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Thesis Outline

Bayesian statistics treats the parameters of a data generation process as random vari-
ables to describe their uncertainty before and after data are observed. Prior informa-
tion, which could include information from previous observations or expert opinion,

is encoded in the form of a prior distribution on the process parameters. This distri-
bution is updated to a posterior distributionby conditioning on new observations via
Bayes’ Theorem. One may be able to write down the posterior density up to a constant
of proportionality, but often cannot directly compute expectations with respect to the
posterior measure. In applications, posterior expectations are required to compute al-
most all informative quantities including the posterior mean, covariance and predictive
distributions for future data.

The widely-used solution to this problem is Markov Chain Monte Carlo (MCMC),
which computes approximations to expected values E, ) (f(q)) of a function f with
respect to a target distribution p(q). A Markov Chain is constructed whose stationary
distribution is the target, and the quantity of interest is averaged over a simulation of
the chain. The average over the simulated chain is known as the Monte Carlo estima-
tor, which is an asymptotically unbiased approximation to the true expectation. The
variance of the Monte Carlo estimator, and thus the accuracy in the approximation, de-
pends on the autocorrelation of the underlying Markov Chain. Hence Markov Chains
whose autocorrelation quickly decay are desirable.

This thesis studies MCMC algorithms which make use of Differential Geometry on
the parameter space of the model in order to more ef ciently sample from the posterior
distribution. Geometric structures on statistical models are independent of parameter-
ization, and so sampling algorithms de ned in terms of these structures have certain
invariance properties under transformations of parameter space.

To demonstrate this point, the left panel of Figure §.0.1|shows several steps of a
Gibbs sampler on the joint probability density of two correlated random variables g, .
The algorithm samples ¢ conditionally on the last value of @ and vice versa, and hence
the sequence of samples appears to move in parallel to a co-ordinate axis at each step
with right-angles between the lines joining successive samples. For distributions with
high correlation between variables, the Gibbs sampler is known to be inef cient be-
cause the variance of the conditional distributions is small, and thus the algorithm is
constrained to take small steps. The performance of the sampler is improved under a
reparameterization to a co-ordinate system which is less correlated.
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Figure 0.0.1: Left: Gibbs sampling from a bivariate target distribution. Right: The im-
age of the samples under a nonlinear reparameterization with the transformed density.
Contour lines roughly re ect boundaries between 10% quantile regions.

The right panel of Figure 0.0.1]shows the image of these samples and the lines join-
ing them under a nonlinear reparameterization
s
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Under this change of variable, the target density follows a transformation law involving
the Jacobian determinant; see Corollary[B.0.2 in Appendix Bl As expected, the gure
shows that in the new parameterization some lines joining successive samples are not
straight and never meet each other perpendicularly. It seems therefore that straightness
and orthogonality depend on co-ordinates.

In fact, Differential Geometry provides rigorous de nitions of orthogonality and
straightness without reference to any particular co-ordinate system, and are consis-
tent even under nonlinear changes of variable. These are respectively given by the
Riemannian metric tensoand af ne connections The thesis will develop sampling al-
gorithms which move along geodesicurves, i.e. straight as determined by the af ne
connections, and intersect orthogonally with respect to a particular Riemannian metric.
Previous authors have used similar ideas to develop successful geometric sampling al-
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gorithms; for example, the Riemannian variants of Hamiltonian Monte Carlo (HMC)
and the Metropolis-Adjusted Langevin Algorithm (MALA) introduced by Girolami
and Calderhead [39] often outperform their non-Riemannian versions, especially for
hierarchical models with high curvature [11].

The algorithms developed in this thesis differ from previous work by making use
of the dual geometnof statistical models studied in the eld of Information Geometry.
Whereas previous geometric sampling algorithms only use the Levi-Civita connection
which is entirely determined by the Riemannian metric, the novel algorithms presented
in this work use two coupled af ne connections. There are therefore two ways of mea-
suring atness or curvature, arising from asymmetry in divergence functions such as
Kullback-Leibler. The inherent dual geometry of a statistical model contains no infor-
mation from any prior distribution, and perhaps for this reason has not been previously
studied for use in Bayesian inference.

The thesis is divided into four parts. Part | discusses geometry for Bayesian infer-
ence; Chapter 1 shows how statistical families may be given a smooth manifold struc-
ture and recasts Bayesian inference in terms of measures on such manifolds. Chapter
2 reviews Differential and Information Geometry in detail, discussing how a metric
tensor and connections are derived from a divergence function between probability
distributions. Chapter 3 presents a novel dual geometry modi ed to include both prior
and likelihood information for use in sampling, and discusses partitioning of parameter
space into orthogonal submanifolds.

Part 1l concerns the use of geometry in sampling algorithms; Chapter 4 reviews
MCMC, patrticularly those algorithms which resample the target distribution within
a submanifold such as the Gibbs sampler and Hamiltonian Monte Carlo. Chapter 5
then presents two novel sampling algorithms called Orthogonal Gibbsand Orthogonal
Gradient analyzes their behaviour in certain cases and presents numerical results for
several example models. Finally, Part Il contains concluding remarks and Part IV is
the collection of appendices.

11



List of Contributions

To my knowledge, the following are all novel contributions.

Chapter E]gives a measure-theoretic co-ordinate free treatment of Bayes’ theorem
in Section[1.1.3. Although the discussion is fairly straightforward once all the
terms are introduced in co-ordinate free form, | was not able to nd a version of
Bayes’ theorem on a manifold in the literature.

Chapter P]is mostly a review of differential and Information Geometry, but also
includes some novel results.

In Theorem 2.5.3, | show that the dual geometry arising from a divergence
function restricted to a submanifold is exactly the dual geometry inherited
from the ambient space in which the submanifold is embedded.

If a dually- at geometry is generated by a Bregman generator F in a global
co-ordinate chart, Theorem shows that a submanifold is e at, i.e. au-
toparallel with respect to the primal connection, if and only if the Bregman
divergence in the submanifold generated by the restriction of F corresponds
with the restricted Bregman divergence.

Chapter B|suggests a dually- at geometry for use in MCMC algorithms, called the
Posterior Bregman Geometry, de ned for any log-concave probability density. In
some cases, the geometry has the same Riemannian metric as that suggested by
Girolami and Calderhead [39].

Proposition shows that for exponential family models, the posterior
Bregman divergence is given by the prior Bregman divergence plus the Kullback-
Leibler divergence.

Theorem states that under weak conditions, log-concave densities can
be written as exp( D(q,dp)) up to a multiplicative constant where D is the
p -Bregman divergence and qp is the mode when it exists.

In Section [3.3.3, | generalize the mixed co-ordinates of Amari [3], [2] such
that the corresponding foliations are general hyperplanes in primal and dual
co-ordinates.

12



Theorem [3.3.1] shows that the primal component of generalized mixed co-
ordinates is a primally-af ne co-ordinate system for the dually- at geometry
within each ber of the m-foliation. Furthermore, Theorem 3.3.12|gives an
explicit form for the Bregman generator within the m- at submanifold or
ber.

Chapter | introduces novel sampling algorithms which reduce to well-known
methods in speci c cases.

Algorithm zﬂs a general form of novel Complementary Dual Submanifoldgo-
rithms that sample a target probability distribution conditioned on Riemannian-
orthogonal e atand m- at submanifolds. The algorithms recurse within the
m- at submanifold, making use of novel results from Chapter 3.[]

Theorem and Theorem[5.1.P give explicit disintegrations of the target
density over the general e and m-foliations. Furthermore, the general algo-
rithm is shown to preserve the target distribution in Theorem 5[1.6. |

Section describes a speci ¢ case calledOrthogonal Gibbs Complemen-
tary primal and dual variables are recursively sampled conditionally on each
other in a block Gibbs algorithm. Proposition §.2.1shows that Orthogonal
Gibbs reduces to the regular deterministic-scan Gibbs sampler when the Eu-
clidean divergence function is used.

In Section and Appendix D] | show that for a multivariate Gaussian
target the Orthogonal Gibbs algorithm is equivalent to the Gaussian Elimi-
nation solver for linear systems with a stochastic term in the update to the so-
lution. Corollary §.2.3]states that this sampling analogue to Gaussian Elimi-
nation produces independent samples from the Gaussian target distribution.

Section describes another speci ¢ case of the general algorithm in which
one samples the target distribution conditioned onto an e-geodesic in the
direction of the negative log-density of the target, and then from the condi-
tional on the orthogonal m- at submanifold. | call this algorithm  Orthogonal
Gradient

In Section and Appendix E.] | show that for a multivariate Gaussian tar-
get, the Orthogonal Gradient algorithm is equivalent to the Conjugate Gra-
dient solver for linear systems, sampling along search directions instead of
minimizing a cost function.

13
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Geometry for Bayesian Inference
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Chapter 1

Bayesian Inference and Statistical
Families

This chapter recasts Bayesian inference in terms of measures on families of data-generating
distributions, which will be treated as smooth manifolds. The special case of exponen-

tial families is examined, which are ubiquitous in statistical models, with several exam-

ples of Bayesian inference problems which will serve as test cases for MCMC later in
the thesis.

1.1 Bayesian Inference in the Geometric Picture

We begin by brie y describing Bayesian inference and xing notation to be used through-
out the thesis.

In their book Bayesian Data Analysis [33], Gelman et al divide Bayesian analysis
into three steps:

1. A joint probability model over observable and unobservable variables is con-
structed. Let g = (g ipzl be the p unknowns or unobservables, and y = y; ,-nzl be

the n known or observable variables. The joint probability model is written

P Yy .wYn GG P(Y,q)

We use p () to denote marginal probability densities or probability mass func-
tions, and p ( j ) for conditional densities or mass functions, with respect to some
base measure. The probability model describes relationships between variables
according to (e.g.) scienti c theories, and also encodes one’s uncertainty about
the value of each of the variables. In particular, the conditional density p(yjq)
represents the distribution on observable data conditioned on unknown param-
eters q, and the prior p (q) is a probabilistic representation of uncertainty in the
unknowns. By elementary probability theory, the joint distribution  p(y, q) is sim-
ply the product p (yjq)p (q), so these two densities fully specify a joint probability
model assuming they exist with respect to speci ed dominating measures.

15



2. The joint probability model is conditioned on the measured values of observables
Y = Yobs- Assuming the relevant densities exist, this is described by Bayes’ theo-
rem,

P(Yobs: @) _ g P(Yorsi@)P(q)

P (Yobs) P (Yobsia9p (49 dg?
This conditional distribution of unknowns given knowns is called the  posterior
distribution. It represents one’s updated uncertainty, or knowledge, about g given
observed data yqps. The likelihoodis the density p (Yopsjd) thought of purely as a
function of q with the observed value of yqs plugged in. The normalizing con-
stant p (yops) is Often a high-dimensional integral, and hence it is usually only
possible to compute the posterior up to a constant of proportionality,

P(QjYobs) P (Yobs:d) = P (YonsiQ)P ()

assuming the prior and likelihood can themselves be evaluated up to multiplica-
tive constants.

P (diy = Yobs) = (1.1.1)

3. The t of the model to the data is assessed and inferences are drawn using the
posterior distribution. To assess model t, it is useful to predict new data based
on the updated unknowns, and check how similar predicted and observed data
are. This is achieved using the posteérior predictive distribution

P(YiVors) = P (YiaOp (a%yobs)dq®

where y is a prediction for new data. One could compare a histogram of simulated
data from the posterior predictive with actual observed data, for example - such
diagnostics are known as posterior predictive checf33].

If the model is deemed reasonable, one may wish to compute quantities of interest

based on the posterior. These are expectations of the form
z

Ep(giyese) LT(@] = f(a)p (diyons)da (1.1.2)

i.e. an average of the functional f with respect to the posterior distribution. For
example, ourinterest may be in E (g) forsomei 2 f 1, ..,pg, the mean of g with re-
spect to the posterior, which represents a best guess or point estimate of the un-
known variable g given observed data. Another example is given by the marginal
variance of g,
h i 2
Vary gyo) [6] = Epaiyd G° Ep (v [0]

which can be interpreted as a measure of uncertainty in the value of g;.

The primary computational challenge in Bayesian inference is in computing quanti-
ties of interest ). This thesis studies Markov Chain Monte Carlo algorithms, which
approximate quantities of interest by taking the sample mean of a set of simulated
draws from the posterior distribution.

16



1.1.1 Reparameterization and Statistical Families

We have described Bayesian inference in terms of conditional densities on unknown
variables given known variables. Here we introduce a different view of Bayesian in-
ference that better suits the geometric picture; the prior and posterior are probability
measures onstatistical familieof data-generating distributions, which can be viewed as
smooth manifolds, i.e. generalizations of smooth surfaces in R".

Firstly, we note that the probability model can be reparameterized by a transforma-
tion of the known or unknown variables. The following is a formal de nition of the
concept of a change of variable, which we adapt from Munkres [54]|

Denition 1.1.1. LetQ,X RPbeopensubsetsandh: Q! X be a bijection such that
both h and its inverse h 1 are C¥ -smooth, i.e. its partial derivatives of all orders exist
and are continuous on Q. Then h is called a diffeomorphism .

Consider a transformation on the unknown variables q of a probability model,

qg! x:=h(q), h:Q! X

where h is a diffeomorphism. In this context Q,X RP are open subsets calledparame
ter spacessets of admissible values for g and x respectively. The thesis will not consider

countable or nite parameter spaces. Suppose further that data can take values in a set
Y R". Under the transformation h, the conditional density of data given parameters

transforms as a scalar function of g, so that the conditional density given x evaluated at
observed datay = Yygps IS

P(YobsiX) = P (Yobsi Dig=n 109 for  x2X (1.1.3)

The marginal distribution p(q), i.e. the prior, is a probability density in g and therefore
transforms according to the change of variable formula for probability densities, stated

in Appendix B as Corollary

Cp@
jdet[Dh(A)]j g=n 1(»

where Dh(q) is the derivative matrix of h evaluated at q, i.e. the matrix with (i, j)-entry

_
fig

In measure-theoretic language, the transformed density () is the density of the
pushed-forwargbrior distribution under the measurable function h, with respect to the
Lebesgue measure onRP. The posterior distribution is represented by the probability
density p (gjyops), Which follows the same change of variable formula;

p(x) := for x2 X (1.1.4)

(Dh(q));; : (a)

P (diYobs)

Xj = TdetiDh(a)i
P (XjYobs) jdet[Dh(a)]j q=n 10

17



Substituting Bayes’ rule ([L.1.1)) for p (qjyons) and the transformed prior ({.1.4) and con-
ditional density (1.1.3}, we nd

P (Yobsia) p ()
P (Yobs) jdet[Dh(a)]j g=n 1(x)

_ P(Yopsi¥)P (X)
p (YObs)

We see that Bayes’ theorem holds in the transformed variable x. In other words, the
process of Bayesian updating commutes with reparameterization of the model, so using
notation such as p (Xjyebs) is justi ed. In conclusion, any diffeomorphism on the un-
known variables is a reparameterization of a Bayesian model, and the model can there-
fore be represented in in nitely many equivalent parameterizations. We will therefore
present a formal description of a Bayesian model which is independent of parameteri-
zation.

The observed variablesy = yqs are asamplei.e. a realization of a random variable
with some unknown probability distribution g, called the population One wishes to in-
fer properties of gfrom the sample y. The space of all probability distributions over the
data is usually too large to work with, and so statisticians work with restricted classes
of distributions called small worlds[10] or families The prior and posterior are then
probability measures on these families, respectively representing information about the
population before and after data are observed. This leads to the following formal de -
nition:

P (X]Yobs) =

De nition 1.1.2. Let (Y,F) be a measurable space, whereY ~R"and F is as-algebra
in Y. A statistical model or statistical family Q on (Y, F) is a set of probability mea-
sureson(Y,F).

In this picture, ¢ indexes data-generating probability measures qq 2 Q, where g
ranges over some index set or parameter space. Reparameterization simply means a
change of index, or a change of co-ordinateso describe the family. For the prior and
posterior to be represented in new co-ordinates, the co-ordinate change must be smooth
and invertible with a smooth inverse, i.e. a diffeomorphism. We assert that inferences
we draw about the population should not depend on parameterization; we are there-
fore interested in families which are invariant under diffeomorphisms. This is the study
of differential geometry and smooth manifolds.

1.1.2 Statistical Families as Smooth Manifolds

We assume that all statistical families studied in the thesis are endowed with the struc-
ture of a smooth manifoldwhich will be de ned in this subsection. The concept of a
smooth manifold requires a topology. We will not be speci c about what the topology
is, and will simply assume that there is a given topology that makes a family Q into a
topological p-manifold. We will comment later on how a statistical family may be given

a topology and smooth manifold structure.

18



Before discussing geometry, we require the concept of a smooth manifold. This is
the canvas on which geometry lives; it allows us to formally make sense of what it
means for something to be independent of co-ordinates, and has the interpretation of
being locally at so that small perturbations to a point are elements of a vector space.

Formally, a topological p-manifold Q is a topological space that is Hausdorff, sec-
ond countable and locally Euclidean of dimension p [47]. Roughly, being Hausdorff
and second countable means there are neither too many nor too few open sets. Locally
Euclidean of dimension p means that every point in a manifold has a neighbourhood
that is homeomorphic to an open set in RP. An open subset U Q that is home-
omorphic to an open subset V RP is a co-ordinate domain , the homeomorphism
f :U! Visaco-ordinate map, and the pair (U,f ) is a co-ordinate chart. A collec-
tion of co-ordinate charts whose domains cover Q is called an atlas. Since manifolds
are locally Euclidean of dimension p, every point in a p-manifold is contained in the
domain of some co-ordinate chart, so an atlas must always exist.

In order to do calculus on a manifold, we need to make sense of when functions
f : Q! R are differentiable or smooth. The following discussion follows Lee’s In-
troduction to Smooth Manifolds [46], in which smoothness is de ned in terms of co-
ordinate charts. Let (U,f ) be a co-ordinate chart with f : U ! V  RPa co-ordinate
map, and let f : Q! R be a scalar function on the manifold. Then f has a co-ordinate
representation in the chart

f:v!I R, fx):= f f 1 (x)forx2V

Since f is a scalar function on RP, its smoothness is well-de ned; f is C¥ -smooth, or
simply smooth, if its partial derivatives of all orders exist and are continuous. So we
could say that f is smooth if its co-ordinate representation in some chartis C¥ -smooth;
however, this may depend on the choice of co-ordinate chart.

To overcome this ambiguity, suppose there exist two co-ordinate charts (Uq,f 1) and
(Uz, f 2) such that their domain intersection U1\ U, is non-empty. Then the composi-
tion

fo fotifa(Ui\ U ! fo(Usr\ Uyp)

maps co-ordinates represented in the rst chart to co-ordinates in the second and is
called the transition map between the two co-ordinate charts. We de ne the charts to
be smoothly compatible if U3\ U, is empty or the transitonmap f, f lis a diffeo-
morphism. An atlas A is smooth if any two charts in A are smoothly compatible. A
smooth atlas is said to be maximal if it is not properly contained in any larger smooth
atlas. This just means that any chart that is smoothly compatible with every chartin A
is already in A [46]. In fact, every smooth atlas is contained within a unique maximal
smooth atlas, so itis enough to de ne a smooth atlas to know that a maximal one exists.
Finally we may de ne a smooth manifold. A smooth structure on a manifold is a
maximal smooth atlas A, and a smooth manifold (Q,A) is simply a topological man-
ifold Q equipped with a smooth structure A. This allows for a de nition of smooth
functions f : Q ! R on a smooth manifold (Q,A). A chart (U,f ) is called smooth
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when it belongs to the smooth structure. The function f is smooth if for every point

g 2 Q a smooth chart (U,f ) 2 A exists whose co-ordinate domain U contains g, and
the co-ordinate representation f = f f 1is a smooth function on RP. The set of all
smooth functions on Q is denoted by C¥ (Q).

Example 1.1.3. RP is a smooth manifold when equipped with the Euclidean topology
and a smooth structure containing charts of the form (U, ) where U is any open set
and | is the identity map. Furthermore, any open subset U is a smooth manifold [46].

We may also de ne smoothness of maps betweemmanifolds in a similar fashion; the
following de nition is from Chapter 2 of Lee [46]. Let Q,W be smooth manifolds and
F:Q! W. Foranyqg?2 Q, suppose there exist smooth charts(U,f ;) on Q with g2 U
and (V,f ») on W such that F(U) V. Notethat F:= f, F f 4 lisarepresentation
of F in the given charts; F(x) is the representation in the second chart of the image
under F of the point whose representation in the rst chartis x. We say F is smooth
if for any q 2 Q there exist such a pair of smooth co-ordinate charts whose domains
U QandV Whaveq2 UandF(V) W, such thatthe co-ordinate representation
F:f(U)! f (V) issmooth in the sense of real vector-valued functions. Finally, we
can generalize De nition 1.1.1Jby dening F: Q! W to be adiffeomorphism ifitis
bijective and smooth with a smooth inverse, in the sense of smooth functions between
manifolds.

For brevity we will not explicitly refer to the formal structures de ned above when
they are implied from context. For example, we may treat a point q 2 Q and its co-
ordinates g = f () in some chart interchangeably, and keep in mind that the represen-
tation is local. In particular, we often talk of a point g where this can refer to a point
in the manifold, a co-ordinate vectorin RP, or both.

Parametric Families and The Smooth Manifold Chart Lemma

Our discussion of statistical families as smooth manifolds has thus far been abstract. In
this section we will describe how statistical families can be given a smooth manifold
structure from an existing parameterization.

Example 1.1.4. Let Q be the family of Gaussian probability measures on (R,B(R))
where B(R) is the Borel s-algebra on R,

_ 1 1 2 . 2
Q= pﬁexp 252(X m- d (x):m2R,s“>0 ,

where dl is the Lebesgue measure on(R,B(R)).

This example is typical of how statistical families are speci ed, i.e. a parameterized
set of probability measures. Although a smooth manifold structure is not yet speci ed
in this example, clearly the parameterization used to de ne the family is similar to a
global smooth co-ordinate chart. We will show that there is a unique smooth manifold
structure for which the parameterization provides a global smooth co-ordinate chart.
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In general, we have the following de nition from Shao [72] for families de ned in
this way.

De nition 1.1.5. A set of probability measures Q = fogq : g 2 Qg all on the same
measurable space(Y, F) is a parametric family if the parameter space Q RP and
eachqg is a known probability measure whenever q 2 Q is known.

In Example , the parameter space is the open upper-half planeQ = f(ms?) :
m2 R,s?> 0g R? and clearly Q is a parametric family. For the parameterization
to provide a valid co-ordinate chart which must be bijective, we clearly require the
following property which is also adapted from Shao [72].

De nition 1.1.6. A parametric family Q = fqgq: g2 Qgis called identi able if for any
01,02 2 Q suchthatq; & gy, we have gq, 6 qg,.

Continuing the example, the parametric family Q of Gaussians is clearly identi -
able. In order to show identi able parametric families are smooth manifolds, we re-
quire the following result which is a simpli cation ofthe ~ Smooth Manifold Chart Lemma
given as Lemma 1.35 in Lee [46].

Lemmal.l.7.LetQbeaset,andIét: Q! RP be a bijection between Q and an open subset
f (Q) RP. Then Q has a unique smooth p-manifold structure such (fiatQ) is a smooth
chart.

Our main result in this section is the following, which essentially states that iden-
ti able parametric families are naturally smooth manifolds with a global co-ordinate
chart.

Theorem 1.1.8. Let Q= fqy : g 2 Qg be an identi able parametric family such th@ RP
is open. De ne the mapping

f:Q! RP, f(ag) =g
then Q has a unique smooth p-manifold structure for wHi€hf ) is a smooth chart.

Proof. We will show that f satis es the conditions of Lemma Firstly, f (Q) = Qs
an open subset of RP by the assumptions of the theorem. It only remains to show that
f is a bijection from Q to Q.

For surjectivity, for any g 2 Q there exists gy 2 Q such that f (qq) = g. Hence
f :Q! Qissurjective.

For injectivity, suppose f (qq,) = f (0g,) for some qq,,0q, 2 Q. By identi ability, it
clearly follows that g; = g». Hencef is injective.

In conclusion, f : Q! Qs a bijection where Q  RP is open. Thus by Lemma
,Q has a unique smooth p-manifold structure in which (Q,f ) is a smooth chart.

O
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Example 1.1.9. Continuing Example the parametric family is

1 1
Q= pﬁexp gz (X m? d (x) :m2R,s2>0 ,

The parameter space of the family Q = f(ms?) : m2 R,s? > 0g is an open subset of
R?2, namely the open upper-half plane. Furthermore, the family is clearly identi able.
By Theorem ,Q has a unique smooth manifold structure for which the mean and
variance g; = ( ms?) de ne a co-ordinate chart.

There is no canonical reason to parameterize in terms of mean and variance. We can
also de ne a co-ordinate chart (Q, q2), with

- mo
qZ(q) -y SZ(Q) forall 2 Q
where g1(g) := (mq),s?(q)) are the components of the rst co-ordinate map. This is
a reparameterization in terms of mean and precision t := 1/ s?. The two charts are
smoothly compatible since the transition map
(@2 ar H:Q! Q
1
(@ o ') ms® = mg

is a diffeomorphism. Thus Q3 is in the same smooth structure as q;, and hence de nes
a co-ordinate chart on the smooth manifold structure on Q.

1.1.3 Co-ordinate Free Posterior Distribution

Equation ) is Bayes’ theorem for the real-valued unknown variables g, given ob-
served variablesy. It assumes the prior and posterior have densities in R" and refers to
a speci c parameterization of the conditional density of the data p (yjq). In this section,
we reformulate Bayes’ theorem in terms of probability measures on a statistical family.
Although Bayes’ theorem has been formulated before in measure-theoretic terms, e.g.
by Stuart [[74], to our knowledge this is the rst time in the literature that the posterior
has been stated with reference to a manifold of data-generating measures.

Prior Speci cation and Densities

Assuming a family Q is a smooth manifold, it has a topology which induces a Borel
s-algebra B(Q); see Rudin [6€]. The pair (Q,B(Q)) is a measurable space and so we
can make sense of probability measures onQ. In particular, let m: B(Q) ! [0, 1] be
a prior probability measure on (Q,B(Q)). We can interpret this measure as weighting
data-generating measuresq 2 Q according to prior information available before data
are observed.

We rst recall the following de nition from measure theory.
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De nition 1.1.10. Let g, n be two positive measures on a measurable space(Y,F). If
for any measurable setU 2 F ,

nU)y=0 ) qU)=10

then qis absolutely continuous with respectto n, and we write ¢ n. If Y is a count-
able union of sets E; such that n(E;) < ¥ for eachi, then nis called s- nite .

A famous result in Analysis is the Radon-Nikodym Theorem [66], which states that
if @ nthen there exists a measurable function h 2 L(n) such that
Z
q(uU) = hdn
u

The function his called the density or Radon-Nikodym derivative of g with respect to
n, and is often written as h %

De nition 1.1.11. Let n be a positive s- nite measure on the measurable space (Y,F).
If the statistical family Q on (Y,F)issuchthatq nforall q2 Q,then Q is said to be
dominated by n. In this case, the conditional data-generating density of g 2 Q with
respect to n is the Radon-Nikodym derivative

dg .
dan Y! R

This de nition corresponds with our earlier notation of a conditional density  p(yjq)
on avariabley 2 Y when the family Q is indexed by q 2 Q.

To summarise, there are two measurable spaces of interest; rstly, the data space
(Y,F) where observable data and events live, and secondly the statistical family and
its Borel sets (Q, B(Q)). A statistician constructs a model, i.e. a statistical family Q of
probability distributions on data space, each element of which is a candidate for the
true distribution which generated the observed data. The prior probability distribution
mis a measure on (Q,B(Q)) that represents prior uncertainty about how likely each
distribution in  Q is to generate the data. We can now describe the process of Bayesian
analysis without reference to any particular parameterization.

Joint Distribution

The rst step of Bayesian analysis outlined in Section is to construct a joint prob-
ability distribution over parameters and observable variables. In the co-ordinate free
picture, the joint distribution is a measure on the product space of the statistical family
and data space,

(Q Y.B(Q) F)
where B(Q) F refers to the product s-algebra of B(Q) and F .
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De nition 1.1.12. Let Q be a statistical family on the measurable space(Y,F) and let
m: B(Q) ! [0, 1] be a probability distribution over Q. If g: Q! [0,1],9(g) = q(A) is
a B(Q)-measurable function for all A 2 F , de ne the joint probability measure as

(mQ):BQ FL [0,
(m QU A)= Uq(A)dr’r(q) forU2B(Q),A2F

Co-ordinate Free Likelihood and Posterior

Let us de ne the likelihood in a co-ordinate free way.

De nition 1.1.13. Let Q be a statistical family on a measurable space(Y, F) dominated
by a measure n. The likelihood function |, with respect to n at a point g 2 Q is the
data-generating density of g evaluated at the observed datay s,

h:Q! R
dg
Ih(Q) := %(yobs) forall g2 Q

Note that this de nition of likelihood does not depend on any particular co-ordinate
chart. The likelihood can be represented in a co-ordinate chart g in the usual way for
functions on manifolds,

L:Q! R lhi=1, qt

where Q is the image of the g co-ordinate map. This co-ordinate representation agrees
with the usual likelihood function p (Yqobsjq) @assuming the same dominating measure n
and co-ordinate chart g = q(qg). We assume the likelihood is a measurable function on
(Q.B(Q)).

We can now write Bayes’ theorem on a statistical family Q. Let I, be the likelihood
and mthe prior probability measure on Q.

De nition 1.1.14. The posterior probability measure giveny gy, Written m is de ned
by the Radon-Nikodym derivative

dm _ In(Q)
En(Q) = RW (1.1.5)
Thus for a Borel setU 2 B(Q),
Z

R M*
U Q |n(qq dr‘r(q(ﬁ

When specifying the model and doing computations, it is usually easier to work
with prior and posterior densities rather than measures. Prior and posterior densities
on RP are obtained by pushing-forward the probability measures under the co-ordinate
charts and satisfy the usual statement of Bayes’ theorem, as shown in the following
proposition.
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Proposition 1.1.15. Let Q be a p-dimensional smooth statistical family dominateal layd let
mbe a prior probability measure on Q. Suppé&ef ) is a global co-ordinate chart on Q with
co-ordinateg) = f (q) for g2 Q. If the push-forward omunderf admits a Lebesgue density
p (q), then the pushforward of the posterior probability measurender f has a Lebesgue
density given by

R In(q)p ()
In(a9p (g9 dgP

wherel, := 1, f listhe co-ordinate representation of the likelihood.

Proof. Firstly, note that since f : Q ! RP is a homeomorphism, both f and f ! are
continuous and therefore measurable functions.
The pushed-forward prior and posterior measures under f are respectively de ned

by
f ME)=mf E)
f ME)= mf E)
for any Borel set E in RP. Substituting De nition 1[1.14{or m we nd
f mE)

m f 1(E)
A

dn(a)
1B
fF\’ 1(E) In(q)drr(q)

o In(a)dm(c?)
Let | P be the p-dimensional Lebesgue density. By the assumptions of the proposition,

the pushed-forward prior measure is p (q)dl P(q). Thus the expression in the previous
eguation can be rewritten as

R
In £ () p(a)d P(q)

f me)== R-E
e t (g In(f 1(a9) p (a9l P(a)
sincel, = I, f 1, this shows the required result. O

1.2 Exponential Families

We narrow our focus to exponentiaktatistical families. A common assumption in statis-
tical models is that data are generated by a probability distribution belonging to an
exponential family; many elementary families are exponential, such as the normal,
Bernoulli, binomial, beta and gamma distributions. In Chapter 2[ jve will show that
geometric structures on exponential families have statistical interpretations.

The following de nition and subsequent discussion is adapted from Brown [15] and
Shao [72].

25



De nition 1.2.1. Let Q = fRjx 2 Xgfor X RS be a parametric family on (Y,F)
dominated by a s- nite measure n. The family is called a p-dimensional exponential
family if the density of P, with respectto nis

dPy n - Y
m(y) = h(y)exp c(x) T(y) y(x) forall x 2 X 1.2.1)

for some functions
c: X! RP,
T:Y! RP, measurable on(Y,F),

h:Y! R, measurableon(Y,F),

R
y X! R,y(x)=log | h(y)exp c(x)Tt(y) dn(y)

Note the de nition of vy is necessary for eachP, to be a probability measure, i.e.
P.(Y) = 1. The parameter spaceX may not necessarily be a subset of RP. We also
introduce the following.

De nition 1.2.2. A parametric family f Pyjg 2 Qg of probability measures on the Borel
sets of RP is called a p-dimensional standard exponential family if the family is domi-
nated by a s- nite measure n,Q RP, and

dp, n °

ﬁ(t) =exp gq't y(q) forall g2 Q (1.2.2)

where z n o
y:Q! R, vy(g=log exp q't dn(t) (1.2.3)
RP

The parameter g of a standard exponential family is called its natural parameter , Q
is the natural parameter space, and the function vy is the cumulant generating function
Clearly any standard exponential family is an exponential family. Furthermore, the
following proposition shows that one can always transform an exponential family into
a standard one.

Proposition 1.2.3. Letf Pjx 2 Xg be a p-dimensional exponential family of probability mea-
sures dominated bys nite non a measurable spacé, F ), whereX RS. LetT:Y! RP,
h:Y! R,andc: X! RP be asin[(1.2]1) for this family. L& = fc(x) : x 2 Xg and

de ne the measure z

n(A)= L hy)dn(y)

for Borel sets A RP. Then the family Q= fPyjg 2 Qg is a p-dimensional standard
exponential family dominated by where
z n 0
Pe(A) = | &XP q't y(q) dn(t) (1.2.4)

is the push-forward measure Bf underT whereq = c¢(x), andy is given by ).
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Proof. Firstly, note that the measure n is well-de ned since T and h are both measur-
able by De nition For any Borel set A RP and measurable f : RP ! R, the
de nition of nimplies that

A A

f(t)dn(t) = f (T(y)) h(y)dn(y) (1.2.5)
A T 1(A)

In particular, for any x 2 X let f(t) := exp q't where q = ¢(x) and take A = RP.
Equation ([L.2.5) is then equivalent to

exp(y(q)) = exp(y(x)) (1.2.6)

It follows that 'y (x) = y(c(x)) for any x 2 X. Dividing ({.2.5) by the non-zero quantity
(1.2.6) for each Borel setA  RP yields
A Z

Lexp a't y(a) dn(t)= F i &P c(x)'T(y) y(x) h(y)dn(y)
. Py(A) = (T *(A))

which shows that ( is the pushforward of P, under T for any x 2 X, where q =
c(x). The form ({L.2.4) of P, clearly shows that Q is a standard exponential family. O

Suppose a random variable y has a distribution in a parametric family Q = f P,jq 2
Qg. Recall that a function, or statistic, T(y) is called suf cient for q if the conditional
distribution of y given T(y) does not depend on g. Suf cient statistics are interpreted
as containing all of the information about the parameter ¢ contained in a sample y.
By the Neyman Factorization theorem for suf cient statistics [72],/[71],/the function T
in De nition 1s suf cient for the natural parameter g = c¢(x). This function is
therefore referred to as the suf cient statisticsof the family. The standard form of an
exponential family describes the distribution of its suf cient statistics t := T(y).

The standard form of an exponential family is simplest for studying its properties
and geometry. For example, the following proposition proven in Brown [15] shows that
standard exponential families can be af nely transformed to an equivalent standard
exponential family. This shows the natural parameterization is not unique.

Proposition 1.2.4. Let Q = fPyjg 2 Qg be a p-dimensional standard exponential family
dominated by &- nite measuren. Forq 2 Q, lett be a random variable with distribution,P
and de ne the transformed variable and parameter

t1 t%= Mt+tg (1.2.7)
q! ¢°=M Tg+ qo (1.2.8)

where M2 RP Pis non-singular andqo 2 RP. Thent®has the distribution

Pe(A) == Py M (A to) (1.2.9)
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for Borel sets A RP, whereq= MT (q° qg). Furthermore, the parametric family
Q:= Pypq’2 Q°
whereQ%= M Tq+ qgis a p-dimensional standard exponential family.

The joint distribution of random variables distributed according to measures from
an exponential family belongs to a product exponential family. Suppose two inde-
pendent random variables t;,t, 2 RP have distributions from the same p-dimensional
standard exponential family Q with cumulant generating function y and dominating
measure n, and let t,,t, respectively have natural parameters qi,q2 2 RP. Their joint
distribution then has density

exp qi'ti+ g2'tz y(g)  y(92)

with respect to the product measure n n. This is clearly a 2p-dimensional standard
exponential family with suf cient statistics t := (t1,t2) 2 R?P. Alternatively, if tq,t,
have the same parameterq 2 RP, they are identically distributed and the joint density
is

exp q'(t1+t2) 2y(q)

and we only need to rede ne a suf cient statistic t = t; + t, and the dimension of the
family is the same as the original one. This is made clear in the following example.

Example 1.2.5. The set of Gaussian distributions on the real line f Normal (ms?) : m2
R,s > 0gis an exponential family. Rearranging the Gaussian density with respect to
the Lebesgue measure gives

. 1 1
2y — o+ 2 4 2
p(yims)=exp  55(y m° 3log 2ps

2
y_,ym ug %Iog 2ps? (1.2.10)

SR 52T 57 g2

Let us nd the equivalent standard exponential family as per Proposition 1.2.3. De ne
natural parameters q; = le and g = S—”z‘ a cumulant generating function y (o, ) =

%+ llog D i isti
2y * 3log 3 . andsufcient statistics

T(y)= (tiy). t2(y)" = Y2y '

This is a parabola in R? parameterized by y. Let n be the push-forward of the one-
dimensional Lebesgue measure under T. Then we can rewrite the parametric family as
a standard exponential family with dominating measure nand natural parameter space
Q=(0,¥) R.
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Suppose there aren i.i.d. Gaussian random variables y1,..,y, each with the same
natural parameters g, ¢p. The joint Lebesgue density is

n n

exp quyi’+ pyi  y(q) = exp yi?+ @y y(q)
i=1 i=1 I | !

*® vy ny(q)
! ! !

exp o Yi

Yi ny ()

=exp ng

Sl
S
N
Sl
S

G +ne &t ny(@)
i=1 i=1

exp N

S|k
=}
Sl

In the last line, we have pulled a factor of n out of the suf cient statistics; this can be
absorbed into the natural parameters with a simple re-scaling, i.e. by applying Proposi-
tion . In this new parameterization, the joint suf cient statistic is simply the sample
mean of the individual suf cient statistics, corresponding to the negative second and
positive rst sample moments. In conclusion, the n data are distributed according to a
two-parameter exponential family.

1.2.1 Minimality and Identi ability

In this subsection we will identify suf cient conditions for a standard exponential fam-

ily to have a smooth manifold structure. Recall that Theorem 1.1.8]states that for a
parametric family to have a smooth manifold structure in which its parameterization is

a co-ordinate chart, it is suf cient for it to be identi able with an open parameter space.

De nition 1.2.6. A p-dimensional standard exponential family is called minimal if the
suf cient statistics T(y) are linearly independent for all y 2 Y, and there does not exist
a(p 1)-dimensional subspace containing the natural parameter space Q.

The following proposition is shown by Geyer [35].
Proposition 1.2.7. A minimal standard exponential family is identi able.

By Theorem , it follows that a minimal standard exponential family with an
open parameter space has a unique smooth manifold structure in which the natural
parameterization is a smooth co-ordinate chart.

An exponential family may not contain all possible probability distributions of ex-
ponential form with respect to a given measure. We de ne the full natural parameter
space N to be the set of all permissible natural parameter values, i.e.

Z
N= gq2RP:y(q) = exp q't dn(t) < ¥
RP
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The associatedfull exponential family is exp gq't y(q) dn(t) :q2 N , and say a
family is fullif Q = N. Any s- nite measure non Borel subsets ofRP has an associated
full natural parameter space N,, and therefore induces a standard exponential family
of probability measures. If the natural parameter space Q of an exponential family has
a non-empty interior, i.e. it contains a non-empty open set of RP, then the family is
said to be of full rank . Brown [15] de nes an exponential family to be regular if its full
natural parameter space N is an open subset of RP.

Example 1.2.8. Consider the Lebesgue measurel with support restrictedto (0,¥ ). The
full natural parameter space is
Zy
NN =N= qgq2R: . ed (1)< ¥ =( ¥,0

The family is therefore regular. The cumulant generating functionis y(q) = log( Q)
for g 2 N. The resulting exponential family is the family of exponential distributions,
i.e.

exp(at+log( a))di (t) q2( ¥,00 t2(0,¥)

This is usually parameterized by a rate parameter r = @; sincer and g are related
by an af ne transformation, r is also a natural parameter if t is transformed according
tot! t. A contrived family with parameter space Q = f 1, 2g N is standard

exponential, but it does not have full rank.

The following example adapted from Amari [3] shows that the family of distribu-
tions whose support are all on the same discrete set is an exponential family.

Example 1.2.9. The set of probability measures on a nite set Y = f0,..,Ngis an expo-
nential family. Let P(y = i) = p; fori 2 0,..,,Ng. Of course, there areN + 1 outcomes
with the constraint  p; = 1, so the family must have N degrees of freedom (parame-
ters). Fori = 1,..,N, de ne natural parameters and suf cient statistics

(
pi 1 y=i
.= log Ti(y) =
v g oo i(y) 0 y6 i

Take n to be the counting measure on f0,..,Ng. The cumulant generating function is

then 7 \ I

y(@)= log exp(qTi(y))dn(y)=1log 1+ exp(g)
i=1

With these de nitions, it follows thatfor i = 1,..,N

exp(g y(a))
exp() _ pi/ Po

exp(q t(i) y(a))

=p
1+ j’\ilexp O 1+ szlpj/ Po I

and similarly exp (g T(0) y(q)) = po. So the set of discrete random variables taking
a nite number of values can be identi ed with an exponential family.
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1.2.2 Convexity and Legendre Transform

The geometry and properties of exponential families are based on convexity of the nat-
ural parameter space N and cumulant generating function y.

Proposition 1.2.10. For a minimal regular exponential family, the cumulant generating func-
tiony : N! Risanin nitely differentiable strictly convex function and the natural parameter
space N is a convex set.

The proof of proposition is given by Kass and Vos [44], and is based on a
simple application of H @lder’s inequality. Convexity is not necessarily preserved under
diffeomorphic changes of co-ordinates, so we consider y strictly as a function of natural
parameters ¢ and not as a co-ordinate independent geometric object. However, the
convexity of y gives it the following important property, also proven by Kass and Vos.

Proposition 1.2.11. Lety : N ! R be strictly convex and smooth where NRP is open and
convex. Then the map

c:RPI RP c(q) :=r y(q)
is a diffeomorphism.

Viewing the exponential family as a smooth manifold, this proposition provides
another global smooth co-ordinate chart. Let (Q,f ) be the co-ordinate chart for the
natural parameterization, and de ne (Q,f ), where

f:Q! RP f(q:=(c f)(a)

with ¢(q) = r y(q) as in the proposition. We will denote the co-ordinates in this chart
ash:= c(q).

The statistical interpretation of this co-ordinate chart is given by the following the-
orem, which states that r y (q) is the expected value of the suf cient statistic vector T
under the distribution with natural parameter q.

Theorem 1.2.12. Let Q = f Pyjg 2 Ngbe a minimal regular exponential family of probability
distributions on random vectorswith natural parameteq. The expected value of the suf cient
statistict under R is given by the gradient of the cumulant generating functioat q,

h:= Ep,(t(y)) = r y(a) (1.2.11)

Proof. The member of Q with natural parameter q s the distribution
z

Py(A) = AeXqut y (g)gdn(t)

for Borelsets A RP. Since the integrand is continuous in g and t, we can differentiate
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under the integral sign. The i component of the gradient of y is given by

v_ 1, ° 1 q 2
LA T exp q't dn(t)= R — exp q't dn(t
1q = g °9 r &P 4 OO T ICIRETORC A ()
1 T T
= — —ex t dn(t
Y@ o g P gt dn(t)
=  tiexp q't y(g) dn(t)
ZR"
= Rntidpq(t): Ep,(ti)
where t' is the i!" component of the vector t. This holds forall i = 1,..,p and )
follows. O]

Given this result, we call h the mean parametesr mean co-ordinatefor the family,
which range over the mean parameter space M := fr y(q)jq2 Ng.

Example 1.2.13. Continuing from the family of discrete distributions in example 1.2.9, |
the mean suf cient statistic is simply the probability  p;;

hi := Ep,(ti(y)) = Ep,(d(Y)) = pi

By theorem [1.2.12, the gradient of y = log (1+ ;exp(g)) gives the mapping from
natural to mean parameters,
_ Ty _ exp(ak)

Tk 1+ Liexp(q)
In the binary or Bernoulli case where Y = f0, 1g, this reduces to the sigmoidor expit
function

hy

exp(q)
1+ exp(q)

which is the inverse of the logit function q= log 1—hh .

The Legendre transform associated with y refers to the variable transformation
given by h:= r y(q), and also the following transformation of y to a convex function
of h.

De nition 1.2.14. Lety : N ! R be a strictly convex smooth function on an open
convex setN  RP. The Legendre dual or convex conjugate of y is the function

y :M!I' R 0 o (1.2.12)
y (h) = supg,y d'h y(q) (1.2.13)

or equivalently,
y (h=qh y(q) where gis such thath = r y(q) (1.2.14)

where M = fr y(qg)jq2 Ng.
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To see that the de nitions (1.2.14) and (1.2.13) are equivalent, note that sincey is
smooth the supremum in (1.2.13) is attained by qo 2 N depending on h such that

0=rgq qgh y(@ _ =hr y(d)
g=do

and thus qg satises r y(qgo) = h.

The term dual refers to the fact that the Legendre transform is an involution; it is
its own inverse, such that the Legendre transform applied to y and hrecoversy and
g, as shown in the following theorem.

Theorem 1.2.15. Lety : N ! R be an in nitely differentiable, strictly convex function on a
convex set N R". The Legendre dual (1.2{13) satis es
rqgy ray (h) =h

wherer n refers to the gradient with respectttpi.e. the inverse af(q) = r qy(q) isc (h) =
r ny (h). Furthermore, the Legendre dualyof(h) isy (q).

Proof. Using the alternative de nition (1{2.14)of the Legendre dual, The gradient r ny (h)
hasi" component

" | # !
fv _ 1 ¢ 4 g, Th 4 o Ty
- h - 7h + —1 0 _n 77
i Th jzlqj i v =1 Th I S =1 Thi o
= dag + —h; —h.= o
i G j:lﬂhi j k—1ﬂh| k=0

where gis such thath = r y(q). Henceq = r ny (h) ifandonlyif h = r y(q). The
Legendre dual of y is therefore

y (@)=h'g y (h)  wherehissuchthatq=r ny (h)
=h"qg q'h y(q =vy(q)
O

Whenever co-ordinates g and h are related via a Legendre transform in this way, we
will refer to them as primal and dual co-ordinates respectively.

When vy is the cumulant generating function of a natural exponential family, the
Legendre dual y (h) coincides with the negative entropy of the suf cient statistics t.
Calculating directly,

H(q) := E (log p(yja))
Ep, d't y(a)
q'Ep, (1) y(q)
q'ry(q) y(@= y (c(a)
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The Hessian of the cumulant generating function r 2y is the Jacobian matrix of the
natural-to-mean diffeomorphism c¢(q) := r y(q), and also has geometrical and statisti-
cal interpretations. First, we recall the de nition of Fisher information.

De nition 1.2.16. Let Q = fP; : q 2 Qg be a parametric family dominated by a mea-
sure n, such that Py has density p (yjq) with respect to n. The Fisher information matrix

or simply Fisher matrix for the family is the matrix with i-j element
lij(a) = Ep, lIog p(yjq)llog p(yja) (1.2.15)
¢ g g

The de nition holds for any statistical family, not just exponential families. Note
that the Fisher matrix can be viewed as a matrix-valued function on the parameter
spacel : Q! RP P, The matrix plays an important role in statistics; for example, its
inverse appears in the Cramer-Rao lower bound. Under mild conditions, the Fisher
matrix can be written as

I(9) = Epg, 1 3logp(yja) (1.2.16)

A proof of this alternative form is given in Chapter 3 of Shao [72].
The following theorem shows that for exponential families, the Fisher matrix is sim-
ply the Hessian of the cumulant-generating function.

Theorem 1.2.17. For a standard exponential family with natural parametgtthe Fisher In-
formation matrix I(g) and the covariance @f(y) coincide, and are given by the Hessian matrix
ofy,

I(a) = Cow,(t(y)) = r 2y(q)

A proof can be found on page 18 of Kass and Vos [44]. Finally, we note the following
relationship between the Hessian of a convex function and its Legendre dual.

Theorem 1.2.18. Lety : N I R be a strictly convex function with Legendre dual. The
inverse of the Hessian pfat q is the Hessian matrix of evaluated ah = r y(q), i.e.

ray(rgy (h)=1p p (1.2.17)

Proof. Let h = r y(q) as in the theorem statement. Firstly, by Theorem we have
q=r py (h). Thei™ component of this is

i Ty
h'

To evaluate the Hessian ofy , note that by the chain rule

q (h)

1T_°1¢F 1

Thi o, Thi fiep
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Substituting this into the i-k component of the left-hand side of (1.2.17) and applying
the chain rule gives

PRy By _ P T Ty 1 Ty

=1 Tdgf TTh< ~ _ d  Td  Th qhk

RS U I
j=1 19 0
_ P P MEM
j:ls:]_ ﬂq ﬂhj ﬂcf
= P LhJM = M = qk
=1 Td Th 1d
which is the i-k component of the right-hand side of (1.2.17). O

1.3 Generalized Linear Models

Many statistical families in applications are subsets of other families which are smooth
manifolds in their own right. In Chapter ZM'e will discuss subfamilies in more gener-
ality; here we will describe subfamilies called generalized linear modela common type
of regression model in statistics.

Let Q be a one-dimensional exponential family with suf cient statistic y and cumu-
lant generating function y(q). Consider n independent observations y := (y;){L, such
that each observation was generated from some distribution P, 2 Q. The joint density
or mass function of all observations y for xed natural parameters q= (4, ..,0h) iS

|
n n

p(yjd)=  p(vijg) exp (vig y(a))
i=1 i=1 !

exp y ¢ y(a) (1.3.1)
i=1

where proportionality refers to multiplicative constants independent of q. We see that
the n observations are generated by a distribution Py in an n-dimensional exponential
family, which we refer to as Q", with natural parameter g 2 R" and cumulant generat-
ing function y"(q) := {L;Yy(q). Suppose further that for each observation y; we have
a xed vector x; 2 RP of covariatesone often wishes to nd a relationship between the
covariates and observations. A generalized linear model (GLM) posits a relationship of

the form
p

fLEW)) = bX; i=1,..n (1.3.2)
j=1
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where f : R'! R is some (usually nonlinear) function called the link, Xj; is the jth
component of the i covariate vector x;, and bj is a coef cient corresponding to the jth
covariate dimension. The generalized linear model is parameterized by the p coef -
cients (bj)jp:1 - assuming p < n, this implies the GLM is a p-dimensional family G that
is a subfamily of Q".

In general, a GLM G is not an exponential family [3]l However a special choice
of link function f doesmake G an exponential family in its own right. Note that by
Theorem(1.2.12, the left hand-side of equation {1.3.2) isf *(h;) where h; is the i" mean
parameter. Suppose we make f the natural-to-mean mapping of Q, f(q) := Y = p,

dq
so that .

f 1(hi) =qg-= _ ijij i=1,.,n (133)

=1

This choice of link function gives a linear relation between the natural parameters
and coef cients; in vector form the above equationis q = Xb, where X = (Xij) is the
design matrixof the GLM and b = ( b;) is the coef cient vector. Such a link function f
is called the canonicalink function for the underlying exponential family Q. The vector
form of the GLM relation shows thatthe set G Q" is exactly the image of X in natural
co-ordinates.

A GLM with a canonical link functionisa p-dimensional exponential family. To see
this, substitute g = Xb into the joint mass/density (1.3.1)]of Py 2 Q;

!
n

p(yib) exp y q y (%)
i=1
n p
exp y (Xb) y Xij b
i=1 j=1

exp(t(y) b y(b))
where t(y) := XTy is the sufcient statistic and y(b) := L,y jpzlxij b; is the
cumulant generating function of G.
1.4 Conjugate Priors

The discussion thus far has related entirely to the likelihoodor data-generating distribu-
tion p(yjq). To fully specify a model for Bayesian inference, we require a prior distri-
bution po(qg) which represents belief about the parameters before data are observed.
After observations, we update our belief using Bayes’ Theorem,

p1(a) := p(ajy) p(yig)po(a) (1.4.1)

Exponential family likelihoods admit conjugatefamilies of priors; families which are
closed under Bayesian updating according to ([[.4.1). For example, choosing a prior
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po 2 C where Cis a conjugate family of priors for the likelihood p(yjq) implies the
posterior is a member of the same family, p1 2 C.

For the numerical experiments in this report, we use posterior distributions result-
ing from exponential families or GLM likelihoods with conjugate priors. This may seem
too restrictive, since such models are often very easy to sample from, with dedicated
algorithms for independent sampling - for example the classical conjugate pairs like
Poisson-Gamma or Bernoulli-Beta models. However, the models used in our numeri-
cal experiments are not from any well-known family and are non-trivial to sample. We
use conjugate priors because they provide an easy way to extend the dual geometry
to include prior information. Furthermore, a Diaconis conjugate-exponential posterior
(see below) has a known expectation which can be used to measure the performance of
MCMC. Of course, an eventual goal of the research is to extend the geometric methods
to the broadest class of posterior distributions; conjugate-exponential distributions pro-
vide a simple but non-trivial problem to test and understand our methods before we
extend them. Finally, exponential families or GLMs with conjugate priors are extremely
practical and widely-used statistical models - there are many problems with real data
that can be used to benchmark our methods.

1.4.1 The Diaconis Conjugate Prior

For the standard exponential family p(yjg) exp q'y y(q) , the conjugate prior
introduced by Diaconis and Ylvisaker [25]|is
n 0
Proyo(d) €Xp No q'yo y(q) (1.4.2)

normalized so that pn,y, is a probability density over Q, where ng > 0 andyg 2 RP are
hyperparameters. This is conjugate to p (yjq), since

n (0]
p(adiy) P(Yid)Pnoyo(d) exp q'(y+ noyo) (1+ no)y(a)

y + NoYo

=exp (1+ng) q' T g

y () (1.4.3)

We see that the posterior density is pnoyo, i.e. the same form as the prior ) with
updated hyperparameters

0. ¥+ Noyo

no! n%= 1+ ng yo! yo:= S oo (1.4.4)

We can nd an interpretation for these hyperparameters by incorporating n data fy;g

for i = 1,..,n. This is equivalent to iterating ({.4.4) n times to yield updated hyperpa-

rameters i+
%= n+ng yo! y0:= T NoYo (1.4.5)

ng! n
0 n+ ng
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where §l = % L 1 Vi is the sample mean of the data. The updateng! ng+ n motivates
viewing ng as aprior sample sizeDiaconis and Ylvisaker [25] show that

Eq pogyol@ Ey pyia) V19 = Eq poyot@ (MY (@) = Yo (1.4.6)

This gives an interpretation for the hyperparameter yo; it is a prior prediction for the
mean of the data. When the hyperparameters are updated with an observation, this
is reweighted in (I.4.5) with the true observations according to the prior and observed
sample sizes. Furthermore, we can use this relation to check the convergence of MCMC
to the posterior distribution p1; we only need to compare the Monte Carlo estimate
L k11 y(q®) of the samples g, ..,g") with the true quantity y°= ny'r;i?ﬁ)yf’

The Diaconis conjugate simpli es to the usual conjugate prior for speci c exponen-
tial families. For example, the Diaconis conjugate prior for the Gaussian model from

example[1.2.5 reduces to the Normal-Inverse Gamma prior; see Sectior] 1.5.2.

1.5 Example Models

This section describes several speci ¢ models and their properties. The models will be
used as test cases for MCMC algorithms.

1.5.1 A Linear Gaussian Inverse Problem

Suppose a vector-valued observationy 2 RP is distributed according to a multivariate
Gaussian distribution with a known covariance matrix G ! and unknown mean m

yjm Normal y;mG !

In other words, the distribution has a known precision matrix G 2 RP P, which is
symmetric positive-de nite. The likelihood function can then be written

. 1
p(yim exp moQy émTGm

up to multiplicative factors not involving m Clearly this is an exponential family with
natural parameter ¢ := G'm= Gm and cumulant generating function y(q) = 3q'G 1q.
As expected, mis a mean parameter satisfying m=r y(q) = G lq.

We adopt a Gaussian prior in mean parameters for the model,

m Normal mmy,Lg *

where my 2 RP is the prior mean and Lo 2 RP P is the prior precision matrix. A
straightforward calculation shows that the posterior distribution is then

my Normal mL ‘w,L ‘!

where L := Lo+ Gis the posterior precision and w := Gy + L gmp.
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Natural Parameters m s? Parameters
Parameters B = 52 R g s?= ;.m= &
Log Posterior
Density No 2
- (m b)° P a
(Up to additive i Z )
constant) No ha+ b %+ % log (o) &M Jog(s?)
Mode o= 72(a+1b2)’q2 = 72(a+bb2) m= b, s2= 5 (a+ b?)

Table 1.5.1: The normal observation model

1.5.2 Gaussian with Unknown Mean and Variance
Recall from example that the two-parameter family of Gaussian distributions

y Normal y;ms?

is an exponential family with natural parameters o = 55, & = 5, Y(Q) = %q% +

%Iog % , and suf cient statistics t1(y) = y? and ty(y) = y. Consider the Diaconis

conjugate prior for this exponential family:

po(d) = exp no(q'to  y(q))

for some prior hyperparameters ng > 0,to = (a,b)" where a< 0 and b 2 R. Pushing
forward this distribution to  m s? yields

1 m n 1 Mo, %)
2 T 4+ b o - 2 ML, M2/
po Ms exp nNg a252 b82 52 2Iog 2ps det f(ms?)
— No No 2
=exp o nf 2bm a > log 2ps 257
exp =2 (m b)? B a 1
q 2 5+n0
exp »¥(m b’ exp 7”°(b§+a)s—12
q 52 2 5+ng
2p (s?) 2

which is a normal-inverse-gamma distribution [33], the usual conjugate prior for normally-
distributed data with unknown mean and variance. The properties of the model are
shown in table . Note that the mode of the distribution in the ms? parameteri-
zation depends on the ng hyperparameter, whereas there is no such dependence for
the mode in the natural parameterization. In particular, the natural parameter mode
(o, o) transformed to the m s? parameterization is

(o, o) = b s¥(q,p) = a+ b
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The s? component here disagrees with s2; in other words, the process of computing the
mode does not necessarily commute with changes of parameterization. This implies
that the mode or MAP estimatordepends on co-ordinates, and thus cannot be geomet-
ric. In contrast, the maximum likelihood estimator (MLE) is known to commute with
reparameterization [1].

1.5.3 Logistic Regression

Suppose we have a binary responsey; 2 Y = f0, 1g, so that the underlying exponential
family Q is the 1-simplex discussed in example[1.2.9. The cumulant generating function
istheny(qg) := log (1+ exp(qg)) and the natural-to-mean diffeomorphism is given by

the expit or sigmoid function,

P = Epgijoy (V) = yXa) = S — =:5(q)
p(yiia) 1+ exp( q)

Here p, := P(y; = 1) = 1 P(y; = 0) is the mean parameter of the i observation.
Thus the canonical GLM for Q uses the expit function sas the link function, so that the

link relation ({.3.3) is given by

p
sip)=a= Xjb
=1

This particular GLM is known as logistic regressionThe log-likelihood function is given
by m
_ n p p
Iog p(yjb) = inij bj |Og 1+ exp Xij bj
i=1 j=1 j=1
Since it is a canonical GLM, this is a regular exponential family in b. The prior for the
logistic regression coef cients will depend on the application of interest. A common
choice is a Gaussian prior, in which case the log posterior density takes the form
"
n P p 1
log p (bjy) = yiXijb; log 1+ exp Xijbj ~b'L b
i=1 j=1 j=1 2

i.e. the prior has zero mean and covariance matrix L . This best suits data and covariates
that have been standardized and centered.
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Chapter 2

Information and Differential
Geometry

The previous chapter recast Bayesian inference in a co-ordinate free form. In this chap-
ter, we extend this picture by imposing additional co-ordinate free geometric structure
on statistical families - this is the study of Information Geometry. Concepts such as
curvature, arc-lengths of curves and even the Pythagorean Theorem can be made sense
of for statistical families, and such concepts often have neat statistical interpretations.
We follow the approach of Amari [3] |and derive all geometrical structures from a
divergence function. A divergence is a kind of squared distance function which may be
asymmetric in its arguments. In fact, asymmetric divergence functions give rise to an
interesting dualistic structure which is not present in classical Riemannian geometry.
Formal details, including several proofs, are contained in appendix AE]

2.1 Tangent Space, Cotangent Space and Tensors

2.1.1 Tangent Vectors

Smooth manifolds are often informally described as generalizations of smooth surfaces
in that they are locally at. In this section we will make this precise; attached to each
point of the manifold is a vector space called tangent space, whose elements are called
tangent vectors. Differential Geometry is essentially described in terms of maps which
act on tangent vectors. We will follow Chapter 3 of Lee [46]!

Our aim is to formalize the notion of a directional vector whose base is at a point of
the manifold, similar to how tangent vectors to curves in RP are attached to a point of
the curve to which they are tangential. This can be made sense of in terms of derivations
of smooth functions on Q. For a vectorv 2 RP, the directional derivative of a smooth
function f : RP! R atapoint qo 2 RPis

d ﬂf d ﬂ

rvf(qo) ==v r f(do) = Vig—- v
! i=1 Iﬂq q=do i=1 Iﬂq
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We might therefore think of v as a real-valued operator acting on smooth functions.
Let V(f) := r ,f(qp) be this directional derivative operator, which we view as a map
C*¥ (RP) ! R where C¥ (RP) is the space of in nitely-differentiable functions RP! R.
Then V is a linear operator satisfying the Leibniz(product) rule at qo,

V(fg) = f(qo)V(9) + g(ao)V(f) (2.1.1)

Note that Leibniz rule associates V with the point o, and hence formalizes the notion
of a tangent vector being attached to a point. Indeed, one can show that the set of
derivations at go 2 RP forms a p-dimensional vector space with a basis given by the
partial derivatives with respect to each co-ordinate evaluated at qo,

i, :C*(R” | R fiig (1) = 1
q =0
fori=1,..,p.
The concept of an operator acting on smooth functions can be generalized to smooth
manifolds, since the notion of a smooth function is well-de ned (see Section 1.1.2)| This

is how tangent vectors on a manifold are de ned.

De nition 2.1.1. A tangent vector or derivation at q2 Q is a linear map X : C¥ (Q) !
R that satis es the Leibniz rule at g,

X(fg) = f(q)X(g)+ g(g)X(f)  forall f,g2 C*(Q)

The set of all tangent vectors at gis called the tangent spaceto Q at gand is denoted by

T4Q.

Analogously to the space of derivations at a 2 RP, Tangent space forms a vec-
tor space when equipped with the canonical addition and scalar multiplication; for all
X,Y 2 TqQ,c2 R and f 2 C¥(Q) we de ne

(X+Y)(f) = X(f)+ Y(f),  (eX)(f) = cX(f)

which are clearly both tangent vectors in TqQ.

The Differential of a Function and Co-ordinate Basis

Performing explicit calculations with tangent vectors requires a basis. One such basis
is provided by a generalized derivative, called the differential of a co-ordinate map.
The differential of a map between two manifolds is a linear mapping between their
respective tangent spaces; it is a linear approximation to the map.

De nition 2.1.2. Let Q, Q°be smooth manifolds and let F: Q! Q°%be a smooth map
between them. The differential dFat q 2 Q is the mapping dF; : T¢Q ! TF(q)Qosuch
that for all V 2 T4Q, the tangent vector dRy(V) 2 Tg,)QPacts on f 2 C¥ (Q9 via

dRy(V)(f) == V(f F)
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Sincef : Q%! RandF: Q! QYhe composition (f F): Q! R isasmooth
function on Q and hence can be acted on by a tangent vectorV 2 T4Q, and hence dF
is well-de ned. Lemma A.0.2 tates that the differential dF; is a linear isomorphism
whenever Fis a diffeomorphism.

An important example of differentials is given by co-ordinate maps. If (U,q) is a
co-ordinate chart, then q : U ! RP is a map between manifolds, since open subsets
of RP are smooth manifolds - see Example[1.1.3. The differential acts on a function
g:RP! Ryvia

daq(V)(9) = V(9 q)

Suppose for example that g is the co-ordinate representation of a smooth function g :
Q! R,ie.g=g f I Thenclearly

df o(V)(g)= V(g f)=V(g f ' f)= V(g

In words, the co-ordinate differential of a tangent vector applied to the co-ordinate rep-
resentation of a smooth function agrees with the tangent vector applied to the pure,
i.e. co-ordinate independent, function.

Since the co-ordinate mapq : U ! f (U) is a diffeomorphism onto its range, by
Lemma the differential dogq is a linear isomorphism. Since for any q 2 Q, the
tangent space Ty RP is a p-dimensional vector space, this implies that TqQ is also p-
dimensional. Furthermore, the differential gives an explicit basis for tangent space as
the following theorem shows.

Theorem 2.1.3. Let Q be a smooth manifold with a co-ordinate clféltq) forU Q. Then
for any q2 Q, a basis for tangent spacg( is given by the p tangent vectors

ﬂijq,q : C¥ (Q) 'R
figq(f) = ff 1 forallf2C¥(Q), i=1,.p
Tid a=f (q)
See Appendix for a proof.
We refer to the basis f fljjqqJi = 1,..,pg as the co-ordinate vectors When the co-

ordinate chart and/or point g2 Q is clear from context, we will abuse notation slightly
and write the i co-ordinate vector as flijq or even ¥.

Tangent vectors have an important interpretation, especially in the context of dy-
namics, of being velocity vectors to curvesAs usual, we follow Lee [46]. Let c: J! Q
be a smooth map, where J R is an open interval. Such a map is a smooth curven Q;
for example, the path of a particle around the manifold parameterized by time t 2 J.
De ne the velocity of catt = tg 2 Jas the tangent vector cYtg) 2 Te(to) Qs

|
d

Ato) = dc - (2.1.2)
dt tzto
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Note that % - % - is a tangent vector in Ty,R, and thus is mapped to a vector in

0 0
Te(to) Q under the differential dc. We consider how the velocity vector acts on a smooth
function f and unroll the de nitions;
!

Ato)() = de j'tt_t (f)
_d o
= at:to(f g) = (f g)(to)

Comparing this to analogous derivatives of functions along curves in R", this justi es
calling cXto) a velocity. In fact, any tangent vector V 2 T4Q is the velocity vector of
some smooth curve [46].

The Tangent Bundle and Vector Fields

The disjoint union of tangent spaces indexed by all points q 2 Q is called the tangent
bundle

TQ =1 poTgQ

Elements of the tangent bundle are therefore tuples (g,V) where g2 Q and V 2 TyQ.
If Q is p-dimensional, one can show [46] that the tangent bundle is a 2 p-dimensional
smooth manifold. The canonical projectiop : TQ ! Q maps elements of the tangent
bundle to their associated point in the manifold; p((qg,V)) = g. Physically, we can
interpret the tangent bundle as the space of possible positions and velocities for some
particle in Q, that is, the tangent bundle is the state space for second-order dynamics
such as Newton’s laws. We will return to this in our discussion of Hamiltonian Monte
Carlo in Chapter 4|

In RP, we have the notion of vector elds i.e. mapsRP ! RP which are thought of
as placing a vector at each point of the spaceRP. We generalise this to a manifold as
follows:

De nition 2.1.4. Let Q be a smooth manifold. A vector eldis a smooth map X : Q!
TQ such that the image under X of any point q2 Q is of the form (q, ), i.e.

X p= |dQ
where Id g is the identity map on Q.

Since vector elds are maps between smooth manifolds, their smoothness is well-
de ned. Formally, the value X(q) of avector eldisatuple (qg,V) inthetangentbundle;
for brevity, we will follow the convention of only writing the tangent vector part of

X(q).

De nition 2.1.5. The set of all vector elds on a smooth manifold Q is written X(Q).
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In any co-ordinate chart (U, q), a vector eld can be expanded in the co-ordinate

vector basis,
p

X(@= X(d)Tq (2.1.3)
i=1
In fact, each of the p co-ordinate vectors de ne vector elds, called co-ordinate vector
elds,

i:Q! TQ
fi(a) = Tijq
Furthermore, addition and scalar multiplication of vector elds are de ned pointwise
on Q so that equation ) can be written more succinctly as X = f’zlxiﬂi. Note
that the notation ¥ does not specify the co-ordinate chart g; expressions involving the
co-ordinate vector elds should be assumed to hold in any chart over the relevant co-
ordinate domain.

Since each smooth curve has a velocity vector, for any vector eld X it is natural
to consider curves whose velocity vector matches X at each point. In particular, an
integral curveof a vector eld Xisasmoothmapc:J! Q,Janintervalin R, such that
cXt) = X(c(t)) forall t 2 J Clearly, such curves are solutions to ordinary differential
eqguations determined by the vector eld when written in co-ordinate form.

Vector elds can act on smooth functions to produce new smooth functions. Let X
be a vector eld onasmooth manifold Q,andlet f : Q! R beasmooth function. Then
we may de ne a smooth function Xf whose value at each point g 2 Q is the action of
the tangent vector X(q) 2 TqQ on f,

Xf:Q! R (Xf)(a) = X(g)(f) (2.1.4)

This construction can be applied recursively; if Y 2 X(Q) is another vector eld, one
can consider YXf = Y(Xf). Finally, we can also scale a vector eld by a smooth func-
tion; for X 2 X(Q) and f 2 C¥ (Q), de ne the vector eld fX 2 X(Q) by

(fX)(q) = f(a)X(q) forall 2 Q

2.1.2 Cotangent Vectors

Since tangent spaceTQ is a vector space, we can study the dual spaceT; Q; the set of
linear functionals a: TqQ ! R. This dual space is a vector space calledcotangenspace,
and its elements are called 1-formsor covectors Elementary linear algebra informs us
that the dual space is also a vector space of the same dimension asTyQ, and hence the
same dimension asQ.

An example of a 1-form is the differential of a smooth function f : Q! R, which
maps tangent vectors X to their action on f;

dof : T@Q! R
dgf(X) = X(f)
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This is clearly a linear functional for any smooth f : Q! R, sodf 2 T,Q. Note that
this coincides with De nition 2f the differential of a map between manifolds, if we
identify tangent spaces of R with R itself; see Lee [46].

Just as the co-ordinate vectors, i.e. partial derivatives, form a basis for tangent
spaces, the following proposition shows that the differentials of the co-ordinate func-
tions form a basis for cotangent space which is dual to the co-ordinate vector basis.

Proposition 2.1.6. Let Q be a smooth p-dimensional manifold wit2 Q, and let(U, g) be
a co-ordinate chart whose domain contains g, with co-ordinates lalglieé= 1,..,p. The
differentialsf dqd/ gjp: 1 of the local co-ordinate functions form a basis of cotangent spdge T

that is dual to the co-ordinate tangent vector bafsifgf’: 1» 1. they satisfy
ded (1) = Ti(d) = d
foralli,j= 1,..,p, whereqj = 1wheni= jandisO otherwise.

We refer to the basis in the previous proposition as the co-ordinate differential basis
simply the dual basisForany a 2 T,Q, itis easy to verify that a= a(‘ni)dqq‘, i.e. the
components of a covector with respect to the dual basis are given by a(fi),i = 1, ..,p.

Just as elements of T4Q are interpreted as tangent vectors to curves, covectors can
be seen as gradients of smooth functionsf : Q! R. For example, the expansion of the
differential of a smooth function in the dual basis is

P i S i
dfq— dfq(ﬂi)dq - ﬂi(fq)dq - ﬁ dq
i=1 -1 i=1

i=
Put simply, the coef cients of the differential of f in the dual basis are the compo-
nents of the gradient vector of the co-ordinate representation f.
As for tangent vectors, we can de ne the cotangent bundle TQ as the disjoint union
of all cotangent spaces over all points of the manifold,

T Q:=t oTyQ

covectors have a physical interpretation of being momenta their action on a velocity
vector gives twice the associated kinetic energy. The cotangent bundle is therefore the
state space containing positions and momenta of a physical system or particle.

Einstein Summation Notation

We brie y describe a convenient notational convention that is regularly used in Differ-
ential Geometry and will be employed throughout the thesis. We will not write sums
over indices (e.g. ip: 1) explicitly, and instead assume that any index that appears in
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both upper and lower positions is summed over. For example, we can expand a
vector eld X atq2 Q in some co-ordinate vector basis as
P .
X = Xjﬂj Xjﬂj
=1

In particular, arrays with upper/lower indices respectively denote the coef cients of a
tangent/covector with respect to a co-ordinate/differential basis. The basis elements
themselves have indices in the opposite positions.

Statistical Scores

For the case when Q is a family of probability distributions, cotangent space has a
special interpretation.

De nition 2.1.7. Let Q be a smooth statistical family with dominating measure n. For
a xed y2Y, LetLny(q) be the log conditional data-generating density, i.e.

Lhy:Q! R

d
Lny(@) = log 2 (v) (2.15)
De ne the score at as the differential of L,y atq2 Q,

Syq= d(Lny)q

Note that Ly is a co-ordinate free de nition of the log-likelihood. Since the action
of the score on a tangent vector is a function of vy, it is a random variable. If y is dis-
tributed according to the distribution g, the same point at which the score is evaluated,
then the random variable has expectation zero.

Proposition 2.1.8. Let Q be a smooth statistical family of probability measures on a data space
Y. Then for any 2 Q and tangent vector \2 T4Q,

Ey q Sgy(V) =0

Proof. Note that Sqy(V) = V(Lny). Choose a co-ordinate chart(U, g) containing g, and
write

V= VY Lny(a) = log p(yja)
Then the action of the score onV follows as:
Sy(V)= Vi L Ly=vi logp(yig)
fq a=a(q) 1 g=q(q)
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Noting that L logp = <18 and taking and expectation over vy yields:

g p 1d
I
E S(V) =V'E Tq log p (yja)
4 g=a(a |
i Z 1 ﬂ .
=V . — i jg)dn
PV 19 oeaq p(yia) p(yja)dn(y)
z
=V p (yig)dn(y)
g g=q(q)
Exchanging the integral and derivatives, this yields the result;
.Z . ﬂ z
Vi = p(yja)dn(y) = V' — p (yja)dn(y)
fid a=q(a) fd a=q(a)
|
=V — (=0
g g=q(q)

2.1.3 Tensors and Tensor Fields

Just as covectors are linear mapsTqQ ! R, we can consider multilinear maps i.e. func-
tions of multiple tangent and/or covectors, which turn out to be useful objects in geom-
etry; for example, an inner-product on tangent spaces de nes concepts such as length
and angles on a manifold, giving rise to Riemannian geometryThe following de nition
is adapted from Calin and Udriste [17].

De nition 2.1.9. Let Q be a smooth manifold. A type (r,k)-tensor Aqatq2 Q is a map

Ag:T TO T T.0! R
q|qQ (z q? a9 199

r times k times

which is multilinear, i.e. linear in each of its r + k slots.

Tensors for which r = 0 are known as covariant whereas tensors with k = 0 are
contravariant

Example 2.1.10. Covectors are (0, 1)-tensors, since they are linear functions of a
single tangent vector, T;Q ! R.

Tangent vectors can be viewed as (1, 0)-tensors, i.e. linear mapsT,Q ! R. Tosee
this, for V 2 T4Q, the value of V on a covectorw 2 T, Q is simply w(V). In other

words, the dual space of T,Q, T,Q ,can beidenti ed with T4Q.
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Tensors have representations with respect to the co-ordinate and differential bases;
we may think of tensors as being multidimensional arrays whose elements are the value
of the tensor applied to each combination of basis vectors/covectors. For example, sup-
pose Cis a (1, 2)-tensor, i.e. a function of a single covector w and two tangent vectors
V,W. Then a simple expansion into basis vectors/covectors and using multilinearity
yields:

C(w,V,W) = C(w;dd, V1T, WkT,) = injW"|C(dq‘ ﬂj’ﬂkg
~ Yz

= CJ!k

where as usual Einstein summation notation is used. We de ne the components of C
with respect to the co-ordinate / differential bases as C}k = C(dq‘,‘ﬂj,ﬂk); note that
these are the components of a three-dimensional array, with upper indices representing
covector (contravariant) slots and lower indices representing vector (covariant) slots.
Dependence on the point in the manifold g2 Q is implicit in the above expression.

There is a notion of tensor eldswhich generalises vector elds, and includes covector
elds as a special case. We will not give the detailed de nitions in this thesis, which can
be found in Lee [46]. Roughly, we can consider bundlesof tensors, i.e. disjoint unions of
vector spaces indexed by points in the manifold, generalizing the concept of the tangent
bundle. Tensor elds are then smooth sectionsf these bundles, i.e. maps from the
manifold to the bundle whose value at any q 2 Q projects back to g. For our purposes,
we may think of tensor elds as a position-dependent tensor whose components with
respect to the co-ordinate or differential bases are all smooth functions. For example,
the differential of a function de nes a smooth covector eld.

De nition 2.1.11. The set of all covector elds on a smooth manifold Q is written

X (Q).

An important example of tensors in the context of statistical families is given by the
Fisher information. Firstly, note that the score is the differential of a smooth function
and is therefore a covector eld. We write S, to denote this covector eld,

Sy = dLny

The score is therefore a covector eld that depends on data y 2 Y ; we could there-
fore de nethescoreasamapS:Y ! X (Q),where X (Q) is the set of covector elds
on Q. Proposition is then the statement that for all points g 2 Q and any vector
V2 TqQ,Ey ¢ S(a)(V) = 0. The score allows us to re-de ne the Fisher information
in a co-ordinate free manner.

De nition 2.1.12. Let Q be a smooth statistical family and g2 Q. The Fisher information
of V,W 2 T4Q is the covariance of their respective scores, i.e.

lg(V,W) = Eq Syy(V)Sqy(W)
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Note that since the expected value of the score is 0 for any tangent vector, the co-
variance takes the form given in the de nition. The Fisher information is a tensor; it
is linear in each of its two slots by the linearity of the score covector and the bilinear-
ity of the covariance function on random variables. Note that De nition 2.1.12 agrees
with our earlier De nition 1.f the Fisher information  matrix; the components of
the Fisher information at g 2 Q with respect to the co-ordinate vector basis are

lg Tijg Tiig = Eqq Suy (1) Say T

= Eqpo i Ly ﬂj Lny |

= Eqo 111(; log p (yja) J log p (yja)

a=f (q) 9 4=t (@

where p (yjq) is the conditional data-generating density represented in the relevant
co-ordinate chart.

Proposition 2.1.13. The Fisher information is a positive semi-de nite covariant 2-tensor eld,
i.e. forallg2 Q,
lq(V,V) O

with equality if V = 0.
Proof. We rst show that 1(0,0) = 0. Note that the action of the score on the 0 vector is
0;
Sqy(0) = dLny(0) = O(Lny) = O
where L pny is the conditional density de ned in equation (2[1.5)] By the de nition of the
Fisher information, we have
14(0,00 = Ey ¢ Sqy(0) Sqy(0) = E(0 0)=0

For a general tangent vector V 2 T4Q, we have
1g(V.V) = Eq Sgy(V)Sgy(V)
= Eq Sgy(V)?
Eq Sey(V) 2 0

2.2 Divergence Functions

A divergence or contrast function is a measure of distance or proximity on a manifold,
although in general they are not metrics. Divergences induce geometric structure - both
classical Riemannian geometry and Information Geometry.

Firstly we formally de ne a divergence on a manifold. The de nition is given rst
on RP and then on manifolds in terms of co-ordinate charts. The following is from Calin
and Udriste [17] and Amari [3];
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De nition 2.2.1. LetE RP be open. A divergence or contrast function on E is a
smooth function D : E E ! R satisfying

i) D(q,q0) Oforallg,qo2 E
i) Forall g,q02 E,D(q,q0) = Oifandonlyif go= g

iii) The Hessian matrix along the diagonal qg = q, i.e. the matrix with i | entry

(G(do))j; == ﬂq ‘ITqJ D(d. o) (2.2.1)
g=do

is a strictly positive-de nite matrix-valued smooth functionof q2 E.

Conditions []and iBare shared with the de nition of a metricon  E, but divergences
are not necessarily symmetric in their arguments nor do they satisfy the triangle in-
equality. The following lemma will be useful in later calculations and geometric de ni-
tions; a proof is provided by Calin and Udriste [17].

Lemma 2.2.2. Let D be a divergence on an open Bet RP. Then the rst-order partial
derivatives on the diagonal vanish:

1 .
—D(q,qp) D (9, qo) =0 fori=1,.,p (2.2.2)
Td do=9 ﬂ% do=¢

Furthermore, the following equivalent expressions for the Hessian on the diggonal (2.2.1) hold:

(G(@); = 77400 © = ﬂ‘;o ’;0 @)
0 =do
- T - 11
- 'ﬂ% ﬂql D(q,C{O) o ﬂq O(J) (q qO) “

The condition [ii fogether with Lemma 2[2.2 imply that a divergence on RP can be
approximated with the quadratic form

D(a.a)= 2(a @) Ga)(a )+ O ka qok’ (22.3)

asgq Qo ! 0, where G(qo) is the matrix de ned in condition iii[:']l'his suggests we
can interpret a divergence as half the squared distance from g to g under the norm
induced by G(qo). This, along with the fact that G is symmetric positive-de nite, will
motivate an inner product on tangent spaces when we discuss Riemannian geometry

in Section[2.3.].
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Example 2.2.3. Let A 2 RP P be a symmetric positive-de nite matrix. De ne a Eu-
clidean divergence function Da : RP  RP! R given by

DA(A.d0) = 5(a ) TAM )

The rsttwo conditions i,ﬁ]i@llow immediately from the factthat A is positive-de nite.
Condition i s satis ed since the Hessian on the diagonal is  A.

We can now formally de ne a divergence function on a manifold. We de ne a di-
vergence on a manifold by requiring that its co-ordinate representation is a divergence
on an open set of RP.

De nition 2.2.4. Let Q be a smooth p-manifold. A divergence or contrast function on
an open setU  Q is a smooth function D : U U ! R, such that any co-ordinate
chart (U,f ) wheref :U! RP makes

Df :f(U) f(U)! R, Di(q9q):=D f qg).f *(qo)

a divergence function on the open subsetf (U)  RPin the sense of de niton

This de nition is from Calin and Udriste [17], who also provide a proof (Theorem
11.2.1) of the following result, which shows that the choice of co-ordinate chart is arbi-
trary.

Theorem 2.2.5. Let Q be a smooth p-manifold, and let there be two co-ordinate dhéayts)
and(U%f 9. LetD:U U ! R be adivergence with respect to the rst co-ordinate chart in
the sense of De nitioh 2.2/4, i.e. so that

Di :f (U) f(U)! R, Dt (0.00) := D f *(q).f *(qo)
is a divergence oh (U). Then the function
Dio:f QU U9 fQu\ U9 ! R, Dio g,qo =D 91 q ,f%% qq

is a divergence ohqU \ U9).

From the latter theorem and de nition we deduce the following proposition, which
allows us to de ne divergences on a manifold by extension of divergences in RP.

Proposition 2.2.6. Let Q be a smooth p-manifold with co-ordinate ch@t q). Let Dy
f(U) f(U)! R beadivergence onthe co-ordinate rahge)) RP. Then the function

D:U U! R, D(g1, @) := Ds (f (o), f (o))

is a divergenceon U Q.
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Proof. Let (U,f 9 be a co-ordinate chart with the same co-ordinate domain U, but an
arbitrary co-ordinate map f ®not necessarily the same asf . To show that D is a diver-
gence onU, De nition tates that we must show that D¢ o(q%qQ) := D(f © *(¢9,f © *(q)))
is a divergence onf qU).

Note that by de nition

D(f *(a),f “(a0)) = Ds (9,q0)
forall g,qo 2 f (U). By Theorem[2.2.5,D; ois a divergence on f YU), and henceD is a
divergence on U. O

Any divergence also has a dual divergence

De nition 2.2.7. Let D be adivergence onE  RP. The dual divergence D of D is

D:E E! R D (9,90) := D(qo,q)

Note that any dual divergence is a divergence; conditions iand i ¢f De nition 2.2.1 |
are trivially satis ed, and condition iii(hplds by Lemma 2.2.2. JA divergence is only
equal to its dual when it is symmetric in its arguments, such as for the squared Eu-
clidean distance.

2.2.1 The f-Divergences

We now study divergences on statistical families. There is a canonical class of diver-
gences on a statistical family introduced by Csisz ar [21].

De nition 2.2.8. Let Q be a statistical family on a measurable space(Y,F). An f-
divergence is a function of the form
z

Di:Q Q! R, Di(qua):= f jg;(y) dap(y) (2.2.9)

where f : (0,¥) ! R isaconvex function satisfying f(1) = 0. Ifin addition °01) = 1,
the f-divergence is called standard

Since the elementsq,, g, of a statistical family are measures, i.e. probability distribu-

tions, the integral in (2.2.4) is well-de ned. Let us show that an f-divergence satis es
the conditions of a divergence.

Theorem 2.2.9. An f-divergence is a divergence on Q. In a co-ordinate cfiary) with co-
ordinates labelled, if there exists a measurewhich dominates Q then the Hessian matrix on
the diagonal is proportional to the Fisher Information,

T
fig Mg

1 N | .
Di(q,q0) = fRDEpqiay 15109 P (Via) o log p (yia)
9= do Td Td
wherep (yjgo) and p(yjq) are respectively the densities with respecntof the measures
f (00),f (q) 2 Q. In particular, the Hessian is exactly the Fisher Information when the
f-divergence is standard.

d=do
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Proof. We check the three conditions of divergences.

)

z
d d
Dr (o) = F q(y) V)= Eyq  G00)
dog - .

f Eyq E(y) by Jensen’s inequality

z
= f dply) =f(1)=0 sincep 2 Q is a probability measure

Y

ii) Let g1 & op. Then by the strict convexity of f, Jensen’s inequality gives

_ dog dog _ _
Di(ar, ) = Ey g f ﬁ(Y) >f Eyq @(Y) =f()=0

iil) Assume there exists a co-ordinate chart (U, q) whose co-ordinates we label q 2
f (U) RP.We write 7
Po

D+¢(9,q0) = Yf ) pdy

for the induced divergence on f (U), where po := p(yjqo) and p = p(yjq) are
shorthand notation for the densities with respect to a measure n which dominates
Q. Furthermore, let ¥ = % denote the partial derivative with respect to the jth
component in the second slot of the divergence. We assume we can bring such

differential operators under the integral sign with respectto y. Then

Z Z
Po Po Po
Di(q,qo)= O = —Z2(Tp)pdy+ f = 9ipd
fiD+(q, do) LY. (Tip)pdy L fipdy
and by a direct calculation
Z
fiDr(aa) = % 22 POgp)Po(qip)pay (2.2.5)
2 p p p
o 0P Pogpy + Poipy(mp) oy (226)
ZY p p p
T T 2.2.7)
Y Po

We now evaluate this expression term-by-term at q = qo, i.e. po = p in the short-
hand notation. The third term (4.2.7) vanishes since f(1) = 0;

z

p
f = %p d =0
oy TP dy

Y 0=do
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Similarly the second term (2.2.6) also vanishes;

Z
0 PO g Porgpy + Poqipy(mip) ay
YZ p p p 0= do
_ Po Po Po Po
= on . F(ﬂip)(ﬂjp) Fﬂiﬂjp*’?(ﬂip)(ﬂjp) dy e
Z Z
= Y1) fifpdy = AT pdy =0
Y o= do | X{z-}
=1 og=qo

Finally for the rst term (2|2.5)] note that pi‘ﬂip = ¥ log p. Thus we have

Z
L Po pg(ﬂip)g‘;(mp)pdy

2
5 b foo Po F:)O (fip)(T;p)pdy

e=aw Y P 6= o
0 : i .
RY | (Ti10g p)ig-g, (1109 P) 4 g, Pody

fRDEp, (Tilogp)igq, (Tilogp)

0=do

Therefore the Hessian along the diagonal g = qg is proportional to the Fisher Infor-
mation with proportionality constant  £°¢1). When the divergence Dy is standard,
f001) = 1 and the Hessian is exactly the Fisher information.

O]

Therorem shows that all standard f-divergences agree to second-order in any
co-ordinate map in which they are de ned. In fact, all f-divergences induce the same
geometry - this will be clari ed below.

Examples of f-Divergences

Let f(u)= log(u), which clearly satis es f(1) = 0 and is standard, i.e. f°¢1) =
0. Then the corresponding f-divergence is the Kullback-Leibler divergence,
Z
doy
D ) = log — d
£(01, B) /109 o ¢

If f(u):= u? 1,then the corresponding f-divergence is

|
7 :

D¢(qu, o) =

da

o 1 do
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Assuming both measures have respective densities p; and p, with respect to
some dominating measure n, this can be written

z 2
(P1 P2)°

D¢(tu, o) = 5

This is the Pearson c? distance, so-called because it is the test statistic in ac? test
for categorical data.

2.2.2 The Bregman Divergence Induced by a Convex Function

The f-divergences introduced in the previous subsection are de ned in terms of mea-
sures; they depend on a statistical family structure. In this subsection we introduce
another class of divergences called Bregman divergencd8], [14] that do not make ref-
erence to points of the manifold being measure-valued. Any convex function on RP
induces a Bregman divergence on RP; we can then therefore use convex functions in a
co-ordinate chart to construct divergences on a manifold via Proposition Finally,
Bregman divergences can be made to include prior information by a suitable choice of
convex function.
We begin with the de nition of a Bregman divergence.

De nition 2.2.10. Let F: RP! R be a smooth strictly convex function. The Bregman
divergenceorresponding to Fis the function

Dr:RP RPI R Dr(a,90) = F(@) F(ao) r F(go) (a o)

This is also known as the Bregman divergence generated hyaRd F in this context
is a Bregman generatorNote that the Bregman divergence is the error at g in a linear
Taylor approximation to F around qg. There is inconsistency among authors around
the ordering of the arguments q,qo in Dg; we have followed the convention used by
Amari [3] of making the point being Taylor-expanded around the second argument.
Other authors such as Calin and Udriste [17] use the opposite ordering.

Proposition 2.2.11. The Bregman divergence:[@orresponding to any smooth convex function
F:RP! Risadivergence oRP.

Proof. We check the conditions of divergence from De nition 2[2.1.]
i) and ii). Non-negativity Dg(q,q0) O is equivalent to the rst-order condition of a

convex function F;

F(a) F(ao)+ r F(dqo) (9 qo) forall g,qo2 RP (2.2.8)

with equality if and only if gog = g. This is a consequence of convexity for a differ-
entiable function F; see Boyd and Vandenberghe [13].
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iii) The Hessian on the diagonal of Dg(q, qo) is precisely the Hessian matrix of F,

79 79
- o—D(d,00) = e F(a)
T9 ﬂq g9=do T9 ﬂq 4= do
SinceF is strictly convex, the second-order conditidi 3] guarantees that the Hessian
of Fis strictly positive-de nite.

O]

Suppose the smooth manifold Q is equipped with a global co-ordinate chart (Q,f )
where f : Q! RP. A Bregman divergence D on the co-ordinates of the chart in-
duces a divergence D on the manifold by Proposition and this divergence has
representations in other co-ordinate charts. However, the induced divergence may not
necessarily be of Bregman type in other charts

Bregman Divergence on Exponential Families

Recall from Section[1.2 that a standard exponential family contains probability mea-
sures of the form
exp q't y(a) dr(t)

when parameterized in terms of natural parameters q@.

Proposition 2.2.12. The Kullback-Leibler divergence between two elements of an exponential
family written in the natural parameterization is the Bregman divergengedDthe cumulant
generating functiory .

Proof. The Kullback-Leibler divergence from Py, to Py, both elements in the same stan-
dard exponential family, is given by

o= 100PUDde 1= gt v a t+y@dR
,  Pp(ta)
= (qo q)zt+ y(a) y(go)dPy(t) .
=(qo ) tdPy(t)+ (y(a) y(go)) dPy(t)
| —{z—} | —{z—}
=r y(qo) =1

=y(a y(do) r y(do) (a do)

which is clearly the Bregman divergence generated by y . In the third line, we made use
of the fact that Py, is a probability distribution and Theorem 1{2.12,|i.e. the expectation
under Pq, of the suf cient statistic is given by 1 y (o). O

57



Dual Co-ordinates

In Section[1.2.2, we discussed theLegendre transform Fof a convex function F, whose
argument is the dual variable h = r F(q). If (U, q) is a co-ordinate chart on a smooth
manifold Q, then a convex function F : f (U) ! R de nes a dual co-ordinate chart
(U, h), where
h:Ut RP, h(g) = r F(a(a)
The Legendre transform F (h) is a convex function of h, and hence de nes its own
Bregman divergence. The Bregman divergences induced by F and F are the dual di-
vergences of each other, as the following proposition shows.

Proposition 2.2.13. LetE RP be openand F E ! R be convex. Fog,qo 2 E, let
h=r F(g) andhy = r F(qo). The Bregman divergence-Batis es

Dr (ho,h) = Dg(g,qo) = Dr (0, do)
where F is the Legendre dual of F.

Proof. By the de nition of the Bregman divergence for F , we have

De (ho,h) = F (h) F (ho) r F (ho) (h ho) (2.2.9)
Recall the de nition of F from equation (I.2.14)) in Chapter i}
F (ho) := g0 ho F(qo) where qgis such thathy = r y (o) (2.2.10)

Substituting (B.2.10) and the equivalent statement for F (h) into (R.2.9) yields
De (ho,h)=q h F(q) do ho+ F(go) r F (ho) h+r F (ho) ho
By Theorem(1.2.1%5r F (hg) = qo, and hence

Dr (ho,h)=q h F(q) do ho+ F(go) ao h+ go ho
F(ao) F(a) h (a o)

F(ao) F(a) r F(a) (9 o)
Dr(9,do) = Dg(d, do)

where the last equality is from the de nition of the dual divergence. O

The following proposition shows how we may write a Bregman divergence such
that one point is represented in the q co-ordinate system, and the other in the h co-
ordinate system.

Proposition 2.2.14. LetE  RPbeopenand FE! R be convex. The Bregman divergence
Dk with generator F can be written

Dr(d,90) = F (ho) + F(@) g ho (2.2.11)

wherehg := 1 F(qo), F is the Legendre dual of F, and denotes the Euclidean dot product
onE.
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Proof. Substituting (2.2.10) into the right-hand side of (2.2.11) yields the result,
F (ho)+ F(aq) g ho=gqo ho F(do)+ F(a) g ho

F(a) F(do)+ r F(do) (do q)

Dk (9, do)

2.3 Geometry from Divergence Functions

In this section we derive various geometric objects from a divergence. These involve
taking partial derivatives of the divergence, or equivalently applying vector elds to
the smooth function de ned by the divergence. To aid with this, we employ a helpful
notation introduced by Ay et al [58].

SupposeD : Q Q! R isadivergence on a smooth manifold Q. Fix g; 2 Q and
think of D(qs,02) as a smooth function of only qp;

D(a, ): Q! R D(ar, )(%) == D(a1, %)

We may apply a vector eld X 2 X(Q) to this function to yield a new smooth function
X.2D which can be evaluated at ¢p. This is still a function of ¢ and gy,

X2D:Q Q! R (X:2D)(q1, 02) := X(D(a1, ))(a)

Of course, we can also form the smooth function X.1D by xing gy and allowing o to
vary; we use the subscript ; 1 or ; 2 to emphasize which slot of the divergence the vector
eld is acting on. Note that Lemma 2.2.2 |mplies

(X1D)(a,0) = ( X;2D)(q,0) = O

evaluating the new functions produced by the vector eld atthe same point q= . =
is zero. This is trivial to show by expanding X in the co-ordinate vector basis.

SinceX.;D and X.,D are both functions on the product space Q Q, we can repeat
this process; x a point and apply a vector eld with respect to one of the variables. For
example, for vector elds X,Y 2 X(Q), write X.;Y.2D for the function produced by rst
xing qi and applying Y with respectto g, then xing @, and applying X with respect
to q;.

XaY2D:Q Q! R (X;1Y:2D) (a1, &) := X ((Y:2D)( , %)) (1)

Ay et al [58] introduce the following simplifying notation. Forthe r + svector elds
X1, ..., X", YL, ... )YS, de ne the smooth function

D. X X"yl vy :Q! R
D, Xt X.y' Y® (= Xi XLY: Y3D (q0)

In other words, we apply the vector elds in the indexed order via the process described
above, and then evaluate the resulting functionat g, = g = @.
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2.3.1 Riemannian Geometry

To do Euclidean geometry in a vector space such asRP, we only require an inner-
product to measure lengths and angles. The manifold Q is locally approximated around
eachq 2 Q by the vector space T4Q. This motivates equipping every tangent space with
its own inner-product so that we can do geometry locally on every tangent space, and
then de ne notions like length and area over global curves and surfaces by integrat-
ing over tangent spaces. This is the core idea of Riemannian geometry.

An inner-product on a vector space is a symmetric positive-de nite bilinear func-
tion of two vectors; it is therefore a symmetric positive-de nite (0, 2)-tensor. On a man-
ifold, this generalises to the following:

De nition 2.3.1. Let Q be a smooth manifold. A Riemannian metric is a smooth (0, 2)-
tensor eld gon Q which satisesforall q2 Q:

1. Symmetry: go(V, W) = gq(W, V) for all tangent vectors V,W 2 TqQ.

2. Positive-de niteness: gq(V,V) Oforall V 2 T4Q, with equality if and only if V
is the zero tangent vector.

Here gq is the (0, 2)-tensor-valued evaluation of gatq2 Q.

A Riemannian manifolds the pairing of a smooth manifold Q with a particular metric
g, i.e. the tuple (Q,g). The components of the metric at q 2 Q in a particular co-
ordinate chart are the p2 numbers g = gq(ﬂi,‘ﬂj),i,j = 1,...,p. Hence the co-ordinate
representation of the inner-product is

d . .
gg(V, W) = VWIgg(1, 1) = vIG(g)w
ij=1

where G(q) = ( gq(ﬂi,ﬂj))fj:l for co-ordinates q = q(q), and of coursev = V' and

w = W' . Asusual, we will surpress g2 Q in our notation and simply write gwhen q
is clear from context, or when expressions hold over the entire manifold. Clearly G(q)
is a symmetric positive-de nite matrix.

Sincegis an inner-product, it enforces a duality pairing, i.e. an isomorphism between
TqQ and its dual T, Q. These spaces are vector spaces of the same dimension and were
therefore always isomorphic, but there is no canonical isomorphismantil we introduce
the metric. For any tangent vector V 2 T4Q, de ne its dual as the linear functional
Vi 2 T, Q, such that (W) := g(V, W) for any vector W. Expanding this expression in

the dual bases with W = V;dq yields

vidd WIf; =g V', wi
. Viwld = v'wig
, VW= viwig,
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Since this expression holds for all vectors W, it follows that V; = g;;V', where Ein-
stein summation applies as usual. In co-ordinates, this implies that the components of
the dual covector are given by I = G(q)Tv = G(q)v since G(q) is symmetric. Given an
arbitrary covector a 2 T,Q, we deduce that the dual vector, i.e. given by the inverse
of the isomorphism implicitly de ned above, mustbe V = ga;f; where g’ are the
elements of the inverse matrix G (q). Indeed, for any vector W we recover

V(W) = g(V,W) = glaW*g(Ti, T)
o aW¥gy = a;W¥d,

aW! = a(W)

One can show that g'l are the components of the inner-product on TqQinduced by g. In
conclusion, we have the following relationships between components of dual vectors
and covectors,

vi= gy, Vi = gV (2.3.1)

The metric and its inverse respectively lower and raise indices, with the corre-
sponding musical isomorphismsalled at and sharpfrom tangent space to cotangent
space and vice versa.

Length and Angles

Clearly the Riemannian metric is an inner product on each tangent space TyQ; this was
our motivation for de ning the metric. We can therefore make sense of concepts such
as the norm of a tangent vector V 2 T,Q,

jViz = g(V,V)
and the angle g between two tangent vectors V, W,

g(V, W)
CoSQg = —
IV]gIW]g
In particular, V and W are orthogonal when g(V,W) = 0. We can also de ne the length
of a curve. Recall that if x : (to,t1) ! RPis a smooth curve in RP equipped with the
usual Euclidean product, then the arc-length is given by

S= ‘U d dt
to dtz

If c:(to,t1) ! Qis asmooth curve in a Riemannian manifold Q with metric g, this
motivates the following de nition of arc-length,

s= ) dt= ttl g (<L), 1)) dt

to 0
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Metric from Divergence

Given that a Riemannian metric and a divergence both correspond to a form of squared
distance measure, it is natural to ask whether a Riemannian metric can be induced by
a divergence. Recall that a divergenceD on RP can be expanded to second-order as

D(at) @ &) Go(@)(a )

where

T 1

D(a. do) (2.3.2)
ﬂq ﬂq 9=do
Clearly, this motivates a Riemannian metric whose components form the Hessian ma-
trix on the diagonal of the divergence, Gp(q). Ay et al [58] give the following co-
ordinate independent de nition of this metric:

(GD(qO))ij =

De nition 2.3.2. Let Q be a smooth manifold,andlet D : Q Q! R be adivergence.
The Riemannian metric induced by D is the (0, 2)-tensor eld

g™ (v, W)= D;(V,W)
forall V,W 2 X(Q).
Note that this de nition implies thatforany q2 Q,

g®(V,W)(@) = (V1,W:2D)(0)

As expected, the co-ordinate representation of the metric is simply the Hessian ma-
trix Gp from equation (2.3.2) as shown in the following proposition.

Proposition 2.3.3. The tensor eld §°) is a Riemannian metric whose components in a co-
ordinate chart(U,f ) are given by the Hessian on the diagonal of the divergence in the co-

ordinate chart,

© g ay= 1~ 1o
g (i, 1) = 19 79 D+ (0, 9o) e

where D (9,q0) := D f %(q),f (qo) is the co-ordinate representation of D.

Proof. Computing the i-j component in the co-ordinate chart gives
o® (1, 1)(a) = 'ni-l'nj-zD )

——Ds (q, QO)

'nqog) "

where qo = f (0). By Lemma[2.2.2, this is equal to the Hessian on the diagonal,

19 D+ (0, do)

(D) (q €\ a) =
g (i, Tj)(9) = Ta7g e
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To see thatg(P) is a Riemannian metric, let v = (V') and w = (W) be the components
of two vector elds V,W in the co-ordinate chart. Writing g(®)(V, W) in co-ordinates
and applying the product rule, we nd

g® (v,w) = g® Vi, wig; |

- T I |
V'(a) — W!(q)—Ds (a,00)
ﬂq T[(% 1 d=do 1

) j ) )
V'(q)m’@“of (9. 90) A+V'(q)w1(q)ﬂ’f]i T b (g A

ﬂoé) g=do ﬂ(% d=do

By Lemmal[2.2.2, the rstterm in the nal equation vanishes, and hence

g® (v, W) = Vi(qWi(q)g®® 1,1, = v(a)"Gp(q)w(q)

In co-ordinates the inner-product of V,W therefore has the form v Gpw, where G(DP)
is the Hessian on the diagonal de ned in equation (. Clearly G(P) is a symmetric
matrix, and is positive-de nite by De nition 2.a divergence on RP. It follows that
g(P) is a Riemannian metric. O

Any divergence therefore gives Q the structure of a Riemannian manifold. We re-
view the induced metric components for f- and Bregman divergences.

Let D¢ be an f-divergence on Q. By Theorem the components of the induced
metric are proportional to the components of the Fisher information,

gi(ij)(QO) = 1%1) 15 (qo0)

Let Dg be a Bregman divergence onRP with Bregman generator F: RP! R. A
simple calculation shows that the Hessian on the diagonal, and hence the matrix
of an induced Riemannian metric on RP, is given by the Hessian matrix of F,

(Dr) = 11F
g” (qO) ﬂq ﬂq (q) 0= o

If Q is a smooth manifold with a global co-ordinate chart (U, q), by Proposition
the Bregman divergence induces a divergence, and hence a Riemannian met-
ric, on Q.

2.3.2 Connections

Equipping a smooth manifold with a Riemannian metric allows us to de ne concepts
of length and angle between tangent vectors. However, there are further geometric
concepts that are not de ned with a metric alone; for example, the notion of a smooth
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curve being straight, analogous to a straight line in Euclidean geometry. A reasonable
de nition of straightness might be that the velocity vector c{t) of the curve does not
change over a suf ciently small step along the curve, i.e. from q= c(t) to q= c(t + dt).
However, this requires being able to compare vectors from two distinct tangent spaces,
namely Ty Q and Te+ ¢y Q. We therefore require a connectiorwhich connects tan-
gent spaces for in nitesimally close points in Q. Connections are extra information on
a manifold in addition to the Riemannian metric, and enable us to differentiate vector
elds with respect to other vector elds and de ne curvature. Furthermore, the choice
of connection(s) on a smooth manifold is what separates Riemannian geometry from
information geometry.

Consider how we might de ne the derivative of a vector eld Y with respect to
a different vector eld X. This is closely related to the idea of connecting tangent
spaces, because we need to somehow comparer'(q) 2 TQ with Y(q) 2 T¢Q in order
to nd the rate of change of Y, where gis a point close to qin the direction of X(q). We
could de ne such a derivative in terms of its properties; e.g. linearity and an appropri-
ate form of the product rule. This brings us to the following de nition of a connection,
adapted from the de nitions given by Calin [17] and Lee [45].|Recall that C¥ (Q) and
X(Q) are respectively the sets of smooth functions and vector eldson Q.

De nition 2.3.4. Let Q be a smooth manifold. A connection r on TQisamapr
X(Q) X(Q)! X(Q),written r xY for X,Y 2 X(Q), satisfying

i) Linearity over C¥ (Q) in X;
Mo+ .Y = far x, Y + far x,Y

forall fy, f, 2 C¥(Q) andall X1, X52,Y 2 X(Q).

i) Linearity over RinY;

I x (Y1 + &Yz2) = &l xY1+ &r xY2

forall &,a 2 R and all X,Yq,Y22 X(Q).

iif) The Leibniz or product rule;

r x(fY)=(Xf)Y+ fr xY

forall f 2 C¥(Q)andall X,Y 2 X(Q).

The vectorr xY is the covariant derivativeof Y in the direction of X. We can compute
its components in a co-ordinate vector basis:

rxY =1 xq Y

X'r ¢ Y by linearity over C¥ (Q) in X

XU oY i+ Yir g by the product rule (2.3.3)
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The covariant derivative is therefore determined by the regular partial derivative, plus
a term involving the connection applied to the basis vectors, r ¢ ;. We follow the con-

vention of writing this in terms of connection coef cient@j 2 C¥(Q), de ned such that

r 4% = G k. Changing the dummy index j to kin the rst term in (2yie|ds the
co-ordinate form of the covariant derivative,

k
%+ Gy 1
{z }

kh component

FxY=X i Y N+ YIgiT = X
|

Geodesics

We return to one of our motivating examples for connections from the beginning of this
subsection; de ning a notion of straightnesdor a smooth curve c: J! Q, Jan open
interval in R, such that the velocity vector c{t) is unchanged over small steps dt along
the curve. Since the velocity vector at t represents the direction tangential to the curve,
it seems reasonable to characterize such curves with the condition r CO(t)CO(t) = 0; the
covariant derivative of the velocity vector along the curve, i.e. in the direction of the
velocity vector, is zero. However, c{t) is not strictly a vector eld de ned overallof Q,
but rather a vector eld along a curveand so the covariant derivative is not well-de ned.
Lee |45] shows that given a connectionr , there is a unique total derivative operatar g
along any smooth curve c(t) satisfying analogous properties to those in De nition 2|3.4
and matches the covariant derivative for r when the vector elds along a curve can be
extendedo regular vector elds de ned over all of Q. We shall omit the details here for
brevity, and state that one of the properties of the total derivative along a curve c(t) is
the following product rule:

r oy V=tV + fr qyV

where V : J! TQis avector eld along c(t), i.e. satisfying V(t) 2 TyyQ forall t 2 J,

and f : J! R with derivative % f0

We are now able to make sense of curvesc(t) satisfying r CO(t)co(t) = 0, which are
called geodesicsSuppose there is some co-ordinate chart containing the entire curve,
and write c{t) = ¢'; for the velocity vector in co-ordinates. We compute the condition
for geodesics in co-ordinates;

r th)co(t): o,r qiﬂiqjﬂj
G+ A g T
o GT+ ddr g
. &+ ddG =

I
o O O O
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Writing time derivatives explicitly, the geodesics satisfy the system of p second-order
ordinary differential equations,

20K i j
T+ g ToPm=0  i=1.p 23.4)

called the geodesic equations. A parameterized solution of these equations is called
geodesic owusually exact analytic solutions are not available. For any point g2 Q and
vector V 2 T4Q, one can show [45] that there exists a unique geodesicc(t) such that
c(to) = g, Jtg) = V. Clearly, different connections may produce different geodesics.

For a general vector eld V(t) along a xed curve c(t), we sayV is parallel along €t)
if r qnV(t) = Oforall t 2 J Visually, we can picture V(t) as an arrow pointing in
the same direction at each point on ¢(t). In co-ordinates, the condition for parallelism
along c(t) takes the form

VE+Viggi=0 k=1,.p

where ¢ (t) are the parameterized co-ordinates for g = c¢(t). These arep linear ordinary
differential equations for the p components of V (t). By taking an initial vector V(0) =
Vo 2 T Q, we can solve the system of ODEs to obtain a unique parallel vector eld
over the entire curve c(t). This is known as parallel transport of Vo, which we write as

Geodesics are commonly known as curves which have extremal, i.e. least, arc-
length. In fact this holds for a particular connection that is uniquely de ned by the
Riemannian metric, known as the Levi-Civita connection, but may not hold for general
connections. The Levi-Civita connection uniquely satis es two important properties
which we now state.

De nition 2.3.5. Let (Q, g) be a Riemannian manifold. A connection r on TQ is called
metrical , or simply a metric connection , if it satis es

Xg(Y,Z) = g(r xY,Z)+ g(Y,r xZ) (2.3.5)
for all vector elds X,Y,Z 2 X(Q).

In co-ordinates, a metric connection satis es Yigjj = G',J. gk + G0y, or equivalently

figj = Gy + Gy where Gy := qj Ok- We state without proof that parallel transport
is an isometry between tangent spaces for metrical connections [45], i.e. for a smooth
curve c(t) we have

If X,Y 2 X(Q) are two vector elds, their Lie bracket is the vector eld [X,Y]which
acts on a smooth function f 2 C¥ (Q) via
[X,Y]f := XYf YXf

The Lie bracket measures the commutativity of two vector elds; for example, by the
equality of mixed partial derivatives we have [T, fj] = O.
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De nition 2.3.6. Let Q be a smooth manifold. A connection r on TQ is called sym-
metric or torsion-free if
r«<Y r yX= [X,Y]

forall X,Y 2 X(Q).

Substituting co-ordinate vector elds for X,Y yields the symmetry condition in co-
ordinate form,
G = G| forall i,j,k=1,...p (2.3.6)

As stated, these two properties uniquely characterize the Levi-Civita connection.
This is stated in the following theorem from Lee [45].

Theorem 2.3.7 (The Fundamental Theorem of Riemannian Geometry). Let (Q, g) be a
Riemannian manifold. There exists a uniqgue symmetric metric connection TQ called the
Levi-Civita connection .

A geodesic with respect to the Levi-Civita connection is exactly the curve with min-
imal arc-length among all curves with the same endpoints; see Chapter 6 of Lee [45].

Information Geometry: Connections from Divergence

Riemannian geometry typically utilizes only the Levi-Civita connection because of its
unique properties of symmetry, compatibility with the metric and extremal geodesics.
Information geometry on the other hand has an interesting structure that is unique
among geometries; there are two dually coupledconnections induced by a divergence,
neither of which coincide with the Levi-Civita connection correspondingto  g(®) in gen-
eral. The induced connections have interesting statistical interpretations. The following
de nition is from Ay et al [58].

De nition 2.3.8. Let Q be a smooth manifold with divergence D : Q Q! R. The
connectionsr (P) r (O respectively induced by D and its dual D , are given by

g® r Py, z

D.(XY,Z)

o rPlyz = D.(XY,2)= Dz XY)

for vector elds X,Y,Z 2 X(Q).

Lemma 2.3.9. The connection coef cients for(®) andr (P ) in a co-ordinate chart are given
by

2
C#-D)(Q) SR . (9, 90) (2.3.7)
g fatid ﬂcﬁ 9= do
2
G '(a) = 75 (q,00) (2.3.8)
| ﬂ%ﬂ(% ﬂd( 9=do
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Proof. See Ay et al [58]. O

One can verify that these are indeed connections by checking that the connection
coef cients transform appropriately under changes of co-ordinates; see for example
Amari [3]. In fact, the connections are symmetric.

Proposition 2.3.10. Let Q be a smooth manifold with divergence:DQ Q! R. The
induced connections ,r are symmetric.

Proof. We will show the result in co-ordinate form, i.e. showing equation (2[3.6) holds

for both r ,r . By the interchangeability of mixed partial derivatives, it follows from

Lemma [2.3.9 that jEk)) = Gj(itk)) and jEk) ) = Gfitk) ). Multiplying by g% and contracting

over k to raise the index yields the result in co-ordinate form, i.e. equation (4.3.6). O

Given that the induced connections are symmetric, one might wonder whether they
are also metric connections, and hence coincide with Levi-Civita. This is not the case,
but it turns out the connections are dually coupledwvith respect to the metric.

De nition 2.3.11. The connectionsr ,r on a smooth manifold Q are called dual with
respect to a Riemannian metric g if

Xg(Y,Z)= g(r xY,Z)+ g(Y,r x2) (2.3.9)
for all vector elds X,Y,Z 2 X(Q).

Werefertor andr respectively as the primal and dual connections, although we
note that the choice of which is primal and which dual is arbitrary by the involutive
nature of duality. If one parallel transports V,W with respect to the primal and dual
connections respectively, the metric is preserved; see Nielsen [57].

9e0) (VW) = 9ty Proy oyVsP ooy oW forall V,W 2 Tq)Q

Clearly dual connections generalize metric connections; the Levi-Civita connection is
self-dua) since we can replace bothr and r with the Levi-Civita connection in the
above equation. The following theorem shows duality for the connections induced by
a divergence, and is proven in Ay et al [58].

Theorem 2.3.12. Let Q be a smooth manifold with divergence @ Q! R. The induced
connections (P) r (P) are dual with respect to the induced metri®y

The structure (Q,g,r ,r ) suchthatr ,r are dual with respect to g is called a
conjugate connections manifold [57]. We have shown that a divergence on a manifold
induces this structure.
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2.4 Dually Flat Geometry

2.4.1 Curvature and Flatness

In general, the parallel transport of a vector depends on the curve c(t). In particular, the
parallel transport of a vector around a closed loop, i.e. from q= ¢(0) back to g = c¢(1),
may not coincide with the original vector; in Euclidean space however, one observes
that parallel transport is not dependent on the curve, and transporting a vector around

a loop leaves it unchanged. A notion of how the manifold is curvedcould therefore be
de ned based on how much vectors are changed by parallel transport around a loop.
Amari [3] and Ay et al [58]|both show that the parallel transport of a vector around an

in nitesimally small loop leaves the vector unchanged if and only if the  curvature tensor
of the manifold is zero.

De nition 2.4.1. Let Q be a smooth manifold with a connection r . The Riemann-
Christoffel curvature tensor is the map

R:X(Q) X(Q) X(Q)! X(Q)
ROX,Y,Z)=1T1 xr yZ 1t yr xZ 1 [xyZ

Note that Ris usually interpreted as a (1, 3)-tensor; it takes three vector elds X,Y,Z
and a covector eld w as input, and produces a smooth function w(R(X,Y,Z)). A
manifold is called r -at if and only if the curvature tensor de ned by r vanishes
everywhere, i.e. Ry = Oforall g2 Q. One can express the curvature tensor in local
co-ordinates via the following formula - see for example Ay et al [58],

R = TG TG+ GG GGl (2.4.1)

A co-ordinate chart (U, q) is called af ne if the connections coef cients vanish at all
points g2 U, Gj(q(q)) = Oforalli,j,k= 1,..,p. Equivalently, the covariant derivative
of the co-ordinate vector elds vanishes along co-ordinate curves,

refi=20 fori,j=1,..p

It follows that the co-ordinate curves of an af ne co-ordinate system are geodesics, and
co-ordinate vectors are parallel transported along co-ordinate curves. Substituting the
vanishing connection coef cients into equation (, it follows that the curvature ten-
sor is zero wherever af ne co-ordinates exist. Conversely, atness implies the existence
of locally af ne co-ordinates.

Of course, the set of Cartesian co-ordinate charts is closed under af ne transforma-
tions. This is extended to manifolds by the following proposition.

Proposition 2.4.2. Let Q be a smooth manifold, and [&f, q) be an af ne co-ordinate chart.
Then the transformed co-ordinate chéldt, &) is an af ne co-ordinate chart, where the mélp
de ned as

d:u! RP &a) = Ca(q) + d
where C2 RP Pis non-singular andd 2 RP.
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Proof. Calculating the connection coef cients via the covariant derivative along the co-
ordinate directions,

wid G WA X I w9
1
= cm¢ 2 =0
i jr ﬁmﬂd
since g is an af ne co-ordinate system, where C= C" . O

2.4.2 Dual Flatness

A conjugate connections manifold which is at with respecttoboth r andr is called
dually- at . The following theorem shows that dual- atness is implied by r -orr -
atness.

Theorem 2.4.3 (Dual Flatness Theorem). Let(Q,g,r ,r ) be aconjugate connection man-
ifold. The manifold is - atif and only ifitis r - at.

Theorem is a special case ofThe Fundamental Theorem of Information Geometry
[57], which states that the scalar curvaturesfr andr are the same when one of them
is constant; the stated theorem is for the case when the scalar curvatures are zero.

Consider the immediate properties of dually at manifolds. There must exist two
co-ordinate systems; one which is afne for r , and the other afne for r . We refer
to these respectively asprimal and dual co-ordinates. Note that the primal and dual
co-ordinate systems may not necessarily be the same. By the de nition of af ne co-
ordinates, the connection coef cients for the primal connection must vanish in the pri-
mal co-ordinate system, G;x = 0, and likewise for the dual connection coef cients in the
dual co-ordinate system, but primal connection coef cients may be non-vanishing in
dual co-ordinates and vice-versa. It follows that geodesics with respectto r , called pri-
mal geodesics, are straight lines in the primal co-ordinate system, and dual geodesics
which are geodesic with respect to r and are straight lines in the dual co-ordinate
system.

Recall that dual co-ordinates were already de ned in the context of Bregman di-
vergences in Section[2.2.R; we shall show that Bregman divergences induce dually- at
geometries and the de nitions coincide, i.e. Legendre dual co-ordinates h= r F(q) are
r -af ne co-ordinates in the geometry induced by Dr.

Theorem 2.4.4. Let Q be a smooth manifold with a global co-ordinate cb@rtg). Let F:
g(Q) RP! R beconvex. Then the conjugate connections manifold induced by the Bregman
divergence [p is dually- at.

Proof. Recall that the Bregman divergence D is given by

Dr(9,d0) = F(@) F(do) r F(d) (9 Qo)
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A direct calculation for the induced primal connection coef cients in the co-ordinate
system g from equation (2.3.7) yields

Df) _ ” 9

K = W@Dp(q,qo) =0 forall i,j,k (2.4.2)

9=do

It follows that qis ar -af ne co-ordinate system, and hence the manifold must be r -
at. By the Dual Flatness Theorem 2.4.3) itis alsor - at and hence is dually- at. O

The proof of Theorem shows that g is a primal co-ordinate system for the
dually- at manifold induced by Dg. The following proposition shows that the ear-
lier de nition of dual co-ordinategoincides with our new de nition of r -af ne co-
ordinates.

Proposition 2.4.5. Let Q be a smooth manifold with global co-ordinate cli@tq), and let
F:q(Q)! R beconvex. The dual Legendre co-ordinate qf@sh) de ned via

h:Q! RP, h(g) = r F(a(ag))

is ar PF -af ne co-ordinate system, i.e. dual co-ordinates in the dually- at manifold induced
by Dk.

Proof. We need to show that the connections coef cients for r vanish in the h co-
ordinate system, i.e. G;'j)kF (h) = 0O for all i,j,k. De nition 2.3.8 |states that the dual
connection r is equivalent to the primal connection induced by the dual divergence
D¢. By Proposition P.2.13, the dual Bregman divergence is another Bregman divergence
generated by F ,

De(a,90) = De (ho, h)
Equation (2.4.7) must hold with h replacing g and D replacing Dk. O

Amari [3] shows that for any dually- at manifold, there exists a convex function F
on the primal co-ordinates such that the same geometry is induced by D¢, the so-called
canonical divergenc®ually- at manifolds are therefore uniquely characterized by their
geometry being induced by Bregman divergences.

Cartesian co-ordinates are an af ne system in which Euclidean geometry is sim-
ply described. Analogously, the primal and dual co-ordinates in a dually- at manifold
give the simplest description of the dually- at geometry. Primal and dual geodesics
have simple closed-form descriptions in their respective co-ordinate systems, and hence
dually- at geometry may provide a signi cant computational advantage over Rieman-
nian geometry, in which Levi-Civita geodesics are usually not available in closed form
and require expensive numerical integrators. This has motivated us to research MCMC
algorithms that make use of dually- at geometry, which is discussed in part I1.[ ]

Example 2.4.6 (Regular exponential families are dually at) . By Proposition .2.13, the
KL-divergence between two points in a regular exponential family coincides with the
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Bregman divergence induced by the cumulant generating function y of the family in
natural co-ordinates. By Theorem 2.4.4, the geometry induced by this divergence func-
tion is dually- at, where the natural parameters q are primal co-ordinates and mean
parametersh = r y(q) are dual co-ordinates.

By Proposition , any af ne transformation of the primal co-ordinates is another
primal af ne co-ordinate system, and similarly for the dual co-ordinate system. Thus
there are in nitely many primal and dual af ne co-ordinate systems. Primal and dual
co-ordinate charts are coupled if they are the Legendre transform of each other, i.e.
if h=r 4F(q) and g = r F (h) for the Bregman generator F corresponding to the
canonical Bregman divergence on Q. The following proposition shows how coupled
co-ordinate charts change under af ne transformations.

Proposition 2.4.7. Letq andh be dually coupled co-ordinate charts on a dually- at manifold
Q. Write § = Cq+ d for an af ne-transformed co-ordinate system, wher@ ®P P is non-
singular andd 2 RP 1. Thendis coupled to the dual co-ordinate systiite ned by

fi:==C Th
where the transpose is the usual adjoint with respect to the Euclidean inner-prodRét in

Proof. Note that #(&) := F C 1(§ d) is the canonical Bregman generator in trans-
formed primal co-ordinates. For any qlet h=r F(q). Then by the chain rule,

r gf(d=c Tr qF(C Y(d d))
C Tr F(C Y(Cg+d d))
C TrgF(@=C Th=Hi

Therefore dland fiare dually-coupled co-ordinate systems under the Bregman generator

. O

2.5 Geometry of Subfamilies

In Section[1.3, we brie y discussed statistical families which are subfamilies of larger
families. We can now offer more precise de nitions for subfamilies and discuss how
geometry can be inherited from the ambient larger family. This section contains two
novel contributions which relate the inherited dually- at geometry to that of the ambi-
ent space; Theoren| 2.5.8 and Theorenj 2.5]8.

Suppose Q is a p-dimensional smooth manifold, and N is an n-dimensional sta-
tistical family which we call the ambientfamily or manifold. For example, N could
be a product of n 1-dimensional families modelling each of n i.i.d. observations in a
statistical application, where co-ordinates are given by the mean parameters for each
observation. Suppose further there is a smooth map L : Q ! N ; continuing the ex-
ample, L may represent a forward modetelating p unknown parameters in Q with the
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means of the n observations. Such a structure is common in statistical modelling. We
assume thatp < n, i.e. there are fewer unknown parameters than observations.

Our goal is to view the image L(Q) N as a statistical family which is equivalent
to Q, and to study how geometric structures on the ambient manifold are inherited by
Q. This requires some further assumptions on L, which we adapt from Lee [46];

De nition 2.5.1. A smoothmap L : Q ! N between smooth manifolds Q,N is a
smooth immersion if the differential dLq has rank p = dim Q for all points g2 Q.

De nition 2.5.2. A smooth immersion L: Q! N between smooth manifolds Q,N is
a smooth embedding that is a homeomorphism onto its image L(Q) N , where the
image is endowed with the subspace topology.

The image L(Q) of a smooth embedding is an embedded submanifold of N . Lee
[46] shows that embedded submanifolds are smooth manifolds; co-ordinate charts (U, b)
for Q naturally give rise to smooth charts (L(U),b L 1) onthe image. Note that since
we assume p < n, any smooth embedding of Q into N must have full rank. We will
adopt the convention of using g 2 R" as representing co-ordinates for N, and b 2 RP
for co-ordinates in Q.

2.5.1 Inherited Geometry

Given the setup described above, suppose the ambient manifold N has geometric struc-
tures, i.e. connections and a Riemannian metric. These objects are essentially maps that
take tangent vectors or vector elds as inputs; we can therefore use the differential dL
of the embedding to map tangent vectors in TqQ into T (N where geometric objects
are de ned, and hence de ne an inheritedgeometry on Q.

In particular, suppose his a (0,k)-tensor on T (N , i.e. a multilinear function of k
tangent vectors. De ne the pullback of hby L as the (0,k)-tensor L hon TqQ,

Lh VL. vk :=h dg V! ,..dLg VX forall V3,..,.vk2 T,Q

The pullback of atensor eld is de ned such that the tensor at each point L(q) 2 Ty N
is pulled back by L to T¢Q, for all g2 Q. Since the differential is linear, the pullback is
clearly multilinear and is therefore a tensor.
The inherited Riemannian metric @ is the pullback of the Riemannian metric g on
N by L,
d(vV,W) =L g(V,W) forall V,W 2 T,Q

To see that § is a Riemannian metric on Q, note that symmetry follows immediately
from the symmetry of g. For positive-de niteness, let V 2 T4Q and note

#V.V) = g dig(V),dLg(V) O
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with equality if and only if dLy(V) = 0, which holds if and only if V = 0 sincedl, has
full rank. In co-ordinates, the inherited metric has components

L L

(2.5.1)
where L = q L b listhe co-ordinate representation of L. Note that for any q 2
Q, the image Im dLq TN represents the space of vectors which are tangent to
the embedded submanifold L(Q). Any vector V 2 T N can be decomposed into
tangentialand normalcomponents,

V=VT+V?

where VT 2 Im dLq and V? isin the g-orthogonal complement Im  dL, 7 SincedLq
is a linear isomorphism, we can make the identi cation TqQ Im dLg .

We can also derive a connection on Q inherited from an ambient connection r on
N . Recall that the connectionr on N isamapX(N) X(N)! X(N), sor applied
to vector elds on Q mapped via the differential yields a vector eldon N,

raLpodl(Y) 2 X(N)  forall X,Y 2 X(Q) (2.5.2)

Strictly speaking, dL(X) and dL(Y) do not de ne vector elds over allof N, and sowe
need to extendthe vector elds; see Lee [45] for details.

Decomposing the covariant derivative into its tangential and normal components
yields

T 2
r dL(X)dL(Y) =TI dL(X)dL(Y) + r dL(X)dL(Y) (253)

The tangential term can be identi ed with a vector eld on  Q, and hence de nes the
inherited connectionon Q,

f 1 T
r XY = dL r dL(X)dL(Y)

Lee |45] shows that this is a valid connection on Q, and is symmetric when r is sym-
metric. Amari [3]|gives the following formula for the inherited connection coef cients:

&nc= BIBET Bl g + BLBLBEG (2.5.4)

where we use the shorthand Bl = %‘a for the differential in co-ordinates.

The normal component in (2.5.3) is a measure of how curved the embedded sub-
manifold is within N, and is called the second fundamental form or embedding cur-
vature,

?

P:X(Q) X(Q)! X(N) P(X,Y):= 1 godl(Y)
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for any vector elds X,Y 2 X(Q). One can show |17] that the second fundamental form
is symmetric in its arguments, although it is not a tensor.

Equation (2.5.9) is equivalent to the Gauss formuld45] r g (x)dL(Y) = dL fflxy +
P(X,Y).

If the ambient manifold is equipped with a divergence D, we can de ne an inher-
ited divergence

Djp:Q Q! R, Djg (1 &) = D (L (), L (%))

Clearly Dj, satis es the positivity iBind non-degeneracy i@onditions of De nition
m in any co-ordinate chart, since D is a divergence and L is injective. The Hessian
matrix on the diagonal is computed to be

1T
b3 f1bb

. w1 1
D bo, b = ————D(q, 2.5.5
jo (bo,b) ven, b2 7By 70 T (9, 90) e (2.5.5)

which is the (&, b)-component of a positive-de nite matrix, because the co-ordinate dif-
ferential .}T—t';[d has full rank. It follows that Dj is indeed a divergence.

Suppose the geometry of N is a conjugate connections structure induced by a di-
vergence D. It is natural to ask whether the geometry induced by DjQ is the same as
the geometry inherited from N . The following theorem shows that this is indeed the
case, and is a novel contribution to the literature.

Theorem 2.5.3. Let N be a smooth manifold with Riemannian metric and dual connections
induced by a divergence DN N ! R. Let Q be an embedded submanifold\in The
Riemannian metric, primal and dual connections on Q inherited fidmcoincide with the
metric and connections induced by the inherited divergenj;g:. D

Proof. We will show that the induced and inherited metric and dual connections coin-
cide by showing that they are equal in any co-ordinate chart. Firstly, the metric induced
by DjQ is the Hessian on the diagonal; the right-hand sides of equations ( and
) agree wheng;; are the components of the metric induced by D.

To show the induced and inherited connections coincide, we explicitly compute
the primal connection coef cients for DjQ. Let q = L(b) and by = L(bg). Write

B, = %;(b) and B‘go = %ﬁ(bo) for the co-ordinate differential at b and bg respectively.
Then by equation ), the primal connection coef cients induced by Dj,

ol 111
Ganc - {ba § b ﬂbg DJQ(b’bO) b= bg
i 15 1 1
= B,—B -—Bf—_D(q,
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Since Bk is a function of by, it is a constant with respect to the partial derivatives %
and and hence

e |
Gt = B'Bé)ﬂ"; BLﬂZﬂH%D(q W
LY ERTIE
BWBM%&M% quﬁ% (2.5.6)

Note that by Lemma £.2.2, the metric induced by D on N may be written

(D) _ 71

hy 191 D (a. o)

0=do

Substituting this and the expression (P.3.7) for the induced primal connection , we have

i kﬂ i pl gkADP)
G = BiBE gl + BLBIBYG,

abc ﬂq
This coincides with the coef cients (2.5.4] for the connection inherited by Q. The proof
for the induced dual connection is identical. O

Since the primal and dual connections induced by Djg, are dual, inherited primal
and dual connections are also dual with respect to the inherited metric by Theorem
. Since inherited and induced geometries are the same, we will simply refer to the
geometry on Qvhen Q is an embedded submanifold.

2.5.2 Autoparallel Submanifolds

De nition2.5.4. Letr be aconnectiononN and let Q be an embedded submanifold in
N . Then Q is called r -autoparallel if the second fundamental form P corresponding
tor vanishes,P (X,Y) = 0, forall vector elds X,Y 2 X(Q).

Inthe case whenN is dually- at, r -autoparallel manifolds are called e-at andr -
autoparallel manifolds are m- at . The terms come from the fact that e at subfamilies
of exponential families are themselves exponential families, and m- at subfamilies of
mixtures are themselves mixture families; see Amari [3]. The following theorem from
Calin and Udriste [17] shows that e at and m- at submanifolds are both dually- at
manifolds in their own right.

Theorem 2.5.5. LetN be a dually- at manifold and Q an embedded submanifoldllinIf Q
is eitherr -autoparallel or -autoparallel, then Q is a dually- at manifold.
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The following proposition helps build intuition for e and m- at submanifolds; they
are characterized by linear conditions in primal and dual co-ordinates respectively, so
e at submanifolds look like hyperplanes in primal co-ordinates and like curved hyper-
surfaces in dual co-ordinates and vice versa for m- at submanifolds.

Proposition 2.5.6. LetN be a dually- at n-manifold. An embedded p-submanifold Q is e- at
if and only if there exist co-ordinatds for Q such that the co-ordinate embeddindnas the
af ne form in primal co-ordinates,

g= L(b):= Ab+d (2.5.7)

for some matrix A2 R" P and vectod 2 R".
Dually, an embedded p-submanifold Q is m- at if and only if there exist co-ordirgfes
Q such that the co-ordinate embeddingas the af ne form in dual co-ordinates,

h= L(g) ;= Ag + d (2.5.8)
for some matrix A2 R" P and vectod 2 R".

A proof is given in appendix AE]CIearIy primal and dual geodesics, which are
straight lines in their respective co-ordinate systems, are e atand m- at submanifolds
respectively. The following example considers when generalized linear models are e
or m- at.

Example 2.5.7. Consider generalized linear models discussed in Section[1.3. The mean
parameters h; = E (y;) for each of i = 1,..,n data are related to coef cients by, ..,bp by
the relationship !
p
hj=f ijij i=1,.,n (2.5.9)
=1
where Xj; are constant covariates. We considerb as co-ordinates for a submanifold
or subfamily embedded in an n-dimensional exponential family, In example 4.4.6we
showed that regular exponential families are dually at, and mean parameters h = (h;)
are af ne dual co-ordinates. Clearly if f is the identity function, then the generalized
linear model is m- at because ) becomesh; = ; Xjjbj, which is linear in dual
co-ordinates. It follows that b are dual co-ordinates for the generalized linear model.
Alternatively, suppose f is the component-wise primal to dual map, i.e. the canonical
link function, so that (2.5.9) becomes linear in primal co-ordinates,

p
g = bjxij i=1,.,n
=1
In this case the generalized linear model is e- at, and b are primal co-ordinates.
When the ambient manifold N is dually- at, its geometry is derived from a canoni-
cal divergence which takes the form of a Bregman divergence D in primal co-ordinates,
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generated by a convex function F. A submanifold Q, with primal co-ordinate embed-
ding g = L(b), has the inherited divergence in co-ordinate form

D,:jQ(bl,bz) = F L(by) F L(b2) r F L(by) L(by) L(by)

There is a slight abuse of notation here; this is really Dg restricted to the co-ordinate
representation of Q.
We can also consider the restriction FjQ of the Bregman generator F,

Fig (b) := F(L(b))

The restriction is not necessarily convex, and hence the Bregman divergence it generates
is not always well-de ned. The following theorem, which is a new contribution to the
eld, shows that the inherited divergence coincides with the Bregman divergence for
the restricted generator exactly when Q is e at.

Theorem 2.5.8. Let Q be a submanifold of a dually- at manifoi, and let F be the Bregman
generator for the canonical divergencéNof Then Q is e- at if and only if there exists global
co-ordinated in a chart(Q, f ) for which F, is convex and

Drjq (b1,b2) = D, (b1, b2)

for all pointsb,b, 2 f (Q), where I}.jQ is the restriction of @ to Q and HQ is the restriction
of Fto Q.

Dually, Q is m- at if and only if there exist global co-ordinatgsn a chart(Q, f ) for which
F g is convex and

Dr jq (91,92) = Dgj, (91,92)
for all pointsgs,92 2 f (Q).

Proof. We will show the result characterizing e at submanifolds only; the proof for the
m- at case is identical.

Suppose Q is e at. By Proposition there exists co-ordinates b such that the
co-ordinate embedding for Q into N takes the af ne form (. Then writing the
restriction of Dg to Q in b co-ordinates,

Dr L(by),L(b2) =F L(b1) F L(b2) r F L(by) (L(by) L(b2))
Fig(b1) Fjg(b2) r F L(bz) (A(b1 b))
Fig(b1) Fig(b) ATr F L(by) (b1 by)

Note that ATr Fis the gradient of the restriction of F,

k Ei
ATEF L(by) = ANIE by = I TF ) = THo
r (b2) KT (b2) 5 1 (b2) b

Hence the inherited divergence has Bregman generator Fjq,

Deiq (b1,b2) = Fig(b1) Fjg(b2) r pFig(b2) (b1 bz) = Dy, (b1, b2)

(b2)
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Conversely, suppose DFJ-Q Drjg holds when Q is a submanifold; we aim to show Q
is e- at. Expanding the de nitions, it follows that for all by, b,

rF L(b) L(by) L(b2) =r1 pFig(b2) (b1 by)
I F L(by) L(by) L(bz) =DL(b2)'r F L(bz) (b1 by)
rF L(b2) DL(b2) (b1 b2)

where DL is the Jacobian matrix of L. Since this is true for all by, b,, we must have
L(by) L(bz) = DL(b2) (b1 by)
) L(by) = L(b2)+ DL(b2) (b1 by)

Differentiating this equation with respect to components of b; shows that the Jacobian
DL is independent of b, and hencel is an af ne transformation. By Proposition 2
it follows that Q is e at. O

2.5.3 The Pythagorean Theorem and Projections

A remarkable fact of dually- at manifolds is the following generalization of the Pythagorean
Theorem from Amari [3], Note that two curves c(t),c(t) on Q are orthogonal at a
point of intersection g = c;(tp) = c(to) if their velocity vectors are orthogonal at g, i.e.
if g(c3(to), 3(to)) = 0.

Theorem 2.5.9 (Amari’'s Generalized Pythagorean Theorem). Let Q be a dually- at man-
ifold and let q, 0,03 2 Q be distinct points. If the dual geodesic connectingagd @ is
orthogonal at gto the primal geodesic connectingand g, then

D (01, 0s) = D(0h, ) + D(02, G)
where D is the canonical divergence inducing the dually- at structure on Q.

Note that the dual divergence D also satis es the Pythagorean Theorem, and hence
under the conditions of Theorem

D(gs,01) = D(as, %) + D(, 01)

Clearly this generalizes the usual Pythagorean Theorem, since it includes the case
when D is proportional to the squared Euclidean distance. Our interest in the Pythagorean
Theorem is that it allows projectionsonto submanifolds, which we make use of in sam-
pling algorithms in Chapter E{] Recall that in an inner-product space, the orthogonal
projection of a point x onto an af ne subspace U is exactly the point in U which mini-
mizes the distance to x. This result can also be generalized to dually- at spaces.

Let Q be a submanifold embedded in a dually- at ambient manifold N.Fors2 N,
a point g 2 Q is an e-projection of sonto Q if the primal geodesic connecting sand g
is orthogonal to any tangent vector to Q at g. Similarly, qis the m-projection of sonto
Q if the dual geodesic connecting the two points is orthogonal to any tangent vector
to Q at g The following theorem shows the e and m-projections onto e and m- at
submanifolds respectively minimize the divergence among elementsin Q.
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Theorem 2.5.10. Let Q be a submanifold embedded in an ambient dually- at manifo]énd
lets2 N . If Q is e- at, the m-projection g of s onto Q is exactly the point that minimizes the
divergence fromsto qin Q,

Om = argming, o D(s, )

Similarly, if Q is m- at the e-projection gof s onto Q is the point which minimizes the dual
divergence,

e = argming, oD(q,s)

Proof. The following roughly reproduces the proof from Amari [3], Let g2 Q be arbi-
trary, and let g, be the m-projection of sonto Q. By de nition of g, the velocity vector
of the e-geodesic atgy, must be orthogonal to that of the m-geodesic connectingsto gn.
Hence the conditions of the Pythagorean Theorem are satis ed, and

D(s,a) = D(s,am)+ D(0m,q)

which is clearly minimized by q = qgn. The proof for the eprojection onto an m- at
submanifold is similar. O
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Chapter 3

Independence and Orthogonal
Submanifolds

In order to use Information Geometry to sample from a Bayesian posterior distribu-
tion, a divergence function should be chosen that includes information from both the
prior and observed data. Traditionally, Information Geometry works with the  expected
geometry, i.e. induced by an f-divergence and hence includes neither prior nor obser-
vational information. This approach has been successful in geometric descriptions of
classicali.e. frequentist or non-Bayesian, statistics. There are also geometries which
make use of observed data in the classical setting, such as Bradley and Efron’sobserved
Fisher information[27] that replaces the expectation in the Fisher information (
with evaluating y at the observed valuesy = yg,s. To my knowledge, no other authors
have proposed a conjugate connections geometry that uses prior information.

In this chapter a Bregman divergence is suggested that includes all available in-
formation about the posterior, called the posterior Bregman divergence (PBD) . The
resulting geometry will be shown to have an important property for sampling algo-
rithms, namely that orthogonal directions are close to independent sampling directions
under the posterior. The parameter space may be decomposed into a ber bundle, or
foliation, of e or m- at submanifolds which are orthogonal to each other. The target
distribution admits a disintegration a generalization of conditional probability, over the
orthogonal foliations. This idea will be central to the construction of new sampling
algorithms in Chapter 5|

3.1 Posterior Bregman Geometry

In this section we introduce a dually- at geometry induced by the posterior density,
and present several results that justify its use. The geometry and two of the results are
novel contributions to the literature; namely Proposition 3[1.2 and Theorem

Let p(g) be a smooth probability density supported on a convex set Q RP. The
density p is called log-concave if F(q) := log p (q) is a strictly convex function. Any
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log-concave probability density therefore de nes a Bregman divergence on Q, which
we call the p-Bregman divergence,

Dr(d,do) D jogp (0, o) for g,002 Q

The geometry induced by D, called the p-Bregman geometry, is immediate from the
results in Chapter E] In particular, Df induces a dually- at structure on Q with primal
co-ordinates g, dual co-ordinates de ned by h:= r logp(q) and Riemannian metric
with components G(q) = r 2log p(q) in primal co-ordinates.

Now suppose that a Bayesian posterior distribution p(qgjy) p(yjg)po(q) is log-
concave. In this context, we call D o4, jy) the posterior Bregman divergence (PBD)
and the induced geometry the posterior Bregman geometry . We similarly de ne the
prior Bregman divergence/geometry when the prior density pg is log-concave. Calcu-
lating the p-Bregman divergence only requires p to be known up to a multiplicative fac-
tor. If two convex functions F, F, are related via F(q) := F(q) + K for some constant
K, then it follows immediately from the De nition 2.4.10 of a Bregman divergence that
Dy Dg. Inparticular, the Bregman divergence generated by F(q) := logp(g)+ K
is the same as that generated by logp.

Relationships between the posterior, prior, and likelihood-based divergences are
implied by the following Lemma.

Lemma 3.1.1. Let R,/ : Q! R be two smooth strictly convex functions on a convex set
Q R with corresponding Bregman divergences, [Dr,. Dene F(q) := F(g)+ c q.
Then for allg, qp 2 Q, the following hold:

) Dr+r(9.90) = Dr (0, qo) + D (0, do)
if) Dk (d,90) = Dr(0,d)-
Proof. Calculating directly,
)
Dr(0,d0) + Dr(a,q0) = R(a) Fu(qo) + R(a) F(qo)
r F(do) (@ do) r R(do) (a4 do)

=(R+R)(@ (R+R)(@) r (R+FR)(d0) (0 do)
=Dg+R(0,q0)

Dr(d,a) = Fi(a) Fu(do) (a do) r Fu(do)

Fi(q) Fiu(a)+c (@ qo) (r R(ag)+c) (@ qo)
Fi(a) Fu(do) r Fu(a) (@ do) = Dr(d qo)
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Sincep (ajiy)  po(a)p(yja), Lemma[3.1.1 implies that if the prior and likelihood
are both convex functions of qthen the posterior Bregman divergence decomposes into

a sum of Bregman divergences respectively generated by the prior and likelihood. In
particular, we have the following novel result relating the Kullback-Leibler, prior and
posterior Bregman divergences for exponential family likelihoods.

Proposition 3.1.2. Let Q be a regular exponential family with log-concave ppe(q) in
natural parameters. Given an observation vegtowe have

D iogp(jy)(a:G0) = Dki(9,do) + D 1ogp,(d:do) (3.1.1)
where [ is the Kullback-Leibler divergence on Q.

Proof. By Proposition , the KL-divergence from qto qg is the Bregman divergence
generated by the cumulant generating function y of the exponential family Q. Thus by
the properties of the Bregman divergence from Lemma 8.1.1)we have

DkL(9,90) * D 10gpo(a,d0) = Dy(0,90) + D 10gp,(a. Qo)
Dy 10gpo(Q. do)
DF(q!qO)

where F(q) ;= q y+y(q) logpo(q). SinceFand logp(jy) differ only by a
constant independent of g, the result follows. O

Note that the right-hand side of (3.1.T] does not depend on the observations y; this
can also be viewed as a consequence of the invariance of Bregman divergences to terms
of the form ¢ q in the Bregman generator from Lemma . This implies that for
exponential family likelihoods, the posterior Bregman geometry does not depend on
observed data. Although the divergence is invariant to adding terms of the form ¢ g
in the Bregman generator, the operation induces a change of origin h! h%= h+ cin
dual co-ordinates. This is analogous to a change of origin of the Cartesian co-ordinates
in Euclidean geometry, which leaves the Euclidean distance unchanged. In conclusion,
two different observation vectors y and y?may shift the origin of the dual co-ordinate
system under the posterior Bregman geometry for exponential family likelihoods, but
intrinsic geometric objects are independent of observations.

The decomposition (3.1.1) together with Theorem implies that the metric tensor
for posterior Bregman geometry has components

G(a)= r 2logp(ajy) = I(a) r Zlogpo(a)

in the primal co-ordinate system, where 1(q) is the Fisher information matrix. This
coincides exactly with the Riemannian metric proposed by Girolami and Calderhead
[39] for use in their Riemannian Hamiltonian Monte Carlo algorithm.

The following theorem is a new contribution. Although a fairly trivial observation,
the result helps provide intuition for understanding the posterior Bregman geometry.
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Theorem3.1.3. LetF: E! R beaconvexfunctiondd RP,letp be a probability density
supportedorQ E suchthatp(q) exp( F(q)) forallg2 Q, and letqp 2 E be such that
r F(qo) = 0. Then

p(a) exp( Dr(g,q0)) forallq2 Q
where [ is the Bregman divergence generated by F, or equivalently-Beegman divergence.

Proof. Note that for any point g2 Q, F(q) = logp(q)+ K for some log-normalizing
constant K. The Bregman divergence generated by F from qto qp is

Dr(g,90) = F(a) F(ao) r F(go) (a do)
F(a) F(do)
logp(q)+ K F(do)

and thus

p(a) = exp(K F(qo)) exp( Dr(d,d0)) exp( Dr(d,do))
O

Suppose for simplicity that Q = E = RP. If the posterior has a unique mode qp 2 Q,
i.e. if the MAP estimator exists, then it follows that r log p (qojy) = 0, and hence The-
orem E states that the negative log posterior density at g is the divergence from the
mode (o to gq up to additive constants. For example, a multivariate Gaussian random
vectorg Normal qg,L ! has density

p(a) exp %(q q0) 'L (9 o)

The p -Bregman divergence is then clearly half the squared Mahalonobis distance from
example . The induced geometry has a constant Riemannian metricL in primal
co-ordinates, and hence the primal and dual connections coincide and the geometry is
Euclidean.

More generally, Theorem shows that log-concave probability densities with a
mode (g have level sets which are Bregman spheresentred at qo, i.e. the locus of points
with xed Bregman divergence to qp.

3.2 Orthogonality and Independence

The novel algorithms we introduce in the thesis will make use of the following heuris-
tic: orthogonal directions in the posterior Bregman geometry are nearly independent
sampling directions. In this section, we offer some justi cation for this heuristic.

Firstly, consider the case of a multivariate Gaussian distribution Normal 0,L ! .
As discussed in the previous section, the resulting posterior Bregman geometry is Eu-
clideanwitha xed metric G L inprimal co-ordinates. Since L is symmetric positive-
de nite, it de nes a global weighted inner-product on  RP,

(u,v) ;== u'Lv
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The following proposition shows that a sample from the Gaussian has components
with respect to a L -orthogonal basis which are stochastically independent. The formal
statement of the result is novel, but is based on an observation made by Fox [30].

Proposition 3.2.1. Letv(D, .., v(P 2 RP be a basis of mutually -orthogonal vectors, i.e.
v T Ly = o
foralli & j. Then for arandom variable Normal 0,L ! , distinct components af in the
fv() g basis are mutually independent.
Proof. The i component of ¢ in the basis is given by
_ vOTLg
VOO
Letd := v "L v, (gm) and (v{) be the components of q v( respectively in the stan-

dard basis. Computing the covariance of (ﬂ and éﬁ using Einstein summation notation,
we nd

1 . .
?deOV Vg)l— sm0m, V|(J) L itC

1 . .
= 7V(sl) L smV|(J)|— 1tCoV (0m, Gt)
did

Cov &.4

1 . .

_ 1 0 () 4
= ﬂvs L smv,”" dy,

1 . .
= ﬂvg) L smV%)

Sincev(® and v() are L -orthogonal, it follows that Cov  §,& = 0wheneveri 6 j. O

This fact can be exploited for sampling by building up a L -orthogonal or conjugate
basis and independently sampling the components. This idea is the basis of conjugate
directions samplinguggested by Fox and Parker [29], [59]. The algorithms developed in
Chapter [ will turn out to be conjugate directions samplers when applied to Gaussian
target distributions.

Recall that co-ordinate curves of primal and dual co-ordinates intersect orthogo-
nally, because fori 6 |

SR RO B
Tg’ Thi g’ h fgm
S P N
h = g’ T
= ﬂhl@:o
g™ T
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One might therefore wonder if in the posterior Bregman geometry, primal and dual
variables are independent. This is con rmed to be true in the Gaussian case, for which
dual variables are given by a simple linear relation h:= Lq.

Proposition 3.2.2. Letq Normal O,L !, anddeneh= Lg. Let(g), and(h;), be
the respective componentgyandh in the standard basis. Then fo6i j, the random variables
g andh; are independent.

Proof. Using Einstein summation notation,
Cov qg,h; = Cov q,LsGs

L ;sCov (g, Gs)
Lisk;;t=0

O]

For non-Gaussian distributions, there are fewer concrete results linking orthogonal-
ity and independence. Girolami [52] notes that

1'[2
faq

logp(qg) = Oforall g ) p(a) = F(g)H(q)

for some functions F, H. In our terms, if two variables with joint density p have or-
thogonal co-ordinate curves everywhere in parameter space under the p-Bregman di-
vergence, then the variables are independent under p. However, since the Hessian of a
log probability density is not a tensor, the result does not extend to arbitrary transfor-
mations of variables. Future work could extend the orthogonality results for Gaussians,
perhaps by studying copulas and local correlations.

3.3 Mixed Co-ordinates and Foliations

To exploit orthogonal directions in a sampler, ideally we would use a global co-ordinate
system which has mutually orthogonal co-ordinate vectors, i.e. with a diagonal metric
tensor. However, DeTurck and Yang [23] show that such co-ordinates are only guaran-
teed to exist for manifolds of dimension 3, and even when they do exist it is not clear
how to construct them in an ef cient manner. Instead, we will utilise the orthogonal
relationship between primal and dual variables by making use of foliations

Euclidean spaces of dimension p are trivially partitioned into  k-dimensional sub-
spaces, or hyperplanes, which are all orthogonal to another subspace of dimension
p kwherel k< p. For example, in RP we can consider an af ne subspace in
which the rst k co-ordinates are allowed to vary, and the nal p kcomponents are
xed. Any such space is orthogonal to the af ne space with rst k co-ordinates xed
and p k complementary components varying. In this section we will extend this to
dually- at manifolds, where orthogonality is of course de ned in terms of the Rieman-
nian metric.
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The key generalization is the ber bundle [46], [12], which for our purposes is a
smooth surjective map F : Q! M, where Q and M are p-and (p k)-dimensional
smooth manifolds respectively and 1 k < p. In this context Q is called the total
space, M is the base spaceand eachk-dimensional smooth manifold F 1(z) is called a
ber correspondingto z 2 ImF. The map F is also called the projection for the ber
bundle. Note that there is an additional technical condition for F to be a ber bundle
which we assume is always satis ed; see Chapter 10 of Lee [4€] for details.

3.3.1 k-cut Mixed Co-ordinates

Suppose Q is a p-dimensional dually- at manifold. The primal g = (q,..,g°) and
dually-coupled h = (h%,..,hP) af ne co-ordinates can be mixed into a new co-ordinate
system. For 1 k p, construct the vector whose rst k components are dual and
remaining p kcomponents are primal,

x = (ht, . h5 gL L gP) (3.3.1)

which we refer to as the k-cut mixed co-ordinate system , or more broadly mixed co-
ordinates . The k-cut system was introduced by Amari [2] to study hierarchies of prob-
ability distributions.

SupposeQ  R"is the primal parameter space, and F : Q ! R is the canonical
Bregman generator so that the i dual variable is h' = %(q). The transition map from

primal to k-cut co-ordinates isthe mapw : Q! RP, with i!" component
E .

1q (q) fori Kk

q fori> k

We have omitted k in the notation w for clarity. The Jacobian matrix of (8.3.2), i.e. the
co-ordinate differential, has components

w'(q) = (3.3.2)

_ (G
w' TF(q fori k j=1,..p

()= T _ - (3.3.3)
19 d fori> k i=1,..p

The Jacobian matrix therefore has rst krows equal to the g representation of the metric,
andlast p krows equal to the identity;

ﬂxf _™X_ Gy G ks
19 fa O Ipwwpw
where Gy g and G; > respectively refer to the upper-left k kand the upper-right

k (p k) blocks of the metric Hessian r 2F in primal co-ordinates, and 1 (k) (p KIS
the(p k) (p k) identity matrix. The Jacobian determinant is therefore the upper-
left k kblock of the metric,

det X det Gk Gl
19 0 Ip 0w (p ®
det G[ kK (3.3.4)
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Since the p p matrix G(q) is positive-de nite, it follows from Sylvester’s criterion
[37]thatthe k kminordet G; i > 0, and hence the Jacobian determinant is non-

zero. Since this is true for all g 2 Q, w is a diffeomorphism. We have shown that the
transition map between primal and k-cut co-ordinates is a diffeomorphism, and hence
the k-cut system is in the smooth structure of Q.
Although x' = d for i > k, the associated co-ordinate vectors% 6 % because each
partial derivative involves holding different variables constant. Writing sums explicitly,
we ndthatfor i> k ‘
T_°0d1_ % 1 71

T j=1‘"7qiw ) jzlgijw-'- fx

Recall from Theorem [1.2.1§ that the inverse of the metric has components g =

ﬂﬁghj. The inverse function theorem states that the Jacobian of the inverse transition
map w 1 is the inverse of the Jacobian [3.3.B), and hence
O
W forj Kk, i=1,..,
¢ _ @@ for ! P (3.3.5)
1~ d forj>Kk, i=1,.,p

where g/ is evaluated at h = r F(q) such that w(q) = x. Indeed, a simple calculation
shows that X 14 = d,' resuming the use of Einstein notation.

g X
The key property of the k-cut system is that the i, co-ordinate vectors are orthog-
onal whenever i kand j > k, or vice versa. This is stated in the following theorem,

which gives the metric in mixed co-ordinates.

Theorem 3.3.1. The metricg;; in k-cut co-ordinates takes the form

8
%g”(h) fori k j Kk
gif = gij(q) fori> k >k (3:3.6)
! 30 fori k j>k >
0 fori> k i k

whereq is such thatw (q) = x, andh = r F(q).

Proof. The components of the metric in the k-cut system are

T 9 _9d9%™ T T _ 1d9q"

AN P PO P R A I P

where g, are the components of the metric in the primal q co-ordinate system. We
consider each of the possible cases; rstly, when i, | k then the Jacobian equals the

inverse metric g by (3.3.5),
gi = 9"9Mgim = dng™ = ¢’
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Likewise, when i,j > kthe Jacobian is the identity q'
gj = dd"gm = gj
Finally when i > kand | k, or vice versa, the components of the metric are 0O:
gj = dg"gm=dd=d =0
sincei & jin this case. The prooffori kand j > kis similar. O

Note that to actually evaluate the metric using (, we must rst convert the
mixed co-ordinates to either fully-primal or fully-dual co-ordinates, and then compute
the relevant blocks of the metric and its inverse. Written as a matrix, the metric in mixed
co-ordinates takes the form

1 1
Gp g (X)) QHpml
Op K Cip o pyw “(x)

3.3.2 Orthogonal Foliation

Mixed co-ordinates allow us to partition a dually- at manifold in two ways; one with
e at submanifolds, and the other with m- at submanifolds. For ¢ 2 RK, de ne M(c)
as the set of points in Q whose rst k dual components are xed,

h'= ¢ fori=1,..k (3.3.7)

and remaining co-ordinates are allowed to vary freely. In dual co-ordinates, this is
represented by the embedding

1

hll hk+ 11

0 0 a
§ = Ok (p W] %) : %+ % : § (3.3.8)
hP ¢

0

o e 0 (p W]

Otp 1 11
By proposition M(c) is therefore a(p k)-dimensional m- at submanifold. Sim-
ilarly for d 2 RP X, de ne Eg(d) as the set of points with xed complementary primal

co-ordinates, _ _
g=d kK fori=k+1,.,p (3.3.9)

and other co-ordinates varying freely. A similar argument to the above shows E,(d) is

a k-dimensional e at submanifold.
Suppose a point g 2 Q has k-cut co-ordinates (c,d), i.e. rst k dual co-ordinates

given by (B.3.7) and remaining p  k primal co-ordinates by (8.3.9). Then g belongs
uniquely to the intersection M(c)\ Ec(d). Forc & c° the intersection M (c)\ M, (c®
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is empty, and likewise d & d%implies Ex(d)\ E(d9 is empty. Clearly then, the E, and
M submanifolds both partition the ambient manifold Q,

o=" me=" E(@
c d

where unions are taken over the range of the (h,..,hK) and (d“*?,..,qP) co-ordinate
functions respectively. The partition into E, submanifolds is known as the e-foliation
and the partition into M submanifolds is the m-foliation [3]. The submanifolds them-
selves are called theleaves of the foliation. The efoliation is a ber bundle with a
projection map that picks out the k+ 1,..,p components of the primal co-ordinate vec-
tor,

P
FE:Q! RPK Fe(a)= d
i=k+1

such that each leaf E,(d) is a k-dimensional ber for d = F g(q), and the base space
is a convex subset ImF ¢ RP K. Similarly, the m-foliation is also a ber bundle with
projection
Q! Rk - TF ‘

FM:Q! R Fwm(a) 19 .
with base space ImF  RK, and bers M(c) for ¢ = F (q). More generally, a foliation
in differential geometry is a partition of the manifold into submanifolds such that there
exists a co-ordinate chart in which each submanifold is described by holding constant
particular co-ordinates [46].

The efoliation and m-foliation are orthogonal in the following sense. Let q have
mixed co-ordinates x = (c,d) such that g 2 My(c)\ Ec(d) as above. Then tangent
vectors V to the embedded submanifold E,(d) must consist of only the rst k mixed
co-ordinate basis vectors; writing sums explicitly,

Tangent vectors W to the embedded submanifold M(d) only have non-zero compo-

nents;
p

W = wil
j=k+1 X

Then by Theorem , tangent vectors toE(c) and M(d) are mutually orthogonal,
k P

g(V,W) = ViWlig; = 0
i=1lj=k+1
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3.3.3 General Foliations of e- and m- at Submanifolds

Since vector spaces can be partitioned with arbitrary colinear hyperplanes, foliations of
dually- at manifolds can be constructed from arbitrary e or m- at submanifolds. This
generalizes the foliations arising from mixed co-ordinates. This more general concept is
a novel contribution, and in particular Proposition 3/3.9, [Theorem 3.3.11]and Theorem
are new results in Information Geometry.

For a matrix A 2 RP Kof full rank, let B 2 RP (P K be a matrix whose columns
form a basis for Ker AT = (Im A)? , where AT is the usual transpose or adjoint of A with
respect to the Euclidean inner-product; a canonical choice for Bis any (p k) linearly

independent columns of the projection matrix 1 , , A ATA 'AT. Recall that the
primal co-ordinate chart covers all of Q, and takes values in a convex subsetQ RP.
The primal co-ordinates of any g2 Q can be decomposed as

q= Aa+ Bb (3.3.10)

where a and b belong to appropriate convex subsets A Rkand B RP Krespec-
tively. We x b := Bb, sothata is a parameter for the k-dimensional e at submanifold

n (0]
Eap= Qq=Aa+b:a2A Rk (3.3.11)

in primal co-ordinates, a convex subset of the hyperplane through b spanned by the
columns of A. Note that the convex subset A depends on b in general, although we
suppress this in our notation. We adopt the notation f Ep g for the collection f Ea pjb 2
ImBg. Clearly elements of f E5 ,,g are disjoint and we have the partition

Q = [ b2ker(aTyEab

Note that by proposition any e- at submanifold can be written in the form (3.8.11) |
and is an element of such a partition. Similarly, dual co-ordinates h for any point g2 Q
can be decomposed as

h= Dd+ Cg (3.3.12)

where D 2 RP Kand C 2 RP (P ¥ are respectively de ned analogously to A and
B above. Let Mc4 be the (p  k)-dimensional m- at submanifold de ned by xing
d := Dd and allowing g to vary, i.e.
n )
Mcg= h=Cg+d:g2RP K (3.3.13)

Then f Mc4Q is another partition of Q. Any m- at submanifold is an element of
such a patrtition.

We use the generale- and m- at partitions to construct general mixed co-ordinates.
Rewriting equation (8.3.10) in a more compact form,

a= A B | (3.3.14)
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Suppose we letD = A and C = Bin (B.3.13), so thath is decomposed into components

Ad 2 ImA and Bg 2 (Im A)?. By Proposition , the dual co-ordinates correspond-
ingto &= (a,b) are given by

AT ATAd
~  B'Bg

For these dually coupled co-ordinate systems, the k-cut mixed co-ordinates are given
by

-

X = A Ad (3.3.15)

b
In this mixed co-ordinate system, the submanifolds Epp and Mgq, with b := Bb and
d := Ad, are respectively leaves of thee- and m-foliation each corresponding to holding
b and d constant, analogous to the submanifolds E, and M in the previous subsection.
By the results in the previous subsection, it follows that Ea p and Mg g4 intersect orthog-
onally with respect to the Riemannian metric at a unique point. The generalized e and

m-foliations are ber bundles with projections Fg(q) = B qand F y(q) = ATr F(q) re-

spectively, where B := B'B 'BT is the generalized inverse of B. Of course, if A and
B respectively have columns consisting of the rst kandlast (p k) standard basis vec-
tors, then the matrix A B in (8.3.14) isthep pidentity matrix; ATAd = h?,.,h
are the rst k dual co-ordinates and the complementary p k primal co-ordinates are
b = d*%..0P . Hence generalized mixed co-ordinates (3.3.1%) really are a gener-
alization of regular mixed co-ordinates (. We use a tuple (A,B,F) to denote a
generalized mixed co-ordinate system, where A, B are matrices as de ned above and F
is a Bregman generator.

The following de nition is inspired by the concept of an  orthogonal complement an
inner-product space.

De nition 3.3.2. Two submanifolds E and M are called dual complements of each
otherif Eise-atand M is m- at, and the submanifolds are orthogonal to each other at
any points of intersection.

Clearly Eap and Mgy are dual complements whenever ATB = 0.

Sinceq= Aa+ Bbandr F(q) = Ad+ Bg, the conversion map from primal to gen-
eralized mixed co-ordinates is given by the respective projections for the ber bundles
of the m- and e-projections.

_ ATr Ka)
where B := BTB BT is the generalized inverse of B.
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G-Orthogonal Projections

De nition 3.3.3. LetL 2 RP P be a symmetric positive-de nite matrix. A matrix P 2
RP Pisal -orthogonal projection if

PP= P (3.3.16)
PIL=LP (3.3.17)

Proposition 3.3.4. Let P2 RP be alL -orthogonal projection matrix. Then P is self-adjoint in
the inner-product weighted bl i.e.

(Pv)TLw = vTL (Pw)
forallv,w 2 RP.
Proof. SinceP satis es the second condition () for L -orthogonal projections,
(Pv)"Lw = vIPTLw = vTLPw = V'L (Pw)
O

De nition 3.3.5. LetL 2 RP P be a symmetric positive-de nite matrixand A 2 RP
have fullrank, wherel  k p. De nethe L -orthogonal projection onto the columns
of A as

1
PL=A ATLA ATL

For example, the matrix AA = A AAT 'AT s the 1, p-orthogonal projection
onto the columns of A, i.e. orthogonal with respect to the standard Euclidean inner-
product on RP. The de nition is justi ed by the following proposition.

Proposition 3.3.6. The matrix Fk is aL -orthogonal projection satisfying
ImPs = ImA
In particular, the restriction of % to ImA is the identity map.

Proof. The rst condition (3.3.16) follows immediately;

PiPi= A ATLA ATLA ATLA ATL
1
=A ATLA ATL = P§
For the second condition (8.3.17), we calculate:

T 1 T
A ATLA AL L

>%
—
[

1
LA ATLA ATL = LP}
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To show ImP; = ImA, letv 2 ImP . Then there existsw 2 RP such that
1
v=Piw=A ATLA ATLw 2ImA

and it follows that Im Pk ImA. Conversely, letw 2 ImA; then w = Aa for some
a2 R and

1
Piw=A ATLA ATLAa= Aa=w 2 ImPj

which showsIm A ImPj, and thus Im A = ImP% . This calculation shows that Pxw =
w forany w 2 ImA, and hence the restriction of P,k to Im A is the identity map.
O

The matrix PAG(q) is the G(q)-orthogonal projection onto the columns of A, a linear
operator on the tangent space at the point represented by q.

Proposition 3.3.7. The matrixl, p Pk is aL -orthogonal projection matrix satisfying
Ker 1, p Pk =ImA (3.3.18)

Proof. Condition (3.3.16) follows from the fact that P} is a L -orthogonal projection ma-
trix,
bp PA Lp Pi =1pp 2PR+PRPz=1, p P

and similarly for (3.3.17),

.
1,, Pi L=L P'L=L LPy=L 1,, Pk

Finally, to show (8.3.18), we rstlet w 2 ImA. Then by Proposition B.3.6, Pxw = w and
hence

1, p Pr w=w w=0

and so it follows that w 2 Ker 1, , P .
Conversely, forany w 2 Ker 1, , P% ,we have

1, p P w=0

_ pL
, W= Pyw

This implies w 2 ImA sinceP = A ATLA *ATL. Therefore Ker 1, , PL =
ImA. O
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Parameterization of m- at submanifolds

Our primary use of generalized mixed co-ordinates is in the construction of parameter-
izations of arbitrary m- at submanifolds, required for the algorithms in Chapter 5.Eor
xed d := Ad, the (p Kk)-dimensional submanifold Mgy may be described in gener-
alized mixed co-ordinates by holding d constant and allowing b to vary; it is the level
set of the projection function

Fu:RK RPKI RK Fwm(a,b) = ATr F(Aa+ Bb) (3.3.19)

corresponding to the level Fy = ATAd. We consider using b 2 RP X as a parameter
for the submanifold, in a co-ordinate embedding as follows.

De nition 3.3.8. For a p-dimensional dually- at submanifold Q, with Mgq an m- at
submanifold of Q, de ne a primal embedding of Mpgg4 as a map

Lg:RP X1 RP (3.3.20)
satisfying A r F(Lg(b))= d= A dand B Lyg(b) = bforall b2 B Q.

Note that the subscript d indicates which m at submanifold is being embedded,
i.e. d selects a ber of the ber bundle F\,. The following is a novel contribution to
the literature to our knowledge, and shows that there is one unique primal embedding
which is stated explicitly.

Proposition 3.3.9. For any m- at submanifold M 4, there exists a unique primal embedding
of Mg 4 given by
Lg(b) = Aa(b)+ Bb (3.3.21)

wherea: RP K1 RXis given by
a(b) = argmin, ,:(Aa+ Bb{)z aTATA? (3.3.22)
=j(a)

Proof. First we show that (8.3.21)) and (3.3.22) together de ne a valid primal embedding.
For the rst condition, the gradient of | at the minimizer a(b) must be zero, i.e.

0=r ,j (a(b)) = ATr F(Aa(b)+ Bb) ATAd

Noting that Lq(b) = Aa(b)+ Bb, this is equivalent to A r F(Lq(b)) = d. The sec-
ond condition B Lg(b) = b of De nition 3/3.8 follows immediately from (3.B.21),|since
columns of A and B are mutually orthogonal.

To show uniqueness, supposeRy is a primal embedding. The combined columns of
A and B form a basis for RP, and thus

Rq(b) = Aa(b) + Bb(b)
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for some functions aand b. By the second condition in De nition 3e have
b= B Ry(b) = B Bb(b) = b(b)
and thus b(b) = b for all b. By the rst condition in the de nition, we nd
Ar F Ry(b) =d
, ATr F Rg(b) ATAd=0

, ATr F(Aa(b)+ Bb) ATAd=0
I aj(a(b))=10

Note that the function j is convex and has a global minimizer since Fis strictly convex.
Thus
a(b) = a(b)

and henceRg(b)  Lg(b) for all b. Thus the primal embedding is unique. O
The following Lemma gives the differential matrix of the primal embedding.

Lemma 3.3.10. Let Mg 4 be a m- at submanifold and let = A d. The co-ordinate differential
matrix of the m- at embedding = L4(b) is given by

DLa(b)= 1, , P B

where @b) := r 2F(L4(b)) is the Riemannian metric tensor evaluated.4b).

Proof. Differentiating (3.3.21), the i-j component of the differential matrix is given by

w._ .74 i
The differential Da = 1% is given by applying the Implicit Function Theorem B|0.4
to F v(a,b) = ATAd where F is de ned in (3.3.19).
_7d _ TFwm fFM
Da= W o A b (3.3.23)
Note that
i :
L lA"E(Aa+ Bb)
@ fa  1d
o i T°F
= _—A Aa+ Bb
1a” Tqre A2 B0
= asial TF aavBb)= ATG(b)A
1d e ij=1.k
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And similarly

T _ l i IF
o .A d (Aa+ Bb)
ﬂqs
= Aa+ Bb
b ﬂdﬂf( a+ Bb)
°F
=BIA" ' (Aa+ Bb)= ATG(b)B
‘Hd‘ﬂqs( a+ Bb) = (b) i=1,.kj=1,.p k

Substituting these expressions into (3.3.23), the result follows.

1
DLg(b) A ATG(b)A ATG(b)B+ B

1
1, p A ATG(b)A ATG(b) B

L, PR B

O]

We will discuss how to evaluate the implicitly de ned parameterization  Lg in Sec-
tion . Recall from subsection, and in particular Theorem, thatMg4 in-
herits geometric structures from the ambient manifold Q and is a dually- at manifold
in its right. Furthermore, the following novel result shows (Mgg, b) is a co-ordinate
chart on Mg g4 which is af ne with respect to the inherited primal connection.

Theorem 3.3.11. The parameterizatioh given by the unique primal embedding de nes af ne
co-ordinates with respect to the inherited primal connection ggyM

Proof. We will show that the coef cients of the inherited primal connection (2.5.4) |
. !
Ty 1 L L L, Lk
Boc= Jheqbn oo 9 fba b e

Lt T (3.3.24)

vanish, where }b‘; is the i-acomponent of the co-ordinate differential matrix DLy given

in Lemma B.3.10. Sinceq = Lg(b) are primal co-ordinates, the connection coef cients
Gjx are zero and the second term vanishes. The remaining term is the G-inner product

of the d" column of DLy with the b column of the component-wise partial derivative
with respect to b?, (=D Lg.

To nd
identity ATGA 'ATGA = | and rearranging yields

ﬂbaDLd, we rst differentiate ATGA 1. Differentiating both sides of the

1 1
T atea = aTea 'aTI6A aTGa (3.3.25)

b2 fib2
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where we have use the factthat ATGA 'is symmetric by symmetry of the Hessian

matrix G. Differentiating the expression for DLg from (B.3.10) and substituting (3.3.25)
for L. ATGA then yields

b2
)l f T LT T L 116
—~DLs4= A-—— ATGA A'™GB A ATGA AT-B
o2~ ¢ b2 b
1 1G 1 1 1G
=A ATGA AT_—-A ATGA A'GB A ATGA AT "B
b2 ba
and hence
1 G 1
iDLd: A ATGA ATL A ATGA A'G | B

fiba b2
The G inner-product of this with D L4 is then

1 1
DLgGﬂﬂbaDLd:BTGA ATGA AT:T]; A ATGA A'G | B

1 1 1
B'TGA ATGA ATGA ATGA ATE A ATGA A'G | B

b2
1 G 1
=B'"GA ATGA AT:TTba A ATGA A'G | B
1 1
BTGA ATGA AT:TT; A ATGA A'G | B
=0
Thus the coef cients of the inherited primal connection are zero. O

Since b are primal co-ordinates on the dually- at manifold Mg 4, there must exist a
Bregman generator f such that the inherited divergence on M B,d agrees with a Bregman
divergence in b co-ordinates generated by . This is given explicitly by the following
novel result.

Theorem 3.3.12. The restricted divergence ong\j agrees with the Bregman divergence gen-
erated byfl, where

B(b) = F(Lg(b)) dTATAa(b)= F(Lg(b)) dTL4(b) (3.3.26)
Furthermore, the Legendre dual co-ordinate system is given by
r #(b) = B"Bg = B'r F Lg(b) (3.3.27)

and the metric on M4 in b co-ordinates is

r 2f(b) = BTG(Lg(b)) 1, p A ATG(Lg4(b))A lATG(Ld(b)) B  (3.3.28)
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Proof. As usual, let F be the Bregman generator in primal co-ordinates on Q. By Theo-
rem , the geometry on Mg is de ned by the restriction of Dpg to Mgq4, which we
write in b co-ordinates as

DFjmg, (b:00) := DF Lg(b), La(bo) (3.3.29)

where b and b are the primal parts of the generalized mixed co-ordinate system (8.3.15)
respectively corresponding to points q,go 2 Mggq. Leth := r F(Lg(b)) and hy :=
r F Lg(bo) be dual co-ordinates in Q corresponding to gand gp respectively. Then by
proposition 2.2.13, the inherited divergence may be written

DFjpg, (D.bo) = De La(b), La(bo) = Dg (ho,h)

Since g and o are points in Mggq, by de nition there exists g,go 2 RP ¥ such that
hg = Bgo+ d and h= Bg + d. We must have

DFjmy, (P Do) = PF (Bgo -lizd, Bg + d;

= Dg jMB,d (90.9)

Analogously to equation (3.3.29), we de ne a restricted dual divergence on Mgy,
DF jmg, (90.9) := Dr (Bgo+ d,Bg + d)

By Theorem[2.5.8, this coincides with the Bregman divergence generated by the restric-
tion of F to Mgy,

Dfjmg, (B,D0) = DFjug, (90.9) = Dej, (90,9)

This is a Bregman divergence generated by F jMBd in the g co-ordinate system. The
Legendre dual co-ordinate corresponding to this convex function has i component

l l

gi = ﬂT;iFjMB,d: ﬂT]iF (Bg + d)
_TNIR Ly oT
T@W_Biq_ qu

where we have used the involution property of the Legendre transform of F,i.e.r yF (h) =
gsuchthatr 4F(g) = h. Sinceq= Aa+ Bbwith ATB= BTA = 0, we must have

g = B'q= B'Bb , b= BB g

since B is assumed to have full rank. We will complete the proof by showing that the
Legendre transform of F j, agrees with ). Firstly, note that by de nition of the
Legendre transform

Fiveg, (@)=9 g F(h (3.3.30)
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where g is such thatr 4 F j,\,IBd (g) = g ,and h = Bg + d depends on g implicitly.
We substitute F (h) for its de nition in terms of the Legendre transform, and expand q
and hin components in Im A and the orthogonal complement Im B,

F(h)=a h Fa)

(Aa(b)+ Bb) (Bg+d) F(q)
d"Aa(b)+ g"B"Bb  F(q)
d'Aa(b)+ g'g  F(a)
Substituting this into ( yields the result (8.3.26),

Flwe, (9)=F@ dlAa(b)= F(Ly(b)) , d'Le(b)
=:#(b)

To show that dually coupled co-ordinates are given by b = BTBg, we note that b =
(BB 1)g and differentiate via the chain rule. Alternatively, differentiating # directly,

r ofi(b) = r p F(Lg(b)) dTLg(b)

DLy(b)'r ¢ F(q) d'q

.
B A ATG Lg(b) A ATG Lg(b) B (r F(g) d)  (3.3.31)

where we have substituted D L4 from Lemma B.3.10. Note that we have the decompo-
sition
r F(g)= h= Ad+ Bg = d+ Bg

Substituting this into (3.3.31) and using ATB 0y (p ) Yields (),
T
r oB(b)= BT B'GA ATGA AT (d+Bg d)
= B'Bg = B'r F(q)

Another differentiation yields the Hessian matrix of Fﬂ, and hence the metric on the
m- at submanifold in b co-ordinates (3.3.28),

r 2¢#f(b)=r 4 B'r F(q) DLq(b)

1
B'r 2F(q) B A ATG Lg(b) A ATG Lg(b) B

BTG(Lq(b)) | A ATG(Lg(b))A 1ATG(Ld(b)) B
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Note that Theorem can be viewed as a corollary of Theorem[3.3.1P; in the
proof of Theorem we showed that a co-ordinate system in which a Bregman di-
vergence is de ned is af ne in the induced geometry.

The metric (8.3.28) in theb co-ordinate system is a Schur complement of the ambient
metricin (a, b) co-ordinates. The transformation (8.3.14) from g to (a, b) transforms the
metric according to

T T T
| T — A _ A'GA A'GB

The Schur complement of the block ATGA in this matrix is given by
1
B'GB B'GA ATGA A'GB
which coincides with the metric ( on Mgy inthe b co-ordinate system.

Mapping of e atinto m- at Submanifolds

In the previous subsection, we studied the map Ly : RP K1 RP that represents an
embedding of an m- at submanifold in primal co-ordinates. In this subsection, we will
show how this can be used to construct a map which sends e- at submanifoldsto m- at
submanifolds.

Consider the e- at submanifold de ned by the image of B in primal co-ordinates.
For any point g 2 RP, the projection onto the image of B is given by b = Bb =
BB g. The coef cients b are also the parameters of the primal embedding ofa (p k)-
dimensional m- at submanifold Mgy, such that

Lg(b) = Aay(b)+ Bb
This motivates the following de nition.
De nition 3.3.13. Let Q be a p-dimensional dually- at manifold. De ne
Lg:RP! RP
La(q) = La(B )

The mapping L4 maps pointsin RPto Mg 4. Clearly, the map preserves the Euclidean-
orthogonal projection of qonto Im B, i.e.

BLo(q)=Baqg ) BBLq(q) = BBg
Furthermore, by de nition Lg(q) belongs to the ber labelled by d;

AT F(La(@)= Ar F(Lg(Bg))=d
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3.3.4 Decomposition of Divergence

Mixed co-ordinates admit simple e and m-projections onto the leaves of the orthogo-
nal foliations. Suppose a point q 2 Q has mixed co-ordinates x = ( hyg, qp>y), where
hyg 2 R are the k dual components and d>1 2 RP Kare the p k primal compo-
nents. Consider the e-projection of g onto the m- at submanifold M(c), the set of

points whose dual co-ordinates satisfy (8.3.7). The following is a generalization of The-
orem 6 from Amari [2]!

Proposition 3.3.14. The e-projection of 8 Q with mixed co-ordinatezq = ( hy, gp> ) onto
M(c) has mixed co-ordinates

Xpyg = (C, 0> 1)

Similarly, the m-projection of g ontoEd) has mixed co-ordinates

Xpng = (g, d)

Proof. Note that by de nition, Xxq 2 Ex(q[-y)). The leaf E(qp>g) must intersect My(c)
at the point Peg with mixed co-ordinates (c,q>y). Suppose that the full primal co-
ordinates of gare qq = ( dpiq, dp> ), and let the full primal co-ordinates of Pegbe (qc, qp> ) -
Then the e-geodesic connectinggwith P.gmay be parameterized in primal co-ordinates
as

(1 tapg* tde

t) =
a(t) U u

The e-geodesic clearly lies entirely in the e at submanifold E,(q> ), and thus its ve-
locity vector at Peq is orthogonal to any tangent vector to M(d). It follows that Peqis

the e-projection of gonto M(d).
The proof for the m-projection of qonto E,(d) is similar; the m-geodesic connecting
Xqand (hyg, d) liesinthe m- atleaf M (hyg), and hence is orthogonal to E,(c) at (hy, d).
O
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Chapter 4

Review of MCMC and Conditional
Sampling on Submanifolds

This chapter presents a brief review of Markov Chain Monte Carlo (MCMC) and recent
MCMC algorithms which aim to improve performance using geometrically motivated
ideas. Particular attention is given to algorithms which resample the target distribution
constrained to a submanifold, such as the Gibbs sampler and Hamiltonian Monte Carlo.
Such general conditional sampling formalized in terms of a disintegrationof the target
distribution over a ber bundle.

4.1 Markov Chain Monte Carlo

Suppose p (q) is a probability density on RP, and q(@,q(®,.. 2 RP are the iterates of
some stochastic process that is meant to simulatep . We use superscripts with brackets
to emphasise different iterates of the process rather than components of a vector. The
associatedMonte Carlo Estimatofor m:= E (f(q)) is the Monte Carlo sample mean

1 N 1 .

m=— f q® (4.1.1)

N izo
where f : RP I R is some function of the random vector g. The expected value mof
f is an example of a quantity of interestwhich may summarize the posterior, such as a
variance, or is otherwise relevant to the area of application. Computing quantities of
interest is the goal of MCMC. The number N is the Monte Carlo sample siza completely
distinct quantity to the sample size n which is the number of observations.

If the iterates (@, ..,qN D arei.i.d., i.e. independently drawn directly from p(q),
the method is called Ordinary Monte Carlo In this case, one can easily show that the
Monte Carlo estimator is unbiased with variance Var ,(f)/ N, and is asymptotically
normally distributed by the Central Limit Theorem. This means conveygence is rather
slow; to halve the Monte Carlo Standard Error (MCSE), StdDev , (f)/ N, we must take
four times as many Monte Carlo samples.
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In practice, i.i.d. sampling from p is not possible for many target distributions. In-
stead, correlated samples are typically drawn by simulating a Markov chain  q(@,q®, ...
whose stationary distribution is p (q); this is Markov Chain Monte Carlo (MCMC). We
brie y recount the introduction by Geyer [36].

Recall that a stochastic process is Markov if the conditional distribution of q(i*1
given @, ... only depends on q(), in which case the process is determined by the
following two distributions:

1. Aninitial distribution  q©  p(© for the rst iterate of the chain;

2. Atransition kernel k, such that the conditional probability density of q(i* ) given
q® is written k q(*Djg) . We assume the kernel isstationary, i.e. it does not
explicitly depend on .

Suppose the marginal distribution of g has probability density p @ (q) for all i. The
transition kernel must satisfy

Z
p(+D(qg) = . k(aigdp V(g% dq° (4.1.2)

The i-step transition kernel k() (q(jg(?) of the chain is the conditional probability den-
sity of q() given g(©. Clearly, the i-step transition kernel satis es

Z
pW(q) = Qk(')(qjq%“’)(q(bdqo forall g2 Q

If we enforce that the chain starts at a given point (@, i.e. the initial distribution is
p©@(q) = dlg g©), then the above equation shows that the marginal distribution of
qis p@(q) = kO (ajq(®). _
A Markov chain is stationary if the marginal distribution p ) does not depend on
i. Adistribution p(q) is called a stationary or invariant distribution of the transition
kernel k if it is preserved by K,
VA

p(a) = o k(aig9p (g% dg® (4.1.3)

A suf cient condition for p to be invariant is if the transition kernel is reversible with
respecttop,

k(aa)p (a) = k(aig9p (a®) forall g°q2 Q (4.1.4)

This condition is also known as detailed balanceith respectto p. To see that reversibility
implies invariance, we substitute (4.1.4) into the right-hand side of (4.1.3),
z z

. k(aig)p (qYda®= o k(a%a)p (a)da®= p(a)

sincek( jq) is a probability density.
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If the initial distribution p (9 is an invariant distribution for k, the marginals p )

p for all i 0 by induction on ( and hence the Markov chain is stationary. In
particular, if the transition kernel is reversible with respect to the initial distribution,
then p = p(? is an invariant distribution and hence the chain is stationary. In this case
the joint distribution of q(* % and q(") has density

k(™ Pja)p () = k(q®jg™* V)p (qt*Y)
This shows that the joint distribution of g and q{i* ¥ is exchangeable, so that the laws
for moving forwards or backwards in time are the same; a Markov chain with this
property is called reversible . We have shown that if k is reversible with respect to the
initial distribution, then the chain itself is reversible and stationary.

The key question for MCMC is whether the Monte Carlo estimator (4[1.1)]is asymp-
totically unbiased and what its asymptotic variance is, when the samples q©@, ..,q(N 9
are the iterates of a Markov chain whose invariant distribution is p rather than i.i.d.
samples from p. Under suitable conditions, the Markov chain Central Limit Theorem
is satis ed for stationary chains, which states that the Monte Carlo estimator (4/1.1)|for
the Markov chain is asymptotically normally distributed with mean m= E(f) and
variance SWZ where

s?= var(f(q"))+ 2 Cov(f(q"), f(q*")) (4.1.5)
k=1
Since the chain is stationary, the index i is arbitrary. Roberts and Rosenthal [65] give
various conditions for the Markov chain CLT to hold; it is suf cientthat  Ep f2 < ¥,
the chain is reversible and geometrically ergodic , meaning that if p is the invariant
distribution, then for p-almostall (@ 2 Q,

kkD(jg@) p()kp, M(qO)r (4.1.6)

fori = 1,2,.., somer < 1and M(q@) < ¥, where k kq is the total variation norm.
Geometric ergodicity simply means that after starting the chain from almost any point,
the marginals converge to p geometrically in total variation. We emphasize that this is
not geometric in the sense of using geometry. If M is a constant independent of qg,
then the chain is uniformly ergodic .

In practice, for a given invariant distribution  p one cannot simulate the correspond-
ing stationary Markov chain, because this requires being able to draw a sample from p
for the initial distribution so that p(® = p, which is assumed to be impossible or infea-
sible or else we should be doing Ordinary Monte Carlo. However, the Markov chain
CLT still holds when the chain is geometrically ergodic, or under similar conditions, if
we start the chain at p-almost any q(© 2 Q [65]. The iterates in the asymptotic variance
(4.1.5) siill refer to those of the stationary chain.

4.1.1 The Metropolis-Hastings Framework

MCMC requires the construction of a Markov chain whose transition kernel is reversible
with respect to the target p(q), satis es conditions for the Markov chain CLT to hold

106



and can be simulated on a computer. A general method for constructing such chains is
the Metropolis-Hastingsalgorithm, which draws a sample froma proposakernel g qq®

which can be simulated. The proposed sample qis then accepted, i.e. the next iterate
of the chain becomesq(*? := q° with probability

. )
a(a®Vja%p (a9
_ 7 4.1.7
a(a3a®)p (qM) (#1.7)

otherwise the proposal is rejected; we setq(* 1 := q{). Since the acceptance probability
) involves a ratio of target densities, we need only evaluate p up to multiplicative
constants, so it is not necessary to know normalization constants of p. One can show
[36], [65] that the Markov chain resulting from the Metropolis-Hastings algorithm is
reversible with respect to p(q). All reversible sampling algorithms are in fact special
cases of Metropolis-Hastings, including Gibbs updates and Hamiltonian Monte Carlo;
this can be seen by substituting any kernel k which is reversible with respectto p for
the proposal qin () - such proposals are always accepted.

An important case of the Metropolis-Hastings algorithm is when the proposal ker-
nel is symmetric, i.e. q(q3q) = q(qjq9 forall q° q 2 Q, when the acceptance probability

(4.1.7) becomes

a= min

a= min

P(@) (4.1.8)
p(a®)

This case is called the Metropolis algorithm. The proposal is always accepted if the
target density is higher at q°than at the previous iterate q(). For example, the (Gaussian)
Random Walk Metropolialgorithm uses multivariate normal proposals of the form

oq° Normal (q,! 2S)

where S is some covariance matrix, and | > 0 is some scaling factor. Clearly the
proposal kernel q(q3q) = q(gjg®) and the acceptance probability reduces to ).

Note that Markov chains resulting from the Metropolis-Hastings procedure are not
necessarily geometrically ergodic, and the Markov chain CLT is not guaranteed to hold
in general. Counter-examples may be constructed with a result of Jarner and Hansen
[42], who show that if a Random Walk Metropolis algorithm is geometrically ergodic,
then the target distribution p must have at least exponentially light tails. For example,
Livingstone and Girolami [50]|offer a Cauchy target distribution as a counter-example,
which has heavier than exponential tails, and hence the Random Walk Metropolis al-
gorithm is not geometrically ergodic. Robert and Casella [62] give suf cient conditions
for the marginal distributions in a Metropolis-Hastings algorithm to convergeto  p in
the total variation norm, although not necessarily geometrically as in (

4.1.2 Measuring Performance

If a Markov chain is geometrically or uniformly ergodic, the convergence rate r in (%.1.6)
gives one measure of performance; the rate at which the marginal distributions of the
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MCMC iterates converge to the target distribution, with lower values indicating faster
convergence. In practice, there may be analytic results for bounds on the convergence
rate for some samplers under speci ¢ assumptions, but estimation of r from MCMC
output for a general model is usually not possible.

The goal of MCMC is of course to estimate expectations with respect to the target
distribution, and hence practitioners often use proxies for the accuracy of the Monte
Carlo estimator as measures of performance. For example, the asymptotic variance of
the Monte Carlo estimator has a term involving the covariance, or equivalently corre-
lation, of f under successive iterates of the chain. Rewriting the s? ) part of the
asymptotic variance SWZ

|
¥ i i+K
$2= Vary (f(q) 1+2 oI, f(igq( K
| k=1 \{/gr(f(q )

=

= tVvarp (f(qV))  (4.1.9)

where t is called the integrated autocorrelation time (IAT) . Note that some authors
such as Liu [49] take the IAT to be % the value de ned here; we follow the convention
of Roberts and Rosenthal [63]. When the chain consists of independent samples fromp,
(4.1.9) shows thatt = 1. The presence of autocorrelation in the Markov chain usually
resultsint > 1.

Another proxy for the asymptotic variance is the effective sample size (ESS) Ngg.
This is de ned as the equivalent number of independent samples from p such that
the variance of the Monte Carlo estimators for independent and correlated samples are
equal:

Var f q® _ 52 NN Var(f(q™)) _N
Neg N s2 t
This gives an interpretation for the IAT; t is asymptotically the number of stationary
MCMC samples required to reduce the variance by an amount equivalent to a single
independent sample. Low IATs, or equivalently high effective sample sizes, are there-
fore indicative of good MCMC performance.

Any metric used to compare MCMC algorithms should take into account the com-
putational cost of producing the correlated samples. A popular measure of ef ciency
is the number of effective samples per second of computation, Neg/ T, where T is the
runtime of the MCMC algorithm.

4.1.3 The Gibbs Sampler

The Gibbs sampler introduced by Geman and Geman [34] draws from conditional dis-
tributions of the target distribution. As usual, suppose there exists a target density p(q)
on RP, and decompose the current stateq into d subvectorsq = (qi, ,qq). For this
subsection, we use subscripts to index the subvectors to distinguish them from the it-
erates of the Markov chain, for which we use superscripts. We allow the number of
components in each subvector g; to vary with j = 1,..,d. We adopt the convention of
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Gelman et al [33] of writing q ; for the union of all subvectors not including subvector
g;

q j=(0d -9 1.0j+1-0a)
A Gibbs updatelraws q; from the target conditioned on the current values of the com-
plementary subvectors, i.e.

Setq; = g/where ¢ p(qjiq )

This Gibbs update for the j subvector is reversible with respect to the full target dis-
tribution. To see this, we adopt the small abuse of notation q = (q;,q ), so that the
kernel for the Gibbs update may be written

(
p(aig j) ifa’= g

K(apa®jjopa )= it 06 g
i j

If °; = q j, then reversibility ( follows from the direct calculation

p(afia Dp(a,a ;)= p(a’a®)p(aia’;)

and otherwise both sides of (4.1.4) are 0. Hence the Gibbs update kernel is reversible
with respect to the target. Gibbs updates are therefore Metropolis-Hastings samplers
with a proposal g= p (qﬁq i), which is always accepted.

Algorithm 1 Systematic-scan Gibbs Sampler

fori=1,..,Ndo
forj=1,...ddo

q) g

end for
end for

p(ajat, .o al el )

In order to facilitate moves around the entire state space Q, i.e. to ensure anirre-
ducible Markov Chain, Gibbs updates can be combined in various ways. Firstly, one
could update each subvector in order of index, called systematic-scaGibbs sampling
[49], shown in algorithm .| Since the Gibbs updates are applied consecutively, the ker-
nel for an entire systematic-scan Gibbs sweep is thecompositiorof the kernels for each
Gibbs update. The composition kernel preserves p, but is not reversible with respect to
the target distribution in general even though each Gibbs update is [36]! Alternatively,
the random-scaiGibbs sampler choosesj randomly from f 1, ..,dg, and applies the corre-
sponding Gibbs update for ;. The transition kernel for a random-scan Gibbs iteration
is amixture k = ;1 ;ki(q9q), where ki is the transition kernel for the j™ Gibbs update

chosen with probability | ;. Since eachkl is reversible with respect to p, one can easily
show that the random-scan or mixture kernel is also reversible with respectto p.
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4.2 Resampling using Disintegrations

In this section, we describe a framework for more general conditional sampling. Sup-
pose we resample conditioned on some smooth function of the current state F (qg). The
update is therefore constrained to a surface or submanifold of the state space corre-
sponding to a level set of F . Liu and Sabatti [48], [49] describe such an update in terms
of a randomly selected element of a group of transformations of state space. Geyer [36]
notes that conditioning on arbitrary functions of the state in this way is equivalent to

a regular Gibbs update under a change of variable, i.e. in a different co-ordinate chart.
We will take the approach of Betancourt et al [12], in which the target distribution is
disintegratecbver the ber bundle or foliation de ned by F.

We rst make clear what is meant by conditioning the target distribution on a sub-
manifold. Since lower-dimensional submanifolds have Lebesgue measure zero, the
textbook approach to conditioning using a ratio of probability densities is not well-
de ned. Instead, we adopt the concept of a disintegration [19], [12] to ensure regular
conditional probabilities are well-de ned. As usual, let Q be a p-dimensional smooth
manifold equipped with its Borel sets so that it is a measure space with ma sigma- nite
measure onQ, letF : Q! RXbe measurable, and denote the push-forward of mto R¥
under F by nT , which we also require to be sigma- nite. We state the de nition of a
disintegration from Chang and Pollard [19], adapted to be slightly less general to suit
our purposes here.

De nition 4.2.1. A set of measuresf mjz 2 RKg on the Borel sets of Q is a disintegra-
tion of mwith respect to F if the following properties are satis ed:

1. Eachm, is a sigma- nite measure on the Borel sets of Q suchthatm, (fF & zQ) =
0, i.e. all mass is concentrated on the preimage or ber F 1 (fzg).

2. Forameasurable functionh: Q! R, the map
z

z7!  h(gydm(q)
Q

is a measurable function on RK.

3. Forall measurableh: Q! R,
Z Z Z

hdm= h(g)dm(q) dnf (2) (4.2.1)
Q Rk Q

The integral in ( is well-de ned by the two previous conditions. Chang and
Pollard [19] show that the measures nm}, are probability measures on Q if the pushfor-
ward measure nf is sigma- nite, and thus disintegrations de ne a regular conditional
probability. The function F may be thought of as a projection map of a ber bundle
with total space Q and base space a subset oR¥; the disintegration splits a measure
into an integral over the base space of measures on the bers. Betancourt et al [12] de-
scribe disintegrations in the differential-geometric terms of volume forms on a smooth
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manifold and apply their theory to study Hamiltonian Monte Carlo, in which the rel-
evant ber bundle is de ned by the level sets of the Hamiltonian function; we will
explore this further in Section

In order to understand the relevance of disintegrations for conditional sampling,
we must rst recast some of our earlier de nitions into a measure-theoretic form. The
following generalization of a Markov kernel is adapted from that given by Betancourt
et al [12]. The Borel sets ofQ are denoted by B(Q).

De nition 4.2.2. A Markov kernel k : Q B (Q) ! [0,1] is a map which is a mea-
surable function in its rst argument when any B 2 B(Q) is plugged into its second
argument,

k(,B):Q! [0,1

and is a probability measure in its second argument forany g2 Q asits rstargument,

k(a, ) :B(Q) ! [0,1]

The measure-theoretic generalization of a stationary distribution is given by the
following.

De nition 4.2.3. Letk:Q B (Q)! [0, 1] be a Markov kernel. A measure m: B(Q) !
[0, 1] is an invariant distribution of K if
Z

m(B) =  k(q, B) n(dq) (4.2.2)

for any Borel set B 2 B(Q).

The following result shows that if the elements of the disintegration of mare station-
ary distributions of a Markov kernel, then sois m

Theorem 4.2.4. Let(Q, B(Q), m be a probability space where Q is a p-dimensional manifold
and letf mjz 2 R¥g be a disintegration ahwith respect to the ber bundlE : Q! RXwith
k< p.Ifk:Q B (Q)! [0,1]isaMarkov kernel on Q that preserves eaghi.e.
VA
k(q,U) m(dg) = m(U) forallz2 R¥,U 2 B(Q) (4.2.3)

thenk preservesn

Proof. By the third condition (4.2.T) of the de nition of a disintegration, for any Borel
setU we have
z z z

k(g, U)m(da) = k(g,U)m(dq) nf (dz)
Q Rk Q
Substituting (f.2.3) into the right-hand side of this, we nd

z Y4
K@ Unag = m(U)nf (d2)
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Noting that m(U) = RQ 1y (q)m(g) where 1y is the indicator function for U, and ap-
plying the disintegration (4.2.1) again with h(q) = 1y(q),
z z Z
k(g,U)m(da) =
Q z
= Qlu(CI)rT(dCI): mU)

We see that the condition (4.2.2) fork to preserve mis satis ed. O

o 1y(g)m(a) nf (dz)

This theorem provides another generalization of a Gibbs update; we can sample
from the element m of a disintegration, where F q() = z. Such an update moves

within the submanifold de ned by the level set fqjF (q) = zg, analogously to a Gibbs
update which resamples within the level sets of one or several co-ordinate functions.

4.2.1 Review of Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a sampling algorithm based on Hamiltonian dy-
namics which exploits geometric ideas, and in particular disintegrations of an extended
target distribution. The method was rst developed in 1987 by Duane et al [26], who
called it Hybrid Monte Carla A variant of HMC, the No U-Turn Sampler (NUTS)[41]], has
been successful as the primary sampling algorithm for Bayesian inference in software
packages such as Stan|[18] and PyMC3|[69]. We brie y review HMC and its geometry
here.

Given a target probability measure on a p-dimensional smooth manifold Q, HMC
samples from an extended 2p-dimensional distribution on the cotangent bundle T Q
as de ned in Section P.1.2, which is called phase-spada this context. Although Hamil-
tonian dynamics and HMC can be described without co-ordinates [4], [12], we will as-
sume the existence of a global co-ordinate chart(Q, g) to simplify our exposition, where
co-ordinates take values in the setq(Q) = Q RP. Elements of cotangent space can
then be identi ed with pairs (g, w) of two vectors in RP, where g are co-ordinates for
a point g 2 Q, analogous to the degrees of freedom of a physical system, andw is the
vector of components of a covector in T4Q and is physically analogous to a momentum
vector.

Suppose that the probability measure on Q is pushed forward under the global co-
ordinate map to a p-dimensional Lebesgue density p (q), whose normalization may not
be known. One chooses some log-concave conditional momenta distribution, written
p (wjq), so that the joint distribution on position and momenta is

. 1
p(aw) = p(a)p(wjg) = > exp( H(q,w)) (4.2.4)
where the negative log joint density is called the Hamiltonian or energy function H,
H(g,w):= o W)= lo lo Wi 4.2.5
(a,w) gp(a,w) I—?zpﬁfl gpz( Jq; (4.2.5)
=V(q) =K(q,w)
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and Z is a normalization constant. The individual terms V(q) := logp(q) and
K(g,w) := log p(wjq) are respectively called the potentialand kineticenergy, in direct
analogy to their physical counterparts. The joint distribution (4 also known as the
Gibbs distribution is supported on the product space Q RP.

Starting from an initial position (@, the basic Hamiltonian Monte Carlo algorithm
generates a proposalz® = ( g% w9 via the following two steps:

1. Sample momenta from the conditional distribution wo p(wjgq= q(?). The con-
ditional distribution is usually chosen to be multivariate Gaussian, so we may use
the Cholesky decomposition to draw independent samples from this distribution.

2. With initial conditions q(0) = go and w(0) = w(9, solve Hamilton’s equations

dq _ 1H dwi _ fH

i=1,.. 4.2.6
at - Tw it gq T LeP (4.2.6)
until a xed time T. Set the proposal to be the point at the end of this trajectory
with a negated momentum vector, q°= q(T) and w°=  w(T). In most practical
cases, Hamilton’s equations cannot be solved exactly and a numerical timestep-
ping method must be employed.

The proposal (q° w9 is accepted or rejected using the canonical (joint) target density
p(q,w) exp( H(g,w)). One can show |8] that the Hamiltonian Monte Carlo pro-
posal kernel is symmetric, and hence the acceptance probability ) reduces to the
ratio of densities

0
a= min BLICEULN ,
p (9@, w(0)
s Z&P( H(@w))

i lexp  H(qO,w@) "’

0
min exp H(Q®,w®) H(EECwWY 1

The Hamiltonian H is conserved [55] along exact solutions of the system (4.2.6), that is

d _
FUICORTOIE

t=to

for all to, and so H(qo, Wo) = H(q%w9. Exact solutions of Hamilton’s equations there-
fore yield proposals which are always accepted. However, in practice the numerical
integration of the dynamical system does not exactly conserve the Hamiltonian, and
hence the acceptance probability can be less than 1. HMC samples the joint distribution
(4.2.4) on position and momenta, with the position variables being marginal samples
from the intended target distribution p.

Hamiltonian Monte Carlo only requires the target density p(q,w) up to a multi-
plicative constant, because this is equivalent to an additive constant in the Hamiltonian
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H = logp(g,w). Solutions of Hamilton’s equations ( are invariant under addi-
tion of a constant to the Hamiltonian since (4.2.6) only involves partial derivatives of
H. Thus, the entire HMC algorithm can sample from a non-normalized density.

Since exact solutions of ) preserve the Hamiltonian, the trajectories are con-
ned to the level sets of H;

H Y(E)= f(q,w) 2 Q RPjH(q,w)= Eg

The Hamiltonian can be viewed as the projection map of a ber bundle, with total
space given by Q RP, base spaceR and the level sets of the Hamiltonian making up
the bers. The joint distribution (4[2.4)]admits a disintegration over this ber bundle
whose elements are called themicrocanonical distributionfL2], [8], which are conditional
probability distributions on each level set or ber. Hamiltonian dynamics (4.4.6) dan be
shown to preserve the microcanonical distributions [12]

To fully specify the Hamiltonian and hence the joint distribution on position and
momenta, one must choose a conditional distribution p(wjq) for the momenta given
position. Suppose the conditional momenta given ¢ has a zero-mean multivariate nor-
mal distribution, whose covariance matrix G depends on q in general,

p(pjg) = Normal (pjo0, G(q))

which yields the Hamiltonian

H = %pTG Ya)p + %Iog det G(q) log p(q) %pTG Ya)p + %Iog det G(a) + V()
The term %pTG 1(q)p corresponds to the kinetic energy of a particle on a p-dimensional
Riemannian manifold, whose metric has components G(q) in the (Q,q) co-ordinate
chart [4]. The resulting HMC algorithm is therefore called Riemannian Manifold Hamil-
tonian Monte Carlo(RM-HMC) introduced by Girolami and Calderhead [39]. [They sug-
gest a metric given by the Fisher infomation plus the Hessian of the negative log prior
density,

G(a) = I(a) r Zlogpo(q) (4.2.7)

As we noted in Chapter 8] Proposition 8.1.2]implies that this is the metric in the poste-
rior Bregman geometry for an exponential family likelihood. Alternatively, a constant
metric G(g) M may be chosen, resulting in a at curvature tensor and hence is re-
ferred to as EuclideanHMC.

A similar algorithm is based on Langevin diffusions, called the Metropolis Ad-
justed Langevin Algorithm (MALA) [64], [ 7]} Girolami and Calderhead [39] a|so extend
MALA to the Riemannian manifold MALA (RM-MALA) algorithm. Both RM-HMC
and RM-MALA admit simpli ed versions for which the connection coef cients are set
to zero everywhere, reducing the required computational cost.

Riemannian manifold HMC/MALA algorithms usually outperform their Euclidean
counterparts in terms of effective sample size; see Girolami and Calderhead [39], and
the review by Livingstone and Girolami [50].| For models whose prior or posterior
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density is not log-concave, Betancourt [9] suggests a general SoftAbsmetric for RM-
HMC which is a modi ed version of the Hessian matrix with eigenvalues forced to be
positive. For hierarchical models, RM-HMC with the SoftAbs metric has been shown
to have favourable performance and exploration of parameter space compared to Eu-
clidean HMC [11]. RM-HMC has an interesting use case in sampling from densities on
submanifolds isometrically embedded in RP, for which the algorithm simpli es and is
called Geodesic Monte Car[d6].
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Chapter 5

Sampling using Dually-Flat
Geometry

In this chapter | will describe the main contributions of the thesis; MCMC algorithms
which alternately sample the target distribution conditioned on orthogonal e and m-
at submanifolds. For any given Bregman generator F the algorithms sample on or-
thogonal foliations in the dually- at geometry generated by F, i.e. orthogonal ev-
erywhere in the r 2F metric. The hope is that when F = logp for a log-concave
density p, so that orthogonality is with respect to the Hessian of the negative log den-
sity, orthogonal directions are close to independensampling directions and the resulting
Markov chains have low autocorrelation.

I will suggest two speci ¢ algorithms following this strategy. Firstly, the  Orthog-
onal Gibbs algorithm samples primal co-ordinates conditioned on dual co-ordinates.
Each step of the sampler is equivalent to a Gibbs update in the k-cut mixed co-ordinate
system, with k incremented after each update. When F is the Euclidean Bregman gen-
erator %qTq, Orthogonal Gibbs reduces to the usual deterministic-scan Gibbs sampler.
Secondly, the Orthogonal Gradient algorithm samples along an e-geodesic in the di-
rection of the gradient r F at the current sample, and then samples on the m- at sub-
manifold orthogonal to the e-geodesic.

For a multivariate Gaussian target distribution with Bregman generator F=  logp,
the induced metric r 2F is constant. In this case both of the above algorithms reduce
to sampling analogues of conjugate directionsolvers for symmetric positive-de nite lin-
ear systems. | will show in this chapter and Appendix O that Orthogonal Gibbs and
Orthogonal Gradient respectively become identical to the Gaussian Elimination (GE)
and Conjugate Gradient (CG) solvers with added stochastic terms. These results re-
ect previous work by other researchers on the relationship between sampling and
optimization algorithms, in particular by Fox and Parker [30], |[31], \who have devel-
oped similar, though not identical, conjugate directions sampling algorithms [59], [29].

I will also prove that the Orthogonal Gibbs sampler produces independent samples for
a multivariate Gaussian target distribution with the p-Bregman generator.
| will derive both algorithms from a general procedure for sampling in generalized
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mixed co-ordinates. Theorem [5.1.6 will show that this general algorithm preserves the
target distribution, and hence so do the Orthogonal Gibbs and Orthogonal Gradient
algorithms.

Finally, I will present numerical examples with Gaussian and non-Gaussian tar-
gets for which both algorithms appear to converge to the correct distribution, and for
which the samples appear to be near-independent. The novel samplers are compared
to deterministic-scan Gibbs and the No U-Turn Sampler (NUTS).

5.1 General Recursive Algorithm

We now introduce a class of sampling algorithms which we refer to as Dual Complement
Submanifold Sampler$Suppose as usual thatp (q) is a probability density supported on

a convex subset ofRP, and D is a Bregman divergence on RP. We stress thatDg need
not be the p-Bregman divergence, although we will see that this geometry is often the
best choice whenp is log-concave. The general algorithm and all results stated in this
section are novel contributions to the literature.

As described in the introduction of this chapter, the main idea is to rst sample
the target distribution conditioned onto an e at submanifold, and then on a dual-
complementary m- at submanifold, as illustrated in gure 5.1.1. As we discussed in
Section[4.2, the notion of conditioning on a submanifold is made precise by consid-
ering a disintegration of p over a ber bundle for which the particular submanifold
is a ber. Since the generalized mixed co-ordinate systems of Section induce a
ber bundles given by foliations, the overall scheme we suggest can be viewed as a
Metropolis-within-Gibbs sampler in which primal co-ordinates are resampled condi-
tionally on complementary dual co-ordinates and vice versa.

Figure 5.1.1: Sampling on complementary dual submanifolds. Starting from an initial
point g, the component within the e at submanifold Ea p is resampled to obtain a new
point g° The algorithm then resamples on the dual complement m- at submanifold
Mg g0, Which intersects Ep p orthogonally with respect to the Riemannian metric. This
yields a new sample g°°
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5.1.1 Overview of General Algorithm

Suppose g is the current iterate of the algorithm in primal co-ordinates. We generate
| < plinearly independent vectors in RP, which can depend on q in general, and ar-
range the vectors into the columns of a p | matrix A. The choice of A at each step
determines the speci ¢ algorithm within the class of dual complement submanifold
samplers; two choices for A we will study are the standard basis vectors and the gradi-
ent of the generator at g, r F(q). In all cases we always assumel is much smaller than
p. In primal co-ordinates, the af ne subspace through q spanned by the columns of A
represents anl-dimensional e- at submanifold Eajp where b is the orthogonal projec-
tion, with respect to the Euclidean inner-product, of q onto the kernel or nullspace of
A. The submanifold therefore has the af ne parameterization q°= Aa®+ b in primal
co-ordinates where aranges over a convex subset ofR.

The algorithm rst samples p conditioned on Epp. In Theorem 5.1.1, we will give
an explicit disintegration of p over the general efoliation de ned by A, and show
that we may sample from elements of the disintegration by sampling a(® from the
[-dimensional probability density

pA @) p Aa’+b (5.1.1)

with respect to the |I-dimensional Lebesgue measurel '(da%, and then embedding the
sample into RP via q° = Aa® + b. Then q%is a sample from the conditional distri-
bution ijA’b, a probability measure on RP which is concentrated on the submanifold
Eap. This step requires us to draw from the |-dimensional density ( using some
other sampling algorithm which we refer to as the subsamplerin principle any MCMC
algorithm may be used as the subsampler; we offer some suggestions in Section|5.1.4.
Since | is assumed to be very small, e.g. | = 1, (5.1.1) can be sampled by a black-
box or generic subsampling algorithm that requires no hand-tuning and can produce
independent or near-independent samples after some thinning. This is essentially a
Metropolis-within-Gibbs update to resample the primal component a° of the general-
ized mixed co-ordinates.

The algorithm then samples the target conditioned on the dual complement sub-
manifold to Eap through q® Recall that this is the unique (p |)-dimensional m-
at submanifold through  q° orthogonal to Eap with respect to the Riemannian met-
ric induced by Dg. Given a matrix B 2 RP (P 1) whose columns form a basis for the
Euclidean-orthogonal complement (Im A)?, i.e. such that ATB = 0, the results in Sec-
tion show that the dual complement submanifold is Mg go. This is the set of points
whose dual co-ordinates are the plane Bg®+ d®where g°ranges over a convex subset
of RP ! and d° = Ad® = AA hlis the Euclidean-orthogonal projection of the dual
co-ordinates h= r F(q% of gonto (ImB)? = ImA. Recall that there exists a param-
eterization (8.3.20) of Mg qoin primal co-ordinates, called its primal embedding Lgo(b)
where b 2 RP ', In Theorem , we will give an explicit disintegration of p over
the general m-foliation, for which the element concentrated on Mg 4o can be sampled
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by sampling a density on b,

P (Lgo(b))

pdo(b) det(A G( LdO(b)) A)

and then embedding into RP by evaluating q°%= L4(b° at the sample b®® p 4. This
yields a new sample q°%rom the element of the disintegration concentrated on M B,dO.
The new point q°then forms the next iterate of the chain. In we will discuss
how to explicitly evaluate the primal embedding by solving an  I-dimensional convex
optimization problem.

In order to sample from p 4o, we might consider using a black-box subsampler again.
However, since | is much smaller than p, the (p |)-dimensional probability distribu-
tion p qois likely to be just as dif cult to sample as the full target distribution  p. Instead
we suggest using recursion; apply the same overall algorithm to sample p qo. By Theo-
rem[2.5.8,Mg 4o has a dually- at geometry, and Theorems 3.3.1I]and 8.3.13 respectively
state that b are primally af ne co-ordinates in this geometry with Bregman generator

fo(b) :== F Lgo(b)  d° "Lgo(b)

and p 4o is supported on a convex subset of RP ! namely B Q. Hence all the assump-
tions of the algorithm listed at the beginning of this section are satis ed in its recursive
application to sample p 4o using the inherited Bregman divergence Dg. Inits rst recur-
sive call, the algorithm samples on an |-dimensional submanifold within M g4, which
is e- at with respect to the intrinsic dually- at geometry of Mg g0, but in general is not
e at in the ambient geometry of RP equipped with Dg. The algorithm then recurses
again on the dual complement submanifold Mg, d9; which is m- at when viewed ei-
ther as a submanifold of Mg 4o 0r Q. The algorithm therefore samples on a system of
submanifolds embedded within each other, as illustrated as a tree structure in gure
5.1.2.
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Figure 5.1.2: The system of embedded submanifolds used for conditional sampling in
a dual complement submanifold sampler.

We assumel divides p sothatafter p/ | 1 recursive function calls, the target distri-
bution is |-dimensional. This is a base case for the recursion, in which the subsampler
is called to sample directly from this low-dimensional probability density. The result is
then returned up the chain of recursive calls, and eventually embedded into the original
spaceRP to yield q°°

After stating the relevant disintegration theorems in Section we will discuss
how to evaluate the primal embedding Lqo(b) in Section[5.1.3. Finally, in Section[5.1.1
we will state the recursive algorithm in a general form and prove that it preserves the
target distribution p.

5.1.2 Disintegration over e and m-foliations

The dual complement submanifold algorithm requires us to sample from p conditioned
on e- and m- at submanifolds. This is made precise by the concept of a disintegration
over a ber bundle discussed in Section Here we state explicit disintegrations of a
target density over e and m- at submanifolds, which are novel results.

Consider the rst step of the algorithm, in which p is resampled on an e at sub-
manifold. For | < p, let A 2 RP ! have full rank and fE, g be an efoliation of Q,
where each Ep p, is al-dimensional e- at submanifold spanned by the columns of A in

primal co-ordinates, where b ranges over (Im A)? . As discussed in , theefoliation
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isa ber bundle with projectionmap Fg(q) := B qwhere B2 RP (P ) with ATB= 0,

and B := BTB 'BTis the generalized inverse of B. Furthermore, we have the de-
composition g = Aa+ Bb with b := Bb so that eachEa p corresponds to xing b and
allowing ato vary. Each b selects a different ber, i.e. level set of F g. Then we have the
following theorem, proved in Appendix B[]

Theorem 5.1.1 (Disintegration over e-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on a convex open subsgt RP,andlet A2 RP 'and B2 RP (P ) pe
full-rank matrices with A'B = 0 (p 1- Forb 2 B Q, de ne the measurey, on Q such that
for a Borel setU RP,
VA q — —
my(V) = . P(a)  det(BTB)H (do) (5.1.2)
7 U\ Fet(fbg)

= p(Aa+ Bb) det A B |'(da) (5.1.3)
A (U\Fl(fbg))

whereH! is the I-dimensional Hausdorff measure RA and| ! is the |-dimensional Lebesgue
measure oR'. Then the measurésn, g form a disintegration of the target measiréq)| P(dq)

overthe berbundlEg: Q! RP ! Fg(q) = Bq.

The upshot of Theorem is that for eachb we can sample from m,, which can be
interpreted as a conditioning of p onthe ber F 1f bg, by sampling the a component
from a density proportionalto p(Aa+ Bb).

For the same matrices A and B, we also have the m-foliation f Mg4g, a set ofm- at
submanifolds equivalent to the bers of the projection map F u(q) := A r F(qg). For
eachd 2 R', the ber Mgy = F (fdg) is an m- at submanifold, where d = Ad. The
following theorem gives a disintegration over the m-foliation.

Theorem 5.1.2(Disintegration over m-Foliations). Letp (q) be a Lipschitz-continuous prob-

ability density on an open convex sub§gt RP, A and B be matrices as in Theorem 5.1.1,

andX = r F(Q). Ford 2 A X, de ne the probability measumg on Q such that for a Borel

U RP, ~ . ;

mU) = p@—=BA e i(dg) (5.1.4)
UL P (Tdg) det ATG(q)%A

whereHP !isthe(p I)-dimensional Hausdorff measure B, G(q) := r 2F(q) andF y :
RP ! R!''Fm(q) = A r F(q) for a smooth convex function FRP | R. Then the
measure$ myg form a disintegration of the target measyréq)!l °(dq) over the bers of ;.
Furthermore, we have

z det A B

- k
(V) = B(U\FMl(fdg))p(Ld(b)) det(A G(L(b))A) 7 (db) (.15

wherel P Kisthe(p k)-dimensional Lebesgue measurdRdh K and L is the primal embed-
ding of F ,,*(f dg).
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The proof is also given in Appendix E}]Put simply, we can sample from my by sam-
pling b from the density

P (La(b))

Palb) et (ATG(Ly(D)) A)

(5.1.6)

and then embedding into RP with the primal embedding Lq4(b).

5.1.3 Numerical Evaluation of Primal Embedding

Before stating the recursive algorithm explicitly, we must discuss how to evaluate the
primal embedding Lg(b) of an m- at submanifold. Recall that for matrices A 2 RP !
and B 2 RP (P 1) poth of full rank with  ATB = 0, we decompose the primal and dual
co-ordinates of a point g2 Q as

g= Aa+ Bb h=r F(q) = Ad+ Bg

We consider holding d xed and allowing g to vary; g is then a co-ordinate chart for
the (p 1)-dimensional m- at submanifold Mg aq. In primal co-ordinates g, this sub-
manifold is a hypersurface embedded in RP that is curved in general. We seek a pa-
rameterization q = Lg(b) of this hypersurface. The Implicit Function Theorem
guarantees the local existence of a function ag(b) which gives the a component such
that g = Aay(b) + Bb =: L4(b).

Let us x b and consider how to compute aq(b). Note that differentiating F(Aa +
Bb) with respect to a yields

T _ T TF _ Shs
—F(Aa+Bb)= —_—= Afh

ﬂa.l ( a ) s ﬂa.l ﬂ‘f s |

)r aF(Aa+ Bb)= ATh= ATAd

)r a F(Aa+Bb) a'ATAd =0

a=ag(b)

This is a system of | equations in | variables for a4(b). The equations are equivalent
to the Legendre transform for the restricted convex function a 7! F(Aa+ Bb), where
the corresponding restricted dual variable is AT Ad. It follows that aq is the solution of
the unconstrained convex optimization problem

aq = argmin,, F(Aa + Bb), aTATA? (5.1.7)

=j(a)

This agrees with the expression for the primal embedding given in Proposition 3
The gradient and Hessian of the objective function are respectively given by

r j(a)= ATr F(Aa+ Bb) ATAd (5.1.8)
r 2j(a)= ATr °F(Aa+ Bb)A (5.1.9)
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Note that (5.1.9) is proportional to the denominator in the integrand of (5[1.5)]for the
samea and b. Thus, since computing the conditional density on an m- at submanifold
requires evaluating the Hessian term () anyway, one may as well use Newton’s
method to solve the optimization problem ( because the asymptotic time com-
plexity of the overall sampler is unchanged; the cost of evaluating a log-determinant
and solving a linear system of the same size both scale cubically with the dimension of
the matrix. Since | is assumed to be small, solving the | | linear system at each step
of Newton’s method has insigni cant cost. The entire method for evaluating Lg(b) is
listed as algorithm ]

Algorithm 2 Evaluating the primal embedding Lgy(b) of Mg aq

function MFLATEMBED(b, F, d, A, B, aj)
b Bb . g here is the initial guess for Newton’s method
ag NEwToN(a7! F(Aa+ b) aTATAd, ap)
return Aag+ b

end function

In De nition 3[3.13,(we de nedamap Lq:RP! RP,Lq(q)= Lg B q . Algorithm
is a slight modi cation of 2Which allows evaluation of L.

Algorithm 3 Evaluating the parameterization L4(q) of Mg ag

function MFLATEMBEDZ2(b, F,d, A,ay) . ap here is the initial guess for Newton’s
method

ag NEwTON(a7! F(Aa+ b) a'ATAd, ap)

return Aag+ b
end function

5.1.4 General Dual Complement Submanifold Algorithm

Finally we can state the recursive dual complement submanifold algorithm, which is
listed as Algorithm 4.] The algorithm is implemented as a function R ECDCSSAMPLER,
which takes three arguments:

g 2 RP, the initial iterate of the algorithm.

log p : RP ! R, a function returning the target log probability density up to
additive constants.

F:RP! R, asmooth convex Bregman generator.

The function recursively calls itself on line and so we must allow for the dimen-
sion of each of these inputs to vary. On line | the algorithm calls the following function.
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Algorithm 4 General Recursive Dual Complement Submanifold Algorithm

1: function RECDCSSaMPLER(q, F, log p)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

A  BASISVECTORYQq, F)
a Agq
b q Aa®
a® SusSampPLER(a 7! logp (Aa+ b),a)
q° Aa% b
if DIMENSION (g)== | then
@ o
return q°°
end if
d® A r F(q9
B  COMPLEMENT BAsIS(A)
function H(b)
q MFLATEMBED(b, F,d, A, B, a%
return F(q) d7ATq
end function
function log p go(b)
q MFLATEMBED(b, F,d, A, B, a9
return logp(q) logdet ATr 2F(q)A
end function
bO BTqO
b% RecDCSSamMPLER(DC #, log p )
q°® MFLATEMBED(bOF, d, A, B, a%
return %0

25: end function
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De nition 5.1.3. For q 2 R¥ and a convex Bregman generatorF : RK! R where k 1,
the function B ASISVECTORYq, F) returns some k | matrix A of rank I.

The varying size k of the inputs allows for the B AsisVEcTORSfunction to be called
within recursive calls of the algorithm. For example, the rst time B ASISVECTORSIs
called with arguments g and F, and thus k = p. Within the rst recursive call to sample
b 2 RP ! the BAsisVECTORsfunction is called with k= p |,thenk= p 2l inthe
next recursive call and so on, each time returning a full-rank k | matrix A. The choice
of which matrix the B AsiISVECTORSreturns determines the exact algorithm; choosing
standard basis vectors leads to the orthogonal Gibbs algorithm which we will discuss in
Section, and choosingr F gives the orthogonal gradient algorithm to be discussed
in Section[5.3.

On lines 3|and El] the initial iterate is decomposed into the form Aa+ b. As stated
in Section[5.1.1, thea component of this is to be resampled, which requires some other
MCMC algorithm called the subsampler A subsampler is any function satisfying the
following.

De nition 5.1.4. Letlogp : R' ! R be a log probability density function up to an
additive constant. Then a subsampler, written SuBSAMPLER(log p, ), is a Markov
kernel which preserves p,i.e. ifa p thentheresult B SusSampLER(logp,a) is
also distributed accordingto p.

Thus lines 5 and[g use the subsampler to resample thea component of ¢ from the
relevant density (, yielding an updated sample q° Note that the optimal choice
of subsampler will undoubtedly depend on the overall target distribution  p, but we
can offer some generic suggestions. After several nested recursive calls, the targetp is
de ned by repeated applications of (. Thus subsamplers that rely on derivative
information of the log-density such as Hamiltonian Monte Carlo or MALA will require
expensive derivatives of log-determinants of the Riemannian metric, and so we sug-
gest using derivative-free subsamplers. Furthermore, in general ( is not known to
be log-concave in b, and there is little we can easily infer about its scale to tune any
parameters of the subsampler such as a step-size. Fol = 1, p is a univariate den-
sity, for which a reasonable choice might be the Adaptive Rejection Metropolis Sampler
(ARMS) of Gilks [38], which can be derivative-free and does not require log-concavity
of the target or hand tuning of parameters. The slice sampler [56] also satis es these
properties. For k > 1, the T-walk of Christen and Fox [20] is a black-box option that
may offer reasonable performance.

If the input q has dimension |, then the base case of the recursion has been reached
and caught by the if-statement on line 7] The new sample %= qCis returned.If the
dimension is larger than |, then the algorithm recurses on the dual complementto Epp.
This requires a choice of basis for the dual complement, given by the following function.

De nition 5.1.5. For A 2 R¥ !, ComPLEMENT BAsIS(A) returnsa k (k1) matrix B
which has Euclidean-orthogonal columns, has rank k |, and satises ATB = 0, (K 1)-
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For any set of vectors, we can always nd a Euclidean-orthogonal set spanning the
same space, and thus the condition of Euclidean-orthogonal columns is not restrictive.
The complement basis B initialised on line e nes the primal co-ordinates b for the
dual complement, in which the log target pqo and Bregman generator # of the dual
complement are de ned.

Since the aim is to resample from myp from Theorem , the algorithm de nes a
new target log density function on line 17 Jhich evaluates p qo given in (5.1.6). This
requires evaluating the primal embedding Lgo with a call to MF LAT EMBED. Similarly,
the inherited Bregman generator for the dual complement is de ned on line 18, Bising
the result from Theorem also evaluates the primal embedding. We assume that
the gradient and Hessian, i.e. the inherited dual co-ordinates and metric, are evaluated
using their expressions given in the Theorem.

Finally, the algorithm calls itself recursively, passing the b co-ordinate of q®as the
initial iterate, the inherited Bregman generator and log p g as the target log density. This
returns a new sample b%? which is embedded into RP on line P3|as q®°the nal result
of the algorithm.

The following novel theorem shows that Algorithm 4 E}eserves the target distribu-
tion.

Theorem 5.1.6. Let F andp respectively be a Bregman generator and a probability density
onRP. Suppose | divides p and tiBasisVECTORSand COMPLEMENT BASIS functions are
well-de ned for inputs of dimension & 1,2l,..,p. Ifq p, algorithm[4 applied tp returns

00
q p.

Proof. We show the result using induction on the dimension p of the target distribution
and Bregman generator. Sincel divides p, we write p= nl forsomel n pand
argue by induction on n.

Base case.Suppose the dimensions of the target distribution and initial iterate q are
both p = |, i.e. n = 1. Then the matrix A on line E]is asquarel | matrix of full rank.
Thusa= A 'gandsob = Oonline EI The subsampler on line @therefore has a target
density argumentde ned by a 7! p(Aa), i.e. the pullback p# " of p by the linear map
A or equivalently its pushforward by A 1. Sinceq p,thena(® = A 1qis distributed
according to the same distribution p* g By de nition, the subsampler preserves this
distribution, implying a® pA " and hence in Iine@qoz Aa is distributed according
to p. Theif statement on line [7]is triggered and the algorithm returns q°°= ¢° p.

Induction step. Suppose that the statement is true when the dimension of the target
distribution, and hence the dimension of q,is p = Ingforsome np 1. We refer to this
assumption as the inductive hypothesis.

Consider the algorithm with input target distribution  p and initial iterate q both of
dimension I(ny + 1). By Theorem([5.1.1, in particular (5.1.3), lines|$ to  must preserve
N}, the element of the disintegration over the e-foliation concentrated on the ber con-
taining g, i.e. such thatb = Fg(q). By Theorem:@, the same lines must therefore
preserve the overall target distribution p,andsoq” p.
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Note that Aisal (np+ 1) | matrix, and thus the dimension of the density p 4o de-
ned in line s I(np+ 1) | = Ing. Thus the recursive call of the function in line
must preserve p 4o by the inductive hypothesis. Thus by Theorem lines
de ne a random update q° 7! q°which preserves my, the measure in the disintegra-
tion over the m-foliation concentrated on an m- at submanifold containing q° Hence
Theorem implies the update also preserves the overall target distribution p, and
soq® p. O

Iterative Dual Complement Submanifold Algorithms

If implemented as-is, Algorithm 4@5 severely computationally inef cient. The call to
MFLAT EMBED at each level of recursion requires the solution of progressively nested
optimization problems, since Hitself is evaluated by a call to MF LAT EMBED with dif-
ferent arguments. Furthermore, the algorithm is linear recursive[l], meaning that its
execution requires temporary storage of data proportional to p at each level of recur-
sion; for example, the representation of inherited Bregman generators and conditional
target distributions, and the variables d®and A must all be kept in memory at each re-
cursive call. For large enough p, too many instructions will be pushed to the computer’s
call stack and cause a stack over ow. Clearly a different implementation is required.
For each of the Orthogonal Gibbs and Orthogonal Gradient algorithms, we will state
a more ef cient iterative implementation derived in Appendix C yhich is equivalent

to the recursive implementation, i.e. produces the same samples given the same input
arguments and pseudorandom seed.

5.2 Orthogonal Gibbs Sampling

We now introduce a special case of the general algorithm called Orthogonal Gibbs .
Suppose we choose the B\sisVEcCToORsfunction to returnthe rst | columnsofthe p p
identity matrix, where pis dimension of the input ¢ to the BAsISVECTORSfunction;

0 1
100
010
A = BasisvecTorg(q F)= 1, ;= B0 0 1 _ 01' | (5.2.1)
00O (p 1)1
| —{z }

| columns

and choose the complement basis to be the remaining p | standard basis vectors of
dimension p,

0
B= COMPLEMENTBASIS(A) = | G (5.2.2)
(P 1) (p 1)
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Sinceq = Aa+ Bb, as we remarked in Section[3.3.3, we recover the standard mixed
co-ordinates of Section[3.3.1. In particular,

a=gq:=(q"..q9) b=as:=(d""....0°)
d=h ,:=(h%..hY g=hs;:=(h'"1 ... hP)

Let us reinterpret algorithm {}Nith this choice of A and B, for which A = AT and

B = B'. Firstwe sample a = q | proportionally from the target density, with  b%= q(o)
xed. This is equivalent to a Gibbs update for the block q |, sampling conditioned on
the current value of the complementary block q-,. We then compute the rst | dual
co-ordinates for the updated state,

00 11 0 O0 11,
©) (1)

d°= 1 = ATr F@E@" 1AA = @F @" AA
o
This dual block is distributed according to the conditional distribution of  h | given the

primal co-ordinates q(>0|). Thus, the rst step of the algorithm is equivalent to a block-
Gibbs step in the mixed co-ordinate system.

The second step of the algorithm is the recursion; we call the algorithm again with
p! p |, and inherited Bregman generator and target distribution respectively given

by

F(d>1) = F(a>1)) h TATLn , (g>1) (5.2.3)
Ln , (0>
P (gs1) P Lo, (G) (5.2.4)
det G | y; Ln, (951)

where Gy 13(q) = ATr 2F(qg)A is the upper-left | | block of the metric, and Ly, | (0>1)
is the co-ordinate embedding of the m- at manifold M, described in Section[5.1.3. This
recursive call of the algorithm returns a sample from the conditional distributionof b =

0> given h(l), it is the complementary Gibbs update, sampling the primal -, block
given the Iatest values of the dual components h . In conclusion, the algorithm with
this choice of A and B is simply deterministic-scan block Gibbs in mixed co-ordinates,
working with blocks h | and g-, using recursion to sample one of the conditionals. For
this reason, we refer to this algorithm as Orthogonal Gibbs , where orthogonal refers
to the fact that the algorithm moves on Riemannian-orthogonal submanifolds.

The recursive form of the algorithm is inef cient for most target distributions. In
Appendix €| we derive an equivalent iterative version of the Orthogonal Gibbs sam-
pler, listed as Algorithm E}]The algorithm iterates over = p/ | blocks of components
of g, each of sizel. At the j iteration, the j! block of q is resampled conditioned on
the 1,..,j 1 blocks represented in dual co-ordinates, and the j + 1,..,n blocks in primal
co-ordinates. This conditional distribution has a target log-density computed in the
function SUBTARGETGIBBS.
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Algorithm 5 Orthogonal Gibbs Sampler

1: function SUBTARGETGIBBYZ, q, h, |, F, logp)
22 a NEwTON(a7! F & 2z Qpj+1yp) a'h,ap := qu 1)

3: qO al z Afji+ 1:p]
4:  return logp(q9) logdet G; ¢ 1. ¢ 1i(a9
5. end function
6:
7: function ORTHOGONAL GiBBS(q(©, F, log p)
8 p DiMeENsION (q9)
oo n F . Calculate number of blocks. We assumek divides p.
10. z®  SuBSAMPLER(z 7! logp  z; QE8)+1) ol 'qﬁ))ll)
. (1) (D). 40
1 z q[<l+|1) ol
- (1) IE (oD
12: h ﬂq(q ) -
13:
14: for j= 2,..,ndo
15: z( SUBSAMPLER(z 7! SUBTARGETGIBBS z,qU D, hi D j Flogp |,
()
A D1+ 141 _
16: al)  Newton(a7! F a z; ngll)p] athli D ay:= qu:(jl)l)I])
17 g . 20 qﬁllp]
18 A hO D fE(qU
' (q ) i=(j DI+1

19: end for
20:  return g™
21: end function

Figure shows the iterates of two runs of the sampler for a bivariate target dis-
tribution p using the posterior Bregman geometry F(q) := logp(q). The target
distribution is the conjugate prior on the natural parameters of a univariate normal
distribution. Blue lines show the e at submanifold, or e-geodesic, sampled on when
conditioning on primal variables. Red lines show m- at submanifolds or m-geodesics
sampled when conditioning on dual variables. Note that the m-geodesics are nearly
straight, suggesting that the Bregman generator is nearly quadratic, i.e. the distribu-
tion is close to a multivariate Gaussian.

The following novel proposition further justi es the name  Orthogonal Gibbswhen
the Euclidean geometry is used, the algorithm reduces to the usual Gibbs sampler.

Proposition 5.2.1. For the Euclidean Bregman generatdqf := %qTq, the Orthogonal Gibbs
sampler reduces to the block deterministic-scan Metropolis-within-Gibbs algorithm, where the
subsampler is used to sample the full conditionals.
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= 1.00F Figure 5.2.1: Orthogonal Gibbs sampling
from a bivariate target distribution.
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Proof. Note that for the Euclidean Bregman generator, r F(q) = g. Thus qﬂ):jl] = h( for
all j = 1, ..,p, and the optimization problem solved on lines 2 and 16 simply reduces to
0)

a = g

Furthermore, since the metric in this case is simply the identity G 1, p, the log-
determinant on line 4lis zero. Thus the SUBTARGETGIBBS function call on line {5]re-
turns i 1 -
i j
9P A i 2 Ui 1
This is the logarithm of the conditional density of the " block given all the comple-
mentary set of variables up to an additive constant independent of z, since
- S — 40D — 40D
P Qig p+250 = 21 A 90 = Y gy G+ 200 = i+ 1)
(Y (Y
P A pir 2 i+ 1
Therefore the subsampler samples from this conditional density, and hence the algo-
rithm is equivalent to the deterministic-scan Metropolis-within-Gibbs sampler. O

5.2.1 Computational Cost

Let us consider the computational cost of the Orthogonal Gibbs algorithm, i.e. Algo-
rithm @ Atthe jiterationfor j 2, the algorithm requires the following computation:

Evaluation of the S UBTARGETGIBBS function. This is called a number s; of times
by the sub-sampler, and each call involves a Newton iteration for a I(j 1)-
dimensional convex optimization problem, a log-determinantofa I(j 1) (]
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Operation Size at iteration j Number. of ev_alua_ltions
at iteration |
F dej
log p S
r F (j 1)l components S;d;
r F | components 1
r 2F (G DI (j 1) submatrix s;dj
Newton inner-solve | (j 1) (j 1)l linear system S;d;
log det (G DI ( DI matrix S;

Table 5.2.1: Breakdown of computational operations required for the Orthogonal Gibbs
algorithm. Here s; is the number of times SUBSAMPLER calls SUBTARGETGIBBS at iter-
ation j, and d is the maximum number of Newton steps at iteration j.

1) sub-matrix of the Hessian of F, and at least one evaluation of the target log-
density.

Another Newton solve on line 1@—Iowever, this Newton solve has already been
performed within S UBTARGETGIBBS, and can be cached to improve performance.

Online the j™ block of dual components is computed, which are | components
of the gradient vector.

A breakdown of these computations is shown in Table Assuming the Hessian
matrix r 2F is dense at each iteration, the most expensive operations for large p =
nl are the log-determinant and the linear solve at each Newton step, both of which
scale cubically with the dimension of their inputs. Suppose then that the cost of the
ji" iteration of Algorithm 5|]s bounded above by K(j 1)3I® FLOPs for some constant
K. Here K depends on s; and d;, which we assume are bounded as n increases. Note
that for j = 1 there are no Newton solves or Hessian evaluations, and the cost of the
iteration is dominated by s; evaluations of the target log-density, which we assume is
negligible compared to later iterations. Then the total number of FLOPs is bounded

above by

n 1 3
= Cren 12

n
; 313 — 3
KG D%°=KI® ;

=1 =1

Sincen = p/ |, this implies that the asymptotic cost of Algorithm 5[5}; O(p*) asp! ¥.

5.2.2 Relationship to Gaussian Elimination

There is a natural link between our suggested algorithms and conjugate directions solvers
for linear systems. In particular, when the Bregman generator is a quadratic form so
that its Hessian matrix is constant, the notion of orthogonality with respect to the Rie-
mannian metric is clearly equivalent to conjugacyi.e. orthogonality with respect to an

131



inner-product weighted by a symmetric positive-de nite matrix. Updating the sam-
ple at each iteration of the general Algorithm 4 s then equivalent to resampling the
coef cients in a mutually conjugate basis, analogously to the iterations of a conjugate
directions solver.

One can employ a modi ed Gram-Schmidt process to transform any basis of RP
into a mutually conjugate basis; see Theorem[D.0.2 in Appendix P] In particular, one
can transform the standard basis in RP into a conjugate basis for which the correspond-
ing conjugate directions solver is the Gaussian Elimination algorithm applied to the
matrix used to weight the inner-product [40, [76]! Since the Orthogonal Gibbs sampling
algorithm resamples in the direction of the rst standard basis vector at each level of
recursion, one might therefore suspect a link with Gaussian Elimination. As stated ear-
lier, the relationship between sampling and optimization has been studied by previous
authors such as Fox [30], but to our knowledge this is the rsttime a sampling analogue
of Gaussian Elimination has been presented.

Suppose that in Algorithm ?f]the target distribution is a multivariate Gaussian of
the form

q Normal L *w,L ! (5.2.5)

and suppose we choose the posterior Bregman geometry, so that the Bregman generator
is given by

1
F(q) = Equ_q q'w (5.2.6)

Note that (5.2.5) is the form of the Bayesian posterior distribution from Section In
Appendix I@we show that under this choice of target distribution and geometry, Algo-
rithm E]reduces to a Gaussian Elimination Samplelisted as Algorithm @ The algorithm
produces an independent sample q(P) from the target distribution and the solution mof
L m= w. Note that lines @- apply elementary row operations to L, w and VT; this
transforms the linear system L m= w to its reduced row echelon form, i.e. making it
upper-triangular.

The following theorem, proven in Appendix D] $hows that the algorithm also pro-
duces the Cholesky factor of L as a biproduct.

Theorem 5.2.2. Let L%and V result from the application of Algorithlﬁ] 6 to a symmetric

positive-de nite matrixL 2 RP Pandw 2 RP. Let D be the diagonal matrix whose diag-

onal is the diagonal df ° The lower-triangular Cholesky factor Llof i.e. suchthat = LLT,
is given by
L= LO'D 2

In fact, the algorithm produces independent samples from the target distribution
after p iterations, as the following corollary shows.

Corollary 5.2.3. The nal iterateq(P’ of the Gaussian Elimination sampler, Algoritl‘@ 6, is
stochastically independent of the initial iterafe) and is a sample from the target distribution
Normal L ‘w,L .
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Algorithm 6 Gaussian Elimination Sampler

LV 1, . SetV to identity matrix
2. for j=1,.,pdo

3 vl v, . Column j of V
4. z; Normal 0,1/Lj

s g w o Lilgd YLy

6 g g D+ z g v()

7 i) ml D+ Wj/ ij v

8: fori=j+1,.,pdo . If j = p, the for loop is skipped
9: Cij L ij/ L i

10: fors=1,..,pdo

11: Lis Lis Cij L is

12: Vi Vi Cij Vsj

13: end for

14: W;j W;j Cij W;j

15: end for

16: end for

5.3 Orthogonal Gradient Sampling

The second speci ¢ algorithm we suggest is inspired by the conjugate gradient method
in optimizaton [73], [40]. One can imagine sampling conditionally on an e-geodesic
whose tangent vector is proportional to the gradient of the Bregman generator at the
current sample, and then sampling on the complementary dual submanifold to the
geodesic as per Algorithm #| We therefore suggest

A = BAsISVECTORY(q,F) ;= r F(q) (5.3.1)

and B any orthonormal basis for the Euclidean-orthogonal complement to the span of
this vector, e.g. the orthonormalized rst k 1 linearly-independent columns of

I « r F(g)r F(q)T (5.3.2)

where Kk is the dimension of g.

Note that in (5.3.1)), we take the gradient of the Bregman generator rather than the
target log-density. This choice is made to avoid taking gradients of log-determinants of
the metric, which arise in the target log-density at nested levels of recursion in Algo-
rithm E] If we use the posterior Bregman generator, i.e. take F(q) = r logp(q), then
we can include derivative information about the posterior without differentiating log-
determinants, since the gradient of the inherited generator F is given in Theorem
asBTr F,i.e. the projection of the gradient onto the Euclidean-orthogonal complement
to the span of r F.
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We call the resulting algorithm Orthogonal Gradient , using the term orthogonal
to emphasize the local Riemannian inner-product, rather than conjugate which typ-
ically refers to a globally-constant inner-product. In Appendix Cljve show that the
sampler may be implemented in an iterative form, listed as Algorithm 7.[]The initial

state (9 must satisfy r F q(© 6 0, sothatr(® 6 0.

Algorithm 7 Orthogonal Gradient Sampler

1. function SUBTARGET(a,r,d, A, c, F, logp, ag)
ar+ c
MFLAT EMBED2(F, b° d, A, ag)

2:

10:
11:
12:

13:
14:
15:

16:
17:

© o N o T A

bO
qO

18:

19:

20:

21:

22:
23:
24

return logp(q®) logdet ATr 2F(q)A
: end function

. function ORTHOGONAL GRADIENT (q(?, F, logp)

p  DiMENSION (q(?)
r(l) r F q(o)
a® 7O 1T
RO RN G E
a  susSampLER(a 7! logp ar® + ¢  a0)
q®  a®r® 4
b
& r@OTrF q® /07O
AD
forj=2,..,,pdo
() Ald r F qi D
) rOrmT G 1
¢ o oo ©
ag'> AGD g0 D
al) LORFOREYRTORIT0)
al) susSampLER(a 7! SUBTARGET(a, r),dl D Al D ) F Iogp,ag)),ag))
b@  alr® + ¢ . Update b in the direction of R()
q)  MFLATEMBED2(F, b@, dli D Al ”,aé‘)) . We already did this

embedding in gl - can be re-used

25:

26:

27:
28:

o

AW
end for
return g

ORI ORI RO

AG D @) . Concatenater() onto right side of Al D

29: end function
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5.3.1 Relationship to Conjugate Gradient Solver

As we remarked in Section p.2.2, the dual complement submanifold samplers reduce
to sampling along conjugate directions under the Euclidean Bregman generator (.
For the Orthogonal Gradient sampler with this geometry and the multivariate Gaus-
sian target distribution (§.2.5), we show in Appendix O that the Orthogonal Gradient
sampler reduces to a Conjugate Gradient (CG) sampldisted as Algorithm @

Recall that each step of the conjugate gradient method minimizes the quadratic cost
function ( along a conjugate direction produced by a modi ed Gram-Schmidt pro-
cess applied to the negative gradients, i.e. residuals, of the cost function at each iterate
[40], [73]. Similarly, Algorithm 8[produces conjugate vectors by applying modi ed
Gram-Schmidt to each iterate, and samplesalong the new conjugate direction at each
step. The sampler and solver are illustrated for a two-dimensional example in gure
[5.3.1. In particular, if we replace line 8Jin Algorithm 8]With

| () v gl Dy G,

i.e. removing the randomly sampled variable z(), then we would recover exactly the
Conjugate Gradient solver for the linear system L m= w.

Since the Conjugate Gradient solverminimizes along the conjugate directions, the
gradients or residuals are mutually Euclidean-orthogonal, i.e.

gTg =0 for i,j2f1,.,pgsuchthati6 | (5.3.3)

where g := Lq® wforall i = 1,..,p; see Saad|[68]. This fact allows ef cient im-
plementations of the Conjugate Gradient algorithm, since only one conjugate direction
needs to be stored at each stage. For our sampler Algorithm , equation ) no
longer holds because the algorithm does not optimize the cost function along conjugate
directions. We must therefore orthogonalize the gradients by a Gram-Schmidt proce-
dure on line 12| and the sampler requires storage of three vectors g, r), v while
this is less ef cient than the Conjugate Gradient solver, which requires storage of two
vectors, we note that this is a large improvement over storing all the conjugate vectors
fv@, .. vPg.

Conjugate Gradient sampling algorithms have been studied previously by Fox and
Parker [59] and also in separate works by Fox [29], [30]. There is a difference between
the algorithms introduced in these works and Algorithm 8;e CG sampler suggested
by Fox and Parker [59] samples from the subspace spanned by the conjugate vectors
produced by the usual CG solver, i.e. using the gradient at the solution of the line-
search at each step such that 3) is satis ed, and so the conjugate directions are
entirely deterministic when conditioned on the initial state. This contrasts with Algo-
rithm @ which uses the gradient at the current sample gl D to construct stochastic
conjugate directions. Similarly, Fox [29] suggests yet another conjugate directions sam-
pler in which the convex function F and right-hand side w are essentially modi ed at
each iteration, such that in our notation

. 1 T
Fl(g)= Sa'La w g
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Future work could involve generalizing this idea to non-Gaussian targets, in which the
Bregman generator F is updated in an analogous way.

Algorithm 8 Conjugate Gradient Sampler

1: function CGSampPLER(qQ, L, w)

2: g(o) L q(o) W

3 v g©

PR 6 g©

5: forj=1,..,pdo

6 r@ O Ty

7: 0 Normal (0, 1/r M)

8 KOO RV ORP N0

9 g gl D+ Oy

10: g gl D+ OLVO

11: d OROIETORF0)

12- ((*D 14+¢ O 1 OLYO
13: v+ ) DT ) )y

14: end for
15.  return (P
16: end function
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Figure 5.3.1: The Conjugate Gradient solver (left) and sampler (right) in two-
dimensions for w = 0 and L a correlation matrix with variance sf = Ly = 1.0in
the x-direction, sg = Lo, = 1.0 in the y-direction and correlation 0.95, and the same
initial iterate q© = ( 1,2)T. The rst conjugate direction v(V is simply the residual
L q(@ at the intial iterate in both cases, but the step length is chosen differently; the
solver minimizes a one-dimensional cost function at each step and hence moves deter-
ministically, whereas the sampler makes stochastic moves along the search directions.

Early Termination and Preconditioning

The Conjugate Gradient solver nds the solution in fewer than p steps when L has
repeated eigenvalues [40]. For the Conjugate Gradient sampler, this property translates
into pathological early termination which we will discuss here, following the discussion

in Fox [29].

De nition 5.3.1. Letg 2 RPbeavectorandL 2 RP P be amatrix. The j-order Krylov
subspacegenerated by L and g is

K;(L,g) := Sparfg,Lg,.,L¥ gg

Clearly Kj(L,g) Kj+1(L,g) forany j 1. One can show thatif L hasm p
distinct eigenvalues, then the dimension of the Krylov subspace of any order is at most
m [29], [68]. The relevance of the Krylov subspaces is made clear by the following
proposition.
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Proposition 5.3.2. For j= 1,..,p, the J" iterateq(?) in Algorithm is in the j-order Krylov
subspace generated byandg(?, af nely shifted byq(®;

g 2 @ + Kj L ,g©
Proof. Clearly, line E]implies that
q® 2 q© + sparfv®, . vi)g
and hence the result follows if we can show

Sparfv®, . vlg K ; L,g© (5.3.4)

We will show this by induction. For j = 1, we haver® = v = ¢ and clearly

(5.3.4) holds.
Assume an inductive hypothesis that the following both hold for some | = jg 2
fi,..p 1g,
Sparfv®, . ,vllg K ; L,g©@ (5.3.5)
Sparfr®, ,fg K ; L,g© (5.3.6)
Line il2with j = jo states that

rlotd) .= 14 d, ro) | (o) y(io)

By the inductive hypothesis, the vectors v(io) and r(io) are elements of the Krylov sub-

spaceK,(L,9©). Thus, vio = jS“:Ol usL 5g(@ for some coef cients f usgj; 1, and hence
_ jo 1 jo 1
Lvid = uwsLsg@ = Lt g@ 2K ., L,g@
s=0 s=0

It follows that rlo*D 2 K, ., L,g© |, which shows (5.3.6) holds for j = jo+ 1. Finally,
line L3 states that

V(j0+ 1) = r(j0+ 1) r(j0+ 1)Tg(10)/ r(JO)l 0)] V(jO)

which implies vUe*D 2 K; .1 L,g@ . Thus by the principle of induction, (5.3.4) holds
forall j = 1,..p and the result follows. O

SupposelL hasm < p distinct eigenvalues. Then Proposition implies that the
nal iterate q(P) is constrained to a m-dimensional subspace, and hence the full state
space is not properly explored. In particular, during the execution of the algorithm we
will nd v = oforall j > m.
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The simplest example of this pathology, noted by Fox [29], is the case when L is the
p pidentity matrix. In this case L has p repeated eigenvalues all equal to 1, and a
simple calculation shows v(@ = (@ = 0.

The problem can be addressed by a two-sided preconditioning For a non-singular
matrix U, note that the linear system L m= w is equivalent to

Ry Y = by

WeletL := UTLU and w := UTw. One can then solve the systemLz = w for z,
and recover m= Uz. In the sampling context, for q Normal L w,L ! we set
x= U 1q, sothat

E(x)=U 'm=U uz=1L w
Cov(x)=U L U T=u WuLUu™U T=1L

The Conjugate Gradient sampler can then be used to samplex Normal L ‘w,L !,
since L is clearly symmetric positive-de nite. The idea is to choose U such that L has
p distinct eigenvalues so that the algorithm successfully completes all iterations, and
then setq = Ux for each sample x.

5.4 Numerical Experiments

In order to con rm the theoretical results for the two novel algorithms and assess
their performance, numerical experiments on various models are presented here. The
novel algorithms presented in this chapter were implemented in a Julia package called
GenericBayes.jl [60]. The package allows running the algorithms on arbitrary poste-
rior distributions and Bregman generators. All numerical experiments were run on an
Intel i5-3470 CPU clocked at 3.20 GHz with 8 GB of memory.

5.4.1 Multivariate Gaussian Target

Our rst experiment will demonstrate that Algorithms 6 anid 8 Hdth converge to the cor-
rect target distribution and the samples are independent. Recall that these algorithms
sample from a multivariate Gaussian distribution with mean L 'w and covariance ma-
trix L 1,

q Normal(L w,L 1)

We selectL and w based on an example given by Fox [29]. LetU be ap p upper-
triangular matrix with ones on the diagonal, and Uniform (0, 1) random variables on
the super-diagonal. We then let w be a p-dimensional vector of ones, and L := UTU.
Clearly this choice of L is symmetric positive-de nite.

The Gaussian Elimination and Conjugate Gradient samplers were both used to
sample from this target distribution, with dimension p = 10. Both samplers were
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started from a randomly chosen position in the unit hypercube, i.e. Uniform (0, 1) for
alli = 1,..,10. For both algorithms, each sample is obtained by taking the last iterate
of the algorithm, where the initial iterate is the previous sample. Figure 5hows
the convergence of the sample meap and covariance towards their respective true val-
uesL wandL 1 Thereisaclear N-convergence in the 2-norm for both quantities
when computed with either algorithm, as expected for MCMC. This suggests both al-
gorithms are converging to the correct target distribution.

Table[5.4.1 shows the minimum effective sample size and the equivalent maximum
integrated autocorrelation time for both samplers with N = 10° samples. Clearly both
samplers have a maximum IAT close to 1, implying near independent samples. This
con rms our analytic result in Corollary 5.r the Gaussian Elimination sampler,
and hints at the same independence result for the Conjugate Gradient sampler.

Q
\ ——oe— Conjugate Gradient

o Gaussian Elimination

& —oe— Conjugate Gradient

o Gaussian Elimination

100 r

Q

—

OI
—
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~

10 } * 10° 10 10 ? N o
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L,
T

no

Sample Mean Error (2-norm)
S

Sample Covariance Error (2-norm)

10 10 10 10 10° 10
Number of Samples Number of Samples

Figure 5.4.1: Error in the 2-norm for the sample mean and covariance for both samplers.

Sampler Effective Sample Size | Integrated Autocorrelation Time
Gaussian Elimination 992764 1.00729
Conjugate Gradient 992818 1.00723

Table 5.4.1: Minimum effective sample size (ESS) and the equivalent maximum inte-
grated autocorrelation times (IATs) for both sampling algorithms. The number of sam-
plesN = 10°.
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Circular Conditional Autoregression

The next example is another multivariate Gaussian distribution from Held and Rue
writing in Chapter 13 of [32]| For f 2 [0,1) andk > 0,de nethe p p precision matrix

0, £l
f 2 f
) f o2 f
L =3 ..
f o2 f
f 2 f
f fo2

The resulting multivariate Gaussian distribution g  Normal (0,L 1) is a conditional
autoregression (CAR) model with a periodic boundary. The precision L is a circulant
matrix [67], for which there is a simple formula for the eigenvalues yielding

lj=k 1 fcoszzJ , i=1,..,p

Notethat | = | , (forany k= 1,.,p 1, andsolL has repeated eigenvalues. This is
shown in Figure §.4.2|for p = 25.

No Preconditioning Preconditioned
3.5 F .... ..
oo 35 F
3.0 | oo oo
3.0 F
25 | oo ...
27 oo 225 ¢ o0’
g : ¢
g 20 oo g 20 0®
o0 o0 o
H 15 Y M o5t 0®
o0
(616)
1.0 1.0 | 00®
(0)o) ..
05 L oo 05 F°®
’ ... 1 1 1 1 1 ° 1 1 1 1 1
5 10 15 2 25 5 10 5 2 25

Figure 5.4.2: Left: Eigenvalues of the CAR precision matrix in increasing order for p =
25,f = 0.8 andk = 2. Note the staircase pattern indicating pairs of equal eigenvalues.
Right: Eigenvalues of the preconditioned CAR precision matrix; all eigenvalues are
now distinct.
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As expected from our discussion in Section , Algorithm @terminates early after
14 iterations when sampling this target distribution with  p = 25. The problem is allevi-
ated by a preconditioning L = UTL U, where U is the matrix de ned above, i.e. ones on
the diagonal and Uniform(0,1) random variables on the super-diagonal. The Conjugate
Gradient sampler successfully completes all p = 25 iterations with this preconditioner,
and the samples can be transformed back with g := Ux.

5.4.2 Generalized Linear Models
Logistic Regression

The next numerical experiment uses a logistic regression model from Chapter 10 of
McElreath [53]. The full probability model is

yi  Bernoulli (I )

log 11

= b1Xj1 + b2Xi2 + gacTor(i]

gs Normal (0,10 for all s=1,..,7
b:;  Normal (0,10
b, Normal (0,10

Here gacror(i] represents one of seven different offset variables g3, ..,g7, each corre-
sponding to a particular individual who undergoes multiple trials. For trial i, the vari-
able ACTOR]i] is the individual taking part in the trial. There are therefore 9 param-
eters in total; g1,..,97, b1, bo. The logistic regression is used to model an experiment
intended to assess the social characteristics of chimpanzees. After a suitable encoding
of the experimental data, the design matrix X has 504 rows, each representing a trial in
the experiment, with 9 columns each corresponding to a parameter. The data are such
that every element of the design matrix is either 1 or 0, so no scaling or centering is
necessary. The model ts the framework of a Generalized Linear Model with canonical
link function discussed in Section

As noted by McElreath, the posterior is skewed and therefore provides an exam-
ple of a target distribution which is not close to a multivariate Gaussian. We ran the
Orthogonal Gradient and Orthogonal Gibbs samplers on the model, and for compari-
son also ran the usual deterministic-scan Gibbs sampler and a Julia implementation of
the No U-Turn Sampler (NUTS). All of the sampling algorithms sampled N = 10,000
samples, starting from the origin q(® = 02 R®. For Gibbs, Orthogonal Gibbs and Or-
thogonal Gradient, the univariate slice sampler outlined by Neal [56] was used as the
subsampler for drawing from conditionals. A small amount of hand-tuning the param-
eters of the slice sampler was done to roughly optimize the effective sample sizes for
these samplers.

Table [5.4.2 shows posterior means and standard deviations for each sampler, and
the posterior mode or MAP estimator. These summary statistics are in close agreement
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Orthogonal Orthogonal Posterior
Parameter Gradient Gibbs Gibbs NUTS mode

01 -0.729 (0.261)| -0.735 (0.268)| -0.729 (0.271)| -0.736 (0.267)| -0.721
02 5.367 (1.437)| 5.408 (1.523)| 5.408 (1.544)| 5.38(1.519) 4714
03 -1.041 (0.261)| -1.041 (0.281)| -1.043 (0.281)| -1.045 (0.278)| -1.024
U4 -1.038 (0.267)| -1.043 (0.277), -1.042(0.28) | -1.042(0.28) | -1.024
Os -0.729 (0.262)| -0.733 (0.266)| -0.732 (0.268)| -0.733 (0.272)| -0.721
U6 0.22 (0.257) | 0.221(0.267)| 0.224 (0.268)| 0.219(0.269)| 0.213
g7 1.789(0.382)| 1.785(0.386)| 1.794 (0.389)| 1.786 (0.389)| 1.733
by 0.832 (0.258)| 0.831 (0.261)| 0.829 (0.261)| 0.834 (0.265)| 0.817
bs -0.132 (0.289)| -0.131 (0.299), -0.13(0.301)| -0.13(0.3) -0.127

Table 5.4.2: Mean (standard deviation) for each sampler and the posterior mode (MAP).

Effective Integrated
Runtime | Sample Size | ESS persec | autocorrelation Time
Sampler (s) (min, max) (min, max) (min, max)
Orthogonal Gradient 631.6 | 9441.3,10065.8 14.9,15.9 0.993, 1.059
Orthogonal Gibbs 192.0 | 9003.3,10191.3 46.9,53.1 0.981,1.111
Gibbs 33.0 2396.7,9079.6| 72.5,274.8 1.101, 4.172
NUTS 51 5952.3,11117.6 1175.2, 2195.Q 0.899, 1.68

Table 5.4.3: Effective sample sizes and integrated autocorrelation times for each sam-
pler. Each sample was run for N = 10,000 samples. Minima and maxima are taken
over all 9 parameters.

between all of the samplers, and also with McElreath’s results for the same model us-
ing the Stan [18] inference engine. The parameter means all appear to be close to the
posterior mode values, except for g, whose marginal posterior distribution is skewed.
Table|5.4.3 shows performance diagnostics for each of the samplers. The Orthogonal
Gibbs and Orthogonal Gradient algorithms perform well in terms of effective sample
size, with minimum and maximum values both close to the number of samples N =
10, 000. Both Gibbs and NUTS attain their minimum ESS for the b, parameter, whose
autocorrelation is shown for each sampler in Figure The autocorrelation clearly
decays more quickly for Orthogonal Gibbs/Gradient than for Gibbs and NUTS.
However, table shows that this statistical performance comes with the cost of
much longer runtimes than Gibbs and NUTS, resulting in Orthogonal Gibbs/Gradient
being least performant in terms of effective samples per second. The long runtimes of
our algorithms are of course due to the j-dimensional Newton optimization and log-
determinant evaluation over several times for each of j = 1,..,p. As we discussed
previously, this leadsto a O p* scaling in time complexity for both samplers.
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Conclusion and Future Directions

The thesis has introduced new MCMC algorithms which exploit dually- at geome-
try in order to more ef ciently sample from a posterior distribution. The Orthogonal
Gibbs algorithm samples primal variables given dual variables in the k-cut co-ordinate
system, increasing k after each iteration. The Orthogonal Gradient algorithm samples
the distribution constrained to the line spanned by the steepest descent direction of the
negative log-density, and then recursively samples from the target constrained to a sub-
manifold orthogonal to the line. Both algorithms successively sample on submanifolds
in parameter space which are orthogonal with respect to the Riemannian metric, and
are therefore closely related to conjugate directions solvers for linear systems when the
metric is constant. For Gaussian target distributions, the Orthogonal Gibbs sampler
has been proven to produce independent samples and numerical experiments suggest
a similar result for the Orthogonal Gradient sampler.

The dually- at geometry on parameter space used by the algorithms is speci ed
by a Bregman divergence, which may or may not depend on the target distribution.
Full exponential families have a natural dually- at geometry for which the relevant
Bregman divergence is generated by the cumulant generating function of the family.
For log-concave posterior distributions, | have introduced the Posterior Bregman Di-
vergence generated by the negative log-density of the posterior. The metric induced by
this divergence has the property that orthogonal directions are independent sampling
directions in the case of a Gaussian target, motivating the new sampling algorithms.
Methods using Bregman divergences have been suggested to solve other numerical
problems such as convex optimization [61] and clustering [6], but to my knowledge the
new sampling algorithms are the rstto explicitly use dually- at geometry induced by
a Bregman divergence.

The new algorithms can be compared to previous geometric MCMC algorithms;
in particular the Riemannian variants of Hamiltonian Monte Carlo (HMC) and the
Metropolis Adjusted Langevin Algorithm (MALA) introduced by Girolami and Calder-
head [39]. These sampling algorithms use a Riemannian, rather than dually- at, struc-
ture to facilitate ef cient sampling from the posterior. They require numerical integra-
tion of ODEs or SDEs, whereas the Orthogonal Gibbs/Gradient algorithms make use
of explicit geodesic ows in the dually- at geometry and require no numerical integra-
tion. Hamiltonian Monte Carlo disintegrates an extended target distribution over the
level sets of the Hamiltonian function; similarly, the new algorithms disintegrate the
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target over ber bundles de ned by the orthogonal foliations of Information Geometry.
While HMC/MALA and their Riemannian variants require the gradient of the target
log-density, Orthogonal Gibbs/Gradient only use derivatives of the Bregman generator
and do not necessarily require any derivatives of the target log-density, unless the Breg-
man generator depends on the log-density. Future work could explore the possibility
of Bregman generators which are cheap approximations the negative target log-density,
perhaps by subsampling of data in a similar fashion to Stochastic Gradient HMC [51].

Hamiltonian Monte Carlo may require signi cant hand-tuning of algorithmic pa-
rameters; namely the step-size used in numerical integration of Hamilton’s equations
and the number of integration time steps. One must carefully choose these parame-
ters to attain an optimal acceptance rate. In contrast, the algorithms introduced in this
thesis are equivalent to a sequence of Gibbs updates in various co-ordinate systems,
and hence their proposals are always accepted. The only hand-tuning required is the
number of subsamples per iteration and any algorithmic parameters of the subsam-
pler algorithm used to draw from conditional distributions. In the regression model
given in Section [5.4, the slice sampler used for subsampling required only minimal
hand-tuning.

For target distributions which are not log-concave and thus have a log-density whose
Hessian is not positive-de nite, it is not clear how a Bregman divergence should be
chosen for use in the new algorithms. To solve this problem for RM-HMC, the SoftAbs
metric has been suggested by Betancourt [9] which forces all of the eigenvalues of the
Hessian to be positive. Unfortunately, it does not seem possible to extend this idea to
a Bregman divergence, which requires a globally de ned convex function rather than
a local Riemannian metric. To deal with densities which are not log-concave, | suggest
the following directions for future research.

One could use a Bregman generator de ned as the smooth convex function which
is closest to the (non-convex) negative log-density in some metric, e.g. the in nity
norm.

The Orthogonal Gradient/Gibbs algorithms may be generalized to an arbitrary
conjugate connections geometry, i.e. more general than dually- at. Perhaps nu-
merical integration could be used to move along a r -geodesic, and then similarly
on an orthogonal r -geodesic, with a Metropolis-Hastings accept/reject step to
correct for numerical errors similar to Hamiltonian Monte Carlo. This approach
would allow the geometry to speci ed by any divergence function, rather than
being restricted to Bregman divergences.

When the Fisher Information is singular, the parameter space Q can be under-
stood as a ber bundle whose bers represent classes of equivalent data-generating
densities. The quotient space with respect to this equivalence relation has a nat-
ural non-singular positive-de nite metric; see Xavier and Barroso [7]7].| | suggest
investigating whether a natural Bregman generator is also induced on the quo-
tient space, such that the Orthogonal Gibbs/Gradient algorithm could be used to
sample in the quotient space, and some simple algorithm such as random walk
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could be used to sample within the bers. This is very similar, and perhaps equiv-
alent to, the idea of Likelihood Informed Subspace (LIS) of Cui et al [22].

A barrier to the practical application of the novel algorithms introduced in this the-
sis is their computational cost. When run for all p iterations, Orthogonal Gradient and
Orthogonal Gibbs both have an asymptotic time complexity of O(p*) assuming a rea-
sonable cost model, which may be prohibitively expensive for models with many pa-
rameters. To alleviate the computational cost, | offer the following suggestions.

In optimization, conjugate gradient algorithms are often  restartedi.e. terminated
before reaching d iterations where d is the dimension of the space on which the
cost function is de ned. If it can be shown that each iteration of the Orthogonal
Gradient algorithm preserves the target distribution, it may be possible to restart
the algorithm before reaching the full number of iterations, and therefore avoid
much of the computational cost. The number of iterations would then be an al-
gorithmic parameter which balances computational expense with the statistical
performance of the algorithm, i.e. the autocorrelation of the resulting chain.

If applied to models for which the likelihood is expensive to evaluate such as
PDE-constrained models in engineering and Uncertainty Quanti cation applica-
tions, the computational cost of the Orthogonal Gibbs/Gradient algorithms may
be deemed acceptable in comparison to that of likelihood evaluations. In other
words, the favourable statistical performance of the novel algorithms make them
a good choice when the forward model is already expensive to evaluate.

Reformulating the algorithms in the co-ordinate free terms of differential forms
could offer a solution; much of the computational cost arises from evaluating a
determinant at each step, and perhaps this could be reduced by nding a rela-
tionship between the volume forms on orthogonal submanifolds.

On the way to deriving the new algorithms, the thesis has also provided several
new results in Information Geometry. These include characterizations of the inherited
geometry on submanifolds in terms of divergences given by Theorem and a re-
sult on restrictions of Bregman divergences characterizing e- at submanifolds given in
Theorem[2.5.8.

The new algorithms presented in this thesis will hopefully prove useful in statisti-
cal applications. This work and that of previous authors has shown that orthogonality,
duality, geodesics and other ideas from Information Geometry can be leveraged in com-
putational statistics to do inference more ef ciently. | hope this continues to be an active
area of research so that the bene ts can be fully realized in statistical applications.
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Appendix A

Detalls of Smooth Manifold Theory

Proposition A.0.1. Let T,RP be the set of linear derivations at2 RP, i.e. the set of lin-
ear maps €(RP) | R satisfying the Leibniz rule (2.111). Then,RP is a vector space of
dimension p with a basis de ned by the p derivations
Tia:C*(RP)! R
_ Tf
ﬂija(f) - W —a
fori=1,..,p.
Proof. The following is based on the proof of proposition 3.2 from Lee [46]. For any two

derivations V,W 2 T,RP we de ne their scalar multiplication and linear combination
respectively as

(Iv)(f):
(I 1V + 1 W)(f) :

V() (A.0.1)

forany I ,1 1,1 o 2 Rand f 2 C¥(RP). ltis easy to verify that linear combinations
de ned in this way are also derivations, and hence T,;RP is a vector space. The zero
element of the vector space Q is de ned via 0 4(f) := Oforall f 2 C¥ (RP).

To show that fﬂijaji = 1,..,pg is a basis for the space of derivations at a, we rst
need to show that the set is linearly independent. To this end, suppose that for some

vi 2 Rfori=1,..,pwe have
p

Viﬂija = Oa
i=1
Then forany f 2 C¥ (RP),
p Vi ﬂ
i=1 fix! X=a

In particular, set f to be the j co-ordinate x! for each of j = 1, ..,p. Since% = 1 when
i = j and O otherwise, it follows that vi = 0 for all j=1,..,pand hencefﬂijag is a

linearly independent set.
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It remains to show that f 1j;,g spans TaRP and hence is a basis. To this end letw 2
TaRP be an arbitrary derivation. By Taylor’s theorem, any f 2 C¥ (RP) can be written

P qf |
f(x)= f(a)+ — (x' a)+ (x' ayx &) O(1 t)

i
i=1 X x=a ij=1

1°f
xiqx

(a+ t(x a)dt

Consider the action of W on the right-hand side of this equation, which is the sum of
its action on each term by linearity. The rst term is constant, and hence W(f(a)) =
f(a)W(1) by linearity. But by the Leibniz rule (2.1.1)]

W(1)= W 1)= 1 W)+ 1 W(1)) W(@D)=0
and henceW(f(a)) = 0. Similarly, the third term vanishes;

!
p p

W Ci(x a)(x d) = CiW (x' d)(x &)
i,j=0 i,j=0
p h o o .
= Cj (X 4d) W x' a +(x 4d) w x @
ij=0 x=a =
p h o o
= C; O W(x' ad)+0 wx &) =0
ij=0
R
where we have set Cjj := 01(1 t)%(aﬁ t(x a)dtfori,j= 1,..,p. Finally we are
left with
!
Pqf . .
W(f)=w — (X d) (A.0.3)
i:lﬂx X=a
Poaf i i
= o (W(x") W(a)) (A.0.4)
i=1 X=a

By the above argument, the action of W on a constant function vanishes and soW(&) =
Oforall i = 1,..,p. Hence we conclude that for any W 2 T,RP, we can write

W(f) = i W(x)Tijo(f)  forall f2 C¥(RP)
1

b
) W= W(X)ja
i=1

and hence the setf fjj,ji = 1,..,pg forms a basis for TaRP, which must therefore be a
p-dimensional vector space. O

Lemma A.0.2. If F: Q! QUis a diffeomorphism, its differential dFT,Q ! Ty QPis a
linear isomorphism.
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Proof. Linearity follows trivially from the de nition of the differential; if V1, V2 2 TgQ
then

dRy(l Ve + 12Vo)(F) = (1 (Vi + 1 2Vo)(f F)

I 1Va(f F)+ 1 2Va(f F)

I 1dRy(Va)(F) + 1 2dRy(V2)(f)

To show injectivity, suppose that some tangent vector V 2 T4Q is mapped to the zero
elementin TF(q) Qounder the differential;

dRy(V) = O ) dR(V)(f)=0  forall f 2 C*(Q9
) V(f F)=0 forall f 2 C*¥(Q9Y
Thenforany f 2 C¥(Q),setf = f F 1;thisis valid since F is bijective. We then have
V(f F=V(f F1 F=Vv(f)=0 forall f 2 C¥(Q)

which of course implies that V is the zero element in TqQ, and hence dF; is injective.
For surjectivity, let W 2 TF(q)QO. Then de ne a tangent vector in TqQ asV(f) := W(f

F 1). Thenforany f 2 Tg;QPwe have
dR(V)(f)= V(f F)= W(f F F )= w(f)

and hence the differential at q is surjective; it is therefore a linear bijection or linear
isomorphism. O

Theorem 2.1.3. Let Q be a smooth manifold with a co-ordinate clfartq) forU Q. Then
for any q2 Q, a basis for tangent spacg( is given by the p tangent vectors

ﬂijq,q : C¥ (Q) 'R
figg(f) = ff 1 forallf2C¥(Q),  i=1,..p
fiq g=f (9

Proof. By lemmaA.0.2] and the fact that f is a diffeomorphism, the differential of the
co-ordinate map df ¢: TqQ ! T; RPisalinearisomorphism. Therefore the preimage
of any basis in T; (RP is a basis for TqQ. In fact, the basis stated in the theorem is
exactly the preimage of the basis f ;¢ (49 de ned in proposition ndeed,

df o(Tijr (F) = Tijr o(f )
_ 1 X
= = ffof
I, :
=1

™ x=f (d)
= Yijt 9 (f)
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The following is a restatement of proposition

Proposition A.0.3. Let Q be a smooth p-dimensional manifold witt2qQ, and let(U,f )
be a co-ordinate chart whose domain contains g, with co-ordinates ladjefied 1,..,p. The
differentialsf dqd/ gjp: 1 of the local co-ordinate functions form a basis of cotangent spdge T

that is dual to the co-ordinate tangent vector beislggip: 1» 1.e. they satisfy

dod (i) = Ti(df) = d
foralli,j= 1,..,p, whereqj = 1wheni= jand isO otherwise.

Proof. The duality property follows trivially from the de nition of the co-ordinate basis;
oy

dod (1) = Ti(d) = 9
q

To show that the co-ordinate differentials form a basis for cotangent space, rst we
check linear independence; for somel , k= 1,..,p we set

| kqu =0
P
) | (dgf(V)= 0 for all tangent vectors V 2 T4Q
k=1

P
) 1 V(g) = 0 for all tangent vectors V 2 TqQ
k=1

SettingV = Tjjqs foreachi = 1,..,p, we obtain

p p
LiTijqr (@)= Tyd=1;=0 foralli=1,..,p
k=1 i=1

And hence fdgfjk = 1,..,pg s a linearly independent set. Finally, to show that the set
spans T, Q, for a given linear functional a 2 T4Q let a := a(f;) fori = 1,..,p. Then,
we see that the linear combination of co-ordinate differentials with coef cients given
by f a;gis exactly a; for any V = VK{, 2 ToQ,

P p
add (V)= a(T)dd (VM)

i=1 i=1

p

V¥a(1)dd' (1)

» o
a(Vk)d = ‘ a(Vv'fi) = a(Vv)

i=1 i=1
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Proposition 2.5.6. LetN be a dually- at n-manifold. An embedded p-submanifold Q is e- at
if and only if there exist co-ordinatds for Q such that the co-ordinate embeddindpas the
af ne form in primal co-ordinates,

q= L(b) = Ab+d (2.5.7)

for some matrix A2 R" P and vectod 2 R".
Dually, an embedded p-submanifold Q is m- at if and only if there exist co-ordirgafes
Q such that the co-ordinate embeddintpas the af ne form in dual co-ordinates,

h=L(g) = Ag+d (2.5.8)
for some matrix A2 R" P and vectod 2 R".

Proof. We show the result for the e at case; the proof of the m- at case is identical.
Assume rstthat Q is e at so that the second fundamental form vanishes for all vector
elds. Note that dL rflxY is the tangential component of r 4 (x)dL(Y) in general,
where ffl is the primal connection on Q. Thus by the Gauss formula (2.5.3 -) the second
fundamental form vanishes if and only if

dL Y =71 g 0dL(Y) (A.0.5)

for any vector elds X,Y 2 X(Q), where fl and r are the primal connections on Q
and N respectively. By Theorem 3,Q is dually- at and hence there exists a fl-af ne
co-ordinate system b. This af ne system must satisfy

f, T _ =1
rﬂ%ﬂb 0 ab=1,.,p

Setting X = a and Y = ﬂbb in (A.0.5), we deduce that

1
r dL — =0
dL gla kb
Writing dL(X) = Ba."q where B := .H—b is the co-ordinate differential and similarly for

dL(Y), we compute
!

i1 g 18, 1

1l
r o1 B oL +Br 2 =0
A R T w0 g
Note that since q is an af ne co-ordinate system, we have r i_ﬂiqj = 0. Therefore
1d
BJ
Ba‘ﬂ 1
Td ﬂQ'
1B :
, B—P=0 forall j= 1,..n, ab=1,..,
1

, WBJ =0 forall j= 1,..n, ab=1,.p

154



where we have used the chain rule ﬂba = B'a'"q to go from the second to the nal line.

It follows that the co-ordinate differential, or Jacobian of L, B{) is a constant for all b.
Consequently the co-ordinate embedding L must be an af ne transformation.
Conversely, suppose there exist co-ordinatesb for Q, in which the co-ordinate em-
bedding takes the form
g= L(b):= Ab+d

Note that the differential of the embedding in co-ordinates is a constant %;\ = Al thei-a

component of the matrix A. The co-ordinates b must therefore be rfl-af ne co-ordinates,
because the connection coef cients (2.5.4) vanish:

Ganc= AcAlTc A g+ AZALACG) = 0

where we have used the fact that A' is constant, and q are af ne co-ordinates for N so
Gk = 0. Consequently Q is rfl- at, and hence dually- at by Theorem 2[4.3.|we will

show that Q is e atin N by showing the equivalent statement (H Let X = Xaﬂﬂ)a

andyY = Ybﬂbb be two arbitrary vector elds on Q. SinceAl is constant and q are af ne
co-ordinates, the r -covariant derivative of the embedded vector eldsin N is
1 i ivalY? T
r dL(Y) = T pyan ALYP L = ALAl X2 A.0.6
dL(X) ( ) ALX '" ‘qu a ﬂq ‘qu ( )
Similarly, the embedding of the fl-covariant derivative is
b
fly = f o 1 _ aTY" 1
dL rlyY dL r xal, Y fibp dL X b2 16
= Al A’xaﬂY 1 (A.0.7)

19 19
where we have used the fact that b is rfl-af ne, and substituted the chain rule W =

AL Comparing equations ( A.0.6) and ( ,we see thatdL flyy =r a0 dL(Y)
for aﬂl vector elds X,Y on Q, and hence the second fundamental form is zero and Q is
e at. O
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Appendix B

Elementary Geometric Measure
Theory and The Implicit Function
Theorem

Throughout the thesis, we often need to represent a target probability density p : RP !
R in different co-ordinate systems. Furthermore, the orthogonal submanifold samplers
in Chapter E]require a disintegration of the target over submanifolds in RP which are
level sets of dual or primal co-ordinate functions. In this appendix we describe tools
for dealing with such tasks from the eld of Geometric Measure Theoryhe standard
reference for the topic is Federer [28], although we mostly refer to the introduction in a
sampling context given by Diaconis et al [24]. We brie y review the concepts and state
the main results in notation consistent with the thesis, omitting technical and analytic
details. We assume thatl k< p.

A k-dimensional submanifold embedded in RP inherits an area measure from the
Lebesgue measure onRP. Intuitively, we imagine thickening the submanifold so that
it has a p-dimensional volume, and hence an area measure is approximately the vol-
ume of a subset of the thickened submanifold divided by the volume of a (p K)-
dimensional ball. This can be made rigorous [24], [28] to de ne the k-dimensional
Hausdorff measure HX on RP.

There are two ways to specify a k-dimensional embedded submanifold Q of RP;

Explicitly, i.e. with a smooth embedding or parameterization L :V ! RPwhere
VvV RK

Implicitly, i.e. the level set of a function F :RP! RP Kwhere DF has full rank.

The area formula allows us to compute the Hausdorff measure for an explicitly
parameterized submanifold Q. Recall that dq and db respectively refer to the p- and
k-dimensional Lebesgue measures on theq and b co-ordinate charts.
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Theorem B.0.1 (Area Formula). LetL : RK! RP be a smooth embedding with kp. Then
for any Borel U RX and Borel-measurable:flRP ! R,
VA Z

h(L(b)) kL(b)db = h(q)H*(da)
U L(U)

where q
JL(b) := det DL(b)TDL(b)

is the k-dimensional JacobianLof

The area formula as stated by Federer and Diaconis et al is more general than this;
it is only necessary that L be Lipschitz, so that differentiability is guaranteed almost
everywhere by Rademacher’s theorem. For a Riemannjan manifold, the Riemannian
volume elemenin a co-ordinate chart q is the measure  det G(q)dg. Suppose RP is
endowed with the Euclidean metric G(q) 1, p, so that the inherited metric on the

submanifold Qis D L'DL. Then Theorem shows that thek-dimensional Hausdorff
measure coincides with the inherited Riemannian volume element.

Diaconis et al [24] describe how to use the area formula to sample from the Haus-
dorff measure on an embedded submanifold. In particular, the area formula generalizes
the change of variable formula for probability densities, as the proof of the following
shows.

Corollary B.0.2 (Change of Variable Formula). Letp : Q! R be a probability density on
Q RP,andletf : Q! X be adiffeomorphism wheXe= f(Q) RP. Then

z z
p(f *(x) _
vy det (DF(F 1o)X = P

fora Borel setV Q.

Proof. SetL(x) := f 1(x) forall x 2 X, sothatk = p. Sincef is a diffeomorphism, then
L = f 1is also a diffeomorphism and hence is a smooth embedding. By the inverse
function theorem [54], the differential matrices of L and f, which are both square and of
full rank, are related via

1
DL(x) = Df(f (x)) (B.0.1)
Thus the p-dimensional Jacobian of f is given by
q q
JHL(x)= det DL(x)TDL(x) = det DL(x)T det DL(x)
q

det DL(x) 2= det DL(x)
det Df(f (x))

The result follows from Theorem B.0.1jwith g(q) := p(q), U = f *(V), and noting that
the Hausdorff measure agrees with the Lebesgue measure whenk = p. O
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The co-area formula gives a disintegration over the k-dimensional level sets of a
function F : RP! RP K
Theorem B.0.3 (Co-Area Formula). LetF : RP! RP Kbe Lipschitz. Then
VA VA VA

,N(@)d F (q)da = , h(q)H"(dg) dz

p k E l(
where r
% «F(q)= det DF(q)DF(q)"

Diaconis et al [24] use the co-area formula to derive a disintegration of a probability
measure over the level sets ofF .

The orthogonal submanifold sampling algorithms in Chapter SEampIe from condi-
tional distributions on implicitly de ned submanifolds, where the conditional densities
are de ned with respect to the Hausdorff measure. We require an explicit parameteri-
zation and its differential matrix in order to use the area formula to compute the density
with respect to the Lebesgue measure for sampling. The existence of such a parame-
terization, and an explicit form for the differential matrix, is provided by the Implicit
Function Theorem. We adapt the stated theorem from Lee [46] and Kantorovitz [43]!

Theorem B.0.4 (Implicit Function Theorem) . LetF : Rk RP kK1 RKbe smooth on a
neighbourhood U dfag, bo) 2 Rk RP K andletc = F (ap, bg). If the matrix

F F
—(ag,bg) = —(ag,b
0 (a0, bo) T (a0, bo) ek

is non-singular, then there exist neighbourhoods W RK ofag and \y RP X of by, and
a smooth functiora : Vo !  Wp such thatF (a,b) = cfor(a,b) 2 Vo Wy if and only if
a = a(b). Furthermore, the differential matrix afsatis es

€ IF 4F

Pa= W@ = ® W

LemmaB.0.5. Forl k< p,letA2 RP Kand B2 RP (P X pe two matrices of full rank
with ATB = Ok (p K- Then

q

det(ATA)det(B™B) = det A B

where A B isthe p p matrix whose rst k columns are those of A and nal pk columns
are those of B.

Proof. The statement is equivalent to

det ATA det BTB = det A B 2
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We rewrite the right-hand side using elementary properties of the determinant:

det A B det A B =det A B' det A B

T T
A det A B = det A

det A B?

det A B

BT BT
- det ATA ATB
- B'"A B'B

Note that by assumption, ATB = 0, (, x and BTA = ATB T= Op K k- The result
then follows from the formulas for block determinants; see e.g. [75]|

ATA 0, )

= det ATA det B'B
Op K k B'B

det A BZ= det

O]

Theorem 5.1.1 (Disintegration over e-Foliations). Letp (q) be a Lipschitz-continuous prob-
ability density on a convex open subsgt RP, andlet A2 RP 'and B2 RP (P 1) pe
full-rank matrices with A'B = 0 (o 1)- Forb 2 B Q, de ne the measurey, on Q such that
for aBorel setU RP,
Z q — —
my(V) = . P(0)  det(BTB)H (da) (5.1.2)
2 UVFl(fbg)

= p(Aa+ Bb) det A B 1|'(da) (5.1.3)
A (U\Fl(fbg))

whereH! is the I-dimensional Hausdorff measure®R and| ! is the |-dimensional Lebesgue
measure oR'. Then the measurésn, g form a disintegration of the target measiprég) | P(dq)
overthe berbundlég:Q! RP ! Fg(g) = Ba.

Proof. Firstwe check the conditions for (5.1.2) to be a disintegration. Since the integrand
in () iymeasurable and the Hausdorff measure is s- nite, it follows that m, is s-
nite and  hdm, is a measurable function of b for any measurable h. Furthermore,
since the domain of integration in ( is U\ Fg !(fbg), then m, must concentrate
onthe ber Fg !(fbg). Thusthe rsttwo conditions in De nition 4. satis ed.

The third condition for fm,g to be a disintegration is guaranteed by the co-area
formula, stated in appendix B hs Theorem B.0.3.

Note that DFg = B = BTB 'BT, and hence the(p k)-dimensional Jacobian of
F g is given by

q__ r
det(DEFDFT) = det (BTB) 'BTB(B™B) '
r
- det B™B) T = p—t
det (BTB)
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Thus applying the co-area formula given in Theorem o h(q) = p(q)p det (BTB),
z z q
_p(a) det(BTB)H(dg) 1P *(db)
F

k
RP E

Z q

I, 1
e p(q) det (BTB)BWI P(dq)

Z
p(a)! P(dq)
RP

Equation (5.1.3) follows from the area formula, stated in Theorem For eachb 2
RP K de ne a co-ordinate embedding L,(b) = Aa+ Bb, so that the differgntial matrix

of Ly is given by DL, = A and the k-dimensional Jacobian is JLp(a) = = det(ATA).
The preimage of U\ F  (fbg) under L is given by A U\ F_ }(fbg) . The area

formula with h(q) = p(q)p det (BTB) then yields
Z q — —

p(q) det(BTB)H(dq)
q

= p(Aa+ Bb) det(BTB)JLy(a)l ¥(da)
ZA (U\ Fe(fbg)) q

= p(Aa+ Bb) det(ATA)det(BTB)I X(da)
ZA (U\ FY(fbg))

= p(Aa+ Bb) det A B | X(da)
A (U\FcX(fbg))

zU\ F1(fbg)

where in the last equality we have used Lemma O

Theorem 5.1.2(Disintegration over m-Foliations). Letp (q) be a Lipschitz-continuous prob-

ability density on an open convex sub§gt RP, A and B be matrices as in Theor.l.l,

andX = r F(Q). Ford 2 A X, de ne the probability measumg on Q such that for a Borel

U RP, 2 | ;

mU)= . p@——2A e i(g) (5.1.4)
UL F (T dg) det ATG(q)%A

whereHP !isthe(p 1)-dimensional Hausdorff measure B®, G(q) := r 2F(q) andF y :

RP ! R!''Fm(q) = A r F(q) for a smooth convex function FRP ! R. Then the
measure$ myg form a disintegration of the target measyréq)l °(dq) over the bers of ;.

Furthermore, we have

7 det A B )
my(V) = B (U\ F(fdg)) p(La(b)) det(A G(L(b))A) 7 (db) (5.1.5)

wherel P Kisthe(p k)-dimensional Lebesgue measurdRdh K and L is the primal embed-
ding of F ,,*(f dg).
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Proof. We rstshow fmygis adisintegration. The rsttwo conditions in De nition 4.2(1 |
are satis ed by the same arguments in the proof of Theorem
For the third condition, the differential matrix of F y is

DFm(a) = A r 2F(q) = A G(q)

and hence the(p Kk)-dimensional Jacobian of F y is
r r

b Fu(@)= det DFy(g)DFu(q)" = det A G(q)G(q)(A)'
r
= det (ATA) 'ATG(q)G(q)A(ATA) T
' 2
= det ATG(g)’°A det (ATA) !
.

det ATG(q)?A

jdet (ATA)j
where, to go from the second to the third line, we have used the factthat ATA and
ATG?A are both k  k square matrices. By the co-area formula with h(q) := Jpp (k?z:) we
then have
z z z

p(q)
R J kFm(0)

= p(g)! (da)
RP

To show (5.1.5), we use the area formula. The parameterization of the level sets of F y
is the co-ordinate embedding function Lg(b) given in (8.3.20) with differential matrix
from Lemma as

R E Q) b kF m(d) $ Fum(a)l (dg)

1
DLq(b)= A ATGA A'GB+B

where we use the shorthand G := G(Lq(b)). The k-dimensional Jacobian of Lq is cal-

culated as
r r

det DLiDLg

a
I

i
det BT BTGA(ATGA) 'AT B A(ATGA) 'ATGB

r

det BTB+ BTGA(ATGA) 'ATA(ATGA) *ATGB

where dependence on b has been omitted for brevity, and we have used the mutual

orthogonality of the columns of A and B, i.e. ATB and BT A are zero matrices. De ne a
matrix V := ATGA 'ATA ATGA ' sothat

' q

det DL DLy = det(BTB+ BTGAVATGB)
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Then the area formula with h(Lq(b)) := p(Lg(b)) det ATA det ATG(Lg(b))2A v

yields
Z

1/2
my(U) = . 1(fdg)p(Ld(b)) det ATA det ATG?A HP X(dLg(b))
M
S
A
det (BTB+ BTGAVATGB)

= Lg(b)) det ATA | P X(db

e l(fdg)p( a(b)) det (ATG?A) (db)

(B.0.2)

Then (5.1.5) follows if we can showhe integrand in the previous equation is equal to the
integrand in (5.1.5) for all b, i.e.

S
TB+ BT T det A B
det ATA det(BTB+ BTGAVATGB) _
det (ATG2A) det(A GA)
|
2
det ATA 2det B'B+ BTGAVATGB _ det A B
’ det (ATG2A) ~ det(A GA)
det B'B+ B'"GAVATGB T
, det ATA - _detBB)
det (ATG2A) det(A GA)?

, det ATA det(A GA)?’det B'B+ B'TGAVA'TGB = det ATG2A det(B"B)

(B.0.3)

where, to go from the second to the third equivalent statement, we have applied Lemma
[B.0.5. Our objective then is to show that (B.0.3) is true for all matrices A, B satisfying the
conditions of Lemma , and any symmetric positive-de nite G 2 RP P, and where
V:= ATGA 'ATA ATGA

Firstly, consider the left-hand side of (B.0.3). Note that A GA, ATA and V are all
k knon-singular matrices. Thus by the elementary properties of the determinant,

2

1
det ATA det(A GA)2=det ATA det ATA ATGA

1 1
det ATA ATA ATGA ATA ATGA

1
det ATGA ATA ATGA =det Vv !
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Finally, writing the left-hand side of (B[0.3)]as the determinant of a block matrix,

det V 1 det B'B+ B'"GAVATGB
=( 1Xdet V ! det B'B+ B'"GAVA'GB

v 1 ATGB
BTGA B'B

=( 1)Xdet
1
=( 1kdet B'TB det VvV ! ATGB B'B B'GA
1
=( ¥ ( Dkdet B'™B det V '+ ATGB B'B B'GA
1 1
= det B'B det ATGA ATA ATGA+ ATGB B'™B B'GA
1 1
=det B'B det ATG A ATA AT+B B'B B' GA
= det B'B det ATG AA + BB GA
= det B'B det ATG?A
which is the right-hand side of (B.0.3]. Note that the last equality follows because
AA + BB isthe p p identity matrix; decomposing any q 2 RPasq = Aa+ Bb,
we see that AA + BB is the identity map,

AA + BB g= AA +BB Aa+ Bb

1 1
A ATA AT+B B'B B'" Aa+ Bb

1 1
A ATA  ATAa+B B'™B B'Bb

Aa+ Bb=q

In conclusion, equation (B.0.3) is true. It follows that the integrand in the area formula

(B.0.2) equals
det A B

det(A GA)
and hence the result (5.1.5) holds. O

p Lqg(b)
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Appendix C

Translating Recursion into lteration

The purpose of this appendix is to show that Algorithm 4] the general recursive dual
complement sampler, can be written into a general iterative form, and from this derive
the iterative Orthogonal Gibbs and Orthogonal Gradient samplers.

We restate algorithm E]below.

C.1 General Iterative Algorithm

Intuitively, one can imagine iterating over the submanifolds on the left-hand branches
of gure rather than recursing on the right-hand branches. Each of these subman-
ifolds is either e at within  Q, or e at within an m- at submanifold of Q. The idea
behind the iterative algorithm is to use the map L4 given in de nition 30 work
with e at submanifolds instead.
To develop intuition for this iterative process, consider stepping through Algorithm

[. Lines[3{6 resample the target distribution on an e- at submanifold Ea , yielding an
updated sample

oq°= Aa’+ b (C.1.1)

We use tildes to represent variables in the rstlevel of recursion in the algorithm; within
the rst recursive call, the B ASISVECTORS function is evaluated on line @With ap
| dimensional input g b0 and inherited generator F # yielding a matrix A 2
R(P D ! On lines within the same recursive call, the target density p = pgois
resampled along a submanifold

b= Aa+b (C.1.2)

parameterized by a 2 R', andb = b® AA bC Here b are co-ordinates for the dual
complement submanifold, but we may also view b as coefcients of B 2 RP P I the
complement basis to A, such that b are co-ordinates for the e- at submanifold spanned
by the columns of B in primal co-ordinates. With this identi cation, the resampling
step (C.1.2) within the rst recursive call is

Bb = BAa+ Bb
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Algorithm 4 General Recursive Dual Complement Submanifold Algorithm

1: function RECDCSSaMPLER(q, F, log p)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

A  BASISVECTORYQq, F)
a Agq
b q Aa®
a® SusSampPLER(a 7! logp (Aa+ b),a)
q° Aa% b
if DIMENSION (g)== | then
@ o
return q°°
end if
d® A r F(q9
B  COMPLEMENT BAsIS(A)
function H(b)
q MFLATEMBED(b, F,d, A, B, a%
return F(q) d7ATq
end function
function log p go(b)
q MFLATEMBED(b, F,d, A, B, a9
return logp(q) logdet ATr 2F(q)A
end function
bO BTqO
b% RecDCSSamMPLER(DC #, log p )
q°® MFLATEMBED(bOF, d, A, B, a%
return %0

25: end function
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By de nition of L 4o, we have
Lo BAa+ Bb = Ly Aat b

Continuing the algorithm further, we must have b = Bb where B is the result of
COMPLEMENT BAsIS(A). Thus, we can keep track of a variable b in an appropriate
e at submanifold of Q, which is mapped onto the corresponding m- at submanifold.
This motivates the following recursive de nition.

De nition C.1.1. The BAsISVECTORS2 function is de ned as follows for g 2 RP, a
Bregman generator F: RP! R and A2 RP Kfork I

1: function BAsISVECTORS2(q, F, Al
2 A ALy . First1,..,1 columns of Al
B COMPLEMENT BASIS(A)
d Ar F()
F(b) := F Lg(b) dTATLg4(b)
if NCoLs(A)== 1 then
R  BasisVECTORYB'q, F)
else
R BasisVECTOR2(B'q, F, BTAL 1))
10: end if
11: return BR
12: end function

On line E]in this de nition, we have used the shorthand L4 for the evaluation of
MFLAT EMBED for this A, B, d, i.e. the primal embedding into Mg aq.
The general iterative algorithm is listed as Algorithm 9[]The algorithm de nes

R®  BasisVecTorHq?, F)
R0 BasisVecTtor=2(ql Y, F Al D) for i=2,.p

C.2 Equivalence to Recursive Algorithm

In this section we will prove that the general iterative and recursive algorithms return
the same nal sample given the same input arguments and pseudorandom seed, which
is stated as Theorem. The proof rests on an inductive argument in which we
replace the recursive call in algorithm 4 with a call to the iterative algorithm 9 {q sample
from the density p 4, and by the inductive hypothesis, recover the same b%s returned
from the recursive call.

Throughout the section, we assume that the Newton optimization in MF LAT EMBED
and MFLAT EMBED?2 is solved exactly.

166



Algorithm 9 Iterative Dual Complementary Submanifold Algorithm

1: function SUBTARGET(a, R, d, A, ¢, F,logp, ag)
22 bY Ra+c

3: q° MFLATEMBED2(F, b% d, A, ag)

4:  return logp(q®) logdet ATr 2F(q9A

5. end function

6:

7: function ITERDCSSAMPLER((?, F, logp)

8¢ p Dimension (g©)

9: n I—p . Calculate number of blocks. We assumek divides p.

10.  RM®  BasisVecTordq®©, F)

1. a©®  R® GO

12 c® @ R@AO

13: a®  susSampLER(a 7! logp RMWa+ c® | a0)

1 g RWa® 4+

15: b q(l)

1. AD RO

17: for j= 2,..,ndo _ _

18: R()  BasisVector=2(qll D, F, AU 1)

19 di D AUD R g0 D

20:

o1 1, , RO RD D

22: a)  AGD gUD

23: al) RO 0D

24 al)  suSampLER(a 7! SUBTARGET a,R() dU D Al D ) F Iogp,ag) ,
Q) |

25: b  RWal) + ¢l . Update b in the direction of RU)

26: g MFLATEMBED2(F, b, d0 9, Al 1 2

27:

28: A AG D R3O . ConcatenateR() onto right side of Al D

29: end for
30:  return g™
31: end function
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Lemma C.2.1. Letd,d 2 R! and de ne

_d 2
D= d2R

Let A 2 RP ! have full rank with orthonormal complementary basis2BRP (P D, Let
A2 R(P D Kk anddene
A= A BA 2RP (K

Let F: RP ! R be a convex Bregman generator, and demto be the inherited Bregman
generatoiF(b) := B'r F Lq(b) for all b whereLy is the primal embedding into laq. Let
b2 RP 'andb := Bb. If

gac  MFLATEMBED2(F,b, D, A ap) (C.2.1)
and

by, MFLATEMBED2(F,b,d, A, &) (C.2.2)

da MFLATEMBED(b,,F,d, A, B, ay) (C.2.3)

whereag, a;,a, are starting values such that the Newton iteration in each function call con-
verges, then
qao= Qga

Proof. Let B2 R(P ) (P I K he a complement basis toA. ThenB%:= BB2 RP (P I ¥
is a complement basis to A2 RP (*K since it clearly has full rank and

0Tgo_. A™° _ AT™BB  _ O a2y _ O (pay _
A B™= ATBTBO = ATB™BB ATB - OI (0 2) - o(2|) (p 2)
We will show that the (A B° F) generalized mixed co-ordinates of gaoand g are the
same, and hencegao = ga. By De nition 3.3.13 [The generalized mixed co-ordinates for
gaoc are I

(AT F(dad) D D D

(BYqe0 BB ~ B'B™Bb _ Bb (C.2.4)
Consider (A B® F)-mixed co-ordinates of qa. For the dual component,
T
AOTEF(an) = AR (C.2.5)

ATBTr F(ga)

Clearly (C.2.3) is a primal embedding into the m- at submanifold Mg aq, and hence
the rst block of the above is ATr F(qa) = d. For the second component, recall that
B'r F(Lg(b)) = r ,F(b), and thus

ATBTr F(qa) = ATr ,F ba
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Since [C.2.2) is a primal embedding into Mg , 4, we therefore have
ATBTr F(ga) = d

Thus the dual component (C.2.5) of ga agrees with the dual component of gao from
(C.2.4),
d

A°Tr F(ga)= 4 =D

Finally, the primal component of qa in the mixed co-ordinate system is given by

oT

B 'ga = B'B'ga = B'ba = B'b

where the second equality follows from the fact that ga = Lg4(b), and the nal equality
follows from (€.2.2). Thus ga and gao have the same (A9 B, F) generalized mixed co-
ordinates, and hence we must have ga = gao. O

Lemma C.2.2. Let A, A, A% B,d,d, D, F, F be de ned as in Lemnja C.2.1. leR RP ' and
let R 2 R(P 1) ! have full rank and columns which are mutually Euclidean-orthogonal to the
columns of & For a log-densityog p, letlog p 4 be de ned as (5.1.6), i.e. for g2 RP !,

logpg(q) = logp Lg(q) logdet ATr ?F Lg(q) A
Then fora 2 R!,
SUBTARGET(a, BR,D, A% Bc, F,logp) = SUBTARGET(a, R,d, A,c, F,logpy) (C.2.6)

whereSUBTARGET is the function de ned on line of Algorithlﬁ] 9.

Proof. Consider stepping through S UBTARGET with each set of arguments on either side
of (C.2.6). We use tildes to refer to the execution of the function with the arguments on
the right-hand side, and absence of tildes to indicate the execution of the function with
arguments on the left-hand side of (C.2.6).

Firstly, from line ﬂ/ve have b%= Ra+ c. Multiplying thisby B, we nd

Bb®= BR+ Bc

The matrix BR and vector Bc are exactly the R and ¢ argument passed to the function
on the left-hand side of (£.2.6). Thus we have b= Bb®

Consider line @for each set of arguments. Sinceb®= Bb? the conditions of Lemma
C.2.7 are satis ed, and we identify gao from the lemma with q° from the execution of
SUBTARGET on the left-hand side of (, and b, from the lemma with q®from the
function called with the arguments on the right-hand side of the same equation.

To show the result (C.2.6), it remains to show that line 4]gives the same result for
both sets of arguments, i.e.

logp(q) logdet(ATr 2F(q9)A) = logpq(q) logdet(ATr 2F(qBA)  (C.2.7)
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Since we made the identi cations q°$ b, and q°$ qa, it follows from Lemma ¢.2.1 |
that

La q° = q°

where Ly is the primal embedding into Mg aq. For brevity, from here on we write G for
r 2F Lg(a9 . Expanding the de nition of log  pq in the right-hand side of (§.2.7),

logpa(q®) logdet A'r 2FA
= logp Lg(q® logdet ATGA logdet A'r 2F(qOA
H :

i
= logp Lg(q® log det ATGA det A'r 2F(g9A (C.2.8)

Note by Theorem B.3.12, we have the expression forr 2F,
r’F(@d=B"G 1, , A ATGA ‘ATG B
and thus the determinant in (€.2.8) can be written as
det ATGA det A'r 2F(9A
= det ATGA det A'BTG 1, , A ATGA ATG BA
- det ATGA det ATBTGBA ATBTGA ATGA ATGBA
I

ATGA  ATGBA
ATBTGA A'BTGBA

A BA 'G A BA
= A0 TGAC

where, to go from the third to the fourth line, we have written a product of determinants
as a determinant of a block matrix using the Schur complement property [75]/ Thus it

follows from (€.2.8] that
logpa(q®) logdet ATr 2FA = logp(Lg(q®) A r 2F L4(q) A°

and hence (C.2.7) holds. Thus the returned results for both sets of arguments to the
SUBTARGET function are equal. O

Lemma C.2.3. Suppose B RP (P D andR 2 R(P ") ! are matrices of full rank where the
columns of B are orthonormal, and lettR BR. Then

R = RB'
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Proof. By the orthonormality of B, the pseudo-inverse of R is

1
R= BR = RB'™BR R'BT
1
= RRR R'B'=RB' (C.2.9)
O

Lemma C.2.4. Letq®, ..,q(™ be the iterates of algorithm 9 with argumenf®, log p and F
where p> | so thatn > 1, and letz(?) represent the state of the pseudorandom generator after
the rst call to the subsampler in life 13. Let A bel’Ade ned in line[10 for thisg®, and let

B be the result ofCoMPLEMENT BAsIS(A). Setd = Ar F q» . Deneq©® = BTq®,

and letq®,q®, g D be the resulting iterates of algorit{m 9 with initial iterag¢® and
target log-density and Bregman generator respectively given by

log pa(a) := log p(La(a)) logdet ATr 2F(Lg(q)) A
F(q) == F(Lg(q)) dTATLg4(q)

Assume that immediately before executing the algorithm with these arguments, the state of the
pseudorandom generatorz®) = z(Y). Thenforj= 0,..,n 1, we have

Lg qW = q0*D (C.2.10)

wherelLq is the primal embedding into Maq. Moreover,
R(U*D = r0) (C.2.11)

forj=1,.,n 1, whereR( is the RI) matrix from Algorithm|g corresponding to the iterates
(0) (n 1
q@,..,q" D,

Proof. Throughout the proof, we will use tildes to refer to variables in the execution of
algorithm 9 with iterates q@, .., 9, and the abscence of tildes to indicate the execu-
tion of the algorithm with iterates q(©@, q(®, ... We will show by induction that each
of the following holds for j=1,..,n 1,

RU*D = gR{) (C.2.12)
AlUTD = A Ba®) (C.2.13)
ci*d = cll) (C.2.14)
b(*D = gp) (C.2.15)
al*d = g (C.2.16)
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where R := A |n addition, we will show the following hold for j= 0,1,..n 1,

2+ = 20 (C.2.17)
ArF qi*h =d (C.2.18)
Ly g = q0*D (C.2.19)

where z() is the state of the pseudorandom generator after j calls to the subsampler.

Note that the line (C.2.12) corresponds to the result (C.2.11), and the nal line (C.2.19)
is the result (C.2.1Q) of the Lemma.

Base case. Sinced = A r F(q(), then (C.2.18) holds trivially for j = 0 and by
de niton g™ 2 Mgag. Thus the (A, B) generalized mixed co-ordinates of g(¥) are

d d

BTq(l) - q(o)

by de nition of q(@. Since Ly is the primal embedding into Mg ad, the generalized
mixed co-ordinates of Ly q(® agree with the above;thus Ly @ = g and(C.2.19)

holds for j = 0. Finally, by the assumptions of the lemma we have z() = z(9 and hence
(C.2.17) is trivially true for j = 0.

We show directly that equations (€.2.12)-(C.2.19) hold for j = 1. For (C.2.12), note
that by line LOwe have

R = BasisVEcTorYq?, F) (C.2.20)
Furthermore, by line

R@ = BasisVecTor2(q?, F, A) = BasisVecTor2(q?, F,RY)

Since A® = R has| columns, the if-statement on line E|in De nition trig-
gered, and hence

R® = B BasisVeEcTorgB qV,F)

B BasisVECTORYq?, F)
= BRW

by (C.2.20), where B = COMPLEMENT BAsIS(A). Thus (C.2.12) holds forj = 1. This
result, with the factthat A() A and line p8] implies

A@= A R® = A BR® = A BA®

which shows (C.2.13) for j = 1.
To show (C.2.14) forj = 1, we manipulate the expression on line

@ =

= 1,, RO R® O
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Substituting the identity 1 , , = AA + BB and R( = BR( from (’
c@= AA +BB" BR® BR® @
= BB" BR® R® BT @
= 1 TA(1
=B Lpn py RY RO Bl (C.2.21)

where we have used the fact that <@ = q©@ AA q©, and thus ¢® 2 (ImA)?. By
line L4, we have

BTC(l) = BT q(l) R(l)a(l) = BTq(l) = q(o)
since B is a complement basis to RY = A. Substituting this into (C.2.21);

C(Z) R(l) R(l) q(o) = Bc(l)

=B lpn

Thus (C.2.14) holds forj = 1.

Consider the call to SUBTARGET on line R4l returning a(?, i.e. with the arguments
a®  susSampLER(a 7! SUBTARGET a,R(Z),d(l),A(l),c(z),F,Iogp,agz) ,agz)
Then b%on line E]within the function call with these arguments is
b= R@a+ c@ =B RWa+ ¢V
Therefore q%on line Blsatis es
q°= Lg b% = Ly B™0® = L4 R®a+c?
sinced = d@. The returned value of the log-density of the subtarget is then
logp Lg BTb° logdet A® "r 2 BTRO AW
=logp Ly B'b° logdet ATr °F BTb® A
= logpy B'b°

= logpy R®a+ c®

Note that this is exactly the same log-density passed to the subsampler in line [3Jwhen
the algorithm | TERDCSSAMPLER is passed a target log-density log p 4. By assumption,
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the state of the pseudorandom generator is the same before each call to the subsampler,
i.e.z(0 = z(0 and the subsampler is passed the same initial iterate for a since

a(o) = R(l) q(o) = R(l) BTq(l) = R(Z) q(l) = a(gz)

Thus the subsampler is passed the same target log-density, initial iterate and pseudo-
random seed, and hence we must havea®® = a(®, i.e. (C.2.16) holds forj = 1. The
pseudorandom state must also be updated in the same way, such that z®@ = z( and

thus (C.2.17) is true for j = 1. Furthermore, (C.2.1§) holds for j = 1, since lines[25] 1#
and [15 imply

b(z) = R(z)a(z) + C(z) =B R(l)a(l) + C(l) = Bq(l) = Bb(l)
By the properites of the primal embedding, (C.2.19) holds for j = 1,

q? =Ly b@ =14 B™H®

Ly ROa®+c® =, q®

Sinceq@ is in the image of the primal embedding into Mg a4, then (C.2.18) follows by
de nition for j = 1;

ArfrF q?@ =d
Thus (C.2.12)-(C.2.1p) all hold forj = 1.

Induction step. Assume the inductive hypothesis that (C.2.12)-(C.2.19) all hold for
somej = jo 1, and consider each equation in the casejp + 1.

Firstly consider (C.2.12). From line[I§ with j = jo+ 2,
RU0*2) = BasisVECTOR(qUo* D F, Allo* 1)) (C.2.22)

By the inductive hypothesis (€.2.13) holds for j = jo, and thus the submatrix of Alo*D
with the rst | columns removed is BAU9);
AliotD) = Ao gAlo)

) AE;jO+11:|)] = BAUY

The columns of A are rst | columns of Alie* 1) Thus by De nition R(o*2) = BR,
where B is the result of COMPLEMENT BASIS(A), and

R:= BasisVECTOR(BTqlo* Y, F, AP 1)
BasisVECTOR(B qlo* ) F, BTBAU0)

BasISVECTOR(BTglo* D, F, Al))
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By the inductive hypothesis, Ly gl = qlo*1 holds for j = jo, and thus qlo) =
BTqle* D py De nition It follows that

R = BasisVEcTOrR2(qU?, F, Al0)) = RUo* D
Substituting this into equation (€.2.22) yields Ro*2) = BRUo* 1, and thus (C.2.12) holds

forj= jo+ 1.
Next consider (C.2.13). By line[2§ forj = jo+ 1 and the inductive hypothesis, we

have
Aliot2) = Aot R+ = A BAli0) Rot+2)

Since [C.2.12) is proven forj = jo+ 1, we have RUo*2) = BRUo* I Substituting this and
applying line 28Jagain for Alo* 1), we have

Alocr2 = A Balo) BRUtD = A BAUo*tD)

and thus (C.2.13) holds for j = jo+ 1.
Next we show ({.2.14) holds for j = jo+ 1. From line 21}, we have

clio+2) = 1p p RUo*2) R(o*2) cliot 1) (C.2.23)

Note that (C.2.12) holds for j = 1,..,jo,jo+ 1, so we substitute R0e*Y = BRUo) and
RUs*2 = BRU:*D into (C.2.29), applying Lemma [C.2.3 and with the identity 1 , , =
AA + BB we recover

ciot2) =  AA + BBT BRltD pgRliotd) clio+ 1)

cliot2) BT BRU*D RUo+t1) gT lio+1)

Rlo* 1) R(o*+1) BT clio*t 1)

B 1o
By the inductive hypothesis, BTclio*1) = BTBclo) = ¢lio) and hence

cliot2) = B 1(p D (1) RUo* 1) R(o*+1) clio)

This is exactly the expression for clie* D) from line muItipIied by B, so it follows
clio*2) = Bclio* D) and hence (C.2.14) holds forj = jo+ 1.

To show (C.2.18) is true for j = jo+ 1, rst substitute (C.2.13) for j = jo into the
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expression on line[2q for dlio* 1),

dlotd) = Al r oF q(jo+1)

A BAU) r ,F qlotD

A BAG) T A BA0) ! A BA®) Ty oF q(jo+1)
Y 1 0

B ATA 0 o1 1 ATy oF qlio+ ) A @ AT F qio* D)

O(p | A(io)TA(jo) A(jO)TBTI‘ = q(io+1) Al BTr E q(j0+1)

By the inductive hypothesis, qlio*D) = Ly qUo) . Hence by the formula for the inherited

generator in Theorem3.3.12, we haveB™r F Ly qUo = r F(ql9)). Thus
0 or 1 1
. Ar F qlott
dlio*d) = @ f (C.2.24)

Alid) r F qlio)

By line @ Alo) r F i) = dlio), and by (C.2.18) in the inductive hypothesis

Ar F qlord =
Substituting these into (C.2.24), we nd

- d
(jot 1) —
dvm = o)

Now, the conditions of Lemma €.2.2]are satis ed when we make the following identi-
cations:
A%g Alior1) R$ RUo+1) R$ RUo+2 A$ Al
D$ dUo*d d$ dlo c$ cliotd) c$ cliot?
Then by Lemma|C.2.2, for any a we have
SUBTARGET(a, R(j0+ 2) , d(j0+ 1) , A(j0+ 1) , C(j0+ 2) , F, |og p )
= SUBTARG ET(a, R(j0+ 1) , d(]0)1 A(JO) , C(j0+ 1), F, |Og pd)

Therefore the log-density passed to the subsampler on line 24 is the same function for

iterations j = jo+ 1l and | = jo+ 2 of the for-loop for the variables with and without

tildes respectively. Furthermore, the initial iterate passed to the subsampler ag)” =

jot2 _. . .
a; ~,since fromline ,

a(()J'o+ 2) = R(jo+ 2) q(jo+ 1)

= RO+ BT, ) = RO+ glio) = ag‘)”)
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where we have used the property of the primal embedding into Mg aq, and Lemma

C.2.3. Finally, by the inductive hypothesis (€.2.17) holds for j = jo and so zUo*D =
zUo) and so the subsampler is called with the same pseudorandom seed or state. In

conclusion, the subsampler is called in each case with the same pseudorandom state,
target log-density, and initial iterate, and therefore the returned result is the same for

each case;
a(j0+ 2) - a(j0+ 1)

which shows (.2.16) holds for j = jo + 1. Additionally, the state of the pseudorandom

generator must be updated in the same way, and thus (C.2.17) holds for j = jo+ 1;
(jo+2) = Z(jo+1)
z =z .

To show (C.2.15) forj = jo+ 1, we substitute equations (C.2.14) and (C.2.1P), both

of which have been proven for j = jo+ 1, into the expression on line 25
plot2) = Rlio+2) 5o+ 2) 4 liot2) = gRUo* D glio+t1) 4+ geliot 1)
= B RUotDglo*tD) 4 oo+t 1)
= gplo*t 1
and hence {C.2.15) holds forj = jo+ 1. Finally, the conditions of Lemma €.2.1]are

satis ed with the above identi cationsand b $ bUe*D Line 26 takes the form in each
case:

qUe*?  MFLATEMBED2(F,bo* 2 dli D Al D glio*2)y
qUe*D  MFLAT EMBED2(F,blo* D dlio* D Alio) glio* )
It follows from Lemma ¢.2.1,|speci cally (J.2.3)] that
ot = 1, oD

and hence (C.2.19) is proven forj = jo+ 1. Thusqlo* 2 is an element of the submanifold
Mg ad, and hence (C.2.18) holds forj = jo+ 2,

ArF qiot2 =

We have shown that (C.2.12)-(C.2.19) hold forj = jo+ 1, assuming they hold for j =
jo- By the principle of induction, (¢.2.12)-(C.2.19) hold for all j = 1,.,n 1, and in
particular (C.2.19) holds for j = 0,..,n 1. O

Theorem C.2.5. Suppose algorithnjg 4 andl 9 are initialized with the same pseudorandom seed,
and the same target distributiom, Bregman generator F and initial iteraté® are passed as
arguments to both algorithms. Suppose also that the Newton optimization in calls to algorithm
[2is replaced with the exact minimization. Then the algorithms produce the same output, i.e.

RecDCSSMPLER(G?, F,logp) = ITERDCSSAMPLER(q?, F, log p) (C.2.25)
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Proof. For clarity, we label the iterates of algorithm S[}as qﬁ), ..,q(l?, and let g°and q

refer to these variables in algorithm E] We x the block-size | and use an inductive
argument on the number of blocks n= p/ |.

Base case.Supposen = 1,i.e.p = |. Note that A de ned on line 2 of algorithm 4
exactly A(Y de ned on line ]@f algorithm QDFurthermore, lines 3E¢é;palgorithm 4 EE
identical to lines [L1}.4 of algorithm §jwith a'$ a@,a%$ a®,b$ b® and g°$ q©.
Since the subsampler on these lines is called with the same pseudorandom seed, we
have qﬁ) = g In the recursive algorithm A{l:Ithe if-statement on line 7 |s triggered, and
the algorithm terminates and returns %= q° Similarly in algorithm 9, the for-loop on
line [7]ranges from 2 to n, and thus is skipped since n = 1, and the algorithm returns
qf? = qﬁ) = g%on line @ Thus ) holds for inputs of size p = I.

Induction step. Assume an inductive hypothesis that (€.2.25) holds for inputs of
size p = gl forsome np 1 when the pseudorandom generator is initialized with the
same state or seed for both algorithms.

Consider the execution of each algorithm with inputs of size p = (ng+ 1)l. The same
argument we used in the base case applies, and we haveqf#) = % Furthermore, since
the subsampler is called for the rst time in each algorithm with identical inputs and
the same pseudorandom seed, the underlying states of the pseudorandom generators
used for each algorithm are identical after this rst call to the subsampler.

In line [L2]of algorithm 4,|the matrix B is de ned, which has dimension p gl since
p | = ngl. Thus the vector b® = BTqCinitialized in line as dimension npl, and
the dynamically de ned functions # and log p 4o both accept inputs of this dimension.
Thus by the inductive hypothesis, the recursive call on line s equivalent to calling
the iterative algorithm, i.e. the line can be replaced with

00

b%® ITErRDCSSAMPLER (BTGP, log p 40)

Within this inner call to the iterative algorithm, the iterates b(® = BTqﬁ),b(l), (o)
are produced, with the nal iterate  b(™) being returned and stored in b% Thus by
Lemma with n = ng+ 1, we have q°%= Lqo(b°% = qf$°+ Y and so both algorithms
return the same value. Hence (C.2.25) holds forny + 1. By the principle of induction,

(C.2.25) holds foralln 1. O

C.3 Explicit Algorithms
The following Lemma allows simpli cation of each speci c algorithm.

Lemma C.3.1. If the matrices R) in Alg_orithm@are mutually orthogonal so that® ' R(D) =
0, | whenever§ 6 ji, then the vectod()) satis es
di v

) =
= R0 rE Q)

forj= 2,..,n
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Proof. By line @] we have for eachj = 2,..,n
d = A0 ¢ E qO)

By line , A = AlG D) RO  andthus

T b0 (= 0
i 1 i1 i i
400 = Al D Al D o(j. Tl)l | @A - rkF q A
O ¢ o R(ll) R() RO 'r F g
Al Dy FE g
=@ A (C.3.1)
RO r F g

By line @ q(j) is an element of the submanifold
Mgi n.aG 096 v = 0 AGD ¢ F(@=di D

and thus the result follows from (¢.3.1)}
0

i 0) (1
A rr q A d

i) = @ = . .
d RO r F g RO r F W)

C.3.1 Orthogonal Gibbs

Note that BASISVECTORS2 simpli es in the speci ¢ cases of the Orthogonal Gibbs and
Orthogonal Gradient algorithm as the following propositions show; the general form
in De nition d.1.1 allows us to reason about both cases.

Proposition C.3.2. Let BASISVECTORS and COMPLEMENT BASIS be as de ned as in the
Orthogonal Gibbs algorithm, i.e. by equatiops (5.2.1) and (p.2.2) respectively. Therfor j
1,..,n = pl/ |, the matrix R in Algorithm E has columns given by thg 1)l + 1,...,jl
standard basis vectors, i.e. for any Bregman generator F,

0 1
_ O o1 1
R(J) =@ 1, A for J =1,..,n (032)

On 1 1
Proof. Note that the de nitions (5[2.T)|and (§.2.2) only depend on the dimension of g,
not on the value of g or the Bregman generator F. Fix the block size | so that the dimen-
sion of qis p = nl. We will prove (€.3.2) by induction on the number of blocks n; in

particular, we will show the following foreach j= 1,..,n;

0 1
. OG i 1
RV=@ 1,, A (C.3.3)

On jyi 1
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The subscript n indicates the number of blocks, i.e. that the dimension of the inputs to
the algorithmis p = nl.

Base case.Supposen = 1, so that the input dimensionis p = |. Then the only case
to check is R®, which from line 10 pf Algorithm 4i$ given by

R{Y := BasisVECTORY(q?, F)

Note BAsISVECTORsis de ned for the Orthogonal Gibbs in (5[2.1)]as the matrix whose
columns are the rst | standard basis vectors of dimension p = |. Thus

Rgl) = BAS|SVECTORS(q(O),F) =1

which is (£.3.3) for j = n= 1. Thus the inductive hypothesis (.3.3) holds for n = 1.
Induction step. Assume the inductive hypothesis that (€.3.3) holds for all j =
1,..npforsomeny, 1,i.e.
0 1

o.
. G 11
RV-=@ 13, A (C.3.4)

Omg 1 1

Consider the case when the size of the inputsis p = (ng+ 1)I,i.e. n = ng+ 1. For
j = 1, the statement on Iine of the algorithm and the choice of BAsISVECTORSfor

Orthogonal Gibbs (p.2.1) imply

1

RY | = BAasisVECTORYq, F) =
Ongt 1

no+1 ™

which agrees with (C.3.3) for j = 1and n= ng+ 1. Furthermore, since line[2§ concate-

nates eachRg)Hto the right-side of Agﬁll), thenforall j= 1,..,no+ 1the rst | columns
(0
of Am+1are
= aAD g0 _ Ly
A= A= Ry = Ony |

Thus when we step through B AsiSVECTORS2 from De nition d.1.1, |the matrix B de-
ned on line 3.6f B ASISVECTORS2 is

B := COMPLEMENT BASIS(A) = O rol (C.3.5)
ol ol

by the CoMPLEMENT BAsIs function (§.2.2) for Orthogonal Gibbs.

Now, let @, ..,q(™ be the iterates of TERDCSSAMPLER as de ned in Lemma €.2.4]
i.e. corresponding to initial iterate BTq(Y), Bregman generator F and target log-density
log p 4, and with the state of the pseudorandom generator identical to the state after the
rst call to S UBSAMPLER producing a(®. Then, by the result ) of the lemma, for
i 2we have

) — ' () I (1
RO = grU D | Rri)+1_ BRr{)
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Then, substituting (€.3.5) and the inductive hypothesis (£.3.3) for n= npandj 1, we
nd

0 0 1
R0 = O o @ (JlIZ)II [ A
no+ 1 1
Mol ol 0 .
0 (no+l DI
0 1
O(J 3] I§ @ (J 1)| IA
1, 0
O(r\o+1 ) (no+1 )i

which agrees with (C.3.3) for n= g+ 1andj 2. Hence by the principle of induction,
(C.3.2)istrueforalln 1. ]

C.3.2 Orthogonal Gradient

Lemma C.3.3. Let BAsISVECTORSbe de ned as in the Orthogonal Gradient algorithm, i.e.
de ned by [5.3.1). Then the p 1 vectors K)  r() in Algorithm [g] satisfy the following for
j= 2,..p: |

IOMON '

rl) = —— 1y, rF gl P i=2..p (C.3.6)
iz r® @
and forj= 1
M=1r F qO@ (C.3.7)
Proof. Note that for the Orthogonal Gradient algorithm the block size | = 1, and hence

the number of blocks is n = p. We show the result using induction on the dimension p.
Base case.Suppose the dimension is p = 1. Then the only case to check isj =
which is given on line 10]of Algorithm 4[ds

r®  RM := BasisVecTordq?,F)= r F @

which satis es (€.3.7).
Induction step. Suppose [C.3.6) and [(C.3.) hold for some input dimension p =

po 1, and consider the case when the input dimensionis p := pp+ 1.
For j = 1, the same argument as in the base case applies, and we have

r®  RM = BasisVEcTorLq?,F)= r F q© (C.3.8)

which satis es (€.3.7).

Note thatfor j 2, we have the de nition

R0 BasisVecTor2(ql Y, F Al D)
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The rst column of AG D isr(®, which is the matrix A de ned on line 4 bf B AsISVEC-
TORS2 in De nition G.1.1 kince | = 1. The matrix B is the complement basis of A,
de ned on line 3 bf the same function.

Let @, ..,g(P) be the iterates of ITERDCSSAMPLER as de ned in Lemma
i.e. corresponding to initial iterate BTq(Y), Bregman generator F and target log-density
log p 4, and with the state of the pseudorandom generator identical to the state after the
rst call to S UBSAMPLER producing a®. Then, by the result (C.2.11) of the lemma, for
i= 2, ...p0+ 1we haver® = Br0 D where r() is the equivalent of the r{) vector for
the iterates g9, ..,q(Po).

For j = 2, we apply the inductive hypothesis for j = 1and p= po, and (C.2.11);

r@=gW= BrF q? = BrF @

By Theorem|3.3.12, we haver F(qQ)= B'r F Ly q© .ByLemmalC.24,Ly @ =
q™®, and hence

r@= BrF q® = BBrF q¥
:
Finally, we substitute the identity BB = 1(p+1) (p+1) AA = Lipoe1) (po+1) :35(:()1)_
|
@@
@@= 1 L RS €
r (po*d) (¥ T q (C.3.9)

which shows (C.3.6) for j= 2andp= po+ 1.
Forj 3, we apply the formula r() = Br( 9 from Lemma £.2.4 By the inductive
hypothesis,
!
2G0T ' _
r(Dy
1P0 po T F(q(J 2))

r(]) = Br(] 1) e B —
i=1 M ()

By Theorem [3.3.12, we haver F(qi 2) = B'r F Ly qi @ . By Lemmal|C.2.4,

Lg gi @ = qU Y andhence

r() = L);(I) B BrF qi ¥
i=1 ) r@ |
i 2 () () TRT '
= w BB" rF qi P (C.3.10)
i=1 @ ()

Applying Lemma ¢.2.4 pnce more for i = 1,..,j 2, we haver(* = Br() and, since B
has orthonormal columns,

(DT = ((+)TRTR+1) = i+ DT (i+1)
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Substituting this and 1 = AA + BBT into (C.3.10) yields
!

() 2+ +nT

+AA Lpwn ey TF g0 Y

izlr(i+1)Tr(i+1) |

P2+ ni+nT T

1
(i+ 1)Tr_(i+ 1) r(l)Tr(l) (p0+ 1) (p0+ 1)
!

r F q(J 1)
i=1r
i1.m,0)T .

rr 1

- . 1r(|)Tr(|) l(p0+1) (p0+1) r F q(J )

=

which is the result (C.3.6) for p= po+ 1andj 3.
Thus by the principle of induction, (¢.3.6)|holds forall p 1.
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Appendix D

Details of Conjugate Directions
Samplers

In this appendix, we consider how the Dual Complement Submanifold algorithms are
simpli ed when the Bregman generator is of the Euclidean form

1
F(q) := éqTLq w'q (D.0.1)

where L isap psymmetric positive-de nite matrix. Geometry of this kind may arise
from the p-Bregman divergence of a Gaussian target distribution, but may also be used
as an approximate geometry for more complex distributions. We immediately see that
(D.0.1) implies that the metric r 2F(q) = L, a constant matrix. Thus the Riemannian
manifold simply takes the structure of an inner-product space, and the notion of orthog-
onality is equivalent to the following.

De nition D.0.1. Vectorsv,w 2 RP are called conjugate if they are orthogonal in the
L -weighted inner-product, i.e. vTLw = 0. Asetfv®®_ v(®gof1 ny pvectorsin
RP is a mutually conjugate set if every distinct pair of its elements are conjugate, i.e.

if vi2)TLv(i) = 0 for all distinct iy,i2 2 f 1,..,n0g. A matrix V 2 RP ™ is a conjugate
matrix if its columns form a mutually conjugate set.

Intuitively, algorithm 9|gpdates iterates () in mutually conjugate directions at each
iteration; this will be shown rigorously in this section. There is an obvious analogy
to Conjugate Directions methods optimization [40]| the best known of which is the
Conjugate Gradient method [73], [F0]. Indeed, in Section Mwe will show that the
Orthogonal Gradient sampler reduces to a sampling variant of the Conjugate Gradient

algorithm when F is given by (D.0.1). Note that for the Bregman generator (D.0.1), the
dual co-ordinate vector corresponding to qis the residual for the equation L q= w,

hi=r F(qg=Lg w
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For simplicity in this section we assume k= 1, i.e. the BasisVECTORsfunction outputs
a single column vector on line [[8]of algorithm 9]

RO ) = BasisVECTORHq,])

We suspect that results in this section can be generalized tok > 1 however, so further
work could explore blockconjugate directions samplers. Since eachr)) is not modi ed,
line Pgimplies that for all j = 1,..,p,

A(J) = r(l) r(J)
The only assumption on f r(j)gjp: , is linear independence, so that each AW is of full
rank; there is no requirement for the set to be mutually conjugate. The following well-

known algorithm allows any such set of linearly independent vectors to be transformed
into a mutually conjugate basis for the same space. A proof can be found in Axler [5].

Theorem D.0.2 (Modi ed Gram-Schmidt Process) . Letl ng p, and letf r(ng“;l be a
set ofrg linearly independent vectors iRP. Setv() = r() and for j= 2,..,ny de ne

[
RV ONOMT

=1 v TL v

I OLIRV0)

v = —
iz v ' Lv(®

v = 1, r (D.0.2)

Then for all j= 1, ..,no, the sef v(D, .. v g is mutually conjugate and spans the same space
asfr®, . rlg.
NONOMT
v T v
span of v In particular, the following lemma shows that each v()) is the projection of
r() onto the L -orthogonal complement to the image of Al D,

Note that the rank-1 matrix is the L -orthogonal projection matrix onto the

Lemma D.0.3. Letfr(j)gjf‘:1 bel n p linearly independent vectors iRP, and let
fv(j)g}‘:l be a conjugate set resulting from applying the Gram-Schmidt process of Theorem

w tofridgl . If AW = (@ r and Vi) = v v()  then for j =
l"lnl
IEVOVON
AAALE
pro=pt o= LV D.0.3
X0 VO T TV ( )

and in particular, we have

vl = 15 5 Py (D.0.4)

forallj= 2,..,n.

Proof. Firstly, by De nition 3(3.3, |
. . . 1 .
R VIURVIONRVIONERVIONT (D.0.5)
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forany j = 2,..,n. By Theorem ,V(j) is a conjugate matrix and hence V) 'L v () is
diagonal with ith diagonal entry d; := v() L v(). Clearly then, the matrix

vOT v oTL

hasit" row d—liv(‘)TL , and hence by (D.0.) the matrix P is

o vOuOTL T yOy0TL
VOT Ll d o vOTLv0

which gives the second equality in (D.0.3). For the rst equality in the same equation,
we will show that P},q = P} qforany q 2 RP. Using the decomposition g = z+ u,

where z 2 ImA® and u is in the L -orthogonal complement to Im A0, we have
Prd= Pz =2

where we have applied Proposition Similarly, by Theorem e have Im A() =
(o3

ImV{, and hence P, q = z. Hence P, = PL, . Substituting )with j $ j 1

into (D.0.2) yields result (D.0.4). O

The following proposition gives the decomposition of a vectorin  RP in a conjugate
basis.

Proposition D.0.4. Letfv(j)gj'o=1 be a basis of mutually conjugate vectorsRdt. Then for
anyq 2 RP,

P T
viLa g

PRV ORIRVIO)

Proof. Sincef v(j)gjp: , is a basis for RP, there exist coef cients f ¢'g such that
P
a=  qv0
i=1
By conjugacy, for eachj = 1,..,p we have
v TLg= gv® Ly
aT
) qJ _ V(J) L q
VOBV

Note that since L is positive-de nite, the denominator of this expression is non-zero.
The result follows. ]
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The simple form of the Bregman generator ( implies that the induced primal
and dual connections given in (£.3.7) and (2.3.8) respectively are both zero, and hence
the geometry is self-dual It follows that a submanifold in this geometry is e at if and
only if it is m- at, with both cases corresponding to hyperplanes in g co-ordinates. In
particular, the embedding L4 of Mg gointo RP has a simple linear form.

Proposition D.0.5. Let A 2 RP K have full rank. Under the Bregman generao.l), the
primal embeddind 4 of Mg a4 takes the form

Lg(b)= 1, , P Bb+ PL '(Ad+ w) (D.0.6)
where
1
P=P;=A ATLA ATL
and B is a orthonormal basis for the Euclidean-orthogonal complement to ImA.

Proof. Note that under (, dual co-ordinates are given by the simple af ne relation
h=r1FQg = Lg w. Therefore the submanifold Mg go is simply the hyperplane
de ned by the condition A h = d, i.e. the set of of q satisfying

A (Lg w)=d , ATLg= AT(Ad+ w)

Substituting the usual decomposition g = Aa+ Bb, we nd an expression for a in
terms of b,

ATL (Aa+ Bb) = AT(Ad+ w)
, ATLAa= ATLBb+ AT(Ad+ w)
1 1
, a= ATLA ATLBb+ ATLA AT(Ad+w)
Substituting this back into q = Aa+ Bb, we recover (D.0.6).

1 1
q= A ATLA A'LBb+A ATLA AT(Ad+w)+ Bb
I {5 } I {z }

pL 1
1o, p P Bb+PL Y(Ad+ w)

d

Note that the matrix in front of b in ( is exactly the differential matrix of Lgin
the general case from Lemma[3.3.1p withG = L, as expected. We can use this linear
embedding to nd an explicit simpli ed form for the resampling distribution sampled
at each iteration of algorithm @

Proposition D.0.6. For the Euclidean Bregman generator given .0.1), the resampling
step from Iine@4 @6 in aIgorithB 9 is equivalent to sampliig) from a probability density
I I
. RO .
di@ p ol D+ a T T 0 (D.0.7)
r( @)
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wherep is the overall target distribution, and then embedding iR8 via

!
RPN

04 Z0)
. NOMTO)

v (D.0.8)

wheref v()) gjp: L is the result of applying the Gram-Schmidt proces&itd gjp: .

Proof. From line f] the distribution sampled at each iteration is proportional to

p (a9
det AU DTr 2F(gQAG D

for q°= Lg(bY. Sincer 2F = G = L is constant, we can disregard the denominator.
Substituting the linear embedding q°= Lq4(b9 from proposition D.0.5,/we nd

fop 1, pi ) gpo+ pli D 1 Al Vgl D 4

where PU D := PL . isthe L -orthogonal projection matrix onto the columns of AU D).

We aim to rewrite the argument of this expression,
= 1, , PUD Bpl+ pPU DL 1 A0 D9l D4y (D.0.9)

Firstly, note that Bb®= b® The expression for b%from line 2Jof algorithm s given by
|

_ _ . OO
bO: ar(]) + C(J) = ar(]) + lp p C(J )
| r@) () .
AT 1 : ~T 1 '
= a4+ ol D w (=i Dy g w ()
r() () ()

where we have applied the update for c{) on line . Substituting this as b®= Bb%in

(D.0.9) yields
| |
NT (1) :
L, PUD Dy g r(’)_ f‘_) () pl DL 1 Al DU Dy oy
() r(l)l
NORPIEEE

(@) Tr()

q°=

pi D i Dy g v pli D 1 AG Dl Dy

1 p
(D.0.10)

where in the second line we have used Lemma [D.0.3. Note that from line @of algo-
rithm 9) gl 9 is the result of MF LAT EMBED2 called with arguments A = AU 2 and
b= bl =3al DG D4+l D |t follows from the de nition of MF  LATEMBED?2 in
Section[5.1.8 that

q(] 1) = A(J 2)a+ b(] 1) = A(J 2)a+ a(] 1)r(j 1)+ C(J 1)
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for some a 2 RU V. Thus, since P 1 is a projection onto the columns of Al 1 =
AU 2 (D itfollows from Proposition 3.3.7 that

(1, , PUD)qi V=(1, , PO Dyl D (D.0.11)
Furthermore, since the f r{) g vectors are mutually Euclidean-orthogonal, we have
(Tl D= (Tl Y (D.0.12)
Similarly, for the third term in (D[0.10) ]

AU DGl Dy w=a0D A0D E q(i D +w

AU DAGD g D AGDAG D w4+ w
and hence
PO DL T AdU D+w =p0 DL T AA LU Y AAW+wW

1 . 1 1
A ATLA ATAA LgI D A ATLA ATAAw+A ATLA ATw

A ATLA lATLq(j 1
pi Dgl D (D.0.13)

Finally, the result follows from substituion of equations (D/0.11),/(0.0.12)| and ([.0.13)
into (0.0.10),

|
aT o
P= 1,, PUD iy r(')_ g('_ L0+ pl Dol D
| r( Q)
AT 6oy
=qi U+ a w v
TG
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Algorithm 10 General Conjugate Directions Sampler

1: function GCDSAMPLER(Q?, L, logp)
22 M BasisVEcTorgq?, F)
3 v@® (@

4: a® sussampLer(@7!'p @+ a M0} v )

r(®Tr()

. M oo RSN CRE)

5 9 Qrr a (0 Tr() v

6: A r(D

7 for j=2,.,pdo ‘ _

8: r)  BasisVecTor22(ql Y, F, Al D)

. T B S (UMRVORG)

¥ v r =1, 0TL0 Y

. 0) | ) 070 )
10: a SuBSAMPLER(a 7! p (g + a ooV )
1. gD gl D+ a0 % v

r r

12: A(j) A(j 1 r(j)

13: end for
14: return q
15: end function

D.0.1 Gaussian Target Distributions

Lemma D.0.7. Letp be a multivariate Gaussian density & with meanmand precisiori ,
i.e. covariance matrix 1. Then forg,v 2 RP, the functionz 7! p(q+ zv) forz 2 R is
proportional to a one-dimensional Gaussian density with mman v'L (m q)/v'Lv and
variances® = 1/v'Lv.

Proof.
1
p(a+zv) exp S(a+zv. mL(a+zv m
exp % ZZvILv+2zvL (g m

where we have dropped terms not involving  z. Substituting the de nitions of mand s?
yields

1
p(q+ zv) exp > z’s 2 2zms?
1 ., 1 2
ex — 2z 2zm ex —(z
which is a Gaussian density with mean mand variance s?. O
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Theorem D.0.8. Letp be a multivariate Gaussian distribution d®P with meanmand covari-
ancel 1. Then in algorithn] 1D applied to target distributign, lines 10 andl 111 are equivalent
to the update 0

ST .
_ (M V(J) L m q(J 1
0) (i D4+ @g%—
q ql U+

A (D)

r(J) r ()

wherer ) = v Lv() and 4)  Normal(0, 1).

Proof. Line L0 samplesz() from a distribution
| |
. Mg v
(2 iny , 97 0
Az P a (@) Tr()

By Lemma [D.0.7/with g = qU Y % v and v = v, this is proportional to a
r

Gaussian distribution on z with mean and variance respectively given by

_ v TLm  v@TL gl D . HORFORE VO RIRY0)

viDTLvG) v T v T vOTL v
vOTL m g0 D Te6
r(0 * r(0)Tr(

2= 11

V0T O

If z is a random variable with this distribution, then
rTgl D

D.0.14
NONTO) ( )

is Gaussianwithmeanv@) 'L m gl D /r() andvariance 1/ r . Clearly then (D.0.14
has the same Gaussian distribution as

vl m qi D
g+ : (D.0.15)
r () r (1)

where z  Normal (0, 1). The result follows by replacing the random variable (

with (P.0.15) in line {1] .of algorithm

Lemma D.0.9. Let V(J) be thg conjugate basis resulting from applying the modi ed Gram-

Schmidt process to the basis(j) RP. Thenforall j= 1,..,p,
NONRVOERVOMTE!

191



Proof. By the modi ed Gram-Schmidt process in Theorem [0.0.2,|we have
MOV

v = () .
i=1 v Ly

v

The result follows from the fact that v() is conjugate tov(® forall i = 1,..,j 1. O

The general Conjugate Directions sampler for a multivariate Gaussian target distri-
bution is listed as Algorithm

Algorithm 11 General Conjugate Directions Sampler for a Gaussian Target

1: function GCDSaMPLER(Q(?, L, w)

22 M BasisVecTorgq?, F)
3: vD r(D
4: A r(D
5: forj=1,..,pdo
6 r@ Ty
7: z0)  Normal 0,1/r(®
8 @ i D+ 0+ M v
r
9: r+D  BasisVecTor2(qW, F, Al))
10: VORGSR R GEMRTNV0)
. i= r(
11: Al+D) A0 ((+D)

12: end for
13:  return (P
14: end function

Theorem D.0.10. If Algorithm [L1| terminates successfully after p iterations, then the returned
vector is

p
g = me  ZOyO
i=1
wheref z()g andf v() g are de ned as in the algorithm, arldm= w.
Proof. Note that by line § of algorithm

_ _ vt W Lqi _
g = gl D+ @200 + 0 A ()
r

for j = 1,..,p. Thus by induction, for all j = 1,..,p we must have
0
| i vt W Lgi D |
g = @+ @0+ 0 A @) (D.0.16)
i=1 r
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In particular, for j = p,

0 - |
p _ v ow Lq(l 1 ‘
P =@+ @0+ | A y0)
=1 r(
0 1 .
p _ _ p V(J) L m q(J 1) _
=1 =1

where we have substituted w = L mto rewrite the nal term. Equation (D.0.16) implies
thatfor j = 2,..,p,
q(J 1) 2 q(o) + Spanf V(l), ..,V(j 1)g

and therefore, sincev() is conjugate to each ofv(®, . v 1
VORI (REMSRVORIC
for j = 2,..,p, which is also trivially true in the case j = 1. Substituting this result and

I‘(j) = V(j) LV(j) into (.0.17,
0) m (0)
A q

p p
q(p) = q(O) + 7Dy () 4 @ - A ()
=1 =1 v L v®

By Proposition the nalterm of this expressionis m g(©. Thus the result follows.
O

D.1 Gibbs Sampling and Matrix Factorizations

In this section we show that the Orthogonal Gibbs algorithm is equivalent to the Gaus-
sian Elimination sampler, Algorithm 6] vhen the Bregman generator is given by (D.0.1) |
Recall that the Gaussian elimination algorithm applies elementary row operations to a
matrix L 2 RP Pin order to transform it into reduced row echelon form as follows:

Algorithm 12 Gaussian Elimination

1. forj=1,.,p 1do
2: fori=j+1,.,pdo

3 Cij L ij/ L i

4 fors=1,.,pdo

5: Lis Lis Gj Lijs
6: end for

7 end for

8: end for
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The result L 9of applying Gaussian Elimination to L can be expressed as a product
of elementary matrices with L, where each elementary matrix acts on its multiplicand
by applying an elementary row operation.

Recall that for Orthogonal Gibbs, the B AsISVECTORS function returns the standard
basis vectors, i.e. r) = el) forall j = 1,..,p. We have shown in this appendix that
the Euclidean Bregman generator reduces the general Dual Complement Submanifold
algorithm to the conjugate directions sampler, Algorithm 10, Which applies a modi ed
Gram-Schmidt process to the fr()g basis vectors. Thus, letV = v v(P  pe
the matrix whose columns are the conjugate vectors resulting from the modi ed Gram-
Schmidt process applied to the standard basis vectors. The following theorem shows
that VT is the product of elementary matrices that transform L into its reduced row
echelon form, i.e. L9= VTL. The result is also shown in Chapter 4 of Hestenes [40].

Theorem D.1.1. Let V be the matrix whose columns are formed by the modi ed conjugate
Gram-Schmidt process applied to the standard basis vectors. Then the m&trils ¥quivalent
to L O the application of the Gaussian Elimination algorithmlto In particular, for each

1,..,p 1ltherow vectow(j)TL is the fM row of the matrix resulting from applying j iterations
of the Gaussian Elimination algorithm to.

Proof. We show the result by induction on the rows of L. Let L °be the reduced row
echelon form of L, i.e. the result of applying Gaussian Eliminationto L.

Base case.The Gaussian Elimination algorithm leaves the rstrow of L unchanged,
so the rstrows of L and L %are identical. From the Gram-Schmidt process, the rst

conjugate vector is equal to the rst standard basis vector; v() = e Therefore v(D L
is simply the rstrow of L, which agrees with the rstrow of L°

Induction step. Letj 2 f1,..,p 1g. Assume the inductive hypothesis that for all
i = 1,..,j, the row vector v)TL is the i" row of LO We seek to show the equivalent
statement holds for j + 1. By the modi ed Gram-Schmidt process given in Theorem

[D.0.2, we have

i yiTy A+
S0 = iy VY TLe(“ 0
i=1 v Ly
iy A+l
) vitDTL = e+ DT Mv(iﬂ
=1 v Ly

Note that eli* DL is the row vector corresponding to j™ row of L, and by the inductive

hypothesis v L is the ith row of L O In particular, the coef cients in the summation

become
v T i+ D) Lo

vO Ty LD
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where in the denominator we have applied Lemma It follows that the s com-
ponent of the row vector v(i*D 'L is given by

0
Lije1

v+t DT a9 2
1]

® = Lij+1s
i=1

L2 (D.1.1)

The right-hand side of this is exactly the s component of the (j + 1)™ row of L % Thus
the inductive hypothesis holds for j+ 1.
Thus by the principle of induction, L%= VTL. O

SinceVT = VTlp P Theorem implies that the conjugate vectors fv{)g can
be computed by applying elementary row operations to the identity matrix, where the
operations are the same as those used to reducel to its echelon form. Similarly, the
same elementary row operations can be used to transform the linear system into an
upper-triangular form,

Lm=w

, ViLm=VTw
In Algorithm €,]we apply these elementary row operations to the identity, L and w.

Theorem 5.2.2. Let L%and V result from the application of Algorithrﬁ] 6 to a symmetric
positive-de nite matrixL 2 RP Pandw 2 RP. Let D be the diagonal matrix whose diag-
onal is the diagonal df © The lower-triangular Cholesky factor Llof i.e. suchthat = LLT,
is given by

L:= LO'D 2

Proof. By Theorem[D.1.1,L %= VTL. Lemma|[D.0.9 then implies that the j™ entry on
the diagonal of D is given by

Dj = vDTL ) = Ty
In matrix form, D = V'L V. Therefore
LLT: LOTD 1/2D l/ZLO
=LVD V'L
LV(VTLV) vTL
LL L =1L

where we have used the fact that V is non-singular because its columns form a basis.
Note that since L %is upper-triangular, then so is L, and thus L is the Cholesky factor of
L. O
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Corollary 5.2.3. The nal iterateq(P of the Gaussian Elimination sampler, Algoritiﬁ 6, is
stochastically independent of the initial iterafe) and is a sample from the target distribution
Normal L ‘w,L 1.

Proof. By Theorem|D.0.1Q, the nal iterate is given by

p
qP = me 0
j=1

where f v{) g are the conjugate vectors de ned by the algorithm, and z{)  Normal (0, 1/r ).
Note that the fv()g are entirely deterministic, resulting from a Gram-Schmidt process
applied to the standard basis vectors. It follows that the z() are independent random
variables. We therefore write

q® = m+ VD Y?x

o : : i P
where D is a diagonal matrix whose diagonal elementsare r'/ 1andx Normal 0,1, p
J:

is a vector of i.i.d. standard normal random variables. Clearly then, q(P has a multi-
variate Gaussian distribution with mean mand covariance

VD 1/2D 1/2VT: VD 1VT
1
=V VLY VT
=L 1

Since neithermnor L ! depend on q(©@, it follows that q(P is independent of q@. O

D.2 The Conjugate Gradient Sampler

Consider Algorithm 10 Wwhen the B AsiSVECTORS function has the de nition given in

Section. Lemm states that the resulting basis vectors r() g built up over the
iterations of the general iterative algorithm are the result of a Gram-Schmidt process,
Jyith respect to the Euclidean inner-product on RP, applied to the negated gradients

r F qU 9  of the Bregman generator at each iterate. In Algorithm @ the con-

jugate directions fv()g are the result of a modi ed Gram-Schmidt process, i.e. with
respect to the L -weighted inner-product, applied to the fr)g.

One might therefore expect that two Gram-Schmidt updates are required, in order
to orthonormalize against the Euclidean inner-product and then the L -weighted inner-
product. In fact, the following lemma shows that the fv{)g can be computed directly
via the modi ed Gram-Schmidt process applied to the negated gradients. This simpli-
es the conjugate gradient algorithm.

196



Lemma D.2.1. Letfr()gandfv()g be de ned as in Algorithmh 10 with thBAsISVECTORS
function de ned as in Sectidn 5.3. Then foRjf 2, ..,pg, we have

ERVIORNI SN I ()
i=1 v L v

Proof. Let j 2 f 2,..,pg. Line [?lof Algorithm 10 Js the ™ step of the modi ed Gram-
j

Schmidt process applied to frl/g,
v = (0 Mvm
i:lv(i) LV(i)
VOV OLI T .
ASAVAD N
- 1 r(]) = 1 PL. r(J) D.2.1
PP iz v Ty PPovey ( :
where the last equality follows from Lemma 0.0.3.]From Lemma ¢.3.3,|we have
|
. EENONON ' . .
riDr
r) = —— Lo rF gl Y = Py L, rF gl P (D.2.2)
i:lr(l) r(l)

where P, 1 Pi’zj ", is the Euclidean-orthogonal projection matrix onto the span of

frW, r0 Dg. Substitution of (D.2.2) into (D.2.1) then gives

V= 1,5 Py Paiw LpprF gl?

v
= Pain Ipop P\I;(j yPai vt P\I}(; y IF q(j b (D.2.3)
Note that the span of fr(M, 1 Dgis identical to the span of fv(®, v Ygby

Theorem. Thus for any x 2 RP, the projection P, 1 X is an element of Im AU D =
ImV{ D Therefore by Proposition B.3.7,

L _
Pya nPai 9X = Pag nX

»Pai v = Pag n. Substituting

Since this holds for any x 2 RP, we conclude that Pb(j

this result into equation (ID.2.3)

V= Py Ly p R aPacn*t Rygy rF ool Y

Pain lpp Pagn+Pogqy rF gl

PL

i1
VG D lpp rF gl ¥

Substituting the result of Lemma D.0.3}yields the result.
v TLr F gl D

i = (i) (i1
vy = \Y; r F
. VOTLyO |
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As in Algorithm 8, we de ne
g = Lq® w
forj=1,..,p.
Corollary D.2.2. Forj=1,..,p,
gi) = gl D4 | O yO)
Proof. By the de niton of g and line Bof Algorithm §, jwe have

gl D+ | OpyO)
which holds for j = 1,..,p. O

The following proposition justi es line 13 of Algorithm 8. [The proof is adapted from
Proposition 2.4.1 in Fox [29].

Proposition D.2.3. Letfv()gandfr()gbe de ned as in Algorithrh|8 for 1,..,p. Then for
i=2,..,p,
V(J) = r(J) (r(])Tg(J l)/ r(J 1)| (i 1))\/(] 1)

wherer @ = v T v, and
EORPTORRVOLIRE Y0

as de ned on Iin{]&

Proof. By Corollary the product L v()) is proportional to the difference of succes-

sive gradient vectors,
g = 1)

0 g(J') g(i

Substituting this into the Gram-Schmidt process for v from line ﬂof the general con-
jugate directions algorithm, Algorithm 10, bives

R ORIRVO!

v = 0) v
RVOMRVO)
1T gl gl D
= 0 (i)
r IR0 % (D.2.4)

i=1
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n

)
for j = 2,..,p, where v(D = r(D By Lemma|C.3.3, r{) isthe Gram-Schmidt process
n 0

appliedto gl D | je.

FLmTg 1
NT /. r
=1 r@ @)

Thus by Theorem [D.0.2, r() is Euclidean-orthogonal to Spanfg(@,..,g0 g for j =
2,..,p. Thus all terms except one in (D.2.4) are zero, and hence the result follows;

r(J) = g(] 1) + (I) J = 2, _,,p (D25)

rTgl v

LA AR
(GO Gy

v = 0

Corollary D.2.4. Foralli=1,.p landj> i,
RORORSIORING)
Proof. By Corollary
g = gl D4 OpyO
Taking the inner product of this with  r(),
(g0 = (D79l D4 | G DO O
Sincev() is the j conjugate vector resulting from a modi ed Gram-Schmidt process

applied to fr(k)gf(: L, it follows that v() is conjugate to r. Thus (Tl = (gl D,
Since this holds for any j > i, the result follows. O

The following proposition justi es lines 11 and 12 ih Algorithm 8. []

Proposition D.2.5.
r0+D = (1+ d,-)r(j) | D y®

where
i Tg
O
forj=1,..,p.
Proof. Line @ of Algorithm 10 |s the j™ step of the modi ed Gram-Schmidt process ap-
plied to fr()g, and hence
(7D = g 4 0 g0
ST
i=1 r(® (@)
= g0 g+ r® g0 g

EMORMO!
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Substituting the expression in Corollary .2.2 for g(!,

; AT
J 1r(') g(l) r(i)

D.2.6
ETORIT0) ( )

(D = g OLVD gl D+

By Corollary fTgi) = rOTg0 = rOTg0 Dforall i = 1,.,) 1. Thus the last
two terms in (P.2.6) are

LT

EORIT0)

I ONRTEY

i) = ()
- =r
i=1 r(i)Tr(i)

gl D4 (= i Dy

Substituting this into (D.2.6) yields the result,

r(j+l) = r(]) + djr(l) | (J)L V(J)
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