalises vector �elds, and includes covector
�elds as a special case. We will not give the detailed de�nitions in this thesis, which can
be found in Lee [46]. Roughly, we can consider bundlesof tensors, i.e. disjoint unions of
vector spaces indexed by points in the manifold, generalizing the concept of the tangent
bundle. Tensor �elds are then smooth sectionsof these bundles, i.e. maps from the
manifold to the bundle whose value at any q 2 Q projects back to q. For our purposes,
we may think of tensor �elds as a position-dependent tensor whose components with
respect to the co-ordinate or differential bases are all smooth functions. For example,
the differential of a function de�nes a smooth covector �eld.

De�nition 2.1.11. The set of all covector �elds on a smooth manifold Q is written
X � (Q).

An important example of tensors in the context of statistical families is given by the
Fisher information. Firstly, note that the score is the differential of a smooth function
and is therefore a covector �eld. We write Sy to denote this covector �eld,

Sy := dL n,y

The score is therefore a covector �eld that depends on data y 2 Y ; we could there-
fore de�ne the score as a map S : Y ! X � (Q), where X � (Q) is the set of covector �elds
on Q. Proposition 2.1.8 is then the statement that for all points q 2 Q and any vector
V 2 TqQ, Ey� q

�
Sy(q)(V )

�
= 0. The score allows us to re-de�ne the Fisher information

in a co-ordinate free manner.

De�nition 2.1.12. Let Q be a smooth statistical family and q 2 Q. The Fisher information
of V ,W 2 TqQ is the covariance of their respective scores, i.e.

Iq(V ,W) = Eq2 Q
�
Sq,y(V )Sq,y(W)

�
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Note that since the expected value of the score is 0 for any tangent vector, the co-
variance takes the form given in the de�nition. The Fisher information is a tensor; it
is linear in each of its two slots by the linearity of the score covector and the bilinear-
ity of the covariance function on random variables. Note that De�nition 2.1.12 agrees
with our earlier De�nition 1.2.16 of the Fisher information matrix; the components of
the Fisher information at q 2 Q with respect to the co-ordinate vector basis are

Iq

�
¶i jq, ¶j jq

�
= Eq2 Q

�
Sq,y (¶i ) Sq,y

�
¶j

��

= Eq2 Q
�
¶i

�
L n,y

�
¶j

�
L n,y

��

= Eq2 Q

 
¶

¶qi

�
�
�
�
q= f (q)

log p (yjq)
¶

¶qj

�
�
�
�
q= f (q)

log p (yjq)

!

where p (yjq) is the conditional data-generating density represented in the relevant
co-ordinate chart.

Proposition 2.1.13. The Fisher information is a positive semi-de�nite covariant 2-tensor �eld,
i.e. for all q2 Q,

Iq(V , V ) � 0

with equality if V = 0.

Proof. We �rst show that I (0, 0) = 0. Note that the action of the score on the 0 vector is
0;

Sq,y(0) = dL n,y(0) = 0(L n,y) = 0

where L n,y is the conditional density de�ned in equation (2.1.5). By the de�nition of the
Fisher information, we have

Iq(0, 0) = Ey� q
�
Sq,y(0) � Sq,y(0)

�
= E (0 � 0) = 0

For a general tangent vector V 2 TqQ, we have

Iq(V , V ) = Eq
�
Sq,y(V )Sq,y(V )

�

= Eq

�
Sq,y(V )2

�

� Eq
�
Sq,y(V )

� 2 � 0

2.2 Divergence Functions

A divergence or contrast function is a measure of distance or proximity on a manifold,
although in general they are not metrics. Divergences induce geometric structure - both
classical Riemannian geometry and Information Geometry.

Firstly we formally de�ne a divergence on a manifold. The de�nition is given �rst
on R p and then on manifolds in terms of co-ordinate charts. The following is from Calin
and Udris‚te [17] and Amari [3];
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De�nition 2.2.1. Let E � R p be open. A divergence or contrast function on E is a
smooth function D : E � E ! R satisfying

i) D(q, q0) � 0 for all q, q0 2 E

ii) For all q, q0 2 E , D(q, q0) = 0 if and only if q0 = q

iii) The Hessian matrix along the diagonal q0 = q, i.e. the matrix with i � j entry

(G (q0)) i j :=
¶

¶qi
¶

¶qj D(q, q0)
�
�
�
�
q= q0

(2.2.1)

is a strictly positive-de�nite matrix-valued smooth function of q 2 E .

Conditions i and ii are shared with the de�nition of a metric on E , but divergences
are not necessarily symmetric in their arguments nor do they satisfy the triangle in-
equality. The following lemma will be useful in later calculations and geometric de�ni-
tions; a proof is provided by Calin and Udris‚te [17].

Lemma 2.2.2. Let D be a divergence on an open setE � R p. Then the �rst-order partial
derivatives on the diagonal vanish:

¶
¶qi D(q, q0)

�
�
�
�
q0= q

=
¶

¶qi
0
D(q, q0)

�
�
�
�
�
q0= q

= 0 for i = 1, ..,p (2.2.2)

Furthermore, the following equivalent expressions for the Hessian on the diagonal (2.2.1) hold:

(G(q)) i j =
¶

¶qi
¶

¶qj D(q, q0)
�
�
�
�
q= q0

=
¶

¶qi
0

¶

¶qj
0

D(q, q0)

�
�
�
�
�
q= q0

= �
¶

¶qi
0

¶
¶qj D(q, q0)

�
�
�
�
�
q= q0

= �
¶

¶qi
¶

¶qj
0

D(q, q0)

�
�
�
�
�
q= q0

The condition iii together with Lemma 2.2.2 imply that a divergence on R p can be
approximated with the quadratic form

D(q, q0) =
1
2

(q � q0)TG(q0)(q � q0) + O
�

kq � q0k3
�

(2.2.3)

as q � q0 ! 0, where G(q0) is the matrix de�ned in condition iii. This suggests we
can interpret a divergence as half the �squared distance� from q0 to q under the norm
induced by G(q0). This, along with the fact that G is symmetric positive-de�nite, will
motivate an inner product on tangent spaces when we discuss Riemannian geometry
in Section 2.3.1.
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Example 2.2.3. Let A 2 R p� p be a symmetric positive-de�nite matrix. De�ne a Eu-
clidean divergence function DA : R p � R p ! R given by

DA (q, q0) :=
1
2

(q � q0)T A(q � q0)

The �rst two conditions i, ii follow immediately from the fact that A is positive-de�nite.
Condition iii is satis�ed since the Hessian on the diagonal is A.

We can now formally de�ne a divergence function on a manifold. We de�ne a di-
vergence on a manifold by requiring that its co-ordinate representation is a divergence
on an open set of R p.

De�nition 2.2.4. Let Q be a smooth p-manifold. A divergence or contrast function on
an open set U � Q is a smooth function D : U � U ! R , such that any co-ordinate
chart (U , f ) where f : U ! R p makes

D f : f (U ) � f (U ) ! R , D f (q, q0) := D
�

f � 1(q), f � 1 (q0)
�

a divergence function on the open subset f (U ) � R p in the sense of de�niton 2.2.1.

This de�nition is from Calin and Udris‚te [17], who also provide a proof (Theorem
11.2.1) of the following result, which shows that the choice of co-ordinate chart is arbi-
trary.

Theorem 2.2.5. Let Q be a smooth p-manifold, and let there be two co-ordinate charts(U , f )
and(U0, f 0). Let D : U � U ! R be a divergence with respect to the �rst co-ordinate chart in
the sense of De�nition 2.2.4, i.e. so that

D f : f (U ) � f (U ) ! R , D f (q, q0) := D
�

f � 1(q), f � 1(q0)
�

is a divergence onf (U ). Then the function

D f 0 : f 0(U \ U0) � f 0(U \ U0) ! R , D f 0
� �q, �q0

�
:= D

�
f 0� 1 � �q

�
, f 0� 1 � �q0

� �

is a divergence onf 0(U \ U0).

From the latter theorem and de�nition we deduce the following proposition, which
allows us to de�ne divergences on a manifold by extension of divergences in R p.

Proposition 2.2.6. Let Q be a smooth p-manifold with co-ordinate chart(U , q). Let Df :
f (U ) � f (U ) ! R be a divergence on the co-ordinate rangef (U ) � R p. Then the function

D : U � U ! R , D(q1, q2) := D f (f (q1), f (q2))

is a divergence on U� Q.
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Proof. Let (U , f 0) be a co-ordinate chart with the same co-ordinate domain U , but an
arbitrary co-ordinate map f 0not necessarily the same asf . To show that D is a diver-
gence onU , De�nition 2.2.4 states that we must show that D f 0(q0, q0

0) := D(f 0� 1(q0), f 0� 1(q0
0))

is a divergence on f 0(U ).
Note that by de�nition

D(f � 1(q), f � 1(q0)) = D f (q, q0)

for all q, q0 2 f (U ). By Theorem 2.2.5,D f 0 is a divergence on f 0(U ), and hence D is a
divergence on U .

Any divergence also has a dual divergence.

De�nition 2.2.7. Let D be a divergence onE � R p. The dual divergence D � of D is

D � : E � E ! R D � (q, q0) := D (q0, q)

Note that any dual divergence is a divergence; conditions i and ii of De�nition 2.2.1
are trivially satis�ed, and condition iii holds by Lemma 2.2.2. A divergence is only
equal to its dual when it is symmetric in its arguments, such as for the squared Eu-
clidean distance.

2.2.1 The f -Divergences

We now study divergences on statistical families. There is a canonical class of diver-
gences on a statistical family introduced by Csisz ·ar [21].

De�nition 2.2.8. Let Q be a statistical family on a measurable space (Y, F ). An f -
divergence is a function of the form

D f : Q � Q ! R , D f (q1, q2) :=
Z

f
�

dq1

dq2
(y)

�
dq2(y) (2.2.4)

where f : (0,¥ ) ! R is a convex function satisfying f (1) = 0. If in addition f 00(1) = 1,
the f -divergence is called standard.

Since the elementsq1, q2 of a statistical family are measures, i.e. probability distribu-
tions, the integral in (2.2.4) is well-de�ned. Let us show that an f -divergence satis�es
the conditions of a divergence.

Theorem 2.2.9. An f -divergence is a divergence on Q. In a co-ordinate chart(U , q) with co-
ordinates labelledq, if there exists a measuren which dominates Q then the Hessian matrix on
the diagonal is proportional to the Fisher Information,

¶
¶qi

¶
¶qj

D f (q, q0)
�
�
�
�
q= q0

= f 00(1)Ep (yjq0)

 
¶

¶qi log p (yjq)
¶

¶qj log p (yjq)
�
�
�
�
q= q0

!

wherep (yjq0) and p (yjq) are respectively the densities with respect ton of the measures
f � 1(q0), f � 1(q) 2 Q. In particular, the Hessian is exactly the Fisher Information when the
f -divergence is standard.

53



Proof. We check the three conditions of divergences.

i)

D f (q1, q2) =
Z

Y
f

�
dq1

dq2
(y)

�
dq(y) = Ey� q

�
f

�
dq1

dq2
(y)

��

� f
�

Ey� q

�
dq1

dq2
(y)

��
by Jensen’s inequality

= f
� Z

Y
dp(y)

�
= f (1) = 0 since p 2 Q is a probability measure

ii) Let q1 6= q2. Then by the strict convexity of f , Jensen’s inequality gives

D f (q1, q2) = Ey� q

�
f

�
dq1

dq2
(y)

��
> f

�
Ey� q

�
dq1

dq2
(y)

��
= f (1) = 0

iii) Assume there exists a co-ordinate chart (U , q) whose co-ordinates we label q 2
f (U ) � R p. We write

D f (q, q0) =
Z

Y
f

� p 0

p

�
p dy

for the induced divergence on f (U ), where p 0 := p (yjq0) and p := p (yjq) are
shorthand notation for the densities with respect to a measure n which dominates
Q. Furthermore, let ¶i := ¶

¶qi
denote the partial derivative with respect to the i th

component in the second slot of the divergence. We assume we can bring such
differential operators under the integral sign with respect to y. Then

¶j D f (q, q0) =
Z

Y
f 0

� p 0

p

� � p 0

p 2 (¶jp )p dy +
Z

Y
f

� p 0

p

�
¶jp dy

and by a direct calculation

¶i¶j D f (q, q0) =
Z

Y
f 00

� p 0

p

� p 0

p 2 (¶ip )
p 0

p 2 (¶jp )p dy (2.2.5)

+
Z

Y
f 0

� p 0

p

� �
¶i

�
�

p 0

p
(¶jp )

�
+

� p 0

p 2 (¶ip )(¶jp )
�

dy (2.2.6)

+
Z

Y
f

�
p
p 0

�
�
¶i¶jp

�
dy (2.2.7)

We now evaluate this expression term-by-term at q = q0, i.e. p 0 = p in the short-
hand notation. The third term (2.2.7) vanishes since f (1) = 0;

Z

Y
f

�
p
p 0

�
�
¶i¶jp

�
dy

�
�
�
�
q= q0

= 0
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Similarly the second term (2.2.6) also vanishes;
Z

Y
f 0

� p 0

p

� �
¶i

�
�

p 0

p
(¶jp )

�
+

� p 0

p 2 (¶ip )(¶jp )
�

dy
�
�
�
�
q= q0

=
Z

Y
f 0

� p 0

p

� �
p 0

p 2 (¶ip )(¶jp ) �
p 0

p
¶i¶jp +

� p 0

p 2 (¶ip )(¶jp )
�

dy
�
�
�
�
q= q0

= � f 0(1)
Z

Y
¶i¶jp dy

�
�
�
�
q= q0

= � f 0(1) ¶i¶j

Z

Y
p dy

| {z }
= 1

�
�
�
�
�
�
�
�
q= q0

= 0

Finally for the �rst term (2.2.5), note that 1
p ¶ip = ¶i log p . Thus we have

Z

Y
f 00

� p 0

p

� p 0

p 2 (¶ip )
p 0

p 2 (¶jp )p dy
�
�
�
�
q= q0

=
Z

Y
f 00

� p 0

p

� � p 0

p

� 2
(¶ip )(¶jp )p dy

�
�
�
�
q= q0

= f 00(1)
Z

Y
(¶i log p )jq= q0

(¶j log p )
�
�
q= q0

p 0dy

= f 00(1)Ep 0

�
(¶i log p )jq= q0

(¶j log p )
�
�
q= q0

�

Therefore the Hessian along the diagonal q = q0 is proportional to the Fisher Infor-
mation with proportionality constant f 00(1). When the divergence D f is standard,
f 00(1) = 1 and the Hessian is exactly the Fisher information.

Therorem 2.2.9 shows that all standard f -divergences agree to second-order in any
co-ordinate map in which they are de�ned. In fact, all f -divergences induce the same
geometry - this will be clari�ed below.

Examples of f -Divergences

� Let f (u) = � log(u), which clearly satis�es f (1) = 0 and is standard, i.e. f 00(1) =
0. Then the corresponding f -divergence is the Kullback-Leibler divergence,

D f (q1, q2) = �
Z

Y
log

�
dq1

dq2

�
dq2

� If f (u) := u2 � 1, then the corresponding f -divergence is

D f (q1, q2) =
Z

Y

 �
dq1

dq2

� 2
� 1

!

dq2
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Assuming both measures have respective densities p 1 and p 2 with respect to
some dominating measure n, this can be written

D f (q1, q2) =
Z

Y

(p 1 � p 2)2

p 2
dn

This is the Pearson c2 distance, so-called because it is the test statistic in ac2 test
for categorical data.

2.2.2 The Bregman Divergence Induced by a Convex Function

The f -divergences introduced in the previous subsection are de�ned in terms of mea-
sures; they depend on a statistical family structure. In this subsection we introduce
another class of divergences calledBregman divergences[3], [14] that do not make ref-
erence to points of the manifold being measure-valued. Any convex function on R p

induces a Bregman divergence on R p; we can then therefore use convex functions in a
co-ordinate chart to construct divergences on a manifold via Proposition 2.2.6. Finally,
Bregman divergences can be made to include prior information by a suitable choice of
convex function.

We begin with the de�nition of a Bregman divergence.

De�nition 2.2.10. Let F : R p ! R be a smooth strictly convex function. The Bregman
divergencecorresponding to F is the function

DF : R p � R p ! R DF (q, q0) = F(q) � F(q0) � r F(q0) � (q � q0)

This is also known as the Bregman divergence generated by F, and F in this context
is a Bregman generator. Note that the Bregman divergence is the error at q in a linear
Taylor approximation to F around q0. There is inconsistency among authors around
the ordering of the arguments q, q0 in DF; we have followed the convention used by
Amari [3] of making the point being Taylor-expanded around the second argument.
Other authors such as Calin and Udris‚te [17] use the opposite ordering.

Proposition 2.2.11. The Bregman divergence DF corresponding to any smooth convex function
F : R p ! R is a divergence onR p.

Proof. We check the conditions of divergence from De�nition 2.2.1.

i) and ii). Non-negativity DF(q, q0) � 0 is equivalent to the �rst-order condition of a
convex function F;

F(q) � F(q0) + r F(q0) � (q � q0) for all q, q0 2 R p (2.2.8)

with equality if and only if q0 = q. This is a consequence of convexity for a differ-
entiable function F; see Boyd and Vandenberghe [13].
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iii) The Hessian on the diagonal of DF(q, q0) is precisely the Hessian matrix of F,

¶
¶qi

¶
¶qj

D(q, q0)
�
�
�
�
q= q0

=
¶

¶qi

¶
¶qj

F(q)
�
�
�
�
q= q0

SinceF is strictly convex, the second-order condition[13] guarantees that the Hessian
of F is strictly positive-de�nite.

Suppose the smooth manifold Q is equipped with a global co-ordinate chart (Q, f )
where f : Q ! R p. A Bregman divergence DF on the co-ordinates of the chart in-
duces a divergence D on the manifold by Proposition 2.2.6, and this divergence has
representations in other co-ordinate charts. However, the induced divergence may not
necessarily be of Bregman type in other charts

Bregman Divergence on Exponential Families

Recall from Section 1.2 that a standard exponential family contains probability mea-
sures of the form

exp
�

qTt � y (q)
�

dr (t)

when parameterized in terms of natural parameters q.

Proposition 2.2.12. The Kullback-Leibler divergence between two elements of an exponential
family written in the natural parameterization is the Bregman divergence Dy of the cumulant
generating functiony .

Proof. The Kullback-Leibler divergence from Pq0 to Pq, both elements in the same stan-
dard exponential family, is given by

D (q0, q) =
Z

log
p (tjq0)
p (tjq)

dPq0(t) =
Z

q0 � t � y (q0) � q � t + y (q)dPq0(t)

=
Z

(q0 � q) � t + y (q) � y (q0)dPq0(t)

= ( q0 � q) �
Z

tdPq0(t)
| {z }

= r y (q0)

+ (y (q) � y (q0))
Z

dPq0(t)
| {z }

= 1

= y (q) � y (q0) � r y (q0) � (q � q0)

which is clearly the Bregman divergence generated by y . In the third line, we made use
of the fact that Pq0 is a probability distribution and Theorem 1.2.12, i.e. the expectation
under Pq0 of the suf�cient statistic is given by r y (q0).
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Dual Co-ordinates

In Section 1.2.2, we discussed theLegendre transform F� of a convex function F, whose
argument is the dual variable h = r F(q). If (U , q) is a co-ordinate chart on a smooth
manifold Q, then a convex function F : f (U ) ! R de�nes a dual co-ordinate chart
(U , h), where

h : U ! R p, h(q) = r F(q(q))

The Legendre transform F� (h) is a convex function of h, and hence de�nes its own
Bregman divergence. The Bregman divergences induced by F and F� are the dual di-
vergences of each other, as the following proposition shows.

Proposition 2.2.13. Let E � R p be open and F: E ! R be convex. Forq, q0 2 E , let
h = r F(q) andh0 = r F (q0). The Bregman divergence DF satis�es

DF� (h0, h) = D �
F(q, q0) = DF (q, q0)

where F� is the Legendre dual of F.

Proof. By the de�nition of the Bregman divergence for F� , we have

DF� (h0, h) = F� (h) � F� (h0) � r F� (h0) � (h � h0) (2.2.9)

Recall the de�nition of F� from equation (1.2.14) in Chapter 1,

F� (h0) := q0 � h0 � F(q0) where q0 is such that h0 = r y (q0) (2.2.10)

Substituting (2.2.10) and the equivalent statement for F� (h) into (2.2.9) yields

DF� (h0, h) = q � h � F(q) � q0 � h0 + F(q0) � r F� (h0) � h + r F� (h0) � h0

By Theorem 1.2.15,r F� (h0) = q0, and hence

DF� (h0, h) = q � h � F(q) � q0 � h0 + F(q0) � q0 � h + q0 � h0

= F(q0) � F(q) � h � (q � q0)

= F(q0) � F(q) � r F(q) � (q � q0)

= DF(q, q0) = D �
F(q, q0)

where the last equality is from the de�nition of the dual divergence.

The following proposition shows how we may write a Bregman divergence such
that one point is represented in the q co-ordinate system, and the other in the h co-
ordinate system.

Proposition 2.2.14. LetE � R p be open and F: E ! R be convex. The Bregman divergence
DF with generator F can be written

DF (q, q0) = F� (h0) + F(q) � q � h0 (2.2.11)

whereh0 := r F (q0), F� is the Legendre dual of F, and ��� denotes the Euclidean dot product
onE .
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Proof. Substituting (2.2.10) into the right-hand side of (2.2.11) yields the result,

F� (h0) + F(q) � q � h0 = q0 � h0 � F(q0) + F(q) � q � h0

= F(q) � F(q0) + r F (q0) � (q0 � q)
= DF (q, q0)

2.3 Geometry from Divergence Functions

In this section we derive various geometric objects from a divergence. These involve
taking partial derivatives of the divergence, or equivalently applying vector �elds to
the smooth function de�ned by the divergence. To aid with this, we employ a helpful
notation introduced by Ay et al [58].

Suppose D : Q � Q ! R is a divergence on a smooth manifold Q. Fix q1 2 Q and
think of D(q1, q2) as a smooth function of only q2;

D(q1, �) : Q ! R D(q1, �)(q2) := D(q1, q2)

We may apply a vector �eld X 2 X(Q) to this function to yield a new smooth function
X;2D which can be evaluated at q2. This is still a function of q1 and q2,

X;2D : Q � Q ! R (X;2D)(q1, q2) := X(D(q1, �))( q2)

Of course, we can also form the smooth function X;1D by �xing q2 and allowing q1 to
vary; we use the subscript ; 1 or ; 2 to emphasize which slot of the divergence the vector
�eld is acting on. Note that Lemma 2.2.2 implies

(X;1D)(q, q) = ( X;2D)(q, q) = 0

evaluating the new functions produced by the vector �eld at the same point q = q1 = q2
is zero. This is trivial to show by expanding X in the co-ordinate vector basis.

SinceX;1D and X;2D are both functions on the product space Q � Q, we can repeat
this process; �x a point and apply a vector �eld with respect to one of the variables. For
example, for vector �elds X ,Y 2 X(Q), write X;1Y;2D for the function produced by �rst
�xing q1 and applying Y with respect to q2, then �xing q2 and applying X with respect
to q1.

X;1Y;2D : Q � Q ! R (X;1Y;2D)(q1, q2) := X ((Y;2D)( �, q2)) (q1)

Ay et al [58] introduce the following simplifying notation. For the r + svector �elds
X1, ...,X r ,Y1, ...,Ys, de�ne the smooth function

D;

�
X1 � � � X r ,Y1 � � � Ys

�
: Q ! R

D;

�
X1 � � � X r ,Y1 � � � Ys

�
(q) =

�
X1

;1 � � � X r
;1Y

1
;2 � � � Ys

;2D
�

(q, q)

In other words, we apply the vector �elds in the indexed order via the process described
above, and then evaluate the resulting function at q1 = q2 = q.
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2.3.1 Riemannian Geometry

To do Euclidean geometry in a vector space such as R p, we only require an inner-
product to measure lengths and angles. The manifold Q is locally approximated around
eachq 2 Q by the vector spaceTqQ. This motivates equipping every tangent space with
its own inner-product so that we can do geometry �locally� on every tangent space, and
then de�ne notions like length and area over �global� curves and surfaces by integrat-
ing over tangent spaces. This is the core idea of Riemannian geometry.

An inner-product on a vector space is a symmetric positive-de�nite bilinear func-
tion of two vectors; it is therefore a symmetric positive-de�nite (0, 2)-tensor. On a man-
ifold, this generalises to the following:

De�nition 2.3.1. Let Q be a smooth manifold. A Riemannian metric is a smooth (0, 2)-
tensor �eld g on Q which satis�es for all q 2 Q:

1. Symmetry: gq(V ,W) = gq(W, V ) for all tangent vectors V ,W 2 TqQ.

2. Positive-de�niteness: gq(V , V ) � 0 for all V 2 TqQ, with equality if and only if V
is the zero tangent vector.

Here gq is the (0, 2)-tensor-valued evaluation of g at q 2 Q.

A Riemannian manifoldis the pairing of a smooth manifold Q with a particular metric
g, i.e. the tuple (Q, g). The components of the metric at q 2 Q in a particular co-
ordinate chart are the p2 numbers gi j := gq(¶i , ¶j ), i, j = 1, ...,p. Hence the co-ordinate
representation of the inner-product is

gq(V ,W) =
d

å
i,j= 1

V iW j gq(¶i , ¶j ) = vTG(q)w

where G(q) = ( gq(¶i , ¶j ))
p
i,j= 1 for co-ordinates q = q(q), and of course v =

�
V i � and

w =
�
W i � . As usual, we will surpress q 2 Q in our notation and simply write g when q

is clear from context, or when expressions hold over the entire manifold. Clearly G(q)
is a symmetric positive-de�nite matrix.

Sinceg is an inner-product, it enforces a duality pairing, i.e. an isomorphism between
TqQ and its dual T�

q Q. These spaces are vector spaces of the same dimension and were
therefore always isomorphic, but there is no canonical isomorphismuntil we introduce
the metric. For any tangent vector V 2 TqQ, de�ne its dual as the linear functional
flV 2 T�

q Q, such that flV (W) := g(V ,W) for any vector W. Expanding this expression in
the dual bases with flV = Vidqi yields

Vidqi
�

W j¶j

�
= g

�
V l ¶l ,W j¶j

�

, ViW jdi
j = V lW j gl j

, VjW j = V lW j gl j
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Since this expression holds for all vectors W, it follows that Vj = gl j V l , where Ein-
stein summation applies as usual. In co-ordinates, this implies that the components of
the dual covector are given by flv = G(q)Tv = G(q)v since G(q) is symmetric. Given an
arbitrary covector a 2 T�

q Q, we deduce that the dual vector, i.e. given by the inverse
of the isomorphism implicitly de�ned above, must be V = gi j aj¶i where

�
gi j � are the

elements of the inverse matrix G� 1(q). Indeed, for any vector W we recover

flV (W) = g (V ,W) = gi j ajWkg(¶i , ¶k)

= gi j ajWkgik = ajWkdj
k

= ajW j = a(W)

One can show that gi j are the components of the inner-product on T�
q Q induced by g. In

conclusion, we have the following relationships between components of dual vectors
and covectors,

V j = gi j Vj Vi = gi j V j (2.3.1)

The metric and its inverse respectively �lower� and �raise� indices, with the corre-
sponding musical isomorphismscalled �at and sharp from tangent space to cotangent
space and vice versa.

Length and Angles

Clearly the Riemannian metric is an inner product on each tangent space TqQ; this was
our motivation for de�ning the metric. We can therefore make sense of concepts such
as the norm of a tangent vector V 2 TqQ,

jV j2g := g(V , V )

and the angle g between two tangent vectors V ,W,

cosg :=
g(V ,W)
jV jgjW jg

In particular, V and W are orthogonal when g(V ,W) = 0. We can also de�ne the length
of a curve. Recall that if x : (t0, t1) ! R p is a smooth curve in R p equipped with the
usual Euclidean product, then the arc-length is given by

S =
Z t1

t0

�
�
�
�
dx
dt

�
�
�
�
2
dt

If c : (t0, t1) ! Q is a smooth curve in a Riemannian manifold Q with metric g, this
motivates the following de�nition of arc-length,

S =
Z t1

t0

�
�c0(t)

�
�
gdt =

Z t1

t0

q
g (c0(t), c0(t))dt
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Metric from Divergence

Given that a Riemannian metric and a divergence both correspond to a form of squared
distance measure, it is natural to ask whether a Riemannian metric can be induced by
a divergence. Recall that a divergenceD on R p can be expanded to second-order as

D (q, q0) �
1
2

(q � q0)TGD (q) (q � q0)

where
(GD (q0)) i j :=

¶
¶qi

¶
¶qj

D(q, q0)
�
�
�
�
q= q0

(2.3.2)

Clearly, this motivates a Riemannian metric whose components form the Hessian ma-
trix on the diagonal of the divergence, GD (q). Ay et al [58] give the following co-
ordinate independent de�nition of this metric:

De�nition 2.3.2. Let Q be a smooth manifold, and let D : Q � Q ! R be a divergence.
The Riemannian metric induced by D is the (0, 2)-tensor �eld

g(D) (V ,W) = � D; (V ,W)

for all V ,W 2 X(Q).

Note that this de�nition implies that for any q 2 Q,

g(D) (V ,W)(q) = � (V;1,W;2D) (q)

As expected, the co-ordinate representation of the metric is simply the Hessian ma-
trix GD from equation (2.3.2) as shown in the following proposition.

Proposition 2.3.3. The tensor �eld g(D) is a Riemannian metric whose components in a co-
ordinate chart(U , f ) are given by the Hessian on the diagonal of the divergence in the co-
ordinate chart,

g(D) (¶i , ¶j ) :=
¶

¶qi

¶
¶qj

D f (q, q0)
�
�
�
�
q= q0

where Df (q, q0) := D
�
f � 1(q), f � 1(q0)

�
is the co-ordinate representation of D.

Proof. Computing the i-j component in the co-ordinate chart gives

g(D) (¶i , ¶j )(q) = �
�
¶i;1¶j;2D

�
(q)

= �
¶

¶qi
¶

¶qj
0

D f (q, q0)

�
�
�
�
�
q= q0

where q0 = f (q). By Lemma 2.2.2, this is equal to the Hessian on the diagonal,

g(D) (¶i , ¶j )(q) =
¶

¶qi

¶
¶qj

D f (q, q0)
�
�
�
�
q= q0
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To see thatg(D) is a Riemannian metric, let v = ( V i ) and w = ( W j ) be the components
of two vector �elds V ,W in the co-ordinate chart. Writing g(D) (V ,W) in co-ordinates
and applying the product rule, we �nd

g(D) (V ,W) = g(D)
�

V i¶i ,W j¶j

�

= V i (q)
¶

¶qi

 

W j (q)
¶

¶qj
0

D f (q, q0)

! �
�
�
�
�
q= q0

= V i (q)
¶W j

¶qi

0

@ ¶

¶qj
0

D f (q, q0)

�
�
�
�
�
q= q0

1

A + V i (q)W j (q)
¶

¶qi

 
¶

¶qj
0

D f (q, q0)

�
�
�
�
�
q= q0

1

A

By Lemma 2.2.2, the �rst term in the �nal equation vanishes, and hence

g(D) (V ,W) = V i (q)W j (q)g(D) �
¶i , ¶j

�
= v(q)TGD (q)w (q)

In co-ordinates the inner-product of V ,W therefore has the form vTGDw , where G(D)

is the Hessian on the diagonal de�ned in equation (2.3.2). Clearly G(D) is a symmetric
matrix, and is positive-de�nite by De�nition 2.2.1 of a divergence on R p. It follows that
g(D) is a Riemannian metric.

Any divergence therefore gives Q the structure of a Riemannian manifold. We re-
view the induced metric components for f - and Bregman divergences.

� Let D f be an f -divergence on Q. By Theorem 2.2.9 the components of the induced
metric are proportional to the components of the Fisher information,

g(D f )
i j (q0) = f 00(1) Ii j (q0)

� Let DF be a Bregman divergence onR p with Bregman generator F : R p ! R . A
simple calculation shows that the Hessian on the diagonal, and hence the matrix
of an induced Riemannian metric on R p, is given by the Hessian matrix of F,

g(DF)
i j (q0) =

¶
¶qi

¶
¶qj

F(q)
�
�
�
�
q= q0

If Q is a smooth manifold with a global co-ordinate chart (U , q), by Proposition
2.2.6 the Bregman divergence induces a divergence, and hence a Riemannian met-
ric, on Q.

2.3.2 Connections

Equipping a smooth manifold with a Riemannian metric allows us to de�ne concepts
of length and angle between tangent vectors. However, there are further geometric
concepts that are not de�ned with a metric alone; for example, the notion of a smooth
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curve being straight, analogous to a straight line in Euclidean geometry. A reasonable
de�nition of straightness might be that the velocity vector c0(t) of the curve does not
change over a suf�ciently small step along the curve, i.e. from q = c(t) to q = c(t + dt).
However, this requires being able to compare vectors from two distinct tangent spaces,
namely Tc(t)Q and Tc(t+ dt)Q. We therefore require a connectionwhich �connects� tan-
gent spaces for in�nitesimally close points in Q. Connections are extra information on
a manifold in addition to the Riemannian metric, and enable us to differentiate vector
�elds with respect to other vector �elds and de�ne curvature. Furthermore, the choice
of connection(s) on a smooth manifold is what separates Riemannian geometry from
information geometry.

Consider how we might de�ne the derivative of a vector �eld Y with respect to
a different vector �eld X . This is closely related to the idea of �connecting� tangent
spaces, because we need to somehow compareY(q) 2 TqQ with Y( �q) 2 T�qQ in order
to �nd the rate of change of Y, where �q is a point close to q in the direction of X(q). We
could de�ne such a derivative in terms of its properties; e.g. linearity and an appropri-
ate form of the product rule. This brings us to the following de�nition of a connection,
adapted from the de�nitions given by Calin [17] and Lee [45]. Recall that C¥ (Q) and
X(Q) are respectively the sets of smooth functions and vector �elds on Q.

De�nition 2.3.4. Let Q be a smooth manifold. A connection r on TQ is a map r :
X(Q) � X(Q) ! X(Q), written r XY for X ,Y 2 X(Q), satisfying

i) Linearity over C¥ (Q) in X ;

r f1X1+ f2X2Y = f1r X1Y + f2r X2Y

for all f1, f2 2 C¥ (Q) and all X1, X2,Y 2 X(Q).

ii) Linearity over R in Y;

r X (a1Y1 + a2Y2) = a1r XY1 + a2r XY2

for all a1, a2 2 R and all X ,Y1,Y2 2 X(Q).

iii) The Leibniz or product rule;

r X ( f Y) = ( X f )Y + f r XY

for all f 2 C¥ (Q) and all X ,Y 2 X(Q).

The vector r XY is the covariant derivativeof Y in the direction of X . We can compute
its components in a co-ordinate vector basis:

r XY = r X i ¶i

�
Y j¶j

�

= X i r ¶i

�
Y j¶j

�
by linearity over C¥ (Q) in X

= X i
�

¶i

�
Y j

�
¶j + Y j r ¶i ¶j

�
by the product rule (2.3.3)
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The covariant derivative is therefore determined by the regular partial derivative, plus
a term involving the connection applied to the basis vectors, r ¶i ¶j . We follow the con-
vention of writing this in terms of connection coef�cientsGk

ij 2 C¥ (Q), de�ned such that
r ¶i ¶j = Gk

ij ¶k. Changing the dummy index j to k in the �rst term in (2.3.3) yields the
co-ordinate form of the covariant derivative,

r XY = X i
�

¶i

�
Yk

�
¶k + Y jGk

ik¶k

�
= X i

�
¶Yk

¶qi + Gk
ij Y

j
�

| {z }
kth component

¶k

Geodesics

We return to one of our motivating examples for connections from the beginning of this
subsection; de�ning a notion of straightnessfor a smooth curve c : J ! Q, J an open
interval in R , such that the velocity vector c0(t) is unchanged over small steps dt along
the curve. Since the velocity vector at t represents the direction tangential to the curve,
it seems reasonable to characterize such curves with the condition r c0(t)c0(t) = 0; the
covariant derivative of the velocity vector along the curve, i.e. in the direction of the
velocity vector, is zero. However, c0(t) is not strictly a vector �eld de�ned over all of Q,
but rather a vector �eld along a curve, and so the covariant derivative is not well-de�ned.
Lee [45] shows that given a connection r , there is a unique total derivative operatorr c0(t)
along any smooth curve c(t) satisfying analogous properties to those in De�nition 2.3.4
and matches the covariant derivative for r when the vector �elds along a curve can be
extendedto regular vector �elds de�ned over all of Q. We shall omit the details here for
brevity, and state that one of the properties of the total derivative along a curve c(t) is
the following product rule:

r c0(t) f V = f 0V + f r c0(t)V

where V : J ! TQ is a vector �eld along c(t), i.e. satisfying V (t) 2 Tc(t)Q for all t 2 J,
and f : J ! R with derivative d f

dt � f 0.
We are now able to make sense of curvesc(t) satisfying r c0(t)c0(t) = 0, which are

called geodesics. Suppose there is some co-ordinate chart containing the entire curve,
and write c0(t) = �qi¶i for the velocity vector in co-ordinates. We compute the condition
for geodesics in co-ordinates;

r c0(t)c0(t) = 0 , r �qi ¶i
�qj¶j = 0

, ¤qj¶j + �qj r �qi ¶i
¶j = 0

, ¤qj¶j + �qj �qi r ¶i ¶j = 0

,
�

¤qk + �qj �qiGk
ij

�
¶k = 0
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Writing time derivatives explicitly, the geodesics satisfy the system of p second-order
ordinary differential equations,

d2qk

dt2
(t) + Gk

ij (q(t))
dqi

dt
(t)

dqj

dt
(t) = 0 i = 1, ..,p (2.3.4)

called the geodesic equations. A parameterized solution of these equations is called
geodesic �ow; usually exact analytic solutions are not available. For any point q 2 Q and
vector V 2 TqQ, one can show [45] that there exists a unique geodesicc(t) such that
c(t0) = q, c0(t0) = V . Clearly, different connections may produce different geodesics.

For a general vector �eld V (t) along a �xed curve c(t), we say V is parallel along c(t)
if r c0(t)V (t) = 0 for all t 2 J. Visually, we can picture V (t) as an arrow pointing in
the same direction at each point on c(t). In co-ordinates, the condition for parallelism
along c(t) takes the form

�V k + V j �qiGk
ij = 0 k = 1, ..,p

where qi (t) are the parameterized co-ordinates for q = c(t). These arep linear ordinary
differential equations for the p components of V (t). By taking an initial vector V (0) =
V0 2 Tc(0)Q, we can solve the system of ODEs to obtain a unique parallel vector �eld
over the entire curve c(t). This is known as parallel transport of V0, which we write as

V (t) = P r
c(0)! c(t)V (0)

Geodesics are commonly known as curves which have extremal, i.e. least, arc-
length. In fact this holds for a particular connection that is uniquely de�ned by the
Riemannian metric, known as the Levi-Civita connection, but may not hold for general
connections. The Levi-Civita connection uniquely satis�es two important properties
which we now state.

De�nition 2.3.5. Let (Q, g) be a Riemannian manifold. A connection r on TQ is called
metrical , or simply a metric connection , if it satis�es

Xg(Y, Z) = g (r XY, Z) + g (Y, r X Z) (2.3.5)

for all vector �elds X ,Y, Z 2 X(Q).

In co-ordinates, a metric connection satis�es ¶i gi j = Gl
i j glk + Gl

ikgjl , or equivalently
¶i gi j = Gi jk + Gikj where Gi jk := Gl

i j glk. We state without proof that parallel transport
is an isometry between tangent spaces for metrical connections [45], i.e. for a smooth
curve c(t) we have

gc(0) (V ,W) = gc(t)

�
P r

c(0)! c(t)V , P r
c(0)! c(t)W

�
for all V ,W 2 Tc(0)Q

If X ,Y 2 X(Q) are two vector �elds, their Lie bracket is the vector �eld [X ,Y] which
acts on a smooth function f 2 C¥ (Q) via

[X ,Y] f := XY f � YX f

The Lie bracket measures the commutativity of two vector �elds; for example, by the
equality of mixed partial derivatives we have [¶i , ¶j ] = 0.
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De�nition 2.3.6. Let Q be a smooth manifold. A connection r on TQ is called sym-
metric or torsion-free if

r XY � r YX = [ X ,Y]

for all X ,Y 2 X(Q).

Substituting co-ordinate vector �elds for X ,Y yields the symmetry condition in co-
ordinate form,

Gk
ij = Gk

ji for all i, j, k = 1, ..,p (2.3.6)

As stated, these two properties uniquely characterize the Levi-Civita connection.
This is stated in the following theorem from Lee [45].

Theorem 2.3.7 (The Fundamental Theorem of Riemannian Geometry) . Let (Q, g) be a
Riemannian manifold. There exists a unique symmetric metric connectionr on TQ called the
Levi-Civita connection .

A geodesic with respect to the Levi-Civita connection is exactly the curve with min-
imal arc-length among all curves with the same endpoints; see Chapter 6 of Lee [45].

Information Geometry: Connections from Divergence

Riemannian geometry typically utilizes only the Levi-Civita connection because of its
unique properties of symmetry, compatibility with the metric and extremal geodesics.
Information geometry on the other hand has an interesting structure that is unique
among geometries; there are two dually coupledconnections induced by a divergence,
neither of which coincide with the Levi-Civita connection corresponding to g(D) in gen-
eral. The induced connections have interesting statistical interpretations. The following
de�nition is from Ay et al [58].

De�nition 2.3.8. Let Q be a smooth manifold with divergence D : Q � Q ! R . The
connections r (D) , r (D � ) respectively induced by D and its dual D � , are given by

g(D)
�

r (D)
X Y, Z

�
= � D;(XY , Z)

g(D)
�

r (D � )
X Y, Z

�
= � D �

; (XY , Z) = � D;(Z, XY)

for vector �elds X ,Y, Z 2 X(Q).

Lemma 2.3.9. The connection coef�cients forr (D) andr (D � ) in a co-ordinate chart are given
by

G(D)
i jk (q) = �

¶2

¶qi¶qj
¶

¶qk
0

D (q, q0)

�
�
�
�
�
q= q0

(2.3.7)

G(D � )
i jk (q) = �

¶2

¶qi
0¶qj

0

¶
¶qk D (q, q0)

�
�
�
�
�
q= q0

(2.3.8)

67



Proof. See Ay et al [58].

One can verify that these are indeed connections by checking that the connection
coef�cients transform appropriately under changes of co-ordinates; see for example
Amari [3]. In fact, the connections are symmetric.

Proposition 2.3.10. Let Q be a smooth manifold with divergence D: Q � Q ! R . The
induced connectionsr , r � are symmetric.

Proof. We will show the result in co-ordinate form, i.e. showing equation (2.3.6) holds
for both r , r � . By the interchangeability of mixed partial derivatives, it follows from
Lemma 2.3.9 that G(D)

i jk = G(D)
jik and G(D � )

i jk = G(D � )
jik . Multiplying by glk and contracting

over k to raise the index yields the result in co-ordinate form, i.e. equation (2.3.6).

Given that the induced connections are symmetric, one might wonder whether they
are also metric connections, and hence coincide with Levi-Civita. This is not the case,
but it turns out the connections are dually coupledwith respect to the metric.

De�nition 2.3.11. The connections r , r � on a smooth manifold Q are called dual with
respect to a Riemannian metric g if

Xg(Y, Z) = g (r XY, Z) + g (Y, r �
X Z) (2.3.9)

for all vector �elds X ,Y, Z 2 X(Q).

We refer to r and r � respectively as the primal and dual connections, although we
note that the choice of which is primal and which dual is arbitrary by the involutive
nature of duality. If one parallel transports V ,W with respect to the primal and dual
connections respectively, the metric is preserved; see Nielsen [57].

gc(0) (V ,W) = gc(t)

�
P r

c(0)! c(t)V , P r �

c(0)! c(t)W
�

for all V ,W 2 Tc(0)Q

Clearly dual connections generalize metric connections; the Levi-Civita connection is
self-dual, since we can replace both r and r � with the Levi-Civita connection in the
above equation. The following theorem shows duality for the connections induced by
a divergence, and is proven in Ay et al [58].

Theorem 2.3.12. Let Q be a smooth manifold with divergence D: Q � Q ! R . The induced
connectionsr (D) , r (D � ) are dual with respect to the induced metric g(D) .

The structure (Q, g, r , r � ) such that r , r � are dual with respect to g is called a
conjugate connections manifold [57]. We have shown that a divergence on a manifold
induces this structure.
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2.4 Dually Flat Geometry

2.4.1 Curvature and Flatness

In general, the parallel transport of a vector depends on the curve c(t). In particular, the
parallel transport of a vector around a closed loop, i.e. from q = c(0) back to q = c(1),
may not coincide with the original vector; in Euclidean space however, one observes
that parallel transport is not dependent on the curve, and transporting a vector around
a loop leaves it unchanged. A notion of how the manifold is curvedcould therefore be
de�ned based on how much vectors are changed by parallel transport around a loop.
Amari [3] and Ay et al [58] both show that the parallel transport of a vector around an
in�nitesimally small loop leaves the vector unchanged if and only if the curvature tensor
of the manifold is zero.

De�nition 2.4.1. Let Q be a smooth manifold with a connection r . The Riemann-
Christoffel curvature tensor is the map

R : X(Q) � X(Q) � X(Q) ! X(Q)

R(X ,Y, Z) = r X r YZ � r Yr X Z � r [X ,Y]Z

Note that R is usually interpreted as a (1, 3)-tensor; it takes three vector �elds X ,Y, Z
and a covector �eld w as input, and produces a smooth function w(R(X ,Y, Z)) . A
manifold is called r -�at if and only if the curvature tensor de�ned by r vanishes
everywhere, i.e. Rq = 0 for all q 2 Q. One can express the curvature tensor in local
co-ordinates via the following formula - see for example Ay et al [58],

Rk
lij = ¶iGk

jl � ¶jGk
il + Gk

imGm
jl � Gk

jmGm
il (2.4.1)

A co-ordinate chart (U , q) is called af�ne if the connections coef�cients vanish at all
points q 2 U , Gi jk (q(q)) = 0 for all i, j, k = 1, ..,p. Equivalently, the covariant derivative
of the co-ordinate vector �elds vanishes along co-ordinate curves,

r ¶i ¶j = 0 for i, j = 1, ..,p

It follows that the co-ordinate curves of an af�ne co-ordinate system are geodesics, and
co-ordinate vectors are parallel transported along co-ordinate curves. Substituting the
vanishing connection coef�cients into equation (2.4.1), it follows that the curvature ten-
sor is zero wherever af�ne co-ordinates exist. Conversely, �atness implies the existence
of locally af�ne co-ordinates.

Of course, the set of Cartesian co-ordinate charts is closed under af�ne transforma-
tions. This is extended to manifolds by the following proposition.

Proposition 2.4.2. Let Q be a smooth manifold, and let(U , q) be an af�ne co-ordinate chart.
Then the transformed co-ordinate chart(U , flq) is an af�ne co-ordinate chart, where the mapflq
de�ned as

flq : U ! R p flq(q) = Cq(q) + d

where C2 R p� p is non-singular andd 2 R p.
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Proof. Calculating the connection coef�cients via the covariant derivative along the co-
ordinate directions,

r ¶
¶xi

¶
¶xj = r ¶qm

¶xi
¶

¶qm

�
¶ql

¶xj
¶

¶ql

�
=

¶qm

¶xi
¶ql

¶xj r ¶
¶qm

¶
¶ql

= Cm
i Cl

j r ¶
¶qm

¶
¶ql = 0

since q is an af�ne co-ordinate system, where C =
�
Cm

i
�
.

2.4.2 Dual Flatness

A conjugate connections manifold which is �at with respect to both r and r � is called
dually-�at . The following theorem shows that dual-�atness is implied by r - or r � -
�atness.

Theorem 2.4.3 (Dual Flatness Theorem). Let (Q, g, r , r � ) be a conjugate connection man-
ifold. The manifold isr -�at if and only if it is r � -�at.

Theorem 2.4.3 is a special case ofThe Fundamental Theorem of Information Geometry
[57], which states that the scalar curvaturesof r and r � are the same when one of them
is constant; the stated theorem is for the case when the scalar curvatures are zero.

Consider the immediate properties of dually �at manifolds. There must exist two
co-ordinate systems; one which is af�ne for r , and the other af�ne for r � . We refer
to these respectively asprimal and dual co-ordinates. Note that the primal and dual
co-ordinate systems may not necessarily be the same. By the de�nition of af�ne co-
ordinates, the connection coef�cients for the primal connection must vanish in the pri-
mal co-ordinate system, Gi jk = 0, and likewise for the dual connection coef�cients in the
dual co-ordinate system, but primal connection coef�cients may be non-vanishing in
dual co-ordinates and vice-versa. It follows that geodesics with respect to r , called pri-
mal geodesics, are straight lines in the primal co-ordinate system, and dual geodesics
which are geodesic with respect to r � and are straight lines in the dual co-ordinate
system.

Recall that dual co-ordinates were already de�ned in the context of Bregman di-
vergences in Section 2.2.2; we shall show that Bregman divergences induce dually-�at
geometries and the de�nitions coincide, i.e. Legendre dual co-ordinates h = r F(q) are
r � -af�ne co-ordinates in the geometry induced by DF.

Theorem 2.4.4. Let Q be a smooth manifold with a global co-ordinate chart(Q, q). Let F :
q(Q) � R p ! R be convex. Then the conjugate connections manifold induced by the Bregman
divergence DF is dually-�at.

Proof. Recall that the Bregman divergence DF is given by

DF (q, q0) = F(q) � F (q0) � r F (q0) � (q � q0)
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A direct calculation for the induced primal connection coef�cients in the co-ordinate
system q from equation (2.3.7) yields

G(DF)
i jk = �

¶2

¶qi¶qj
¶

¶qk
0

DF (q, q0)

�
�
�
�
�
q= q0

= 0 for all i, j, k (2.4.2)

It follows that q is a r -af�ne co-ordinate system, and hence the manifold must be r -
�at. By the Dual Flatness Theorem 2.4.3, it is also r � -�at and hence is dually-�at.

The proof of Theorem 2.4.4 shows that q is a primal co-ordinate system for the
dually-�at manifold induced by DF. The following proposition shows that the ear-
lier de�nition of dual co-ordinatescoincides with our new de�nition of r � -af�ne co-
ordinates.

Proposition 2.4.5. Let Q be a smooth manifold with global co-ordinate chart(Q, q), and let
F : q(Q) ! R be convex. The dual Legendre co-ordinate chart(Q, h) de�ned via

h : Q ! R p, h(q) = r F (q(q))

is a r DF� -af�ne co-ordinate system, i.e. dual co-ordinates in the dually-�at manifold induced
by DF.

Proof. We need to show that the connections coef�cients for r � vanish in the h co-
ordinate system, i.e. GDF�

i jk (h) = 0 for all i, j, k. De�nition 2.3.8 states that the dual
connection r � is equivalent to the primal connection induced by the dual divergence
D �

F. By Proposition 2.2.13, the dual Bregman divergence is another Bregman divergence
generated by F� ,

D �
F (q, q0) = DF� (h0, h)

Equation (2.4.2) must hold with h replacing q and D �
F replacing DF.

Amari [3] shows that for any dually-�at manifold, there exists a convex function F
on the primal co-ordinates such that the same geometry is induced by DF, the so-called
canonical divergence. Dually-�at manifolds are therefore uniquely characterized by their
geometry being induced by Bregman divergences.

Cartesian co-ordinates are an af�ne system in which Euclidean geometry is sim-
ply described. Analogously, the primal and dual co-ordinates in a dually-�at manifold
give the simplest description of the dually-�at geometry. Primal and dual geodesics
have simple closed-form descriptions in their respective co-ordinate systems, and hence
dually-�at geometry may provide a signi�cant computational advantage over Rieman-
nian geometry, in which Levi-Civita geodesics are usually not available in closed form
and require expensive numerical integrators. This has motivated us to research MCMC
algorithms that make use of dually-�at geometry, which is discussed in part II.

Example 2.4.6(Regular exponential families are dually �at) . By Proposition 2.2.12, the
KL-divergence between two points in a regular exponential family coincides with the
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Bregman divergence induced by the cumulant generating function y of the family in
natural co-ordinates. By Theorem 2.4.4, the geometry induced by this divergence func-
tion is dually-�at, where the natural parameters q are primal co-ordinates and mean
parameters h = r y (q) are dual co-ordinates.

By Proposition 2.4.2, any af�ne transformation of the primal co-ordinates is another
primal af�ne co-ordinate system, and similarly for the dual co-ordinate system. Thus
there are in�nitely many primal and dual af�ne co-ordinate systems. Primal and dual
co-ordinate charts are coupled if they are the Legendre transform of each other, i.e.
if h = r qF(q) and q = r hF� (h) for the Bregman generator F corresponding to the
canonical Bregman divergence on Q. The following proposition shows how coupled
co-ordinate charts change under af�ne transformations.

Proposition 2.4.7. Let q andh be dually coupled co-ordinate charts on a dually-�at manifold
Q. Write flq = Cq + d for an af�ne-transformed co-ordinate system, where C2 R p� p is non-
singular andd 2 R p� 1. Then flq is coupled to the dual co-ordinate systemflh de�ned by

flh := C� Th

where the transpose is the usual adjoint with respect to the Euclidean inner-product inR p.

Proof. Note that flF( flq) := F
�
C� 1 ( flq � d)

�
is the canonical Bregman generator in trans-

formed primal co-ordinates. For any q let h = r F(q). Then by the chain rule,

r flq
flF( flq) = C� Tr qF(C� 1( flq � d))

= C� Tr qF(C� 1(Cq + d � d))

= C� Tr qF(q) = C� Th = flh

Therefore flq and flh are dually-coupled co-ordinate systems under the Bregman generator
flF.

2.5 Geometry of Subfamilies

In Section 1.3, we brie�y discussed statistical families which are subfamilies of larger
families. We can now offer more precise de�nitions for subfamilies and discuss how
geometry can be inherited from the ambient larger family. This section contains two
novel contributions which relate the inherited dually-�at geometry to that of the ambi-
ent space; Theorem 2.5.3 and Theorem 2.5.8.

Suppose Q is a p-dimensional smooth manifold, and N is an n-dimensional sta-
tistical family which we call the ambientfamily or manifold. For example, N could
be a product of n 1-dimensional families modelling each of n i.i.d. observations in a
statistical application, where co-ordinates are given by the mean parameters for each
observation. Suppose further there is a smooth map L : Q ! N ; continuing the ex-
ample, L may represent a forward modelrelating p unknown parameters in Q with the
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means of the n observations. Such a structure is common in statistical modelling. We
assume that p < n, i.e. there are fewer unknown parameters than observations.

Our goal is to view the image L(Q) � N as a statistical family which is equivalent
to Q, and to study how geometric structures on the ambient manifold are inherited by
Q. This requires some further assumptions on L, which we adapt from Lee [46];

De�nition 2.5.1. A smooth map L : Q ! N between smooth manifolds Q, N is a
smooth immersion if the differential dLq has rank p = dim Q for all points q 2 Q.

De�nition 2.5.2. A smooth immersion L : Q ! N between smooth manifolds Q, N is
a smooth embedding that is a homeomorphism onto its image L(Q) � N , where the
image is endowed with the subspace topology.

The image L(Q) of a smooth embedding is an embedded submanifold of N . Lee
[46] shows that embedded submanifolds are smooth manifolds; co-ordinate charts (U , b)
for Q naturally give rise to smooth charts (L(U ), b � L� 1) on the image. Note that since
we assume p < n, any smooth embedding of Q into N must have full rank. We will
adopt the convention of using q 2 Rn as representing co-ordinates for N , and b 2 R p

for co-ordinates in Q.

2.5.1 Inherited Geometry

Given the setup described above, suppose the ambient manifold N has geometric struc-
tures, i.e. connections and a Riemannian metric. These objects are essentially maps that
take tangent vectors or vector �elds as inputs; we can therefore use the differential dL
of the embedding to map tangent vectors in TqQ into TL(q)N where geometric objects
are de�ned, and hence de�ne an inheritedgeometry on Q.

In particular, suppose h is a (0,k)-tensor on TL(q)N , i.e. a multilinear function of k
tangent vectors. De�ne the pullback of h by L as the (0,k)-tensor L� h on TqQ,

L� h
�

V1, ...,V k
�

:= h
�

dLq

�
V1

�
, ...,dLq

�
V k

��
for all V1, ...,V k 2 TqQ

The pullback of a tensor �eld is de�ned such that the tensor at each point L(q) 2 TL(q)N
is pulled back by L to TqQ, for all q 2 Q. Since the differential is linear, the pullback is
clearly multilinear and is therefore a tensor.

The inherited Riemannian metric flg is the pullback of the Riemannian metric g on
N by L,

flg(V ,W) := L� g(V ,W) for all V ,W 2 TqQ

To see that flg is a Riemannian metric on Q, note that symmetry follows immediately
from the symmetry of g. For positive-de�niteness, let V 2 TqQ and note

flg(V , V ) = g
�
dLq(V ), dLq(V )

�
� 0
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with equality if and only if dLq(V ) = 0, which holds if and only if V = 0 sincedLq has
full rank. In co-ordinates, the inherited metric has components

flgab = gi j
� �L (b)

� ¶ �Li

¶ba

¶ �Lj

¶bb
(2.5.1)

where �L = q � L � b� 1 is the co-ordinate representation of L. Note that for any q 2
Q, the image Im

�
dLq

�
� TL(q)N represents the space of vectors which are tangent to

the embedded submanifold L(Q). Any vector V 2 TL(q)N can be decomposed into
tangentialand normalcomponents,

V = V T + V?

where V T 2 Im
�
dLq

�
and V? is in the g-orthogonal complement Im

�
dLq

� ? . SincedLq
is a linear isomorphism, we can make the identi�cation TqQ � Im

�
dLq

�
.

We can also derive a connection on Q inherited from an ambient connection r on
N . Recall that the connection r on N is a map X(N ) � X(N ) ! X(N ), so r applied
to vector �elds on Q mapped via the differential yields a vector �eld on N ,

r dL(X)dL(Y) 2 X(N ) for all X ,Y 2 X(Q) (2.5.2)

Strictly speaking, dL(X) and dL(Y) do not de�ne vector �elds over all of N , and so we
need to extendthe vector �elds; see Lee [45] for details.

Decomposing the covariant derivative into its tangential and normal components
yields

r dL(X)dL(Y) =
�

r dL(X)dL(Y)
� T

+
�

r dL(X)dL(Y)
� ?

(2.5.3)

The tangential term can be identi�ed with a vector �eld on Q, and hence de�nes the
inherited connection on Q,

flr XY := dL� 1
� �

r dL(X)dL(Y)
� T

�

Lee [45] shows that this is a valid connection on Q, and is symmetric when r is sym-
metric. Amari [3] gives the following formula for the inherited connection coef�cients:

flGabc = Bj
cBk

a¶k

�
Bi

b

�
gi j + Bi

aBj
bBk

cGi jk (2.5.4)

where we use the shorthand Bi
a = ¶ �Li

¶ba
for the differential in co-ordinates.

The normal component in (2.5.3) is a measure of how curved the embedded sub-
manifold is within N , and is called the second fundamental form or embedding cur-
vature ,

P : X(Q) � X(Q) ! X(N ) P (X ,Y) :=
�

r dL(X)dL(Y)
� ?
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for any vector �elds X ,Y 2 X(Q). One can show [17] that the second fundamental form
is symmetric in its arguments, although it is not a tensor.

Equation (2.5.3) is equivalent to the Gauss formula[45] r dL(X)dL(Y) = dL
� flr XY

�
+

P (X ,Y).
If the ambient manifold is equipped with a divergence D, we can de�ne an inher-

ited divergence

D jQ : Q � Q ! R , D jQ (q1, q2) = D (L (q1) , L (q2))

Clearly D jQ satis�es the positivity i and non-degeneracy ii conditions of De�nition
2.2.1 in any co-ordinate chart, since D is a divergence and L is injective. The Hessian
matrix on the diagonal is computed to be

¶
¶ba

0

¶
¶bb D jQ (b0, b)

�
�
�
�
b= b0

=
¶ �Li

¶ba

¶ �Lj

¶bb

¶
¶qi

¶
¶qj

D (q, q0)

�
�
�
�
�
q= q0

(2.5.5)

which is the (a, b)-component of a positive-de�nite matrix, because the co-ordinate dif-
ferential ¶ �Li

¶ba
has full rank. It follows that D jQ is indeed a divergence.

Suppose the geometry of N is a conjugate connections structure induced by a di-
vergence D. It is natural to ask whether the geometry induced by D jQ is the same as
the geometry inherited from N . The following theorem shows that this is indeed the
case, and is a novel contribution to the literature.

Theorem 2.5.3. Let N be a smooth manifold with Riemannian metric and dual connections
induced by a divergence D: N � N ! R . Let Q be an embedded submanifold inN . The
Riemannian metric, primal and dual connections on Q inherited fromN coincide with the
metric and connections induced by the inherited divergence DjQ.

Proof. We will show that the induced and inherited metric and dual connections coin-
cide by showing that they are equal in any co-ordinate chart. Firstly, the metric induced
by D jQ is the Hessian on the diagonal; the right-hand sides of equations (2.5.5) and
(2.5.1) agree whengi j are the components of the metric induced by D.

To show the induced and inherited connections coincide, we explicitly compute
the primal connection coef�cients for D jQ. Let q = �L(b) and b0 = �L (b0). Write

Bi
a = ¶ �Li

¶ba
(b) and Bk

c0
= ¶ �Lk

¶bc
(b0) for the co-ordinate differential at b and b0 respectively.

Then by equation (2.3.7), the primal connection coef�cients induced by D jQ

GD jQ
abc = �

¶
¶ba

¶
¶bb

¶
¶bc

0
D jQ (b, b0)

�
�
�
�
b= b0

= � Bi
a

¶
¶qi Bj

b
¶

¶qj Bk
c0

¶
¶qk

0
D (q, q0)

�
�
�
�
�
q= q0
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Since Bk
c0

is a function of b0, it is a constant with respect to the partial derivatives ¶
¶qi

and ¶
¶qj , and hence

GD jQ
abc = � Bi

aBk
c0

¶
¶qi

 

Bj
b

¶
¶qj

¶
¶qk

0
D (q, q0)

! �
�
�
�
�
q= q0

= � Bi
aBk

c0

¶Bj
b

¶qi
¶

¶qj
¶

¶qk
0

D (q, q0)

�
�
�
�
�
q= q0

� Bi
aBk

c0
Bj

b
¶

¶qi
¶

¶qj
¶

¶qk
0

D (q, q0)

�
�
�
�
�
q= q0

(2.5.6)

Note that by Lemma 2.2.2, the metric induced by D on N may be written

g(D)
jk = �

¶
¶qj

¶
¶qk

0
D (q, q0)

�
�
�
�
�
q= q0

Substituting this and the expression (2.3.7) for the induced primal connection , we have

GD jQ
abc = Bi

aBk
c
¶Bj

b
¶qi g(D)

jk + Bi
aBj

bBk
cG(D)

i jk

This coincides with the coef�cients (2.5.4) for the connection inherited by Q. The proof
for the induced dual connection is identical.

Since the primal and dual connections induced by D jQ are dual, inherited primal
and dual connections are also dual with respect to the inherited metric by Theorem
2.5.3. Since inherited and induced geometries are the same, we will simply refer to the
geometry on Qwhen Q is an embedded submanifold.

2.5.2 Autoparallel Submanifolds

De�nition 2.5.4. Let r be a connection onN and let Q be an embedded submanifold in
N . Then Q is called r -autoparallel if the second fundamental form P corresponding
to r vanishes,P (X ,Y) = 0, for all vector �elds X ,Y 2 X(Q).

In the case whenN is dually-�at, r -autoparallel manifolds are called e-�at and r � -
autoparallel manifolds are m-�at . The terms come from the fact that e-�at subfamilies
of exponential families are themselves exponential families, and m-�at subfamilies of
mixtures are themselves mixture families; see Amari [3]. The following theorem from
Calin and Udris‚te [17] shows that e-�at and m-�at submanifolds are both dually-�at
manifolds in their own right.

Theorem 2.5.5. Let N be a dually-�at manifold and Q an embedded submanifold inN . If Q
is eitherr -autoparallel orr � -autoparallel, then Q is a dually-�at manifold.
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The following proposition helps build intuition for e- and m-�at submanifolds; they
are characterized by linear conditions in primal and dual co-ordinates respectively, so
e-�at submanifolds look like hyperplanes in primal co-ordinates and like curved hyper-
surfaces in dual co-ordinates and vice versa for m-�at submanifolds.

Proposition 2.5.6. Let N be a dually-�at n-manifold. An embedded p-submanifold Q is e-�at
if and only if there exist co-ordinatesb for Q such that the co-ordinate embedding�L has the
af�ne form in primal co-ordinates,

q = �L(b) := Ab + d (2.5.7)

for some matrix A2 Rn� p and vectord 2 Rn.
Dually, an embedded p-submanifold Q is m-�at if and only if there exist co-ordinatesg for

Q such that the co-ordinate embedding�L has the af�ne form in dual co-ordinates,

h = �L(g) := Ag + d (2.5.8)

for some matrix A2 Rn� p and vectord 2 Rn.

A proof is given in appendix A. Clearly primal and dual geodesics, which are
straight lines in their respective co-ordinate systems, are e-�at and m-�at submanifolds
respectively. The following example considers when generalized linear models are e-
or m-�at.

Example 2.5.7. Consider generalized linear models discussed in Section 1.3. The mean
parameters hi = E (yi ) for each of i = 1, ..,n data are related to coef�cients b1, ..,bp by
the relationship

hi = f

 
p

å
j= 1

b j X i j

!

i = 1, ..,n (2.5.9)

where X i j are constant covariates. We consider b as co-ordinates for a submanifold
or subfamily embedded in an n-dimensional exponential family, In example 2.4.6, we
showed that regular exponential families are dually �at, and mean parameters h = (hi )
are af�ne dual co-ordinates. Clearly if f is the identity function, then the generalized
linear model is m-�at because (2.5.9) becomeshi = å j X i j b j , which is linear in dual
co-ordinates. It follows that b are dual co-ordinates for the generalized linear model.
Alternatively, suppose f is the component-wise primal to dual map, i.e. the canonical
link function, so that (2.5.9) becomes linear in primal co-ordinates,

qi =
p

å
j= 1

b j X i j i = 1, ..,n

In this case the generalized linear model is e-�at, and b are primal co-ordinates.

When the ambient manifold N is dually-�at, its geometry is derived from a canoni-
cal divergence which takes the form of a Bregman divergence DF in primal co-ordinates,
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generated by a convex function F. A submanifold Q, with primal co-ordinate embed-
ding q = �L(b), has the inherited divergence in co-ordinate form

DFjQ (b1, b2) := F
� �L(b1)

�
� F

� �L(b2)
�

� r F
� �L(b2)

�
�
� �L(b1) � �L(b2)

�

There is a slight abuse of notation here; this is really DF restricted to the co-ordinate
representation of Q.

We can also consider the restriction FjQ of the Bregman generator F,

FjQ (b) := F( �L(b))

The restriction is not necessarily convex, and hence the Bregman divergence it generates
is not always well-de�ned. The following theorem, which is a new contribution to the
�eld, shows that the inherited divergence coincides with the Bregman divergence for
the restricted generator exactly when Q is e-�at.

Theorem 2.5.8. Let Q be a submanifold of a dually-�at manifoldN , and let F be the Bregman
generator for the canonical divergence ofN . Then Q is e-�at if and only if there exists global
co-ordinatesb in a chart(Q, f ) for which FjQ is convex and

DFjQ (b1, b2) = D FjQ (b1, b2)

for all pointsb1, b2 2 f (Q), where DFjQ is the restriction of DF to Q and FjQ is the restriction
of F to Q.

Dually, Q is m-�at if and only if there exist global co-ordinatesg in a chart(Q, f ) for which
F� jQ is convex and

DF� jQ (g1, g2) = D F� jQ (g1, g2)

for all pointsg1, g2 2 f (Q).

Proof. We will show the result characterizing e-�at submanifolds only; the proof for the
m-�at case is identical.

Suppose Q is e-�at. By Proposition 2.5.6, there exists co-ordinates b such that the
co-ordinate embedding for Q into N takes the af�ne form (2.5.8). Then writing the
restriction of DF to Q in b co-ordinates,

DF
� �L(b1), �L (b2)

�
= F

� �L(b1)
�

� F
� �L(b2)

�
� r F

� �L(b2)
�

� ( �L (b1) � �L (b2))

= FjQ (b1) � FjQ (b2) � r F
� �L(b2)

�
� (A (b1 � b2))

= FjQ (b1) � FjQ (b2) � ATr F
� �L(b2)

�
� (b1 � b2)

Note that ATr F is the gradient of the restriction of F,

�
ATr F

� �L(b2)
� �

i
= Ak

i
¶F
¶qk

� �L(b2)
�

=
¶ �Lk

¶bi
¶F
¶qk

� �L(b2)
�

=
¶FjQ
¶bi (b2)

Hence the inherited divergence has Bregman generator FjQ,

DFjQ (b1, b2) = FjQ (b1) � FjQ (b2) � r bFjQ (b2) � (b1 � b2) = DFjQ (b1, b2)
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Conversely, suppose DFjQ � DFjQ holds when Q is a submanifold; we aim to show Q
is e-�at. Expanding the de�nitions, it follows that for all b1, b2,

r F
� �L (b2)

�
�
� �L (b1) � �L (b2)

�
= r bFjQ (b2) � (b1 � b2)

, r F
� �L (b2)

�
�
� �L (b1) � �L (b2)

�
= D �L(b2)Tr F

� �L (b2)
�

� (b1 � b2)

= r F
� �L (b2)

�
� D �L(b2) (b1 � b2)

where D �L is the Jacobian matrix of �L. Since this is true for all b1, b2, we must have

�L (b1) � �L (b2) = D �L(b2) (b1 � b2)

) �L (b1) = �L (b2) + D �L(b2) (b1 � b2)

Differentiating this equation with respect to components of b1 shows that the Jacobian
D �L is independent of b, and hence �L is an af�ne transformation. By Proposition 2.5.6,
it follows that Q is e-�at.

2.5.3 The Pythagorean Theorem and Projections

A remarkable fact of dually-�at manifolds is the following generalization of the Pythagorean
Theorem from Amari [3]. Note that two curves c1(t), c2(t) on Q are orthogonal at a
point of intersection q = c1(t0) = c2(t0) if their velocity vectors are orthogonal at q, i.e.
if g (c0

1(t0), c0
2(t0)) = 0.

Theorem 2.5.9 (Amari’s Generalized Pythagorean Theorem) . Let Q be a dually-�at man-
ifold and let q1, q2, q3 2 Q be distinct points. If the dual geodesic connecting q1 and q2 is
orthogonal at q2 to the primal geodesic connecting q2 and q3, then

D(q1, q3) = D(q1, q2) + D(q2, q3)

where D is the canonical divergence inducing the dually-�at structure on Q.

Note that the dual divergence D � also satis�es the Pythagorean Theorem, and hence
under the conditions of Theorem 2.5.9,

D(q3, q1) = D(q3, q2) + D(q2, q1)

Clearly this generalizes the usual Pythagorean Theorem, since it includes the case
when D is proportional to the squared Euclidean distance. Our interest in the Pythagorean
Theorem is that it allows projectionsonto submanifolds, which we make use of in sam-
pling algorithms in Chapter 5. Recall that in an inner-product space, the orthogonal
projection of a point x onto an af�ne subspace U is exactly the point in U which mini-
mizes the distance to x. This result can also be generalized to dually-�at spaces.

Let Q be a submanifold embedded in a dually-�at ambient manifold N . For s 2 N ,
a point q 2 Q is an e-projection of s onto Q if the primal geodesic connecting s and q
is orthogonal to any tangent vector to Q at q. Similarly, q is the m-projection of s onto
Q if the dual geodesic connecting the two points is orthogonal to any tangent vector
to Q at q. The following theorem shows the e- and m-projections onto e- and m-�at
submanifolds respectively minimize the divergence among elements in Q.

79



Theorem 2.5.10. Let Q be a submanifold embedded in an ambient dually-�at manifoldN , and
let s2 N . If Q is e-�at, the m-projection qm of s onto Q is exactly the point that minimizes the
divergence from s to q in Q,

qm = argminq2 QD(s, q)

Similarly, if Q is m-�at the e-projection qe of s onto Q is the point which minimizes the dual
divergence,

qe = argminq2 QD(q, s)

Proof. The following roughly reproduces the proof from Amari [3]. Let q 2 Q be arbi-
trary, and let qm be the m-projection of s onto Q. By de�nition of qm, the velocity vector
of the e-geodesic atqm must be orthogonal to that of the m-geodesic connectings to qm.
Hence the conditions of the Pythagorean Theorem 2.5.9 are satis�ed, and

D(s, q) = D(s, qm) + D(qm, q)

which is clearly minimized by q = qm. The proof for the e-projection onto an m-�at
submanifold is similar.
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Chapter 3

Independence and Orthogonal
Submanifolds

In order to use Information Geometry to sample from a Bayesian posterior distribu-
tion, a divergence function should be chosen that includes information from both the
prior and observed data. Traditionally, Information Geometry works with the expected
geometry, i.e. induced by an f -divergence and hence includes neither prior nor obser-
vational information. This approach has been successful in geometric descriptions of
classical, i.e. frequentist or non-Bayesian, statistics. There are also geometries which
make use of observed data in the classical setting, such as Bradley and Efron’sobserved
Fisher information[27] that replaces the expectation in the Fisher information (1.2.15)
with evaluating y at the observed values y = yobs. To my knowledge, no other authors
have proposed a conjugate connections geometry that uses prior information.

In this chapter a Bregman divergence is suggested that includes all available in-
formation about the posterior, called the posterior Bregman divergence (PBD) . The
resulting geometry will be shown to have an important property for sampling algo-
rithms, namely that orthogonal directions are close to independent sampling directions
under the posterior. The parameter space may be decomposed into a �ber bundle, or
foliation, of e- or m-�at submanifolds which are orthogonal to each other. The target
distribution admits a disintegration, a generalization of conditional probability, over the
orthogonal foliations. This idea will be central to the construction of new sampling
algorithms in Chapter 5.

3.1 Posterior Bregman Geometry

In this section we introduce a dually-�at geometry induced by the posterior density,
and present several results that justify its use. The geometry and two of the results are
novel contributions to the literature; namely Proposition 3.1.2 and Theorem 3.1.3.

Let p (q) be a smooth probability density supported on a convex set Q � R p. The
density p is called log-concave if F(q) := � log p (q) is a strictly convex function. Any
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log-concave probability density therefore de�nes a Bregman divergence on Q, which
we call the p -Bregman divergence ,

DF(q, q0) � D � log p (q, q0) for q, q0 2 Q

The geometry induced by DF, called the p -Bregman geometry , is immediate from the
results in Chapter 2. In particular, DF induces a dually-�at structure on Q with primal
co-ordinates q, dual co-ordinates de�ned by h := �r log p (q) and Riemannian metric
with components G(q) = �r 2 log p (q) in primal co-ordinates.

Now suppose that a Bayesian posterior distribution p (qjy) µ p (yjq)p 0(q) is log-
concave. In this context, we call D � log p (�jy) the posterior Bregman divergence (PBD)
and the induced geometry the posterior Bregman geometry . We similarly de�ne the
prior Bregman divergence/geometry when the prior density p 0 is log-concave. Calcu-
lating the p -Bregman divergence only requires p to be known up to a multiplicative fac-
tor. If two convex functions F1, F2 are related via F1(q) := F2(q) + K for some constant
K, then it follows immediately from the De�nition 2.2.10 of a Bregman divergence that
DF1 � DF2. In particular, the Bregman divergence generated by F(q) := � log p (q) + K
is the same as that generated by� log p .

Relationships between the posterior, prior, and likelihood-based divergences are
implied by the following Lemma.

Lemma 3.1.1. Let F1, F2 : Q ! R be two smooth strictly convex functions on a convex set
Q � R with corresponding Bregman divergences DF1, DF2. De�ne �F1(q) := F1(q) + c � q.
Then for allq, q0 2 Q, the following hold:

i) D F1+ F2(q, q0) = DF1(q, q0) + DF2(q, q0)

ii) D �F1
(q, q0) = DF1(q, q0).

Proof. Calculating directly,

i)

DF1(q, q0) + DF2(q, q0) = F1(q) � F1(q0) + F2(q) � F2(q0)

� r F1(q0) � (q � q0) � r F2(q0) � (q � q0)

= (F1 + F2) (q) � (F1 + F2) (q0) � r (F1 + F2) (q0) � (q � q0)

= DF1+ F2(q, q0)

ii)

D �F1
(q0, q) = �F1(q) � �F1(q0) � (q � q0) � r �F1(q0)

= F1(q) � F1(q0) + c � (q � q0) � (r F1(q) + c) � (q � q0)

= F1(q) � F1(q0) � r F1(q) � (q � q0) = DF1(q, q0)
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Since p (qjy) µ p 0(q)p (yjq), Lemma 3.1.1 implies that if the prior and likelihood
are both convex functions of q then the posterior Bregman divergence decomposes into
a sum of Bregman divergences respectively generated by the prior and likelihood. In
particular, we have the following novel result relating the Kullback-Leibler, prior and
posterior Bregman divergences for exponential family likelihoods.

Proposition 3.1.2. Let Q be a regular exponential family with log-concave priorp 0(q) in
natural parameters. Given an observation vectory, we have

D � log p (�jy) (q, q0) = DKL(q, q0) + D � log p 0(q, q0) (3.1.1)

where DKL is the Kullback-Leibler divergence on Q.

Proof. By Proposition 2.2.12, the KL-divergence from q to q0 is the Bregman divergence
generated by the cumulant generating function y of the exponential family Q. Thus by
the properties of the Bregman divergence from Lemma 3.1.1 we have

DKL(q, q0) + D � log p 0(q, q0) = Dy (q, q0) + D � log p 0(q, q0)

= Dy � log p 0(q, q0)

= DF(q, q0)

where F(q) := � q � y + y (q) � log p 0(q). Since F and � log p (�jy) differ only by a
constant independent of q, the result follows.

Note that the right-hand side of (3.1.1) does not depend on the observations y; this
can also be viewed as a consequence of the invariance of Bregman divergences to terms
of the form c � q in the Bregman generator from Lemma 3.1.1. This implies that for
exponential family likelihoods, the posterior Bregman geometry does not depend on
observed data. Although the divergence is invariant to adding terms of the form c � q
in the Bregman generator, the operation induces a change of origin h ! h0 = h + c in
dual co-ordinates. This is analogous to a change of origin of the Cartesian co-ordinates
in Euclidean geometry, which leaves the Euclidean distance unchanged. In conclusion,
two different observation vectors y and y0 may shift the origin of the dual co-ordinate
system under the posterior Bregman geometry for exponential family likelihoods, but
intrinsic geometric objects are independent of observations.

The decomposition (3.1.1) together with Theorem 2.2.9 implies that the metric tensor
for posterior Bregman geometry has components

G(q) = �r 2 log p (qjy) = I (q) � r 2 log p 0(q)

in the primal co-ordinate system, where I (q) is the Fisher information matrix. This
coincides exactly with the Riemannian metric proposed by Girolami and Calderhead
[39] for use in their Riemannian Hamiltonian Monte Carlo algorithm.

The following theorem is a new contribution. Although a fairly trivial observation,
the result helps provide intuition for understanding the posterior Bregman geometry.

83



Theorem 3.1.3. Let F : E ! R be a convex function onE � R p, let p be a probability density
supported onQ � E such thatp (q) µ exp(� F(q)) for all q 2 Q, and letq0 2 E be such that
r F(q0) = 0. Then

p (q) µ exp (� DF(q, q0)) for all q 2 Q

where DF is the Bregman divergence generated by F, or equivalently thep -Bregman divergence.

Proof. Note that for any point q 2 Q, F(q) = � log p (q) + K for some log-normalizing
constant K. The Bregman divergence generated byF from q to q0 is

DF(q, q0) = F(q) � F(q0) � r F(q0) � (q � q0)

= F(q) � F(q0)

= � log p (q) + K � F(q0)

and thus

p (q) = exp(K � F(q0)) � exp (� DF(q, q0)) µ exp (� DF(q, q0))

Suppose for simplicity that Q = E = R p. If the posterior has a unique mode q0 2 Q,
i.e. if the MAP estimator exists, then it follows that r log p (q0jy) = 0, and hence The-
orem 3.1.3 states that the negative log posterior density at q is the divergence from the
mode q0 to q up to additive constants. For example, a multivariate Gaussian random
vector q � Normal

�
q0, L � 1�

has density

p (q) µ exp
�

�
1
2

(q � q0)TL (q � q0)
�

The p -Bregman divergence is then clearly half the squared Mahalonobis distance from
example 2.2.3. The induced geometry has a constant Riemannian metricL in primal
co-ordinates, and hence the primal and dual connections coincide and the geometry is
Euclidean.

More generally, Theorem 3.1.3 shows that log-concave probability densities with a
mode q0 have level sets which are Bregman spherescentred at q0, i.e. the locus of points
with �xed Bregman divergence to q0.

3.2 Orthogonality and Independence

The novel algorithms we introduce in the thesis will make use of the following heuris-
tic: orthogonal directions in the posterior Bregman geometry are nearly independent
sampling directions. In this section, we offer some justi�cation for this heuristic.

Firstly, consider the case of a multivariate Gaussian distribution Normal
�
0, L � 1�

.
As discussed in the previous section, the resulting posterior Bregman geometry is Eu-
clidean with a �xed metric G � L in primal co-ordinates. Since L is symmetric positive-
de�nite, it de�nes a global weighted inner-product on R p,

(u,v)L := uTL v
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The following proposition shows that a sample from the Gaussian has components
with respect to a L -orthogonal basis which are stochastically independent. The formal
statement of the result is novel, but is based on an observation made by Fox [30].

Proposition 3.2.1. Letv(1) , ..,v(p) 2 R p be a basis of mutuallyL -orthogonal vectors, i.e.

v( i) T
L v( j) = 0

for all i 6= j. Then for a random variableq � Normal
�
0, L � 1�

, distinct components ofq in the
f v( j)g basis are mutually independent.

Proof. The i th component of q in the basis is given by

flqi :=
v( i) T

L q

v( i) TL v( i)

Let di := v( i) T
L v( i) , (qm) and (v( i)

s ) be the components of q v(s) respectively in the stan-
dard basis. Computing the covariance of flqi and flqj using Einstein summation notation,
we �nd

Cov
� flqi , flqj

�
=

1
didj

Cov
�

v( i)
s L smqm, v( j)

l L lt qt

�

=
1

didj
v( i)

s L smv( j)
l L lt Cov (qm, qt )

=
1

didj
v( i)

s L smv( j)
l L lt L � 1

mt

=
1

didj
v( i)

s L smv( j)
l dl

m

=
1

didj
v( i)

s L smv( j)
m

Sincev( i) and v( j) are L -orthogonal, it follows that Cov
� flqi , flqj

�
= 0 whenever i 6= j.

This fact can be exploited for sampling by building up a L -orthogonal or conjugate
basis and independently sampling the components. This idea is the basis of conjugate
directions samplingsuggested by Fox and Parker [29], [59]. The algorithms developed in
Chapter 5 will turn out to be conjugate directions samplers when applied to Gaussian
target distributions.

Recall that co-ordinate curves of primal and dual co-ordinates intersect orthogo-
nally, because for i 6= j

g
�

¶
¶qi ,

¶
¶hj

�
= g

�
¶

¶qi ,
¶qm

¶hj
¶

¶qm

�

=
¶qm

¶hj g
�

¶
¶qi ,

¶
¶qm

�

=
¶hi

¶qm
¶qm

¶hj = 0
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One might therefore wonder if in the posterior Bregman geometry, primal and dual
variables are independent. This is con�rmed to be true in the Gaussian case, for which
dual variables are given by a simple linear relation h := L q.

Proposition 3.2.2. Let q � Normal
�
0, L � 1�

, and de�neh = L q. Let (qi )
p
i= 1 and (hi )

p
i= 1 be

the respective components ofq andh in the standard basis. Then for i6= j, the random variables
qi andhj are independent.

Proof. Using Einstein summation notation,

Cov
�
qi , hj

�
= Cov

�
qi , L jsqs

�

= L jsCov (qi , qs)

= L jsL � 1
is = 0

For non-Gaussian distributions, there are fewer concrete results linking orthogonal-
ity and independence. Girolami [52] notes that

¶2

¶qi¶qj
log p (q) = 0 for all q ) p (q) = F(qi )H (qj )

for some functions F, H . In our terms, if two variables with joint density p have or-
thogonal co-ordinate curves everywhere in parameter space under the p -Bregman di-
vergence, then the variables are independent under p . However, since the Hessian of a
log probability density is not a tensor, the result does not extend to arbitrary transfor-
mations of variables. Future work could extend the orthogonality results for Gaussians,
perhaps by studying copulas and local correlations.

3.3 Mixed Co-ordinates and Foliations

To exploit orthogonal directions in a sampler, ideally we would use a global co-ordinate
system which has mutually orthogonal co-ordinate vectors, i.e. with a diagonal metric
tensor. However, DeTurck and Yang [23] show that such co-ordinates are only guaran-
teed to exist for manifolds of dimension � 3, and even when they do exist it is not clear
how to construct them in an ef�cient manner. Instead, we will utilise the orthogonal
relationship between primal and dual variables by making use of foliations.

Euclidean spaces of dimension p are trivially partitioned into k-dimensional sub-
spaces, or hyperplanes, which are all orthogonal to another subspace of dimension
p � k where 1 � k < p. For example, in R p we can consider an af�ne subspace in
which the �rst k co-ordinates are allowed to vary, and the �nal p � k components are
�xed. Any such space is orthogonal to the af�ne space with �rst k co-ordinates �xed
and p � k complementary components varying. In this section we will extend this to
dually-�at manifolds, where orthogonality is of course de�ned in terms of the Rieman-
nian metric.
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The key generalization is the �ber bundle [46], [12], which for our purposes is a
smooth surjective map F : Q ! M , where Q and M are p- and (p � k)-dimensional
smooth manifolds respectively and 1 � k < p. In this context Q is called the total
space, M is the base spaceand eachk-dimensional smooth manifold F � 1(z) is called a
�ber corresponding to z 2 ImF . The map F is also called the projection for the �ber
bundle. Note that there is an additional technical condition for F to be a �ber bundle
which we assume is always satis�ed; see Chapter 10 of Lee [46] for details.

3.3.1 k-cut Mixed Co-ordinates

Suppose Q is a p-dimensional dually-�at manifold. The primal q = ( q1, ..,qp) and
dually-coupled h = ( h1, ..,hp) af�ne co-ordinates can be mixed into a new co-ordinate
system. For 1 � k � p, construct the vector whose �rst k components are dual and
remaining p � k components are primal,

x = ( h1, ..,hk, qk+ 1, ..,qp) (3.3.1)

which we refer to as the k-cut mixed co-ordinate system , or more broadly mixed co-
ordinates . The k-cut system was introduced by Amari [2] to study hierarchies of prob-
ability distributions.

Suppose Q � Rn is the primal parameter space, and F : Q ! R is the canonical
Bregman generator so that the i th dual variable is hi = ¶F

¶qi (q). The transition map from
primal to k-cut co-ordinates is the map w : Q ! R p, with i th component

wi (q) =

(
¶F
¶qi (q) for i � k
qi for i > k

(3.3.2)

We have omitted k in the notation w for clarity. The Jacobian matrix of (3.3.2), i.e. the
co-ordinate differential, has components

¶wi

¶qj (q) =

(
¶2F

¶qi ¶qj (q) for i � k j = 1, ..,p
di

j for i > k j = 1, ..,p
(3.3.3)

The Jacobian matrix therefore has �rst k rows equal to the q representation of the metric,
and last p � k rows equal to the identity;

¶xi

¶qj =
¶x
¶q

=
�

G[� k,� k] G[� k,> k]
0 1(p� k)� (p� k)

�

where G[� k,� k] and G[� k,> k] respectively refer to the upper-left k � k and the upper-right
k � (p � k) blocks of the metric Hessian r 2F in primal co-ordinates, and 1 (p� k)� (p� k) is
the (p � k) � (p � k) identity matrix. The Jacobian determinant is therefore the upper-
left k � k block of the metric,

det
�

¶x
¶q

�
= det

��
G[� k,� k] G[� k,> k]

0 1(p� k)� (p� k)

��

= det
�

G[� k,� k]

�
(3.3.4)

87



Since the p � p matrix G(q) is positive-de�nite, it follows from Sylvester’s criterion
[37] that the k � k minor det

�
G[� k,� k]

�
> 0, and hence the Jacobian determinant is non-

zero. Since this is true for all q 2 Q, w is a diffeomorphism. We have shown that the
transition map between primal and k-cut co-ordinates is a diffeomorphism, and hence
the k-cut system is in the smooth structure of Q.

Although xi = qi for i > k, the associated co-ordinate vectors ¶
¶xi 6= ¶

¶qi because each
partial derivative involves holding different variables constant. Writing sums explicitly,
we �nd that for i > k

¶
¶qi =

p

å
j= 1

¶xj

¶qi
¶

¶xj =
k

å
j= 1

gi j
¶

¶xj +
¶

¶xi

Recall from Theorem 1.2.18 that the inverse of the metric has components gi j =
¶2F�

¶hi ¶hj . The inverse function theorem states that the Jacobian of the inverse transition
map w � 1 is the inverse of the Jacobian (3.3.3), and hence

¶qi

¶xj =

(
gi j for j � k, i = 1, ..,p
di

j for j > k, i = 1, ..,p
(3.3.5)

where gi j is evaluated at h = r F(q) such that w (q) = x. Indeed, a simple calculation
shows that ¶xi

¶qj
¶qj

¶xl = di
l , resuming the use of Einstein notation.

The key property of the k-cut system is that the i, j co-ordinate vectors are orthog-
onal whenever i � k and j > k, or vice versa. This is stated in the following theorem,
which gives the metric in mixed co-ordinates.

Theorem 3.3.1. The metric�gi j in k-cut co-ordinates takes the form

�gi j =

8
>>>><

>>>>:

gi j (h) for i � k j � k
gi j (q) for i > k j > k
0 for i � k j > k
0 for i > k j � k

(3.3.6)

whereq is such thatw (q) = x, andh = r F(q).

Proof. The components of the metric in the k-cut system are

�gi j = g
�

¶
¶xi ,

¶
¶xj

�
=

¶ql

¶xi
¶qm

¶xj g
�

¶
¶ql ,

¶
¶qm

�
=

¶ql

¶xi
¶qm

¶xj glm

where glm are the components of the metric in the primal q co-ordinate system. We
consider each of the possible cases; �rstly, when i, j � k then the Jacobian equals the
inverse metric gli by (3.3.5),

�gi j = gli gmjglm = di
mgmj = gi j
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Likewise, when i, j > k the Jacobian is the identity dl
i ,

�gi j = dl
i d

m
j glm = gi j

Finally when i > k and j � k, or vice versa, the components of the metric are 0:

�gi j = dl
i g

jmglm = dl
i d

j
l = dj

i = 0

since i 6= j in this case. The proof for i � k and j > k is similar.

Note that to actually evaluate the metric using (3.3.6), we must �rst convert the
mixed co-ordinates to either fully-primal or fully-dual co-ordinates, and then compute
the relevant blocks of the metric and its inverse. Written as a matrix, the metric in mixed
co-ordinates takes the form

 
G� 1

[k� k](w
� 1(x)) 0[k� (p� k)]

0[(p� k)� k] G[(p� k)� (p� k)] (w � 1(x))

!

3.3.2 Orthogonal Foliation

Mixed co-ordinates allow us to partition a dually-�at manifold in two ways; one with
e-�at submanifolds, and the other with m-�at submanifolds. For c 2 Rk, de�ne M k(c)
as the set of points in Q whose �rst k dual components are �xed,

hi = ci for i = 1, ..,k (3.3.7)

and remaining co-ordinates are allowed to vary freely. In dual co-ordinates, this is
represented by the embedding

0

B
@

h1

...
hp

1

C
A =

�
0[k� (p� k)]

1[(p� k)� (p� k)]

�
0

B
@

hk+ 1

...
hp

1

C
A +

0

B
B
B
@

c1

...
ck

0[(p� k)� 1]

1

C
C
C
A

(3.3.8)

By proposition 2.5.6, M k(c) is therefore a (p � k)-dimensional m-�at submanifold. Sim-
ilarly for d 2 R p� k, de�ne Ek(d) as the set of points with �xed complementary primal
co-ordinates,

qi = di � k for i = k + 1, ..,p (3.3.9)

and other co-ordinates varying freely. A similar argument to the above shows Ek(d) is
a k-dimensional e-�at submanifold.

Suppose a point q 2 Q has k-cut co-ordinates (c,d), i.e. �rst k dual co-ordinates
given by (3.3.7) and remaining p � k primal co-ordinates by (3.3.9). Then q belongs
uniquely to the intersection M k(c) \ Ek(d). For c 6= c0, the intersection M k(c) \ M k(c0)
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is empty, and likewise d 6= d0 implies Ek(d) \ E(d0) is empty. Clearly then, the Ek and
M k submanifolds both partition the ambient manifold Q,

Q =
[

c
M k(c) =

[

d
Ek(d)

where unions are taken over the range of the (h1, ..,hk) and (qk+ 1, ..,qp) co-ordinate
functions respectively. The partition into Ek submanifolds is known as the e-foliation ,
and the partition into M k submanifolds is the m-foliation [3]. The submanifolds them-
selves are called the leaves of the foliation. The e-foliation is a �ber bundle with a
projection map that picks out the k + 1, ..,p components of the primal co-ordinate vec-
tor,

F E : Q ! R p� k F E(q) =
�

qi
� p

i= k+ 1

such that each leaf Ek(d) is a k-dimensional �ber for d = F E(q), and the base space
is a convex subset ImF E � R p� k. Similarly, the m-foliation is also a �ber bundle with
projection

F M : Q ! Rk F M (q) =
�

¶F
¶qi

� k

i= 1

with base space ImF � Rk, and �bers M k(c) for c = F (q). More generally, a foliation
in differential geometry is a partition of the manifold into submanifolds such that there
exists a co-ordinate chart in which each submanifold is described by holding constant
particular co-ordinates [46].

The e-foliation and m-foliation are orthogonal in the following sense. Let q have
mixed co-ordinates x = ( c,d) such that q 2 M k(c) \ Ek(d) as above. Then tangent
vectors V to the embedded submanifold Ek(d) must consist of only the �rst k mixed
co-ordinate basis vectors; writing sums explicitly,

V =
k

å
i= 1

V i ¶
¶xi

Tangent vectors W to the embedded submanifold M k(d) only have non-zero compo-
nents;

W =
p

å
j= k+ 1

W j ¶
¶xj

Then by Theorem 3.3.1, tangent vectors toEk(c) and M k(d) are mutually orthogonal,

g (V ,W) =
k

å
i= 1

p

å
j= k+ 1

V iW j �gi j = 0
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3.3.3 General Foliations of e- and m-�at Submanifolds

Since vector spaces can be partitioned with arbitrary colinear hyperplanes, foliations of
dually-�at manifolds can be constructed from arbitrary e- or m-�at submanifolds. This
generalizes the foliations arising from mixed co-ordinates. This more general concept is
a novel contribution, and in particular Proposition 3.3.9, Theorem 3.3.11 and Theorem
3.3.12 are new results in Information Geometry.

For a matrix A 2 R p� k of full rank, let B 2 R p� (p� k) be a matrix whose columns
form a basis for Ker AT = (Im A)? , where AT is the usual transpose or adjoint of A with
respect to the Euclidean inner-product; a canonical choice for B is any (p � k) linearly
independent columns of the projection matrix 1 p� p � A

�
AT A

� � 1AT. Recall that the
primal co-ordinate chart covers all of Q, and takes values in a convex subsetQ � R p.
The primal co-ordinates of any q 2 Q can be decomposed as

q = Aa + Bb (3.3.10)

where a and b belong to appropriate convex subsets A � Rk and B � R p� k respec-
tively. We �x b := Bb, so that a is a parameter for the k-dimensional e-�at submanifold

EA,b =
n

q = Aa + b : a 2 A � Rk
o

(3.3.11)

in primal co-ordinates, a convex subset of the hyperplane through b spanned by the
columns of A. Note that the convex subset A depends on b in general, although we
suppress this in our notation. We adopt the notation f EA,bg for the collection f EA,b jb 2
Im Bg. Clearly elements of f EA,bg are disjoint and we have the partition

Q = [ b2Ker(AT) EA,b

Note that by proposition 2.5.6, any e-�at submanifold can be written in the form (3.3.11)
and is an element of such a partition. Similarly, dual co-ordinates h for any point q 2 Q
can be decomposed as

h = Dd + Cg (3.3.12)

where D 2 R p� k and C 2 R p� (p� k) are respectively de�ned analogously to A and
B above. Let MC,d be the (p � k)-dimensional m-�at submanifold de�ned by �xing
d := Dd and allowing g to vary, i.e.

MC,d =
n

h = Cg + d : g 2 R p� k
o

(3.3.13)

Then f MC,dg is another partition of Q. Any m-�at submanifold is an element of
such a partition.

We use the generale- and m-�at partitions to construct general mixed co-ordinates.
Rewriting equation (3.3.10) in a more compact form,

q =
�
A B

�
�

a
b

�
(3.3.14)
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Suppose we let D = A and C = B in (3.3.12), so thath is decomposed into components
Ad 2 Im A and Bg 2 (Im A)? . By Proposition 2.4.7, the dual co-ordinates correspond-
ing to flq = ( a, b) are given by

flh =
�

AT

BT

�
h =

�
AT Ad
BTBg

�

For these dually coupled co-ordinate systems, the k-cut mixed co-ordinates are given
by

x =
�

AT Ad
b

�
(3.3.15)

In this mixed co-ordinate system, the submanifolds EA,b and M B,d , with b := Bb and
d := Ad, are respectively leaves of thee- and m-foliation each corresponding to holding
b and d constant, analogous to the submanifolds Ek and M k in the previous subsection.
By the results in the previous subsection, it follows that EA,b and M B,d intersect orthog-
onally with respect to the Riemannian metric at a unique point. The generalized e- and
m-foliations are �ber bundles with projections F E(q) = B� q and F M (q) = ATr F(q) re-
spectively, where B� :=

�
BTB

� � 1BT is the generalized inverse of B. Of course, if A and
B respectively have columns consisting of the �rst k and last (p � k) standard basis vec-
tors, then the matrix

�
A B

�
in (3.3.14) is thep � p identity matrix; AT Ad =

�
h1, ..,hk�

are the �rst k dual co-ordinates and the complementary p � k primal co-ordinates are
b =

�
qk+ 1, ..,qp�

. Hence generalized mixed co-ordinates (3.3.15) really are a gener-
alization of regular mixed co-ordinates (3.3.1). We use a tuple (A, B, F) to denote a
generalized mixed co-ordinate system, where A, B are matrices as de�ned above and F
is a Bregman generator.

The following de�nition is inspired by the concept of an orthogonal complementin an
inner-product space.

De�nition 3.3.2. Two submanifolds E and M are called dual complements of each
other if E is e-�at and M is m-�at, and the submanifolds are orthogonal to each other at
any points of intersection.

Clearly EA,b and M B,d are dual complements whenever ATB = 0.
Sinceq = Aa + Bb and r F(q) = Ad + Bg, the conversion map from primal to gen-

eralized mixed co-ordinates is given by the respective projections for the �ber bundles
of the m- and e-projections.

w (q) =
�

ATr F(q)
B� q

�

where B� :=
�
BTB

� � 1BT is the generalized inverse of B.
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G-Orthogonal Projections

De�nition 3.3.3. Let L 2 R p� p be a symmetric positive-de�nite matrix. A matrix P 2
R p� p is a L -orthogonal projection if

PP = P (3.3.16)

PTL = L P (3.3.17)

Proposition 3.3.4. Let P 2 R p be aL -orthogonal projection matrix. Then P is self-adjoint in
the inner-product weighted byL , i.e.

(Pv)T L w = vTL (Pw )

for all v,w 2 R p.

Proof. SinceP satis�es the second condition (3.3.17) for L -orthogonal projections,

(Pv)T L w = vTPTL w = vTL Pw = vTL (Pw )

De�nition 3.3.5. Let L 2 R p� p be a symmetric positive-de�nite matrix and A 2 R p� k

have full rank, where 1 � k � p. De�ne the L -orthogonal projection onto the columns
of A as

PL
A = A

�
ATL A

� � 1
ATL

For example, the matrix AA � = A
�
AA T � � 1AT is the 1p� p-orthogonal projection

onto the columns of A, i.e. orthogonal with respect to the standard Euclidean inner-
product on R p. The de�nition is justi�ed by the following proposition.

Proposition 3.3.6. The matrix PL
A is aL -orthogonal projection satisfying

ImPL
A = ImA

In particular, the restriction of PLA to ImA is the identity map.

Proof. The �rst condition (3.3.16) follows immediately;

PL
A PL

A = A
�

ATL A
�

ATL A
�

ATL A
�

ATL

= A
�

ATL A
� � 1

ATL = PL
A

For the second condition (3.3.17), we calculate:

�
PL

A

� T
L =

�
A

�
ATL A

� � 1
ATL

� T
L

= L A
�

ATL A
� � 1

ATL = L PL
A
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To show Im PL
A = Im A, let v 2 Im PL

A . Then there existsw 2 R p such that

v = PL
A w = A

� �
ATL A

� � 1
ATL w

�
2 Im A

and it follows that Im PL
A � Im A. Conversely, let w 2 Im A; then w = Aa for some

a 2 Rk, and

PL
A w = A

�
ATL A

� � 1
ATL Aa = Aa = w 2 Im PL

A

which shows Im A � Im PL
A , and thus Im A = Im PL

A . This calculation shows that PL
A w =

w for any w 2 Im A, and hence the restriction of PL
A to Im A is the identity map.

The matrix PG(q)
A is the G(q)-orthogonal projection onto the columns of A, a linear

operator on the tangent space at the point represented by q.

Proposition 3.3.7. The matrix1p� p � PL
A is aL -orthogonal projection matrix satisfying

Ker
�

1p� p � PL
A

�
= ImA (3.3.18)

Proof. Condition (3.3.16) follows from the fact that PL
A is a L -orthogonal projection ma-

trix, �
1p� p � PL

A

� �
1p� p � PL

A

�
= 1p� p � 2PL

A + PL
A PL

A = 1p� p � PL
A

and similarly for (3.3.17),

�
1p� p � PL

A

� T
L = L � PL

A
T
L = L � L PL

A = L
�

1p� p � PL
A

�

Finally, to show (3.3.18), we �rst let w 2 Im A. Then by Proposition 3.3.6, PL
A w = w and

hence �
1p� p � PL

A

�
w = w � w = 0

and so it follows that w 2 Ker
�
1p� p � PL

A
�
.

Conversely, for any w 2 Ker
�
1p� p � PL

A
�
, we have

�
1p� p � PL

A

�
w = 0

, w = PL
A w

This implies w 2 Im A since P = A
�
ATL A

� � 1ATL . Therefore Ker
�
1p� p � PL

A
�

=
Im A.
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Parameterization of m-�at submanifolds

Our primary use of generalized mixed co-ordinates is in the construction of parameter-
izations of arbitrary m-�at submanifolds, required for the algorithms in Chapter 5. For
�xed d := Ad, the (p � k)-dimensional submanifold M B,d may be described in gener-
alized mixed co-ordinates by holding d constant and allowing b to vary; it is the level
set of the projection function

F M : Rk � R p� k ! Rk F M (a, b) := ATr F(Aa + Bb) (3.3.19)

corresponding to the level F M = AT Ad. We consider using b 2 R p� k as a parameter
for the submanifold, in a co-ordinate embedding as follows.

De�nition 3.3.8. For a p-dimensional dually-�at submanifold Q, with M B,d an m-�at
submanifold of Q, de�ne a primal embedding of M B,d as a map

�Ld : R p� k ! R p (3.3.20)

satisfying A � r F( �Ld(b)) = d = A � d and B� �Ld(b) = b for all b 2 B� Q.

Note that the subscript d indicates which m-�at submanifold is being embedded,
i.e. d selects a �ber of the �ber bundle F M . The following is a novel contribution to
the literature to our knowledge, and shows that there is one unique primal embedding
which is stated explicitly.

Proposition 3.3.9. For any m-�at submanifold MB,d , there exists a unique primal embedding
of MB,d given by

�Ld(b) = Aa(b) + Bb (3.3.21)

wherea : R p� k ! Rk is given by

a(b) = argmina F(Aa + Bb) � aT AT Ad
| {z }

:= j (a)

(3.3.22)

Proof. First we show that (3.3.21) and (3.3.22) together de�ne a valid primal embedding.
For the �rst condition, the gradient of j at the minimizer a(b) must be zero, i.e.

0 = r a j (a(b)) = ATr F (Aa(b) + Bb) � AT Ad

Noting that �Ld(b) = Aa(b) + Bb, this is equivalent to A � r F( �Ld(b)) = d. The sec-
ond condition B� �Ld(b) = b of De�nition 3.3.8 follows immediately from (3.3.21), since
columns of A and B are mutually orthogonal.

To show uniqueness, suppose �Rd is a primal embedding. The combined columns of
A and B form a basis for R p, and thus

�Rd(b) = A �a(b) + B �b(b)
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for some functions �a and �b. By the second condition in De�nition 3.3.8, we have

b = B� �Rd(b) = B� B �b(b) = �b(b)

and thus �b(b) = b for all b. By the �rst condition in the de�nition, we �nd

A � r F
� �Rd(b)

�
= d

, ATr F
� �Rd(b)

�
� AT Ad = 0

, ATr F (A �a(b) + Bb) � AT Ad = 0
, r a j ( �a(b)) = 0

Note that the function j is convex and has a global minimizer since F is strictly convex.
Thus

�a(b) = a(b)

and hence �Rd(b) � �Ld(b) for all b. Thus the primal embedding is unique.

The following Lemma gives the differential matrix of the primal embedding.

Lemma 3.3.10.Let MB,d be a m-�at submanifold and letd = A � d. The co-ordinate differential
matrix of the m-�at embeddingq = �Ld(b) is given by

D �Ld(b) =
�

1p� p � PG(b)
A

�
B

where G(b) := r 2F( �Ld(b)) is the Riemannian metric tensor evaluated at�L(b).

Proof. Differentiating (3.3.21), the i-j component of the differential matrix is given by

¶ �Li

¶bj = A i
l
¶al

¶bj + Bi
j

The differential Da =
�

¶al

¶bj

�
is given by applying the Implicit Function Theorem B.0.4

to F M (a, b) = AT Ad where F is de�ned in (3.3.19).

Da =
�

¶ai

¶aj

�
= �

�
¶F M

¶a

� � 1 ¶F M

¶b
(3.3.23)

Note that

¶F i

¶aj =
¶

¶aj A li ¶F
¶ql (Aa + Bb)

=
¶qs

¶aj A li ¶2F
¶ql ¶qs (Aa + Bb)

= AsjA li ¶2F
¶ql ¶qs (Aa + Bb) =

�
ATG(b)A

�

i,j= 1,..,k
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And similarly

¶F i

¶bj =
¶

¶bj A li ¶F
¶ql (Aa + Bb)

=
¶qs

¶bj A li ¶2F
¶ql ¶qs (Aa + Bb)

= BsjA li ¶2F
¶ql ¶qs (Aa + Bb) =

�
ATG(b)B

�

i= 1,..,k,j= 1,..,p� k

Substituting these expressions into (3.3.23), the result follows.

D �Ld(b) = � A
�

ATG(b)A
� � 1

ATG(b)B + B

=
�

1p� p � A
�

ATG(b)A
� � 1

ATG(b)
�

B

=
�

1p� p � PG(b)
A

�
B

We will discuss how to evaluate the implicitly de�ned parameterization �Ld in Sec-
tion 5.1.3. Recall from subsection 2.5.2, and in particular Theorem 2.5.5, thatM B,d in-
herits geometric structures from the ambient manifold Q and is a dually-�at manifold
in its right. Furthermore, the following novel result shows (M B,d , b) is a co-ordinate
chart on M B,d which is af�ne with respect to the inherited primal connection.

Theorem 3.3.11. The parameterizationb given by the unique primal embedding de�nes af�ne
co-ordinates with respect to the inherited primal connection on MB,d .

Proof. We will show that the coef�cients of the inherited primal connection (2.5.4)

flGabc =
¶ �Lj

d
¶bc

¶
¶ba

 
¶ �Li

d
¶bb

!

gi j +
¶ �Li

d
¶ba

¶ �Lj
d

¶bb
¶ �Lk

d
¶bc Gi jk (3.3.24)

vanish, where ¶ �Li
d

¶ba is the i-a component of the co-ordinate differential matrix D �Ld given
in Lemma 3.3.10. Sinceq = �Ld(b) are primal co-ordinates, the connection coef�cients
Gi jk are zero and the second term vanishes. The remaining term is the G-inner product
of the cth column of D �Ld with the bth column of the component-wise partial derivative
with respect to ba, ¶

¶ba D �Ld.

To �nd ¶
¶ba D �Ld, we �rst differentiate

�
ATGA

� � 1. Differentiating both sides of the

identity
�
ATGA

� � 1 ATGA = I and rearranging yields

¶
¶ba

�
ATGA

� � 1
= �

�
ATGA

� � 1
AT ¶G

¶ba A
�

ATGA
� � 1

(3.3.25)
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where we have use the fact that
�
ATGA

� � 1 is symmetric by symmetry of the Hessian
matrix G. Differentiating the expression for D �Ld from (3.3.10) and substituting (3.3.25)
for ¶

¶ba

�
ATGA

� � 1 then yields

¶
¶baD �Ld = � A

¶
¶ba

�
ATGA

� � 1
ATGB � A

�
ATGA

� � 1
AT ¶G

¶b
B

= A
�

ATGA
� � 1

AT ¶G
¶ba A

�
ATGA

� � 1
ATGB � A

�
ATGA

� � 1
AT ¶G

¶baB

and hence

¶
¶baD �Ld = A

�
ATGA

� � 1
AT ¶G

¶ba

�
A

�
ATGA

� � 1
ATG � I

�
B

The G inner-product of this with D �Ld is then

D �LT
d G

¶
¶baD �Ld = BTGA

�
ATGA

� � 1
AT ¶G

¶ba

�
A

�
ATGA

� � 1
ATG � I

�
B

� BTGA
�

ATGA
� � 1

ATGA
�

ATGA
� � 1

AT ¶G
¶ba

�
A

�
ATGA

� � 1
ATG � I

�
B

= BTGA
�

ATGA
� � 1

AT ¶G
¶ba

�
A

�
ATGA

� � 1
ATG � I

�
B

� BTGA
�

ATGA
� � 1

AT ¶G
¶ba

�
A

�
ATGA

� � 1
ATG � I

�
B

= 0

Thus the coef�cients of the inherited primal connection are zero.

Sinceb are primal co-ordinates on the dually-�at manifold M B,d , there must exist a
Bregman generator flF such that the inherited divergence on M B,d agrees with a Bregman
divergence in b co-ordinates generated by flF. This is given explicitly by the following
novel result.

Theorem 3.3.12. The restricted divergence on MB,d agrees with the Bregman divergence gen-
erated byflF, where

flF(b) = F( �Ld(b)) � dT AT Aa(b) = F( �Ld(b)) � dT �Ld(b) (3.3.26)

Furthermore, the Legendre dual co-ordinate system is given by

r flF(b) = BTBg = BTr F
� �Ld(b)

�
(3.3.27)

and the metric on MB,d in b co-ordinates is

r 2 flF(b) = BTG( �Ld(b))
�

1p� p � A
�

ATG( �Ld(b)) A
� � 1

ATG( �Ld(b))
�

B (3.3.28)
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Proof. As usual, let F be the Bregman generator in primal co-ordinates on Q. By Theo-
rem 2.5.3, the geometry on M B,d is de�ned by the restriction of DF to M B,d , which we
write in b co-ordinates as

DFjM B,d
(b, b0) := DF

� �Ld(b), �Ld(b0)
�

(3.3.29)

where b and b0 are the primal parts of the generalized mixed co-ordinate system (3.3.15)
respectively corresponding to points q, q0 2 M B,d . Let h := r F( �Ld(b)) and h0 :=
r F

� �Ld(b0)
�

be dual co-ordinates in Q corresponding to q and q0 respectively. Then by
proposition 2.2.13, the inherited divergence may be written

DFjM B,d
(b, b0) := DF

� �Ld(b), �Ld(b0)
�

= DF� (h0, h)

Since q and q0 are points in M B,d , by de�nition there exists g, g0 2 R p� k such that
h0 = Bg0 + d and h = Bg + d. We must have

DFjM B,d
(b, b0) = DF� (Bg0 + d, Bg + d)

| {z }
:= DF� jM B,d

(g0,g)

Analogously to equation (3.3.29), we de�ne a restricted dual divergence on M B,d ,

DF� jM B,d
(g0, g) := DF� (Bg0 + d, Bg + d)

By Theorem 2.5.8, this coincides with the Bregman divergence generated by the restric-
tion of F� to M B,d ,

DFjM B,d
(b, b0) = DF� jM B,d

(g0, g) = D F� jM B,d
(g0, g)

This is a Bregman divergence generated by F� jM B,d
in the g co-ordinate system. The

Legendre dual co-ordinate corresponding to this convex function has i th component

g �
i =

¶
¶gi F� jM B,d

=
¶

¶gi F� (Bg + d)

=
¶hl

¶gi
¶F�

¶hl = Bl
i q

l =
�

BTq
�

i

where we have used the involution property of the Legendre transform of F, i.e. r hF� (h) =
q such that r qF(q) = h. Sinceq = Aa + Bb with ATB = BT A = 0, we must have

g � = BTq = BTBb , b =
�

BTB
� � 1

g �

since B is assumed to have full rank. We will complete the proof by showing that the
Legendre transform of F� jM B,d

agrees with (3.3.26). Firstly, note that by de�nition of the
Legendre transform �

F� jM B,d

� �
(g � ) := g � � g � F� (h) (3.3.30)
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where g is such that r g F� jM B,d
(g) = g � , and h = Bg + d depends on g � implicitly.

We substitute F� (h) for its de�nition in terms of the Legendre transform, and expand q
and h in components in Im A and the orthogonal complement Im B,

F� (h) = q � h � F(q)

= (Aa(b) + Bb) � (Bg + d) � F(q)

= dT Aa(b) + gTBTBb � F(q)

= dT Aa(b) + gTg � � F(q)

Substituting this into (3.3.30) yields the result (3.3.26),
�

F� jM B,d

� �
(g � ) = F(q) � dT Aa(b) = F( �Ld(b)) � dT �Ld(b)

| {z }
= : flF(b)

To show that dually coupled co-ordinates are given by b� = BTBg, we note that b =
(BTB� 1)g � and differentiate via the chain rule. Alternatively, differentiating flF directly,

r b flF(b) = r b

�
F( �Ld(b)) � dT �Ld(b)

�

= D �Ld(b)Tr q

�
F(q) � dTq

�

=
�

B � A
�

ATG
� �Ld(b)

�
A

� � 1
ATG

� �Ld(b)
�

B
� T

(r F(q) � d) (3.3.31)

where we have substituted D �Ld from Lemma 3.3.10. Note that we have the decompo-
sition

r F(q) = h = Ad + Bg = d + Bg

Substituting this into (3.3.31) and using ATB � 0k� (p� k) yields (3.3.27),

r b flF(b) =
�

BT � BTGA
�

ATGA
� � T

AT
�

(d + Bg � d)

= BTBg = BTr F(q)

Another differentiation yields the Hessian matrix of flF, and hence the metric on the
m-�at submanifold in b co-ordinates (3.3.28),

r 2
b

flF(b) = r q

�
BTr F(q)

�
D �Ld(b)

= BTr 2F(q)
�

B � A
�

ATG
� �Ld(b)

�
A

� � 1
ATG

� �Ld(b)
�

B
�

= BTG( �Ld(b))
�

I � A
�

ATG( �Ld(b)) A
� � 1

ATG( �Ld(b))
�

B
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Note that Theorem 3.3.11 can be viewed as a corollary of Theorem 3.3.12; in the
proof of Theorem 2.4.4 we showed that a co-ordinate system in which a Bregman di-
vergence is de�ned is af�ne in the induced geometry.

The metric (3.3.28) in theb co-ordinate system is a Schur complement of the ambient
metric in (a, b) co-ordinates. The transformation (3.3.14) from q to (a, b) transforms the
metric according to

G(q) !
�
A B

� TG(q)
�
A B

�
=

�
AT

BT

�
G(q)

�
A B

�
=

�
ATGA ATGB
BTGA BTGB

�

The Schur complement of the block ATGA in this matrix is given by

BTGB � BTGA
�

ATGA
� � 1

ATGB

which coincides with the metric (3.3.28) on M B,d in the b co-ordinate system.

Mapping of e-�at into m-�at Submanifolds

In the previous subsection, we studied the map �Ld : R p� k ! R p that represents an
embedding of an m-�at submanifold in primal co-ordinates. In this subsection, we will
show how this can be used to construct a map which sends e-�at submanifolds to m-�at
submanifolds.

Consider the e-�at submanifold de�ned by the image of B in primal co-ordinates.
For any point q 2 R p, the projection onto the image of B is given by b = Bb =
BB� q. The coef�cients b are also the parameters of the primal embedding of a (p � k)-
dimensional m-�at submanifold M B,d, such that

�Ld(b) = Aad(b) + Bb

This motivates the following de�nition.

De�nition 3.3.13. Let Q be a p-dimensional dually-�at manifold. De�ne

Ld : R p ! R p

Ld(q) = �Ld(B� q)

The mapping Ld maps points in R p to M B,d . Clearly, the map preserves the Euclidean-
orthogonal projection of q onto Im B, i.e.

B� Ld (q) = B� q ) BB� Ld (q) = BB� q

Furthermore, by de�nition Ld(q) belongs to the �ber labelled by d;

A � r F(Ld(q)) = A � r F( �Ld(B� q)) = d
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3.3.4 Decomposition of Divergence

Mixed co-ordinates admit simple e- and m-projections onto the leaves of the orthogo-
nal foliations. Suppose a point q 2 Q has mixed co-ordinates x = ( h[k], q[> k]), where
h[k] 2 Rk are the k dual components and q[> k] 2 R p� k are the p � k primal compo-
nents. Consider the e-projection of q onto the m-�at submanifold M k(c), the set of
points whose dual co-ordinates satisfy (3.3.7). The following is a generalization of The-
orem 6 from Amari [2].

Proposition 3.3.14. The e-projection of q2 Q with mixed co-ordinatesxq = ( h[k], q[> k]) onto
M k(c) has mixed co-ordinates

xPeq = ( c, q[> k])

Similarly, the m-projection of q onto Ek(d) has mixed co-ordinates

xPmq = ( h[k],d)

Proof. Note that by de�nition, xq 2 Ek(q[> k]). The leaf Ek(q[> k]) must intersect M k(c)
at the point Peq with mixed co-ordinates (c, q[> k]). Suppose that the full primal co-
ordinates of qareqq = ( q[k], q[> k]), and let the full primal co-ordinates of Peqbe (qc, q[> k]).
Then the e-geodesic connectingqwith Peqmay be parameterized in primal co-ordinates
as

q(t) =
�

(1 � t)q[k] + tqc
q[> k]

�

The e-geodesic clearly lies entirely in the e-�at submanifold Ek(q[> k]), and thus its ve-
locity vector at Peq is orthogonal to any tangent vector to M k(d). It follows that Peq is
the e-projection of q onto M k(d).

The proof for the m-projection of q onto Ek(d) is similar; the m-geodesic connecting
xq and (h[k],d) lies in the m-�at leaf M k(h[k]), and hence is orthogonal to Ek(c) at (h[k],d).
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Part II

Algorithms
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Chapter 4

Review of MCMC and Conditional
Sampling on Submanifolds

This chapter presents a brief review of Markov Chain Monte Carlo (MCMC) and recent
MCMC algorithms which aim to improve performance using geometrically motivated
ideas. Particular attention is given to algorithms which resample the target distribution
constrained to a submanifold, such as the Gibbs sampler and Hamiltonian Monte Carlo.
Such general conditional sampling formalized in terms of a disintegrationof the target
distribution over a �ber bundle.

4.1 Markov Chain Monte Carlo

Suppose p (q) is a probability density on R p, and q(0) , q(1) , .. 2 R p are the iterates of
some stochastic process that is meant to simulatep . We use superscripts with brackets
to emphasise different iterates of the process rather than components of a vector. The
associatedMonte Carlo Estimatorfor m:= Ep ( f (q)) is the Monte Carlo sample mean

�m=
1
N

N � 1

å
i= 0

f
�

q( i)
�

(4.1.1)

where f : R p ! R is some function of the random vector q. The expected value mof
f is an example of a quantity of interestwhich may summarize the posterior, such as a
variance, or is otherwise relevant to the area of application. Computing quantities of
interest is the goal of MCMC. The number N is the Monte Carlo sample size, a completely
distinct quantity to the sample size n which is the number of observations.

If the iterates q(0) , ..,q(N � 1) are i.i.d., i.e. independently drawn directly from p (q),
the method is called Ordinary Monte Carlo. In this case, one can easily show that the
Monte Carlo estimator is unbiased with variance Var p ( f )/ N , and is asymptotically
normally distributed by the Central Limit Theorem. This means convergence is rather
slow; to halve the Monte Carlo Standard Error (MCSE), StdDev p ( f )/

p
N , we must take

four times as many Monte Carlo samples.
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In practice, i.i.d. sampling from p is not possible for many target distributions. In-
stead, correlated samples are typically drawn by simulating a Markov chain q(0) , q(1) , ...
whose stationary distribution is p (q); this is Markov Chain Monte Carlo (MCMC). We
brie�y recount the introduction by Geyer [36].

Recall that a stochastic process is Markov if the conditional distribution of q( i+ 1)

given q(0) , ..,q( i) only depends on q( i) , in which case the process is determined by the
following two distributions:

1. An initial distribution q(0) � p (0) for the �rst iterate of the chain;

2. A transition kernel k, such that the conditional probability density of q( i+ 1) given
q( i) is written k

�
q( i+ 1) jq( i)

�
. We assume the kernel isstationary, i.e. it does not

explicitly depend on i.

Suppose the marginal distribution of q( i) has probability density p ( i) (q) for all i. The
transition kernel must satisfy

p ( i+ 1) (q) =
Z

Q
k(qjq0)p ( i) (q0)dq0 (4.1.2)

The i-step transition kernel k( i) (q( i) jq(0) ) of the chain is the conditional probability den-
sity of q( i) given q(0) . Clearly, the i-step transition kernel satis�es

p ( i) (q) =
Z

Q
k( i) (qjq0)p (0) (q0)dq0 for all q 2 Q

If we enforce that the chain starts at a given point q(0) , i.e. the initial distribution is
p (0) (q) = d(q � q(0) ), then the above equation shows that the marginal distribution of
q( i) is p ( i) (q) = k( i) (qjq(0) ).

A Markov chain is stationary if the marginal distribution p ( i) does not depend on
i. A distribution p (q) is called a stationary or invariant distribution of the transition
kernel k if it is preserved by k,

p (q) =
Z

Q
k(qjq0)p (q0)dq0 (4.1.3)

A suf�cient condition for p to be invariant is if the transition kernel is reversible with
respect to p ,

k(q0jq)p (q) = k(qjq0)p (q0) for all q0, q 2 Q (4.1.4)

This condition is also known as detailed balancewith respect to p . To see that reversibility
implies invariance, we substitute (4.1.4) into the right-hand side of (4.1.3),

Z

Q
k(qjq0)p (q0)dq0 =

Z

Q
k(q0jq)p (q)dq0 = p (q)

sincek(�jq) is a probability density.
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If the initial distribution p (0) is an invariant distribution for k, the marginals p ( i) �
p for all i � 0 by induction on (4.1.2) and hence the Markov chain is stationary. In
particular, if the transition kernel is reversible with respect to the initial distribution,
then p = p (0) is an invariant distribution and hence the chain is stationary. In this case
the joint distribution of q( i+ 1) and q( i) has density

k(q( i+ 1) jq( i) )p (q( i) ) = k(q( i) jq( i+ 1) )p (q( i+ 1) )

This shows that the joint distribution of q( i) and q( i+ 1) is exchangeable, so that the laws
for moving forwards or backwards in time are the same; a Markov chain with this
property is called reversible . We have shown that if k is reversible with respect to the
initial distribution, then the chain itself is reversible and stationary.

The key question for MCMC is whether the Monte Carlo estimator (4.1.1) is asymp-
totically unbiased and what its asymptotic variance is, when the samples q(0) , ..,q(N � 1)

are the iterates of a Markov chain whose invariant distribution is p rather than i.i.d.
samples from p . Under suitable conditions, the Markov chain Central Limit Theorem
is satis�ed for stationary chains, which states that the Monte Carlo estimator (4.1.1) for
the Markov chain is asymptotically normally distributed with mean m = Ep ( f ) and
variance s2

N , where

s2 = Var( f (q( i) )) + 2
¥

å
k= 1

Cov( f (q( i) ), f (q( i+ k) )) (4.1.5)

Since the chain is stationary, the index i is arbitrary. Roberts and Rosenthal [65] give
various conditions for the Markov chain CLT to hold; it is suf�cient that Ep

�
f 2�

< ¥ ,
the chain is reversible and geometrically ergodic , meaning that if p is the invariant
distribution, then for p -almost all q(0) 2 Q,

kk( i) (�jq(0) ) � p (�)kTV � M (q(0) )r i (4.1.6)

for i = 1, 2, .., somer < 1 and M (q(0) ) < ¥ , where k � kTV is the total variation norm.
Geometric ergodicity simply means that after starting the chain from almost any point,
the marginals converge to p geometrically in total variation. We emphasize that this is
not �geometric� in the sense of using geometry. If M is a constant independent of q0,
then the chain is uniformly ergodic .

In practice, for a given invariant distribution p one cannot simulate the correspond-
ing stationary Markov chain, because this requires being able to draw a sample from p
for the initial distribution so that p (0) = p , which is assumed to be impossible or infea-
sible or else we should be doing Ordinary Monte Carlo. However, the Markov chain
CLT still holds when the chain is geometrically ergodic, or under similar conditions, if
we start the chain at p -almost any q(0) 2 Q [65]. The iterates in the asymptotic variance
(4.1.5) still refer to those of the stationary chain.

4.1.1 The Metropolis-Hastings Framework

MCMC requires the construction of a Markov chain whose transition kernel is reversible
with respect to the target p (q), satis�es conditions for the Markov chain CLT to hold
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and can be simulated on a computer. A general method for constructing such chains is
the Metropolis-Hastingsalgorithm, which draws a sample from a proposalkernel q

�
q0jq( i)

�

which can be simulated. The proposed sample q0 is then accepted, i.e. the next iterate
of the chain becomesq( i+ 1) := q0, with probability

a = min

(
q(q( i) jq0)p (q0)

q(q0jq( i) )p (q( i) )
, 1

)

(4.1.7)

otherwise the proposal is rejected; we set q( i+ 1) := q( i) . Since the acceptance probability
(4.1.7) involves a ratio of target densities, we need only evaluate p up to multiplicative
constants, so it is not necessary to know normalization constants of p . One can show
[36], [65] that the Markov chain resulting from the Metropolis-Hastings algorithm is
reversible with respect to p (q). All reversible sampling algorithms are in fact special
cases of Metropolis-Hastings, including Gibbs updates and Hamiltonian Monte Carlo;
this can be seen by substituting any kernel k which is reversible with respect to p for
the proposal q in (4.1.7) - such proposals are always accepted.

An important case of the Metropolis-Hastings algorithm is when the proposal ker-
nel is symmetric, i.e. q(q0jq) = q(qjq0) for all q0, q 2 Q, when the acceptance probability
(4.1.7) becomes

a = min
�

p (q0)
p (q( i) )

, 1
�

(4.1.8)

This case is called the Metropolis algorithm. The proposal is always accepted if the
target density is higher at q0than at the previous iterate q( i) . For example, the (Gaussian)
Random Walk Metropolisalgorithm uses multivariate normal proposals of the form

q0 � Normal (q, l 2S)

where S is some covariance matrix, and l > 0 is some scaling factor. Clearly the
proposal kernel q(q0jq) = q(qjq0) and the acceptance probability reduces to (4.1.8).

Note that Markov chains resulting from the Metropolis-Hastings procedure are not
necessarily geometrically ergodic, and the Markov chain CLT is not guaranteed to hold
in general. Counter-examples may be constructed with a result of Jarner and Hansen
[42], who show that if a Random Walk Metropolis algorithm is geometrically ergodic,
then the target distribution p must have at least exponentially light tails. For example,
Livingstone and Girolami [50] offer a Cauchy target distribution as a counter-example,
which has heavier than exponential tails, and hence the Random Walk Metropolis al-
gorithm is not geometrically ergodic. Robert and Casella [62] give suf�cient conditions
for the marginal distributions in a Metropolis-Hastings algorithm to converge to p in
the total variation norm, although not necessarily geometrically as in (4.1.6).

4.1.2 Measuring Performance

If a Markov chain is geometrically or uniformly ergodic, the convergence rate r in (4.1.6)
gives one measure of performance; the rate at which the marginal distributions of the
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MCMC iterates converge to the target distribution, with lower values indicating faster
convergence. In practice, there may be analytic results for bounds on the convergence
rate for some samplers under speci�c assumptions, but estimation of r from MCMC
output for a general model is usually not possible.

The goal of MCMC is of course to estimate expectations with respect to the target
distribution, and hence practitioners often use proxies for the accuracy of the Monte
Carlo estimator as measures of performance. For example, the asymptotic variance of
the Monte Carlo estimator has a term involving the covariance, or equivalently corre-
lation, of f under successive iterates of the chain. Rewriting the s2 (4.1.5) part of the
asymptotic variance s2

N ,

s2 = Varp ( f (q( i) ))

 

1 + 2
¥

å
k= 1

Cov( f (q( i) ), f (q( i+ k) ))
Var( f (q( i) ))

!

| {z }
= :t

= t Varp ( f (q( i) )) (4.1.9)

where t is called the integrated autocorrelation time (IAT) . Note that some authors
such as Liu [49] take the IAT to be 1

2 the value de�ned here; we follow the convention
of Roberts and Rosenthal [63]. When the chain consists of independent samples fromp ,
(4.1.9) shows that t = 1. The presence of autocorrelation in the Markov chain usually
results in t > 1.

Another proxy for the asymptotic variance is the effective sample size (ESS) Neff.
This is de�ned as the equivalent number of independent samples from p such that
the variance of the Monte Carlo estimators for independent and correlated samples are
equal:

Var
�

f
�

q( i)
��

Neff
=

s2

N
, Neff = N

Var( f (q( i) ))
s2 =

N
t

This gives an interpretation for the IAT; t is asymptotically the number of stationary
MCMC samples required to reduce the variance by an amount equivalent to a single
independent sample. Low IATs, or equivalently high effective sample sizes, are there-
fore indicative of good MCMC performance.

Any metric used to compare MCMC algorithms should take into account the com-
putational cost of producing the correlated samples. A popular measure of ef�ciency
is the number of effective samples per second of computation, Neff/ T, where T is the
runtime of the MCMC algorithm.

4.1.3 The Gibbs Sampler

The Gibbs sampler introduced by Geman and Geman [34] draws from conditional dis-
tributions of the target distribution. As usual, suppose there exists a target density p (q)
on R p, and decompose the current stateq into d subvectors q = ( q1, � � � , qd). For this
subsection, we use subscripts to index the subvectors to distinguish them from the it-
erates of the Markov chain, for which we use superscripts. We allow the number of
components in each subvector qj to vary with j = 1, ..,d. We adopt the convention of
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Gelman et al [33] of writing q� j for the union of all subvectors not including subvector
qj ,

q� j = ( q1, ..,qj � 1, qj+ 1, ..,qd)

A Gibbs updatedraws qj from the target conditioned on the current values of the com-
plementary subvectors, i.e.

Setqj = q0
j where q0

j � p (qj jq� j )

This Gibbs update for the j th subvector is reversible with respect to the full target dis-
tribution. To see this, we adopt the small abuse of notation q = ( qj , q� j ), so that the
kernel for the Gibbs update may be written

k j (q0
j , q0

� j jqj , q� j ) =

(
p (q0

j jq� j ) if q0
j = qj

0 if q0
j 6= qj

If q0
� j = q� j , then reversibility (4.1.4) follows from the direct calculation

p (q0
j jq� j )p (qj , q� j ) = p (q0

j , q0
� j )p (qj jq0

� j )

and otherwise both sides of (4.1.4) are 0. Hence the Gibbs update kernel is reversible
with respect to the target. Gibbs updates are therefore Metropolis-Hastings samplers
with a proposal q = p (q0

j jq� j ), which is always accepted.

Algorithm 1 Systematic-scan Gibbs Sampler
for i = 1, ..,N do

for j = 1, ..,d do
q( i)

j  qj
0 � p (qj jq

( i)
1 , ..,q( i)

j � 1, q( i � 1)
j+ 1 , ..,q( i � 1)

d )
end for

end for

In order to facilitate moves around the entire state space Q, i.e. to ensure an irre-
ducible Markov Chain, Gibbs updates can be combined in various ways. Firstly, one
could update each subvector in order of index, called systematic-scanGibbs sampling
[49], shown in algorithm 1. Since the Gibbs updates are applied consecutively, the ker-
nel for an entire systematic-scan Gibbs sweep is thecompositionof the kernels for each
Gibbs update. The composition kernel preserves p , but is not reversible with respect to
the target distribution in general even though each Gibbs update is [36]. Alternatively,
the random-scanGibbs sampler choosesj randomly from f 1, ..,dg, and applies the corre-
sponding Gibbs update for qj . The transition kernel for a random-scan Gibbs iteration
is a mixture k = å j l jk j (q0jq), where k j is the transition kernel for the j th Gibbs update
chosen with probability l j . Since eachk j is reversible with respect to p , one can easily
show that the random-scan or mixture kernel is also reversible with respect to p .
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4.2 Resampling using Disintegrations

In this section, we describe a framework for more general conditional sampling. Sup-
pose we resample conditioned on some smooth function of the current state F (q). The
update is therefore constrained to a surface or submanifold of the state space corre-
sponding to a level set of F . Liu and Sabatti [48], [49] describe such an update in terms
of a randomly selected element of a group of transformations of state space. Geyer [36]
notes that conditioning on arbitrary functions of the state in this way is equivalent to
a regular Gibbs update under a change of variable, i.e. in a different co-ordinate chart.
We will take the approach of Betancourt et al [12], in which the target distribution is
disintegratedover the �ber bundle or foliation de�ned by F .

We �rst make clear what is meant by conditioning the target distribution on a sub-
manifold. Since lower-dimensional submanifolds have Lebesgue measure zero, the
textbook approach to conditioning using a ratio of probability densities is not well-
de�ned. Instead, we adopt the concept of a disintegration [19], [12] to ensure regular
conditional probabilities are well-de�ned. As usual, let Q be a p-dimensional smooth
manifold equipped with its Borel sets so that it is a measure space with ma sigma-�nite
measure on Q, let F : Q ! Rk be measurable, and denote the push-forward of mto Rk

under F by mF , which we also require to be sigma-�nite. We state the de�nition of a
disintegration from Chang and Pollard [19], adapted to be slightly less general to suit
our purposes here.

De�nition 4.2.1. A set of measures f mzjz 2 Rkg on the Borel sets of Q is a disintegra-
tion of mwith respect to F if the following properties are satis�ed:

1. Eachmz is a sigma-�nite measure on the Borel sets of Q such that mz (f F 6= zg) =
0, i.e. all mass is concentrated on the preimage or �ber F � 1 (f zg).

2. For a measurable function h : Q ! R , the map

z 7!
Z

Q
h(q)dmz(q)

is a measurable function on Rk.

3. For all measurable h : Q ! R ,
Z

Q
hdm=

Z

Rk

� Z

Q
h(q)dmz(q)

�
dmF (z) (4.2.1)

The integral in (4.2.1) is well-de�ned by the two previous conditions. Chang and
Pollard [19] show that the measures mz are probability measures on Q if the pushfor-
ward measure mF is sigma-�nite, and thus disintegrations de�ne a regularconditional
probability. The function F may be thought of as a projection map of a �ber bundle
with total space Q and base space a subset ofRk; the disintegration splits a measure
into an integral over the base space of measures on the �bers. Betancourt et al [12] de-
scribe disintegrations in the differential-geometric terms of volume forms on a smooth
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manifold and apply their theory to study Hamiltonian Monte Carlo, in which the rel-
evant �ber bundle is de�ned by the level sets of the Hamiltonian function; we will
explore this further in Section 4.2.1.

In order to understand the relevance of disintegrations for conditional sampling,
we must �rst recast some of our earlier de�nitions into a measure-theoretic form. The
following generalization of a Markov kernel is adapted from that given by Betancourt
et al [12]. The Borel sets ofQ are denoted by B(Q).

De�nition 4.2.2. A Markov kernel k : Q � B (Q) ! [0, 1] is a map which is a mea-
surable function in its �rst argument when any B 2 B (Q) is plugged into its second
argument,

k(�, B) : Q ! [0, 1]

and is a probability measure in its second argument for any q 2 Q as its �rst argument,

k(q, �) : B(Q) ! [0, 1]

The measure-theoretic generalization of a stationary distribution is given by the
following.

De�nition 4.2.3. Let k : Q � B (Q) ! [0, 1] be a Markov kernel. A measure m: B(Q) !
[0, 1] is an invariant distribution of k if

m(B) =
Z

k (q, B) m(dq) (4.2.2)

for any Borel set B 2 B (Q).

The following result shows that if the elements of the disintegration of mare station-
ary distributions of a Markov kernel, then so is m.

Theorem 4.2.4. Let (Q, B(Q), m) be a probability space where Q is a p-dimensional manifold
and letf mzjz 2 Rkg be a disintegration ofmwith respect to the �ber bundleF : Q ! Rk with
k < p. If k : Q � B (Q) ! [0, 1] is a Markov kernel on Q that preserves eachmz, i.e.

Z
k (q,U ) mz(dq) = mz(U ) for all z 2 Rk,U 2 B (Q) (4.2.3)

thenk preservesm.

Proof. By the third condition (4.2.1) of the de�nition of a disintegration, for any Borel
set U we have

Z

Q
k(q,U )m(dq) =

Z

Rk

� Z

Q
k(q,U )mz(dq)

�
mF (dz)

Substituting (4.2.3) into the right-hand side of this, we �nd
Z

Q
k(q,U )m(dq) =

Z

Rk
mz(U )mF (dz)
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Noting that mz(U ) =
R

Q 1U (q)mz(q) where 1U is the indicator function for U , and ap-
plying the disintegration (4.2.1) again with h(q) = 1U (q),

Z

Q
k(q,U )m(dq) =

Z

Rk

� Z

Q
1U (q)mz(q)

�
mF (dz)

=
Z

Q
1U (q)m(dq) = m(U )

We see that the condition (4.2.2) for k to preserve mis satis�ed.

This theorem provides another generalization of a Gibbs update; we can sample
from the element mz of a disintegration, where F

�
q( j)

�
= z. Such an update moves

within the submanifold de�ned by the level set f qjF (q) = zg, analogously to a Gibbs
update which resamples within the level sets of one or several co-ordinate functions.

4.2.1 Review of Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a sampling algorithm based on Hamiltonian dy-
namics which exploits geometric ideas, and in particular disintegrations of an extended
target distribution. The method was �rst developed in 1987 by Duane et al [26], who
called it Hybrid Monte Carlo. A variant of HMC, the No U-Turn Sampler (NUTS)[41], has
been successful as the primary sampling algorithm for Bayesian inference in software
packages such as Stan [18] and PyMC3 [69]. We brie�y review HMC and its geometry
here.

Given a target probability measure on a p-dimensional smooth manifold Q, HMC
samples from an extended 2p-dimensional distribution on the cotangent bundle T� Q
as de�ned in Section 2.1.2, which is called phase-spacein this context. Although Hamil-
tonian dynamics and HMC can be described without co-ordinates [4], [12], we will as-
sume the existence of a global co-ordinate chart(Q, q) to simplify our exposition, where
co-ordinates take values in the set q(Q) = Q � R p. Elements of cotangent space can
then be identi�ed with pairs (q, w) of two vectors in R p, where q are co-ordinates for
a point q 2 Q, analogous to the degrees of freedom of a physical system, andw is the
vector of components of a covector in TqQ and is physically analogous to a momentum
vector.

Suppose that the probability measure on Q is pushed forward under the global co-
ordinate map to a p-dimensional Lebesgue density p (q), whose normalization may not
be known. One chooses some log-concave conditional momenta distribution, written
p (w jq), so that the joint distribution on position and momenta is

p (q, w) = p (q)p (w jq) =
1
Z

exp (� H (q, w)) (4.2.4)

where the negative log joint density is called the Hamiltonian or energy function H ,

H (q, w) := � log p (q, w) = � log p (q)
| {z }

:= V (q)

� log p (w jq)
| {z }

:= K(q,w)

(4.2.5)
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and Z is a normalization constant. The individual terms V (q) := � log p (q) and
K(q, w) := � log p (w jq) are respectively called the potentialand kineticenergy, in direct
analogy to their physical counterparts. The joint distribution (4.2.4), also known as the
Gibbs distribution, is supported on the product space Q � R p.

Starting from an initial position q(0) , the basic Hamiltonian Monte Carlo algorithm
generates a proposalz0 = ( q0, w0) via the following two steps:

1. Sample momenta from the conditional distribution w0 � p (w jq = q(0) ). The con-
ditional distribution is usually chosen to be multivariate Gaussian, so we may use
the Cholesky decomposition to draw independent samples from this distribution.

2. With initial conditions q(0) = q0 and w(0) = w (0) , solve Hamilton’s equations

dqi

dt
=

¶H
¶wi

dwi

dt
= �

¶H
¶qi , i = 1, ..,p (4.2.6)

until a �xed time T. Set the proposal to be the point at the end of this trajectory
with a negated momentum vector, q0 = q(T) and w0 = � w(T). In most practical
cases, Hamilton’s equations cannot be solved exactly and a numerical timestep-
ping method must be employed.

The proposal (q0, w0) is accepted or rejected using the canonical (joint) target density
p (q, w) µ exp (� H (q, w)). One can show [8] that the Hamiltonian Monte Carlo pro-
posal kernel is symmetric, and hence the acceptance probability (4.1.7) reduces to the
ratio of densities

a = min
�

p (q0, w0)
p (q(0) , w (0) )

, 1
�

= min

(
1
Z exp (� H (q0, w0))

1
Z exp

�
� H (q(0) , w (0) )

� , 1

)

= min
n

exp
�

H (q(0) , w (0) ) � H (q0, w0)
�

, 1
o

The Hamiltonian H is conserved [55] along exact solutions of the system (4.2.6), that is

d
dt

H (q(t), w(t))
�
�
�
�
t= t0

= 0

for all t0, and so H (q0, w0) = H (q0, w0). Exact solutions of Hamilton’s equations there-
fore yield proposals which are always accepted. However, in practice the numerical
integration of the dynamical system does not exactly conserve the Hamiltonian, and
hence the acceptance probability can be less than 1. HMC samples the joint distribution
(4.2.4) on position and momenta, with the position variables being marginal samples
from the intended target distribution p .

Hamiltonian Monte Carlo only requires the target density p (q, w) up to a multi-
plicative constant, because this is equivalent to an additive constant in the Hamiltonian
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H = � log p (q, w). Solutions of Hamilton’s equations (4.2.6) are invariant under addi-
tion of a constant to the Hamiltonian since (4.2.6) only involves partial derivatives of
H . Thus, the entire HMC algorithm can sample from a non-normalized density.

Since exact solutions of (4.2.6) preserve the Hamiltonian, the trajectories are con-
�ned to the level sets of H ;

H � 1(E) = f (q, w) 2 Q � R pjH (q, w) = Eg

The Hamiltonian can be viewed as the projection map of a �ber bundle, with total
space given by Q � R p, base spaceR and the level sets of the Hamiltonian making up
the �bers. The joint distribution (4.2.4) admits a disintegration over this �ber bundle
whose elements are called themicrocanonical distributions[12], [8], which are conditional
probability distributions on each level set or �ber. Hamiltonian dynamics (4.2.6) can be
shown to preserve the microcanonical distributions [12].

To fully specify the Hamiltonian and hence the joint distribution on position and
momenta, one must choose a conditional distribution p (w jq) for the momenta given
position. Suppose the conditional momenta given q has a zero-mean multivariate nor-
mal distribution, whose covariance matrix G depends on q in general;

p (pjq) = Normal (pj0, G(q))

which yields the Hamiltonian

H =
1
2

pTG� 1(q)p +
1
2

log det G(q) � log p (q) �
1
2

pTG� 1(q)p +
1
2

log det G(q) + V (q)

The term 1
2pTG� 1(q)p corresponds to the kinetic energy of a particle on a p-dimensional

Riemannian manifold, whose metric has components G(q) in the (Q, q) co-ordinate
chart [4]. The resulting HMC algorithm is therefore called Riemannian Manifold Hamil-
tonian Monte Carlo(RM-HMC) introduced by Girolami and Calderhead [39]. They sug-
gest a metric given by the Fisher infomation plus the Hessian of the negative log prior
density,

G(q) = I (q) � r 2 log p 0(q) (4.2.7)

As we noted in Chapter 3, Proposition 3.1.2 implies that this is the metric in the poste-
rior Bregman geometry for an exponential family likelihood. Alternatively, a constant
metric G(q) � M may be chosen, resulting in a �at curvature tensor and hence is re-
ferred to as EuclideanHMC.

A similar algorithm is based on Langevin diffusions, called the Metropolis Ad-
justed Langevin Algorithm (MALA) [64], [7]. Girolami and Calderhead [39] also extend
MALA to the Riemannian manifold MALA (RM-MALA) algorithm. Both RM-HMC
and RM-MALA admit simpli�ed versions for which the connection coef�cients are set
to zero everywhere, reducing the required computational cost.

Riemannian manifold HMC/MALA algorithms usually outperform their Euclidean
counterparts in terms of effective sample size; see Girolami and Calderhead [39], and
the review by Livingstone and Girolami [50]. For models whose prior or posterior
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density is not log-concave, Betancourt [9] suggests a generalSoftAbsmetric for RM-
HMC which is a modi�ed version of the Hessian matrix with eigenvalues forced to be
positive. For hierarchical models, RM-HMC with the SoftAbs metric has been shown
to have favourable performance and exploration of parameter space compared to Eu-
clidean HMC [11]. RM-HMC has an interesting use case in sampling from densities on
submanifolds isometrically embedded in R p, for which the algorithm simpli�es and is
called Geodesic Monte Carlo[16].
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Chapter 5

Sampling using Dually-Flat
Geometry

In this chapter I will describe the main contributions of the thesis; MCMC algorithms
which alternately sample the target distribution conditioned on orthogonal e- and m-
�at submanifolds. For any given Bregman generator F the algorithms sample on or-
thogonal foliations in the dually-�at geometry generated by F, i.e. orthogonal ev-
erywhere in the r 2F metric. The hope is that when F = � log p for a log-concave
density p , so that orthogonality is with respect to the Hessian of the negative log den-
sity, orthogonal directions are close to independentsampling directions and the resulting
Markov chains have low autocorrelation.

I will suggest two speci�c algorithms following this strategy. Firstly, the Orthog-
onal Gibbs algorithm samples primal co-ordinates conditioned on dual co-ordinates.
Each step of the sampler is equivalent to a Gibbs update in the k-cut mixed co-ordinate
system, with k incremented after each update. When F is the Euclidean Bregman gen-
erator 1

2qTq, Orthogonal Gibbs reduces to the usual deterministic-scan Gibbs sampler.
Secondly, the Orthogonal Gradient algorithm samples along an e-geodesic in the di-
rection of the gradient r F at the current sample, and then samples on the m-�at sub-
manifold orthogonal to the e-geodesic.

For a multivariate Gaussian target distribution with Bregman generator F = � log p ,
the induced metric r 2F is constant. In this case both of the above algorithms reduce
to sampling analogues of conjugate directionssolvers for symmetric positive-de�nite lin-
ear systems. I will show in this chapter and Appendix D that Orthogonal Gibbs and
Orthogonal Gradient respectively become identical to the Gaussian Elimination (GE)
and Conjugate Gradient (CG) solvers with added stochastic terms. These results re-
�ect previous work by other researchers on the relationship between sampling and
optimization algorithms, in particular by Fox and Parker [30], [31], who have devel-
oped similar, though not identical, conjugate directions sampling algorithms [59], [29].
I will also prove that the Orthogonal Gibbs sampler produces independent samples for
a multivariate Gaussian target distribution with the p -Bregman generator.

I will derive both algorithms from a general procedure for sampling in generalized
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mixed co-ordinates. Theorem 5.1.6 will show that this general algorithm preserves the
target distribution, and hence so do the Orthogonal Gibbs and Orthogonal Gradient
algorithms.

Finally, I will present numerical examples with Gaussian and non-Gaussian tar-
gets for which both algorithms appear to converge to the correct distribution, and for
which the samples appear to be near-independent. The novel samplers are compared
to deterministic-scan Gibbs and the No U-Turn Sampler (NUTS).

5.1 General Recursive Algorithm

We now introduce a class of sampling algorithms which we refer to as Dual Complement
Submanifold Samplers. Suppose as usual thatp (q) is a probability density supported on
a convex subset ofR p, and DF is a Bregman divergence on R p. We stress thatDF need
not be the p -Bregman divergence, although we will see that this geometry is often the
best choice when p is log-concave. The general algorithm and all results stated in this
section are novel contributions to the literature.

As described in the introduction of this chapter, the main idea is to �rst sample
the target distribution conditioned onto an e-�at submanifold, and then on a dual-
complementary m-�at submanifold, as illustrated in �gure 5.1.1. As we discussed in
Section 4.2, the notion of conditioning on a submanifold is made precise by consid-
ering a disintegration of p over a �ber bundle for which the particular submanifold
is a �ber. Since the generalized mixed co-ordinate systems of Section 3.3.3 induce a
�ber bundles given by foliations, the overall scheme we suggest can be viewed as a
Metropolis-within-Gibbs sampler in which primal co-ordinates are resampled condi-
tionally on complementary dual co-ordinates and vice versa.

EA, b

M B,d0

q

q0

q00

Figure 5.1.1: Sampling on complementary dual submanifolds. Starting from an initial
point q, the component within the e-�at submanifold EA,b is resampled to obtain a new
point q0. The algorithm then resamples on the dual complement m-�at submanifold
M B,d0, which intersects EA,b orthogonally with respect to the Riemannian metric. This
yields a new sample q00.
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5.1.1 Overview of General Algorithm

Suppose q is the current iterate of the algorithm in primal co-ordinates. We generate
l < p linearly independent vectors in R p, which can depend on q in general, and ar-
range the vectors into the columns of a p � l matrix A. The choice of A at each step
determines the speci�c algorithm within the class of dual complement submanifold
samplers; two choices for A we will study are the standard basis vectors and the gradi-
ent of the generator at q, r F(q). In all cases we always assumel is much smaller than
p. In primal co-ordinates, the af�ne subspace through q spanned by the columns of A
represents an l-dimensional e-�at submanifold EA,b where b is the orthogonal projec-
tion, with respect to the Euclidean inner-product, of q onto the kernel or nullspace of
A. The submanifold therefore has the af�ne parameterization q0 = Aa0+ b in primal
co-ordinates where a0ranges over a convex subset ofR l .

The algorithm �rst samples p conditioned on EA,b . In Theorem 5.1.1, we will give
an explicit disintegration of p over the general e-foliation de�ned by A, and show
that we may sample from elements of the disintegration by sampling a(1) from the
l-dimensional probability density

p A �
(a0) µ p

�
Aa0+ b

�
(5.1.1)

with respect to the l-dimensional Lebesgue measure l l (da0), and then embedding the
sample into R p via q0 = Aa(1) + b. Then q0 is a sample from the conditional distri-
bution p jEA,b

, a probability measure on R p which is concentrated on the submanifold
EA,b . This step requires us to draw from the l-dimensional density (5.1.1) using some
other sampling algorithm which we refer to as the subsampler. In principle any MCMC
algorithm may be used as the subsampler; we offer some suggestions in Section 5.1.4.
Since l is assumed to be very small, e.g. l = 1, (5.1.1) can be sampled by a �black-
box� or generic subsampling algorithm that requires no hand-tuning and can produce
independent or near-independent samples after some thinning. This is essentially a
Metropolis-within-Gibbs update to resample the primal component a0 of the general-
ized mixed co-ordinates.

The algorithm then samples the target conditioned on the dual complement sub-
manifold to EA,b through q0. Recall that this is the unique (p � l )-dimensional m-
�at submanifold through q0 orthogonal to EA,b with respect to the Riemannian met-
ric induced by DF. Given a matrix B 2 R p� (p� l ) whose columns form a basis for the
Euclidean-orthogonal complement (Im A)? , i.e. such that ATB = 0, the results in Sec-
tion 3.3.3 show that the dual complement submanifold is M B,d0. This is the set of points
whose dual co-ordinates are the plane Bg0+ d0 where g0 ranges over a convex subset
of R p� l , and d0 = Ad0 = AA � h0 is the Euclidean-orthogonal projection of the dual
co-ordinates h0 = r F (q0) of q0 onto (Im B)? = Im A. Recall that there exists a param-
eterization (3.3.20) of M B,d0 in primal co-ordinates, called its primal embedding �Ld0(b)
where b 2 R p� l . In Theorem 5.1.2, we will give an explicit disintegration of p over
the general m-foliation, for which the element concentrated on M B,d0 can be sampled
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by sampling a density on b,

p d0(b) µ
p ( �Ld0(b))

�
�det(A � G( �Ld0(b)) A)

�
�

and then embedding into R p by evaluating q00:= �Ld(b00) at the sample b00� p d0. This
yields a new sample q00from the element of the disintegration concentrated on M B,d0.
The new point q00then forms the next iterate of the chain. In 5.1.3, we will discuss
how to explicitly evaluate the primal embedding by solving an l-dimensional convex
optimization problem.

In order to sample from p d0, we might consider using a black-box subsampler again.
However, since l is much smaller than p, the (p � l )-dimensional probability distribu-
tion p d0 is likely to be just as dif�cult to sample as the full target distribution p . Instead
we suggest using recursion; apply the same overall algorithm to sample p d0. By Theo-
rem 2.5.5,M B,d0 has a dually-�at geometry, and Theorems 3.3.11 and 3.3.12 respectively
state that b are primally af�ne co-ordinates in this geometry with Bregman generator

flFd0(b) := F
� �Ld0(b)

�
�

�
d0� T �Ld0(b)

and p d0 is supported on a convex subset of R p� l , namely B� Q. Hence all the assump-
tions of the algorithm listed at the beginning of this section are satis�ed in its recursive
application to sample p d0 using the inherited Bregman divergence D flF. In its �rst recur-
sive call, the algorithm samples on an l-dimensional submanifold within M B,d , which
is e-�at with respect to the intrinsic dually-�at geometry of M B,d0, but in general is not
e-�at in the ambient geometry of R p equipped with DF. The algorithm then recurses
again on the dual complement submanifold M B2,d0

2
, which is m-�at when viewed ei-

ther as a submanifold of M B,d0 or Q. The algorithm therefore samples on a system of
submanifolds embedded within each other, as illustrated as a tree structure in �gure
5.1.2.
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p-dimensional
dually-�at manifold

Q := (R p, DF)

l-dimensional
submanifold

e-�at in Q

(p � l )-dimensional
submanifold

M B,d0

m-�at in Q

l-dimensional
submanifold
e-�at in M B,d0

(p � 2l )-dimensional
submanifold

M B2,d0
2

m-�at in M B,d0 and Q

l-dimensional
submanifold

e-�at in M B2,d0
2

etc...
Recurse p

l � 1 times
in total

Figure 5.1.2: The system of embedded submanifolds used for conditional sampling in
a dual complement submanifold sampler.

We assumel divides p so that after p/ l � 1 recursive function calls, the target distri-
bution is l-dimensional. This is a base case for the recursion, in which the subsampler
is called to sample directly from this low-dimensional probability density. The result is
then returned up the chain of recursive calls, and eventually embedded into the original
spaceR p to yield q00.

After stating the relevant disintegration theorems in Section 5.1.2, we will discuss
how to evaluate the primal embedding �Ld0(b) in Section 5.1.3. Finally, in Section 5.1.4
we will state the recursive algorithm in a general form and prove that it preserves the
target distribution p .

5.1.2 Disintegration over e- and m-foliations

The dual complement submanifold algorithm requires us to sample from p conditioned
on e- and m-�at submanifolds. This is made precise by the concept of a disintegration
over a �ber bundle discussed in Section 4.2. Here we state explicit disintegrations of a
target density over e- and m-�at submanifolds, which are novel results.

Consider the �rst step of the algorithm, in which p is resampled on an e-�at sub-
manifold. For l < p, let A 2 R p� l have full rank and f EA,bg be an e-foliation of Q,
where each EA,b is a l-dimensional e-�at submanifold spanned by the columns of A in
primal co-ordinates, where b ranges over (Im A)? . As discussed in 3.3.3, thee-foliation
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is a �ber bundle with projection map F E(q) := B� q where B 2 R p� (p� l ) with ATB = 0,
and B� :=

�
BTB

� � 1BT is the generalized inverse of B. Furthermore, we have the de-
composition q = Aa + Bb with b := Bb so that eachEA,b corresponds to �xing b and
allowing a to vary. Each b selects a different �ber, i.e. level set of F E. Then we have the
following theorem, proved in Appendix B.

Theorem 5.1.1 (Disintegration over e-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on a convex open subsetQ � R p, and let A 2 R p� l and B 2 R p� (p� l ) be
full-rank matrices with ATB = 0l � (p� l ) . For b 2 B� Q, de�ne the measuremb on Q such that
for a Borel set U� R p,

mb(U ) :=
Z

U \ F � 1
E (f bg)

p (q)
q

det (BTB)H l (dq) (5.1.2)

=
Z

A � (U \ F � 1
E (f bg))

p (Aa + Bb)
�
�det

�
A B

� �
� l l (da) (5.1.3)

whereH l is the l-dimensional Hausdorff measure onR p and l l is the l-dimensional Lebesgue
measure onR l . Then the measuresf mbg form a disintegration of the target measurep (q) l p(dq)
over the �ber bundleF E : Q ! R p� l , F E(q) = B� q.

The upshot of Theorem 5.1.1 is that for eachb we can sample from mb, which can be
interpreted as a conditioning of p on the �ber F � 1f bg, by sampling the a component
from a density proportional to p (Aa + Bb).

For the same matricesA and B, we also have the m-foliation f M B,dg, a set ofm-�at
submanifolds equivalent to the �bers of the projection map F M (q) := A � r F(q). For
eachd 2 R l , the �ber M B,d = F � 1(f dg) is an m-�at submanifold, where d = Ad. The
following theorem gives a disintegration over the m-foliation.

Theorem 5.1.2(Disintegration over m-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on an open convex subsetQ � R p, A and B be matrices as in Theorem 5.1.1,
andX = r F(Q). For d 2 A � X, de�ne the probability measuremd on Q such that for a Borel
U � R p,

md(U ) =
Z

U \ F � 1
M (f dg)

p (q)
det

�
AT A

�

r

det
�

ATG(q)2A
� H p� l (dq) (5.1.4)

whereH p� l is the(p � l )-dimensional Hausdorff measure onR p, G(q) := r 2F(q) andF M :
R p ! R l , F M (q) = A � r F(q) for a smooth convex function F: R p ! R . Then the
measuresf mdg form a disintegration of the target measurep (q) l p(dq) over the �bers ofF M .
Furthermore, we have

md(U ) =
Z

B� (U \ F � 1
M (f dg))

p ( �Ld(b))

�
�
�
�
�

det
�
A B

�

det(A � G( �L(b)) A)

�
�
�
�
�
l p� k (db) (5.1.5)

wherel p� k is the(p � k)-dimensional Lebesgue measure onR p� k and �Ld is the primal embed-
ding ofF � 1

M (f dg).
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The proof is also given in Appendix B. Put simply, we can sample from md by sam-
pling b from the density

p d(b) µ
p ( �Ld(b))

�
�det(ATG( �Ld(b)) A)

�
� (5.1.6)

and then embedding into R p with the primal embedding �Ld(b).

5.1.3 Numerical Evaluation of Primal Embedding

Before stating the recursive algorithm explicitly, we must discuss how to evaluate the
primal embedding �Ld(b) of an m-�at submanifold. Recall that for matrices A 2 R p� l

and B 2 R p� (p� l ) both of full rank with ATB = 0, we decompose the primal and dual
co-ordinates of a point q 2 Q as

q = Aa + Bb h = r F(q) = Ad + Bg

We consider holding d �xed and allowing g to vary; g is then a co-ordinate chart for
the (p � l )-dimensional m-�at submanifold M B,Ad. In primal co-ordinates q, this sub-
manifold is a hypersurface embedded in R p that is curved in general. We seek a pa-
rameterization q = �Ld(b) of this hypersurface. The Implicit Function Theorem B.0.4
guarantees the local existence of a function ad(b) which gives the a component such
that q = Aad(b) + Bb = : �Ld(b).

Let us �x b and consider how to compute ad(b). Note that differentiating F(Aa +
Bb) with respect to a yields

¶
¶ai F(Aa + Bb) = å

s

¶qs

¶ai
¶F
¶qs = å

s
As

i h
s

) r aF(Aa + Bb) = ATh = AT Ad

) r a

�
F(Aa + Bb) � aT AT Ad

� �
�
�
a= ad(b)

= 0

This is a system of l equations in l variables for ad(b). The equations are equivalent
to the Legendre transform for the restricted convex function a 7! F(Aa + Bb), where
the corresponding restricted dual variable is AT Ad. It follows that ad is the solution of
the unconstrained convex optimization problem

ad = argmin a F(Aa + Bb) � aT AT Ad
| {z }

:= j (a)

(5.1.7)

This agrees with the expression for the primal embedding given in Proposition 3.3.9.
The gradient and Hessian of the objective function are respectively given by

r j (a) = ATr F(Aa + Bb) � AT Ad (5.1.8)

r 2 j (a) = ATr 2F(Aa + Bb)A (5.1.9)
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Note that (5.1.9) is proportional to the denominator in the integrand of (5.1.5) for the
samea and b. Thus, since computing the conditional density on an m-�at submanifold
requires evaluating the Hessian term (5.1.9) anyway, one may as well use Newton’s
method to solve the optimization problem (5.1.7) because the asymptotic time com-
plexity of the overall sampler is unchanged; the cost of evaluating a log-determinant
and solving a linear system of the same size both scale cubically with the dimension of
the matrix. Since l is assumed to be small, solving the l � l linear system at each step
of Newton’s method has insigni�cant cost. The entire method for evaluating �Ld(b) is
listed as algorithm 2.

Algorithm 2 Evaluating the primal embedding �Ld(b) of M B,Ad

function MFLAT EMBED(b, F, d, A, B, a0)
b  Bb . a0 here is the initial guess for Newton’s method
ad  N EWTON (a 7! F(Aa + b) � aT AT Ad, a0)
return Aad + b

end function

In De�nition 3.3.13, we de�ned a map Ld : R p ! R p, Ld(q) = �Ld
�
B� q

�
. Algorithm

3 is a slight modi�cation of 2 which allows evaluation of Ld.

Algorithm 3 Evaluating the parameterization Ld(q) of M B,Ad

function MFLAT EMBED2(b, F, d, A, a0) . a0 here is the initial guess for Newton’s
method

ad  N EWTON (a 7! F(Aa + b) � aT AT Ad, a0)
return Aad + b

end function

5.1.4 General Dual Complement Submanifold Algorithm

Finally we can state the recursive dual complement submanifold algorithm, which is
listed as Algorithm 4. The algorithm is implemented as a function R ECDCSSAMPLER ,
which takes three arguments:

� q 2 R p, the initial iterate of the algorithm.

� log p : R p ! R , a function returning the target log probability density up to
additive constants.

� F : R p ! R , a smooth convex Bregman generator.

The function recursively calls itself on line 22, and so we must allow for the dimen-
sion of each of these inputs to vary. On line 2, the algorithm calls the following function.

123



Algorithm 4 General Recursive Dual Complement Submanifold Algorithm

1: function RECDCSSAMPLER (q, F, log p )
2: A  BASISVECTORS(q, F)
3: a  A � q
4: b  q � Aa(0)

5: a0  SUBSAMPLER (a 7! log p (Aa + b), a)
6: q0  Aa0+ b
7: if D IMENSION (q)== l then
8: q00 q0

9: return q00

10: end if
11: d0  A � r F(q0)
12: B  COMPLEMENT BASIS(A)
13: function flF(b)
14: �q  MFLAT EMBED(b, F, d, A, B, a0)
15: return F( �q) � d0T AT �q
16: end function
17: function log p d0(b)
18: �q  MFLAT EMBED(b, F, d, A, B, a0)
19: return log p ( �q) � log det ATr 2F( �q)A
20: end function
21: b0  BTq0

22: b00 RECDCSSAMPLER (b0, flF, log p d0)
23: q00 MFLAT EMBED(b00, F, d, A, B, a0)
24: return q00

25: end function
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De�nition 5.1.3. For �q 2 Rk and a convex Bregman generator �F : Rk ! R where k � l ,
the function B ASISVECTORS( �q, �F) returns some k � l matrix �A of rank l .

The varying size k of the inputs allows for the B ASISVECTORS function to be called
within recursive calls of the algorithm. For example, the �rst time B ASISVECTORS is
called with arguments q and F, and thus k = p. Within the �rst recursive call to sample
b 2 R p� l , the BASISVECTORS function is called with k = p � l , then k = p � 2l in the
next recursive call and so on, each time returning a full-rank k � l matrix A. The choice
of which matrix the B ASISVECTORS returns determines the exact algorithm; choosing
standard basis vectors leads to the orthogonal Gibbs algorithm which we will discuss in
Section 5.2, and choosingr �F gives the orthogonal gradient algorithm to be discussed
in Section 5.3.

On lines 3 and 4, the initial iterate is decomposed into the form Aa + b. As stated
in Section 5.1.1, thea component of this is to be resampled, which requires some other
MCMC algorithm called the subsampler. A subsampler is any function satisfying the
following.

De�nition 5.1.4. Let log �p : R l ! R be a log probability density function up to an
additive constant. Then a subsampler , written S UBSAMPLER (log �p , �), is a Markov
kernel which preserves �p , i.e. if �a � �p then the result �a0  SUBSAMPLER ( log �p , �a) is
also distributed according to �p .

Thus lines 5 and 6 use the subsampler to resample thea component of q from the
relevant density (5.1.1), yielding an updated sample q0. Note that the optimal choice
of subsampler will undoubtedly depend on the overall target distribution p , but we
can offer some generic suggestions. After several nested recursive calls, the target �p is
de�ned by repeated applications of (5.1.6). Thus subsamplers that rely on derivative
information of the log-density such as Hamiltonian Monte Carlo or MALA will require
expensive derivatives of log-determinants of the Riemannian metric, and so we sug-
gest using derivative-free subsamplers. Furthermore, in general (5.1.6) is not known to
be log-concave in b, and there is little we can easily infer about its scale to tune any
parameters of the subsampler such as a step-size. Forl = 1, �p is a univariate den-
sity, for which a reasonable choice might be the Adaptive Rejection Metropolis Sampler
(ARMS) of Gilks [38], which can be derivative-free and does not require log-concavity
of the target or hand tuning of parameters. The slice sampler [56] also satis�es these
properties. For k > 1, the T-walk of Christen and Fox [20] is a �black-box� option that
may offer reasonable performance.

If the input q has dimension l , then the base case of the recursion has been reached
and caught by the if-statement on line 7. The new sample q00= q0 is returned.If the
dimension is larger than l , then the algorithm recurses on the dual complement to EA,b .
This requires a choice of basis for the dual complement, given by the following function.

De�nition 5.1.5. For A 2 Rk� l , COMPLEMENT BASIS(A) returns a k � (k � l ) matrix B
which has Euclidean-orthogonal columns, has rank k � l , and satis�es ATB = 0l � (k� l ) .
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For any set of vectors, we can always �nd a Euclidean-orthogonal set spanning the
same space, and thus the condition of Euclidean-orthogonal columns is not restrictive.
The complement basis B initialised on line 12 de�nes the primal co-ordinates b for the
dual complement, in which the log target p d0 and Bregman generator flF of the dual
complement are de�ned.

Since the aim is to resample from md0 from Theorem 5.1.2, the algorithm de�nes a
new target log density function on line 17 which evaluates p d0 given in (5.1.6). This
requires evaluating the primal embedding �Ld0 with a call to MF LAT EMBED. Similarly,
the inherited Bregman generator for the dual complement is de�ned on line 13, using
the result from Theorem 3.3.12 also evaluates the primal embedding. We assume that
the gradient and Hessian, i.e. the inherited dual co-ordinates and metric, are evaluated
using their expressions given in the Theorem.

Finally, the algorithm calls itself recursively, passing the b co-ordinate of q0 as the
initial iterate, the inherited Bregman generator and log p d0 as the target log density. This
returns a new sample b00, which is embedded into R p on line 23 as q00, the �nal result
of the algorithm.

The following novel theorem shows that Algorithm 4 preserves the target distribu-
tion.

Theorem 5.1.6. Let F andp respectively be a Bregman generator and a probability density
on R p. Suppose l divides p and theBASISVECTORSand COMPLEMENT BASIS functions are
well-de�ned for inputs of dimension k= l , 2l , ..,p. If q � p , algorithm 4 applied top returns
q00� p .

Proof. We show the result using induction on the dimension p of the target distribution
and Bregman generator. Since l divides p, we write p = nl for some 1 � n � p and
argue by induction on n.

Base case.Suppose the dimensions of the target distribution and initial iterate q are
both p = l , i.e. n = 1. Then the matrix A on line 2 is a square l � l matrix of full rank.
Thus a = A � 1q and so b = 0 on line 4. The subsampler on line 5 therefore has a target
density argument de�ned by a 7! p (Aa), i.e. the pullback p A � 1 of p by the linear map
A or equivalently its pushforward by A � 1. Sinceq � p , then a(0) = A � 1q is distributed
according to the same distribution p A � 1. By de�nition, the subsampler preserves this
distribution, implying a0 � p A � 1 and hence in line 6 q0 = Aa is distributed according
to p . The if statement on line 7 is triggered and the algorithm returns q00= q0 � p .

Induction step. Suppose that the statement is true when the dimension of the target
distribution, and hence the dimension of q, is p = ln0 for some n0 � 1. We refer to this
assumption as the inductive hypothesis.

Consider the algorithm with input target distribution p and initial iterate q both of
dimension l (n0 + 1). By Theorem 5.1.1, in particular (5.1.3), lines 5 to 6 must preserve
mb, the element of the disintegration over the e-foliation concentrated on the �ber con-
taining q, i.e. such that b = F E(q). By Theorem 4.2.4, the same lines must therefore
preserve the overall target distribution p , and so q0 � p .
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Note that A is a l (n0 + 1) � l matrix, and thus the dimension of the density p d0 de-
�ned in line 17 is l (n0 + 1) � l = ln0. Thus the recursive call of the function in line
22 must preserve p d0 by the inductive hypothesis. Thus by Theorem 5.1.2, lines 22-23
de�ne a random update q0 7! q00which preserves md0, the measure in the disintegra-
tion over the m-foliation concentrated on an m-�at submanifold containing q0. Hence
Theorem 4.2.4 implies the update also preserves the overall target distribution p , and
so q00� p .

Iterative Dual Complement Submanifold Algorithms

If implemented as-is, Algorithm 4 is severely computationally inef�cient. The call to
MFLAT EMBED at each level of recursion requires the solution of progressively nested
optimization problems, since flF itself is evaluated by a call to MF LAT EMBED with dif-
ferent arguments. Furthermore, the algorithm is linear recursive[1], meaning that its
execution requires temporary storage of data proportional to p at each level of recur-
sion; for example, the representation of inherited Bregman generators and conditional
target distributions, and the variables d0 and A must all be kept in memory at each re-
cursive call. For large enough p, too many instructions will be pushed to the computer’s
call stack and cause a stack over�ow. Clearly a different implementation is required.
For each of the Orthogonal Gibbs and Orthogonal Gradient algorithms, we will state
a more ef�cient iterative implementation derived in Appendix C which is equivalent
to the recursive implementation, i.e. produces the same samples given the same input
arguments and pseudorandom seed.

5.2 Orthogonal Gibbs Sampling

We now introduce a special case of the general algorithm called Orthogonal Gibbs .
Suppose we choose the BASISVECTORSfunction to return the �rst l columns of the p � p
identity matrix, where p is dimension of the input q to the BASISVECTORSfunction;

A = BASISVECTORS(q, F) = 1p� l =

0

B
B
B
B
B
B
@

1 0 0 � � �
0 1 0 � � �
0 0 1 � � �

0 0 0 ...
...

...
... � � �

1

C
C
C
C
C
C
A

| {z }
l columns

=
�

1l � l
0(p� l )� l

�
(5.2.1)

and choose the complement basis to be the remaining p � l standard basis vectors of
dimension p,

B = COMPLEMENT BASIS(A) =
�

0l � (p� l )
1(p� l )� (p� l )

�
(5.2.2)
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Sinceq = Aa + Bb, as we remarked in Section 3.3.3, we recover the standard mixed
co-ordinates of Section 3.3.1. In particular,

a = q� l := ( q1, ..,ql ) b = q> l := ( ql+ 1, ...,qp)

d = h� l := ( h1, ..,hl ) g = h> l := ( hl+ 1, ...,hp)

Let us reinterpret algorithm 4 with this choice of A and B, for which A � = AT and
B� = BT. First we sample a = q� l proportionally from the target density, with b0 = q(0)

> l
�xed. This is equivalent to a Gibbs update for the block q� l , sampling conditioned on
the current value of the complementary block q> l . We then compute the �rst l dual
co-ordinates for the updated state,

d0 = h(1)
� l = ATr F

0

@

0

@
q(1)

� l

q(0)
> l

1

A

1

A =

0

@¶F
¶qj

0

@
q(1)

� l

q(0)
> l

1

A

1

A

l

j= 1

This dual block is distributed according to the conditional distribution of h� l given the
primal co-ordinates q(0)

> l . Thus, the �rst step of the algorithm is equivalent to a block-
Gibbs step in the mixed co-ordinate system.

The second step of the algorithm is the recursion; we call the algorithm again with
p ! p � l , and inherited Bregman generator and target distribution respectively given
by

�F(q> l ) := F(q> l ) � h� l
T AT �Lh� l (q> l ) (5.2.3)

�p (q> l ) µ
p

� �Lh� l (q> l )
�

det
�
�
�G� l ,� l ]

� �Lh� l (q> l )
� �
�
�

(5.2.4)

where G[l � l ](q) = ATr 2F(q)A is the upper-left l � l block of the metric, and �Lh� l (q> l )
is the co-ordinate embedding of the m-�at manifold M k described in Section 5.1.3. This
recursive call of the algorithm returns a sample from the conditional distribution of b =
q> l given h(1)

� l ; it is the complementary Gibbs update, sampling the primal q> l block
given the latest values of the dual components h� l . In conclusion, the algorithm with
this choice of A and B is simply deterministic-scan block Gibbs in mixed co-ordinates,
working with blocks h� l and q> l , using recursion to sample one of the conditionals. For
this reason, we refer to this algorithm as Orthogonal Gibbs , where �orthogonal� refers
to the fact that the algorithm moves on Riemannian-orthogonal submanifolds.

The recursive form of the algorithm is inef�cient for most target distributions. In
Appendix C, we derive an equivalent iterative version of the Orthogonal Gibbs sam-
pler, listed as Algorithm 5. The algorithm iterates over n := p/ l blocks of components
of q, each of size l . At the j th iteration, the j th block of q is resampled conditioned on
the 1, ..,j � 1 blocks represented in dual co-ordinates, and the j + 1, ..,n blocks in primal
co-ordinates. This conditional distribution has a target log-density computed in the
function SUBTARGETGIBBS.
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Algorithm 5 Orthogonal Gibbs Sampler

1: function SUBTARGETGIBBS(z, q, h, j, F, log p )
2: a0  N EWTON (a 7! F

��
a; z; q[jl + 1:p]

��
� aTh,a0 := q[1:( j � 1) l ])

3: q0  
�
a0; z; q[jl + 1:p]

�

4: return log p (q0) � log det
�

G[� ( j � 1) l ,� ( j � 1) l ](q0)
�

5: end function
6:
7: function ORTHOGONAL GIBBS(q(0) , F, log p )
8: p  D IMENSION (q(0))
9: n  p

l . Calculate number of blocks. We assumek divides p.
10: z(1)  SUBSAMPLER (z 7! log p

��
z; q(0)

[( l+ 1):p]

��
, q(0)

[1:l ])

11: q(1)  
�

z(1) ; q(0)
[( l+ 1):p]

�

12: h(1)  
�

¶F
¶qi (q(1) )

� l

i= 1
13:
14: for j = 2, ..,n do
15: z( j)  SUBSAMPLER (z 7! SUBTARGETGIBBS

�
z, q( j � 1) , h( j � 1) , j, F, log p

�
,

q( j � 1)
[( j � 1) l+ 1:jl ])

16: a( j)  N EWTON (a 7! F
��

a; z; q( j � 1)
[jl + 1:p]

��
� aTh( j � 1) ,a0 := q( j � 1)

[1:( j � 1) l ])

17: q( j)  
�

a( j) ; z( j) ; q(0)
[jl + 1:p]

�

18: h( j)  
�

h( j � 1) ;
�

¶F
¶qi (q( j � 1) )

� jl

i=( j � 1) l+ 1

�

19: end for
20: return q(n)

21: end function

Figure 5.2.1 shows the iterates of two runs of the sampler for a bivariate target dis-
tribution p using the posterior Bregman geometry F(q) := � log p (q). The target
distribution is the conjugate prior on the natural parameters of a univariate normal
distribution. Blue lines show the e-�at submanifold, or e-geodesic, sampled on when
conditioning on primal variables. Red lines show m-�at submanifolds or m-geodesics
sampled when conditioning on dual variables. Note that the m-geodesics are nearly
straight, suggesting that the Bregman generator is nearly quadratic, i.e. the distribu-
tion is close to a multivariate Gaussian.

The following novel proposition further justi�es the name Orthogonal Gibbs; when
the Euclidean geometry is used, the algorithm reduces to the usual Gibbs sampler.

Proposition 5.2.1. For the Euclidean Bregman generator F(q) := 1
2qTq, the Orthogonal Gibbs

sampler reduces to the block deterministic-scan Metropolis-within-Gibbs algorithm, where the
subsampler is used to sample the full conditionals.
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Figure 5.2.1: Orthogonal Gibbs sampling
from a bivariate target distribution.

Proof. Note that for the Euclidean Bregman generator, r F(q) = q. Thus q( j)
[1:jl ] = h( j) for

all j = 1, ..,p, and the optimization problem solved on lines 2 and 16 simply reduces to

a( j) = q( j)
[1:( j � 1) l ]

Furthermore, since the metric in this case is simply the identity G � 1p� p, the log-
determinant on line 4 is zero. Thus the SUBTARGETGIBBS function call on line 15 re-
turns

log p
��

q( j � 1)
[1:( j � 1) l ],z, q( j � 1)

[jl + 1:p]

��

This is the logarithm of the conditional density of the j th block given all the comple-
mentary set of variables up to an additive constant independent of z, since

p
�

qj( l � 1)+ 1:jl = z j q[1:( j � 1) l ] = q( j � 1)
[1:( j � 1) l ], q[jl + 1:p] = q( j � 1)

[jl + 1:p]

�

µ p
��

q( j � 1)
1:( j � 1) l ,z, q( j � 1)

[jl + 1:p]

��

Therefore the subsampler samples from this conditional density, and hence the algo-
rithm is equivalent to the deterministic-scan Metropolis-within-Gibbs sampler.

5.2.1 Computational Cost

Let us consider the computational cost of the Orthogonal Gibbs algorithm, i.e. Algo-
rithm 5. At the j th iteration for j � 2, the algorithm requires the following computation:

� Evaluation of the S UBTARGETGIBBS function. This is called a number sj of times
by the sub-sampler, and each call involves a Newton iteration for a l ( j � 1)-
dimensional convex optimization problem, a log-determinant of a l ( j � 1) � l ( j �
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Operation Size at iteration j Number of evaluations
at iteration j

F sjdj
log p sj
r F ( j � 1) l components sjdj
r F l components 1
r 2F ( j � 1) l � ( j � 1) l sub matrix sjdj

Newton inner-solve ( j � 1) l � ( j � 1) l linear system sjdj
log det ( j � 1) l � ( j � 1) l matrix sj

Table 5.2.1: Breakdown of computational operations required for the Orthogonal Gibbs
algorithm. Here sj is the number of times SUBSAMPLER calls SUBTARGETGIBBS at iter-
ation j, and dj is the maximum number of Newton steps at iteration j.

1) sub-matrix of the Hessian of F, and at least one evaluation of the target log-
density.

� Another Newton solve on line 16. However, this Newton solve has already been
performed within S UBTARGETGIBBS, and can be cached to improve performance.

� On line 18, the j th block of dual components is computed, which are l components
of the gradient vector.

A breakdown of these computations is shown in Table 5.2.1. Assuming the Hessian
matrix r 2F is dense at each iteration, the most expensive operations for large p =
nl are the log-determinant and the linear solve at each Newton step, both of which
scale cubically with the dimension of their inputs. Suppose then that the cost of the
j th iteration of Algorithm 5 is bounded above by K( j � 1)3l3 FLOPs for some constant
K. Here K depends on sj and dj , which we assume are bounded as n increases. Note
that for j = 1 there are no Newton solves or Hessian evaluations, and the cost of the
iteration is dominated by s1 evaluations of the target log-density, which we assume is
negligible compared to later iterations. Then the total number of FLOPs is bounded
above by

n

å
j= 1

K( j � 1)3l3 = Kl3
n� 1

å
j= 1

j3 =
Kl3

4
n2(n � 1)2

Sincen = p/ l , this implies that the asymptotic cost of Algorithm 5 is O(p4) as p ! ¥ .

5.2.2 Relationship to Gaussian Elimination

There is a natural link between our suggested algorithms and conjugate directions solvers
for linear systems. In particular, when the Bregman generator is a quadratic form so
that its Hessian matrix is constant, the notion of orthogonality with respect to the Rie-
mannian metric is clearly equivalent to conjugacy, i.e. orthogonality with respect to an
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inner-product weighted by a symmetric positive-de�nite matrix. Updating the sam-
ple at each iteration of the general Algorithm 4 is then equivalent to resampling the
coef�cients in a mutually conjugate basis, analogously to the iterations of a conjugate
directions solver.

One can employ a modi�ed Gram-Schmidt process to transform any basis of R p

into a mutually conjugate basis; see Theorem D.0.2 in Appendix D. In particular, one
can transform the standard basis in R p into a conjugate basis for which the correspond-
ing conjugate directions solver is the Gaussian Elimination algorithm applied to the
matrix used to weight the inner-product [40, 76]. Since the Orthogonal Gibbs sampling
algorithm resamples in the direction of the �rst standard basis vector at each level of
recursion, one might therefore suspect a link with Gaussian Elimination. As stated ear-
lier, the relationship between sampling and optimization has been studied by previous
authors such as Fox [30], but to our knowledge this is the �rst time a sampling analogue
of Gaussian Elimination has been presented.

Suppose that in Algorithm 5, the target distribution is a multivariate Gaussian of
the form

q � Normal
�

L � 1w , L � 1
�

(5.2.5)

and suppose we choose the posterior Bregman geometry, so that the Bregman generator
is given by

F (q) =
1
2

qTL q � qTw (5.2.6)

Note that (5.2.5) is the form of the Bayesian posterior distribution from Section 1.5.1. In
Appendix D, we show that under this choice of target distribution and geometry, Algo-
rithm 5 reduces to a Gaussian Elimination Sampler, listed as Algorithm 6. The algorithm
produces an independent sample q(p) from the target distribution and the solution mof
L m = w . Note that lines 8-15 apply elementary row operations to L , w and V T; this
transforms the linear system L m = w to its reduced row echelon form, i.e. making it
upper-triangular.

The following theorem, proven in Appendix D, shows that the algorithm also pro-
duces the Cholesky factor of L as a biproduct.

Theorem 5.2.2. Let L 0 and V result from the application of Algorithm 6 to a symmetric
positive-de�nite matrixL 2 R p� p and w 2 R p. Let D be the diagonal matrix whose diag-
onal is the diagonal ofL 0. The lower-triangular Cholesky factor L ofL , i.e. such thatL = LLT,
is given by

L :=
�
L 0� TD � 1/2

In fact, the algorithm produces independent samples from the target distribution
after p iterations, as the following corollary shows.

Corollary 5.2.3. The �nal iterateq(p) of the Gaussian Elimination sampler, Algorithm 6, is
stochastically independent of the initial iterateq(0) and is a sample from the target distribution
Normal

�
L � 1w , L � 1�

.

132



Algorithm 6 Gaussian Elimination Sampler

1: V  1p� p . SetV to identity matrix
2: for j = 1, ..,p do
3: v( j)  V� j . Column j of V
4: zj � Normal

�
0, 1/ L jj

�

5: ej  
�

wj � å p
s= 1 L jsq

( j � 1)
s

�
/ L jj

6: q( j)  q( j � 1) +
�
zj � ej

�
v( j)

7: m( j)  m( j � 1) +
�
wj / L jj

�
v( j)

8: for i = j + 1, ..,p do . If j = p, the for loop is skipped
9: Ci j  L i j / L jj

10: for s = 1, ..,p do
11: L is  L is � Ci j � L js
12: Vsi  Vsi � Ci j � Vsj
13: end for
14: wi  wi � Ci j � wj
15: end for
16: end for

5.3 Orthogonal Gradient Sampling

The second speci�c algorithm we suggest is inspired by the conjugate gradient method
in optimizaton [73], [40]. One can imagine sampling conditionally on an e-geodesic
whose tangent vector is proportional to the gradient of the Bregman generator at the
current sample, and then sampling on the complementary dual submanifold to the
geodesic as per Algorithm 4. We therefore suggest

A = BASISVECTORS(q, F) := �r F(q) (5.3.1)

and B any orthonormal basis for the Euclidean-orthogonal complement to the span of
this vector, e.g. the orthonormalized �rst k � 1 linearly-independent columns of

1k� k � r F(q)r F(q)T (5.3.2)

where k is the dimension of q.
Note that in (5.3.1), we take the gradient of the Bregman generator rather than the

target log-density. This choice is made to avoid taking gradients of log-determinants of
the metric, which arise in the target log-density at nested levels of recursion in Algo-
rithm 4. If we use the posterior Bregman generator, i.e. take F(q) = �r log p (q), then
we can include derivative information about the posterior without differentiating log-
determinants, since the gradient of the inherited generator �F is given in Theorem 3.3.12
as BTr F, i.e. the projection of the gradient onto the Euclidean-orthogonal complement
to the span of r F.
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We call the resulting algorithm Orthogonal Gradient , using the term �orthogonal�
to emphasize the local Riemannian inner-product, rather than �conjugate� which typ-
ically refers to a globally-constant inner-product. In Appendix C, we show that the
sampler may be implemented in an iterative form, listed as Algorithm 7. The initial
state q(0) must satisfy r F

�
q(0)

�
6= 0, so that r(1) 6= 0.

Algorithm 7 Orthogonal Gradient Sampler

1: function SUBTARGET(a, r, d, A, c, F, log p , a0)
2: b0  ar + c
3: q0  MFLAT EMBED2(F, b0, d, A, a0)
4: return log p (q0) � log det

�
ATr 2F(q0)A

�

5: end function
6:
7: function ORTHOGONAL GRADIENT (q(0) , F, log p )
8: p  D IMENSION (q(0))
9: r(1)  �r F

�
q(0)

�

10: a(0)  r(1) T
q(0) / r(1) T

r(1)

11: c(1)  q(0) � a(0)r(1)

12: a(1)  SUBSAMPLER (a 7! log p
�

ar(1) + c(1)
�

, a(0))

13: q(1)  a(1)r(1) + c(1)

14: b(1)  q(1)

15: d1  r(1) T
r F

�
q(1)

�
/ r(1) T

r(1)

16: A (1)  
�
r(1)

�

17: for j = 2, ..,p do
18: r( j)  A ( j)d � r F

�
q( j � 1)

�

19: c( j)  
�

1p� p � r( j) r( j) T

r( j) Tr( j)

�
c( j � 1)

20: a( j)
0  

�
A ( j � 1)

� �
q( j � 1)

21: a( j)
0  r( j) T

q( j � 1) / r( j) T
r( j)

22: a( j)  SUBSAMPLER (a 7! SUBTARGET(a, r( j) , d( j � 1) , A ( j � 1) ,c( j) , F, log p ,a( j)
0 ), a( j)

0 )
23: b( j)  a( j)r( j) + c( j) . Update b in the direction of R( j)

24: q( j)  MFLAT EMBED2(F, b( j) , d( j � 1) , A ( j � 1) , a( j)
0 ) . We already did this

embedding in flp - can be re-used
25: dj  r( j) T

r F
�

q( j)
�

/ r( j) T
r( j)

26: A ( j)  
�
A ( j � 1) r( j)

�
. Concatenater( j) onto right side of A ( j � 1)

27: end for
28: return q(n)

29: end function
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5.3.1 Relationship to Conjugate Gradient Solver

As we remarked in Section 5.2.2, the dual complement submanifold samplers reduce
to sampling along conjugate directions under the Euclidean Bregman generator (5.2.6).
For the Orthogonal Gradient sampler with this geometry and the multivariate Gaus-
sian target distribution (5.2.5), we show in Appendix D that the Orthogonal Gradient
sampler reduces to aConjugate Gradient (CG) sampler, listed as Algorithm 8.

Recall that each step of the conjugate gradient method minimizes the quadratic cost
function (5.2.6) along a conjugate direction produced by a modi�ed Gram-Schmidt pro-
cess applied to the negative gradients, i.e. residuals, of the cost function at each iterate
[40], [73]. Similarly, Algorithm 8 produces conjugate vectors by applying modi�ed
Gram-Schmidt to each iterate, and samplesalong the new conjugate direction at each
step. The sampler and solver are illustrated for a two-dimensional example in �gure
5.3.1. In particular, if we replace line 8 in Algorithm 8 with

l ( j)  � v( j) T
g( j � 1) / r ( j) ,

i.e. removing the randomly sampled variable z( j) , then we would recover exactly the
Conjugate Gradient solver for the linear system L m= w .

Since the Conjugate Gradient solverminimizes along the conjugate directions, the
gradients or residuals are mutually Euclidean-orthogonal, i.e.

g( i) T
g( j) = 0 for i, j 2 f 1, ..,pg such that i 6= j (5.3.3)

where g( i) := L q( i) � w for all i = 1, ..,p; see Saad [68]. This fact allows ef�cient im-
plementations of the Conjugate Gradient algorithm, since only one conjugate direction
needs to be stored at each stage. For our sampler Algorithm 8, equation (5.3.3) no
longer holds because the algorithm does not optimize the cost function along conjugate
directions. We must therefore orthogonalize the gradients by a Gram-Schmidt proce-
dure on line 12, and the sampler requires storage of three vectors g( j) , r( j) ,v( j) . While
this is less ef�cient than the Conjugate Gradient solver, which requires storage of two
vectors, we note that this is a large improvement over storing all the conjugate vectors
f v(1) , ...,v(p)g.

Conjugate Gradient sampling algorithms have been studied previously by Fox and
Parker [59] and also in separate works by Fox [29], [30]. There is a difference between
the algorithms introduced in these works and Algorithm 8; the CG sampler suggested
by Fox and Parker [59] samples from the subspace spanned by the conjugate vectors
produced by the usual CG solver, i.e. using the gradient at the solution of the line-
search at each step such that (5.3.3) is satis�ed, and so the conjugate directions are
entirely deterministic when conditioned on the initial state. This contrasts with Algo-
rithm 8, which uses the gradient at the current sample q( j � 1) to construct stochastic
conjugate directions. Similarly, Fox [29] suggests yet another conjugate directions sam-
pler in which the convex function F and right-hand side w are essentially modi�ed at
each iteration, such that in our notation

F( j) (q) =
1
2

qTL q � w ( j) T
q
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Future work could involve generalizing this idea to non-Gaussian targets, in which the
Bregman generator F is updated in an analogous way.

Algorithm 8 Conjugate Gradient Sampler

1: function CGSAMPLER (q(0) , L , w )
2: g(0)  L q(0) � w
3: v(1)  � g(0)

4: r(1)  � g(0)

5: for j = 1, ..,p do
6: r ( j)  v( j) T

L v( j)

7: z( j) � Normal (0, 1/ r ( j) )

8: l ( j)  z( j) � v( j) T
g( j � 1) / r ( j)

9: q( j)  q( j � 1) + l ( j)v( j)

10: g( j)  g( j � 1) + l ( j)L v( j)

11: dj  r( j) T
g( j) / r( j) T

r( j)

12: r( j+ 1)  
�
1 + dj

�
r( j) � l ( j)L v( j)

13: v( j+ 1)  r( j+ 1) �
�

r( j+ 1) T
g( j) / r ( j) l ( j)

�
v( j)

14: end for
15: return q(p)

16: end function
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Figure 5.3.1: The Conjugate Gradient solver (left) and sampler (right) in two-
dimensions for w = 0 and L a correlation matrix with variance s2

1 = L 11 = 1.0 in
the x-direction, s2

2 = L 22 = 1.0 in the y-direction and correlation 0.95, and the same
initial iterate q(0) = ( � 1, 2)T. The �rst conjugate direction v(1) is simply the residual
� L q(0) at the intial iterate in both cases, but the step length is chosen differently; the
solver minimizes a one-dimensional cost function at each step and hence moves deter-
ministically, whereas the sampler makes stochastic moves along the search directions.

Early Termination and Preconditioning

The Conjugate Gradient solver �nds the solution in fewer than p steps when L has
repeated eigenvalues [40]. For the Conjugate Gradient sampler, this property translates
into pathological early termination which we will discuss here, following the discussion
in Fox [29].

De�nition 5.3.1. Let g 2 R p be a vector and L 2 R p� p be a matrix. The j-order Krylov
subspacegenerated by L and g is

K j (L ,g) := Spanf g, L g, ..,L k� 1gg

Clearly Kj (L ,g) � Kj+ 1 (L ,g) for any j � 1. One can show that if L has m � p
distinct eigenvalues, then the dimension of the Krylov subspace of any order is at most
m [29], [68]. The relevance of the Krylov subspaces is made clear by the following
proposition.
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Proposition 5.3.2. For j = 1, ..,p, the jth iterateq( j) in Algorithm 8 is in the j-order Krylov
subspace generated byL andg(0) , af�nely shifted byq(0) ;

q( j) 2 q(0) + K j

�
L ,g(0)

�

Proof. Clearly, line 9 implies that

q( j) 2 q(0) + Spanf v(1) , ..,v( j)g

and hence the result follows if we can show

Spanf v(1) , ..,v( j)g � K j

�
L ,g(0)

�
(5.3.4)

We will show this by induction. For j = 1, we have r(1) = v(1) = � g(0) and clearly
(5.3.4) holds.

Assume an inductive hypothesis that the following both hold for some j = j0 2
f 1, ..,p � 1g,

Spanf v(1) , ..,v( j)g � K j

�
L ,g(0)

�
(5.3.5)

Spanf r(1) , ..,r( j)g � K j

�
L ,g(0)

�
(5.3.6)

Line 12 with j = j0 states that

r( j0+ 1) :=
�
1 + dj0

�
r( j0) � l ( j0)L v( j0)

By the inductive hypothesis, the vectors v( j0) and r( j0) are elements of the Krylov sub-
spaceK j0(L ,g(0) ). Thus, v( j0) = å j0� 1

s= 0 usL sg(0) for some coef�cients f usgj0
s= 1, and hence

L v( j0) = L
j0� 1

å
s= 0

usL sg(0) =
j0� 1

å
s= 0

usL s+ 1g(0) 2 K j0+ 1

�
L ,g(0)

�

It follows that r( j0+ 1) 2 K j0+ 1

�
L ,g(0)

�
, which shows (5.3.6) holds for j = j0 + 1. Finally,

line 13 states that

v( j0+ 1) := r( j0+ 1) �
�

r( j0+ 1) T
g( j0) / r ( j0) l ( j)

�
v( j0)

which implies v( j0+ 1) 2 K j0+ 1

�
L ,g(0)

�
. Thus by the principle of induction, (5.3.4) holds

for all j = 1, ..p and the result follows.

SupposeL has m < p distinct eigenvalues. Then Proposition 5.3.2 implies that the
�nal iterate q(p) is constrained to a m-dimensional subspace, and hence the full state
space is not properly explored. In particular, during the execution of the algorithm we
will �nd v( j) = 0 for all j > m.
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The simplest example of this pathology, noted by Fox [29], is the case when L is the
p � p identity matrix. In this case L has p repeated eigenvalues all equal to 1, and a
simple calculation shows v(2) = r(2) = 0.

The problem can be addressed by a two-sided preconditioning. For a non-singular
matrix U , note that the linear system L m= w is equivalent to

UTL U| {z }
:= �L

U � 1m= UTw| {z }
:= �w

We let �L := UTL U and �w := UTw . One can then solve the system �L z = �w for z,
and recover m = Uz. In the sampling context, for q � Normal

�
L � 1w , L � 1�

we set
x = U � 1q, so that

E(x) = U � 1m= U � 1Uz = �L � 1 �w

Cov(x) = U � 1L � 1U � T = U � 1U �L UTU � T = �L

The Conjugate Gradient sampler can then be used to samplex � Normal
� �L � 1 �w , �L � 1�

,
since �L is clearly symmetric positive-de�nite. The idea is to choose U such that �L has
p distinct eigenvalues so that the algorithm successfully completes all iterations, and
then set q = Ux for each sample x.

5.4 Numerical Experiments

In order to con�rm the theoretical results for the two novel algorithms and assess
their performance, numerical experiments on various models are presented here. The
novel algorithms presented in this chapter were implemented in a Julia package called
GenericBayes.jl [60]. The package allows running the algorithms on arbitrary poste-
rior distributions and Bregman generators. All numerical experiments were run on an
Intel i5-3470 CPU clocked at 3.20 GHz with 8 GB of memory.

5.4.1 Multivariate Gaussian Target

Our �rst experiment will demonstrate that Algorithms 6 and 8 both converge to the cor-
rect target distribution and the samples are independent. Recall that these algorithms
sample from a multivariate Gaussian distribution with mean L � 1w and covariance ma-
trix L � 1,

q � Normal (L � 1w , L � 1)

We select L and w based on an example given by Fox [29]. Let U be a p � p upper-
triangular matrix with ones on the diagonal, and Uniform (0, 1) random variables on
the super-diagonal. We then let w be a p-dimensional vector of ones, and L := UTU .
Clearly this choice of L is symmetric positive-de�nite.

The Gaussian Elimination and Conjugate Gradient samplers were both used to
sample from this target distribution, with dimension p = 10. Both samplers were
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started from a randomly chosen position in the unit hypercube, i.e. Uniform (0, 1) for
all i = 1, .., 10. For both algorithms, each sample is obtained by taking the last iterate
of the algorithm, where the initial iterate is the previous sample. Figure 5.4.1 shows
the convergence of the sample mean and covariance towards their respective true val-
ues L � 1w and L � 1. There is a clear

p
N-convergence in the 2-norm for both quantities

when computed with either algorithm, as expected for MCMC. This suggests both al-
gorithms are converging to the correct target distribution.

Table 5.4.1 shows the minimum effective sample size and the equivalent maximum
integrated autocorrelation time for both samplers with N = 106 samples. Clearly both
samplers have a maximum IAT close to 1, implying near independent samples. This
con�rms our analytic result in Corollary 5.2.3 for the Gaussian Elimination sampler,
and hints at the same independence result for the Conjugate Gradient sampler.

Figure 5.4.1: Error in the 2-norm for the sample mean and covariance for both samplers.

Sampler Effective Sample Size Integrated Autocorrelation Time
Gaussian Elimination 992764 1.00729
Conjugate Gradient 992818 1.00723

Table 5.4.1: Minimum effective sample size (ESS) and the equivalent maximum inte-
grated autocorrelation times (IATs) for both sampling algorithms. The number of sam-
ples N = 106.
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Circular Conditional Autoregression

The next example is another multivariate Gaussian distribution from Held and Rue
writing in Chapter 13 of [32]. For f 2 [0, 1) and k > 0, de�ne the p � p precision matrix

L =
k
2

0

B
B
B
B
B
B
B
B
B
@

2 � f � f
� f 2 � f

� f 2 � f
... ... ...

� f 2 � f
� f 2 � f

� f � f 2

1

C
C
C
C
C
C
C
C
C
A

The resulting multivariate Gaussian distribution q � Normal (0, L � 1) is a conditional
autoregression (CAR) model with a periodic boundary. The precision L is a circulant
matrix [67], for which there is a simple formula for the eigenvalues yielding

l j = k
�

1 � f cos
�

2p j
p

��
, j = 1, ..,p

Note that l k = l p� k for any k = 1, ..,p � 1, and soL has repeated eigenvalues. This is
shown in Figure 5.4.2 for p = 25.

Figure 5.4.2: Left: Eigenvalues of the CAR precision matrix in increasing order for p =
25, f = 0.8 and k = 2. Note the staircase pattern indicating pairs of equal eigenvalues.
Right: Eigenvalues of the preconditioned CAR precision matrix; all eigenvalues are
now distinct.
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As expected from our discussion in Section 5.3.1, Algorithm 8 terminates early after
14 iterations when sampling this target distribution with p = 25. The problem is allevi-
ated by a preconditioning �L = UTL U , where U is the matrix de�ned above, i.e. ones on
the diagonal and Uniform(0,1) random variables on the super-diagonal. The Conjugate
Gradient sampler successfully completes all p = 25 iterations with this preconditioner,
and the samples can be transformed back with q := Ux.

5.4.2 Generalized Linear Models

Logistic Regression

The next numerical experiment uses a logistic regression model from Chapter 10 of
McElreath [53]. The full probability model is

yi � Bernoulli ( l i )

log
�

l i

1 � l i

�
= b1X i1 + b2X i2 + gACTOR[i ]

gs � Normal (0, 10) for all s = 1, .., 7
b1 � Normal (0, 10)
b2 � Normal (0, 10)

Here gACTOR[i ] represents one of seven different offset variables g1, ..,g7, each corre-
sponding to a particular individual who undergoes multiple trials. For trial i, the vari-
able ACTOR[i ] is the individual taking part in the trial. There are therefore 9 param-
eters in total; g1, ..,g7, b1, b2. The logistic regression is used to model an experiment
intended to assess the social characteristics of chimpanzees. After a suitable encoding
of the experimental data, the design matrix X has 504 rows, each representing a trial in
the experiment, with 9 columns each corresponding to a parameter. The data are such
that every element of the design matrix is either 1 or 0, so no scaling or centering is
necessary. The model �ts the framework of a Generalized Linear Model with canonical
link function discussed in Section 1.3.

As noted by McElreath, the posterior is skewed and therefore provides an exam-
ple of a target distribution which is not close to a multivariate Gaussian. We ran the
Orthogonal Gradient and Orthogonal Gibbs samplers on the model, and for compari-
son also ran the usual deterministic-scan Gibbs sampler and a Julia implementation of
the No U-Turn Sampler (NUTS). All of the sampling algorithms sampled N = 10, 000
samples, starting from the origin q(0) = 0 2 R9. For Gibbs, Orthogonal Gibbs and Or-
thogonal Gradient, the univariate slice sampler outlined by Neal [56] was used as the
subsampler for drawing from conditionals. A small amount of hand-tuning the param-
eters of the slice sampler was done to roughly optimize the effective sample sizes for
these samplers.

Table 5.4.2 shows posterior means and standard deviations for each sampler, and
the posterior mode or MAP estimator. These summary statistics are in close agreement

142



Parameter
Orthogonal

Gradient
Orthogonal

Gibbs Gibbs NUTS
Posterior

mode
g1 -0.729 (0.261) -0.735 (0.268) -0.729 (0.271) -0.736 (0.267) -0.721
g2 5.367 (1.437) 5.408 (1.523) 5.408 (1.544) 5.38 (1.519) 4.714
g3 -1.041 (0.261) -1.041 (0.281) -1.043 (0.281) -1.045 (0.278) -1.024
g4 -1.038 (0.267) -1.043 (0.277) -1.042 (0.28) -1.042 (0.28) -1.024
g5 -0.729 (0.262) -0.733 (0.266) -0.732 (0.268) -0.733 (0.272) -0.721
g6 0.22 (0.257) 0.221 (0.267) 0.224 (0.268) 0.219 (0.269) 0.213
g7 1.789 (0.382) 1.785 (0.386) 1.794 (0.389) 1.786 (0.389) 1.733
b1 0.832 (0.258) 0.831 (0.261) 0.829 (0.261) 0.834 (0.265) 0.817
b2 -0.132 (0.289) -0.131 (0.299) -0.13 (0.301) -0.13 (0.3) -0.127

Table 5.4.2: Mean (standard deviation) for each sampler and the posterior mode (MAP).

Sampler
Runtime

(s)

Effective
Sample Size
(min, max)

ESS per sec
(min, max)

Integrated
Autocorrelation Time

(min, max)
Orthogonal Gradient 631.6 9441.3, 10065.8 14.9, 15.9 0.993, 1.059

Orthogonal Gibbs 192.0 9003.3, 10191.3 46.9, 53.1 0.981, 1.111
Gibbs 33.0 2396.7, 9079.6 72.5, 274.8 1.101, 4.172
NUTS 5.1 5952.3, 11117.6 1175.2, 2195.0 0.899, 1.68

Table 5.4.3: Effective sample sizes and integrated autocorrelation times for each sam-
pler. Each sample was run for N = 10, 000 samples. Minima and maxima are taken
over all 9 parameters.

between all of the samplers, and also with McElreath’s results for the same model us-
ing the Stan [18] inference engine. The parameter means all appear to be close to the
posterior mode values, except for g2 whose marginal posterior distribution is skewed.

Table 5.4.3 shows performance diagnostics for each of the samplers. The Orthogonal
Gibbs and Orthogonal Gradient algorithms perform well in terms of effective sample
size, with minimum and maximum values both close to the number of samples N =
10, 000. Both Gibbs and NUTS attain their minimum ESS for the b2 parameter, whose
autocorrelation is shown for each sampler in Figure 5.4.3. The autocorrelation clearly
decays more quickly for Orthogonal Gibbs/Gradient than for Gibbs and NUTS.

However, table 5.4.3 shows that this statistical performance comes with the cost of
much longer runtimes than Gibbs and NUTS, resulting in Orthogonal Gibbs/Gradient
being least performant in terms of effective samples per second. The long runtimes of
our algorithms are of course due to the j-dimensional Newton optimization and log-
determinant evaluation over several times for each of j = 1, ..,p. As we discussed
previously, this leads to a O

�
p4�

scaling in time complexity for both samplers.
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Figure 5.4.3: Empirical autocorrelation
of b1 for each of the four samplers.

144



Part III

Conclusion
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Conclusion and Future Directions

The thesis has introduced new MCMC algorithms which exploit dually-�at geome-
try in order to more ef�ciently sample from a posterior distribution. The Orthogonal
Gibbs algorithm samples primal variables given dual variables in the k-cut co-ordinate
system, increasing k after each iteration. The Orthogonal Gradient algorithm samples
the distribution constrained to the line spanned by the steepest descent direction of the
negative log-density, and then recursively samples from the target constrained to a sub-
manifold orthogonal to the line. Both algorithms successively sample on submanifolds
in parameter space which are orthogonal with respect to the Riemannian metric, and
are therefore closely related to conjugate directions solvers for linear systems when the
metric is constant. For Gaussian target distributions, the Orthogonal Gibbs sampler
has been proven to produce independent samples and numerical experiments suggest
a similar result for the Orthogonal Gradient sampler.

The dually-�at geometry on parameter space used by the algorithms is speci�ed
by a Bregman divergence, which may or may not depend on the target distribution.
Full exponential families have a natural dually-�at geometry for which the relevant
Bregman divergence is generated by the cumulant generating function of the family.
For log-concave posterior distributions, I have introduced the Posterior Bregman Di-
vergence generated by the negative log-density of the posterior. The metric induced by
this divergence has the property that orthogonal directions are independent sampling
directions in the case of a Gaussian target, motivating the new sampling algorithms.
Methods using Bregman divergences have been suggested to solve other numerical
problems such as convex optimization [61] and clustering [6], but to my knowledge the
new sampling algorithms are the �rst to explicitly use dually-�at geometry induced by
a Bregman divergence.

The new algorithms can be compared to previous geometric MCMC algorithms;
in particular the Riemannian variants of Hamiltonian Monte Carlo (HMC) and the
Metropolis Adjusted Langevin Algorithm (MALA) introduced by Girolami and Calder-
head [39]. These sampling algorithms use a Riemannian, rather than dually-�at, struc-
ture to facilitate ef�cient sampling from the posterior. They require numerical integra-
tion of ODEs or SDEs, whereas the Orthogonal Gibbs/Gradient algorithms make use
of explicit geodesic �ows in the dually-�at geometry and require no numerical integra-
tion. Hamiltonian Monte Carlo disintegrates an extended target distribution over the
level sets of the Hamiltonian function; similarly, the new algorithms disintegrate the
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target over �ber bundles de�ned by the orthogonal foliations of Information Geometry.
While HMC/MALA and their Riemannian variants require the gradient of the target
log-density, Orthogonal Gibbs/Gradient only use derivatives of the Bregman generator
and do not necessarily require any derivatives of the target log-density, unless the Breg-
man generator depends on the log-density. Future work could explore the possibility
of Bregman generators which are cheap approximations the negative target log-density,
perhaps by subsampling of data in a similar fashion to Stochastic Gradient HMC [51].

Hamiltonian Monte Carlo may require signi�cant hand-tuning of algorithmic pa-
rameters; namely the step-size used in numerical integration of Hamilton’s equations
and the number of integration time steps. One must carefully choose these parame-
ters to attain an optimal acceptance rate. In contrast, the algorithms introduced in this
thesis are equivalent to a sequence of Gibbs updates in various co-ordinate systems,
and hence their proposals are always accepted. The only hand-tuning required is the
number of subsamples per iteration and any algorithmic parameters of the �subsam-
pler� algorithm used to draw from conditional distributions. In the regression model
given in Section 5.4, the slice sampler used for subsampling required only minimal
hand-tuning.

For target distributions which are not log-concave and thus have a log-density whose
Hessian is not positive-de�nite, it is not clear how a Bregman divergence should be
chosen for use in the new algorithms. To solve this problem for RM-HMC, the SoftAbs
metric has been suggested by Betancourt [9] which forces all of the eigenvalues of the
Hessian to be positive. Unfortunately, it does not seem possible to extend this idea to
a Bregman divergence, which requires a globally de�ned convex function rather than
a local Riemannian metric. To deal with densities which are not log-concave, I suggest
the following directions for future research.

� One could use a Bregman generator de�ned as the smooth convex function which
is closest to the (non-convex) negative log-density in some metric, e.g. the in�nity
norm.

� The Orthogonal Gradient/Gibbs algorithms may be generalized to an arbitrary
conjugate connections geometry, i.e. more general than dually-�at. Perhaps nu-
merical integration could be used to move along a r -geodesic, and then similarly
on an orthogonal r � -geodesic, with a Metropolis-Hastings accept/reject step to
correct for numerical errors similar to Hamiltonian Monte Carlo. This approach
would allow the geometry to speci�ed by any divergence function, rather than
being restricted to Bregman divergences.

� When the Fisher Information is singular, the parameter space Q can be under-
stood as a �ber bundle whose �bers represent classes of equivalent data-generating
densities. The quotient space with respect to this equivalence relation has a nat-
ural non-singular positive-de�nite metric; see Xavier and Barroso [77]. I suggest
investigating whether a natural Bregman generator is also induced on the quo-
tient space, such that the Orthogonal Gibbs/Gradient algorithm could be used to
sample in the quotient space, and some simple algorithm such as random walk
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could be used to sample within the �bers. This is very similar, and perhaps equiv-
alent to, the idea of Likelihood Informed Subspace (LIS) of Cui et al [22].

A barrier to the practical application of the novel algorithms introduced in this the-
sis is their computational cost. When run for all p iterations, Orthogonal Gradient and
Orthogonal Gibbs both have an asymptotic time complexity of O(p4) assuming a rea-
sonable cost model, which may be prohibitively expensive for models with many pa-
rameters. To alleviate the computational cost, I offer the following suggestions.

� In optimization, conjugate gradient algorithms are often restarted, i.e. terminated
before reaching d iterations where d is the dimension of the space on which the
cost function is de�ned. If it can be shown that each iteration of the Orthogonal
Gradient algorithm preserves the target distribution, it may be possible to restart
the algorithm before reaching the full number of iterations, and therefore avoid
much of the computational cost. The number of iterations would then be an al-
gorithmic parameter which balances computational expense with the statistical
performance of the algorithm, i.e. the autocorrelation of the resulting chain.

� If applied to models for which the likelihood is expensive to evaluate such as
PDE-constrained models in engineering and Uncertainty Quanti�cation applica-
tions, the computational cost of the Orthogonal Gibbs/Gradient algorithms may
be deemed acceptable in comparison to that of likelihood evaluations. In other
words, the favourable statistical performance of the novel algorithms make them
a good choice when the forward model is already expensive to evaluate.

� Reformulating the algorithms in the co-ordinate free terms of differential forms
could offer a solution; much of the computational cost arises from evaluating a
determinant at each step, and perhaps this could be reduced by �nding a rela-
tionship between the volume forms on orthogonal submanifolds.

On the way to deriving the new algorithms, the thesis has also provided several
new results in Information Geometry. These include characterizations of the inherited
geometry on submanifolds in terms of divergences given by Theorem 2.5.3 and a re-
sult on restrictions of Bregman divergences characterizing e-�at submanifolds given in
Theorem 2.5.8.

The new algorithms presented in this thesis will hopefully prove useful in statisti-
cal applications. This work and that of previous authors has shown that orthogonality,
duality, geodesics and other ideas from Information Geometry can be leveraged in com-
putational statistics to do inference more ef�ciently. I hope this continues to be an active
area of research so that the bene�ts can be fully realized in statistical applications.
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Appendix A

Details of Smooth Manifold Theory

Proposition A.0.1. Let TaR p be the set of linear derivations ata 2 R p, i.e. the set of lin-
ear maps C¥ (R p) ! R satisfying the Leibniz rule (2.1.1). Then TaR p is a vector space of
dimension p with a basis de�ned by the p derivations

¶i ja : C¥ (R p) ! R

¶i ja( f ) :=
¶ f
¶xi

�
�
�
�
x= a

for i = 1, ..,p.

Proof. The following is based on the proof of proposition 3.2 from Lee [46]. For any two
derivations V ,W 2 TaR p we de�ne their scalar multiplication and linear combination
respectively as

( l V )( f ) := l V ( f ) (A.0.1)
( l 1V + l 2W)( f ) := l 1V ( f ) + l 2W( f ) (A.0.2)

for any l , l 1, l 2 2 R and f 2 C¥ (R p). It is easy to verify that linear combinations
de�ned in this way are also derivations, and hence TaR p is a vector space. The zero
element of the vector space 0a is de�ned via 0 a( f ) := 0 for all f 2 C¥ (R p).

To show that f ¶i jaj i = 1, ..,pg is a basis for the space of derivations at a, we �rst
need to show that the set is linearly independent. To this end, suppose that for some
vi 2 R for i = 1, ..,p we have

p

å
i= 1

vi¶i ja = 0a

Then for any f 2 C¥ (R p),
p

å
i= 1

vi ¶ f
¶xi

�
�
�
�
x= a

= 0

In particular, set f to be the j th co-ordinate x j for each of j = 1, ..,p. Since ¶x j

¶xi = 1 when
i = j and 0 otherwise, it follows that vj = 0 for all j = 1, ..,p and hence f ¶i jag is a
linearly independent set.
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It remains to show that f ¶i jag spans TaR p and hence is a basis. To this end letW 2
TaR p be an arbitrary derivation. By Taylor’s theorem, any f 2 C¥ (R p) can be written

f (x) = f (a) +
p

å
i= 1

¶ f
¶xi

�
�
�
�
x= a

(xi � ai ) +
p

å
i,j= 1

(xi � ai )( x j � aj )
Z 1

0
(1 � t)

¶2 f
¶xi¶x j (a+ t(x � a)dt

Consider the action of W on the right-hand side of this equation, which is the sum of
its action on each term by linearity. The �rst term is constant, and hence W( f (a)) =
f (a)W(1) by linearity. But by the Leibniz rule (2.1.1)

W(1) = W(1 � 1) = 1 � W(1) + 1 � W(1) ) W(1) = 0

and henceW( f (a)) = 0. Similarly, the third term vanishes;

W

 
p

å
i,j= 0

Ci j (xi � ai )( x j � aj )

!

=
p

å
i,j= 0

Ci j W
�

(xi � ai )( x j � aj )
�

=
p

å
i,j= 0

Ci j

h
(x j � aj )

�
�
�
x= a

W
�

xi � ai
�

+ ( xi � ai )
�
�
�
x= a

W
�

x j � aj
�i

=
p

å
i,j= 0

Ci j

h
0 � W(xi � ai ) + 0 � W(x j � aj )

i
= 0

where we have set Ci j :=
R1

0 (1 � t) ¶2 f
¶xi ¶x j (a + t(x � a)dt for i, j = 1, ..,p. Finally we are

left with

W( f ) = W

 
p

å
i= 1

¶ f
¶xi

�
�
�
�
x= a

(xi � ai )

!

(A.0.3)

=
p

å
i= 1

¶ f
¶xi

�
�
�
�
x= a

(W(xi ) � W(ai )) (A.0.4)

By the above argument, the action of W on a constant function vanishes and so W(ai ) =
0 for all i = 1, ..,p. Hence we conclude that for any W 2 TaR p, we can write

W( f ) =
p

å
i= 1

W(xi )¶i ja( f ) for all f 2 C¥ (R p)

) W =
p

å
i= 1

W(xi )¶i ja

and hence the set f ¶i jaj i = 1, ..,pg forms a basis for TaR p, which must therefore be a
p-dimensional vector space.

Lemma A.0.2. If F : Q ! Q0 is a diffeomorphism, its differential dF: TqQ ! TF(q)Q0 is a
linear isomorphism.
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Proof. Linearity follows trivially from the de�nition of the differential; if V1, V2 2 TqQ
then

dFq( l 1V1 + l 2V2)( f ) = ( l 1V1 + l 2V2)( f � F)

= l 1V1( f � F) + l 2V2( f � F)

= l 1dFq(V1)( f ) + l 2dFq(V2)( f )

To show injectivity, suppose that some tangent vector V 2 TqQ is mapped to the zero
element in TF(q)Q0under the differential;

dFq(V ) = 0F(q) ) dFq(V )( �f ) = 0 for all �f 2 C¥ (Q0)

) V ( �f � F) = 0 for all �f 2 C¥ (Q0)

Then for any f 2 C¥ (Q), set �f = f � F� 1; this is valid since F is bijective. We then have

V ( �f � F) = V ( f � F� 1 � F) = V ( f ) = 0 for all f 2 C¥ (Q)

which of course implies that V is the zero element in TqQ, and hence dFq is injective.
For surjectivity, let W 2 TF(q)Q0. Then de�ne a tangent vector in TqQ asV ( f ) := W( f �
F� 1). Then for any �f 2 TF(q)Q0we have

dFq(V )( �f ) = V ( �f � F) = W( �f � F � F� 1) = W( �f )

and hence the differential at q is surjective; it is therefore a linear bijection or linear
isomorphism.

Theorem 2.1.3. Let Q be a smooth manifold with a co-ordinate chart(U , q) for U � Q. Then
for any q2 Q, a basis for tangent space TqQ is given by the p tangent vectors

¶i jq,q : C¥ (Q) ! R

¶i jq,q( f ) :=
¶

¶qi

�
�
�
�
q= f (q)

�
f � f � 1

�
for all f 2 C¥ (Q), i = 1, ..,p

Proof. By lemma A.0.2 and the fact that f is a diffeomorphism, the differential of the
co-ordinate map df q : TqQ ! Tf (q)R p is a linear isomorphism. Therefore the preimage
of any basis in Tf (q)R p is a basis for TqQ. In fact, the basis stated in the theorem is
exactly the preimage of the basis f ¶i jf (q)g de�ned in proposition A.0.1. Indeed,

df q(¶i jf ,q)( �f ) = ¶i jf ,q( �f � f )

=
¶

¶xi

�
�
�
�
x= f (q)

( �f � f � f � 1)

=
¶

¶xi

�
�
�
�
x= f (q)

( �f )

= ¶i jf (q) ( �f )
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The following is a restatement of proposition 2.1.6.

Proposition A.0.3. Let Q be a smooth p-dimensional manifold with q2 Q, and let(U , f )
be a co-ordinate chart whose domain contains q, with co-ordinates labelledqj , j = 1, ..,p. The
differentialsf dqqjgp

j= 1 of the local co-ordinate functions form a basis of cotangent space T�
pQ

that is dual to the co-ordinate tangent vector basisf ¶ig
p
i= 1, i.e. they satisfy

dqqj (¶i ) = ¶i (qj ) = dj
i

for all i, j = 1, ..,p, wheredj
i = 1 when i = j and is0 otherwise.

Proof. The duality property follows trivially from the de�nition of the co-ordinate basis;

dqqj (¶i ) = ¶i (qj ) =
¶qj

¶qi

�
�
�
�
f (q)

= dj
i

To show that the co-ordinate differentials form a basis for cotangent space, �rst we
check linear independence; for some l k, k = 1, ..,p we set

l kdqk = 0

)
p

å
k= 1

l kdqk(V ) = 0 for all tangent vectors V 2 TqQ

)
p

å
k= 1

l kV (qk) = 0 for all tangent vectors V 2 TqQ

Setting V = ¶i jq,f for each i = 1, ..,p, we obtain

p

å
k= 1

l k¶i jq,f (qk) =
p

å
i= 1

l kdk
i = l i = 0 for all i = 1, ..,p

And hence f dqkjk = 1, ..,pg is a linearly independent set. Finally, to show that the set
spans T�

q Q, for a given linear functional a 2 T�
q Q let ai := a(¶i ) for i = 1, ..,p. Then,

we see that the linear combination of co-ordinate differentials with coef�cients given
by f aig is exactly a; for any V = V k¶k 2 TqQ,

p

å
i= 1

aidqi (V ) =
p

å
i= 1

a(¶i )dqi (V k¶k)

=
p

å
i= 1

V ka(¶i )dqi (¶k)

=
p

å
i= 1

a(V k¶i )di
k =

p

å
i= 1

a(V i¶i ) = a(V )
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Proposition 2.5.6. Let N be a dually-�at n-manifold. An embedded p-submanifold Q is e-�at
if and only if there exist co-ordinatesb for Q such that the co-ordinate embedding�L has the
af�ne form in primal co-ordinates,

q = �L(b) := Ab + d (2.5.7)

for some matrix A2 Rn� p and vectord 2 Rn.
Dually, an embedded p-submanifold Q is m-�at if and only if there exist co-ordinatesg for

Q such that the co-ordinate embedding�L has the af�ne form in dual co-ordinates,

h = �L(g) := Ag + d (2.5.8)

for some matrix A2 Rn� p and vectord 2 Rn.

Proof. We show the result for the e-�at case; the proof of the m-�at case is identical.
Assume �rst that Q is e-�at so that the second fundamental form vanishes for all vector
�elds. Note that dL

� flr XY
�

is the tangential component of r dL(X)dL(Y) in general,
where flr is the primal connection on Q. Thus by the Gauss formula (2.5.3), the second
fundamental form vanishes if and only if

dL
� flr XY

�
= r dL(X)dL(Y) (A.0.5)

for any vector �elds X ,Y 2 X(Q), where flr and r are the primal connections on Q
and N respectively. By Theorem 2.5.5,Q is dually-�at and hence there exists a flr -af�ne
co-ordinate system b. This af�ne system must satisfy

flr ¶
¶ba

¶
¶bb = 0 a, b = 1, ..,p

Setting X = ¶
¶ba and Y = ¶

¶bb in (A.0.5), we deduce that

r
dL

�
¶

¶ba

� dL
�

¶
¶bb

�
= 0

Writing dL(X) = Bi
a

¶
¶qi where Bi

a := ¶ �Li

¶ba is the co-ordinate differential and similarly for
dL(Y), we compute

r Bi
a

¶
¶qi

Bj
b

¶
¶qj = Bi

a

 
¶Bj

b
¶qi

¶
¶qj + Bj

br ¶
¶qi

¶
¶qj

!

= 0

Note that since q is an af�ne co-ordinate system, we have r ¶
¶qi

¶
¶qj = 0. Therefore

Bi
a
¶Bj

b
¶qi

¶
¶qj = 0

, Bi
a
¶Bj

b
¶qi = 0 for all j = 1, ..,n, a, b = 1, ..,p

,
¶

¶baBj
b = 0 for all j = 1, ..,n, a, b = 1, ..,p
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where we have used the chain rule ¶
¶ba = Bi

a
¶

¶qi to go from the second to the �nal line.

It follows that the co-ordinate differential, or Jacobian of �L, Bj
b is a constant for all b.

Consequently the co-ordinate embedding �L must be an af�ne transformation.
Conversely, suppose there exist co-ordinates b for Q, in which the co-ordinate em-

bedding takes the form
q = �L(b) := Ab + d

Note that the differential of the embedding in co-ordinates is a constant ¶ �Li

¶ba = A i
a, the i-a

component of the matrix A. The co-ordinates b must therefore be flr -af�ne co-ordinates,
because the connection coef�cients (2.5.4) vanish:

Gabc = A j
cAk

a¶k

�
A i

b

�
gi j + A i

aA j
bAk

cGi jk = 0

where we have used the fact that A i
b is constant, and q are af�ne co-ordinates for N so

Gi jk = 0. Consequently Q is flr -�at, and hence dually-�at by Theorem 2.4.3. We will
show that Q is e-�at in N by showing the equivalent statement (A.0.5). Let X = Xa ¶

¶ba

and Y = Yb ¶
¶bb be two arbitrary vector �elds on Q. SinceA i

a is constant and q are af�ne
co-ordinates, the r -covariant derivative of the embedded vector �elds in N is

r dL(X)dL(Y) = r A i
aXa ¶

¶qi
A j

bY
b ¶
¶qj = A i

aA j
bXa¶Yb

¶qi
¶

¶qj (A.0.6)

Similarly, the embedding of the flr -covariant derivative is

dL
� flr XY

�
= dL

�
flr Xa ¶

¶ba
Yb ¶

¶bb

�
= dL

�
Xa¶Yb

¶ba
¶

¶bb

�

= A i
aA j

bXa¶Yb

¶qi
¶

¶qj (A.0.7)

where we have used the fact that b is flr -af�ne, and substituted the chain rule ¶
¶ba =

A i
a

¶
¶qi . Comparing equations (A.0.6) and (A.0.7), we see that dL

� flr XY
�

= r dL(X)dL(Y)
for all vector �elds X ,Y on Q, and hence the second fundamental form is zero and Q is
e-�at.
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Appendix B

Elementary Geometric Measure
Theory and The Implicit Function
Theorem

Throughout the thesis, we often need to represent a target probability density p : R p !
R in different co-ordinate systems. Furthermore, the orthogonal submanifold samplers
in Chapter 5 require a disintegration of the target over submanifolds in R p which are
level sets of dual or primal co-ordinate functions. In this appendix we describe tools
for dealing with such tasks from the �eld of Geometric Measure Theory. The standard
reference for the topic is Federer [28], although we mostly refer to the introduction in a
sampling context given by Diaconis et al [24]. We brie�y review the concepts and state
the main results in notation consistent with the thesis, omitting technical and analytic
details. We assume that 1 � k < p.

A k-dimensional submanifold embedded in R p inherits an area measure from the
Lebesgue measure onR p. Intuitively, we imagine thickening the submanifold so that
it has a p-dimensional volume, and hence an area measure is approximately the vol-
ume of a subset of the thickened submanifold divided by the volume of a (p � k)-
dimensional ball. This can be made rigorous [24], [28] to de�ne the k-dimensional
Hausdorff measure H k on R p.

There are two ways to specify a k-dimensional embedded submanifold Q of R p;

� Explicitly, i.e. with a smooth embedding or parameterization �L : V ! R p where
V � Rk.

� Implicitly, i.e. the level set of a function F : R p ! R p� k where DF has full rank.

The area formula allows us to compute the Hausdorff measure for an explicitly
parameterized submanifold Q. Recall that dq and db respectively refer to the p- and
k-dimensional Lebesgue measures on theq and b co-ordinate charts.
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Theorem B.0.1 (Area Formula) . Let �L : Rk ! R p be a smooth embedding with k� p. Then
for any Borel U� Rk and Borel-measurable h: Rp ! R ,

Z

U
h( �L(b)) Jk �L(b)db =

Z

�L(U )
h(q)H k(dq)

where
Jk �L(b) :=

q
det

�
D �L(b)TD �L(b)

�

is the k-dimensional Jacobian of�L.

The area formula as stated by Federer and Diaconis et al is more general than this;
it is only necessary that �L be Lipschitz, so that differentiability is guaranteed almost
everywhere by Rademacher’s theorem. For a Riemannian manifold, the Riemannian
volume elementin a co-ordinate chart q is the measure

p
det G(q)dq. Suppose R p is

endowed with the Euclidean metric G(q) � 1p� p, so that the inherited metric on the
submanifold Q is D �LTD �L. Then Theorem B.0.1 shows that thek-dimensional Hausdorff
measure coincides with the inherited Riemannian volume element.

Diaconis et al [24] describe how to use the area formula to sample from the Haus-
dorff measure on an embedded submanifold. In particular, the area formula generalizes
the change of variable formula for probability densities, as the proof of the following
shows.

Corollary B.0.2 (Change of Variable Formula) . Let p : Q ! R be a probability density on
Q � R p, and letf : Q ! X be a diffeomorphism whereX = f (Q) � R p. Then

Z

f (V )

p (f � 1(x))
jdet (Df (f � 1(x)) )j

dx =
Z

V
p (q)dq

for a Borel set V� Q.

Proof. Set �L(x) := f � 1(x) for all x 2 X, so that k = p. Sincef is a diffeomorphism, then
�L = f � 1 is also a diffeomorphism and hence is a smooth embedding. By the inverse
function theorem [54], the differential matrices of �L and f , which are both square and of
full rank, are related via

D �L(x) =
�

Df (f � 1(x))
� � 1

(B.0.1)

Thus the p-dimensional Jacobian of f is given by

Jp �L(x) =
q

det
�
D �L(x)TD �L(x)

�
=

q
det

�
D �L(x)T

�
det

�
D �L(x)

�

=
q

det
�
D �L(x)

� 2
=

�
�det

�
D �L(x)

� �
�

=
�
�
�det

�
Df (f � 1(x))

� �
�
�
� 1

The result follows from Theorem B.0.1 with g(q) := p (q), U = f � 1(V ), and noting that
the Hausdorff measure agrees with the Lebesgue measure when k = p.
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The co-area formula gives a disintegration over the k-dimensional level sets of a
function F : R p ! R p� k.

Theorem B.0.3 (Co-Area Formula) . Let F : R p ! R p� k be Lipschitz. Then
Z

R p
h(q) Jp� kF (q)dq =

Z

R p� k

� Z

F � 1(z)
h(q)H k(dq)

�
dz

where

Jp� kF (q) =
r

det
�

DF (q)DF (q)T
�

Diaconis et al [24] use the co-area formula to derive a disintegration of a probability
measure over the level sets ofF .

The orthogonal submanifold sampling algorithms in Chapter 5 sample from condi-
tional distributions on implicitly de�ned submanifolds, where the conditional densities
are de�ned with respect to the Hausdorff measure. We require an explicit parameteri-
zation and its differential matrix in order to use the area formula to compute the density
with respect to the Lebesgue measure for sampling. The existence of such a parame-
terization, and an explicit form for the differential matrix, is provided by the Implicit
Function Theorem. We adapt the stated theorem from Lee [46] and Kantorovitz [43].

Theorem B.0.4 (Implicit Function Theorem) . Let F : Rk � R p� k ! Rk be smooth on a
neighbourhood U of(a0, b0) 2 Rk � R p� k, and letc = F (a0, b0). If the matrix

¶F
¶a

(a0, b0) :=
�

¶F i

¶aj (a0, b0)
�

i,j= 1,..,k

is non-singular, then there exist neighbourhoods W0 � Rk of a0 and V0 � R p� k of b0, and
a smooth functiona : V0 ! W0 such thatF (a, b) = c for (a, b) 2 V0 � W0 if and only if
a = a(b). Furthermore, the differential matrix ofa satis�es

Da =
�

¶ai

¶aj

�
= �

�
¶F
¶a

� � 1 ¶F
¶b

Lemma B.0.5. For 1 � k < p, let A 2 R p� k and B2 R p� (p� k) be two matrices of full rank
with A TB = 0k� (p� k) . Then

q
det (AT A) det (BTB) =

�
�det

�
A B

� �
�

where
�
A B

�
is the p� p matrix whose �rst k columns are those of A and �nal p� k columns

are those of B.

Proof. The statement is equivalent to

det
�

AT A
�

det
�

BTB
�

= det
�
A B

� 2
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We rewrite the right-hand side using elementary properties of the determinant:

det
�
A B

� 2 = det
�
A B

�
� det

�
A B

�
= det

�
A B

� T � det
�
A B

�

= det
�

AT

BT

�
� det

�
A B

�
= det

��
AT

BT

�
�
A B

�
�

= det
�

AT A A TB
BT A BTB

�

Note that by assumption, ATB = 0k� (p� k) and BT A =
�
ATB

� T = 0(p� k)� k. The result
then follows from the formulas for block determinants; see e.g. [75].

det
�
A B

� 2 = det
�

AT A 0k� (p� k)
0(p� k)� k BTB

�
= det

�
AT A

�
det

�
BTB

�

Theorem 5.1.1 (Disintegration over e-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on a convex open subsetQ � R p, and let A 2 R p� l and B 2 R p� (p� l ) be
full-rank matrices with ATB = 0l � (p� l ) . For b 2 B� Q, de�ne the measuremb on Q such that
for a Borel set U� R p,

mb(U ) :=
Z

U \ F � 1
E (f bg)

p (q)
q

det (BTB)H l (dq) (5.1.2)

=
Z

A � (U \ F � 1
E (f bg))

p (Aa + Bb)
�
�det

�
A B

� �
� l l (da) (5.1.3)

whereH l is the l-dimensional Hausdorff measure onR p and l l is the l-dimensional Lebesgue
measure onR l . Then the measuresf mbg form a disintegration of the target measurep (q) l p(dq)
over the �ber bundleF E : Q ! R p� l , F E(q) = B� q.

Proof. First we check the conditions for (5.1.2) to be a disintegration. Since the integrand
in (5.1.2) is measurable and the Hausdorff measure is s-�nite, it follows that mb is s-
�nite and

R
hdmb is a measurable function of b for any measurable h. Furthermore,

since the domain of integration in (5.1.2) is U \ F E
� 1 (f bg), then mb must concentrate

on the �ber F E
� 1 (f bg). Thus the �rst two conditions in De�nition 4.2.1 are satis�ed.

The third condition for f mbg to be a disintegration is guaranteed by the co-area
formula, stated in appendix B as Theorem B.0.3.

Note that DF E = B� =
�
BTB

� � 1BT, and hence the (p � k)-dimensional Jacobian of
F E is given by

q
det (DF DF T) =

r

det
�

(BTB) � 1BTB(BTB) � T
�

=
r

det
�

(BTB) � T
�

=
1

p
det (BTB)
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Thus applying the co-area formula given in Theorem B.0.3 to h(q) := p (q)
p

det (BTB),
Z

R p� k

� Z

F � 1
E

p (q)
q

det (BTB)H k(dq)
�

l p� k(db)

=
Z

R p
p (q)

q
det (BTB)

1
p

det (BTB)
l p(dq)

=
Z

R p
p (q) l p(dq)

Equation (5.1.3) follows from the area formula, stated in Theorem B.0.1. For each b 2
R p� k, de�ne a co-ordinate embedding �Lb(b) = Aa + Bb, so that the differential matrix
of �Lb is given by D �Lb = A and the k-dimensional Jacobian is Jk �Lb(a) =

p
det (AT A).

The preimage of U \ F � 1
E (f bg) under �L is given by A �

�
U \ F � 1

E (f bg)
�

. The area

formula with h(q) = p (q)
p

det (BTB) then yields
Z

U \ F � 1
E (f bg)

p (q)
q

det (BTB)H k(dq)

=
Z

A � (U \ F � 1
E (f bg))

p (Aa + Bb)
q

det (BTB) Jk �Lb(a) l k(da)

=
Z

A � (U \ F � 1
E (f bg))

p (Aa + Bb)
q

det (AT A) det (BTB) l k(da)

=
Z

A � (U \ F � 1
E (f bg))

p (Aa + Bb)
�
�det

�
A B

� �
� l k(da)

where in the last equality we have used Lemma B.0.5.

Theorem 5.1.2(Disintegration over m-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on an open convex subsetQ � R p, A and B be matrices as in Theorem 5.1.1,
andX = r F(Q). For d 2 A � X, de�ne the probability measuremd on Q such that for a Borel
U � R p,

md(U ) =
Z

U \ F � 1
M (f dg)

p (q)
det

�
AT A

�

r

det
�

ATG(q)2A
� H p� l (dq) (5.1.4)

whereH p� l is the(p � l )-dimensional Hausdorff measure onR p, G(q) := r 2F(q) andF M :
R p ! R l , F M (q) = A � r F(q) for a smooth convex function F: R p ! R . Then the
measuresf mdg form a disintegration of the target measurep (q) l p(dq) over the �bers ofF M .
Furthermore, we have

md(U ) =
Z

B� (U \ F � 1
M (f dg))

p ( �Ld(b))

�
�
�
�
�

det
�
A B

�

det(A � G( �L(b)) A)

�
�
�
�
�
l p� k (db) (5.1.5)

wherel p� k is the(p � k)-dimensional Lebesgue measure onR p� k and �Ld is the primal embed-
ding ofF � 1

M (f dg).
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Proof. We �rst show f mdg is a disintegration. The �rst two conditions in De�nition 4.2.1
are satis�ed by the same arguments in the proof of Theorem 5.1.1

For the third condition, the differential matrix of F M is

DF M (q) = A � r 2F(q) = A � G(q)

and hence the (p � k)-dimensional Jacobian of F M is

Jp� kF M (q) =
r

det
�

DF M (q)DF M (q)T
�

=
r

det
�

A � G(q)G(q)(A � )T
�

=
r

det
�

(AT A) � 1ATG(q)G(q)A(AT A) � T
�

=

r

det
�

ATG(q)2A
�

det
�

(AT A) � 1
� 2

=

r

det
�

ATG(q)2A
�

jdet (AT A)j

where, to go from the second to the third line, we have used the fact that
�
AT A

� � 1 and
ATG2A are both k � k square matrices. By the co-area formula with h(q) := p (q)

Jp� k(q) , we
then have

Z

Rk

� Z

F � 1
M (d)

p (q)
Jp� kF M (q)

H p� k(dq)
�

l k(dd) =
Z

R p

p (q)
Jp� kF M (q)

Jp� kF M (q) l (dq)

=
Z

R p
p (q) l (dq)

To show (5.1.5), we use the area formula. The parameterization of the level sets ofF M
is the co-ordinate embedding function �Ld(b) given in (3.3.20) with differential matrix
from Lemma 3.3.10 as

D �Ld(b) = � A
�

ATGA
� � 1

ATGB+ B

where we use the shorthand G := G( �Ld(b)) . The k-dimensional Jacobian of �Ld is cal-
culated as

r

det
�

D �LT
d D �Ld

�
=

r

det
h�

BT � BTGA(ATGA) � 1AT
� �

B � A(ATGA) � 1ATGB
�i

=
r

det
�

BTB + BTGA(ATGA) � T AT A(ATGA) � 1ATGB
�

where dependence on b has been omitted for brevity, and we have used the mutual
orthogonality of the columns of A and B, i.e. ATB and BT A are zero matrices. De�ne a
matrix V :=

�
ATGA

� � T AT A
�
ATGA

� � 1, so that
r

det
�

D �LT
d D �Ld

�
=

q
det (BTB + BTGAVA TGB)
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Then the area formula with h( �Ld(b)) := p ( �Ld(b)) det
�
AT A

�
det

�
ATG( �Ld(b)) 2A

� � 1/2

yields

md(U ) =
Z

U \ F M
� 1(f dg)

p ( �Ld(b)) det
�

AT A
�

det
�

ATG2A
� � 1/2

H p� k(d �Ld(b))

=
Z

U \ F M
� 1(f dg)

p ( �Ld(b)) det
�

AT A
�

s
det (BTB + BTGAVA TGB)

det (ATG2A)
l p� k(db)

(B.0.2)

Then (5.1.5) follows if we can showthe integrand in the previous equation is equal to the
integrand in (5.1.5) for all b, i.e.

det
�

AT A
�

s
det (BTB + BTGAVA TGB)

det (ATG2A)
=

�
�
�
�
�
det

�
A B

�

det(A � GA)

�
�
�
�
�

, det
�

AT A
� 2 det

�
BTB + BTGAVA TGB

�

det (ATG2A)
=

 
det

�
A B

�

det(A � GA)

! 2

, det
�

AT A
� det

�
BTB + BTGAVA TGB

�

det (ATG2A)
=

det(BTB)
det(A � GA)2

, det
�

AT A
�

det(A � GA)2 det
�

BTB + BTGAVA TGB
�

= det
�

ATG2A
�

det(BTB)

(B.0.3)

where, to go from the second to the third equivalent statement, we have applied Lemma
B.0.5. Our objective then is to show that (B.0.3) is true for all matrices A, B satisfying the
conditions of Lemma B.0.5, and any symmetric positive-de�nite G 2 R p� p, and where
V :=

�
ATGA

� � T AT A
�
ATGA

� � 1.
Firstly, consider the left-hand side of (B.0.3). Note that A � GA, AT A and V are all

k � k non-singular matrices. Thus by the elementary properties of the determinant,

det
�

AT A
�

det(A � GA)2 = det
�

AT A
�

det
� �

AT A
� � 1

ATGA
� 2

= det
�

AT A
�

AT A
� � 1

ATGA
�

AT A
� � 1

ATGA
�

= det
�

ATGA
�

AT A
� � 1

ATGA
�

= det
�

V � 1
�

162



Finally, writing the left-hand side of (B.0.3) as the determinant of a block matrix,

det
�

V � 1
�

det
�

BTB + BTGAVA TGB
�

= ( � 1)k det
�

� V � 1
�

det
�

BTB + BTGAVA TGB
�

= ( � 1)k det
�

� V � 1 ATGB
BTGA BTB

�

= ( � 1)k det
�

BTB
�

det
�

� V � 1 � ATGB
�

BTB
� � 1

BTGA
�

= ( � 1)k � (� 1)k det
�

BTB
�

det
�

V � 1 + ATGB
�

BTB
� � 1

BTGA
�

= det
�

BTB
�

det
�

ATGA
�

AT A
� � 1

ATGA + ATGB
�

BTB
� � 1

BTGA
�

= det
�

BTB
�

det
�

ATG
�

A
�

AT A
� � 1

AT + B
�

BTB
� � 1

BT
�

GA
�

= det
�

BTB
�

det
�

ATG
�

AA � + BB�
�

GA
�

= det
�

BTB
�

det
�

ATG2A
�

which is the right-hand side of (B.0.3). Note that the last equality follows because
AA � + BB� is the p � p identity matrix; decomposing any �q 2 R p as �q = A �a + B �b,
we see that AA � + BB� is the identity map,

�
AA � + BB�

�
�q =

�
AA � + BB�

� �
A �a + B �b

�

=
�

A
�

AT A
� � 1

AT + B
�

BTB
� � 1

BT
�

�
A �a + B �b

�

= A
�

AT A
� � 1

AT A �a + B
�

BTB
� � 1

BTB �b

= A �a + B �b = �q

In conclusion, equation (B.0.3) is true. It follows that the integrand in the area formula
(B.0.2) equals

p
� �Ld(b)

�
�
�
�
�
�
det

�
A B

�

det(A � GA)

�
�
�
�
�

and hence the result (5.1.5) holds.
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Appendix C

Translating Recursion into Iteration

The purpose of this appendix is to show that Algorithm 4, the general recursive dual
complement sampler, can be written into a general iterative form, and from this derive
the iterative Orthogonal Gibbs and Orthogonal Gradient samplers.

We restate algorithm 4 below.

C.1 General Iterative Algorithm

Intuitively, one can imagine iterating over the submanifolds on the left-hand branches
of �gure 5.1.2 rather than recursing on the right-hand branches. Each of these subman-
ifolds is either e-�at within Q, or e-�at within an m-�at submanifold of Q. The idea
behind the iterative algorithm is to use the map Ld given in de�nition 3.3.13 to work
with e-�at submanifolds instead.

To develop intuition for this iterative process, consider stepping through Algorithm
4. Lines 5-6 resample the target distribution on an e-�at submanifold EA,b , yielding an
updated sample

q0 = Aa0+ b (C.1.1)

We use tildes to represent variables in the �rst level of recursion in the algorithm; within
the �rst recursive call, the B ASISVECTORS function is evaluated on line 2 with a p �
l dimensional input �q � b0 and inherited generator �F � flF, yielding a matrix �A 2
R (p� l )� l . On lines 5-6 within the same recursive call, the target density �p = p d0 is
resampled along a submanifold

b = �A �a + �b (C.1.2)

parameterized by �a 2 R l , and �b = b0� �A �A � b0. Here b are co-ordinates for the dual
complement submanifold, but we may also view b as coef�cients of B 2 R p� p� l , the
complement basis to A, such that b are co-ordinates for the e-�at submanifold spanned
by the columns of B in primal co-ordinates. With this identi�cation, the resampling
step (C.1.2) within the �rst recursive call is

Bb = B �A �a + B �b
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Algorithm 4 General Recursive Dual Complement Submanifold Algorithm

1: function RECDCSSAMPLER (q, F, log p )
2: A  BASISVECTORS(q, F)
3: a  A � q
4: b  q � Aa(0)

5: a0  SUBSAMPLER (a 7! log p (Aa + b), a)
6: q0  Aa0+ b
7: if D IMENSION (q)== l then
8: q00 q0

9: return q00

10: end if
11: d0  A � r F(q0)
12: B  COMPLEMENT BASIS(A)
13: function flF(b)
14: �q  MFLAT EMBED(b, F, d, A, B, a0)
15: return F( �q) � d0T AT �q
16: end function
17: function log p d0(b)
18: �q  MFLAT EMBED(b, F, d, A, B, a0)
19: return log p ( �q) � log det ATr 2F( �q)A
20: end function
21: b0  BTq0

22: b00 RECDCSSAMPLER (b0, flF, log p d0)
23: q00 MFLAT EMBED(b00, F, d, A, B, a0)
24: return q00

25: end function
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By de�nition of Ld0, we have

Ld0
�
B �A �a + B �b

�
= �Ld0

� �A �a + �b
�

Continuing the algorithm further, we must have �b = �B �b where �B is the result of
COMPLEMENT BASIS( �A). Thus, we can keep track of a variable b in an appropriate
e-�at submanifold of Q, which is mapped onto the corresponding m-�at submanifold.
This motivates the following recursive de�nition.

De�nition C.1.1. The BASISVECTORS2 function is de�ned as follows for q 2 R p, a
Bregman generator F : R p ! R and flA 2 R p� k for k � l ;

1: function BASISVECTORS2(q, F, flA)
2: A  flA [:,1:l ] . First 1, ..,l columns of flA
3: B  COMPLEMENT BASIS(A)
4: d  A � r F(q)
5: �F(b) := F

� �Ld(b)
�

� dT AT �Ld(b)
6: if NC OLS( flA)== l then
7: �R  BASISVECTORS(BTq, �F)
8: else
9: �R  BASISVECTORS2(BTq, �F, BT flA [:,� 1:l ])

10: end if
11: return B �R
12: end function

On line 5 in this de�nition, we have used the shorthand �Ld for the evaluation of
MFLAT EMBED for this A, B, d, i.e. the primal embedding into M B,Ad.

The general iterative algorithm is listed as Algorithm 9. The algorithm de�nes

R(1)  BASISVECTORS(q(0) , F)

R( j)  BASISVECTORS2(q( j � 1) , F, A ( j � 1) ) for j = 2, ..,p

C.2 Equivalence to Recursive Algorithm

In this section we will prove that the general iterative and recursive algorithms return
the same �nal sample given the same input arguments and pseudorandom seed, which
is stated as Theorem C.2.5. The proof rests on an inductive argument in which we
replace the recursive call in algorithm 4 with a call to the iterative algorithm 9 to sample
from the density p d0, and by the inductive hypothesis, recover the same b00as returned
from the recursive call.

Throughout the section, we assume that the Newton optimization in MF LAT EMBED
and MF LAT EMBED2 is solved exactly.
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Algorithm 9 Iterative Dual Complementary Submanifold Algorithm

1: function SUBTARGET(a, R, d, A, c, F, log p , a0)
2: b0  Ra + c
3: q0  MFLAT EMBED2(F, b0, d, A, a0)
4: return log p (q0) � log det

�
ATr 2F(q0)A

�

5: end function
6:
7: function ITERDCSSAMPLER (q(0) , F, log p )
8: p  D IMENSION (q(0))
9: n  p

l . Calculate number of blocks. We assumek divides p.
10: R(1)  BASISVECTORS(q(0) , F)

11: a(0)  
�

R(1)
� �

q(0)

12: c(1)  q(0) � R(1)a(0)

13: a(1)  SUBSAMPLER (a 7! log p
�

R(1)a + c(1)
�

, a(0))

14: q(1)  R(1)a(1) + c(1)

15: b(1)  q(1)

16: A (1)  R(1)

17: for j = 2, ..,n do
18: R( j)  BASISVECTORS2(q( j � 1) , F, A ( j � 1))
19: d( j � 1)  A ( j � 1) �

r F
�

q( j � 1)
�

20:

21: c( j)  
�

1p� p � R( j)
�

R( j)
� �

�
c( j � 1)

22: a( j)
0  

�
A ( j � 1)

� �
q( j � 1)

23: a( j)
0  

�
R( j)

� �
q( j � 1)

24: a( j)  SUBSAMPLER (a 7! SUBTARGET
�

a, R( j) , d( j � 1) , A ( j � 1) ,c( j) , F, log p ,a( j)
0

�
,

a( j)
0 )

25: b( j)  R( j)a( j) + c( j) . Update b in the direction of R( j)

26: q( j)  MFLAT EMBED2(F, b( j) , d( j � 1) , A ( j � 1) , a( j)
0 )

27:
28: A ( j)  

�
A ( j � 1) R( j)

�
. ConcatenateR( j) onto right side of A ( j � 1)

29: end for
30: return q(n)

31: end function
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Lemma C.2.1. Let d, �d 2 R l and de�ne

D =
�

d
�d

�
2 R2l

Let A 2 R p� l have full rank with orthonormal complementary basis B2 R p� (p� l ) . Let
�A 2 R (p� l )� k, and de�ne

A0 =
�
A B �A

�
2 R p� ( l+ k)

Let F : R p ! R be a convex Bregman generator, and de�ne�F to be the inherited Bregman
generator�F(b) := BTr F

� �Ld(b)
�

for all b where�Ld is the primal embedding into MB,Ad. Let
�b 2 R p� l andb := B�b. If

qA0  MFLAT EMBED2(F,b, D, A0,a0) (C.2.1)

and

b �A  MFLAT EMBED2( �F, �b, �d, �A,a1) (C.2.2)
qA  MFLAT EMBED(b �A , F, d, A, B,a2) (C.2.3)

wherea0,a1,a2 are starting values such that the Newton iteration in each function call con-
verges, then

qA0 = qA

Proof. Let �B 2 R (p� l )� (p� l � k) be a complement basis to �A. Then B0 := B �B 2 R p� (p� l � k)

is a complement basis to A0 2 R p� ( l+ k) , since it clearly has full rank and

�
A0� T B0 =

�
ATB0

�ATBTB0

�
=

�
ATB �B

�ATBTB �B

�
=

�
0l � (p� 2l )

�AT �B

�
=

�
0l � (p� 2l )
0l � (p� 2l )

�
= 0(2l )� (p� 2l )

We will show that the (A0, B0, F) generalized mixed co-ordinates of qA0 and qA are the
same, and henceqA0 = qA . By De�nition 3.3.13 The generalized mixed co-ordinates for
qA0 are  

(A0)Tr F (qA0)
(B0)TqA0

!

=
�

D
�BTBTb

�
=

�
D

�BTBTB �b

�
=

�
D

�BT �b

�
(C.2.4)

Consider (A0, B0, F)-mixed co-ordinates of qA . For the dual component,

�
A0� Tr F (qA ) =

�
ATr F (qA )

�ATBTr F (qA )

�
(C.2.5)

Clearly (C.2.3) is a primal embedding into the m-�at submanifold M B,Ad, and hence
the �rst block of the above is ATr F (qA ) = d. For the second component, recall that
BTr F( �Ld(b)) = r b �F(b), and thus

�ATBTr F (qA ) = �ATr b �F
� �bA

�
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Since (C.2.2) is a primal embedding into M �B, �A �d, we therefore have

�ATBTr F (qA ) = �d

Thus the dual component (C.2.5) of qA agrees with the dual component of qA0 from
(C.2.4),

�
A0� Tr F (qA ) =

�
d
�d

�
= D

Finally, the primal component of qA in the mixed co-ordinate system is given by
�
B0� TqA = �BTBTqA = �BT �bA = �BT �b

where the second equality follows from the fact that qA = �Ld (b), and the �nal equality
follows from (C.2.2). Thus qA and qA0 have the same(A0, B0, F) generalized mixed co-
ordinates, and hence we must have qA = qA0.

Lemma C.2.2. Let A, �A, A0, B, d, �d, D, F, �F be de�ned as in Lemma C.2.1. Let�c 2 R p� l and
let �R 2 R (p� l )� l have full rank and columns which are mutually Euclidean-orthogonal to the
columns of A0. For a log-densitylog p , let log p d be de�ned as (5.1.6), i.e. for all�q 2 R p� l ,

log p d( �q) = log p
� �Ld( �q)

�
� log det

�
ATr 2F

� �Ld( �q)
�

A
�

Then fora 2 R l ,

SUBTARGET(a, B �R, D, A0, B�c, F, log p ) = SUBTARGET(a, �R, �d, �A, �c, �F, log p d) (C.2.6)

whereSUBTARGET is the function de�ned on line of Algorithm 9.

Proof. Consider stepping through S UBTARGET with each set of arguments on either side
of (C.2.6). We use tildes to refer to the execution of the function with the arguments on
the right-hand side, and absence of tildes to indicate the execution of the function with
arguments on the left-hand side of (C.2.6).

Firstly, from line 2 we have �b0 = �Ra + �c. Multiplying this by B, we �nd

B �b0 = B �R + B�c

The matrix B �R and vector B�c are exactly the R and c argument passed to the function
on the left-hand side of (C.2.6). Thus we have b0 = B �b0.

Consider line 3 for each set of arguments. Sinceb0 = B �b0, the conditions of Lemma
C.2.1 are satis�ed, and we identify qA0 from the lemma with q0 from the execution of
SUBTARGET on the left-hand side of (C.2.6), and �b �A from the lemma with �q0 from the
function called with the arguments on the right-hand side of the same equation.

To show the result (C.2.6), it remains to show that line 4 gives the same result for
both sets of arguments, i.e.

log p (q0) � log det(ATr 2F(q0)A) = log p d( �q0) � log det( �ATr 2 �F( �q0) �A) (C.2.7)
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Since we made the identi�cations �q0 $ �b �A and q0 $ qA , it follows from Lemma C.2.1
that

�Ld
� �q0� = q0

where �Ld is the primal embedding into M B,Ad. For brevity, from here on we write G for
r 2F

� �Ld( �q0)
�
. Expanding the de�nition of log p d in the right-hand side of (C.2.7),

log p d( �q0) � log det
�

�ATr 2 �F �A
�

= log p
� �Ld( �q0)

�
� log det

�
ATGA

�
� log det

�
�ATr 2 �F( �q0) �A

�

= log p
� �Ld( �q0)

�
� log

h
det

�
ATGA

�
det

�
�ATr 2 �F( �q0) �A

�i
(C.2.8)

Note by Theorem 3.3.12, we have the expression forr 2 �F,

r 2 �F( �q0) = BTG
�

1p� p � A
�

ATGA
� � 1

ATG
�

B

and thus the determinant in (C.2.8) can be written as

det
�

ATGA
�

det
�

�ATr 2 �F( �q0) �A
�

= det
�

ATGA
�

det
�

�ATBTG
�

1p� p � A
�

ATGA
� � 1

ATG
�

B �A
�

= det
�

ATGA
�

det
�

�ATBTGB �A � �ATBTGA
�

ATGA
� � 1

ATGB �A
�

=

 
ATGA ATGB �A

�ATBTGA �ATBTGB �A

!

=
�
A B �A

� TG
�
A B �A

�

=
�
A0� TGA0

where, to go from the third to the fourth line, we have written a product of determinants
as a determinant of a block matrix using the Schur complement property [75]. Thus it
follows from (C.2.8) that

log p d( �q0) � log det
�

�ATr 2 �F �A
�

= log p ( �Ld( �q0)) �
�
A0� Tr 2F

� �Ld( �q0)
�

A0

and hence (C.2.7) holds. Thus the returned results for both sets of arguments to the
SUBTARGET function are equal.

Lemma C.2.3. Suppose B2 R p� (p� l ) and �R 2 R (p� l )� l are matrices of full rank where the
columns of B are orthonormal, and let R:= B �R. Then

R� = �R� BT
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Proof. By the orthonormality of B, the pseudo-inverse of R is

R� =
�
B �R

� � =
�

�RTBTB �R
� � 1

�RTBT

=
�

�RT �R
� � 1

�RTBT = �R� BT (C.2.9)

Lemma C.2.4. Let q(0) , ..,q(n) be the iterates of algorithm 9 with argumentsq(0) , log p and F
where p> l so thatn > 1, and letz(1) represent the state of the pseudorandom generator after
the �rst call to the subsampler in line 13. Let A be A(1) de�ned in line 10 for thisq(0) , and let
B be the result ofCOMPLEMENT BASIS(A). Setd = A � r F

�
q(1)

�
. De�ne �q(0) = BTq(1) ,

and let �q(0) , �q(1) , � � � , �q(n� 1) be the resulting iterates of algorithm 9 with initial iterate�q(0) and
target log-density and Bregman generator respectively given by

log p d( �q) := log p ( �Ld( �q)) � log det
�

ATr 2F( �Ld( �q)) A
�

�F( �q) := F( �Ld( �q)) � dT AT �Ld( �q)

Assume that immediately before executing the algorithm with these arguments, the state of the
pseudorandom generator is�z(0) = z(1) . Then for j= 0, ..,n � 1, we have

�Ld

�
�q( j)

�
= q( j+ 1) (C.2.10)

where�Ld is the primal embedding into MB,Ad. Moreover,

R( j+ 1) = B �R( j) (C.2.11)

for j = 1, ..,n � 1, where �R( j) is the R( j) matrix from Algorithm 9 corresponding to the iterates
�q(0) , .., �q(n� 1) .

Proof. Throughout the proof, we will use tildes to refer to variables in the execution of
algorithm 9 with iterates �q(0) , .., �q(n� 1) , and the abscence of tildes to indicate the execu-
tion of the algorithm with iterates q(0) , q(1) , ..q(n) . We will show by induction that each
of the following holds for j = 1, ..,n � 1,

R( j+ 1) = B �R( j) (C.2.12)

A ( j+ 1) =
�
A B �A ( j)

�
(C.2.13)

c( j+ 1) = B�c( j) (C.2.14)

b( j+ 1) = B �b( j) (C.2.15)

a( j+ 1) = �a( j) (C.2.16)
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where �R(1) := �A (1) . In addition, we will show the following hold for j = 0, 1, ..,n � 1,

z( j+ 1) = �z( j) (C.2.17)

A � r F
�

q( j+ 1)
�

= d (C.2.18)

�Ld

�
�q( j)

�
= q( j+ 1) (C.2.19)

where z( j) is the state of the pseudorandom generator after j calls to the subsampler.
Note that the line (C.2.12) corresponds to the result (C.2.11), and the �nal line (C.2.19)
is the result (C.2.10) of the Lemma.

Base case. Since d = A � r F(q(1) ), then (C.2.18) holds trivially for j = 0 and by
de�nition q(1) 2 M B,Ad. Thus the (A, B) generalized mixed co-ordinates of q(1) are

�
d

BTq(1)

�
=

�
d

�q(0)

�

by de�nition of �q(0) . Since �Ld is the primal embedding into M B,Ad, the generalized
mixed co-ordinates of �Ld

�
�q(0)

�
agree with the above; thus �Ld

�
�q(0)

�
= q(1) and (C.2.19)

holds for j = 0. Finally, by the assumptions of the lemma we have z(1) = �z(0) , and hence
(C.2.17) is trivially true for j = 0.

We show directly that equations (C.2.12)-(C.2.19) hold for j = 1. For (C.2.12), note
that by line 10 we have

�R(1) = BASISVECTORS( �q(0) , �F) (C.2.20)

Furthermore, by line 18

R(2) = BASISVECTORS2(q(1) , F, A (1) ) = BASISVECTORS2(q(1) , F, R(1) )

Since A (1) = R(1) has l columns, the if-statement on line 6 in De�nition C.1.1 is trig-
gered, and hence

R(2) = B � BASISVECTORS(BTq(1) , �F)

= B � BASISVECTORS( �q(0) , �F)

= B �R(1)

by (C.2.20), where B = COMPLEMENT BASIS(A). Thus (C.2.12) holds for j = 1. This
result, with the fact that A (1) � A and line 28, implies

A (2) =
�
A R(2)

�
=

�
A B �R(1)

�
=

�
A B �A (1)

�

which shows (C.2.13) for j = 1.
To show (C.2.14) for j = 1, we manipulate the expression on line 21,

c(2) =
�

1p� p � R(2)
�

R(2)
� �

�
c(1)
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Substituting the identity 1 p� p = AA � + BBT and R(2) = B �R(1) from (C.2.12),

c(2) =
�

AA � + BBT � B �R(1)
�

B �R(1)
� �

�
c(1)

=
�

BBT � B �R(1)
�

�R(1)
� �

BT
�

c(1)

= B
�

1(p� l )� (p� l ) � �R(1)
�

�R(1)
� �

�
BTc(1) (C.2.21)

where we have used the fact that c(1) = q(0) � AA � q(0) , and thus c(1) 2 (Im A)? . By
line 14, we have

BTc(1) = BT
�

q(1) � R(1)a(1)
�

= BTq(1) = �q(0)

since B is a complement basis to R(1) = A. Substituting this into (C.2.21);

c(2) = B
�

1(p� l )� (p� l ) � �R(1)
�

�R(1)
� �

�
�q(0) = B�c(1)

Thus (C.2.14) holds for j = 1.
Consider the call to SUBTARGET on line 24 returning a(2) , i.e. with the arguments

a(2)  SUBSAMPLER (a 7! SUBTARGET
�

a, R(2) , d(1) , A (1) ,c(2) , F, log p ,a(2)
0

�
, a(2)

0 )

Then b0on line 2 within the function call with these arguments is

b0 = R(2)a + c(2) = B
�

�R(1)a + �c(1)
�

Therefore q0on line 3 satis�es

q0 = Ld
�
b0� = �Ld

�
BTb0

�
= �Ld

�
�R(1)a + �c(1)

�

since d = d(1) . The returned value of the log-density of the subtarget is then

log p
�

�Ld

�
BTb0

��
� log det

� �
A (1)

� T
r 2F

�
BTb0

�
A (1)

�

= log p
�

�Ld

�
BTb0

��
� log det

�
ATr 2F

�
BTb0

�
A

�

= log p d

�
BTb0

�

= log p d

�
�R(1)a + �c(1)

�

Note that this is exactly the same log-density passed to the subsampler in line 13 when
the algorithm I TERDCSSAMPLER is passed a target log-density log p d. By assumption,
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the state of the pseudorandom generator is the same before each call to the subsampler,
i.e. z(1) = �z(0) , and the subsampler is passed the same initial iterate for a since

�a(0) =
�

�R(1)
� �

�q(0) =
�

�R(1)
� �

BTq(1) =
�

R(2)
� �

q(1) = a(2)
0

Thus the subsampler is passed the same target log-density, initial iterate and pseudo-
random seed, and hence we must have a(2) = �a(1) , i.e. (C.2.16) holds for j = 1. The
pseudorandom state must also be updated in the same way, such that z(2) = �z(1) and
thus (C.2.17) is true for j = 1. Furthermore, (C.2.15) holds for j = 1, since lines 25, 14
and 15 imply

b(2) = R(2)a(2) + c(2) = B
�

�R(1) �a(1) + �c(1)
�

= B �q(1) = B �b(1)

By the properites of the primal embedding, (C.2.19) holds for j = 1;

q(2) = Ld

�
b(2)

�
= �Ld

�
BTb(2)

�

= �Ld

�
�R(1) �a(1) + �c(1)

�
= �Ld

�
�q(1)

�

Sinceq(2) is in the image of the primal embedding into M B,Ad, then (C.2.18) follows by
de�nition for j = 1;

A � r F
�

q(2)
�

= d

Thus (C.2.12)-(C.2.19) all hold for j = 1.
Induction step. Assume the inductive hypothesis that (C.2.12)-(C.2.19) all hold for

some j = j0 � 1, and consider each equation in the casej0 + 1.
Firstly consider (C.2.12). From line 18 with j = j0 + 2,

R( j0+ 2) = BASISVECTORS2(q( j0+ 1) , F, A ( j0+ 1) ) (C.2.22)

By the inductive hypothesis (C.2.13) holds for j = j0, and thus the submatrix of A ( j0+ 1)

with the �rst l columns removed is B �A ( j0) ;

A ( j0+ 1) =
�
A B �A ( j0)

�

) A ( j0+ 1)
[:,� 1:l ] = B �A ( j0)

The columns of A are �rst l columns of A ( j0+ 1) . Thus by De�nition C.1.1, R( j0+ 2) = B �R,
where B is the result of C OMPLEMENT BASIS(A), and

�R := BASISVECTORS2(BTq( j0+ 1) , �F, A ( j0+ 1)
[:,� 1:l ])

= BASISVECTORS2(BTq( j0+ 1) , �F, BTB �A ( j0) )

= BASISVECTORS2(BTq( j0+ 1) , �F, �A ( j0) )
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By the inductive hypothesis, �Ld

�
�q( j0)

�
= q( j0+ 1) holds for j = j0, and thus �q( j0) =

BTq( j0+ 1) by De�nition 3.3.8. It follows that

�R = BASISVECTORS2( �q( j0) , �F, �A ( j0) ) = �R( j0+ 1)

Substituting this into equation (C.2.22) yields R( j0+ 2) = B �R( j0+ 1) , and thus (C.2.12) holds
for j = j0 + 1.

Next consider (C.2.13). By line 28 for j = j0 + 1 and the inductive hypothesis, we
have

A ( j0+ 2) =
�
A ( j0+ 1) R( j0+ 2)

�
=

�
A B �A ( j0) R( j0+ 2)

�

Since (C.2.12) is proven for j = j0 + 1, we have R( j0+ 2) = B �R( j0+ 1) . Substituting this and
applying line 28 again for �A ( j0+ 1) , we have

A ( j0+ 2) =
�
A B �A ( j0) B �R( j0+ 1)

�
=

�
A B �A ( j0+ 1)

�

and thus (C.2.13) holds for j = j0 + 1.
Next we show (C.2.14) holds for j = j0 + 1. From line 21, we have

c( j0+ 2) =
�

1p� p � R( j0+ 2)
�

R( j0+ 2)
� �

�
c( j0+ 1) (C.2.23)

Note that (C.2.12) holds for j = 1, ..,j0, j0 + 1, so we substitute R( j0+ 1) = B �R( j0) and
R( j0+ 2) = B �R( j0+ 1) into (C.2.23), applying Lemma C.2.3, and with the identity 1 p� p =
AA � + BB� we recover

c( j0+ 2) =
�

AA � + BBT � B �R( j0+ 1)
�

B �R( j0+ 1)
� �

�
c( j0+ 1)

c( j0+ 2) =
�

BBT � B �R( j0+ 1)
�

�R( j0+ 1)
� �

BT
�

c( j0+ 1)

= B
�

1(p� l )� (p� l ) � �R( j0+ 1)
�

�R( j0+ 1)
� �

�
BTc( j0+ 1)

By the inductive hypothesis, BTc( j0+ 1) = BTB�c( j0) = �c( j0) and hence

c( j0+ 2) = B
�

1(p� l )� (p� l ) � �R( j0+ 1)
�

�R( j0+ 1)
� �

�
�c( j0)

This is exactly the expression for �c( j0+ 1) from line 21 multiplied by B, so it follows
c( j0+ 2) = B�c( j0+ 1) and hence (C.2.14) holds for j = j0 + 1.

To show (C.2.16) is true for j = j0 + 1, �rst substitute (C.2.13) for j = j0 into the
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expression on line 20 for d( j0+ 1) ,

d( j0+ 1) =
�

A ( j0+ 1)
� �

r qF
�

q( j0+ 1)
�

=
�
A B �A ( j0)

� �
r qF

�
q( j0+ 1)

�

=
� �

A B �A ( j0)
� T �

A B �A ( j0)
� � � 1�

A B �A ( j0)
� T

r qF
�

q( j0+ 1)
�

=

 
AT A 0l � (p� l )

0(p� l )� l �A ( j0) T �A ( j0)

! � 1
0

@
ATr qF

�
q( j0+ 1)

�

�A ( j0) T
BTr F

�
q( j0+ 1)

�

1

A =

0

@
A � r qF

�
q( j0+ 1)

�

�A ( j0) �
BTr F

�
q( j0+ 1)

�

1

A

By the inductive hypothesis, q( j0+ 1) = �Ld

�
�q( j0)

�
. Hence by the formula for the inherited

generator in Theorem 3.3.12, we haveBTr F
�

�Ld

�
�q( j0)

��
= r �F( �q( j0) ). Thus

d( j0+ 1) =

0

@
A � r F

�
q( j0+ 1)

�

�A ( j0) �
r �F

�
�q( j0)

�

1

A (C.2.24)

By line 20, �A ( j0) �
r �F

�
�q( j0)

�
= �d( j0) , and by (C.2.18) in the inductive hypothesis

A � r F
�

q( j0+ 1)
�

= d

Substituting these into (C.2.24), we �nd

d( j0+ 1) =
�

d
�d( j0)

�

Now, the conditions of Lemma C.2.2 are satis�ed when we make the following identi-
�cations:

A0 $ A ( j0+ 1) �R $ �R( j0+ 1) R $ R( j0+ 2) �A $ �A ( j0)

D $ d( j0+ 1) �d $ �d( j0) �c $ �c( j0+ 1) c $ c( j0+ 2)

Then by Lemma C.2.2, for any a we have

SUBTARGET(a, R( j0+ 2) , d( j0+ 1) , A ( j0+ 1) ,c( j0+ 2) , F, log p )

= SUBTARGET(a, �R( j0+ 1) , �d( j0) , �A ( j0) , �c( j0+ 1) , �F, log p d)

Therefore the log-density passed to the subsampler on line 24 is the same function for
iterations j = j0 + 1 and j = j0 + 2 of the for-loop for the variables with and without
tildes respectively. Furthermore, the initial iterate passed to the subsampler �aj0+ 1

0 =
aj0+ 2

0 , since from line 23,

a( j0+ 2)
0 :=

�
R( j0+ 2)

� �
q( j0+ 1)

=
�

�R( j0+ 1)
� �

BT �Ld

�
�q( j0)

�
=

�
�R( j0+ 1)

� �
�q( j0) = �a( j0+ 1)

0
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where we have used the property of the primal embedding into M B,Ad, and Lemma
C.2.3. Finally, by the inductive hypothesis (C.2.17) holds for j = j0 and so z( j0+ 1) =
�z( j0) , and so the subsampler is called with the same pseudorandom seed or state. In
conclusion, the subsampler is called in each case with the same pseudorandom state,
target log-density, and initial iterate, and therefore the returned result is the same for
each case;

a( j0+ 2) = �a( j0+ 1)

which shows (C.2.16) holds for j = j0 + 1. Additionally, the state of the pseudorandom
generator must be updated in the same way, and thus (C.2.17) holds for j = j0 + 1;
z( j0+ 2) = �z( j0+ 1) .

To show (C.2.15) for j = j0 + 1, we substitute equations (C.2.14) and (C.2.12), both
of which have been proven for j = j0 + 1, into the expression on line 25;

b( j0+ 2) = R( j0+ 2)a( j0+ 2) + c( j0+ 2) = B �R( j0+ 1) �a( j0+ 1) + B�c( j0+ 1)

= B
�

�R( j0+ 1) �a( j0+ 1) + �c( j0+ 1)
�

= B �b( j0+ 1)

and hence (C.2.15) holds for j = j0 + 1. Finally, the conditions of Lemma C.2.1 are
satis�ed with the above identi�cations and �b $ �b( j0+ 1) . Line 26 takes the form in each
case:

q( j0+ 2)  MFLAT EMBED2(F,b( j0+ 2) , d( j � 1) , A ( j0+ 1) ,a( j0+ 2)
0 )

�q( j0+ 1)  MFLAT EMBED2( �F, �b( j0+ 1) , �d( j0+ 1) , �A ( j0) , �a( j0+ 1)
0 )

It follows from Lemma C.2.1, speci�cally (C.2.3), that

q( j0+ 2) = �Ld

�
�q( j0+ 1)

�

and hence (C.2.19) is proven for j = j0 + 1. Thusq( j0+ 2) is an element of the submanifold
M B,Ad, and hence (C.2.18) holds for j = j0 + 2,

A � r F
�

q( j0+ 2)
�

= d

We have shown that (C.2.12)-(C.2.19) hold for j = j0 + 1, assuming they hold for j =
j0. By the principle of induction, (C.2.12)-(C.2.19) hold for all j = 1, ..,n � 1, and in
particular (C.2.19) holds for j = 0, ..,n � 1.

Theorem C.2.5. Suppose algorithms 4 and 9 are initialized with the same pseudorandom seed,
and the same target distributionp , Bregman generator F and initial iterateq(0) are passed as
arguments to both algorithms. Suppose also that the Newton optimization in calls to algorithm
2 is replaced with the exact minimization. Then the algorithms produce the same output, i.e.

RECDCSSAMPLER (q(0) , F, log p ) = ITERDCSSAMPLER (q(0) , F, log p ) (C.2.25)
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Proof. For clarity, we label the iterates of algorithm 9 as q(1)
IT , ..,q(n)

IT , and let q0 and q00

refer to these variables in algorithm 4. We �x the block-size l and use an inductive
argument on the number of blocks n = p/ l .

Base case.Supposen = 1, i.e. p = l . Note that A de�ned on line 2 of algorithm 4 is
exactly A (1) de�ned on line 10 of algorithm 9. Furthermore, lines 3-6 of algorithm 4 are
identical to lines 11-14 of algorithm 9 with a $ a(0) , a0 $ a(1) , b $ b(1) and q0 $ q(1) .
Since the subsampler on these lines is called with the same pseudorandom seed, we
have q(1)

IT = q0. In the recursive algorithm 4, the if-statement on line 7 is triggered, and
the algorithm terminates and returns q00= q0. Similarly in algorithm 9, the for-loop on
line 7 ranges from 2 to n, and thus is skipped since n = 1, and the algorithm returns
q(n)

IT = q(1)
IT = q0on line 30. Thus (C.2.25) holds for inputs of size p = l .

Induction step. Assume an inductive hypothesis that (C.2.25) holds for inputs of
size p = n0l for some n0 � 1 when the pseudorandom generator is initialized with the
same state or seed for both algorithms.

Consider the execution of each algorithm with inputs of size p = ( n0 + 1) l . The same
argument we used in the base case applies, and we haveq(1)

IT = q0. Furthermore, since
the subsampler is called for the �rst time in each algorithm with identical inputs and
the same pseudorandom seed, the underlying states of the pseudorandom generators
used for each algorithm are identical after this �rst call to the subsampler.

In line 12 of algorithm 4, the matrix B is de�ned, which has dimension p � n0l since
p � l = n0l . Thus the vector b0 = BTq0 initialized in line 21 has dimension n0l , and
the dynamically de�ned functions flF and log p d0 both accept inputs of this dimension.
Thus by the inductive hypothesis, the recursive call on line 22 is equivalent to calling
the iterative algorithm, i.e. the line can be replaced with

b00 ITERDCSSAMPLER (BTq(1)
IT , flF, log p d0)

Within this inner call to the iterative algorithm, the iterates b(0) = BTq(1)
IT , b(1) , � � � , b(n0)

are produced, with the �nal iterate b(n0) being returned and stored in b00. Thus by
Lemma C.2.4 with n = n0 + 1, we have q00= �Ld0(b00) = q(n0+ 1)

IT , and so both algorithms
return the same value. Hence (C.2.25) holds for n0 + 1. By the principle of induction,
(C.2.25) holds for all n � 1.

C.3 Explicit Algorithms

The following Lemma allows simpli�cation of each speci�c algorithm.

Lemma C.3.1. If the matrices R( j) in Algorithm 9 are mutually orthogonal so that R( j0) T
R( j1) =

0l � l whenever j0 6= j1, then the vectord( j) satis�es

d( j) =

 
d( j � 1)

R( j) �
r F

�
q( j)

�
!

for j = 2, ..,n
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Proof. By line 20, we have for each j = 2, ..,n

d( j) =
�

A ( j)
� �

r F
�

q( j)
�

By line 28, A ( j) =
�
A ( j � 1) R( j)

�
, and thus

d( j) =

 
A ( j � 1) T

A ( j � 1) 0( j � 1) l � l

0l � ( j � 1) l R( j) T
R( j)

! � 1 0

@
A ( j � 1) T

r F
�

q( j)
�

R( j) T
r F

�
q( j)

�

1

A

=

0

@
A ( j � 1) �

r F
�

q( j)
�

R( j) �
r F

�
q( j)

�

1

A (C.3.1)

By line 26, q( j) is an element of the submanifold

M B( j � 1) ,A( j � 1) d( j � 1) =
�

qj
�

A ( j � 1)
� �

r F (q) = d( j � 1)
�

and thus the result follows from (C.3.1);

d( j) =

0

@
A ( j � 1) �

r F
�

q( j)
�

R( j) �
r F

�
q( j)

�

1

A =

 
d( j � 1)

R( j) �
r F

�
q( j)

�
!

C.3.1 Orthogonal Gibbs

Note that B ASISVECTORS2 simpli�es in the speci�c cases of the Orthogonal Gibbs and
Orthogonal Gradient algorithm as the following propositions show; the general form
in De�nition C.1.1 allows us to reason about both cases.

Proposition C.3.2. Let BASISVECTORS and COMPLEMENT BASIS be as de�ned as in the
Orthogonal Gibbs algorithm, i.e. by equations (5.2.1) and (5.2.2) respectively. Then for j=
1, ..,n = p/ l, the matrix R( j) in Algorithm 9 has columns given by the( j � 1) l + 1,...,jl
standard basis vectors, i.e. for any Bregman generator F,

R( j) =

0

@
0( j � 1) l � l

1l � l
0(n� j) l � l

1

A for j = 1, ..,n (C.3.2)

Proof. Note that the de�nitions (5.2.1) and (5.2.2) only depend on the dimension of q,
not on the value of q or the Bregman generator F. Fix the block size l so that the dimen-
sion of q is p = nl . We will prove (C.3.2) by induction on the number of blocks n; in
particular, we will show the following for each j = 1, ..,n;

R( j)
n =

0

@
0( j � 1) l � l

1l � l
0(n� j) l � l

1

A (C.3.3)
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The subscript n indicates the number of blocks, i.e. that the dimension of the inputs to
the algorithm is p = nl .

Base case.Supposen = 1, so that the input dimension is p = l . Then the only case
to check is R(1) , which from line 10 of Algorithm 4 is given by

R(1)
1 := BASISVECTORS(q(0) , F)

Note BASISVECTORSis de�ned for the Orthogonal Gibbs in (5.2.1) as the matrix whose
columns are the �rst l standard basis vectors of dimension p = l . Thus

R(1)
1 = BASISVECTORS(q(0) , F) = 1l � l

which is (C.3.3) for j = n = 1. Thus the inductive hypothesis (C.3.3) holds for n = 1.
Induction step. Assume the inductive hypothesis that (C.3.3) holds for all j =

1, ..,n0 for some n0 � 1, i.e.

R( j)
n0 =

0

@
0( j � 1) l � l

1l � l
0(n0� j) l � l

1

A (C.3.4)

Consider the case when the size of the inputs is p = ( n0 + 1) l , i.e. n = n0 + 1. For
j = 1, the statement on line 10 of the algorithm and the choice of BASISVECTORS for
Orthogonal Gibbs (5.2.1) imply

R(1)
n0+ 1 = BASISVECTORS(q, F) =

�
1l � l

0n0l � l

�

which agrees with (C.3.3) for j = 1 and n = n0 + 1. Furthermore, since line 28 concate-
nates eachR( j)

n0+ 1 to the right-side of A ( j � 1)
n0+ 1 , then for all j = 1, ..,n0 + 1 the �rst l columns

of A ( j)
n0+ 1 are

A := A (1)
n0+ 1 = R(1)

n0+ 1 =
�

1l � l
0n0l � l

�

Thus when we step through B ASISVECTORS2 from De�nition C.1.1, the matrix B de-
�ned on line 3 of B ASISVECTORS2 is

B := COMPLEMENT BASIS(A) =
�

0l � n0l
1n0l � n0l

�
(C.3.5)

by the COMPLEMENT BASIS function (5.2.2) for Orthogonal Gibbs.
Now, let �q(0) , .., �q(n0) be the iterates of ITERDCSSAMPLER as de�ned in Lemma C.2.4,

i.e. corresponding to initial iterate BTq(1) , Bregman generator �F and target log-density
log p d, and with the state of the pseudorandom generator identical to the state after the
�rst call to S UBSAMPLER producing a(1) . Then, by the result (C.2.11) of the lemma, for
j � 2 we have

R( j) = B �R( j � 1) , R( j)
n0+ 1 = BR( j � 1)

n0
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Then, substituting (C.3.5) and the inductive hypothesis (C.3.3) for n = n0 and j � 1, we
�nd

R( j)
n0+ 1 =

�
0l � n0l

1n0l � n0l

�
0

@
0( j � 2) l � l

1l � l
0(n0+ 1� j) l � l

1

A

=

0

B
B
@

0l � l
0( j � 2) l � l

1l � l
0(n0+ 1� j)

1

C
C
A =

0

@
0( j � 1) l � l

1l � l
0(n0+ 1� j)

1

A

which agrees with (C.3.3) for n = n0 + 1 and j � 2. Hence by the principle of induction,
(C.3.2) is true for all n � 1.

C.3.2 Orthogonal Gradient

Lemma C.3.3. Let BASISVECTORS be de�ned as in the Orthogonal Gradient algorithm, i.e.
de�ned by (5.3.1). Then the p� 1 vectors R( j) � r( j) in Algorithm 9 satisfy the following for
j = 2, ..,p:

r( j) =

 
j � 1

å
i= 1

r( i)r( i) T

r( i) Tr( i)
� 1p� p

!

r F
�

q( j � 1)
�

j = 2, ..,p (C.3.6)

and for j= 1,
r(1) = �r F

�
q(0)

�
(C.3.7)

Proof. Note that for the Orthogonal Gradient algorithm the block size l = 1, and hence
the number of blocks is n = p. We show the result using induction on the dimension p.

Base case.Suppose the dimension is p = 1. Then the only case to check isj = 1,
which is given on line 10 of Algorithm 4 as

r(1) � R(1) := BASISVECTORS(q(0) , F) = �r F
�

q(0)
�

which satis�es (C.3.7).
Induction step. Suppose (C.3.6) and (C.3.7) hold for some input dimension p =

p0 � 1, and consider the case when the input dimension is p := p0 + 1.
For j = 1, the same argument as in the base case applies, and we have

r(1) � R(1) := BASISVECTORS(q(0) , F) = �r F
�

q(0)
�

(C.3.8)

which satis�es (C.3.7).
Note that for j � 2, we have the de�nition

R( j)  BASISVECTORS2(q( j � 1) , F, A ( j � 1) )
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The �rst column of A ( j � 1) is r(1) , which is the matrix A de�ned on line 2 of B ASISVEC-
TORS2 in De�nition C.1.1 since l = 1. The matrix B is the complement basis of A,
de�ned on line 3 of the same function.

Let �q(0) , .., �q(p0) be the iterates of ITERDCSSAMPLER as de�ned in Lemma C.2.4,
i.e. corresponding to initial iterate BTq(1) , Bregman generator �F and target log-density
log p d, and with the state of the pseudorandom generator identical to the state after the
�rst call to S UBSAMPLER producing a(1) . Then, by the result (C.2.11) of the lemma, for
j = 2, ..,p0 + 1 we have r( j) = B�r( j � 1) where �r( j) is the equivalent of the r( j) vector for
the iterates �q(0) , .., �q(p0) .

For j = 2, we apply the inductive hypothesis for j = 1 and p = p0, and (C.2.11);

r(2) = B�r(1) = � Br �F
�

�q(0)
�

= � Br �F
�

�q(0)
�

By Theorem 3.3.12, we haver �F( �q(0) ) = BTr F
�

�Ld

�
�q(0)

��
. By Lemma C.2.4, �Ld

�
�q(0)

�
=

q(1) , and hence
r(2) = � Br �F

�
�q(0)

�
= � BBTr F

�
q(1)

�

Finally, we substitute the identity BBT = 1(p0+ 1)� (p0+ 1) � AA � = 1(p0+ 1)� (p0+ 1) � r(1) r(1) T

r(1) Tr(1)
.

r(2) =

 

1(p0+ 1)� (p0+ 1) �
r(1)r(1) T

r(1) Tr(1)

!

r F
�

q(1)
�

(C.3.9)

which shows (C.3.6) for j = 2 and p = p0 + 1.
For j � 3, we apply the formula r( j) = B�r( j � 1) from Lemma C.2.4. By the inductive

hypothesis,

r( j) = B�r( j � 1) = B

 
j � 2

å
i= 1

�r( i) �r( i) T

�r( i) T
�r( i)

� 1p0� p0

!

r �F( �q( j � 2) )

By Theorem 3.3.12, we haver �F( �q( j � 2) ) = BTr F
�

�Ld

�
�q( j � 2)

��
. By Lemma C.2.4,

�Ld

�
�q( j � 2)

�
= q( j � 1) , and hence

r( j) =

 
j � 2

å
i= 1

B
�r( i) �r( i) T

�r( i) T
�r( i)

� B

!

BTr F
�

q( j � 1)
�

=

 
j � 2

å
i= 1

B�r( i) �r( i) T
BT

�r( i) T
�r( i)

� BBT

!

r F
�

q( j � 1)
�

(C.3.10)

Applying Lemma C.2.4 once more for i = 1, ..,j � 2, we have r( i+ 1) = B�r( i) and, since B
has orthonormal columns,

�r( i) T
�r( i) = r( i+ 1) T

BTBr( i+ 1) = r( i+ 1) T
r( i+ 1)
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Substituting this and 1 = AA � + BBT into (C.3.10) yields

r( j) =

 
j � 2

å
i= 1

r( i+ 1)r( i+ 1) T

r( i+ 1) Tr( i+ 1)
+ AA � � 1(p0+ 1)� (p0+ 1)

!

r F
�

q( j � 1)
�

=

 
j � 2

å
i= 1

r( i+ 1)r( i+ 1) T

r( i+ 1) Tr( i+ 1)
+

r(1)r(1) T

r(1) Tr(1)
� 1(p0+ 1)� (p0+ 1)

!

r F
�

q( j � 1)
�

=

 
j � 1

å
i= 1

r( i)r( i) T

r( i) Tr( i)
� 1(p0+ 1)� (p0+ 1)

!

r F
�

q( j � 1)
�

which is the result (C.3.6) for p = p0 + 1 and j � 3.
Thus by the principle of induction, (C.3.6) holds for all p � 1.
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Appendix D

Details of Conjugate Directions
Samplers

In this appendix, we consider how the Dual Complement Submanifold algorithms are
simpli�ed when the Bregman generator is of the Euclidean form

F(q) :=
1
2

qTL q � w Tq (D.0.1)

where L is a p � p symmetric positive-de�nite matrix. Geometry of this kind may arise
from the p -Bregman divergence of a Gaussian target distribution, but may also be used
as an approximate geometry for more complex distributions. We immediately see that
(D.0.1) implies that the metric r 2F(q) = L , a constant matrix. Thus the Riemannian
manifold simply takes the structure of an inner-product space, and the notion of orthog-
onality is equivalent to the following.

De�nition D.0.1. Vectors v,w 2 R p are called conjugate if they are orthogonal in the
L -weighted inner-product, i.e. vTL w = 0. A set f v(1) ..,v(n0)g of 1 � n0 � p vectors in
R p is a mutually conjugate set if every distinct pair of its elements are conjugate, i.e.
if v( i2) T

L v( i1) = 0 for all distinct i1, i2 2 f 1, ..,n0g. A matrix V 2 R p� n0 is a conjugate
matrix if its columns form a mutually conjugate set.

Intuitively, algorithm 9 updates iterates q( j) in mutually conjugate directions at each
iteration; this will be shown rigorously in this section. There is an obvious analogy
to Conjugate Directions methodsin optimization [40], the best known of which is the
Conjugate Gradient method [73], [70]. Indeed, in Section D.2 we will show that the
Orthogonal Gradient sampler reduces to a sampling variant of the Conjugate Gradient
algorithm when F is given by (D.0.1). Note that for the Bregman generator (D.0.1), the
dual co-ordinate vector corresponding to q is the residual for the equation L q = w ,

h := r F(q) = L q � w
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For simplicity in this section we assume k = 1, i.e. the BASISVECTORSfunction outputs
a single column vector on line 18 of algorithm 9,

R( j) � r( j) = BASISVECTORS(q, j)

We suspect that results in this section can be generalized to k > 1 however, so further
work could explore blockconjugate directions samplers. Since eachr( j) is not modi�ed,
line 28 implies that for all j = 1, ..,p,

A ( j) =
�
r(1) � � � r( j)

�

The only assumption on f r( j)gp
j= 1 is linear independence, so that each A ( j) is of full

rank; there is no requirement for the set to be mutually conjugate. The following well-
known algorithm allows any such set of linearly independent vectors to be transformed
into a mutually conjugate basis for the same space. A proof can be found in Axler [5].

Theorem D.0.2 (Modi�ed Gram-Schmidt Process) . Let 1 � n0 � p, and letf r( j)gn0
j= 1 be a

set ofn0 linearly independent vectors inR p. Setv(1) = r(1) , and for j= 2, ..,n0 de�ne

v( j) = r( j) �
j � 1

å
i= 1

r( j) T
L v( i)

v( i) TL v( i)
v( i) =

 

1p� p �
j � 1

å
i= 1

v( i)v( i) T
L

v( i) TL v( i)

!

r( j) (D.0.2)

Then for all j= 1, ..,n0, the setf v(1) , ..,v( j)g is mutually conjugate and spans the same space
asf r(1) , ..,r( j)g.

Note that the rank-1 matrix v( i)v( i) T
L

v( i) TL v( i)
is the L -orthogonal projection matrix onto the

span of v( i) . In particular, the following lemma shows that each v( j) is the projection of
r( j) onto the L -orthogonal complement to the image of A ( j � 1) .

Lemma D.0.3. Let f r( j)gn
j= 1 be 1 � n � p linearly independent vectors inR p, and let

f v( j)gn
j= 1 be a conjugate set resulting from applying the Gram-Schmidt process of Theorem

D.0.2 to f r( j)gn
j= 1. If A ( j) =

�
r(1) � � � r( j)

�
and V( j) =

�
v(1) � � � v( j)

�
then for j =

1, ..,n,

PL
A( j) = PL

V ( j) =
j

å
i= 1

v( i)v( i) T
L

v( i) TL v( i)
(D.0.3)

and in particular, we have
v( j) =

�
1p� p � PL

A( j � 1)

�
r( j) (D.0.4)

for all j = 2, ..,n.

Proof. Firstly, by De�nition 3.3.3,

PL
V ( j) = V ( j)

�
V ( j) T

L V ( j)
� � 1

V ( j) T
L (D.0.5)
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for any j = 2, ..,n. By Theorem D.0.2,V ( j) is a conjugate matrix and hence V ( j) T
L V ( j) is

diagonal with i th diagonal entry di := v( i) T
L v( i) . Clearly then, the matrix

�
V ( j) T

L V ( j)
� � 1

V ( j) T
L

has i th row 1
di

v( i) T
L , and hence by (D.0.5) the matrix PL

V ( j) is

PL
V ( j) =

j

å
i= 1

v( i)v( i) T
L

di
=

j

å
i= 1

v( i)v( i) T
L

v( i) TL v( i)

which gives the second equality in (D.0.3). For the �rst equality in the same equation,
we will show that PL

A( j) q = PL
V ( j) q for any q 2 R p. Using the decomposition q = z + u,

where z 2 Im A ( j) and u is in the L -orthogonal complement to Im A ( j) , we have

PL
A( j) q = PL

A( j) z = z

where we have applied Proposition 3.3.6. Similarly, by Theorem D.0.2 we have Im A ( j) =
ImV ( j) , and hence PL

V ( j) q = z. Hence PL
A( j) = PL

V ( j) . Substituting (D.0.3) with j $ j � 1
into (D.0.2) yields result (D.0.4).

The following proposition gives the decomposition of a vector in R p in a conjugate
basis.

Proposition D.0.4. Let f v( j)gp
j= 1 be a basis of mutually conjugate vectors forR p. Then for

any q 2 R p,

q =
p

å
i= 1

v( i) T
L q

v( i) TL v( i)
v( i)

Proof. Sincef v( j)gp
j= 1 is a basis for R p, there exist coef�cients f qig such that

q =
p

å
i= 1

qiv( i)

By conjugacy, for each j = 1, ..,p we have

v( j) T
L q = qjv( j) T

L v( j)

) qj =
v( j) T

L q

v( j) TL v( j)

Note that since L is positive-de�nite, the denominator of this expression is non-zero.
The result follows.
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The simple form of the Bregman generator (D.0.1) implies that the induced primal
and dual connections given in (2.3.7) and (2.3.8) respectively are both zero, and hence
the geometry is self-dual. It follows that a submanifold in this geometry is e-�at if and
only if it is m-�at, with both cases corresponding to hyperplanes in q co-ordinates. In
particular, the embedding �Ld of M B,d0 into R p has a simple linear form.

Proposition D.0.5. Let A 2 R p� k have full rank. Under the Bregman generator (D.0.1), the
primal embedding�Ld of MB,Ad takes the form

�Ld(b) =
�
1p� p � P

�
Bb + PL � 1 (Ad + w ) (D.0.6)

where
P := PL

A = A
�

ATL A
� � 1

ATL

and B is a orthonormal basis for the Euclidean-orthogonal complement to ImA.

Proof. Note that under (D.0.1), dual co-ordinates are given by the simple af�ne relation
h = r F(q) = L q � w . Therefore the submanifold M B,d0 is simply the hyperplane
de�ned by the condition A � h = d, i.e. the set of of q satisfying

A � (L q � w ) = d , ATL q = AT (Ad + w )

Substituting the usual decomposition q = Aa + Bb, we �nd an expression for a in
terms of b,

ATL (Aa + Bb) = AT (Ad + w )

, ATL Aa = � ATL Bb + AT (Ad + w )

, a = �
�

ATL A
� � 1

ATL Bb +
�

ATL A
� � 1

AT (Ad + w )

Substituting this back into q = Aa + Bb, we recover (D.0.6).

q = � A
�

ATL A
� � 1

ATL
| {z }

P

Bb + A
�

ATL A
� � 1

AT

| {z }
PL � 1

(Ad + w ) + Bb

=
�
1p� p � P

�
Bb + PL � 1 (Ad + w )

Note that the matrix in front of b in (D.0.6) is exactly the differential matrix of �Ld in
the general case from Lemma 3.3.10 with G = L , as expected. We can use this linear
embedding to �nd an explicit simpli�ed form for the resampling distribution sampled
at each iteration of algorithm 9.

Proposition D.0.6. For the Euclidean Bregman generator given in (D.0.1), the resampling
step from lines 24 to 26 in algorithm 9 is equivalent to samplinga( j) from a probability density

flp (a) µ p

 

q( j � 1) +

 

a �
r( j) T

q( j � 1)

r( j) Tr( j)

!

v( j)

!

(D.0.7)
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wherep is the overall target distribution, and then embedding intoR p via

q( j � 1) +

 

a( j) �
r( j) T

q( j � 1)

r( j) Tr( j)

!

v( j) (D.0.8)

wheref v( j)gp
j= 1 is the result of applying the Gram-Schmidt process tof r( j)gp

j= 1.

Proof. From line 4, the distribution sampled at each iteration is proportional to

p (q0)�
�
�det

�
A ( j � 1) Tr 2F(q0)A ( j � 1)

� �
�
�

for q0 = �Ld(b0). Since r 2F = G = L is constant, we can disregard the denominator.
Substituting the linear embedding q0 = �Ld(b0) from proposition D.0.5, we �nd

flp µ p
��

1p� p � P( j � 1)
�

Bb0+ P( j � 1)L � 1
�

A ( j � 1)d( j � 1) + w
��

where P( j � 1) := PL
A( j � 1) is the L -orthogonal projection matrix onto the columns of A ( j � 1) .

We aim to rewrite the argument of this expression,

q0 =
�

1p� p � P( j � 1)
�

Bb0+ P( j � 1)L � 1
�

A ( j � 1)d( j � 1) + w
�

(D.0.9)

Firstly, note that Bb0 = b0. The expression for b0 from line 2 of algorithm 9 is given by

b0 = ar( j) + c( j) = ar( j) +

 

1p� p �
r( j)r( j) T

r( j) Tr( j)

!

c( j � 1)

= ar( j) + c( j � 1) �

 
r( j) T

c( j � 1)

r( j) Tr( j)

!

r( j) = c( j � 1) +

 

a �
r( j) T

c( j � 1)

r( j) Tr( j)

!

r( j)

where we have applied the update for c( j) on line 21. Substituting this as b0 = Bb0 in
(D.0.9) yields

q0 =
�

1p� p � P( j � 1)
�

 

c( j � 1) +

 

a �
r( j) T

c( j � 1)

r( j) Tr( j)

!

r( j)

!

+ P( j � 1)L � 1
�

A ( j � 1)d( j � 1) + w
�

=
�

1p� p � P( j � 1)
�

c( j � 1) +

 

a �
r( j) T

c( j � 1)

r( j) Tr( j)

!

v( j) + P( j � 1)L � 1
�

A ( j � 1)d( j � 1) + w
�

(D.0.10)

where in the second line we have used Lemma D.0.3. Note that from line 26 of algo-
rithm 9, q( j � 1) is the result of MF LAT EMBED2 called with arguments A = A ( j � 2) and
b = b( j � 1) = a( j � 1)r( j � 1) + c( j � 1) . It follows from the de�nition of MF LAT EMBED2 in
Section 5.1.3 that

q( j � 1) = A ( j � 2)a + b( j � 1) = A ( j � 2)a + a( j � 1)r( j � 1) + c( j � 1)
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for some a 2 R ( j � 1) . Thus, since P( j � 1) is a projection onto the columns of A ( j � 1) =�
A ( j � 2) r( j � 1)

�
, it follows from Proposition 3.3.7 that

(1p� p � P( j � 1) )q( j � 1) = ( 1p� p � P( j � 1) )c( j � 1) (D.0.11)

Furthermore, since the f r( j)g vectors are mutually Euclidean-orthogonal, we have

r( j) T
q( j � 1) = r( j) T

c( j � 1) (D.0.12)

Similarly, for the third term in (D.0.10),

A ( j � 1)d( j � 1) + w = A ( j � 1)
�

A ( j � 1)
� �

r F
�

q( j � 1)
�

+ w

= A ( j � 1) A ( j � 1) � �
L q( j � 1) � w

�
+ w

= A ( j � 1) A ( j � 1) �
L q( j � 1) � A ( j � 1) A ( j � 1) �

w + w

and hence

P( j � 1)L � 1
�

Ad( j � 1) + w
�

= P( j � 1)L � 1
�

AA � L q( j � 1) � AA � w + w
�

= A
�

ATL A
� � 1

AT AA � L q( j � 1) � A
�

ATL A
� � 1

AT AA � w + A
�

ATL A
� � 1

ATw

= A
�

ATL A
� � 1

ATL q( j � 1)

= P( j � 1)q( j � 1) (D.0.13)

Finally, the result follows from substituion of equations (D.0.11), (D.0.12), and (D.0.13)
into (D.0.10),

q0 =
�

1p� p � P( j � 1)
�

q( j � 1) +

 

a �
r( j) T

q( j � 1)

r( j) Tr( j)

!

v( j) + P( j � 1)q( j � 1)

= q( j � 1) +

 

a �
r( j) T

q( j � 1)

r( j) Tr( j)

!

v( j)
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Algorithm 10 General Conjugate Directions Sampler

1: function GCDSAMPLER (q(0) , L , log p )
2: r(1)  BASISVECTORS(q(0) , F)
3: v(1)  r(1)

4: a(1)  SUBSAMPLER (a 7! p
�

q(0) +
�

a � r(1) T
q(0)

r(1) Tr(1)

�
v( j)

�
)

5: q(1)  q(0) +
�

a(1) � r(1) T
q(0)

r(1) Tr(1)

�
v(1)

6: A (1)  
�
r(1)

�

7: for j = 2, ..,p do
8: r( j)  BASISVECTORS2(q( j � 1) , F, A ( j � 1))
9: v( j)  r( j) � å j � 1

i= 1
r( j) T

L v( i)

v( i) TL v( i)
v( i)

10: a( j)  SUBSAMPLER (a 7! p
�

q( j � 1) +
�

a � r( j) T
q( j � 1)

r( j) Tr( j)

�
v( j)

�
)

11: q( j)  q( j � 1) +
�

a( j) � r( j) T
q( j � 1)

r( j) Tr( j)

�
v( j)

12: A ( j)  
�
A ( j � 1) r( j)

�

13: end for
14: return q
15: end function

D.0.1 Gaussian Target Distributions

Lemma D.0.7. Let p be a multivariate Gaussian density onR p with meanmand precisionL ,
i.e. covariance matrixL � 1. Then forq,v 2 R p, the functionz 7! p (q + zv) for z 2 R is
proportional to a one-dimensional Gaussian density with meanm:= vTL (m� q) / vTL v and
variances2 = 1/ vTL v.

Proof.

p (q + zv) µ exp
�

�
1
2

(q + zv � m) L (q + zv � m)
�

µ exp
�

�
1
2

�
z2vTL v + 2zvTL (q � m)

� �

where we have dropped terms not involving z. Substituting the de�nitions of mand s2

yields

p (q + zv) µ exp
�

�
1
2

�
z2s � 2 � 2zms� 2�

�

µ exp
�

�
1

2s2

�
z2 � 2zm

�
�

µ exp
�

�
1

2s2 (z � m)2
�

which is a Gaussian density with mean mand variance s2.
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Theorem D.0.8. Letp be a multivariate Gaussian distribution onR p with meanmand covari-
anceL � 1. Then in algorithm 10 applied to target distributionp , lines 10 and 11 are equivalent
to the update

q( j)  q( j � 1) +

0

@ z( j)
q

r ( j)
+

v( j) T
L

�
m� q( j � 1)

�

r ( j)

1

A v( j)

wherer ( j) = v( j) T
L v( j) and z( j) � Normal(0, 1).

Proof. Line 10 samplesz( j) from a distribution

flp (z) µ p

 

q( j � 1) +

 

z �
r( j) T

q( j � 1)

r( j) Tr( j)

!

v( j)

!

By Lemma D.0.7 with q = q( j � 1) � r( j) T
q( j � 1)

r( j) Tr( j)
v( j) and v = v( j) , this is proportional to a

Gaussian distribution on z with mean and variance respectively given by

m=
v( j) T

L m

v( j) TL v( j)
�

v( j) T
L q( j � 1)

v( j) TL v( j)
+

r( j) T
q( j � 1)

r( j) Tr( j)
�

v( j) T
L v( j)

v( j) TL v( j)

=
v( j) T

L
�

m� q( j � 1)
�

r ( j) +
r( j) T

q( j � 1)

r( j) Tr( j)

s2 =
1

v( j) TL v( j)
=

1
r ( j)

If z is a random variable with this distribution, then

z �
r( j) T

q( j � 1)

r( j) Tr( j)
(D.0.14)

is Gaussian with mean v( j) T
L

�
m� q( j � 1)

�
/ r ( j) and variance 1/ r ( j) . Clearly then (D.0.14)

has the same Gaussian distribution as

z
q

r ( j)
+

v( j) T
L

�
m� q( j � 1)

�

r ( j) (D.0.15)

where z � Normal (0, 1). The result follows by replacing the random variable (D.0.14)
with (D.0.15) in line 11 of algorithm 10.

Lemma D.0.9. Let
n

v( j)
o

be the conjugate basis resulting from applying the modi�ed Gram-

Schmidt process to the basis
n

r( j)
o

� R p. Then for all j= 1, ..,p,

v( j) T
L v( j) = v( j) T

L r( j)
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Proof. By the modi�ed Gram-Schmidt process in Theorem D.0.2, we have

v( j) = r( j) �
j � 1

å
i= 1

r( j) T
L v( i)

v( i) TL v( i)
v( i)

The result follows from the fact that v( j) is conjugate to v( i) for all i = 1, ..,j � 1.

The general Conjugate Directions sampler for a multivariate Gaussian target distri-
bution is listed as Algorithm 11.

Algorithm 11 General Conjugate Directions Sampler for a Gaussian Target

1: function GCDSAMPLER (q(0) , L , w )
2: r(1)  BASISVECTORS(q(0) , F)
3: v(1)  r(1)

4: A (1)  
�
r(1)

�

5: for j = 1, ..,p do
6: r ( j)  v( j) T

L v( j)

7: z( j) � Normal
�

0, 1/ r ( j)
�

8: q( j)  q( j � 1) +
�

z( j) +
v( j) T(w � L q( j � 1))

r ( j)

�
v( j)

9: r( j+ 1)  BASISVECTORS2(q( j) , F, A ( j))
10: v( j+ 1)  r( j+ 1) � å j

i= 1
r( j+ 1) T

L v( i)

r ( i) v( i)

11: A ( j+ 1)  
�
A ( j) r( j+ 1)

�

12: end for
13: return q(p)

14: end function

Theorem D.0.10. If Algorithm 11 terminates successfully after p iterations, then the returned
vector is

q(p) = m+
p

å
i= 1

z( i)v( i)

wheref z( i)g and f v( i)g are de�ned as in the algorithm, andL m= w .

Proof. Note that by line 8 of algorithm 11,

q( j) = q( j � 1) +

0

@z( j) +
v( j) T �

w � L q( j � 1)
�

r ( j)

1

A v( j)

for j = 1, ..,p. Thus by induction, for all j = 1, ..,p we must have

q( j) = q(0) +
j

å
i= 1

0

@z( i) +
v( i) T �

w � L q( i � 1)
�

r ( i)

1

A v( i) (D.0.16)
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In particular, for j = p,

q(p) = q(0) +
p

å
j= 1

0

@z( j) +
v( j) T �

w � L q( j � 1)
�

r ( j)

1

A v( j)

= q(0) +
p

å
j= 1

z( j)v( j) +
p

å
j= 1

0

@
v( j) T

L
�

m� q( j � 1)
�

r ( j)

1

A v( j) (D.0.17)

where we have substituted w = L mto rewrite the �nal term. Equation (D.0.16) implies
that for j = 2, ..,p,

q( j � 1) 2 q(0) + Spanf v(1) , ..,v( j � 1)g

and therefore, since v( j) is conjugate to each ofv(1) , ..,v( j � 1) ,

v( j) T
L q( j � 1) = v( j) T

L q(0)

for j = 2, ..,p, which is also trivially true in the case j = 1. Substituting this result and
r ( j) = v( j) T

L v( j) into (D.0.17),

q(p) = q(0) +
p

å
j= 1

z( j)v( j) +
p

å
j= 1

0

@
v( j) T

L
�

m� q(0)
�

v( j) TL v( j)

1

A v( j)

By Proposition D.0.4, the �nal term of this expression is m� q(0) . Thus the result follows.

D.1 Gibbs Sampling and Matrix Factorizations

In this section we show that the Orthogonal Gibbs algorithm is equivalent to the Gaus-
sian Elimination sampler, Algorithm 6, when the Bregman generator is given by (D.0.1).
Recall that the Gaussian elimination algorithm applies elementary row operations to a
matrix L 2 R p� p in order to transform it into reduced row echelon form as follows:

Algorithm 12 Gaussian Elimination
1: for j = 1, ..,p � 1 do
2: for i = j + 1, ..,p do
3: Ci j  L i j / L jj
4: for s = 1, ..,p do
5: L is  L is � Ci j � L js
6: end for
7: end for
8: end for
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The result L 0of applying Gaussian Elimination to L can be expressed as a product
of elementary matrices with L , where each elementary matrix acts on its multiplicand
by applying an elementary row operation.

Recall that for Orthogonal Gibbs, the B ASISVECTORS2 function returns the standard
basis vectors, i.e. r( j) = e( j) for all j = 1, ..,p. We have shown in this appendix that
the Euclidean Bregman generator reduces the general Dual Complement Submanifold
algorithm to the conjugate directions sampler, Algorithm 10, which applies a modi�ed
Gram-Schmidt process to the f r( j)g basis vectors. Thus, letV =

�
v(1) � � � v(p)

�
be

the matrix whose columns are the conjugate vectors resulting from the modi�ed Gram-
Schmidt process applied to the standard basis vectors. The following theorem shows
that V T is the product of elementary matrices that transform L into its reduced row
echelon form, i.e. L 0 = V TL . The result is also shown in Chapter 4 of Hestenes [40].

Theorem D.1.1. Let V be the matrix whose columns are formed by the modi�ed conjugate
Gram-Schmidt process applied to the standard basis vectors. Then the matrix VTL is equivalent
to L 0, the application of the Gaussian Elimination algorithm toL . In particular, for each j=
1, ..,p � 1 the row vectorv( j) T

L is the jth row of the matrix resulting from applying j iterations
of the Gaussian Elimination algorithm toL .

Proof. We show the result by induction on the rows of L . Let L 0 be the reduced row
echelon form of L , i.e. the result of applying Gaussian Elimination to L .

Base case.The Gaussian Elimination algorithm leaves the �rst row of L unchanged,
so the �rst rows of L and L 0 are identical. From the Gram-Schmidt process, the �rst
conjugate vector is equal to the �rst standard basis vector; v(1) = e(1) . Therefore v(1) T

L
is simply the �rst row of L , which agrees with the �rst row of L 0.

Induction step. Let j 2 f 1, ..,p � 1g. Assume the inductive hypothesis that for all
i = 1, ..,j, the row vector v( i) T

L is the i th row of L 0. We seek to show the equivalent
statement holds for j + 1. By the modi�ed Gram-Schmidt process given in Theorem
D.0.2, we have

v( j+ 1) = e( j+ 1) �
j

å
i= 1

v( i) T
L e( j+ 1)

v( i) TL v( i)
v( i)

) v( j+ 1) T
L = e( j+ 1) T

L �
j

å
i= 1

v( i) T
L e( j+ 1)

v( i) TL v( i)
v( i) T

L

Note that e( j+ 1) T
L is the row vector corresponding to j th row of L , and by the inductive

hypothesis v( i) T
L is the i th row of L 0. In particular, the coef�cients in the summation

become
v( i) T

L e( j+ 1)

v( i) TL v( i)
=

L 0
i,j+ 1

L 0
ii
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where in the denominator we have applied Lemma D.0.9. It follows that the sth com-
ponent of the row vector v( j+ 1) T

L is given by

v( j+ 1) T
L e(s) = L j+ 1,s �

j

å
i= 1

L 0
i,j+ 1

L 0
ii

L 0
is (D.1.1)

The right-hand side of this is exactly the sth component of the ( j + 1) th row of L 0. Thus
the inductive hypothesis holds for j + 1.

Thus by the principle of induction, L 0 = V TL .

Since V T = V T1p� p, Theorem D.1.1 implies that the conjugate vectors f v( j)g can
be computed by applying elementary row operations to the identity matrix, where the
operations are the same as those used to reduceL to its echelon form. Similarly, the
same elementary row operations can be used to transform the linear system into an
upper-triangular form,

L m= w

, V TL m= V Tw

In Algorithm 6, we apply these elementary row operations to the identity, L and w .

Theorem 5.2.2. Let L 0 and V result from the application of Algorithm 6 to a symmetric
positive-de�nite matrixL 2 R p� p and w 2 R p. Let D be the diagonal matrix whose diag-
onal is the diagonal ofL 0. The lower-triangular Cholesky factor L ofL , i.e. such thatL = LLT,
is given by

L :=
�
L 0� TD � 1/2

Proof. By Theorem D.1.1, L 0 = V TL . Lemma D.0.9 then implies that the j th entry on
the diagonal of D is given by

D jj = v( j) T
L e( j) = v( j) T

L v( j)

In matrix form, D = V TL V . Therefore

LLT =
�
L 0� TD � 1/2 D � 1/2 L 0

= L VD � 1/2 D � 1/2 V TL

= L VD � 1V TL

= L V (V TL V ) � 1V TL

= LL � 1L = L

where we have used the fact that V is non-singular because its columns form a basis.
Note that since L 0 is upper-triangular, then so is L, and thus L is the Cholesky factor of
L .
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Corollary 5.2.3. The �nal iterateq(p) of the Gaussian Elimination sampler, Algorithm 6, is
stochastically independent of the initial iterateq(0) and is a sample from the target distribution
Normal

�
L � 1w , L � 1�

.

Proof. By Theorem D.0.10, the �nal iterate is given by

q(p) = m+
p

å
j= 1

z( j)v( j)

where f v( j)g are the conjugate vectors de�ned by the algorithm, and z( j) � Normal (0, 1/ r ( j) ).
Note that the f v( j)g are entirely deterministic, resulting from a Gram-Schmidt process
applied to the standard basis vectors. It follows that the z( j) are independent random
variables. We therefore write

q(p) = m+ VD � 1/2 x

where D is a diagonal matrix whose diagonal elements are
�

r ( j)
� p

j= 1
and x � Normal

�
0, 1p� p

�

is a vector of i.i.d. standard normal random variables. Clearly then, q(p) has a multi-
variate Gaussian distribution with mean mand covariance

VD � 1/2 D � 1/2 V T = VD � 1V T

= V
�

V TL V
� � 1

V T

= L � 1

Since neither mnor L � 1 depend on q(0) , it follows that q(p) is independent of q(0) .

D.2 The Conjugate Gradient Sampler

Consider Algorithm 10 when the B ASISVECTORS function has the de�nition given in
Section 5.3. Lemma C.3.3 states that the resulting basis vectorsf r( j)g built up over the
iterations of the general iterative algorithm are the result of a Gram-Schmidt process,
with respect to the Euclidean inner-product on R p, applied to the negated gradientsn

�r F
�

q( j � 1)
�o

of the Bregman generator at each iterate. In Algorithm 10, the con-

jugate directions f v( j)g are the result of a modi�ed Gram-Schmidt process, i.e. with
respect to the L -weighted inner-product, applied to the f r( j)g.

One might therefore expect that two Gram-Schmidt updates are required, in order
to orthonormalize against the Euclidean inner-product and then the L -weighted inner-
product. In fact, the following lemma shows that the f v( j)g can be computed directly
via the modi�ed Gram-Schmidt process applied to the negated gradients. This simpli-
�es the conjugate gradient algorithm.
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Lemma D.2.1. Let f r( j)g and f v( j)g be de�ned as in Algorithm 10 with theBASISVECTORS
function de�ned as in Section 5.3. Then for j2 f 2, ..,pg, we have

v( j) =
j � 1

å
i= 1

v( i) T
L r F

�
q( j � 1)

�

v( i) TL v( i)
v( i) � r F

�
q( j � 1)

�

Proof. Let j 2 f 2, ..,pg. Line 9 of Algorithm 10 is the j th step of the modi�ed Gram-
Schmidt process applied to f r( j)g,

v( j) = r( j) �
j � 1

å
i= 1

r( j) T
L v( i)

v( i) TL v( i)
v( i)

=

 

1p� p �
j � 1

å
i= 1

v( i)v( i) T
L

v( i) TL v( i)

!

r( j) =
�

1p� p � PL
V ( j � 1)

�
r( j) (D.2.1)

where the last equality follows from Lemma D.0.3. From Lemma C.3.3, we have

r( j) =

 
j � 1

å
i= 1

r( i)r( i) T

r( i) Tr( i)
� 1p� p

!

r F
�

q( j � 1)
�

=
�
PA( j � 1) � 1p� p

�
r F

�
q( j � 1)

�
(D.2.2)

where PA( j � 1) � P1p� p

A( j � 1) is the Euclidean-orthogonal projection matrix onto the span of
f r(1) , � � � , r( j � 1)g. Substitution of (D.2.2) into (D.2.1) then gives

v( j) =
�

1p� p � PL
V ( j � 1)

� �
PA( j � 1) � 1p� p

�
r F

�
q( j � 1)

�

=
�

PA( j � 1) � 1p� p � PL
V ( j � 1) PA( j � 1) + PL

V ( j � 1)

�
r F

�
q( j � 1)

�
(D.2.3)

Note that the span of f r(1) , � � � , r( j � 1)g is identical to the span of f v(1) , � � � ,v( j � 1)g by
Theorem D.0.2. Thus for any x 2 R p, the projection PA( j � 1) x is an element of Im A ( j � 1) =
ImV ( j � 1) . Therefore by Proposition 3.3.7,

PL
V ( j � 1) PA( j � 1) x = PA( j � 1) x

Since this holds for any x 2 R p, we conclude that PL
V ( j � 1) PA( j � 1) = PA( j � 1) . Substituting

this result into equation (D.2.3)

v( j) =
�

PA( j � 1) � 1p� p � PL
V ( j � 1) PA( j � 1) + PL

V ( j � 1)

�
r F

�
q( j � 1)

�

=
�

PA( j � 1) � 1p� p � PA( j � 1) + PL
V ( j � 1)

�
r F

�
q( j � 1)

�

=
�

PL
V ( j � 1) � 1p� p

�
r F

�
q( j � 1)

�

Substituting the result of Lemma D.0.3 yields the result.

v( j) =
j � 1

å
i= 1

v( i) T
L r F

�
q( j � 1)

�

v( i) TL v( i)
v( i) � r F

�
q( j � 1)

�
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As in Algorithm 8, we de�ne

g( j) = L q( j) � w

for j = 1, ..,p.

Corollary D.2.2. For j = 1, ..,p,

g( j) = g( j � 1) + l ( j)L v( j)

Proof. By the de�niton of g( j) and line 9 of Algorithm 8, we have

g( j) = L q( j) � w

= L
�

q( j � 1) + l ( j)v( j)
�

� w

= g( j � 1) + l ( j)L v( j)

which holds for j = 1, ..,p.

The following proposition justi�es line 13 of Algorithm 8. The proof is adapted from
Proposition 2.4.1 in Fox [29].

Proposition D.2.3. Let f v( j)g andf r( j)g be de�ned as in Algorithm 8 for j= 1, ..,p. Then for
j = 2, ..,p,

v( j) = r( j) � (r( j) T
g( j � 1) / r ( j � 1) l ( j � 1) )v( j � 1)

wherer ( j) = v( j) T
L v( j) , and

l ( j)  z( j) � v( j) T
g( j � 1) / r ( j)

as de�ned on line 8.

Proof. By Corollary D.2.2, the product L v( j) is proportional to the difference of succes-
sive gradient vectors,

g( j) =
1

l ( j)

�
g( j) � g( j � 1)

�

Substituting this into the Gram-Schmidt process for v( j) from line 9 of the general con-
jugate directions algorithm, Algorithm 10, gives

v( j) = r( j) �
j � 1

å
i= 1

r( j) T
L v( i)

v( i) TL v( i)
v( i)

= r( j) �
j � 1

å
i= 1

r( j) T �
g( i) � g( i � 1)

�

r ( i) l ( i) v( i) (D.2.4)
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for j = 2, ..,p, where v(1) = r(1) . By Lemma C.3.3,
n

r( j)
o

is the Gram-Schmidt process

applied to
n

� g( j � 1)
o

, i.e.

r( j) = � g( j � 1) +
j � 1

å
i= 1

r( i) T
g( j � 1)

r( i) Tr( i)
r( i) j = 2, ..,p (D.2.5)

Thus by Theorem D.0.2, r( j) is Euclidean-orthogonal to Spanf g(0) , ..,g( j � 2)g for j =
2, ..,p. Thus all terms except one in (D.2.4) are zero, and hence the result follows;

v( j) = r( j) �
r( j) T

g( j � 1)

r ( j � 1) l ( j � 1)
v( j � 1)

Corollary D.2.4. For all i = 1, ..p � 1 and j > i,

r( i) T
g( j) = r( i) T

g( i)

Proof. By Corollary D.2.2,
g( j) = g( j � 1) + l ( j)L v( j)

Taking the inner product of this with r( i) ,

r( i) T
g( j) = r( i) T

g( j � 1) + l ( j � 1)r( i) T
L v( j)

Sincev( j) is the j th conjugate vector resulting from a modi�ed Gram-Schmidt process
applied to f r(k)gj

k= 1, it follows that v( j) is conjugate to r( i) . Thus r( i) T
g( j) = r( i) T

g( j � 1) .
Since this holds for any j > i, the result follows.

The following proposition justi�es lines 11 and 12 in Algorithm 8.

Proposition D.2.5.
r( j+ 1) = ( 1 + dj )r( j) � l ( j)L v( j)

where

dj :=
r( j) T

g( j)

r( j) Tr( j)

for j = 1, ..,p.

Proof. Line 9 of Algorithm 10 is the j th step of the modi�ed Gram-Schmidt process ap-
plied to f r( j)g, and hence

r( j+ 1) = � g( j) +
j

å
i= 1

r( i) T
g( j)

r( i) Tr( i)
r( i)

= � g( j) + djr( j) +
j � 1

å
i= 1

r( i) T
g( j)

r( i) Tr( i)
r( i)
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Substituting the expression in Corollary D.2.2 for g( j) ,

r( j+ 1) = djr( j) � l ( j)L v( j) � g( j � 1) +
j � 1

å
i= 1

r( i) T
g( j)

r( i) Tr( i)
r( i) (D.2.6)

By Corollary D.2.4, r( i) T
g( j) = r( i) T

g( i) = r( i) T
g( j � 1) for all i = 1, ..,j � 1. Thus the last

two terms in (D.2.6) are

� g( j � 1) +
j � 1

å
i= 1

r( i) T
g( j)

r( i) Tr( i)
r( i) = � g( j � 1) +

j � 1

å
i= 1

r( i) T
g( j � 1)

r( i) Tr( i)
r( i) = r( j)

Substituting this into (D.2.6) yields the result,

r( j+ 1) = r( j) + djr( j) � l ( j)L v( j)
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