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Abstract

Lower limb amputees struggle with an impaired gait that traditional prostheses’ perfor-

mance cannot entirely correct. The development of powered prosthetic devices aims to

solve this by replacing the power generating muscles. Powered prostheses will only be

successful if the device is effectively controlled.

A human gait involves multiple control modes for different activities; for a non-amputee,

transitions between these modes are seamless and natural. In a powered prosthetic device,

these levels of control need replicating. The correct selection of gait mode based on an

individual’s intent is crucial. Machine Learning (ML) methods are a promising avenue for

this. However, their applicability to amputees is under-researched; this is partly due to the

difficulty in collecting amputee gait data. This research aims to investigate ML methods

for Locomotion Mode Recognition in amputees while reducing the data requirements for its

implementation.

An extensive public data set of gait data is collected using novel wireless Inertial Measure-

ment Units (IMU) and a companion smartphone app for labelling activities in real-time.

The gait data set is used to investigate the performance of an Long Short Term Memory

(LMR) network for non-amputees. The analysis identifies that the model primarily clas-

sifies activity type based on data around early stance, a period with significant difference

between individuals. The model also struggles to generalise to novel unseen users due to

over fitting to the subjects’ individual gait traits. Therefore personalisation is required.

Subsequently, methods for personalisation are investigated. Transfer learning is identified as

a promising research field. However, its application to IMU amputee gait data has not previ-

ously been demonstrated. A novel method for dividing continuous, unstructured and poorly

distributed gait data is developed to investigate personalisation methods: this successfully

improves classification performance and reduces data requirements in both amputees and

non-amputees.
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Chapter 1

Introduction

1.1 Motivation

Lower limb amputation affects a small but significant portion of the population. Predictions,

however, suggest that this number will continue to rise. More than one million amputations

occur globally, that is one every 30 seconds.[1] Limb loss often occurs due to traumatic

injuries, certain diseases, and forced amputation due to surgery, increasingly resulting from

vascular disease or diabetes[2, 3].

Regardless of amputation cause, lower limb amputees require more energy to walk than

their non-amputee peers[4]; 10-40% for trans-tibial[5, 6] and greater than 70% for trans-

femoral[7]. The loss of a lower limb dramatically impedes movement[8, 9, 10], reducing

amputees’ quality of life and increasing the risk of further compensatory injuries. A pow-

ered prosthesis could effectively replace the lost limb, reducing energy expenditure during

walking and rebalancing gait[11]. To effectively control the prosthetic requires knowledge

of the user’s intended activity. This knowledge must be obtained in real-time only using

information gathered through local sensors.[12]

1.2 Challenges, Control and Machine Learning

For the non-amputees, transitioning between different locomotion modes is seamless as both

legs adapt to the activity without thought. For a leg prosthetic to feel truly natural, its

controller must be capable of the same seamless behaviour. The identification of appropriate

locomotion mode is a vital component of this.
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Variations in gait between individuals are substantial enough that it is possible to identify

an individual based solely on their gait[13, 14]. For amputees, inter-subject differences in

gait are more substantial. On top of the normal gait variations the level of amputation and

any compensatory mechanisms can have large effects. Therefore the individual tuning or

personalisation of prosthetic controllers to an individual is of key importance.

Additional complexities come from the need to adapt to different environments. A change

in environment, such as moving from a paved path to a woodland trail will result in changes

in sensor signals. This is especially challenging to deal with as it will never be possible to

collect sample data for all environments that a prosthetic device may operate in.

Accounting for both these challenges requires the need for a highly tune-able controller.

Machine Learning (ML) has been shown to be effective at extracting information for new

environments as well as learning behaviour unique to an individual. The problem with ML

is that it requires a large amount of data in order to achieve a high enough performance

to not compromise the safety of the device. Collecting large amounts of gait data from an

amputee is challenging given their reduced mobility.

1.3 Hypothesis

This thesis explores a hypothesis in the cross-cutting domain of human gait, control of

prosthetic device and machine learning approaches.

The hypothesis is:

A Machine Learning approach based on Long Short Term Memory (LSTM)

architecture can be used to predict gait modes with data requirements reduced

through a transfer learning approach.

This hypothesis can be explored further by:

• Collection of a large gait data set to experiment with LSTM ML methods for Loco-

motion Mode Recognition (LMR).

• Improving understanding of the underlying mechanisms for how a LSTM network

classifies gait and the potential limitations of this.

• Development of ML schemes for individual personalisation of machine learning models

to reduce training data requirements.
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1.4 Thesis Structure

The structure of each chapter is as follows.

• In Chapter 2, an overview of the background around machine learning and gait are

presented.

• Chapter 3 presents the methodology used for data collection and Machine Learning.

• In Chapter 4 the Journal article “Understanding LSTM Network Behaviour of IMU-

Based Locomotion Mode Recognition for Applications in Prostheses and Wearables”

is presented.

• Chapter 5 presents a method for evaluating personalisation LMR models from a set

of real-world continuous gait data. The Chapter also demonstrates a simple person-

alisation method to improve classification performance over realistic baselines.

• Chapter 6 applies the methods developed in the previous chapter to first hand trans-

tibial amputee data.

• Finally Chapter 7 present Conclusions of the thesis and suggestions for future work.

1.5 Contributions

The main contribution of this work is the demonstration of a practical transfer learning

approach to producing an activity recognition system for an amputee. The specific contri-

butions are as follows.

• Presentation of the current state of the art in ML methods for locomotion mode

classification from amputees gait sensor data.

• Development of a Android Application and wireless sensor system for collection of a

unsupervised system for the large scale collection of labelled gait data is developed.

• Collection of a new publicly available data set of unsupervised gait data collected in

a natural environment.

• Contributes to a better understanding of Long Short TermMemory for LMR networks.

• Demonstrates the need for personalisation of ML models to achieve > 80% model

accuracy.
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• Creation of methods for evaluating personalisation LMR models from a set of real

world continuous gait data

• Demonstration of personalisation methods for improving individual locomotive mode

classification accuracy.

• Demonstration of high applicability of personalisation methods amputee gait classifi-

cation.
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Chapter 2

Background

This chapter presents the background and literature on locomotion mode recognition sys-

tems for prostheses. The chapter contains seven sections. Firstly background around human

gait and prostheses are presented in Sections 2.1 and 2.2. Following this, Section 2.3 reviews

wearable sensors used for gait analysis. Sections 2.4 and 2.6 contain an introduction to ma-

chine learning and its applications for Locomotion Mode Recognition. Finally, concluding

remarks about areas of research interest are presented in Section 2.7.

2.1 Biomechanics of Gait

Human locomotion involves the smooth advancement of the body through space with the

least mechanical and physiological energy expenditure. While the primary goal of walking

is forward motion, the mechanism that achieves it is based on the need to maintain a

symmetrical and low amplitude displacement of the body’s COM in both vertical and

lateral directions. Low displacement conserves both kinetic and potential energy and is the

principle of biological conservation of energy.[15]

Gait is a highly individualistic personal trait with many factors that affecting it[16]. A

performant gait is a coherent highly energy-efficient mechanism for forward propulsion of

the body. It naturally adapted to different environmental conditions and disturbances to

achieve high level of stability throughout the gait cycle[17, 18]. With regards to lower-

limb prosthetic the mechanics of locomotion are of most interest. Within this section

the terminology that will be used to with reference to the human gait and the high level

biomechanics of locomotion are presented.
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Different ambulation modes require fundamentally different control sequences for operating

powered prosthetic limbs[19]. There are a large number of possible locomotive activities

depending on the environment and movement speed. In the study of activity recognition

level-ground walking, ramp ascent, ramp descent, stair ascent, and stair descent are the

most commonly studied[20, 21, 22, 23, 24, 25, 26, 10, 27] and cover the most basic loco-

motion activities used for forward motion[28]. Labarrière et al. identified these as the most

commonly investigated as they require no equipment or skill to perform[26].

2.1.1 Gait Terminology

A complete gait cycle is the basic unit of gait analysis. A cycle, by convention, begins when

one foot comes into contact with the ground, Initial Contact (IC), and is complete when

the same foot contacts the ground again. Another name for IC is Heel Strike (HS), as the

heel is the most common initial point of contact. Conversely, the point at which the foot

leaves the ground is Toe Off (TO). The name arises as the toe is always the last point of

contact with the ground.[29, 17]

The gait cycle can be further sub-divided into two phases. The distinct phases, stance and

swing, are physically indicated by the foot’s contact with the ground. Stance occurs when

the foot is in contact with the ground, and swing occurs when the foot is off the ground.

HS marks the transition from swing to stance and TO stance to swing. When considering

both limbs, there are additional descriptors. These include single support when only one

foot is in contact with the ground and double support when both feet are in contact with

the ground. Figure 2-1 illustrates a complete gait cycle and the key events.[29, 17]

Toe Off
(60%)

Heel Strike
(100%)

Midstance
(30%)

Midswing
(73−87%)

Heel Strike
(0%)

Stance Phase Swing Phase

0% 100%60%10% 20% 30% 40% 50% 70% 80% 90%

Figure 2-1: Human Gait Cycle during level walking. The percentage timings of the gait
events are approximate; they vary depending on the individual and environment.[30]

Movements of the human body mainly occur in three planes: sagittal, frontal/mediolateral

and horizontal/transverse. The plane’s intersections occur either at a joint centre or the

body’s Center Of Mass (COM). The sagittal plane is the vertical plane passing from the
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rear (posterior) to the front (anterior), dividing the body left and right. The mediolateral

plane passes from left to right, dividing the body into posterior and anterior halves. The

transverse plane divides the body into the top (superior) and bottom (inferior) halves.[31]

Figure 2-2 shows an illustration of the three planes

Sagittal Plane

Transverse Plane

Mediolateral Plane

Figure 2-2: Bio-mechanical planes of the body. The sagittal plane is the vertical plane
dividing left and right body halves. The mediolateral plane divides the body into front and
rear halves. Finally, the transverse plane divides the body into the top and bottom halves.

The primary movement of the ankle occurs in the sagittal plane; these are the raising and

lowering of the foot. The two motions are plantar-flexion, moving the foot downwards, and

dorsiflexion, lifting the foot upwards.[31] Figure 2-3 show a visual of the ankle movement.

Plantar-flexion happens towards the end of the stance phase when the foot pushes off the

ground. Dorsiflexion occurs during the early swing phase to provide enough toe clearance

as the foot passes under the body.[32]

Dorsiflexion

Neutral

Plantar Flexion

Figure 2-3: Sagittal plane motions of the ankle. Plantar flexion is the lowering of the foot;
dorsiflexion is the raising of the foot.

There are many different metrics for quantifying gait. These vary from easily measurable

values such as step rates and distances to more involved metrics such as energy expendi-

ture and efficiency.[33, 34]. Measurements of energy expenditure are not possible directly.
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Energy expenditure must be is calculated indirectly, this is commonly done through mea-

surement of the volume of oxygen consumed and carbon-dioxide produced. The equipment

required for measurements restrict energy measurements to a lab environment.[15]

2.1.2 Variation with Locomotive Activity

The previous section described the pattern of gait that occurs during a level walking lo-

comotion. The human gait cycle can efficiently adapt to different terrain and obstacles.

Changes in the locomotive activity require a change in gait actions to accomplish the move-

ment[19]. Additional muscle actions are required to raise and lower the COM during these

actions[35].

This section presents bio mechanical difference between five different locomotive movements,

Walking, Stair Ascent (SA), Stair Descent (SD), Ramp Ascent (RA), Ramp Descent (RD).

Ramps are considered any surface with a slope sufficiently steep so that a change in locomo-

tive action is required. For each activity, there is a description of the differences in human

gait compared to walking.

2.1.2.1 Stair Ascent

During SA, the COM must move upwards, requiring net positive work; this requires more

significant muscle activity. SA can be divided into three phases: weight acceptance, pull-up

and forward continuation. The knee dominates during weight acceptance and pull-up with

support from the hip and ankle. While, during forward continuation, the ankle generates a

large amount of energy resulting in an upwards motion of the COM. The ankle angle differs

from a horizontal walk, mainly at the late swing phase and early stance. While lifting the

foot to the next tread, the edge is avoided by a small dorsiflexion and moving the knee

backwards.[36] The changes in gait cycle are illustrated in Figure 2-4.

Figure 2-4: Stair ascent gait cycle[37]
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2.1.2.2 Stair Descent

During SD, the ankle angle differs from horizontal in the swing phase when moving the

limbs down. The change in ankle angle is most notable as a dorsiflexion action to reaching

the toe downwards. The change in ankle angle results in the toe being the point of IC.

Energy is transferred from the ankle into the knee at IC. Due to the downwards, COM

motion reflects in a smaller force at push-off. There is also less muscle activity for vertical

movements due to the smaller stride length.[36] The changes in gait cycle are illustrated in

Figure 2-5.

StanceSwing
Stair Descent Gait Cycle

Figure 2-5: Stair descent gait cycle[38]

2.1.2.3 Ramp Ascent

As with SA, RA requires additional energy expenditure to move the COM upwards[35].

Walking uphill can take three times as much energy as walking on flat ground[39]. Gait

parameters also vary with the slope of the surface[40]. Knee flexion and ankle dorsiflexion

increases at heel strike as the foot aligns with the surface. These changes in gait require an

increased range of motion and additional muscle power generation.[41]

2.1.2.4 Ramp Descent

For moderate slopes, RD is similar to level walking. However, the lowering of the COM

requires additional energy to be absorbed[35]. Walking downhill takes only half as much

energy as walking on the level ground[39]. As with RA, the gait adjusts to the slope.

The above describes the steady-state motions during typical locomotive activities. The

human gait can also smoothly transition between different locomotive modes and handle

perturbations and disturbances.[42]
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2.1.3 Gait variations between Amputee and Non-Amputee

Amputees suffer from a wide range of gait abnormalities when compared to non-amputees.

These occur both due to mechanical constraints of a prosthesis and compensatory actions

due to the functional loss of muscles [43, 44]. These adaptations are individual and unique to

the amputee and their particular amputation [45, 46]. General trends in the adaptation may

be drawn, such as asymmetrical gait, slower walking speed, and higher energy demands[47].

Amputee gait is significantly more asymmetrical compared to that of a non-amputee, with

amputees relying more heavily on their intact limb [48, 49]. Asymmetry is seen in many gait

features, including stance and swing periods and hip, knee and ankle joint moments[50, 51].

A common explanation for this is the reduced push-off capacity of the prosthetic leg, but it

may also be due to discomfort of the prosthetic and other compensatory mechanisms[52].

Energy expenditure measurement have proven to be a reliable method of quantitatively

assessing the penalties imposed by gait disability [15]. Studies have shown that trans-

tibial amputees using passive prosthesis use 10-40% more energy to walk at the same speed

when compared to their non-amputee peers [5, 6], with trans-femoral amputees requiring

more than 70% [7]. This additional energy expenditure dramatically impedes ambulation.

Amputees are half as active as their non-amputee peers and prefer 30-40% slower walking

speeds [53, 54, 11, 55]. The loss of significant power generating muscles after amputation

also leads to a marked asymmetry in gait between limbs [56].

Amputee subjects walk at a 29% lower comfortable speed than a non-amputee [57, 58].

They also walk with a larger stride width than normal subjects [57]. To achieve higher

walking speeds amputees prefer to adjust their stride length rather than with their step

rate [57, 43].

Insufficient mid swing toe clearance of a prosthetic foot is a well-recognised inadequacy

for lower limb prosthesis user due to inability to adequately dorsi-flex the ankle. The lack

of toe clearance results in an increased risk of tripping [45]. Compensatory mechanisms

are employed by the amputee to reduce tripping risk. A common mechanism is elevating

the prosthetic hip during mid-swing referred to as Vaulting or hip-hiking. Elevation is

achieved by employing an early heel rise of the intact limb.[59, 45]. Hip-hiking increases the

COM height during swing on the amputated limb when compared to a non-amputee. The

increased COM reduces gait efficiency and the asymmetry of the gait can lead to injury.

Lower limb amputees spend more time in stance on their intact limb and less on their

prosthetic limb [60]. The double-limb-support phases of the intact and prosthetic side are

unequal in most amputee subjects [57]. In particular the different characteristics of the
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prosthesis relative to the sound limb results in a longer swing time for the prosthesis [47].

This asymmetry increased with walking speed [60].

An amputee also have an asymmetric Ground Reaction Force (GRF). Able-bodied subjects

have less than 10% force asymmetry during walking while unilateral amputees have up

to 23% force asymmetry depending on the type of prosthesis used [60]. There is also a

decreased GRF on prosthesis compared to a non-amputee[46]. Many lower limb amputees

attempt to maximise the capacities of their intact limb to counteract the limitations of their

prosthetic device explaining some of the GRF asymmetry[61].

2.2 Lower Limb Prosthesis

A lower-limb amputation involves the removal of part, or multiple parts, of the lower limb.

The practice of amputation for injury or disease is centuries old and likely first occurred

in pre-historic times[62]. The level of amputation can be either minor or major, depending

on the amputation site. Major lower limb amputations occur above the ankle. The two

most common major lower limb amputations are trans-femoral (above the knee) and trans-

tibial(below the knee).

An artificial or prosthetic limb can replace an amputated extremity. The prosthesis aims

to restore natural behaviour by emulating/augmenting the action of a missing limb.[12]

The ability of a prosthesis to mimic the function and appearance of the lost limb can vary

significantly.

The earliest known prostheses are recorded in Indian literature between 1500 to 800 b.c.

although artificial limbs are probably much older than that[63]. Over the years, prostheses

have gone from barely functional to sophisticated devices aiming to replicate lost function-

ality. Artificial limb design, fitting and manufacture has advanced considerably within the

past 50 years and is now a burgeoning research field.[62]

The current primary technologies for prosthetic legs are: Energy Storage and Return (ESR),

hydraulics, semi-active and active devices[1]. Figure 2-6 shows examples for each type.

Each technology offers varying levels of assistance, with amputee suitability and preference

informing selection. The most common form of prostheses is the ESR foot. During walking,

an ESR prosthesis reduces energy expenditure by storing energy through spring compression

during heel loading, releasing it during late stance to push-off.[1]

Passive devices such as an ESR cannot provide the net positive mechanical power needed

during many activities of daily living, such as ascending stairs or standing up from a seated
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Figure 2-6: Example prostheses types: a) ESR (Blatchford BladeXT), b) Hydraulic
(Blatchford EchelonVAC), c) Semi-active (Blatchford Elan), d) Active (Ottobock’s biOM)
(a-c)[64] (d)[65]

position[22]. To fully restore gait functionality, the prostheses must replace the lost power

generating function of the amputated limb.

A powered active prosthetic device could provide the full power-output capabilities of the

corresponding physiological joints. It could thus enable gait patterns resembling those of

unaffected persons across various activities and terrain[12, 66]. According to Au et al.,

The use of an active prosthetic can reduce metabolic energy usage by 14% in trans-tibial

amputees, even with a two-fold increase in prosthetic weight[55].

Ottobock’s BiOM EmPOWER active prosthetic ankle is currently the only active prosthetic

device on the market.[67] The device is a spin-out from research undertaken by MIT in

2011.[65] Analysis of the EmPOWER ankle has shown a reduction in the metabolic cost

of walking by 8% and an increased walking velocity of 23%[6]. Össur produces the Proprio

Foot, a semi-active ankle that lifts the toe to increase ground clearance. The Proprio foot

has also been integrated with their Rheo Knee to form a coordinated leg for trans-femoral

amputees capable of stair descent.[68]

2.2.1 Control Requirements for Powered Prosthesis

The human body represents a well-balanced walking machine that performs periodic, stable,

and energy-efficient gait through highly sophisticated mechanics and control, which are not

easy to replicate[18]. The human nervous system uses different control strategies to adapt to

individual locomotive activities[69, 22]. These adaptations occur automatically in a healthy

gait cycle. A prosthetic controller must implement multiple control modes to replicate this

lost functionality.

An active prostheses controller must implement several concurrent processes to control pros-
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theses effectively. Tucker et al. present a generalised hierarchical framework for structuring

a prostheses controller. Hardware control forms the lowest level. The top-level controller

implements a perception system to determine user intent or activity mode. Therefore, an

accurate perception of the users’ intended action is paramount[1, 70]. An intermediate level

controller performs translation of intent to hardware state demands. An illustration of the

hierarchical controller is provided in figure 2-7.[12]

Low Level Control
• Hardware control loops
• Output actuator demands

• Activity mode specific control
• Output desired actuator control

• Perceive user intention
• Output desired action

Intermediate Level Control

High Level Control

Sen
sory In

formation

Hardware Demands

Figure 2-7: Generalised control framework for active lower limb prostheses

2.2.1.1 High Level Controller

As different activities require changes to gait pattern multiple mid-level controllers are

required for each locomotive tasks; for example walking, standing still or stair descent.

Selection of the appropriate mode is critical to performance of this controller as selection of

the wrong mode will result in undesirable behaviour. The high level controller is responsible

for the selection of the appropriate mid-level controller.[12]

There are many different forms of mode selection including manual user entry, heuristic

threshold methods[71, 72, 73] and machine learning methods[74, 75]. All of these methods

use sensors to interpret user intent and environment around them to make an appropriate

mode selection.

2.2.1.2 Mid Level Controller

The mid controller is responsible for determining the demand physical state of the device

throughout the gait cycle. The selection of demand state is driven by the which phase of

the gait cycle the user is in, and the current activity mode. The demand states have the

form of a position/velocity, torque or, impedance of different prosthetic components which
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are fed to the low level controller to enforce.[12]

Most mid-level controllers have a finite number of modes corresponding to a series of differ-

ent activity sequences. Researchers are also investigating continuous or mode free controller

to reduce the need for bespoke state machines per activity.[76, 77]

Accurate determination of the current gait phase is critical to outputting appropriate de-

mand signals. When done correctly this allows the prosthetic to provide a natural walking

gait and to make the most use of any power generating/absorbing capacity For example

Yu et al. presented a prosthetic ankle that could provided powered plantar-flexion. From

the work it was identified that accuracy timing of the plantar-flexion was critical. Plantar-

flexing too early resulted in the ankle lifting the body upward instead of pushing the body

forward. Powering the plantar-flexion too late resulted in a lack of support of the body

weight, with the amputee in danger of stumbling.[78]

Sup et al. illustrated an example mid-level state machine as shown in Figure 2-8. The

selection of modes is achieved based on threshold for different sensor inputs being reached.

For example mode one begins after mode four when the measure ankle loading exceeds a

manually set threshold. The state machine moves to mode two when the ankle angle exceed

another threshold value.[79]

Figure 2-8: Example state machine for mid level control of a lower limb prosthetic ankle
[79]

2.2.1.3 Low Level Controller

The desired device state is passed to the low-level controller. The low-level controller

then used closed loop feedback to actuate the prosthetic device. Feedback is based on

the error between the current and desired state. There are many forms of controller that

are used to achieved this including feed-forward or feedback control.[12] Gao et al. used
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a Proportional-Derivative controller to regulate the motor current and provide closed loop

torque control[80]. Yu et al. used a proportional-integral based closed loop velocity controller

to provided velocity control for a hydraulic pump. This was used to regulate the hydraulic

pump pressure to drive the hardness and position of a hydraulic actuator.[78]

2.3 Sensors

To perceive a person’s intent, we must take measurements of them[1, 70]. Different sensors

allow for different measurements. Each measurement can be of physical quantities about

the person or their surrounding environment. Appropriate selection of sensors is therefore

of critical importance. Criteria for selection include the type, richness of information and

impact on the user.[12]

The impact of a sensor considers its invasiveness both physically and in privacy. The

physical impact must consider how the discomfort of a sensor affects the performance of

an action. For example, a sensor of fewer than 300 grams mounted to a shoe does not

affect gait significantly[81]. In contrast, many wires rubbing on the leg may. There are also

practical concerns, such as ease of use.

Sensing systems divide into three categories: neural, mechanically intrinsic or environmental

signals. Neural sensors measure physiological electrical signals, such as brain activity or

muscle activity. Mechanically sensors measure effects intrinsic to the device itself, such as

acceleration. Environmental sensors measure the properties of the world around them, such

as ambient light or pressure.[82, 12]

Recent trends in sensing technology have been towards wearable sensors. The demands of

the modern smartphone have primarily driven this development. New smaller and more pre-

cise sensors have opened up the possibility for making previously lab bound measurements

in a more natural environment. Smartphone sensing technology is highly applicable and

widely used in active prostheses[1]; this state of the art review will focus only on wearable

technologies.

2.3.1 Types of Sensor

Acceleration and angular velocity are the most commonly mechanically intrinsic signals

measured. A wide variety of wearable sensors can collect this information.[83, 12] Acceler-

ation and angular velocity are the most commonly mechanically intrinsic signals measured.

A wide variety of wearable sensors can collect this information. Other common wear-

able sensors include goniometer and inclinometers for angular displacements, and pressure
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transducers or Force Sensitive Resistors (FSR) for foot loading and initial/terminal contact

points. Ground Reaction Force (GRF) can also be measured using pressure transducers

such as an FSR[84].

The most common wearable sensor used is the Inertial Measurement Unit (IMU)[83]. An

IMU is a single integrated circuit containing a three-axis accelerometer and a three-axis

gyroscope. The development of smartphones has dramatically reduced the sensors’ cost,

precision, and size. When an IMU includes a three-axis magnetometer, the sensor becomes

a Magnetic Angular Rate and Gravity (MARG) sensor. Using one or multiple sensors allows

the determination of limb or joint orientation, angular velocities and accelerations. Figure

2-9 shows a typical IMU sensor and sensor data received from it during different activities

from a handheld IMU.

IMUs are widely available, low-cost, and easy to use while giving relatively high accuracy low

latency measurements [85, 86]. As they measure physical movement they can be mounted in

any location with no dependency on anatomical feature or proximity allowing for very low

intrusion measurements[86]. Measurements of an IMUs have physical significance so can

be directly interpreted[23]. IMUs also have low frequency requirements as they measure

physical changes of the relatively low frequency human gait cycle. From literature most

authors used frequencies around 50Hz[87, 88, 89, 90, 91].

However, due to the fact that the IMU captures the motion of the forearm, rather than

the muscle signal, IMUs sense actions later that neural sensors[86, 23]. IMUs are also

sensitive to alignment and placement accuracy. Misalignment results in a change in the

axis over which an effect is measured while misplacement can changes the magnitude of

accelerations measured[92]. An IMU also suffers from long term drift and temperature

dependent biases[93, 92, 85].

Force Myography sense volumetric and hardness changes in limbs caused by muscle contrac-

tion. Measurements are made by force-sensitive resistors or piezoelectric sensors wrapped

around the circumference of the limb. Figure 2-10 shows an example thigh worn FMG

sensor and typical sensor data that could be received from it.[23, 97]

A potential advantage of FMG over neural measurements is that the muscle force estimated

through FMG is less sensitive to fatigue. A substantial downside to this approaches is a high

sensitivity to motion artefacts, which may be significant given the nature of the physical

attachment to the user.[12]

Neural signals provide a more natural interface for controlling prosthesis[99] but pose sig-

nificant challenges in there use. Neural sensors detect muscle control signals, where as
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(a) Inertial Measurement Unit Sensor[94] (b) Inertial Measurement Unit Axis[95]

(c) Example IMU data[96]

Figure 2-9: IMU sensor and example data

(a) Force Myography Sensor[98] (b) Example data[23]

Figure 2-10: Force Myography sensor and example data
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mechanically intrinsic sensors measure the effect of muscle output. Therefore, neural sig-

nals can be detected in order of tens of milliseconds earlier[12], giving longer to perform

classification. However, their output is often challenging to interpret due to low signal to

noise ratio. Mechanical signals are often more straightforward to measure due to their

lower impact and greater tolerance to placement and conditions.[82] ElectroMyoGraphy is

the most common neural sensor. Electric potential produced by skeletal muscle activity

is measured through electrodes attached to the muscle of interest. Figure 2-11 shows an

example EMG sensors attached to a trans-tibial amputee’s stump and typical data that

would be received from it.

EMG sensors give very early indication of muscle movement as they measure the signals

driving muscle movement[23, 86, 100] combined with a very low latency measurement system

they can provide a head-start over mechanical sensors[12].

However EMG sensors are sensitive to anatomical locations and require skill to fit cor-

rectly[101, 102]. They are susceptibility to external factors, such as humidity and move-

ment artefacts[86] and are potentially uncomfortable to wear directly on the skin[23]. EMG

sensors also require high frequency sampling, exceeding 1000Hz, to detect signals sent to

the muscle[100, 21]. As the human gait cycle occurs at 0.5 to 1.3Hz[103] this means sensor

data must be captured at orders of magnitude above the gait cycle. This high frequency

requirement increasing the complexity of capturing and analysing EMG data.

(a) EMG Sensor[104] (b) Example EMG data[19]

Figure 2-11: EMG sensor and example data

The environment around the user can provide context to local sensor data. Different envi-

ronments increase the likelihood of encountering a particular terrain feature[12, 105]. Care

must be taken using environmental sensors as they are highly noisy and susceptible to long

term drift. Jin et al. investigated a evaluated three environmental sensors temperature, hu-

midity, and ambient light. Jin measured repeatable changes in sensor data during different

activities. For example during forward motion there was a temperature drop due to airflow
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over the sensor package.[106] Figure 2-12 shows a typical temperature sensing integrated

circuit and recorded data from a temperature. Fu et al. investigated the use of a barometric

pressure sensor allowing for changes in altitude to be detected[107].

(a) Temperature Sensor[108] (b) Example temperature data[106]

Figure 2-12: IMU sensor and example data

Data fusion is research field interested in integrating data from multiple sensors to achieve

improved performance[100]. Sensors can either be multiple of the same sensor[109] or sensors

of different modalities[100]. Data fusion is regarded as superior to methods that take inputs

from a single data source with results indicating fusion methods can increase both accuracy

and robustness[100, 110].

Chung et al. used eight IMUs placed across the body. By combining data from multiple

sensors performance was improved. Chung also identified that the addition of multiple

sensors meant sampling rates as low as 10Hz could be used. [109]

Liu et al. and Hu et al. both combined EMG and IMU sensors. Both found that fused IMU

and EMG data gave higher accuracy than with just IMU data.[111, 110] Huang et al. fused

EMG signals from the thigh with GRF measured from the pylon of a prosthetic devices.

The results showed that the fused data outperformed methods that used only EMG signals

or mechanical information alone.[100]

2.3.2 Sensor Placement

The placement of sensors is an important consideration; the chosen location should maximise

the richness of data while minimising invasiveness[12].

The prosthetic device is the obvious mounting location providing a rigid and stable sensor

platform for prosthetic users. Attachment is more challenging for biological limbs; tempo-

rary attachment of sensors by medical tape or elastic strapping is common. Consideration

for changing the shape of the limb during movement is required.
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Where suitable muscles are present at the skin, electrodes can be attached to the skin’s

surface above the muscle. Surface EMG presents the least invasive technique for the neural

sensory system. However, they must be attached securely to the body to prevent artefacts

from corrupting sensor movement readings and require individual calibration.

Shull et al. reviewed the location of wearable sensors used for gait analysis. Most articles

used sensors that are sensitive in the mediolateral axis, with the knee, trunk and shank the

most popular sensing location. Figure 2-13 shows a visual representation of Shull’s findings.

Figure 2-13: Target gait parameter locations for wearable sensing. The number of articles
reporting gait parameter locations is indicated at each respective location. The diameter
of each pie chart is proportional to the number of published articles reporting that gait
parameter location. The relative proportion of kinematic and kinetic parameters about
each of the three anatomical axes is indicated in the pie charts.

EMG sensors can be placed in multiple locations however for Locomotion Mode Recognition

the calf and thigh are the most common locations[112, 113, 114]. There is less consistency

for IMUs/ Shin et al. and Li et al. both placed sensors on the foot[115, 116]. Han et al.

placed a single IMU directly below the knee joint[117] well Shin et al placed four IMUs on

both hips and feet[115]. There was no obvious improvement in performance from any of

the locations.

2.4 Machine Learning

Machine Learning (ML) is a subset of computer science that focuses on systems that learn

from data. An ML system can numerically estimate a complex function from exposure
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to examples of a phenomenon. That is to say, an ML algorithm can convert experience

into expertise or make predictions from data. As an entirely numerical approach, it is

especially compelling for problems of high dimensionality. There are many different tasks

where machine learning can be powerfully used, such as classification, translation, denoising

and synthesis.[118, 119, 120, 121]

What separates machine learning from optimisation is that we want to minimise the task

error not only for the seen experience but also for novel unseen inputs. Minimising the task

error forms the crux of machine learning.[120]

The machine learning process usually follows three steps; 1) gathering a representative data

set; 2) building a model to solve the task based on knowledge captured in the data set; 3)

testing and evaluating model performance[121]. The output is a model that encapsulates

the learnt knowledge. The model is deployable in the real world to perform the taught

task.[119].

By gathering knowledge from experience, ML avoids the need to formally specify all knowl-

edge to accomplish a task[120]. This approach significantly reduces the implementation

burden and may enable previously intractable solutions for highly complex systems. Ex-

perience is provided as a set or sets of examples of the input and often the corresponding

output or label. The set of examples is called the training data.

The model input for each example is a feature vector. Each element of a feature vector

contains one quantitative measure of the example. Each feature is either hand picked, such

as the mean of a signal, or learnt where raw data is fed directly into the model learnt. The

choice of data representation or features can heavily affect the performance of a machine

learning system. Hand picking features are labour intensive and without care can result in

bias in the machine learning model. However, learnt features require more data for training

and are harder to control.[122]

The quality of the training data is essential to good learning, as by the adage garbage in,

garbage out. However, data quality measurements can be challenging because they must

consider qualitative factors such as realism.

The training data is used at various stages throughout the learning process to provide

knowledge and verify system performance. The whole training data is split into three sets.

Training – a set of examples from which the system learns. Validation – a set used to

evaluate the generalisation performance during training. Test – used to evaluate the final

generalisation performance after training.

Most ML algorithms involve optimisation of some form. Optimisation refers to the task of
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either minimising or maximising some function. The function we want to optimise for is

called the criterion. The criterion measures what a good prediction is. When minimising the

criterion, the criterion is often called the cost or loss function.[120] The learning algorithm

uses the criterion to optimise model weights and biases to incorporate knowledge from the

training data.

There are four standard techniques for Machine Learning: supervised, unsupervised, semi-

supervised, and reinforcement learning. Each is useful for different tasks and require differ-

ent forms of experience.

Supervised learning uses a labelled dataset to produce a model that can deduce the correct

output from a given input[121]. In unsupervised learning, the training data set is unlabelled.

The system is left to discover variation and beneficial properties across the data set. Semi-

supervised learning lies between supervised and unsupervised. Some but not all example

inputs have labels. The algorithm uses known inputs to label unknown examples to build a

more extensive labelled training set[123] Reinforcement learning does not experience a fixed

dataset. Instead, they interact with an environment using feedback to learn.

An additional form of learning is transfer learning. The research field of transfer learning

is concerned with the reapplication of captured knowledge. The application changes can be

significant, visually identifying a new object, or minor, such as personalisation to an indi-

vidual. Many schemes exist for achieving knowledge transfer. Schemes include fine-tuning

part or all of a model, extending an existing model with additional layers or generating a

mapping to adapt a new input source.[124, 125]

Understanding the final performance of the trained model requires additional metrics as the

loss function is often not directly interpretable. These quantitative metrics represent the ML

system’s ability to perform the desired task. Often the metric will be directly inheritable,

such as the proportion of examples where the output was correct. The performance metric is

generally evaluated for all three data sets to evaluate different aspects of model performance.

For example, generalisation, or the performance for unseen data, can be evaluated using

the test set.

Many issues may occur while developing an ML system. For example, over/under-fitting.

Fitting problems occur when the model either learns too tightly to the training set or cannot

learn the desired task. Therefore it cannot predict new unseen inputs. Adjustments to the

learning rate, training data or training time will affect fitting. Adjustments to system

hyper-parameters control properties such as these. Any settings determined outside the

learning algorithm are called hyper-parameters.[120]
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Many ML models exist and have been used widely across many different tasks. Some

typical machine learning models are Random Forest, Support Vector Machine (SVM), Multi-

Layer Perceptron (MLP) (Dense when fully connected), Convoluted Neural Network (CNN),

Recursive Neural Network (RNN).

MLP, CNN and RNN are all forms of Artificial Neural Network (ANN). They are referred to

as networks because they are typically implemented by composing together many different

functions. The neural aspect comes from the original inspired by replicating biological

neurons.

Multiple layers of neuron units form an ANN. The layer location in the neural network de-

termines its name. The first network layer that receives input data is called the input layer.

The network’s last layer is called the output layer for similar reasons. The intermediate

layers are hidden layers. By adding more layers and more units within each layer, a network

can represent functions of increasing complexity[120].

Each layer in a neural network is composed of many cells or units. The cell’s make-up

depends on the type of layer. The connections between cells are also dependent on the

layer type. All cells have at least one feed-forward connection to the next layer. A fully

connected layer is where each cell connects to every cell on the next layer. When forward

feed networks include feedback connections, they are called RNNs.

Two common ML architectures are CNNs and RNNs. The CNN is a specialised neural

network that use convolution to combine inputs. They are well suited to grid-like data

such as images or regular sampled time-series data. This architecture has been successful

in practical applications, primarily visual problems.[120]

2.5 Long Short Term Memory (LSTM)

The RNN is a family of neural networks widely used in the field of translation, text, and time

series prediction. There structure allows them to process longer sequences than practical for

other networks.[120] They are superior to a standard RNN system as they overcome well-

documented issues such as the “vanishing gradients” problem. Vanishing gradients arise

from the large chain of multiplication that occurs when performance error back propagation

in an RNN.[126, 127]

The LSTM resolves some of the issues with vanishing gradients by introducing gates to

controls information flow[128]. During training the gates learn to forget thus to regulating

information held[70]. Since conception LSTMs have become popular with many researchers

as an effective and scalable model for learning problems related to sequential data.[129, 78]
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There are still issues that must be considered, such as a tendency for the output to converge

based on a straight pattern since the input order is chronological.[127]

The original LSTM cell was created by Hochreiter and Schmidhuber in 1997 [128] but has

been improved upon by multiple researchers. The most common form used today features

the forget gate introduced by Gers et al.[130, 78]. The Gers’s cell architecture is shown in

Figure 2-14.

Figure 2-14: LSTM with Forget Gate[78]

An LSTM cell learns to add or removing information to the cell state, c(t). This cell state

is regulated using the forget f(t) and input i(t) gates. The forget gate determines what

information to forget, while the input gate determines whether new information should be

added to the cell state. So the new cell state is a function of the previous cell state (c(t−1)),

modulated by the current input (x(t)) and the previous hidden state (h(t− 1)), combined

with some of the current input (x(t)). The output from the LSTM, termed the hidden state

h(t), is a function of the new cell state modulated by the output gate (o(t)).[127]

2.6 Locomotion Mode Recognition

Classifying human activities from sensor data is challenging. The signal difference between

activities is often subtle and highly individualised.[131] Many different methods have been

tested to address this problem including heuristic, statistical and machine learning methods.
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2.6.1 Non-ML Methods

There are numerous forms of activity classifiers that do no use machine learning techniques.

These include manual rule based heuristic methods and pattern recognition.

These have the advantage of usually being simpler both in operation and also understanding

than machine learning methods. However, they normally require manual tuning and setup

to adapt to an individual and struggle with higher dimensional data[12]. As well, the

classification output can only be made after the rule has been completed so there is a delay

in outputting a classification.

A activity recognition heuristic is usually a fixed set of rules that controls the transition

between activity modes. Heuristic methods are the current standard for modes selection

in powered prostheses[132, 133, 134, 135]. However there are very limited contemporary

reference of these methods being used.

Formento el al. presented a heuristic for classifying walking, stair ascent and descent based

on the output from a gyroscope. It was established by coley et [136] that the sagittal

plane output of a shank mounted gyroscope varies during stance depending on the activity.

Detection success was over 93% however the classification can only be made after the step

has occurred. Figure 2-15 shows an illustration of the heuristic.[96]

2.6.2 Machine Learning Methods

Researchers have produced many machine learning architectures for solving HAR prob-

lems[75]. Typically, HAR ML models all follow the same structure. A window of sensor

data is collected and fed directly into the model. This direct approach improves the signal-

to-noise ratio[70]. The model classifies the activity producing the corresponding output.

Figure 2-16 illustrates this structure.[75]

Machine learning methods offer the potential to achieve higher performance, for more

classes, with less manual input[70, 131, 24]. Deep learning can also provide increased

flexibility, robustness and improved performance. However their learning can be difficult to

control, and the solution difficult to understand[137, 129]. ML systems also require a large

amount of data to train[138]. For target users whose behaviour differs significantly from

the training dataset the user may suffer degraded performance. It can also be extremely

laborious or impractical to collect and label large set of data, especially for the elderly and

disabled people.[139]

Most researchers developing machine learning processes for HAR use a supervised learning

approach[140, 141], with only a few examples of unsupervised and semi-supervised learn-
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(a) Heuristic rules [96] (b) Example input data [96]

Figure 2-15: Stair Ascent and Descent Heuristic

ing[142].

Locomotive data is usually continuous time series in nature. The continuous sensor data

must be split and labelled with the current activity for supervised learning methods. The

most common form of this is to use a sliding window that divides continuous data into

chunks. The activities encompassed by the window determine its label.

A large number of papers use Convoluted Neural Network (CNN) and Long Short Term

Memory (LSTM) networks to implement HAR. Both network types are well suited to reg-

ularly sampled sensor data.

CNN architectures use convolutional and pooling layers to extract features from the sensor

data. A dense MLP layer forms the final classification based on the outputs from the final

CNN layer.[143, 144, 145]
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Figure 2-16: An illustration of sensor-based activity recognition using a machine learning
approach[75].

RNN networks have been used frequently for HAR problems. The most commonly imple-

mentation uses LSTM cells. The layer structure of LSTM networks is such that the output

of each LSTM unit layer is fed only into the LSTM units at the same time step. The

formation of final classification uses either all the outputs of the last layer or only the last

set of units.[146, 147]

Recently researchers have begun combining CNN and LSTM networks to form Deep Con-

volutional and LSTM networks[91]. The convolutional layers are placed either as the input

or just before the output.[148, 149]

Both LSTM and CNN networks are used extensively throughout literature, Performance for

these networks is high with most achieving ¿95% accuracy on publicly available data sets

collected in lab conditions. Data from IMU sensors is the most common input into these

networks.[150, 25, 151, 149, 152, 147]

2.6.3 Personalisation Techniques

ML classifiers are constructed assuming that the probabilistic distribution between the

source and target domain are equal[124]. In reality, this is never the case, so methods to

account for differences between domains have been developed. Where the model is adapted

to an individual user, this is typically termed personalisation.

Personalising ML models is a common issue and has been addressed in many ways across

different research areas[153, 154]. Schneider et al. divide personalisation methods into two

groups, shaping and data grouping[155]. In shaping the behaviour of a network is biased or

shaped towards an individual, in data grouping, the target data set is enlarged by adding
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data from similar individuals to it. Both of these techniques take advantage of data from

others to reduce labelled data requirements for the target subject[156]. The following survey

of literature will be divided into these two categories.

Shaping the behaviour of a network can occur at different times during training. Two are

common, the beginning, early, or the end, late. In early shaping, the model is first trained

with target data, followed by a more extensive source data set. The opposite is done in

late shaping, where a general model formed from a large source training set is fine-tuned

with target data. Fine tuning is performed by additional training of a pre-trained model

with a different training set. This method is common and generally referred to as transfer

learning.[155]

Transfer learning is the ability to extend what has been learnt in one context to another

non-identical but similar context[157]. The change in context can be either the task, the

domain or both. Transfer learning is appealing since it is often faster, as a model does not

need to be trained from scratch for each target.

Transfer learning is generally achieved in two phases. First, a generic global model is trained

from a source data set. Then it is adapted to the target by additional training using only

the targets data. The influence of the target is controllable by both the number of iterations

and the number of layers trained.[155, 158]

A subset of transfer learning is domain adaptation, where the domain changes but the task

remain the same[120]. Domain adaptation techniques often focus on learning and applying

a mapping between the source and target input data rather than fine-tuning an existing

model.

Yoon et al. presented a transfer learning scheme for personalising an LSTM based language

model trained to generate stylised sentence completion. Their work focuses on techniques

that allow transfer learning using only a small quantity of target data and limited computing

resources. Two schemes are investigated to achieve this reduction: training a new layer

between the output and last LSTM layer, and freezing the first n-layer and fine-tuning

just the subsequent layers. Both methods reduce the training requirements compared to

fine-tuning the entire base model while achieving similar performance.[159]

Fu et al. developed a domain adaptation method for unlabelled target data denoted Joint

Probability Domain Adaptation with Improved Pseudo Labels (IPL-JPDA). The method

produces a transformation matrix to adapt the input data of the target to the source domain

removing the need to adjust the model itself. The study collects labelled data for a set of

ten subjects in a controlled environment. This data is then split into target and source
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data sets with the performance tested using a cross-validation method. Personalisation is

undertaken using the IPL-JPDA method and tested against a subset of the data windows

for each activity. Their method achieves 93.2% accuracy, an increase of around 2% over the

baseline.[107]

The other category of personalisation is data grouping. In data grouping, the target data

set is enlarged by supplementing it with data from existing source data. Each individual

will differ from others, but it should be expected that the population as a whole or a subset

of it are similar[155, 160]. Identifying and combining similar individuals is the central area

of concentration for this field.

Ferrari et al. investigated data grouping personalisation methods that weight the influence of

training data based on similarity to the target subject. Individual’s similarity was evaluated

by comparing physical traits (age, weight and height) and input feature vectors. Three

public Activities of Daily Living (ADL) data sets were used to test performance, niMiB-

SHAR[161], Mobiact[162] and Motion Sense[163]. All data sets were collected in controlled

conditions. Using the weighted training data, an Adaboost classifier was trained for each

target subject. The experiment was repeated with and without target data included in the

training set. Excluding the target saw only a small performance improvement, compared to

without similarity biasing. Including the target in the training data increased classification

accuracy by > 10%, on average achieving 87.39%. These results suggest that weighting

the training data set towards the target subject has a larger influence on performance than

similarity on its own.[164]

Nguyen et al. presented another data grouping technique using a DeepConvLSTM archi-

tecture. The model used learnt features, so determining the similarity of the feature vector

was not possible. Instead, the output of the last LSTM layer was used as a pseudo for

the feature vector. A Frechet Inception Distance (FID) algorithm was used to score the

similarity of subjects. The score was then used to group source subjects by two schemes:

selecting the closest n neighbours and clustering subjects into communities. It was noted

that this correlated closely with physical characteristics. The groups were then used to

train a new model from scratch and fine-tune a general model. Fine-tuning a global model

proved more effective. This method improved the global model performance by 3.5% to

84.2%. The experiments were performed on four public data sets; OPPORTUNITY[165],

Daphnet Gait[166], Wetlab[167] and Mobiact[162] data sets, all of which were collected in

closed controlled environments.[160]

Several authors attempted to combine both transfer learning and data grouping techniques.

These methods used data grouping techniques to produce a base model, which was subse-
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quently fine-tuned using data from the target.

Wang et al. presents a source selection and transfer learning approach for a CNN-LSTM

architecture for unsupervised transfer learning. First source subjects were selected based

on a closeness score. This score combined a cosine similarity function and a hand-selected

value based on the physical similarity between sensor locations. Using the selected source

subjects an ML model was trained. Fine-tuning of the model was achieved by inserting

and training an adaption layer between the last two dense layers. The investigation was

performed using the OPPORTUNITY[165], PAMAP2[168] and UCI DSADS[169] data sets,

which again were all collected in controlled conditions.[170]

Cruciani et al. presented work on personalising an activity recognition model built from

the subset of a general population. The subset of subjects was selected by comparing the

similarity of manually selected features. Those with the closest matching traits were used

to generate the base model. Further training was then performed using a small amount of

target data. This approach achieved a 5% improvement in performance when compared

to selecting a source subset at random[171]. The experiment was performed on the ADL

Extrasensory data set published by Vaizman et al.[172], this data set was collected using

a smartphone in uncontrolled conditions with limited guidance given on how to collect or

label the data.

2.6.4 Application to Amputees

The gait of a lower-limb amputee varies dramatically between individuals[173] often pre-

senting asymmetrically[174]. This asymmetry results in a substantially different gait from

the norm. Therefore techniques that work for non-amputees are not necessarily directly ap-

plicable to amputees or other gait impairments[175]. As ML performance degrades where

a similar user is not in the training pool personalisation of a model is really important for

amputees.

Bespoke models can achieve good classification performance for individuals, including am-

putees. However, there is still significant room for improvement of IMU-based LMR classi-

fiers. The difficulty in collecting amputees’ data limits research in this area and the practi-

cality of deploying a developed system. Therefore any system that can leverage knowledge

from other more obtainable sources would be highly advantageous. None of the three studies

into amputees have publicly released their data.

Only a few papers have applied ML techniques to the problem of IMU-based LMR classifiers

for amputees. Of them, only three papers have tested their methods on amputee gait

data[144, 27, 175]. The lack of testing on amputees is likely due to the difficulties of
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collecting gait data from amputees[176].

Bruinsma et al. tested different configurations of RNN and CNN networks. Gait data from

a trans-femoral amputee was collected. The amputee wore two IMUs mounted on the

thigh and shank. All collection of gait data was in a controlled environment. The gait

data did not include any non-amputees subjects for comparison. Evaluation of different

network architectures revealed that the Gated Recurrent Unit (GRU) and LSTM networks

performed highest, achieving greater than 80% accuracy. The best performance of 93.06%

occurred when using a GRU network fed with data from both IMUs.[27]

Su et al. demonstrated CNN classifiers with both amputees and non-amputees. Su produced

an IMU dataset collected in a controlled environment to test the classifiers. Ten non-

amputee and a single trans-tibial amputee were asked to walk up and down a single staircase,

ramp, and flats. The IMU was placed on the healthy leg of the amputee. Both a general

classifier tested with a subject not used for training and a bespoke classifier trained and

tested with data from a single individual were tested. The bespoke classifier performed

as highly, achieving an average performance of 94% for the ten non-amputees and 89%

for the single trans-tibial amputee. The results of the general model showed a drop in

performance to an average of 82%. It is not clear if this number includes performance using

the trans-tibial amputee.[25]

Jamieson et al. performed a study comparing the performance of supervised classifiers for

both amputee and non-amputee carrying out the same activities. Jamieson collected a

dataset of IMU gait data from eight non-amputees and four subjects with lower limb am-

putation. Each subject wore a single hip worn IMU as they walked an improvised route

through a natural environment.e in the vicinity of their homes. Both Support Vector Ma-

chine (SVM) and LSTM networks were trained to classify different locomotive activities.

Classifiers were trained with varying sets of data constructed by Leave One Out Cross Val-

idation (LOOXV). Several configurations of subjects were tested. Most notably, a network

was trained using exclusively non-amputee data but tested using amputees. Classification

accuracy fell from 78% for non-amputees to an average of 28% for the four amputees.

Jamieson concluded that classifiers trained using exclusively persons without gait impair-

ments would not be suitable for impaired gait.[175]

Lonini et al. considered a personal model trained from a target’s data to be required;

or alternatively, a global model trained from other similar patients. The study involved

classifying physical activities based on sensor data from a waist-worn accelerometer. Eleven

non-amputee and ten patients who use a Knee-Ankle-Foot Orthotic (KAFO) device were

asked to perform five actions. Their work suggested that models trained exclusively from
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subjects without gait impairments perform poorly when tested using the KAFO subjects.

However, the model trained from only KAFO subjects performed slightly worse than a

baseline personalised model.[173]

Gao et al. presented work investigating Reinforcement Learning (RL) schemes for controlling

a lower limb prosthesis personalised to an individual. They first collected data from two

non-amputees wearing a below-knee prosthetic device. This data was used to generate base

knowledge that could be used as a starting point for their RL scheme. Using the human

locomotive simulator OpenSim they implemented models of amputee gaits. These were

then used to demonstrate an RL scheme that could adapt to an individual.[177]

There is limited literature on applying classifiers built from non-amputee data to amputees

or those with other gait abnormalities. However, literature suggests that in order to achieve

adequate classification accuracy gait abnormalities of an amputee must be taken into ac-

count.

2.7 Conclusions

Gait is a highly individual trait. The human body has evolved to use distinct control

modes for accomplishing different locomotive actions. Lower limb amputees have many

gait difficulties. For a lower limb prosthetic device to fully restore the lost functionality,

it must be powered and replicate the different control modes. Part of the challenge of

achieving this is determining the locomotive intent of a subject.

Machine learning has made significant inroads in identifying human activities from low-cost

IMUs likely to be present on powered lower limb prostheses. However, limited research

has occurred in machine learning techniques for human activity recognition of lower limb

amputees. The lack of research is likely due to the difficulties of collecting gait data from

amputees. Research into ways to reduce the data requirements for IMU-based locomotion

mode recognition systems for lower limb prosthesis is required.
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Chapter 3

Methodology

A new set of first-hand gait data is required to investigate activity recognition systems.

Collection of this data requires the development of a data collection system. The data

set will comprise labelled gait data collected in an unsupervised manner from real-world

environments. Therefore the system must be simple to operate unaided, portable, and

non-intrusive.

This chapter presents the experimental methodology used throughout subsequent chapters.

Firstly, the chapter describes a sensing system for collection of a large-scale unsupervised

human gait data set. The system will be based around the Suunto Movesense wireless IMU,

described in Section 3.1, and a original Android application described in Section 3.2. This

is followed by a description of the data collection process and summary of collection in 3.3.

The chapter then presents the development of a data post-processing pipeline, Section 3.5

and Machine Learning (ML) methods and performance analysis in Section 3.6.

3.1 Recording Hardware

The IMU/MARG sensor was selected because it’s combination of relatively low frequency

requirements and flexibility in placement allow for a very low intrusion sensor that can

be fitted with low skill. The MARG sensor is also a low-cost and commonly available

Commercial Off The Shelf (COTS) device making procurement straightforward.

The Suunto Movesense wireless MARG was selected because it is a low-cost (£70) COTS

system that can be flashed with custom code providing a flexible and powerful sensing plat-

form. The Movesense contains a nine-axis MARG sensor, heart rate monitor, temperature
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sensor, and BLE radio. It is physically small, weighing just ten grams, and allows numer-

ous attachment configurations. Figure 3-1 shows the Movesense device. The device’s rear

contact act as the mounting point for attaching the device using to wide variety of straps

and clips, including a heart rate strap, belt clip and elasticated Velcro strap. The datasheet

for the device is included in Appendix C.

Figure 3-1: Movesense Wearable IMU[178]

From literature there is no clearly optimal placement for an IMU sensors, therefore multiple

location were used. Five sensors were attached to each participant in the following locations:

on the inside of both ankles using an elastic Velcro strap, on each hip using a clothes/belt

clip and across the chest using a heart rate strap. The location of the sensors was selected

to give broad coverage of body movements while providing easy, secure and non-invasive

attachment to minimise discomfort and disruption to natural movement. Figure 3-2 shows

a subject wearing the five sensors.

The onboard MARG sensor is factory calibrated therefore no sensor calibration is required.

Basic verification test were undertaken to ensure compliance with the manufacturer stated

performance. A small coin cell battery powers the sensor, providing multiple hours of

continuous operation. A configurable low power mode can extend the usable lifetime sig-

nificantly.

Suunto provides an Software Development Kit (SDK) that allows developers to reprogram

the Movesense customising its behaviour. A custom program transmitted live sensors read-

ings over the inbuilt BLE radio. The transmitted data included the MARG heart rate and
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Figure 3-2: Movesense sensor attachment locations[30]

temperature sensors at 100Hz. An Android smartphone held by the test subject received

this data through a custom data-logging application.

The software also implemented power management. By placing the sensors in an ultra-low

power state when inactive, as detected by low readings of the accelerometer, the device can

dramatically extend its battery life. The subject can wake the devices by touching both

rear contacts. The power management system allowed for sharing of the sensors with trial

subjects without worry about battery issues.

3.1.1 BLE Data Transmission

Data is transmitted from each Movesense wirelessly to a smartphone using the built-in

BLE radio transceiver. Using the BLE notify mechanism, a custom Generic Attribute

Profile (GATT) service pushes data packets to a connected smartphone. Data streaming

starts when the connected phone sets a notify state in the GATT characteristic. Streaming

stops once cleared. Clearing either occurs on BLE disconnection or programmatically. Data

streaming is a high power state only entered during recording.

Two limits restrict the data rate that the sensor can transmit: maximum individual packet

size and transmission rate. The maximum packet size is 155 bytes long. The practical limit

of transmission rate is 15Hz, due to the need to transmit concurrently from five sensors.

These limits require multiple IMU samples be transmitted per packet to achieve a real-time
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100Hz output.

IMU data from the sensor arrives as a 32-bit floating-point number. Therefore each full

sample of the nine-axis MARG sensor takes up 36 bytes. Uncompressed, the byte limit only

allows for four samples; therefore, transmission requires data compression.

Compressing each measurement to a signed sixteen-bit fixed point integer allow for eight

MARG measurements to be transmitted per packet. To achieve compression, each raw value

is multiplied by a scaling factor before typecast to a sixteen-bit integer. This compression

technique retains the sub-decimal accuracy while allowing for sufficient compression. Table

3-1 presents the sensor ranges, scaling factors and resultant accuracy of each sensor. As

sixteen-bit integer values have a maximum range of -32,768 to 32,767, clipping will occur

if the typecast value of the sensors exceeds these limits. The chosen scaling factor was a

balance between accuracy and output range. The calculation of output range requirement

was empirical.

Table 3-1: Compression of sensor readings, scaling factors and resultant accuracies. Force
of Gravity (g), Degrees per Second (DPS), MicroTesla (µT )

Sensor Sensor Range Scaling Factor Accuracy

Accelerometer ±16g 256 ±0.039g
Gyroscope ±2000DPS 32 ±0.031DPS

Magnetometer ±5000µT 1 ±1µT

When compressed, eight MARG samples fit within one packet leaving eleven bytes avail-

able. These final bytes contain a timestamp based on the internal sensor clock, sensor

temperature, heart rate, and R-R interval. The addition of these was in case of future use.

Temperature, heart rate and R-R interval are only updated when they change value. The

remaining byte contains an update flag for each field. Figure 3-3 shows the entire 155-byte

transmission packet.

3.2 Android Application Design

A smartphone will be used as the data logging platform. To enable this an Android app

was developed from scratch. The smartphone application must achieve the following re-

quirements:

• Record sensor data from multiple Movesense sensors

• Control multiple Movesense device

• Provide feedback on the state of the Movesense sensors - e.g recording or error
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Figure 3-3: Movesense Bluetooth Low Energy transmission packet structure

• Allow live annotation of the current activity

• Share recorded data with the researchers

3.2.1 Design Process

To achieve these design requirements the process show in Figure 3-4a was followed. First

an initial concept was sketched, this was then refined iteratively based on feedback from

other researchers. The design was then converted into a prototype android app, with a

focus on the user experience over visual refinement. The user experience was refined based

on feedback and observations from user testing. This feedback was then incorporated along

with visual refinements into a final app used during testing. Three key stages in the apps

development can be seen in Figure 3-4b.

3.2.2 Application User Experience

The application’s user interface is intentionally simple, requiring minimal instruction to use.

Figure 3-5 shows the application user interface for all possible states.

When the application opens, it automatically connects to the detected sensors. This process

can also be run manually by pressing the refresh button or dragging and releasing the list

of devices. All detected devices show their current connection and activity states through

a connection state icon and large status text. Any sensor errors are clearly shown by

highlighting the sensor in red and displaying error text.

Recording begins when the test subject presses the large ‘start recording’ button at the

bottom of the screen. All connected sensors begin transmitting data—their reported status
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(a) Design process flow diagram

(b) Visual history

Figure 3-4: Android App Design Process

Error

Recording
& Information

Connected

Disconnected

Sensor States

Connecting

Recording UI
Uploading UI

Figure 3-5: Data-logging android application user interface.

changes to recording along with a red dot icon. The onboard LED of each sensor also flashes

red providing a physical indication.

When the subject presses the record button, the notify state is set on each device, starting
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data streaming. The BLE service passes received data to the file saving service. This

service creates plain text files locally on the phone. Sensor messages are each saved on a

new line containing the sensor byte data, encoded as a hexadecimal string, the smartphone’s

timestamp, and the sensors MAC address.

The subject can then begin walking around while recording data. The user presses the

correct label button as soon as they change activity. Note that the application is only

designed to record six activities. Activities outside of these six will be mislabelled.

When the test subject presses the ‘stop recording‘ button recording stops. The app then

presents the user with an upload screen. The upload screen allows metadata entry and

anonymously sharing data through Google Firebase cloud services.

Figure 3-6 illustrates the interactions between each different aspect of the android applica-

tion.
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Figure 3-6: Data-logging Android App

3.3 Collection Methodology

An extensive set of gait data is required to develop ML systems for classifying locomotive

mode. The gait data should be from a real-world unstructured environment which includes

common imperfections and disturbances. The data will be collected using the Movesense

sensors described previously. The study received ethical approval from the University of

Bath Research Ethics Approval Committee for Health (REACH), reference EP 19/20 003.

The full set of ethics forms are included in Appendix B.
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3.3.1 Recording Procedure

Study subjects received instructions on using sensing equipment and general guidance on

experiment procedures. The guidance comprised of general guidance to walk around a

varied environment while labelling the six activity classes. Study subjects received no

further instructions on recording conduct. The full test protocol is include in Appendix B.

3.3.2 Activities

The following six activities will be labelled, Walking, Stair Ascent (SA), Stair Descent (SD),

Ramp Ascent (RA), Ramp Descent (RD)) and Stopped. The collection of these activities

will be in the real world. Figure 3-7 shows examples of the environments for data was

collected.

The collection setup only allowed labelling of the six activities described previously. Test

subjects were asked to only perform the six activities but additional activities such as

opening a door are inevitable. Capture of these “out of vocabulary” activities are a difficulty

across all activity recognition research[179].

3.3.2.1 Effect of Ramp Inclination

There is no clear definition for a ramp in literature, but between four and twelve degrees is

most common[23, 144, 110, 180]. Liu et al. found that it is possible to distinguish ramps at

different inclination angles from walking. However, the steepest angles was best classified

with the shallowest angle frequently confused with level walking.[110]

During locomotion it is not possible to measure the steepness without interfering with the

recording. As such the consistency of labelling a ramp will vary between individuals and is

a source of labelling inaccuracy. There is no way of tell the consistency directly from the

data.

To investigate the effect different steepness of ramp have on the recorded gait additional

data was recorded from known steepness slopes. Figures 3-8 and 3-9 show plots of average

right ankle data during different steepness of ramp ascent. For each plot the solid line

represents the mean and the filled area the standard deviation over n steps.

The plots show that ramp ascent and descent are very similar to level walking. The small

differences are more prominent in the ten degree ramps than the three degree ramps. This

suggests that separating steeper ramps from level walking will be easier in agreement with

the result found by Liu et al[110].
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(a) Walking

(b) Stairs

(c) Ramp/Hill

Figure 3-7: Example of data recording environments
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Figure 3-8: Comparison of right ankle angular velocity during ramp ascent
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Figure 3-9: Comparison of right ankle acceleration during ramp ascent
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Figure 3-10: Comparison of right ankle angular velocity during ramp descent
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Figure 3-11: Comparison of right ankle acceleration during ramp descent
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3.3.3 Data Management

Data will be managed as described within this section. This is a summary of the full data

management plan included in Appendix B.

Data will be recorded as text files containing the compressed raw sensor readings from

five IMUs, and a label file. This data will be shared by the test subject through Google’s

Firebase cloud services. Once received the data will be downloaded and catalogued. Data

for each test subject and each recording will be stored in separate folders. The name of

each file will contain the timestamp the data was recorded and the subject. All data will be

stored as protected read-only to reduced the risk on unintended modification or deletion.

In order to minimise the chance of data loss regular backups will be taken. Data will be

stored locally and backed up to a second local hard drive to protect against disk failure. A

copy of the data will also be stored on the University servers. These servers are frequently

backed up. Following this process will minimise any data loss and provide multiple methods

for restoring lost data.

Any data collected will be published to Zenodo. All publications made will contain a data

access statement with a link to the Zenodo data store.

3.4 Summary of Data

A brief summary of the data collected over the course of this research is presented below.

Data was collected from a range of different individuals, a summary of the study population

demographic is provided in Table 3-3. Summary of data collected is shown below in Table

3-2. Full tables are available in Appendix D. Appendix D also contains example plots of

the recorded data in Section D.2.

Data was collected in three phases:

1. Large number of non-amputee participants, limited data per participant

2. Small number of non-amputee participants, extensive data per participant

3. Amputee data

The first phase of data collection focused of collecting from a broad range of individuals in

different environments. Data was collected from twenty-two participants of a wide variety

of age (mean 29, std 10), gender (17 male, 5 female), and physique.

The second phase of data collection involved the collection of data from a smaller number
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of individuals but with a focus on collecting at least seven minutes of data for each activity.

Data was collected from three subjects, two males aged 25 and 27, and one female of age

26.

The third stage of data collection focused on collecting data from amputees. The data was

for one left trans-tibial individual.

Table 3-2: Summary of Data collected

WALK RA RD SA SD STOP

Non-Amputee total 2116564 407403 361347 278014 252763 399028
Non-Amputee Mean 96207 18518 16425 12637 11489 18138
Amputee 38114 6159 7194 2872 2450 11763

Table 3-3: Summary of Test Subject Demographics

Age Weight [kg] Gender Height [cm]

Non-Amputee Mean 28.5 16M, 6F 176 73.8
Non-Amputee Std 9.0 - 8.2 7.4
Amputee 56 Male 178 70

3.4.1 Data Specification

A summary of the the recorded data specification is provided in Table 3-4

Table 3-4: Data specification

Field Value

Recording frequency 100Hz
Acceleration range ±16g
Accelerometer accuracy ±0.039g
Gyroscope range ±2000 Degrees per Second (DPS)
Gyroscope accuracy ±0.031 Degrees per Second (DPS)
Magnetometer range ±5000µT
Magnetometer accuracy ±1µT

3.5 Post-Processing

Data processing is necessary to prepare the raw recorded data for use in a machine learning

environment. Within this section, the methods used to accomplish this transformation are

detailed.

The data collected can be described by the hierarchical structure in Figure 3-12. Each

participant has a series of gait data recordings. Each recording contains live annotation
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made using the android app. Recordings likely contain different distributions of activities,

each from a different environment. Each continuous period of an activity label is an episode

of data. So a recording is made up of a series of contiguous episodes of data. The period

around a change in the episode is a transition between activities. In the dataset, the labels

represent this as a discrete change, but, in reality, it would be a smooth easing between

locomotive modes.

Subject
Data-Set

Recording

Episode

Figure 3-12: The hierarchical structure of the data recordings and terminology.

Two Extract Transform Load (ETL) scripts prepare the data for ML and address systematic

issues with the data. An ETL is a common technique in data science for copying data from

one or more sources to a new destination where a different representation is required. An

ETL script written in Matlab 2019b transforms the sensor data from its raw form to CSV

files for import into a Python environment. The second ETL script, written in Python,

prepares the data for loading into the machine learning environment. The remainder of this

section presents a more detailed description of both two scripts.

3.5.1 Sensor Data ETL

The sensor data ETL script transforms raw sensor data into CSV tables for import into

Python. Figure 3-13 illustrates the complete ETL.

Save as CSV filesImport Sensor Files

Sensor Labels Sensor Signals

Convert from Hex

Time Alignment

Normalise

Assign Labels

Extract LoadTransform

Figure 3-13: Flow Diagram of Sensor Data ETL process
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3.5.1.1 Extract

Each recording produces three files; a data file, label file and meta-data file. The three files

contain the following:

• Data File – Encoded sensor data along with the smartphone timestamp

• Label File – Activity labels and timestamps.

• Meta File – Notes about the recording, such as participant height, gender and a

brief unstructured recording description. The metadata does not form part of the

ETL output.

Each sub-directory is opened and processed one at a time in order of recording date.

3.5.1.2 Transform

The saved sensor data is in a hexadecimal encoding, with each pair of characters representing

one byte of the sensor transmission data. The first operation is converting each pair of

characters into its binary form. Then sets of binary values are typecast to integer values

before applying the appropriate scalars to convert back to their original 32-bit floating-

point representation. The conversion is the reverse of the on-sensor compression described

previously.

Each line of sensor data contains the sensor’s physical/MAC address. Files can be split into

individual sensors using the MAC address. Before combining the individual sensors into a

single data table, inconsistencies between the devices need to be corrected.

The sensors do not have onboard real-time clocks, with the sensor timestamp based upon

the internal sensor clock. There is sufficient variation between each sensor that clock drift

must be corrected. Calculations for long term drift come from comparing the sensor and

smartphone timestamps. This drift is assumed to be linear; therefore, the correction offset

and gain can be calculated using linear regression. Figure 3-14 shows an example of drift

correction.

Each data packet contains eight sensors readings but only one timestamp. Therefore times-

tamps for each reading needs to be augmented. The augmented timestamps assumed a

constant recording frequency.

Finally, the data is resampled to exactly 100Hz to ensure data for each sensor aligns cor-

rectly. Resampling was necessary because inconsistency in sensor clocks resulted in actual

device sample rates varying by a couple of Hertz. The built-in Matlab resampling function
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Figure 3-14: Example of sensor clock drift correction.

was used for this. The Matlab function uses a spline function to calculate the interpolated

value. At this point, the data from individual sensors can be combined into a single data

table.

Data normalisation is an essential pre-processing step involving scaling features to a consis-

tent range so that greater numeric feature values cannot dominate the smaller features[181].

The main aim is to minimise the bias of those features whose numerical contribution is higher

in discriminating pattern classes. Beyond the steps described above no filtering was applied

to the data.

The last step involves applying activity labels to the data lines. The data labels recorded

in the label file are aligned based on the smartphone’s clock. The label for each table row

is set by the last activity label encountered.

3.5.1.3 Load

Two saving options were employed:

• Saving the complete recording as a single file

• Splitting the recording up into different files for each episode of an activity

Data tables are exported into CSV files, with files for each participant stored in separate

folders. Basic statistics about each file include the number of samples of each activity and

step count are also generated.
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3.5.2 Machine Learning ETL

The second ETL script ingests the CSV data files previously generated and converts and

prepares them for loading into a Tensorflow ML environment. Tensorflow requires three

sets of data, train, test, and validation, each presented as a set of data inputs along with

a corresponding expected output. The ETL script was implemented in Python 3.8. Figure

3-15 shows a diagram of the ETL process.

Extract Load

To TensorFlowImport Files

Sensor
Signals

YAML
Config

TransformExtract LoadTransform

Apply Hyper-parameters

Window Data

Exclude Cross Validation

Split into Training Sets

Figure 3-15: Flow Diagram of the Machine Learning ETL process.

3.5.2.1 Extract

The ETL script accepts a YAML configuration file. This file contains the configuration for

the machine learning experiment. YAML files allow experiments to be replicated easily by

storing the experiment set up with the input data and results. The ETL script also supports

a YAML file to specify a range of values for any parameter for hyper-parameter sweeping.

The extract imports the ETL files previously generated from a directory specified in the

configuration file using the Python library Pandas. The imported data is represented in

Pandas data tables stored in memory, mapped to their associated participant and activity.

3.5.2.2 Transform

Hyper-parameters extracted from the YAML file are used across all aspects of the transfor-

mation process to define constants.

The YAML setup file specifies the columns of data that are required, for example, right-

ankle-gyro-y. These data columns are extracted from the Pandas data tables, with the

remaining data discarded.

Each data window contains rows of data equal to the window size. Data for each window

is copied from the table to form a new table. The window selection starts at the beginning

of the data table. The window starting point is moved forward by a specified skip value
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for each new window resulting in a set of overlapping windows. Figure 3-16 illustrates the

data windowing process.

Class #1

Class #2

Class #n

Window Length Skip Size

Activity
Labels

Sensor
Data

Figure 3-16: Sliding window generation

The activity labels must be provided in the same output scheme as the ML model; the

output format is one-hot encoding. One-hot encoding gives each activity label an element

in an array. The label array element is given a value of one; all other elements have a value

of zero.

The windowed and labelled data must be split into three datasets, test, training and vali-

dation. How this is achieved will be experiment dependent; therefore, it will be discussed

in the methods before each experiment.

3.5.2.3 Load

Finally, the three sets of windowed and labelled data are fed into TensorFlow. How Ten-

sorFlow is configured to process the transformed data is explained next.

3.6 Machine Learning Methods

TensorFlow[182] and the Keras[183] machine learning library will be used to develop and

evaluate ML systems. TensorFlow is an open-source platform developed by Google that im-

plements many of the workflows and tools required to develop and deploy machine learning

systems. Keras is an abstraction for TensorFlow, simplifying and optimising the Tensor-

Flow development process. This section will describe the method for generating, training

and evaluating model performance.
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All machine learning operations were conducted on a desktop Windows PC. The PC was

fitted with an Nvidia RTX 2060 super graphics card, an AMD Ryzen 3600 CPU and 64Gb

of high speed RAM.

All models will be built using the Keras sequential model framework. Keras allows for

constructing models formed of a stack of layers where each layer has exactly one input

tensor and one output tensor. Keras dramatically simplifies the process of implementing

ML models.

The generated model can then be trained. Training will be undertaken using the Adam

optimiser[184]. Two performance metrics will be used to evaluate the training performance;

categorical cross-entropy for loss and categorical accuracy for classification performance.

An early stopping scheme is used to end training early once training stagnation is detected

in the validation data set. Stagnation is detected by a period of worse loss than the best

seen.

Hyper-parameter tuning was achieved by assigning values to systematically updating model

and training hyper-parameters. Some hyper-parameters configure the ML ETL, while oth-

ers affect the ML model construction and training. By repeating model construction and

training with different hyper-values, sensitivities could be evaluated.

3.6.1 Performance Analysis

Final model performance was conducted on the model after training. Performance is eval-

uated primarily by metrics derived from the classification accuracy of a test data set. Clas-

sification accuracy measures the usefulness of a model. Other performance metrics include

the amount of training data required, the number of epochs to train and the size/number

of model parameters. These indicate whether a model is feasible to train and deploy.

Classification accuracy is the fraction of predictions made that were correct, as shown by

Equation 3-1. This is a normally presented as a percentage.

Accuracy =
Number of correct predictions

Total number of predictions
(3-1)

The confusion matrix is another common performance analysis tool. Classification perfor-

mance can be broken down by presenting the number of correct predictions for each class

and where mis-classification occurred. A confusion matrix is a n × n table where n is the

number of classes. The table columns represent the prediction labels, and the rows rep-

resent the actual labels. Each cell is populated with the number of classified inputs for
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each combination of actual and predicted labels. The main diagonal represents the correct

predictions.

From the confusion matrix additional metrics can be derived including Recall and Precision.

Precision measures the proportion of actual positives identified correctly. Whereas Recall

measures the proportion of actual positives identified correctly. These two values are usually

plotted in a curve called a pr-curve. Often a single value is a more useful evaluation metrics

than a graph. Precision and recall can be represented by the single value F1-Score.[120]

F1-score is calculated using Equation 3-2. Where tp is the number of true positive samples,

fp is the number of false positives or other classes predicted to be the true class, and fn is

the number of false negatives or true labels mislabelled. The highest F1-score possible is

1.0 indicating perfect precision and recall.[120]

f1 =
tp

tp + 0.5× (fp + fn)
(3-2)

3.7 Discussion and Conclusions

Within this Chapter a new dataset of twenty-two non-amputee and one trans-tibial amputee

has been collected for investigating the performance of LMR algorithms. This has been

collected using a fully wireless system of IMUs and a smartphone allowing data capture

to be undertaken anywhere. Data was collected in an unsupervised manner where test

subjects were walk a self-selected route unaccompanied while live annotating their current

locomotive activity. The data set looks promising however there are still some systematic

errors that must be accounted for when using the data.

As the test subjects were unsupervised in a natural environment the experiments were

uncontrolled in many aspects. This may have resulted in errors being introduced such

as inconsistent alignment of sensors and labelling point. There may also be errors in the

labels that will need to be identified. These errors include incorrect labels, late labelling or

preforming activities outside the six selected.

The data also includes data distribution issues. In a natural environment different locomo-

tive actions are used at different frequencies. This is shown in the data with around eight

times more walking data collected than stair ascent. The amount of data collected also

varies per test subject.
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3.7.1 Error in Performance Metrics

The performance of machine learning models is distilled down to a set of simple accuracy

metrics. Metrics such as classification accuracy are solely used to compare the performance

of different models. However, accuracy metrics are only as good as the quality of the test

set used to generate them. There are numerous factors that can affect the quality of the test

sets. The largest error is likely to the quality of the labels. Error could be introduced into

labels through erroneous input from the test subject, under-labelling where small feature

such as a single step are not labelled, or bias in labelling for example different interpretations

of a ramp or delay in labelling.

There is also an important question over the representativeness of any test data set. A

test set that consists of data of high similarity to the training set will perform better that

one less similar. The selection of test data is therefore of critical importance. It is both

important that it does not overlap with the training data but also that it is representative

of a real world deployment of the system.

Due to the unsupervised nature of the data set calculating a absolute labelling error can

not be calculated. However, the larger the test set, in both number of subjects and data

per subject, the greater the mitigation against erroneous test data. Additionally careful

construction of the test data sets is necessary.

3.7.2 Real Time Implementation Challenges

The ultimate aim of this research is to deploy it to a physical prosthetic device. Therefore

considerations must be made as to practicality of deploying any processing step in a real

time environment. Two steps require knowledge that will not be available in real times:

normalisation, and drift correction. Normalisation can be replace with either a manual fixed

value or by using a form of long term averaging. Correction of sensor time drift will not be

required, instead only the most recently received information will be used.

There is increasing research into deploying machine learning into low computational power

embedded hardware. Classifying the current activity must be performed with low latency

and in any locality therefore a cloud based solution is not suitable. Instead projects such as

TensorFlow lite[185] are more applicable. TensorFlow Lite allow for pre-trained ML models

to be deployed to a embedded micro-controller. This would resolve the classification issue

but not training the model. It is possible that training could be performed in the cloud or

on a smartphone before being deployed to the device.
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Chapter 4

Understanding LSTM Locomotion

Mode Recognition Behaviour

4.1 Introduction and Commentary

A large issue identified in literature was the lack of performance classification of novel

unseen subjects. To address this research gap further work is required on understanding

what prevents LSTM networks from correctly classifying novel subjects.

The LSTM network was selected as HAR is a time-series classification problem with, where

input data that are close in space may be dependent while distant sequence of samples in

time are assumed as independent. Rae et al. showed that the LSTM networks adjust well

to subject-specific variations[24]. Thus, the LSTM is renowned for its performance on LMR

tasks[91, 186, 187]

Following the data collection, work began on developing a general-purpose Long Short Term

Memory (LSTM) network for classifying the locomotive mode of a previously unseen user.

This involved work to understand how LSTM networks can recognise different locomotive

modes. Once completed, an article entitled “Understanding LSTM Network Behaviour of

IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables”

was submitted to the Journal Sensors. The journal article was published on the 10th of

February 2021.

The remainder of this chapter will be the presentation of the paper, followed by a short

post-commentary. The paper is re-typeset to match the thesis. Page, section and reference

numbering have been changed from the published copy.
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Abstract: Human Locomotion Mode Recognition (LMR) has the potential to be used as

a control mechanism for lower-limb active prostheses. Active prostheses can assist and re-

store a more natural gait for amputees, but as a medical device it must minimize user risks,

such as falls and trips. As such, any control system must have high accuracy and robust-

ness, with a detailed understanding of its internal operation. Long Short Term Memory

(LSTM) machine-learning networks can perform LMR with high accuracy levels. However,

the internal behavior during classification is unknown, and they struggle to generalize when

presented with novel users. The target problem addressed in this paper is understanding

the LSTM classification behavior for LMR. A dataset of six locomotive activities (walk-

ing, stopped, stairs and ramps) from 22 non-amputee subjects is collected, capturing both

steady-state and transitions between activities in natural environments. Non-amputees are

used as a substitute for amputees to provide a larger dataset. The dataset is used to analyze

the internal behavior of a reduced complexity LSTM network. This analysis identifies that

the model primarily classifies activity type based on data around early stance. Evaluation

of generalization for unseen subjects reveals low sensitivity to hyper-parameters and over-

fitting to individuals’ gait traits. Investigating the differences between individual subjects

showed that gait variations between users primarily occur in early stance, potentially ex-

plaining the poor generalization. Adjustment of hyper-parameters alone could not solve

this, demonstrating the need for individual personalization of models. The main achieve-

ments of the paper are (i) the better understanding of LSTM for LMR, (ii) demonstration of

its low sensitivity to learning hyper-parameters when evaluating novel user generalization,

and (iii) demonstration of the need for personalization of ML models to achieve acceptable

accuracy.

Keywords: Locomotion Mode Recognition; LMR; HAR; IMU; LSTM; wearables; pros-

thetic; prostheses
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4.2.1 Introduction

For the non-amputee (in the research field this is commonly referred to as able-bodied,

which can be considered an outdated term, so instead, non-amputee will be used in this

article), it is taken for granted that during locomotion, both legs will act in unison adapting

to the environment and activity without thought; for lower-limb amputees this ability is

lost. Amputees suffer from poor gait due to muscle imbalances, and significant compen-

satory mechanisms are required to adapt to the loss of muscle and joints [44]. This results

in musculoskeletal problems, increased energetic cost of locomotion and an increased risk

of falling [6, 54, 5]. The next generation of prostheses aims to replicate the lost power

generating functionality of muscles to improve gait. In order for the prosthetic to work in

synergy with the user, it must recognize the users intent; therefore, a system of Locomotion

Mode Recognition (LMR) is required.

Several commercially available prostheses exist that actively adapt to the user intent, such as

Ottobock’s Enpower BiOM [188], Blatchford’s ElanIC [189] and Össur’s Proprio Foot [190].

None of these three provides more than basic functions, such as maintaining dorsiflexion

during leg swing to increase toe clearance and adjusting ankle resistance based on terrain.

Only the BiOM ankle offers powered assist in push-off, the controller for this relies on hand-

tuned heuristics control strategies [191]. The University of Bath with commercial partners

has also been developing a next generation powered prosthesis[78].

Machine Learning (ML) offers the ability to significantly increase the sophistication of such

systems, through understanding of a wide range of activities and personalization to individ-

ual characteristics, without specialist intervention [26]. As classifying activities is temporal

is nature, sequential ML networks, such as Long Short-Term Memory (LSTM), are a good

fit. LSTM networks have been demonstrated to be extremely capable at Human Activity

Recognition (HAR), accurately identifying actions from locomotive actions, such as Walk-

ing, Running and Stairs [150], to Hip-Hop dance moves [192]. However, little is known

of their understanding internal behavior during these tasks. For a medical device, such

as a prosthetic, both a high levels of accuracy and detailed knowledge of internal network

operation is required.

This paper explores in detail the operation and performance of LSTM networks for LMR

using both seen and novel users. Data from non-amputee participants is used as a substitute

for amputee data as it allows for a much larger and more varied data set while minimizing

risk to subjects. This is then used to investigate the internal operation on a simplified LSTM

network. The effects of hyper-parameters on the generalization performance of a practical

LSTM network are then investigated. Finally, changes to the model are investigated to try
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and improve its performance for novel users.

The major contributions of this work are as follows:

1. Methodology for the collection of a large self-supervised data set of human locomotion

data in a natural environment.

2. Provide an insight into the behavior of an LSTM LMR model, and the performance

effects of hyper-parameter selection.

3. Investigation of hyper-parameter sensitivities in an LSTM network and their effect on

classification accuracy and generalization to novel user.

4. Demonstration of the need for personalization techniques to account for individual

gait traits.

The remainder of this paper is organized as follows; First background theory on the Human

Gait Cycle and LSTMs is presented in Section 4.2.2. Section 4.2.3 contains Related work

followed by Section 4.2.4—Materials and Methodology, describing the data collection pro-

cess and setup of the ML environment. The following Sections 4.2.6 and 4.2.7, detail the

experiments undertaken, investigating LSTM behavior, and hyper-parameter sensitivities,

respectively. These each follow the same structure with an introduction to the experiment,

analysis methodology, then results and discussions. The remaining two sections, Sections

4.2.8 and 4.2.9, contain discussion and conclusions.

4.2.2 Human Gait and Machine-Learning Fundamentals

Within this section fundamental theory of the human gait cycle, and Recurrent Neural

Networks (RNN) and LSTMs is presented.

4.2.2.1 Locomotion Mode Recognition and the Human Gait Cycle

Human gait is a cyclic process that can be delineated by key events. A gait cycle is defined

by two successive Initial Contact (IC) events (the point at which the foot contacts the

ground) of the same limb. As this is normally the heel, it is often referred to as Heel Strike

(HS). Conversely, the point when the foot leaves the ground is referred to as Toe Off (TO).

These two events are used to subdivide the gait into two phases; stance—when the foot is

on the ground, and swing when not. A diagram showing these events and their location in

the gait cycles is shown in Figure 4-1.

It has been shown that gait events can be established from only extrema of the shank

angular velocity in the sagittal plane (The sagittal plane divides the body into left and
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Figure 4-1: Human Gait Cycle during level walking. The percentage timings of the gait
events are approximate, they vary depending on the individual and environment.

right, so rotation in this plane is forward and backward motion of the shank) using a

technique originally presented by Sabatini et al. [193]. IC/HS was found to line up with

the minima following the peak swing velocity (PK) and TO was identified as the halfway

point between the zero-crossing, negative to positive, and the minima before peak swing.

Figure 4-2 shows the gyroscope trace of a sensor attached to a subject’s shank with the

locations of the calculated TO and IC events indicated.

PK HSTOPK HSTOPK HSTO

112.5 113 113.5 114 114.5 115
−400

−200

0

200

400

Figure 4-2: Gait events extracted from the sagittal plane gyroscope signal. IC—Initial
Contact, PK—Peak Swing, TO—Toe Off.

The action of the leg varies depending on the activity. To accommodate this, powered

prostheses will require multiple locomotive modes to achieve the different timing and power

requirements. Therefore, automated recognition of the user’s intentions and subsequent

selection of the corresponding locomotive mode will be crucial to the performance of de-

vices [12, 194, 195]. In order for amputees to have confidence in a prosthetic device, its

activity recognition must be timely, accurate and consistent and able to account for the

individual gait characteristics [196, 197, 198].

For the current generation of prosthetic devices, this is achieved through hand-tuned heuris-
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tics. These methods identify and associate changing properties of sensor data with different

activities. For example, Coley et al. noted the variation in shank sagittal plane rotational

velocity that occur when walking on stairs [136]. It was found that during early stance there

is an increase in rotational velocity during stair descent and a decrease during stair ascent

when compared to level walking. The current state of the art in LMR uses ML methods

to accomplish activity recognition; these techniques will be discussed further in the next

section.

4.2.2.2 Long Short-Term Memory Networks

LMR for active prostheses has conventionally been achieved through heuristic methods with

handpicked features that are manually tuned for each individual [199, 200]. This approach is

favored by the commercial market due to safety and regulatory concerns [201]. The tuning of

these controllers is time-consuming and requires a highly skilled prosthetist. In the current

state of the art for LMR techniques, the focus has been on the use of ML techniques to

automate the process of feature selection, output classification, and personalization [26].

Many different machine-learning techniques have been investigated including, Support Vec-

tor Machines, Hidden Markov Models and Convolution Neural Networks (CNN) with suc-

cess [26]. As sensor data from human gait is temporal, the best architecture for solving

this will be one that can take into account the sequential nature of the input data. The

Recurrent Neural Network (RNN) is an ML architecture suited to handling sequential data

as it contains both vertical and horizontal connections. This means that cell activation is

related to both the previous time step and the input. Information is therefore passed along

the sequence as well as up through layers. Figure 4-3 shows the unfolded structure of a

recurrent network. It can be seen that the activation of each cell is dependent on both its

inputs and the hidden states of the previous time steps.

Hidden Layer

Output Layer

Input Layer

Figure 4-3: Unfolded Recurrent Network.
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Each timestep in the network can contain several hidden states or units. This is repre-

sented by Equation (4-1) showing the activation input, at. a is formed from the bias vector

b plus the sum of input vectors x and previous hidden states h, multiplied by the weight

matrices W and U for hidden-to-hidden state and input-to-hidden state connections re-

spectively [120]. The shape of an RNN network is often described by its timesteps and

units, for example, 128 × 6.

a(t) = b+Wh(t−1) +Ux(t) (4-1)

RNNs have been shown to produce good results in some sequential tasks, but their appli-

cation is limited by difficulty of training. The primary difficulty is the vanishing/exploding

gradient problem. During gradient-based training methods, repeated multiplication by val-

ues that are not near one, along long dependency chains results in values that either vanish

or explode. A vanishing gradient makes it challenging to know which direction the param-

eters should move to improve the cost function. Exploding gradients can make learning

unstable. Non-gradient-based training has been tried, although to limited success [202,

120].

The Long Short-Term Memory (LSTM) architecture solves the vanishing gradient problem

by adding mechanisms for regulating information allowing it to be retained for long pe-

riods. Created by Hochreiter and Schmidhuber in 1997 [128] the LSTM is an RNN style

architecture that includes gates to control information flow between cells, see Figure 4-4.

Information flowing along the cell state can be modulated by the input and forget gate

structures with the final output a filtered version of the cell state based on context from

the inputs [203].
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+ +
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Input Vector

Output Vector

Cell State

Forget Gate
Input Gate
Output Gate
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Xt
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+
tanh

+
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Figure 4-4: LSTM unit with input and output connections.
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4.2.3 Related Works

In HAR tasks, LSTMs have been demonstrated to provide exceptional performance [150]

although very little work has been done investigating this in the context of prostheses.

Labarrière et al. conducted a systematic review of the ML methods used in activity recog-

nition; for assistive device LSTM networks were only used once [26].

LSTM networks have been found to perform highly in HAR and Activities of Daily Living

(ADL) tasks. Murad and Pyun investigated Deep LSTM networks for LMR [150]. They

trained their network on common ADL datasets, presenting performance in comparison

to other ML architectures on the same data sets. The network they used took raw IMU

data as its input, then interpreted the data using four LSTM layers before a late fusion

dense layer and a SoftMax classifier were used to produce a class output. The number of

units in the LSTM layers was not explicitly stated but appeared to be one. Performance is

high achieving 96.7% accuracy on the UCI-HAD dataset [204] and an improvement on the

presented previous classification attempts using CNN, SVM and other networks. Tufek et

al. replicated this result, achieving 93% accuracy on the UCI-HAD data set using only a

three-layer LSTM network [151].

However, the accuracy presented is determined from the validation data, a random 20% of

the source data, so sufficient separation between training and validation data is not guar-

anteed. In the compared work, a mixture of evaluation techniques is used, most commonly

k-fold cross-validation techniques. With test data selected by leaving out participants [82,

205]. As such, it is not clear that a direct comparison can be made to demonstrate LSTM’s

superiority.

Different sensor fusion approaches have been tried. Murad et al allowed a deep LSTM

network to learn to fuse the sensor modalities [150]. Chung et al. used an ensemble voting

arrangement, where each channel modality of sensor data was passed through a separate

LSTM network, with a weighted voting system forming the output classification [109]. This

achieved a slightly higher accuracy, of 94%, than using the sensors individually.

Multiple authors have developed models that use a series of CNN layer first to fuse sensor

data from multiple modalities before passing it to a LSTM network [206, 207, 148, 87,

208]. These achieve only minor improvements in performance classification with 95–96%

accuracies. Again, none of the authors were clear about the unit shape of their LSTM

networks.

There are few examples of LSTM networks being used in assistive devices. Wang et al. used

a Deep LSTM network to select locomotion modes for a lower extremity exo-skeleton [209].
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Five locomotion modes were classified (sitting, standing, walking and ascending/descending

stairs) based on angular information from hip, knee and ankle joints. A two-layer LSTM

network with 128 timestep windows was used. The hidden states of this were fed into a

weighted mean before a SoftMax classifier. Again, the number of units per timestep was

not specified. The classifier performed better than the other models tested achieving over

95%.

Ben Yue Su et al. presented work investigating intent prediction for trans-tibial amputees

using IMU data and a CNN networks [25]. Ten non-amputee and one trans-tibial amputee

were asked to perform short walks traversing a short staircase and ramp with a level surface

either side. The non-amputee subjects wore a hands-free crutch to simulate amputation.

Three IMUs were attached to the thigh, shank and ankle of the “healthy” leg. The CNN

classifier identified five steady states and eight transitions between states. An accuracy

of 94% was achieved by the non-amputee subjects; this dropped to 89% for the amputee

for validation data. When testing generalization to an unseen user, using Leave One Out

Cross-Validation (LOOXV), this dropped to 82% for non-amputee subjects. Subject-specific

training was recommended. Reasons for poor generalization were not investigated.

Research into the generalization of ML HAR Models to new users is limited. Dehghani

et al. investigate the metrics used to evaluate the performance of classifiers, particularly

regarding their performance on unseen data presented using k-fold cross-validation meth-

ods [210]. The paper implements various forms of ML, such as Support Vector Machines

(SVM) and Hidden Markov Models (HMM) but not LSTM. Dehghani found that using val-

idation data to evaluate performance overestimates accuracy by 10–16% as the validation

data is too similar to the training data. Instead, individual subjects should be excluded

and used as test subjects. The reason for the worse generalization when presented with a

novel user has not been investigated.

Investigations into LSTM networks for HAR/LMR have been primarily focused on achieving

the highest possible classification accuracy. No one has investigated the internal operation of

the network, or sensitivities to hyper-parameter selection for these applications. Dehghani

et al. identified that model generalization to novel users is an area that also needs further

investigation [210]. This paper aims to address these areas.

4.2.4 Materials and Methodology

To complete the aims of this paper, a dataset of human locomotion, methods for processing

this data and a ML environment are required. This section details the methodology used

to provide this. It is split into three sections, Sections 4.2.5 and 4.2.5.1 detail the data
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collection and pre-processing, respectively. Section 4.2.5.2 presents the ML environment

and methods.

4.2.5 Unsupervised Data Collection in Dynamic Natural Environments

There are several commonly used data sets for LMR of non-amputees. The OPPORTU-

NITY activity recognition dataset [211] contains 18 classes for Activities of Daily Living

(ADL) such as opening/closing doors and drinking from a cup. Each subject wore seven

6-axis IMUs and 12 3-axis accelerometers while they performed the prescribed actions. The

UCI-HAD dataset [204] recorded subjects performing six activities: walking, stair ascent,

stair descent, sitting, standing and lying while wearing a waist-mounted smartphone with

onboard Magnetic, Angular Rate and Gravity (MARG) sensors. Both of these data sets

were recorded in controlled conditions, so do not capture any variation in the activity that

may occur due to the environment. Sztyler and Stuckenschmidt collected data from 15 sub-

jects performing eight activities while wearing six wearable sensors. Recording took place in

the same natural environments for each activity. Only steady-state activities were captured

and not the transition between them [212]. Due to limitation in the identified data sets, a

new set of data is required.

The aim of the new data set was to record natural locomotion in an unstructured envi-

ronment, capturing both steady-state and the transition between activities across different

settings from a wide range of subjects. Collection of large quantities of data from amputees

is very challenging, so instead non-amputee subjects are used. Non-amputee subjects have

a less varied gait than amputees, but this can be countered by a larger population size.

Non-invasive wearable sensors, such as Inertial Measurement Units (IMU), are an appealing

choice for developing such a system. IMUs give fast update rates, 100s of Hz, are non-

invasive (small with minimal mounting constraints), low cost and have reasonable accuracy.

They have been widely used in the field, all of the latest generation of powered prosthetic

knees investigated by Fluit et al contained IMUs [201].

The Suunto Movesense wearable IMU was used to collect activity data. This is a COTS

device containing a nine-axis MARG sensor and a Bluetooth Low Energy (BLE) radio in a

small 10 g package. The sensor housing contains a snap connector allowing it to be clipped

on attachment hardware. A variety of mounting hardware is available off the shelf. The

sensor is user-programmable allowing customized behavior through the Movesense API. To

enable the desired streaming application it was programmed to transmit compressed IMU

data at 100Hz over its BLE connection to a custom app running on an android smartphone.

The devices come with Factory calibration for the IMU, no additional IMU calibration was
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undertaken.

Five sensors were attached to each participant in the following locations: on the inside of

both ankles using an elastic Velcro strap, on each hip using a clothes/belt clip and across the

chest using a heart rate strap. The location of the sensors was selected to give wide coverage

of body movements while providing easy, secure and non-invasive attachment to minimize

discomfort and disruption to natural movement. Figure 4-5 shows a subject wearing the

five sensors.

Figure 4-5: Subject wearing the Movesense IMU sensors on both ankles, hips and the
chest.

To record data from the sensors, a custom android app was created. This formed a BLE

connection to each device and saved the streamed data. During recording a series of buttons

at the bottom of the screen could be used for real-time labelling of activities. Once recording

had finished the subject was presented with an upload screen allowing metadata to be added.

The file could then be shared anonymously with the researchers using Google’s Firebase

cloud services. A screenshot of the app in recording mode is shown in Figure 4-6.

Study subjects were provided with instructions on how to use the sensing equipment, and

the activity classes, then allowed to record as they wished. The following activities were

selected, Walking (W), Stair Ascent (SA), Stair Descent (SD), Ramp Ascent (RA), Ramp

Descent (RD) and Stopped (S). Labarrière et al. identified these as the most commonly

investigated and they require no equipment or skill to perform [26]. The study received

ethical approval from the University of Bath Research Ethics Approval Committee for
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Figure 4-6: Custom Android app with connected sensors and illustration of Firebase
upload system.

Health (REACH), reference EP 19/20 003.

Twenty-two participants of a wide variety of age (mean 29, std 10), gender (17M, 5F), and

physique were chosen to give a broad data set. Participants were instructed to walk around

a varied environment with the sensor on while labelling the six activity classes. No further

instructions on how the recording should be conducted were provided. A total of 268 min

of data was collected, which includes 1170 transitions between activities. Table 4-2 contains

a summary of the data collected. The number of steps was produced by summing the peak

swing gait events for each label.

Table 4-2: Quantity of data collected for each activity.

Activity Samples Time (min) Number of Steps

Walking 1075211 179 9438
Stair Ascent 139922 23 1286
Stair Descent 122379 20 1280
Ramp Ascent 73328 12 656
Ramp Descent 79436 13 754

Stop 121027 20 -

Total 1611303 268 13414

4.2.5.1 Data Pre-Processing

To convert the raw saved data to a form that Tensorflow could import, a processing pipeline

was developed in Matlab 2019b. The pipeline consisted of a decoding, re-sampling, time

alignment, normalization, and exporting steps. A flow diagram of this process is shown in
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Figure 4-7, further details of the process are described below.

The smartphone app does not interpret the compressed data stream, only saving it to a log

file. Therefore, the data files need to be converted from a compressed fixed-point form back

to their original floating-point representations. This is done by applying the reverse scaling

factor to that used by the Movesense device to compress the data. The scaling factor was

chosen to provide a balance between accuracy and compression.

data.txt
decode

re-sample

label.txt

Matlab 2019b

data.csv

�me alignment

normalisa�on

Figure 4-7: Raw data input and pre-processing flow diagram.

To compensate for the difference between the internal sensor clocks the data is re-sampled

using the smartphone clock as a common reference. Once a consistent frequency for all the

sensor data is achieved, this common reference allows for data from all sensors to be aligned

accurately.

Finally, the data is normalized using Equation (4-2) to scale and shift the data. After this

each data channel has a center of zero and standard deviation of one. Normalization is

applied on an individual data file basis. In Equation (4-2) µ is the sample channel mean

and µ the sample channel standard deviation. x is the input sample and z the normalized

value. The normalization process removes any overall bias in the IMU data. No additional

filtering was applied to the raw data before it was fed to the machine-learning models.

z =
x− µ

σ
(4-2)

The following axis system will be used when presenting and analyzing the results. The axes

use a right-hand system with direction, front left and up for x, y and z respectively. x is

forward towards the front of the body, y toward the left and z upwards. From this point on,

the beginning of the gait cycle, 0%, will be defined as the peak swing maxima. This leads

HS by about 20%.
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4.2.5.2 Machine-Learning Methods

Within this subsection, the methodology for setup and training of the machine-learning

models are presented. TensorFlow 2.1 was used, with the Keras API used to setup, train

and evaluate the different ML Models. The ML environment was developed and run in an

Anaconda Python 3 environment. A conventional supervised training setup was used.

Model Setup Two different model architectures were developed, a simplified model with

a single information path for investigating LSTM internal behavior; and a full complexity

practical model based on the architecture presented by Murad et al. [150] for investigating

hyper-parameter sensitivities. This design was previously discussed in Section 4.2.2.2.

For both architectures input data is fed directly into the first LSTM layer. For models

with additional LSTM layer, the full output of the first LSTM layer is fed into input of the

next layer and so on. The output from the final LSTM layer is fed into a fully connected

dense layer followed by a ReLU classifier. For the simplified model the LSTM output is

the last timestep only, for the full complexity model the full output of all timesteps is used.

The size of the dense layer is equal to the number of outputs from the last LSTM layer.

A one-hot classification output is used to encode the activity classes. Figure 4-8a,b show

the architectures of the simplified and full complexity model, respectively.

128x1

2 Walking

Stairs
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InputVector
Hidden State
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2

(a) Simplified model
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Ramp Ascent
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Stair Ascent

Stair Descent
Stopped

128x6

128x6

(b) Full Complexity Practical Model

Figure 4-8: Machine-Learning Model Architectures.

Data Segmentation The data set was divided into two groups for test and training.

The training set was used during the learning process with the test set reserved for evaluating

the performance of unseen data. The test set was a variation of Leave One Out Cross-

Validation (LOOXV). LOOXV involves training and analyzing the model multiple times

with different excluded individuals, the results are then combined to improve statistical

certainty. For this paper four/five subjects were excluded each time with analysis repeated

five time, meaning each subject was excluded once. The training set contains the remaining
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subjects, with 30% of the data used as a validation set. Figure 4-9 provides an illustration

of how the data is divided between the three data sets.

70% 30%
Training Valida�on

100%
Test

Figure 4-9: Division of the subject population to form the training, validation and test
sets

To balance the data set, both the training and test sets were adjusted by removing data so

that no class contained more than 50% more samples than any another. This re-balancing

was undertaken carefully so that during validation splitting the balance was maintained.

A class weight input was used to bias the training to further balance the class labels.

The continuous sensor data was segmented using sliding windows. Between the start of

each window, an offset of five samples was used. This offset was set empirically to give

the model a wide range of data windows position without slowing down learning from an

unnecessarily large training set. The output label for each window was set as the recorded

ground truth at the end of the window. Classification labels were presented using one-hot

encoding.

Model Training The models were trained to minimize categorical cross-entropy. Model

weights were initialized with a Golorot Uniform initializer [213] and optimized with an

ADAM optimizer [184]. A dropout of 0.5 was used, selected experimentally, with network

connections dropped between the last LSTM output and the dense classifier.

During trained the full training dataset was used for each epoch, with data passed to the

optimizer in mini batches of 2000 windows. At the end of each epoch the entire validation

set was evaluated. Early stopping was used to prevent over-fitting, this stopped training

when stagnation of validation cross-entropy loss was observed. Stagnation was identified

by three consecutive losses of greater than the minimum previously seen.

The model was trained on a PC with an AMD Ryzen 3600 CPU and a Nvidia Geforce RTX

2060 Super. Using GPU training, each epoch took approximately 10 s with between 30 and

100 epochs required to train each model depending on the model size and the number of

output classes.
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4.2.6 Investigation of LSTM Behavior

An understanding of the internal operation of an LSTM LMR network is important in

assessing the network limitations. To capture the internal behavior the effects of input data

on the output must be established. This will be achieved by mapping changes in internal

hidden state to incoming data.

This analysis can only be performed on low-complexity networks, as information paths of

large networks become too convoluted making tracing infeasible. The experiments will use

the simplified model, described in Section 4.2.5.2, as this only has one path for information

to flow along. For the simplified network analysis only a single shank IMU sensor will be

used. From visual inspection this showed the most variation between activities and subjects.

4.2.6.1 Analysis Methodology

To enable changes in the hidden state to be mapped to features of the input data, typical

plots of input sensor data for different activities are required. This will also allow differences

between individual’s gait to be assessed. A typical gait cycle was produced by combining

multiple gait cycles for different activities. Each gait cycle can then be normalized to

percentage gait, with the mean and standard deviation of multiple cycles plotted to produce

activity trends.

Using an extraction of the hidden state, a measure of information gained from the input

data will be drawn. Due to reduced learning capacity of the model, in order to get a

meaningful classification accuracy, the classification is performed on a reduced number of

classes. The data labels are reduced to include only the three most prevalent activities

(Walking, Stair Ascent and Stair Descent). The total output classes can be reduced further

by combining pairs of these.

Four different combinations of output class for the three activities were tested with four

different combinations of input sensor, y Gyroscope, x Accelerometer, y Gyroscope and x

Accelerometer, and a full six-axis IMU. The y gyroscope and x accelerometer were selected

as visually they showed the greatest variation between activities.

To extract the hidden state the weights and biases of the trained LSTM layer were extracted

and copied into a new model whose output was the full hidden state sequence. Input data

was then fed into the new network to extract the hidden state. To observe patterns in the

hidden state, multiple data windows were overlaid. Variations in step cadence were removed

by normalizing to gait cycle. Different activities were then plotted independently to show

how the network acts to each. The hidden state output is shown on the y axis. This is
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a dimensionless value which tends toward a value depending on the network classification

decision. The value is dependent on the classifier weights but is typically −1, 0 or 1. The

final element of the hidden state is fed into the dense layer which forms a classification

based on its learnt thresholds.

4.2.6.2 Results and Analysis

Below the results of the experiments investigating the internal behavior of a LMR LSTM

network are presented and analyzed.

Individual’s Gait Trends Figure 4-10 show the typical sensor data trends for different

individuals and activities. The solid lines represent the mean and the filled area the standard

deviation. the x accelerometer and y gyroscope signals, for three different activities W, SA,

SD. On each plot three individuals have been super-imposed over each other. 0% gait cycle

corresponds with the peak y-axis shank angular velocity.

From Figure 4-10 the differences between the three chosen participants can be seen. The x

acceleration signal is very noisy, with large standard deviation seen particularly around heel

strike, 20% gait cycle. Smoothing of the input data could be used to reduce this, but this

was not investigated. The gyroscope signals are more consistent, shown by the reduced

standard deviation.

The stance angular velocities match the results presented by Coley et al. [136]. Stair ascent

has a lower early stance rate and stair descent a higher. For stair ascent, there is a delayed

peak acceleration with stair descent and walking having very similar shapes. The difference

in peak magnitude between activities is a result of variation in step cadence.

The variations in sensor value between subjects is less than the variations between activi-

ties, with early stance having the greatest variations between participants for both sensors

plotted. Walking shows the most consistent results among participants. These trends hold

true for the subjects not shown.

Simplified LSTM Model Behavior Table 4-3 presents the classification accuracies of

each input and class combination. For each model, classification accuracy was recorded for

the validation data and a set of unseen test data from excluded participants. It can be seen

that all the models performed equally well for both validation and test data sets. Given the

simplicity of the models, this suggests that an LSTM can separate activities from only the

prominent features for both seen and unseen users, but only to around 80% accuracy.

The models struggled to separate stair descent from the other two activities and, apart from
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Figure 4-10: Gait trends for the right shank x accelerometer and y gyroscope for 3 different
activities. The solid lines show the mean and the shaded area the standard deviation for n
steps. Black solid—Subject 4, Red dashed—Subject 7, Blue dot-dash—Subject 16.
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Table 4-3: Summary of simplified model performance.

Model Classes Sensor Validation
Accuracy

Test Accuracy

W, SA+SD y Gyroscope 71.6% 86.0%
SA, W+SD y Gyroscope 82.7% 83.7%
SD, W+SA y Gyroscope 57.9% 65.6%
W, SA, SD y Gyroscope * *
W, SA+SD x Accelerometer 86.6% 89.2%
SA, W+SD x Accelerometer 88.6% 87.1%
SD, W+SA x Accelerometer 78.4% 81.9%
W, SA, SD x Accelerometer 71.9% 72.4%
W, SA+SD x Accel and y Gyro 59.3% 48.8%
SA, W+SD x Accel and y Gyro 71.2% 67.1%
SD, W+SA x Accel and y Gyro 75.1% 80.8%
W, SA, SD x Accel and y Gyro 58.6% 66.2%
W, SA+SD 6 axis IMU 82.0% 83.3%
SA, W+SD 6 axis IMU 74.2% 71.8%
SD, W+SA 6 axis IMU 55.3% 63.3%
W, SA, SD 6 axis IMU 48.0% 50.7%

* Unable to train a model that could classify this set of classes.

with the six-axis IMU, most accurately classified stair ascent. All models performed worst

when attempting the hardest task of classifying all three activities individually. An input of

the x accelerometer on its own performed most accurately, even compared to models with

multiple input sensor channels. When using only the y gyroscope, it was not possible to

separate the three activities individually.

Figures 4-11 and 4-12 show the trends in hidden state for the simplified model at different

percentage points through the gait cycle1. Figure 4-11 has an input of the y axis gyroscope

and Figure 4-12 the x axis accelerometer. In Figure 4-11, the model is classifying stair

ascent from a combined class of stair descent and walking. For Figure 4-12, the model is

classifying walking from stairs (ascent and descent). Each of the activities is plotted in a

different color, solid black for walking, dashed red for stair ascent and dot-dash blue for stair

descent. The five subplots show the windows starting at different percentage offset from

peak swing. The x-axis has units of percentage gait cycle, the y axis is the dimensionless

output of the hidden state. Values of the y axis tend towards −1, 0 or 1, depending on the

dense layer classifier weights. A value close to these represents a more certain classification.

1Both figure 4-11 and 4-12 shows the result for subject 04 only. The same result was achieved for all
subjects.
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(a) 0% (b) 20% (c) 40%

(d) 60% (e) 80%

Figure 4-11: Hidden state of single unit LSTM model with x axis accelerometer as its in-
put. The model output classifies stair ascent from walking and stair descent. walking (solid
black), stair ascent (dashed red) and stair descent (dot-dash blue). The x axis represent
the percentage gait cycle, the y axis is the dimensionless hidden state value, this tends to
1 for stair ascent and 0 for walking and stair descent.

For both acceleration and gyroscope, the hidden state value changes most during early

stance. For the y gyroscope, Figure 4-11, it can be seen that the classification of stair

ascent from walking and stair descent occurs around 50% gait cycle. For the x accelerometer,

Figure 4-12, this occurs later in the gait cycle, around 70%. For the x accelerometer hidden

state trends are less tightly grouped, likely due to noisy input data. This may be fixed by

input smoothing, further work is required to investigate this. Classification of stair descent

is less certain; the model struggles to separate this from the other two classes. Stair ascent

and walking are easily classified.

The simplified model is very good at adapting to variation in gait cadence. This can be

seen as despite the steps plotted being normalized to gait cycle, the trends in LSTM hidden

state were consistent. This suggests there is little need to adjust the input data to account

for variations in cadence.

Analysis of the simplified model has demonstrated that even a model of extremely limited

learning capacity can achieve reasonable LMR classification accuracy. It has also shown

that the classification of activity occurs exclusively within the early stance phase for the

three activities examined. This suggests that the model will be highly sensitive in this

79



(a) 0% (b) 20% (c) 40%

(d) 60% (e) 80%

Figure 4-12: Hidden state of single unit LSTM model with x axis accelerometer as its
input. The model output classifies walking from stairs (ascent and descent). walking (solid
black), stair ascent (dashed red) and stair descent (dot-dash blue). The x axis represent
the percentage gait cycle, the y axis is the dimensionless hidden state value, this tends to
0 for walking and −1 for stair ascent and descent.

area. The model also obtained minimal additional information beyond one stance period;

therefore, a window of greater than one gait cycle is unnecessary. The learning from this

will now be compared to a full complexity model to verify the results broader applicability.

4.2.7 Practical LMR LSTM Network Hyper-Parameter Sensitivities

Within this section, the effect of hyper-parameter selection on model performance for a

practical LMR LSTM network will be evaluated. The network architecture used is described

in Section 4.2.5.2.

The following hyper-parameters will be investigated: Window size, LSTM units, Number

of layers, Different Sensor inputs, and Number of training subjects

Finally, a simple attempt to improve performance around the transition region will be

assessed. The transition between activities is highly variable, data label augmentation will

be investigated to add a seventh output, transition, to try and identify this area and act as

a measure of confidence.
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4.2.7.1 Analysis Methodology

For the more complex models, the fully connected links between layers and the hidden state

become too convoluted to interpret directly. Instead, classification accuracy will be the

primary measure of model performance. This will be given as the percentage of correctly

classified windows out of the total input windows. Validation data will be used to evaluate

seen data performance, and used test data as a measure of generalization to unseen data.

To investigate the network dimensions, three different window lengths (32, 64 and 128 timesteps

at 100 Hz), and six unit widths (4, 6, 8, 16, 32, 64) will be tested. For each model shape, the

model was trained five times for the five different train/test data sets. With performance

evaluated by classification accuracy.

To evaluate how the number of training subjects effects the performance of the model,

models were trained with varying numbers of individuals. Between one and 21 training

subjects were tested, with a single subject used as the test set. For each incremental

increase in subjects, the model was trained ten times with a different excluded subject.

Miss-classification will be analyzed using confusion matrices. A confusion matrix is a tabular

representation of the performance of a classifier. Each cell is populated by a count of the

ground truth against the classified output. This allows the accuracy of individual classes

and confusion between classes to be assessed.

The time series classification output is also used to identify regions of particular uncertainty.

By plotting ground truth and classifying labels as color-coded regions on a time axis, areas

of incorrect classification can be assessed.

Finally, the seventh classification output, transition, will be evaluated. To train the model

for this, data labels will be augmented with a transition region added for 0.5 s before and

after changes in activity. Models of varying hyper-parameters will then be trained with the

transition state in and classification accuracy used to evaluate performance.

4.2.7.2 Results and Analysis

Below the results of the experiments on the practical LMR LSTM network are presented

and analyzed.

Network Size Figure 4-13 presents the model accuracies achieved for each model ±
standard deviation (n = 5). Figures 4-13a,b contain the validation and test classification

accuracies, respectively. The 32 × 4 model contained 1124 parameters, the 128 × 6 model

67334 parameters.
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Figure 4-13: Model accuracy for hyper-parameters of different LSTM units and input
window size for both seen and novel subjects.

The validation accuracy increases with increasing model size. The improvement when mov-

ing from a 32 timestep window to 64 is much greater than when increasing to 128. The num-

ber of units was the most direct factor in achieving higher validation accuracy. For test

accuracy, the results plateau around 80%, after which the improvements in validation per-

formance likely occur due to over-fitting to individual traits of the training participants.

This also corresponds with an increase in standard deviation for the test data set. A com-

plete gait cycle takes approximately one second, 100 timesteps, so it is likely that exceeding

this would make little difference. The continuing performance is likely due to the larger,

more sophisticated dense layer.

Multi-layer networks were also investigated. Networks with two, three and four deep LSTM

layers were tested, but they showed no improvement in generalization and only a small im-

provement in validation accuracy. The same was observed with multiple sensors; there was

no additional improvement in generalization beyond a single 6-axis shank IMU, only an im-

provement in seen data accuracy. When the three sensor locations were tested individually

the shank IMU performed best.

Number of Training Subject Figure 4-14 presents the changes in accuracy for varying

numbers of training participants. The red line represents the smoothed unseen test subject

classification accuracy average for the ten models trained. The blue line represents the

same for the validation data. The solid area represents the standard deviation at each

point. Figure 4-14a,b show the results for a 64 timestep 12 unit and 128 time step 6 unit

models, respectively.

Figure 4-14 shows that increasing the number of participants leads to better generalized

performance; however, the effects on increasing numbers of participants levels off at around

15 participants. This would indicate that for novel subjects to achieve high levels of classi-
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Figure 4-14: Classification accuracy of seen/unseen subjects for training with different
numbers of participants for two different models.

fication performance, increasing the number of subjects alone may not be enough.

Analysis of Miss-classification Figure 4-15 shows the confusion matrices for a 128 timestep,

6 unit single layer LSTM network. Figure 4-15a is for the training validation data and Table

4-15b the unseen test data. Figure 4-16 shows the same for a model with 128 timesteps and

32 units. The 6 unit model had an overall classification accuracy of 87.4% for validation

and 84.7% for test, the 32 unit model accuracy was 96.1% and 76.0%.
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Figure 4-15: 128 timestep, 6 unit confusion matrices.
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Figure 4-16: 128 timestep, 32 unit confusion matrices.

It can be seen that nearly all miss-classifications are confusions with walking. The test
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data showed a similar pattern for both models, even though the 32 unit model is over-

fitted to the training participants. Ramp descent and ascent are both heavily confused with

walking. This is likely because of the similarities in gait cycle between the two activities,

and the difficulty is accurately labelling this activity due to subject biases. Stairs get

slightly confused between each other but again mostly with walking. Stair Descent performs

worse than stair ascent. It is not obvious why stop performs poorly, although possibly due

to limited data. Some miss-classifications may have occurred due to under labelling or

inaccuracies in labelling during recording.

Figure 4-17 shows a visual representation of the activities labelled during a recording, above

which is a plot of where the classification errors occurred. As can be seen, a large proportion

of miss-classification occur around changes in activity. This is likely because the transition

between activities is highly variable and uncertain.

Figure 4-17: Miss-classifications and labelled activity locations, grey—walking, red—stair
ascent, blue—stair descent.

Transition State Figures 4-18 and 4-19 present the confusion matrices for the transition

models trained with 6 and 32 units, respectively. The 6 unit model achieved 82.8% accuracy

on validation data and 72.4% for test data, and the 32 unit model achieved 93.1% and 69.3%.

If the transition state is excluded from the classification accuracy then when presented with

test data the models achieve 75.2% and 75.0% accuracy for the 6 and 32 unit models,

respectively.

The addition of a transition state has not improved classification performance, achieving

equal or worse performance than without the transition state, even when excluding the

transition state for classification accuracy. This result is unexpected and requires further

investigation but at first impression this is due to the transition region being highly un-

certain, and so it appears the model cannot map this into a single state. Further work is

required to investigate if there are other methods of determining model uncertainty.
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Figure 4-18: 128 × 6 Transition Model.
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Figure 4-19: 128 × 32 Transition Model.

4.2.8 Discussion

The study set out to understand the operation of an LSTM LMR network and the effects

of its hyper-parameters on classification accuracy and generalization.

Analysis of the simplified model identified that early stance was a prominent feature in the

separation of walking from stair ascent and descent, suggesting a high model sensitivity in

the early stance region. It was also observed that this was the area of most variation between

individuals. Hyper-parameter sets that achieved greater than 80% accuracy reduced the

performance of the classifier on unseen data. This suggests that it was over-fitting to

individual subject’s gait traits reducing generalization. The larger standard deviation in

the test set also points to this conclusion. Adjustment of hyper-parameters and standard

regularization techniques alone were not sufficient to solve this over-fitting. These two

observations may begin to explain the challenges in achieving greater than 80% classification

accuracy when presenting novel users to the model. This expands on the observation by

Dehghani et al. [210] by suggesting that instead of a 15% reduction in performance with

unseen subjects, there is a maximum ceiling of performance of around 80%.

When investigating hyper-parameters, the model was able to demonstrate high levels of

performance on the created dataset. Classification performance was comparable to literature

achieved similar accuracies to the best performing model. It is noted that due to few
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studies being forthcoming on the exact network units, found to be a very important hyper-

parameter, direct comparison with literature is challenging.

Prediction of class around transition was challenging, and the addition of a class for this

region did not help. Investigation of other methods to solve this is required, such as a form

of output averaging or methods for gauging uncertainty from the full classifier output.

Increasing the number of participants in the study did not improve generalization beyond

around 80%. It can be theorized that this would only help if the model were trained on

a subject with a similar gait to that of the novel user. As amputees have much more

varied gait, this approach is unlikely to be practical. There is the potential that a form of

data-augmentation may help with this, but this has not been investigated. A more realistic

approach is likely a form of individual personalization.

Implementing these techniques in a prosthetic device is still a way off. The results show

promise, but further studies are required to address the concerns raised. Practical consid-

erations are also needed; the LSTM model created has a small parameter count, but still

requires many calculations to be implemented on an embedded system. Suitable fail safes

would also be required to ensure no harm came to the user, especially if it had not been

trained to their gait.

The study was limited to non-amputee data to achieve a large enough population. Data

from 22 subjects was collected; this is a large data set, but still a relatively small study. It

is also still to be determined how applicable the outcomes of this study are to amputees.

The investigation into hyper-parameters was broad, but there are still many more that

could have been investigated. Such as the use of IMU sensors from different locations and

the filtering of the IMU data.

4.2.9 Conclusions

Within this paper we explored the behavior of an LSTM network trained to complete LMR

tasks. In literature, there is a lack of studies investigating the internal operation of an LMR

LSTM networks, their hyper-parameter sensitivities and poor novel user generalization.

A new dataset for LMR research of 22 non-amputee subjects performing six activities in a

real-world environment was collected. A comparison of sensor data for the gait of different

subjects revealed that most variability occurred in early stance. Using the dataset, the

behavior of the LSTM layer was examined though mapping input data to changes in hidden

state. This revealed that the model primarily classified based on data around early stance.
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This behavior could only be directly observed on a simplified model, as the full-connected

nature of a practical network makes it too convoluted to interpret hidden state.

A practical LMR LSTM network was trained for a wide variety of hyper-parameter values

to determine its sensitivities. Classification accuracy, of both validation and novel users test

data, was used to determine the generalization performance. This revealed that although

the network can potentially achieve > 95% accuracy, it is over-fitting to individuals gait

traits. This is likely due to the model sensitivities in the most individually variable phase

of the gait cycle. There is also an increase in erroneous classification around the transition

between activities. None of the hyper-parameters tested were able to account for these

issues.

The paper shows that network size, number of individuals training data, and number and

location of sensors make insignificant contribution to network generalization performance,

demonstrating that personalization is critical.

The outcomes of this work suggested that in order to achieve acceptable accuracy rates

(above 95%) for novel users, a form of model personalization is required. Additionally,

measures to mitigate the errors around transitions are required. Finally, testing with am-

putee data is required to determine the applicability of the results to prostheses.
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4.3 Post-commentary

Since being published, seventeen papers have cited the article2. A number of these citations

have used the paper as an example use case for an LSTM network[214, 215, 216, 217, 218]

and data capture methods[115, 180]. The paper was also awarded a Editor’s Choice award.

The award is given to articles the journal editors believe are of particularly interesting or

important in a field.

Maximum performance for validation data was 96.1% . This classification accuracy is

comparable in performance with literature. Uddin et al. achieved 94%[214] and Murad et

al. achieved 97%[150]. However the performance of the test set, containing novel unseen

individuals, was significantly lower at 76%.

This results supports the conclusion drawn by Dehghani et al. that a substantial drop

in performance for unseen subjects is to be expected[210]. This work extends on that

conclusion by proposing that the high variability between individuals during early stance

is a large source of this error. As when the target user behaviour differs from the training

dataset the subject will perform poorly[139].

Therefore for a general model to perform well the training set would need to include individ-

uals with a similar gait pattern to all target subjects. This is highly impractical especially

for amputee who have significantly more variability in their gait[45, 46]. It is also harder

to get data for amputees due to reduced mobility therefore harder to add them into the

general training pool[176].

The paper’s outcomes expressed the need to adapt the trained model to each target individ-

ual through a method of personalisation in order to perform adequately. It also noted the

need for additional testing to demonstrate the suitability of these techniques for amputees.

These needs will be explored further in the subsequent chapters.

2as of the 23rd July 2022
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Chapter 5

LMR Model Personalisation

The previous Chapter investigated classification accuracy for a general or subject agnostic

LSTM based LMR model. Due to the variability between individuals, greater than 80%

classification accuracies could not be achieved for unseen novel subjects. Instead, individual

personalisation is necessary to adapt the model to novel subjects.

From the literature review, performed in Chapter 2, gaps for personalisation in LMR fol-

lowing gaps were identified:

• No methods for effectively testing the real-world performance with continuous real-

world environments

• There has been little work on understanding how performance improves with increas-

ing target data.

The following naming convention will be used; the subject of personalisation will be referred

to as the target, with all other subjects referred to as source.

Within this Chapter, methods for achieving this will be explored. Before attempting to

produce a model for amputees, methods will be developed and tested on non-amputees. This

Chapter will investigate whether a large population of source data can be used to improve

the performance and efficiency of producing a personalised LSTM LMR classifier for a target

individual. New methods need to be developed to split up continuous real-world data into

representative test and training sets of varying sizes. Techniques for model personalisation

techniques that can reduce data requirements and improve model performance are also

required.
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The Chapter first present methods and materials in Section 5.1. Results of a baseline

model trained from only target data are presented in Section 5.2, followed by the results

and analysis for personalisation techniques in Sections 5.3 and 5.4. Finally, the discussion

and conclusions are presented in Section 5.5.

The contributions of this Chapter are as follows:

• A method for evaluating personalisation LMR models from a set of real world contin-

uous gait data

• Demonstration of the impact on classification performance of increased target training

data

5.1 Methods and Materials

Within this section, the methods and materials required to address the research question

will be detailed. The section is structured as follows: first, details of an expanded data set

of labelled real world HAR data are provided; then, new methods for dividing this data into

representative data sets are developed; finally, ML personalisation methods are presented.

5.1.1 Gait Data

A HAR data set, which contains both a large population and a large quantity of data for

a small subset, is required for these experiments. A data set containing a large number

of subjects has been collected previously. Therefore only additional data for the subset of

target subjects is required. These will be Subjects 1, 3 and 9. The additional data was

collected the same way as previously; see Section 3.3. Table 5-1 summarises the number of

samples and episodes collected for each activity.

Table 5-1: Table of quantities of data samples and episodes collected for each target
subject.

Subject WALK RA RD SA SD STOP

Samples
1 462446 141268 139786 59685 44024 62397
3 291213 77508 59157 48695 50210 157867
9 368090 115299 82980 49530 51698 60605

Episodes
1 180 54 44 63 54 53
3 104 34 23 53 45 27
9 123 21 27 63 67 35
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Table 5-2 contains the demographic data for the three target subjects. The demographic

data for the source subject population is include in Appendix D Table D-1.

Table 5-2: Personalisation Target Subject Demographics

Age Gender Height [cm] Weight [kg]

1 27 Male 185 75
3 25 Male 180 80
9 26 Female 173 65

Only data from the shank-mounted accelerometer and gyroscope will be used. From Chap-

ter 4, the minimal performance improvement was seen for the additional sensors as from

previous work.

Data for both the left and right ankle were combined to reduce the data required for the

target subject. Equation 5-1 was used to rotate and reflect the left ankle to match the right

ankle. In Equation 5-1, V is the original data, and Vt is the transformed data.

Figure 5-1 shows the mean signals from the shank-mounted gyroscope in the sagittal plane

for each target subject. Note that the signals shown in the Figure are not normalised. Only

stair descent for subject 3 shows any apparent differences between left and right ankles.

Therefore it is reasonable to combine ankle data in this way.

Vt =

1 0 0

0 −1 0

0 0 −1

V (5-1)

5.1.2 Data Division

The HAR data set comprises a series of continuous recordings that may cover multiple

different activities and environments. Developing an effective method for dividing this data

will be critical to demonstrating the effectiveness of personalisation.

It is highly likely to suffer from poor distribution of classes since activities such as walking

are far more prevalent than climbing stairs. ML methods perform best when using balanced

data sets; therefore, the poor distribution must be corrected. Additionally, the training and

test data sets should ideally not include any data from the same environment so that the

test set represents a novel environment. Therefore each unique episode should only be

used once across the training and test data sets. Finally, the data division method should

allow multiple repeatable unique sets to be constructed for cross-validating performance.
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Figure 5-1: The shank’s angular velocity in the sagittal Plane during different activities
for each target subject. The solid line shows the mean angular velocity for all steps recorded
for each activity. The filled area represents the standard deviation. 0% gait cycle is taken
as peak swing for simplicity of calculation. The red, green and yellow lines are for the left
ankles of Subjects 1, 3 and 9, respectively. The blue, purple and grey lines show the right
ankles of Subjects 1, 3 and 9, respectively.
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Achieving all these requirements means that the recordings cannot simply be divided by

time.

The proposed approach is to divide the continuous data of each subject into episodes, each

containing one continuous period of activity. Episodes can then be combined to form the

three independent data sets. The three sets required are training – a set of examples from

which the model can learn; validation – used to evaluate the generalisation performance

during training; and test – used to evaluate the generalisation performance after training.

Each episode is only used once, with any excess episodes discarded. Excess windows are

discarded randomly from all episodes to balance the number labels of each class. To produce

cross-validation sets the order of the episodes are shuffled. Figure 5-2 illustrates the process

of forming the three data sets.

Walking

Subject 01 Subject 09Subject 03

Stair Ascent

Ramp Ascent
Ramp Descent

Stair Descent
Stopped

2.

3.

1.

Tr
ai
ni
ng

Va
lid
at
io
n

Te
st

Figure 5-2: Per-episode data division. Step 1 – Labelled data files for a single subject are
loaded. Step 2 – Episodes of the same activity are grouped together. Step 3 – Training,
Validation and Test sets are formed by stacking episodes until the required window quantity
reached.

The test sets will contain 5000 windows of target data for all experiments. The training

and validation set will vary in length. The number of training windows will be presented
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as the sum of both training and validation windows for conciseness. These will always be

in the ratio 70:30.

Each experiment will be repeated multiple times with the episodes included in each set

shuffled between each repetition. The shuffling will be repeatable with test data sets drawn

first to ensure consistent sets.

The time in seconds can be calculated using Equation 5-2, where T is total set length in

seconds, fs is the sampling frequency, sk is the window skip value, nw is the number of

windows, lw is the window size, and ne is the number of episodes included in the set.

T =
1

fs
(sknw + lwne) (5-2)

Calculating the actual data used in seconds is non-trivial as some windows may be dropped

during class balancing. Assuming no windows are dropped, and only one episode is used,

5000 windows uses a minimum of 151 seconds for each class. lw set to 128, fs set to 100Hz,

and sk equal to three.

5.1.3 Machine Learning Methods

Two personalisation methods will be evaluated – data supplementation and transfer learn-

ing. These will be compared against two baselines; a model trained using only target

training data and a general subject agnostic model.

The data supplementation technique will mix source and target data to produce a more

extensive training set. This set will then be used to train a new classifier from scratch. The

additional data will be selected randomly without attempting to match similar subjects.

The amount of both source and target data will be varied to investigate the impact of both.

The transfer learning approach will fine-tune a set of general base models using data from

a target subject. The base models will be generated by training from scratch using the

complete source data, excluding the three target subjects. Five base models will be produced

by randomly shuffling the training and validation.

Personalisation will be performed by additional training using just target data. The amount

of target training data used will be varied to assess the impact on classification performance.

Three different training configurations will be tested; each configuration will vary by which

layers are trained. For the first configuration, all layers will be fine-tuned. The second and

third methods will train only the LSTM and dense layers, respectively.
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The same LSTM architecture will be used throughout all experiments shown in Figure 5-3.

This is the same architecture as used in Chapter 4. The input layer is an LSTM network 128

units. The input to this layer is a 128× 6 data window from 6 axis IMU. The LSTM layer

uses a hyper-parameter to vary its unit wide but will always be 128 units long. The full

output of this layer is then passed to a dense late fusion layer before being passed through

a ReLU classifier. TensorFlow allocates 4992 parameters to a 32 unit 128 long LSTM layer

and 24582 parameters to the Dense layer.

LSTM
(128xN

)

Data
Window
(128x6)

Classifier
Output
(6)

R
elu

C
lassifier(6)

D
ense

Late
Fusion

(N
*128)

Figure 5-3: Illustration of LSTM machine learning model architecture

All training will be undertaken using the same methods described in Chapter 4. The com-

plete set of windows will be passed through the training systems in mini-batches of 100

windows. After every epoch, the validation set will be used to evaluate the model’s perfor-

mance. Training will be stopped when the categorical loss of the validation set stagnates

for more than three epochs. All training hyper-parameters were tuned empirically.

Model performance will be assessed primarily by the classification accuracy using the un-

seen test data set. Additionally, measures including the number of epochs, training time

and quantity of training data required will assess the computationally/data efficiency. By

comparison against the baselines, it will be possible to determine if these methods are of

benefit.

5.2 Baseline Model Performance

A performance baseline is required to determine if personalisation has resulted in an im-

provement. Two baselines will be generated for each target subject. These will be the

accuracy of a general model for the target and a model trained using only target data. If

the performance of the personalisation methods does not exceed the baselines, there is no

benefit in them. The performance of both baselines is presented within this section.
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For the first baseline, the classification accuracy of the general models when presented with

the test data sets was evaluated. The average accuracy of the five models was 75.0%± 2.3

for Subject 1, 63.9% ± 2.9 for Subject 3 and 77.4% ± 5.1 for Subject 9. The confusion

matrices for each subject is presented in Table 5-3. Performance is averaged across the five

general models and five test sets. Each cell contains the percentage of total predictions of

each class.

Table 1 shows that each target subject struggles in different classes. This is as expected

given the likely uniqueness in gait characteristics.

To determine a baseline for models trained with only target training data, LSTM models

were trained using increasing amounts of target data. Figure 5-4 shows the classification

performance for each subject using different quantities of target data windows for 6, 16, 32

and 64 unit LSTM networks. The complete data tables are available in Appendix A Section

A.1.

The maximum performance achieved was 84.4% for Subject 1, 88.5% for Subject 3, and

82.6% for Subject 9. This was achieved at 15000 windows for Subjects 1 and 3 but 9000

samples for Subject 9. It is not clear why performance decreased after this point. Perfor-

mance of the general model is exceeded at around 1500 windows.

The fastest rate of performance improvement was seen early on, from 100 to 1500 data

windows. Beyond this, there was a more gradual increase in performance. It appears that

performance would have continued to improve the maximum number of windows tested.

Indicating further data would still improve performance.

Standard deviation reduced with increasing data windows, indicating more consistent per-

formance across all test sets as the model was exposed to more data.

The baseline model took on average eight epochs to train with a 95th percentile of 13

In general, increasing the number of units improved classification performance. However,

performance levels off at 32 units, indicating diminishing returns beyond this point. Only

the 6 unit model appears to have insufficient learning capacity. Increasing the number of

units also reduced the number of epochs required to train the models. Therefore 32 units

is likely a good candidate for future models.

The reduction in performance at 3000 samples for Subject 3 is likely due to model exposure

to a new environment in the training data. Performance recovers with increasing amounts

of data. Subject 9 also experiences similar drops in performance.

An assessment of where classification errors occur can be made by looking at the confusion
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Table 5-3: Confusion matrices of a general model presented with target subject test data.
Columns represent the prediction labels, and the rows represent the real labels. Each value
represents the percentage of total predicted labels for that class. Ramp Ascent (RA), Ramp
Descent (RD), Stair Ascent (SA), Stair Descent (SD)

(a) Subject 1

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 37.9 26.9 24.5 0.1 6.2 6.3

RA 57.9 65.3 1.2 1.0 0.2 0.0
RD 2.4 0.9 72.8 0.0 3.7 0.5
SA 0.5 5.9 0.0 98.6 1.3 2.0
SD 1.1 0.8 1.5 0.2 88.6 5.8

STOP 0.2 0.3 0.0 0.0 0.0 85.4

(b) Subject 3

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 27.4 29.5 1.7 4.3 5.4 19.6

RA 40.3 70.2 1.0 0.2 0.1 2.3
RD 31.6 0.2 94.3 0.5 8.2 0.9
SA 0.4 0.1 0.3 94.9 0.7 0.9
SD 0.3 0.0 2.7 0.1 85.6 0.0

STOP 0.0 0.0 0.0 0.0 0.0 76.3

(c) Subject 9

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 59.6 8.5 10.7 0.5 9.3 1.3

RA 13.3 89.2 0.2 14.6 2.5 1.0
RD 17.7 0.0 84.3 0.0 15.7 0.0
SA 4.7 1.7 0.0 78.3 1.2 2.1
SD 4.7 0.5 4.8 0.5 71.4 2.9

STOP 0.1 0.0 0.0 6.0 0.0 92.6
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Table 5-4: Confusion matrices for a bespoke non-amputee LMR model presented with
target subject test data. The 32 unit LSTM model was trained with 15000 target data
windows. Columns represent the prediction labels, and the rows represent the real labels.
Each value represents the percentage of total predicted labels for that class. (Ramp Ascent
(RA), Ramp Descent (RD), Stair Ascent (SA), Stair Descent (SD))

(a) Subject 1

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 71.3 20.6 18.1 0.4 1.9 2.7

RA 25.9 72.4 0.0 0.0 0.0 0.0
RD 1.2 0.0 80.0 0.2 6.2 0.0
SA 0.9 5.6 0.2 92.9 5.2 0.2
SD 0.8 1.2 1.7 4.5 86.7 1.7

STOP 0.1 0.1 0.0 2.0 0.1 95.4

(b) Subject 3

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 50.3 3.3 4.2 0.2 4.1 3.1

RA 32.3 52.1 0.3 0.0 0.0 0.0
RD 16.5 43.5 92.1 0.1 0.5 0.0
SA 0.5 0.8 0.2 99.2 1.5 1.0
SD 0.2 0.2 3.1 0.5 94.0 0.1

STOP 0.1 0.0 0.0 0.0 0.1 95.7

(c) Subject 9

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 90.4 7.6 6.3 2.0 2.7 0.0

RA 2.2 82.5 0.1 1.4 0.1 0.0
RD 5.6 7.4 85.1 2.1 8.8 0.0
SA 1.0 1.7 0.6 92.8 4.7 0.1
SD 0.8 0.6 8.0 1.6 83.4 0.7

STOP 0.1 0.2 0.0 0.2 0.4 99.2

100



0 2000 4000 6000 8000 10000 12000 14000 16000

Quantity of Training Data Windows

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

6 units 16 units 32 units 64 units

(a) Subject 1
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(b) Subject 3

Figure 5-4: Classification performance for different size LSTM networks trained with
varying amount of target subject data. The solid lines represent the mean of all models
trained; the filled area represents the standard deviation (n = 10). Each line shows the
classification performance for a different number of LSTM units. The red dot is 6 units,
blue plus 16, purple cross 32 and yellow asterisk 64.
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(c) Subject 9

Figure 5-4: Classification performance of different size LSTM networks trained with vary-
ing amount of target subject data (Cont.).

matrices. Table 5-4 shows confusion matrices for the three targets classifiers created using

15000 training windows. Performance is averaged across the five bespoke models test sets.

Each cell contains the percentage of total predictions of each class.

The confusion matrices show that the stop class achieves the highest accuracy, greater than

95% for all subjects. As this is a very distinct class, this should be expected. Stairs were

also identified reasonably accurately, with Stair Ascent achieving greater than 92% accuracy

and Stair Descent greater than 83%. The classifier struggled to distinguish walking from

Ramp Ascent and Ramp Descent for all subjects with accuracy as low as 50%.

Comparisons between the two confusion matrices, Tables 5-3 and 5-4 show that each perform

better in different classes. Therefore, combining the knowledge from both data sources

should improve performance.

5.3 Data Supplementation

The first personalised model technique investigated will be data supplementation. This

involves supplementing target data with a varying amount of data from a general source

set to form a larger training set. The source data is made up of a larger number of non-

amputee subjects. The experiment consists of mixing 100 to 3000 windows of target data

with between 100 and 3000 source data windows.

A series of LSTM models were trained using different quantities of source and target win-
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dows. The experiment aimed to establish if the addition of source data improves classifica-

tion performance.

Tables 5-5, 5-6 and 5-7 present the results of all experiments. Each cell contains the mean

classification accuracy for target training and standard deviation. Columns represent dif-

ferent quantities of source training windows. Table rows represent different quantities of

target training windows. The highest classification accuracy for each quantity of target

training windows has been highlighted in bold.

Except for low source data quantities with high quantities of target data, supplemental

source data improves classification performance over the baselines.

There are no apparent trends for how much additional data is required. More source

windows than target windows always increase classification accuracy. Classification perfor-

mance increases with increasing source data before falling off. There is no obvious point

where degradation begins occurs. This may be due to the random nature of the selected

source windows.

This method requires extensive training resources. Both a large amount of training data

must be used and training takes a large number of epochs. The average number of epochs

was 21. with a 95th percentile of 38 epochs.

This method looks challenging to implement successfully as there it is difficult to predict

where the best performance occurs. It also requires a lot of computation resources to train

each model, so empirically determining this point is computationally expensive.

The F1-scores for each class show that SA, SD and S all performed extremely well. Each of

these three classes achieving an F1-score above 0.91. RA and RD performed worse achieving

F1-scores of 0.70 and 0.82 respectively. Walking performed significantly worse than the other

five classes with an F1-score of 0.45. This suggest that walking was frequently miss-classified

with ramp ascent and descent.

5.4 Transfer Learning

Transfer learning involves using the knowledge captured in an existing model as a starting

point to building a personalised model. The five general models produced previously were

used as the starting point for this experiment. Varying quantities of target subject data

windows were then used to fine-tune the target models. By freezing the different network

layers, attempts to reduce the computation load required to train the model could be made.

Classifiers were trained for each of the three target subjects by fine-tuning the general models
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Table 5-5: Table of classification accuracy for Subject 01 for a model trained using varying
amounts of Source and Target training data. The cell value represents the percentage
classification accuracy ±σ (n = 10). The highest classification accuracy for each quantity
of target windows has been highlighted in bold.

Source Training Windows
0 100 250 500 750 1000 1500

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.566±0.04 0.759±0.03 0.785±0.04 0.787±0.03 0.803±0.03 0.803±0.02 0.800±0.04

250 0.622±0.05 0.773±0.03 0.816±0.03 0.828±0.03 0.836±0.02 0.817±0.03 0.839±0.03

500 0.720±0.05 0.779±0.02 0.804±0.02 0.803±0.02 0.828±0.03 0.838±0.02 0.836±0.02

750 0.749±0.03 0.791±0.02 0.790±0.02 0.799±0.02 0.806±0.01 0.828±0.02 0.828±0.02

1000 0.774±0.04 0.791±0.04 0.807±0.03 0.796±0.02 0.806±0.03 0.821±0.03 0.833±0.03

1500 0.758±0.04 0.786±0.02 0.780±0.02 0.793±0.03 0.802±0.03 0.798±0.03 0.814±0.02

3000 0.767±0.02 0.748±0.06 0.747±0.04 0.786±0.04 0.787±0.03 0.775±0.04 0.790±0.04

6000 0.781±0.06 0.784±0.04 0.784±0.04 0.781±0.04 0.787±0.03 0.782±0.04 0.800±0.05

9000 0.778±0.05 0.754±0.03 0.785±0.03 0.758±0.05 0.784±0.04 0.776±0.04 0.755±0.05

12000 0.798±0.01 0.806±0.04 0.774±0.05 0.778±0.03 0.773±0.04 0.810±0.03 0.780±0.05

15000 0.839±0.03 0.842±0.03 0.847±0.03 0.833±0.02 0.863±0.02 0.862±0.01 0.825±0.02

Source Training Windows
3000 6000 9000 12000 15000

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.820±0.03 0.806±0.02 0.804±0.03 0.789±0.04 0.809±0.04

250 0.815±0.04 0.827±0.04 0.831±0.03 0.801±0.04 0.812±0.03

500 0.825±0.03 0.826±0.04 0.832±0.03 0.824±0.04 0.819±0.04

750 0.854±0.02 0.821±0.04 0.835±0.03 0.813±0.03 0.826±0.03

1000 0.829±0.03 0.834±0.03 0.838±0.04 0.821±0.04 0.834±0.04

1500 0.828±0.03 0.848±0.03 0.854±0.03 0.829±0.04 0.834±0.04

3000 0.817±0.02 0.844±0.02 0.833±0.03 0.826±0.02 0.831±0.03

6000 0.797±0.03 0.815±0.02 0.824±0.04 0.825±0.03 0.830±0.03

9000 0.791±0.04 0.816±0.04 0.797±0.03 0.824±0.04 0.804±0.04

12000 0.810±0.04 0.819±0.03 0.817±0.04 0.830±0.02 0.833±0.04

15000 0.842±0.03 0.856±0.03 0.848±0.02 0.850±0.02 0.838±0.02
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Table 5-6: Table of classification accuracy for Subject 03 for a model trained using varying
amounts of Source and Target training data. The cell value represents the percentage
classification accuracy ±σ (n = 10). The highest classification accuracy for each quantity
of target windows has been highlighted in bold.

Source Training Windows
0 100 250 500 750 1000 1500

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.634±0.07 0.791±0.02 0.817±0.03 0.844±0.01 0.862±0.02 0.850±0.02 0.856±0.02

250 0.629±0.03 0.794±0.03 0.831±0.02 0.846±0.02 0.859±0.01 0.857±0.02 0.851±0.02

500 0.715±0.03 0.813±0.02 0.836±0.03 0.861±0.01 0.853±0.03 0.845±0.03 0.859±0.02

750 0.713±0.03 0.810±0.03 0.841±0.01 0.862±0.01 0.846±0.02 0.852±0.02 0.859±0.03

1000 0.707±0.03 0.791±0.03 0.838±0.01 0.857±0.02 0.856±0.02 0.840±0.03 0.868±0.03

1500 0.724±0.03 0.791±0.01 0.813±0.02 0.830±0.02 0.853±0.01 0.866±0.01 0.870±0.02

3000 0.663±0.04 0.692±0.04 0.726±0.03 0.739±0.04 0.770±0.04 0.754±0.05 0.822±0.03

6000 0.740±0.02 0.754±0.03 0.782±0.02 0.776±0.03 0.792±0.02 0.803±0.02 0.803±0.04

9000 0.790±0.01 0.791±0.02 0.791±0.02 0.802±0.01 0.805±0.02 0.814±0.03 0.820±0.02

12000 0.874±0.01 0.871±0.02 0.866±0.01 0.871±0.02 0.872±0.01 0.876±0.02 0.885±0.01

15000 0.881±0.02 0.885±0.02 0.880±0.02 0.882±0.01 0.877±0.02 0.893±0.02 0.890±0.01

Source Training Windows
3000 6000 9000 12000 15000

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.837±0.03 0.854±0.04 0.837±0.03 0.847±0.03 0.842±0.02

250 0.850±0.02 0.842±0.04 0.862±0.03 0.861±0.03 0.859±0.02

500 0.863±0.02 0.867±0.02 0.840±0.03 0.849±0.03 0.860±0.03

750 0.860±0.02 0.874±0.02 0.861±0.02 0.862±0.02 0.855±0.01

1000 0.869±0.03 0.867±0.03 0.876±0.03 0.871±0.02 0.866±0.02

1500 0.868±0.02 0.880±0.03 0.877±0.02 0.875±0.02 0.880±0.02

3000 0.853±0.03 0.871±0.02 0.871±0.03 0.884±0.02 0.872±0.03

6000 0.837±0.02 0.863±0.01 0.873±0.01 0.871±0.01 0.861±0.02

9000 0.850±0.02 0.869±0.01 0.873±0.01 0.869±0.01 0.872±0.01

12000 0.884±0.02 0.899±0.01 0.894±0.01 0.897±0.01 0.903±0.01

15000 0.895±0.02 0.901±0.01 0.904±0.01 0.898±0.01 0.905±0.01
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Table 5-7: Table of classification accuracy for Subject 09 for a model trained using varying
amounts of Source and Target training data. The cell value represents the percentage
classification accuracy±σ (n = 10). The highest classification accuracy has been highlighted
in bold.

Source Training Windows
0 100 250 500 750 1000 1500

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.658±0.04 0.762±0.04 0.771±0.04 0.787±0.03 0.780±0.03 0.787±0.05 0.787±0.04

250 0.702±0.04 0.813±0.02 0.831±0.04 0.834±0.03 0.845±0.03 0.837±0.02 0.794±0.04

500 0.745±0.03 0.825±0.03 0.832±0.02 0.841±0.02 0.842±0.02 0.843±0.03 0.846±0.03

750 0.741±0.04 0.817±0.03 0.831±0.03 0.848±0.02 0.848±0.02 0.844±0.03 0.849±0.03

1000 0.760±0.04 0.826±0.03 0.851±0.03 0.852±0.03 0.855±0.02 0.844±0.03 0.862±0.02

1500 0.782±0.03 0.807±0.03 0.827±0.03 0.847±0.02 0.828±0.04 0.849±0.03 0.854±0.03

3000 0.759±0.03 0.756±0.03 0.775±0.03 0.788±0.04 0.769±0.03 0.768±0.04 0.772±0.04

6000 0.781±0.03 0.788±0.02 0.770±0.03 0.778±0.03 0.794±0.03 0.796±0.05 0.775±0.03

9000 0.825±0.03 0.827±0.03 0.834±0.02 0.825±0.02 0.829±0.02 0.813±0.03 0.854±0.02

12000 0.826±0.03 0.825±0.02 0.832±0.02 0.825±0.03 0.815±0.02 0.818±0.03 0.805±0.03

15000 0.756±0.05 0.762±0.03 0.755±0.04 0.791±0.03 0.789±0.04 0.751±0.03 0.773±0.05

Source Training Windows
3000 6000 9000 12000 15000

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s 100 0.735±0.05 0.711±0.06 0.700±0.03 0.710±0.04 0.715±0.03

250 0.795±0.04 0.771±0.05 0.765±0.05 0.757±0.05 0.749±0.04

500 0.855±0.03 0.801±0.05 0.795±0.02 0.798±0.05 0.794±0.03

750 0.849±0.03 0.832±0.03 0.814±0.04 0.800±0.05 0.815±0.03

1000 0.845±0.03 0.828±0.04 0.816±0.04 0.818±0.03 0.820±0.04

1500 0.838±0.03 0.847±0.03 0.850±0.04 0.820±0.05 0.861±0.02

3000 0.732±0.04 0.762±0.05 0.777±0.05 0.771±0.04 0.781±0.03

6000 0.796±0.04 0.812±0.04 0.817±0.04 0.815±0.03 0.811±0.03

9000 0.827±0.03 0.833±0.03 0.831±0.03 0.858±0.02 0.827±0.03

12000 0.809±0.04 0.832±0.03 0.822±0.05 0.834±0.03 0.861±0.02

15000 0.784±0.04 0.787±0.03 0.794±0.03 0.815±0.04 0.816±0.03
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produced earlier. Figure 1 shows the classification performance for the three methods of

fine-tuning the general models with increasing target training windows. The three methods

are fine-tuning the whole network, only fine-tuning the dense layer and only fine-tuning the

LSTM layer.

Figure 5-5a shows the classification performance for fine-tuning all layers. The highest clas-

sification accuracy observed for each subject was 85.6%, 90.5% and 84.7% for subjects 1, 3

and 9, respectively. This is a significant improvement over the baseline model performances.

These results were all achieved with either 12000 or 15000 target training windows, these

are at the higher end of the available data. All models completed training in a small number

of epochs, on average 5 with a 95th percentile of 8.

Classification performance improves rapidly up to 1500 target training windows. When

performance for 100, 250 and 500 training windows is compared to the bespoke baseline

model, performance is over 10% better for all subjects. This potentially means only 30

seconds of each class are required. Performance improvements then increase more slowly

with additional target data. The improvement over the bespoke model baseline also narrows

to only a couple of percent.

Target windows quantities of 100-200 for subject 3 are below the baseline performance. For

subjects 3 and 9, performance drops down around 3000 target samples. Other than these

values, all models exceed the baseline performance.

The drop in performance for higher values of training windows is still an improvement over

the baselines for Subject 9; however, it briefly drops below the general baseline model for

Subject 3. It is not apparent why this decrease in performance occurs but could be due to

introducing a significantly different previously unseen environment to the training set.

Fine-tuning only the dense layer improved the performance of Subject 3, no improvement

for 9 and reduction in performance for 1. Standard deviation in general increased for all

three subjects showing more significant variation in performance across all models. When

the dense layer was frozen, there was a slight improvement for subject 1 of greater than 1%

across all target window quantities but no meaningful change for subjects 3 and 9. Standard

deviation remained largely the same when compared to fine-tuning all layers.

This approach to personalisation appears to give significant improvements in performance

using only a small amount of target data. Only fine-tuning some layers did not give any

consistent or meaningful improvement in performance.

The F1-scores for the different activities were closer for the transfer learning approach

compared with data supplementation. Walking again has the lowest F1 score with 0.748.
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(a) Fine-tuning all layers
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(b) Fine-tuning only the dense layer

Figure 5-5: Results of fine-tuning a generic 32 unit LSTM model using increasing amounts
of target data. The solid line represents the mean classification performance for each amount
of training window. The filled area represents the standard deviation (n = 25). Each of
the three target subjects is represented individually. The red dot line is Subject 1; the blue
plus is subject 3; the yellow cross is subject 9.

108



0 2000 4000 6000 8000 10000 12000 14000 16000

Quantity of Training Data Windows

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Subject 01 Subject 03 Subject 09

(c) Fine-tuning only the LSTM layer

Figure 5-5: Results of fine-tuning a generic 32 unit LSTM model using increasing amounts
of target data (Cont.).

Stair descent has the highest score with 0.903 on average. The other four categories fell

in-between these two. This shows a much more balanced learning between the classes than

the data supplementation.

5.5 Discussion and Conclusions

This Chapter aimed to develop methods that improve the performance of an LMR net-

work for a specific previously unseen individual. Improvements were measured in both

computation efficiency and classification accuracy.

First, a real-world representative test scheme was developed. This presented the trained

model with an episode of activity that it had not previously seen. It gave a challenging data

set as test performance was significantly below training performance. Given that the actual

activity environment for each episode is not known, it is difficult to assess how realistic this

testing scheme is.

Compared to the previous Chapter, the data division scheme employed also reduced the

transition data that the model encountered as the data division scheme cleaned it up. Pre-

vious work indicated this is a significant source of inaccuracy that has not been considered.

Two baselines were generated to compare performance against: a set of general models and

models trained with only a target subjects data. These established a minimum performance

that must be achieved for the personalisation techniques to be of merit.
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Two methods were demonstrated, supplementing target data to form an enlarged training

set and fine-tuning a pre-trained general model. Both methods successfully used the source

data set to improve the classification accuracy for the target users over the baseline. After

fine-tuning, subject 3 achieved a maximum classification accuracy of 90.5% an improvement

over 26.6% over the general baseline model. Across all techniques and subjects, improvement

in accuracy varied from greater than 10% to just over 2% over the baseline.

Both methods were successful in improving performance through personalisation. They

also reduced the target data required for the same classification as the bespoke target

models. However, the data supplementation method required a significantly greater number

of epochs than transfer learning to achieve this performance. For data supplementation,

it was challenging to predict how much source data was needed, so would implement in

practice would be difficult. These results suggest that transfer learning is a better approach

than data supplementation.

All experiments investigated how much target data is required to achieve good performance.

The results demonstrated that more data is better, as should be expected. A plateauing

of performance with increasing data was not seen, implying additional data would likely

have continued to improve performance. Performance improved rapidly early on; therefore,

these methods offer the best cost-benefit at lower data quantities.

Collecting additional target data beyond what was collected rapidly becomes unrealistic.

It is impossible to expose the model to every possible environment before deployment. A

form of continuous online learning may resolve this issue and allow adaption to changes in

individual gait characteristics over time.

For lower quantities of target data, data supplementation achieved better results than trans-

fer learning. However, due to the difficulties in predicting how much source data is required,

this is difficult to implement. The imprecision of this technique is potentially an issue for

this. More precision in selecting which supplemental source data to use, as shown in litera-

ture, may improve performance. However, additional measures would be needed to evaluate

the similarity between subjects, which is unnecessary when using a purely deep learning

approach. An alternative approach could be to bias learning towards the targets data, as

shown by Ferrari et al.[164].

Transfer learning performance was more consistent in its improvement in performance, per-

forming better than baseline for the vast majority of tested configurations. The anomalous

results appear to come from the training sets used as they were repeated throughout all

experiments. This may well be due to the introduction of new environments that present

different gait characteristics from those previously seen in the data set. Due to the black-
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box nature of each data recording, it is not possible to know which kind of environment

each episode is taken from. Therefore, experimentation to determine if this hypothesis is

true is impossible without collecting additional data with greater ground truth or controls.

The freezing of layers in the transfer learning did not result in any significant reduction

in classification accuracy. For a model as small as was tested, neither did it significantly

improve computational performance. For more complex architectures, however, this could

be a valuable technique for reducing computational training requirements, as demonstrated

by Yoon et al.[159].

The advantages of the personalisation approach demonstrated is that a higher performing

model can be produced without as much data and using less training resource for the

individual. However this is depended on the general population used as a starting point

containing individuals of close gait characteristics to the target subject. If this is not the

case then the performance benefits may be severely limited.

Additional areas of research that could improve performance include the investigation of

combined data supplementation and transfer learning methods; Additional investigation of

model hyper-parameter and different model architectures.

The methods developed in this study will now be taken forward and applied to amputee

data to determine if they are still applicable to subjects with abnormal gaits.
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Chapter 6

Applicability to Amputee Data

The collection of labelled training data is arduous; this problem becomes more acute when

the subject has restricted movement, such as an amputee. Therefore, any system that

can reduce these individuals’ data requirements is of benefit. In Chapter 5, methods for

personalisation of a machine learning model using additional data from other subjects were

demonstrated to improve the model’s performance and reduce the data requirements for

that model. Within this Chapter, these methods will be implemented for an amputee to

investigate if they apply to someone with an impaired gait.

The contributions of this Chapter are:

• Collection of amputee gait data that is directly comparable to non-amputee data

• Comparison of shank MARG data between non-amputee, intact limb and prosthetic

• Demonstration of performance differences of LMR network of intact and prosthetic

side

• Demonstration of transfer learning from non-amputee data to an amputee for MARG

gait data

First Section 6.1 explains the methods used, and presents the collected amputee data.

Following this in Sections 6.2, 6.3 and 6.4 present the results of a baseline model performance

and performance of two personalisation methods, respectively. Finally, the discussion and

conclusion are given in Section 6.5.

From the literature the following gaps were identified:
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• No work has attempted to use transfer learning to personalise a non-amputee LMR

model for an amputee

• No papers have investigated the difference in classification performance between am-

putated and in-tact limb

The remainder of this Chapter will focus on investigating these gaps.

6.1 Methods and Materials

The methods used in this Chapter will mirror those used in previous chapters. Additional

data for an amputee was collected. This was used to generate a new set of baselines to com-

pare against and implement the previously developed personalisation methods. Complete

tables of results for all experiments can be found in Appendix A Section A.3.

Data was collected from a single left trans-tibial amputee wearing a Blatchford Echelon VT

prosthetic limb. Blatchford Product Limited collected the data. The data was collected

in the same manner as previously described; however, a clinician at the centre held the

smartphone to annotate activities to reduce the fall risk for the amputee. Data was col-

lected walking around Blatchford’s site in Basingstoke, both inside and outside. Table 6-1

summarises the data collected, including the number of data samples and the number of

episodes for each activity.

Table 6-1: Summary of amputee gait data collected

Activity WALK RA RD SA SD STOP

Samples 38114 6159 7194 2872 2450 11763
Episodes 26 7 7 4 4 15

As significantly less data is available to test with, adjustments had to be made to the

quantities used in each data set. The test data set was reduced from 5000 windows to

250 windows. The range of training windows tested was reduced to between 100 and 750.

Additionally, to ensure that there were sufficient episodes for SA and SD, each of the stair

episodes was split up into new episodes containing a maximum of 200 samples each. This

increased the amount of available episodes for both stair activities.

Due to asymmetry, the left and right ankle data cannot be combined. This will be described

further in the following section. All other quantities and hyper-parameters remained the

same.
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6.1.1 Amputee Gait Data

Gait asymmetry of amputees means that, unlike in the previous Chapter, the left and right

ankle data cannot be combined to increase the dataset size. Instead, both sides will be

evaluated independently to investigate the performance differences between the side. Figure

6-1 shows the angular velocity of the shank in the sagittal plane for the intact and prosthetic

limbs of a left amputated trans-tibial amputee. The left ankle has been transformed, so

both ankles are presented in the same axes. For comparison, the ankle angular velocity of

the non-amputee subject one is shown.

From a visual assessment of the plots, differences between the non-amputee, intact and

amputated limbs can be seen. The prosthetic limb shows significant differences to both the

intact and non-amputee. The non-amputee and intact limb are closer in appearance.

Differences in the prosthetic limb are especially prevalent during heel strikes (at approxi-

mately 20% of the gait cycle), where a much lower angular velocity is observed. In general,

a more significant standard deviation is also seen for the prosthetic limb, suggesting more

variation in the gait between steps.

This analysis covers one axis of the gyroscope. The visible differences can also be seen in

the other two gyroscope axes and accelerometer signals. As the intact limb is closer to the

non-amputee, it should be expected that it will perform more highly than the prosthetic

side.

6.2 Baseline Model Performance

As before, a set of baselines are needed to determine if the personalisation methods result

in a performance improvement. All baselines will be evaluated using the amputee test data

sets. The two baselines will be the performance of the general models and the performance

of models constructed from only the target amputee’s data.

The general models were constructed in the previous Chapter from the large source data

set of gait data, excluding subjects 1, 3 and 9. These are all 32 unit LSTM models. Both

the trans-tibial amputee’s right intact limb and left prosthetic limb were tested separately.

The general models achieved a classification performance of 74.2%±9.4 for the intact limb.

For the amputated limb, the performance was significantly lower at 55.3% ± 9.6. From

the previous study non-amputee subjects achieved around 72%, this is comparably to the

performance of the intact limb.

Table 6-2 shows the confusion matrix for the general model. The matrix shows that the
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Figure 6-1: Angular velocity of the shank during different activities for an amputee and
non-amputee. Data is for the sagittal Plane. The yellow line is for Non-Amputee (Subject
01 Left Ankle); The red line is the intact limb of the trans-tibial amputee; The blue line
is the prosthetic of the trans-tibial amputee. The solid line shows the mean of the steps
recorded for each activity. The filled area represents the standard deviation.
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general mode performs poorly on walking and stair descent for both limbs. The performance

for stair descent of the prosthetic limb is notable poor.

Table 6-2: Confusion matrix of general models presented with target subject test data.
Columns represent the prediction labels, and the rows represent the actual labels. Each
value represents the percentage of total predicted labels for that class. (Ramp Ascent
(RA), Ramp Descent (RD), Stair Ascent (SA), Stair Descent (SD))

(a) Prosthetic Limb

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 46.6 12.8 9.0 1.7 23.1 5.9

RA 8.5 77.7 0.0 9.8 13.4 10.6
RD 26.0 6.4 91.0 0.3 33.7 2.1
SA 0.0 0.4 0.0 88.1 0.0 1.0
SD 14.5 2.6 0.0 0.1 29.3 18.0

STOP 4.4 0.0 0.0 0.0 0.6 62.4

(b) Intact Limb

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 69.8 0.6 11.6 0.2 14.9 0.4

RA 14.3 97.5 0.0 21.7 7.8 4.4
RD 8.5 0.0 73.4 0.0 20.7 0.0
SA 0.0 0.0 0.0 77.7 0.0 0.0
SD 0.1 1.9 15.0 0.1 55.5 0.8

STOP 7.3 0.0 0.0 0.2 1.1 94.4

The second baseline is a set of models trained using only the amputee data. Different

quantities of training windows were used to provide performance metrics for various data

amounts. Figure 6-2 shows the classification performance for both legs when tested with

the test data sets. The full results of this experiment can be found in Appendix A Table

A-7. The average number of epochs to train for all models was 7, with a 95th percentile of

9.

Figure 6-2 shows performance improving rapidly with increasing training windows levelling

out after 500 samples. In all cases the prosthetic limb performs worse than the intact limb.

With increasing windows the performance gap stays consistent.

Table 6-3 shows the confusion matrix for both limbs when a bespoke model was trained

with 750 training windows. This is markedly better than the confusion matrix for the

general model. This backs up the observations found in the literature that general models

from non-amputees perform poorly for amputees[173, 175]. However, several classes across
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both limbs perform worse than the general model, suggesting the general model contains

knowledge that could be used to improve performance.

Table 6-3: confusion matrix for a bespoke amputee LMR model presented with test data.
The 32 unit LSTM model was trained with 750 target data window. Columns represent the
prediction labels and the rows represent the real labels. Each value represent the percentage
of total predicted labels for that class. (Ramp Ascent (RA), Ramp Descent (RD), Stair
Ascent (SA), Stair Descent (SD))

(a) Prosthetic Limb

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 68.2 0.6 42.6 0.6 0.0 0.0

RA 9.7 94.0 3.8 1.4 0.5 0.0
RD 18.9 0.4 53.6 0.2 0.0 0.0
SA 0.0 0.0 0.0 79.4 0.0 0.0
SD 0.0 0.0 0.0 0.0 99.5 0.0

STOP 3.2 4.9 0.0 18.4 0.0 100.0

(b) Intact Limb

Predicted Classes

WALK RA RD SA SD STOP

T
ru

e
C
la
ss
e
s WALK 83.1 2.6 19.3 0.0 0.0 0.0

RA 12.3 93.3 7.4 12.0 0.0 0.8
RD 3.7 0.0 72.0 0.1 3.3 0.0
SA 0.0 0.0 0.0 83.6 0.0 0.0
SD 0.0 0.0 0.0 0.0 96.7 0.0

STOP 0.9 4.1 1.2 4.3 0.0 99.2

6.3 Data supplementation

The first personalised model technique that will be investigated is data supplementation.

This involves supplementing target data with a varying amount of data from a general

source set to form a large training set. The source data is made up of a larger number of

non-amputee subjects.

The experiment consisted of mixing 100, 250, 500 and 750 target data windows with between

100 and 3000 source windows. On average, each model took 10 epochs to train, 95th

percentile of 17. In general, the more data used, the larger the number of epochs required.

Table 6-4 shows classification performance for all combinations.

As before, the performance of the prosthetic side is lower than the intact side. All classi-

fication accuracies for the prosthetic exceed the general model performance. However, the
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Figure 6-2: Classification accuracy for HAR model using increasing quantities of only
amputee target data. The red line shows the performance of the trained model on the
intact limb of a trans-tibial amputee. The blue line shows the performance of the trained
model for the prosthetic side. The filled areas represent the standard deviation (n=20).

lowest two results for 100 source windows perform worse than the general model for the

intact limb.

For the intact side, none of the 500 and 750 target window models exceeds the performance

of the bespoke models with the same quantity of target windows. For the amputated side,

all but 750 target window, 100 source window result exceed the bespoke model performance.

At a lower value of target windows, a higher quantity of source windows improves perfor-

mance; less source data is needed at higher target windows. At higher values of target

data windows, the performance improvement is minimal, especially for the intact side. This

suggests that this method may become less valuable the more target data available.

6.4 Transfer Learning

Transfer learning involves using the knowledge captured in an existing model as a starting

point to building a personalised model. For this experiment, five general models constructed

in Chapter 5 were used as the starting point. Varying quantities of target amputee data

windows were then used to fine-tune these starting models to personalise them to the

amputee. By freezing the different network layers, attempts to reduce the computation

load required to train the model could be made.

Figure 6-3 shows three different experiments in transfer learning. Each trained different
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Table 6-4: Table of classification accuracy for amputee test data for a model trained
using varying amounts of Source and Target training data. The cell value represents the
percentage classification accuracy ±σ (n = 8). The highest classification accuracy for each
quantity of target windows has been highlighted in bold

(a) Intact Limb

Target Training Windows
100 250 500 750

S
o
u
rc
e
T
ra

in
in
g

W
in
d
o
w
s

0 0.428±0.05 0.448±0.05 0.863±0.02 0.869±0.01

100 0.717±0.03 0.682±0.02 0.879±0.02 0.877±0.04

250 0.764±0.04 0.730±0.03 0.883±0.03 0.889±0.01

500 0.800±0.04 0.795±0.03 0.875±0.02 0.888±0.02

750 0.815±0.01 0.801±0.02 0.873±0.02 0.881±0.02

1000 0.801±0.04 0.786±0.03 0.886±0.03 0.874±0.02

1500 0.835±0.03 0.794±0.06 0.871±0.01 0.875±0.03

3000 0.825±0.01 0.826±0.07 0.846±0.03 0.863±0.03

(b) Prosthetic Limb

Target Training Windows
100 250 500 750

S
o
u
rc
e
T
ra

in
in
g

W
in
d
o
w
s

0 0.447±0.02 0.469±0.03 0.765±0.04 0.830±0.03

100 0.626±0.05 0.643±0.03 0.855±0.02 0.813±0.04

250 0.714±0.04 0.611±0.02 0.836±0.05 0.843±0.03

500 0.752±0.03 0.729±0.08 0.842±0.02 0.840±0.05

750 0.734±0.06 0.712±0.04 0.848±0.03 0.847±0.02

1000 0.756±0.02 0.756±0.08 0.875±0.03 0.872±0.01

1500 0.734±0.02 0.764±0.05 0.869±0.02 0.852±0.02

3000 0.767±0.02 0.764±0.04 0.874±0.02 0.849±0.02

layers of the network. The first trained all layers, the second just the dense layer, and

finally just the LSTM layer.

On average, each model took 6 epochs 95th percentile of 10. In general, the more data used,

the larger the number of epochs required.

When training all layers, classification performance significantly increased over the base

general model with only a few target windows. For the prosthetic side with 100 target

windows, there was a 22% increase in performance over the general model. This reduced to

just under 1% for the intact limb at 750 windows. The improvement over the bespoke model

slightly higher achieving at least a 3% improvement. Overall transfer learning resulted in

an improvement for all configurations.
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(a) Fine tuning all layers
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(b) Fine tuning only the dense layer

Figure 6-3: Classification accuracy for re-training a pre-trained model using increasing
quantities of amputee target data. The red line shows the performance of the trained model
on the intact limb of a trans-tibial amputee. The blue line shows the performance of the
trained model for the prosthetic side. The filled areas represent the standard deviation
(n=20).
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(c) Fine tuning only the LSTM layer

Figure 6-3: Classification accuracy for re-training a pre-trained model using increasing
quantities of amputee target data (Cont.).

Fine-tuning only the dense layer did not result in better performance than fine-tuning all

layers and for the intact limb at 500 and 750 windows was worse than the baseline bespoke

model. Using this method significantly increased standard deviation for the prosthetic limb,

although slightly reduced σ for the intact limb.

Fine-tuning only the LSTM layer gave the best performance for 100 and 250 target windows

compared to fine-tuning all layers. Performance was a couple of percent better; however,

the higher two target window quantities performance was approximately a percent worse.

The standard deviation remained roughly the same. On balance, it showed no improvement

over fine-tuning all layers.

6.5 Discussion and Conclusions

The work in this Chapter set out to investigate if the personalisation methods for an LMR

classifier developed in Chapter 5 were applicable to an amputee. A set of comparable data

was collected from a trans-tibial amputee to achieve this. This was then used to repeat the

previous experiments for the amputee subject.

Jamieson and Lonini suggested that the direct use of a general model trained using only

non-amputee data would not perform adequately for a person with gait impairments[173,

175]. This was borne out in the results when data from the prosthetic limb was tested. It

achieved a classification accuracy of 55.3%, significantly less than the non-amputee subjects.
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When data from the amputee’s intact limb was used, classification performance was much

higher. The test subject has a significant asymmetry in their gait, with the intact side

matching more closely to the source non-amputees gait. This is an area that requires

additional research as it is potentially an easy way to improve the performance of an amputee

gait classifier.

Both the data supplementation and transfer learning approaches improved over the baseline

classifiers. The differences observed in the previous Chapter were again shown. The quantity

of source data required for data supplementation was hard to predict, and only training

specific layers for transfer learning resulted in minimal changes. As before, the transfer

learning performance appeared to perform more consistently and required significantly less

computing resources to train.

The overall performance of both the bespoke model and personalised models at 500 and

750 training windows was significantly higher than seen in the previous Chapter. They

also looked more likely to be levelling off in performance. There are two likely reasons for

this. First, a much smaller testing set was used, so the trained model was tested with a

narrower range of environments. Secondly, all the amputee data was collected at a single

site, and therefore the training data is likely to include environments seen in the test set.

The division of stairs episodes would also have a similar effect.

Further, as data for only one amputee was collected, it is not possible to say whether these

methods are more generally applicable. To test the results further, more amputees and

more data per amputee are required.

In the previous Chapter, a method for improving data supplementation was data grouping.

It is unlikely to be successful in this scenario due to the likely difficulty in finding subjects

with a similar gait to an amputee. However, there may be potential in including more

persons with gait impairments to improve the networks ability to adapt. This is a potential

area for further research.

No literature was found investigating the classification performance difference between the

two lower limbs of an amputee or other person with asymmetric gait. The results consis-

tently showed that classification of the intact limb had higher accuracies than the amputated

limb. This could be an exciting area of research for improving the classifier’s performance

using both sides of the body. A form of ensemble network could be a good candidate for

this.

The personalisation approach shows promise in the area of amputee gait classification. As

concluded in the previous chapter the general training population should ideally contain
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individuals of similar gait to the target subject. This is significantly harder for amputees.

Further research is required in this area to exploit the potential for using non-amputee data

to reduce data requirements for amputees and to investigate the limitations of this approach.

Further research into the use of the intact limb to improve classification performance is also

required,
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Chapter 7

Conclusions and Further Work

In this Chapter, the work conducted towards developing an ML method for an activity

classifier for an amputee to improve locomotion mode selection in the powered prosthesis

is briefly discussed. This is followed by some suggestions for further work to continue this

research.

7.1 Conclusions

An effort was made to contribute to the development of a locomotion mode classifier for

amputees in the hope that this will be useful to the improvement of powered prosthetic

devices. Specifically, the hypothesis stated in the Introductory Chapter was:

A Machine Learning approach based on Long Short Term Memory (LSTM)

architecture can be used to predict gait modes with data requirements reduced

through a transfer learning approach.

A literature survey was conducted to establish the background around gait, lower limb

powered prosthesis, and Machine Learning methods. The need for a system to identify an

amputee’s current locomotive intent to inform the selection of appropriate control modes

was established. The current state of the art research has not demonstrated IMU-based ML

classifiers applied to amputees; however, they have been applied to individuals without gait

impairment. This appears to be partly due to the difficulties in collecting a large enough

data set of amputee gait data. But also due to the highly individual nature of gait, especially

for amputees. The need for further research in this area was established, especially for ways

to reduce data requirements and increase performance.
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In order to address these research gaps, a large set of gait data is required from non-

amputees and amputees. As IMU gait data for lower limb amputees could not be found,

a new data set is required. A novel system comprised of wireless IMUs and a companion

smartphone app was developed to achieve this. This allowed for the unsupervised collection

of labelled natural gait data from numerous individuals. Methods were developed for post-

processing the gait data to prepare it for use in a TensorFlow ML environment. Work was

also undertaken to develop the TensorFlow ML environment.

A journal article published in Sensors was presented that investigated the internal behaviour

of an LSTM based LMR classifier. A public dataset of 22 individuals was collected using the

previous Chapter’s methodology. This data set was used to analyse the internal behaviour of

a reduced complexity LSTM network. Experiments around analysing the network’s hidden

state were undertaken to establish a link between the input data and output classification.

The analysis identifies that the model primarily classifies activity type based on data around

early stance. Additional work was undertaken on a full LSTM LMR network to identify

activity types for unseen novel subjects. Evaluation of generalisation for unseen subjects

reveals low sensitivity to hyper-parameters with issues caused by over-fitting individuals’

gait traits. Although an accuracy of greater than 95% is possible for a seen individual

classification, the network struggled to classify unseen individuals, achieving around 80%.

Investigating the differences between individual subjects showed that gait variations be-

tween users primarily occur in early stance, potentially explaining the poor generalisation.

Adjustment of hyper-parameters alone could not solve this, demonstrating the need for

individual personalisation of models.

Based on the need for individual personalisation, methods for achieving this were inves-

tigated. A survey of literature revealed that transfer learning is a promising approach.

However, its applicability to real-world data has not been investigated, nor has the require-

ments for the quantity of a target individual’s data. Additional data for three subjects was

collected using the previous methods developed. This allowed for an extensive study of the

benefits of transfer learning with different quantities of target subject data. In order to use

the unstructured real-world continuous data, new methods for data division were required.

The data was poorly distributed, and therefore data rebalancing was required. This was

accomplished by dividing the data into episodes, each containing a single continuous period

of one activity. By combining episodes, a balanced data set could be constructed. This also

had the benefit of allowing for multiple data sets to be systematically built and ensuring

that the test data set was unseen.

A set of baselines were developed to compare the network’s performance against. These

were the best performance that could be achieved by either a general model built for other’s
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data or a fully bespoke model constructed for a target subject’s data. Two personalisation

methods were attempted, data supplementation and transfer learning. Both methods im-

proved the performance of the target subject’s classification, achieving 90% maximum. The

maximum improvements were seen at low quantities of target data, demonstrating both

methods showed promise for situations where only limited data is available.

Following the development of the personalisation methods, their applicability to amputees

was evaluated. The literature found that studies had struggled to classify amputees using

gait data from non-amputees. However, no study had attempted personalisation techniques

using amputee data. There was also no investigation into differences in how the amputated

and intact limbs would perform. Amputees have a very asymmetric gait; therefore, it should

be expected that both legs would have different classification performances. A small set of

amputee data was collected from a single trans-tibial amputee to investigate personalisation

methods. Using the methodology previously discussed, personalisation experiments were

repeated. The results showed a dramatic improvement in classification performance using

limited amputee data. Both personalisation methods worked, achieving 90% accuracy for

the intact limb and just under 90% for the amputated limb. Due to the limited data

available for testing, it is not possible to say how generally these methods work, but they

appear promising and should be investigated further.

This work has raised many additional research questions. Such as the applicable of the

amputee personalisation result to people with other gait abnormalities. There is future

research in to the use of an amputees intact limb classifier to improve gait classification.

These form areas that could be focus of future research.

The work allows for large scale collection of gait data that is free from laboratory constraints

while reducing gait bias from researchers. The work also highlighted the improvements in

classification performance that can be achieved by using a general population as a starting

point for building a bespoke classifier. Initial work indicates that this is highly applicable

to classifying individual with gait abnormalities. Further work is still required to see how

generally applicable this is to amputees and other gait abnormalities.

7.2 Further Work

The work conducted has demonstrated that this is an area of research with promise. How-

ever, there are numerous aspects where additional research could yield improvements. These

include:

• Additional amputees – The trial only included a single trans-tibial amputee. Addi-
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tional amputee trials should involve multiple subjects, including amputees of different

weights, heights, and levels of amputation in multiple environments to test the appli-

cability more generally.

• Investigate how the transition will affect performance – Due to the data division

scheme employed for the personality study, the transition between activities was not

considered. In Chapter 4 transition was identified as a key area of error. Looking

at how classification performance changes around this area would inform knowledge

of the current performance of the model during transition. Changes to the labelling

of transitions, ML model architecture, and model hyper-parameters should then be

investigated to see if transition performance can be improved.

• A greater number of environments – It was hypothesised that the addition of new

environments affects performance; however, due to the limited data labelling, it was

not possible to investigate this. Modifying the app to store location data would allow

for greater detail to be understood about the environment. By using map data the

type of environment could be automatically tagged. Classification performance could

then be filtered to see how performance changes based on different environments.

• Investigate more complex LMR networks – A very shallow LSTM network was in-

vestigated. This was selected due to its adequate performance and ability to iterate

quickly with a shallow network. Other work has successfully used deeper and more

sophisticated networks; this should be explored further. There is also a large scope

for hyper-parameter optimisation as only a little work was performed in this area.

• Implementation for real-time – The fact that the system works on a smartphone

means that a system could be deployed in the real world for more extensive testing.

Direct real-time feedback on the models performance could be used to inform a semi-

supervised learning system. This would allow for far greater data quantities to be

used during training without the need for direct user labelling.
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Appendix A

Tables of Results

This Appendix contains tables of data for Chapter 5 which investigated personalisation

methods for LSTM models using data for non-amputees.

A.1 Tables of Model Performance for Non-Amputee

Bespoke Target Model

The following section contains tables of data for investigation into classification performance

for LSTM models trained using increasing amounts of a target subject data. This section

contains Tables A-1, A-2 and A-3
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Table A-1: Table of results for classification performance of different size LSTM networks
trained with varying amount of target subject data for subject 1. The table shows the
classification accuracy for the target user training, validation and test data sets ±σ(n = 25).
A value of one represents 100% correct classification.

6 Units 16 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.697±0.10 0.477±0.10 0.492±0.07 36 0.776±0.04 0.477±0.04 0.527±0.03 22

250 0.765±0.08 0.543±0.09 0.570±0.10 22 0.805±0.09 0.542±0.07 0.607±0.09 12

500 0.783±0.09 0.599±0.05 0.655±0.09 12 0.875±0.03 0.641±0.03 0.743±0.06 9

750 0.835±0.04 0.623±0.06 0.682±0.06 10 0.899±0.05 0.617±0.03 0.726±0.05 7

1000 0.821±0.04 0.713±0.04 0.736±0.05 15 0.854±0.02 0.704±0.02 0.782±0.04 8

1500 0.816±0.02 0.713±0.02 0.752±0.05 17 0.864±0.02 0.689±0.02 0.752±0.04 8

3000 0.823±0.03 0.777±0.04 0.753±0.06 18 0.864±0.03 0.763±0.03 0.752±0.05 11

6000 0.840±0.03 0.771±0.06 0.750±0.06 24 0.909±0.03 0.776±0.04 0.789±0.05 12

9000 0.848±0.02 0.718±0.03 0.741±0.04 18 0.903±0.02 0.732±0.03 0.788±0.05 11

12000 0.851±0.03 0.738±0.05 0.784±0.05 23 0.907±0.02 0.742±0.03 0.814±0.04 13

15000 0.813±0.04 0.732±0.06 0.783±0.04 23 0.889±0.02 0.764±0.03 0.844±0.03 15

32 Units 64 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.801±0.05 0.497±0.05 0.566±0.04 16 0.724±0.09 0.439±0.07 0.521±0.08 9

250 0.815±0.08 0.531±0.03 0.622±0.05 8 0.869±0.04 0.540±0.03 0.650±0.03 7

500 0.883±0.03 0.631±0.03 0.720±0.05 6 0.907±0.03 0.615±0.04 0.746±0.03 5

750 0.934±0.02 0.633±0.02 0.749±0.03 5 0.932±0.02 0.627±0.02 0.727±0.04 4

1000 0.888±0.02 0.696±0.02 0.774±0.04 7 0.886±0.02 0.694±0.02 0.765±0.03 5

1500 0.865±0.01 0.704±0.03 0.758±0.04 6 0.885±0.02 0.693±0.02 0.771±0.02 5

3000 0.895±0.04 0.752±0.02 0.767±0.02 8 0.921±0.03 0.754±0.02 0.771±0.01 8

6000 0.924±0.03 0.758±0.06 0.781±0.06 10 0.937±0.01 0.719±0.03 0.776±0.03 8

9000 0.923±0.03 0.710±0.05 0.778±0.05 9 0.917±0.02 0.709±0.03 0.752±0.04 7

12000 0.920±0.04 0.712±0.03 0.798±0.01 10 0.902±0.04 0.712±0.04 0.779±0.03 7

15000 0.903±0.02 0.780±0.04 0.839±0.03 17 0.889±0.06 0.743±0.06 0.805±0.06 10
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Table A-2: Table of results for classification performance of different size LSTM networks
trained with varying amount of target subject data for subject 3. The table shows the
classification accuracy for the target user training, validation and test data sets ±σ(n = 25).
A value of one represents 100% correct classification.

6 Units 16 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.979±0.03 0.765±0.04 0.628±0.06 49 0.986±0.02 0.790±0.05 0.612±0.05 29

250 0.968±0.04 0.772±0.08 0.607±0.06 22 0.997±0.01 0.809±0.04 0.638±0.05 16

500 0.993±0.01 0.891±0.03 0.684±0.04 19 0.999±0.00 0.898±0.02 0.701±0.04 12

750 0.997±0.00 0.875±0.04 0.680±0.04 14 0.999±0.00 0.905±0.02 0.692±0.04 8

1000 0.986±0.01 0.900±0.04 0.668±0.03 25 0.998±0.00 0.929±0.02 0.694±0.05 13

1500 0.967±0.02 0.828±0.03 0.687±0.05 17 0.997±0.00 0.873±0.04 0.682±0.04 15

3000 0.762±0.09 0.420±0.06 0.589±0.07 7 0.865±0.05 0.460±0.05 0.648±0.04 5

6000 0.840±0.04 0.639±0.02 0.701±0.04 14 0.870±0.04 0.626±0.05 0.710±0.03 8

9000 0.829±0.05 0.647±0.03 0.724±0.03 18 0.904±0.03 0.697±0.03 0.770±0.02 10

12000 0.835±0.03 0.802±0.04 0.802±0.02 31 0.917±0.02 0.851±0.02 0.853±0.02 17

15000 0.819±0.02 0.717±0.03 0.811±0.01 40 0.902±0.02 0.768±0.03 0.856±0.02 15

32 Units 64 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.986±0.02 0.777±0.05 0.634±0.07 20 0.970±0.03 0.763±0.05 0.624±0.05 13

250 0.997±0.01 0.809±0.03 0.629±0.03 10 0.993±0.01 0.814±0.03 0.653±0.02 7

500 1.000±0.00 0.918±0.01 0.715±0.03 9 1.000±0.00 0.916±0.02 0.727±0.03 7

750 1.000±0.00 0.908±0.02 0.713±0.03 7 1.000±0.00 0.903±0.01 0.732±0.03 6

1000 1.000±0.00 0.924±0.02 0.707±0.03 10 1.000±0.00 0.924±0.01 0.721±0.03 8

1500 0.999±0.00 0.895±0.02 0.724±0.03 12 0.999±0.00 0.877±0.03 0.713±0.02 8

3000 0.932±0.02 0.450±0.06 0.663±0.04 5 0.949±0.01 0.432±0.04 0.664±0.03 4

6000 0.912±0.02 0.645±0.02 0.740±0.02 6 0.931±0.02 0.644±0.04 0.749±0.02 5

9000 0.934±0.01 0.714±0.02 0.790±0.01 8 0.940±0.02 0.718±0.03 0.789±0.02 7

12000 0.934±0.02 0.869±0.01 0.874±0.01 14 0.948±0.02 0.862±0.03 0.869±0.02 13

15000 0.922±0.02 0.792±0.04 0.881±0.02 13 0.934±0.02 0.798±0.03 0.885±0.02 11

135



Table A-3: Table of results for classification performance of different size LSTM networks
trained with varying amount of target subject data for subject 9. The table shows the
classification accuracy for the target user training, validation and test data sets ±σ(n = 25).
A value of one represents 100% correct classification.

6 Units 16 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.859±0.13 0.648±0.10 0.574±0.08 62 0.929±0.04 0.704±0.04 0.657±0.03 30

250 0.896±0.03 0.631±0.04 0.666±0.06 28 0.935±0.02 0.671±0.05 0.687±0.03 16

500 0.920±0.05 0.649±0.06 0.679±0.04 19 0.953±0.03 0.676±0.05 0.724±0.03 10

750 0.921±0.03 0.676±0.06 0.688±0.04 13 0.977±0.01 0.742±0.05 0.728±0.07 8

1000 0.880±0.04 0.677±0.07 0.685±0.04 21 0.946±0.04 0.732±0.06 0.708±0.05 10

1500 0.907±0.03 0.747±0.05 0.718±0.04 21 0.962±0.02 0.793±0.03 0.750±0.03 11

3000 0.884±0.01 0.845±0.05 0.698±0.05 53 0.957±0.02 0.914±0.05 0.725±0.03 24

6000 0.897±0.03 0.752±0.05 0.739±0.04 20 0.956±0.01 0.783±0.04 0.764±0.02 14

9000 0.789±0.06 0.602±0.05 0.753±0.02 11 0.902±0.04 0.683±0.04 0.821±0.03 9

12000 0.825±0.06 0.672±0.05 0.751±0.03 18 0.909±0.03 0.702±0.02 0.819±0.03 9

15000 0.840±0.02 0.726±0.02 0.731±0.04 18 0.912±0.02 0.772±0.03 0.759±0.02 11

32 Units 64 Units

Train Valid Test Epochs Train Valid Test Epochs

T
a
rg

e
t
T
ra

in
in
g
W

in
d
o
w
s

100 0.924±0.03 0.677±0.03 0.658±0.04 19 0.894±0.03 0.644±0.05 0.627±0.03 12

250 0.943±0.04 0.646±0.06 0.702±0.04 11 0.926±0.02 0.607±0.04 0.690±0.01 7

500 0.975±0.02 0.706±0.06 0.745±0.03 8 0.977±0.02 0.694±0.03 0.722±0.02 7

750 0.979±0.02 0.745±0.04 0.741±0.04 6 0.991±0.01 0.747±0.03 0.756±0.03 6

1000 0.977±0.01 0.767±0.02 0.760±0.04 8 0.977±0.02 0.769±0.04 0.745±0.06 8

1500 0.972±0.01 0.823±0.02 0.782±0.03 8 0.968±0.02 0.814±0.01 0.771±0.03 7

3000 0.978±0.00 0.945±0.01 0.759±0.03 17 0.978±0.01 0.949±0.01 0.754±0.02 15

6000 0.963±0.01 0.794±0.02 0.781±0.03 10 0.966±0.00 0.768±0.03 0.762±0.03 8

9000 0.927±0.02 0.686±0.02 0.825±0.03 7 0.941±0.02 0.699±0.02 0.841±0.02 6

12000 0.933±0.02 0.710±0.01 0.826±0.03 7 0.939±0.02 0.719±0.01 0.816±0.03 6

15000 0.921±0.04 0.775±0.03 0.756±0.05 10 0.956±0.01 0.801±0.03 0.785±0.04 9
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A.2 Tables of Model Performance for Non-Amputee

Transfer Learning

This section contains data tables for an investigation into model performance improvements

by additional training of a general LSTMHARmodel with varying amounts of target subject

data. Tables A-4, A-5 and A-6 are included in this section.

Table A-4: Classification accuracy for a 32 unit LSTM model retrained with increasing
amount of target data. The table shows the classification accuracy for the target user
training, validation and test data sets ±σ(n = 25). A value of one represents 100% correct
classification.

(a) Subject 01

Target Windows Training Validation Testing Average

Epochs

100 0.962±0.02 0.692±0.05 0.781±0.03 4

250 0.953±0.02 0.658±0.04 0.791±0.03 4

500 0.963±0.01 0.715±0.03 0.805±0.03 5

750 0.950±0.01 0.732±0.03 0.812±0.03 4

1000 0.958±0.01 0.770±0.03 0.838±0.02 4

1500 0.950±0.02 0.773±0.04 0.837±0.02 4

3000 0.959±0.01 0.818±0.01 0.829±0.01 5

6000 0.957±0.01 0.793±0.04 0.832±0.02 5

9000 0.960±0.01 0.754±0.04 0.831±0.02 5

12000 0.959±0.01 0.781±0.02 0.831±0.02 5

15000 0.931±0.01 0.803±0.03 0.856±0.02 5
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(b) Subject 03

Target Windows Training Validation Testing Average

Epochs

100 1.000±0.00 0.956±0.02 0.803±0.03 6

250 1.000±0.00 0.953±0.02 0.803±0.02 6

500 1.000±0.00 0.969±0.01 0.827±0.03 6

750 1.000±0.00 0.970±0.01 0.824±0.02 6

1000 1.000±0.00 0.982±0.01 0.824±0.03 6

1500 1.000±0.00 0.976±0.01 0.825±0.03 7

3000 0.990±0.00 0.591±0.06 0.772±0.04 4

6000 0.982±0.00 0.729±0.02 0.855±0.02 4

9000 0.970±0.00 0.830±0.02 0.852±0.01 4

12000 0.965±0.01 0.892±0.02 0.905±0.01 8

15000 0.950±0.01 0.828±0.02 0.901±0.01 5

(c) Subject 09

Target Windows Training Validation Testing Average

Epochs

100 0.998±0.00 0.851±0.05 0.802±0.03 4

250 0.994±0.00 0.841±0.02 0.840±0.02 4

500 0.992±0.00 0.848±0.03 0.847±0.02 4

750 0.987±0.00 0.869±0.02 0.849±0.02 4

1000 0.986±0.00 0.868±0.02 0.851±0.02 4

1500 0.985±0.00 0.872±0.02 0.857±0.01 4

3000 0.981±0.01 0.956±0.02 0.761±0.04 9

6000 0.973±0.00 0.807±0.03 0.787±0.04 4

9000 0.969±0.00 0.720±0.02 0.847±0.03 4

12000 0.965±0.00 0.734±0.02 0.847±0.03 4

15000 0.960±0.00 0.815±0.01 0.824±0.02 4
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Table A-5: Classification accuracy for a 32 unit LSTMmodel with the dense layer retrained
with increasing amount of target data. The table shows the classification accuracy for the
target user training, validation and test data sets ±σ(n = 25). A value of one represents
100% correct classification.

(a) Subject 01

Target Windows Training Validation Testing Average

Epochs

100 0.885±0.02 0.741±0.04 0.777±0.03 5

250 0.866±0.03 0.714±0.04 0.783±0.04 4

500 0.887±0.03 0.722±0.03 0.774±0.04 4

750 0.879±0.03 0.720±0.03 0.779±0.03 4

1000 0.878±0.03 0.758±0.01 0.806±0.03 5

1500 0.871±0.03 0.762±0.02 0.803±0.03 4

3000 0.857±0.02 0.843±0.02 0.821±0.02 5

6000 0.898±0.01 0.836±0.02 0.808±0.03 6

9000 0.926±0.01 0.754±0.03 0.821±0.02 12

12000 0.912±0.01 0.765±0.03 0.829±0.02 9

15000 0.892±0.01 0.779±0.02 0.840±0.01 9

(b) Subject 03

Target Windows Training Validation Testing Average

Epochs

100 1.000±0.00 0.915±0.03 0.818±0.03 7

250 0.999±0.00 0.918±0.03 0.824±0.03 6

500 0.998±0.00 0.945±0.03 0.848±0.03 12

750 0.994±0.01 0.946±0.03 0.851±0.03 11

1000 1.000±0.00 0.982±0.01 0.837±0.04 26

1500 1.000±0.00 0.979±0.01 0.839±0.03 27

3000 0.962±0.01 0.729±0.07 0.811±0.02 4

6000 0.951±0.01 0.765±0.01 0.870±0.02 5

9000 0.943±0.01 0.848±0.01 0.870±0.01 6

12000 0.926±0.01 0.864±0.01 0.897±0.02 12

15000 0.918±0.01 0.838±0.03 0.890±0.01 9
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(c) Subject 09

Target Windows Training Validation Testing Average

Epochs

100 0.984±0.01 0.864±0.02 0.815±0.02 7

250 0.970±0.01 0.818±0.03 0.832±0.02 6

500 0.962±0.01 0.822±0.04 0.838±0.01 6

750 0.958±0.01 0.857±0.02 0.840±0.01 7

1000 0.957±0.01 0.867±0.02 0.846±0.02 7

1500 0.953±0.01 0.869±0.02 0.845±0.02 8

3000 0.938±0.01 0.914±0.01 0.783±0.04 10

6000 0.946±0.01 0.802±0.03 0.807±0.04 8

9000 0.932±0.01 0.734±0.03 0.856±0.02 6

12000 0.933±0.01 0.744±0.03 0.859±0.02 6

15000 0.920±0.01 0.808±0.02 0.816±0.01 9

Table A-6: Classification accuracy for a 32 unit LSTMmodel with the dense layer retrained
with increasing amount of target data. The table shows the classification accuracy for the
target user training, validation and test data sets ±σ(n = 25). A value of one represents
100% correct classification.

(a) Subject 01

Target Windows Training Validation Testing Average

Epochs

100 0.924±0.02 0.714±0.03 0.786±0.03 4

250 0.920±0.02 0.688±0.03 0.798±0.02 4

500 0.924±0.02 0.731±0.03 0.820±0.03 4

750 0.930±0.02 0.741±0.03 0.826±0.02 4

1000 0.929±0.02 0.771±0.02 0.843±0.02 4

1500 0.928±0.02 0.775±0.03 0.841±0.02 5

3000 0.935±0.02 0.815±0.01 0.833±0.01 5

6000 0.945±0.01 0.788±0.04 0.840±0.02 5

9000 0.953±0.01 0.749±0.03 0.836±0.01 6

12000 0.946±0.01 0.773±0.02 0.841±0.02 5

15000 0.916±0.01 0.804±0.02 0.867±0.01 5
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(b) Subject 03

Target Windows Training Validation Testing Average

Epochs

100 1.000±0.00 0.953±0.02 0.792±0.03 7

250 1.000±0.00 0.952±0.02 0.789±0.03 6

500 1.000±0.00 0.972±0.01 0.805±0.02 8

750 1.000±0.00 0.973±0.01 0.807±0.02 8

1000 1.000±0.00 0.976±0.01 0.819±0.02 8

1500 1.000±0.00 0.969±0.01 0.822±0.02 7

3000 0.984±0.00 0.595±0.06 0.777±0.05 4

6000 0.975±0.00 0.726±0.02 0.856±0.02 4

9000 0.963±0.00 0.817±0.02 0.858±0.01 4

12000 0.957±0.01 0.874±0.02 0.900±0.01 9

15000 0.945±0.01 0.826±0.02 0.896±0.01 6

(c) Subject 09

Target Windows Training Validation Testing Average

Epochs

100 0.992±0.00 0.834±0.06 0.794±0.03 4

250 0.987±0.00 0.833±0.03 0.840±0.02 4

500 0.985±0.00 0.851±0.03 0.843±0.02 4

750 0.980±0.00 0.866±0.02 0.845±0.02 4

1000 0.979±0.00 0.870±0.02 0.853±0.02 4

1500 0.978±0.00 0.876±0.02 0.856±0.03 5

3000 0.974±0.01 0.953±0.02 0.773±0.04 10

6000 0.968±0.00 0.804±0.02 0.802±0.04 5

9000 0.964±0.00 0.719±0.02 0.849±0.02 4

12000 0.960±0.00 0.734±0.02 0.856±0.02 4

15000 0.953±0.00 0.814±0.01 0.833±0.02 4
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A.3 Tables of Model Performance for Amputee Transfer

Learning

This section contains data tables for an investigation into model personalisation for an

amputee. Improvements were made by additional training of a general LSTM HAR model

with varying amounts of target subject data. Tables A-7, A-8, A-9 and A-10 are included

in this section.

Table A-7: Table of results for classification performance for a 32 unit LSTM networks
trained with varying amount of amputee subject data. The table shows the classification
accuracy for the target user training, validation and test data sets ±σ(n = 25). A value of
one represents 100% correct classification.

(a) Intact Limb

Target Windows Training Validation Testing Average

Epochs

100 0.905±0.04 0.036±0.43 0.428±0.05 10

250 0.952±0.01 0.012±0.45 0.448±0.05 7

500 0.964±0.02 0.016±0.86 0.863±0.02 9

750 0.984±0.01 0.013±0.87 0.869±0.01 8

(b) Prosthetic Limb

Target Windows Training Validation Testing Average

Epochs

100 0.855±0.10 0.096±0.45 0.447±0.02 8

250 0.878±0.02 0.017±0.47 0.469±0.03 5

500 0.896±0.04 0.038±0.77 0.765±0.04 8

750 0.939±0.04 0.039±0.83 0.830±0.03 9
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Table A-8: Table of results for classification performance of 32 unit LSTM networks
personalised to an amputee using transfer learning. The table shows the classification
accuracy for the target user training, validation and test data sets ±σ(n = 25). A value of
one represents 100% correct classification.

(a) Intact Limb

Target Windows Training Validation Testing Average

Epochs

100 0.997±0.00 0.570±0.07 0.779±0.05 6

250 0.991±0.01 0.547±0.07 0.764±0.07 4

500 0.976±0.01 0.827±0.02 0.900±0.01 5

750 0.981±0.01 0.832±0.02 0.898±0.02 4

(b) Prosthetic Limb

Target Windows Training Validation Testing Average

Epochs

100 0.962±0.06 0.443±0.04 0.727±0.04 6

250 0.949±0.07 0.517±0.04 0.676±0.04 4

500 0.931±0.03 0.794±0.03 0.867±0.02 5

750 0.959±0.02 0.818±0.03 0.866±0.02 5
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Table A-9: Table of results for classification performance of 32 unit LSTM networks with
the dense layer personalised to an amputee using transfer learning. The table shows the
classification accuracy for the target user training, validation and test data sets ±σ(n = 25).
A value of one represents 100% correct classification.

(a) Intact Limb

Target Windows Training Validation Testing Average

Epochs

100 0.932±0.05 0.539±0.05 0.776±0.02 7

250 0.934±0.02 0.610±0.03 0.784±0.02 6

500 0.920±0.02 0.837±0.02 0.881±0.02 10

750 0.930±0.02 0.869±0.02 0.889±0.01 9

(b) Prosthetic Limb

Target Windows Training Validation Testing Average

Epochs

100 0.834±0.11 0.388±0.06 0.686±0.05 7

250 0.812±0.09 0.541±0.04 0.703±0.04 5

500 0.845±0.08 0.769±0.04 0.847±0.07 11

750 0.870±0.04 0.812±0.03 0.859±0.03 11
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Table A-10: Table of results for classification performance of 32 unit LSTM networks with
the LSTM layer personalised to an amputee using transfer learning. The table shows the
classification accuracy for the target user training, validation and test data sets ±σ(n = 25).
A value of one represents 100% correct classification.

(a) Intact Limb

Target Windows Training Validation Testing Average

Epochs

100 0.978±0.01 0.574±0.07 0.813±0.05 7

250 0.985±0.01 0.564±0.09 0.788±0.07 4

500 0.971±0.01 0.832±0.03 0.893±0.02 7

750 0.973±0.01 0.835±0.02 0.892±0.02 5

(b) Prosthetic Limb

Target Windows Training Validation Testing Average

Epochs

100 0.961±0.04 0.442±0.04 0.735±0.05 8

250 0.929±0.07 0.537±0.02 0.707±0.05 5

500 0.923±0.02 0.804±0.02 0.855±0.02 6

750 0.940±0.02 0.830±0.02 0.858±0.02 6
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Appendix B

Ethics Forms

This appendix contains the ethics approval received for this study. This received approval

from University of Bath Research Ethics Approval Committee for Health (REACH) with

reference EP 19/20 003. The ethics forms are presented as submitted.
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please specify)

Project Title Deep learning for environmental state prediction and sensor fusion 
for intelligent wearable robots

Name of applicant/s Frederick Sherratt

Email for applicant/s Fs349@bath.ac.uk

Name & contact email for 
supervisor (for UG / 
Masters / PhD students)

Pejman Iravani
Pi304@bath.ac.uk

Department Mechanical Engineering
Proposed dates of study Start: 10-02-2020

End: 19-05-2020

Secondary data analysis

Does this proposal involve secondary data analysis?  This is when you are analysing data that has 
already been collected by somebody else, i.e. you will have no part in collecting the original data. 

YES ☐ NO 

N.B. Please attach evidence that of ethical approval for the original study. The Project Description 
should detail what you intend to do with the data, not how the data were originally collected. It is 
important to note whether the data you are using have already been anonymised.

Are there ethical implications concerned with the following general issues?  
If yes, please provide details below

1. Funding source No – EPSRC funded studentship

2. Freedom to publish the 
results 

No – EPSRC funded studentship

3. Future use of findings No

4. Conflicts of Interest No

148



REACH July 2019

Information Classification Scheme

Confirm that you have completed the mandatory information security awareness online training 
module (available here: https://moodle.bath.ac.uk/course/view.php?id=56392)

What category of data will you be collecting? (If you are unsure, please look at the guidance 
available on the REACH wiki)

Internal Use                               
Restricted                                  
Highly Restricted                      

Standard Operating Procedures (SOPs)

This link will take you to the SOPs for the Department for Health:

http://www.bath.ac.uk/health/research/research-getting-started/sop.bho/index.html

The SOP PDFs can be downloaded and printed, but before using a printed SOP please check this 
link to make sure oy have the most up to date version. The SOP for the creation and approval of all 
other SOPs can be found here:

http://www.bath.ac.uk/health/research/research-getting-
started/sop.bho/SOP_PDFs_/SOPs_SOP_V4.pdf

DESCRIPTION OF RESEARCH

1 Research Title Deep learning for environmental state prediction and sensor fusion 
for intelligent wearable robots

2 Background and aims of 
the research (no more
than 300 words)

It is estimated that 150,000 people per year will suffer a below knee 
amputation and this is increasing due to the rising prevalence of 
diabetes and related vascular disease. The loss of mobility that 
comes from loss of limb leads to decreased social and economic 
participation as well as further health issues. Advanced lower limb 
prosthetics are so far unable to adequately emulate lost muscle 
function.

For lower prosthesis to emulate the lost limb, they must behave in a 
predictable manner that matches the users intent. The study will 
investigate the use of machine learning techniques in achieving this. 
Primarily it will look at mode selection based on time series sensor 
data.
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3 Outline the study design 
and list the methods 
including any 
questionnaires/interview 
schedules (please attach).

How much time (roughly) 
will each method take and 
how long in total will 
participants be expected 
to take part in the study 
(maximum 300 words)

This study will produce a large set of labelled activity data from able-
bodies subjects is required. The data sets will be raw IMU (Inertial 
Measurment Unit) sensor readings along with contextual statistics on 
sample population Age and Sex. The data set will be fully 
anoynomised.

Participants will be required for one 30 minutes session of; 15 
minutes for briefing, consent and setup, 15 minutes for data 
collection. During data collection, participants will be required to 
perform ambulation around a natural built-up environment. The route 
will involve flats, stairs and ramps with participants guided by a 
researcher.

Participants will wear a set of seven Movesense wireless IMU  
sensors. The Movesense is a watch sized device containing a 9 axis 
IMU providing accelerometers, gyroscopes and magnetometers
readings. Data will be streamed over Bluetooth to a smartphone
controlled by the researcher. 

The Movesense devices will be attached to the ankle, wrist, hip and 
chest using Velcro/elastic straps and clothes clips. This will be done 
in a non-invasive manner to minimise discomfort and its potential 
effects on movement.

Sensors will be controller via the smartphone. The researcher will 
annotate activity of the incoming data using a custom smartphone 
app.

4 Who will be recruited to 
participate in the 
research?

A broad population is required to ensure adequate variation in the 
dataset. Adult students and staff member of the University 
population will be recruited.

5 How many participants 
will be recruited? Why is 
this number necessary?

The sample size will be from 25 to 50 participants. Machine learning 
requires large amounts of data set to produce a generalised solution. 
The larger the number of participants the higher quality the model.

6 How will participants be 
recruited?

Participants will be recruited from the general university population
through personal contacts from the engineering department and 
sports teams. Care will be taken to ensure adequate variety in 
participants.

7 Are there any potential 
participants who will be 
excluded? If so, what are 
the exclusion criteria? Is 
there any specific 
inclusion criteria?

Underage participants and those unable to perfore the required 
activies unaided will be excluded. All participants must be able to 
provide written consent. There are no further inclusion/exclusion
criteria.
Exclusion/inculsion from the study will be determined by participant 
self-assesment as part of the brief and consent.

8 Where will the research 
take place?

Department of Mechanical Engineering and University of Bath 
Campus
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9 How will informed 
consent be obtained from 
all participants or their 
parents/guardians prior to 
individuals entering the 
study?

All participants will be required to read the full participant information 
sheet. Following verbal explanation of the aims, methods, objectives 
and potential risks of the study, written informed consent will be 
obtained from each volunteer. It will be made clear that participants 
are free to deny consent (withdraw) before, during, or immediately 
after data collection.

10 If the study aims to 
actively deceive the 
participants, please justify 
and briefly outline how 
this will be carried out

-

11 Will participants be 
made aware they can drop 
out of the research study 
at any time without having 
to give a reason for doing 
so?

Is it clear at what point 
participants can withdraw 
their data (e.g. before 
anonymization)?

Yes, participants can drop out at any point during or immediately 
after data collection. Data will be anonymised immediately after the 
recording session.

12 Describe any potential 
risks to participants 
(physical, psychological, 
legal, social) arising from 
the study. Explain how 
you will seek to resolve 
these.

None, the study only requires participants to perform natural 
movements in a public environment. Sensors will be attached in a 
non-invasive, non-intimate manner.

13 Describe any potential 
benefits of the study for   
the participants

There are no immediate benefits to participation. The results of this 
project will generate a dataset from which to exploit future research 
opportunities in the field of amputee biomechanics. 

14 Describe potential risks 
to researcher/s and how 
these will be managed. 

None, all data collection will be performed in a public environment.

15 How will participants 
be debriefed? (i.e. 
feedback of results)

What aftercare will you 
provide?

No debrief is required. No aftercare is required.

16 How will confidentiality 
and security of personal 
data relating to your 
participants be 
maintained? 

Data is anonymized at collection. Personal information about the 
participants (Age, Sex) will not be linked to the anonymised data and 
only aggregated statistics will be published. All data will be stored in 
a restricted access folder on the X drive.
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17 Will the participants be 
photographed, audio-
taped or video-taped? If 
so, please justify

No audio/video is not required for the study. With participants 
permission photographs may be taken for use in subsequent reports.
Participant anyominity will be maintained in any publication.

18 Is any reimbursement 
of expenses or other 
payment to be made to 
participants? Please 
explain.

None – it will be made clear this is a voluntary study.

19 Any other relevant 
information?

-

20 How long will you 
store personal data 
(including informed 
consent)? If you are 
retaining personal data 
longer than the end of the 
study, please justify

Once collected the data will be immediately anonymised. Consent 
forms will be held until the end of the study.

Attach the following (where relevant) including version number and date:

Version Date
1 Participant information sheets V2 17/01/2020
2 Consent forms V2.1 10/02/2020
3 Health history questionnaire -
4 Poster/promotional material -
5 Debrief -
6 Copy of questionnaire/ proposed data collection tool (questionnaire; 

interview schedule/ observation chart/ data record sheet/ 
participant record sheet)

-

7 Data management plan V1 18/12/2019
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PARTICIPANT INFORMATION SHEET

Deep learning for environmental state prediction and sensor
fusion for intelligent wearable robots

Name of Researcher: Freddie Sherratt (PhD Student in Mechanical Engineering)
Contact details of Researcher: F.W.Sherratt@bath.ac.uk

Name of Supervisor: Dr Pejman Iravani (Senior Lecturer in Mechanical Engineering)
Contact details of Supervisor: P.Iravani@bath.ac.uk
Tel: +44 (0) 1225 384494

This information sheet forms part of the process of informed consent. It should give 
you the basic idea of what the research is about and what your participation will 
involve. Please read this information sheet carefully and ask one of the researchers 
named above if you are not clear about any details of the project.

1. What is the purpose of the project: 
This research is being carried out as part of PhD research looking into improvements 
in active lower-limb prosthetic control. This project aims to identify user intent from 
non-invasive wearable sensor data to enhance locomotion-mode selection.

The loss of mobility that comes from loss of limb leads to decreased social and 
economic participation as well as further health issues. Current lower-limb prosthetic 
do not adequately address lost muscle function leading to reduced mobility; falls and 
fractures; and damage to the spine and remaining leg due to asymmetric and high 
loading. Active prosthesis have the potential to restore near-natural behaviour but 
they must behave in a predictable manner that matches the users intent. The study 
will investigate the use of machine learning techniques in achieving this. Primarily it 
will look at locomotion-mode selection based on time series sensor data.

2. Who can be a participant?
A broad population is required to ensure adequate variation in the dataset so there 
are few restrictions on who can participate. The following criteria apply; you must be 
an adult and able to perform the activities listed in section 4 unaided.

3. Do I have to take part? 
Participation in this study is entirely voluntary. Before you decide to take part we will 
describe the project and go through this information sheet with you. Please feel free 
to ask any questions you have about the procedures used in the study at any time. 

If you agree to take part, we will then ask you to sign a consent form. However if at 
any time you decide you no longer wish to take part in this project you are free to 
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withdraw, without giving a reason. Your rights to withdraw shall be preserved over 
and above the goals of the study.

4. What will I be asked to do?
You will be asked to attend one 45 minute recording session. This will include i) a 
15-minute brief and setup, ii) 2 x 10-minute recording session.

Participants will wear a set of seven Movesense wireless IMU sensors. See Figure 1. 
The Movesense device is a watch-sized device containing a 9 axis Inertial 
Measurment Unit and Heart rate sensor. Sensor data will be transmitted wirelessly 
over Bluetooth to a smartphone-controlled by the researcher.

Figure1: Movesense device [www.wearabletechnologyinsights.com/articles/131 
01/spotlight-on-suunto accessed: 18/12/2019]

The Movesense devices will be attached to the ankle, wrist, hip and chest using 
Velcro/elastic straps and clothes clips. This will be done in a non-invasive manner to 
minimise discomfort and its potential effects on movement.

The recording will be in two continuous sessions of approximatly 15 minutes. There 
will be a break between sessions. A typical recording session will be a walk around a 
pre-set route that includes the following environments: 

• Flat indoor and outdoor paved surfaces
• Walking uphill and downhill
• Ascending and descending stairs
• Gentle and abrupt stopping

5.    What are the exclusion criteria?
(are there reasons why I should not take part)?
Underage participants and those unable to perform the required activities unaided 
will be excluded. There are no further inclusion/exclusion criteria.

If you are comfortable performing the previously mentioned activities, there is no 
reason not the partake.
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6. What are the possible benefits of taking part?
There are no immediate benefits to participation. You will be aiding in the generation 
of a new data set to aid research looking into Locomotion Mode Recognition.

7. What are the possible disadvantages and risks of taking part?
There are no disadvantages to you taking part in the project. 

 The experimental trials will not require you to perform any other activity 
outside of those listed with all activities will be undertaken at your own pace.

 All measurments taken will be non-invasive and any attached instrumentation 
(Movesense wireless IMUs and associated attachments) will be external and 
non-obtrusive. 

 Any testing session will stop should you report, or appear to be unduly 
stressed.

8. Will my participation involve any discomfort or embarrassment?
We do not expect you to feel any discomfort or embarrassment if you take part in the 
project. Testing sessions will be stopped should you wish too, or if you appear 
unduly stressed.

The experimental trials will not require you to perform any other activity outside of 
the required ones. All required sensors are designed to be comfortable for extended 
periods and will be attached external and non-obtrusive.

9. Who will have access to the information that I provide?
Only the research team will have access to the personal information that you 
provide. A research data set will be published in an anonymous form as per the 
University’s Code of Practice – Research. This will be retained for a minimum of 10 
years.

10. What will happen to the data collected and results of the project?
Data is collected in an anonymous and will be stored on password-protected PCs 
and only accessed by researchers directly involved in the study. There will be no 
links between persons involved in the study and the data they generate.

Participant anyominity will be maintained in any publication. In any manuscripts, 
reports or publications resulting from this study codes rather than names will be 
used. Any images published will not include faces.

Upon study completion, the anonymised data will be made publically available to aid 
other researchers in the field. This will be stored for a minimum of 10 years to 
comply with the University’s Code of Practice – Research. No personal data will be 
released.

11. Who has reviewed the project?
This project has been given a favourable opinion by the University of Bath, Research 
Ethics Approval Committee for Health (REACH) [reference: EP 19/20 003]. 
12. How can I withdraw from the project?
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You are free to deny consent (withdraw) before, during or immediately after data 
collection. Once data has been anonymized you will no longer be able to withdraw 
from the study.

Your rights to withdraw shall be preserved over and above the goals of the study.

13. University of Bath privacy notice
The University of Bath privacy notice can be found here: 
https://www.bath.ac.uk/corporate-information/university-of-bath-privacy-notice-for-
research-participants/.

14. What happens if there is a problem?
If you have a concern about any aspect of the project you should ask to speak to the 
researchers who will do their best to answer any questions. 

If they are unable to resolve your concern or you wish to make a complaint regarding 
the project, please contact the Chair of the Research Ethics Approval Committee for 
Health:

Professor James Betts
Email: j.betts@bath.ac.uk
Tel: +44 (0) 1225 383448

15. If I require further information who should I contact and how?
Thank you for expressing an interest in participating in this project. Please do not 
hesitate to get in touch with us if you would like some more information.    

Name of Researcher: Freddie Sherratt (PhD Student in Mechanical Engineering)
Contact details of Researcher: F.W.Sherratt@bath.ac.uk

Name of Supervisor: Dr Pejman Iravani (Senior Lecturer in Mechanical Engineering)
Contact details of Supervisor: P.Iravani@bath.ac.uk
Tel: +44 (0) 1225 384494
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CONSENT FORM

Deep learning for environmental state prediction and sensor
fusion for intelligent wearable robots

Name of Researcher: Freddie Sherratt (PhD Student in Mechanical Engineering)
Contact details of Researcher: F.W.Sherratt@bath.ac.uk

Name of Supervisor: Dr Pejman Iravani (Senior Lecturer in Mechanical Engineering)
Contact details of Supervisor: P.Iravani@bath.ac.uk
Tel: +44 (0) 1225 384494

Please initial each box if you agree with the statement

1. I have been provided with information explaining what participation in this project 
involves. □
2. I have had an opportunity to ask questions and discuss this project. □
3. I have received satisfactory answers to all questions I have asked. □
4. I have received enough information about the project to make a decision about my 
participation. □
5. I understand that I am free to withdraw my consent to participate in the project at any 
time without having to give a reason for withdrawing. □
6. I understand that I can withdraw from the study at any time (up until immediately after 
the completion of the testing session). □
7. I understand the nature and purpose of the procedures involved in this project. These 
have been communicated to me on the information sheet accompanying this form. □
8. I understand that the University of Bath may use the data collected for this study in 
future research project(s) but that the conditions on this form under which I have 
provided the data will still apply

□
9. I understand the data I provide will be treated as confidential, and that on completion 
of the project my name or other identifying information will not be disclosed in any 
presentation or publication of the research.  

□
10. I agree to the University of Bath keeping and processing the data that I provide 
during the course of this study and my consent is conditional upon the University 
complying with its duties and obligations under the Data Protection Act

□
11. I am capable of performing the required activities, described in the Participant 
Information Sheet, unaided and for the required duration □
12. I understand that all activities will take place at my own pace and can be stopped at 
any time if requested □
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13. I give consent for the research team to take photographs of my person for written or 
oral presentations such as journal articles, conference presentation and reports. This is 
not a requirement to participate in the study.

□
14. I understand that in any published photographs my anonymity will be preserved at 
all times. □
15. I hereby fully and freely consent to my participation in this project. □
Participant’s signature: _____________________________________  Date: ________________

Participant name in BLOCK Letters: _____________________________________

Researcher’s signature: _____________________________________ Date: ________________

Researcher name in BLOCK Letters: _____________________________________

If you have any concerns or complaints related to your participation in this project please direct them to the 
Chair of the Research Ethics Approval Committee for Health, Dr James Betts (j.betts@bath.ac.uk, 01225 
383448)
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Doctoral Data Management Plan Template
1 Overview
1.1 Project title
Deep learning for environmental state prediction and sensor fusion for intelligent wearable robots

1.2 Student name and department
Frederick Sherratt – Mechanical Engineering

1.3 Supervisor(s)
Note: the main University of Bath supervisor is the Data Steward for the project. 
Dr Pejman Iravani* – Department of Mechanical Engineering
Prof Andrew Plummer – Department of Mechanical Engineering

1.4 Project description 
The project aims to determine if machine-learning techniques can be used to improve performance 
of lower-limb prosthetics. This research focuses on locomotion-mode selection and as such a 
labelled data set of different locomotion-modes and transitions between is required.

2 Compliance
When you submit your DMP you are confirming that you have read and understood all of the 
legislative, policy and contractual requirements that apply to your project. 

Information on additional University of Bath policies and UK/EU legislation that may apply to research 
can be found in our Data Management Plan Compliance Wiki page (this will require you to sign in with 
your University of Bath user account). 

2.1 University policy requirements
Data must be stored securely in a manner that minimises the risk of loss of data and licenced in the 
as open a manner as possible. Sufficient meta data must be provided to allow others to use the 
data. All publication must include a data access statement.

University policy or guidance
University of Bath Research Data Policy
University of Bath Code of Good Practice in Research Integrity
University of Bath Electronic Information Systems Security Policy
University of Bath Intellectual Property Policy
University of Bath Code of Ethics
2.2 Legal requirements 
Data collected from human subjects must comply with personal data protection regulations. 
Informed consent must be obtained from participants for data to be retained, shared, and used for 
new purposes.

UK Legislation or framework 
General Data Protection Regulations
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2.3 Contractual requirements
EPSRC funding requires that all publicly funded research must publish any data collected into the 
public domain.
Name of funder Data policy URL
EPSRC https://epsrc.ukri.org/about/standards/researchdata/

3 Gathering data
There is guidance and example wording for this section on the Data Management Plan Guidance Wiki
page.

3.1 Description of the data 
3.1.1 Types of data
The data will be raw accelerometer, gyroscope and magnetometer readings from seven IMUs along 
with timestamps of each sample recording, a set of timestamped activity labels is, and participant 
consent forms

3.1.2 Format and scale of the data
Original data will be in the form of .txt files containing hexadecimal representations of int16 fixed 
point numbers and associated uint32 millisecond timestamps. A second set of .txt files will contain 
millisecond timestamps and activity labels.A converted human-readable .csv form of this data will 
also be produced. Data will be less that 100Mb per participant.

Personal data will be paper consent forms and Sex and Gender information for each participant. 
These will have no link to the raw data files.

3.2 Data collection methods
Data will be collected using an android smartphone app that connects to the Movesense Bluetooth 
IMU sensors. The smartphone will save the data in its raw form to its internal storage.

3.3 Development of original software
Original software is required for all stages of data collection and processing. 

Embedded C++ software has been developed to run on the Movesense devices transmitting their 
raw IMU data. A java Android app has been developed to connect to the sensors and save the raw 
data and activity labels to .txt files. Matlab scripts have been developed to convert the encoded raw 
data back to a human readable form.

The software has all developed specifically for this project and version controlled using Github. 
Associated documentation for their use is provided with the programs.

4 Working with data
There is guidance and example wording for this section on the Data Management Plan Guidance Wiki
page.

4.1 Short- and medium-term data storage arrangements
In the short to medium term data will be stored in a X drive folder. All original data will be stored in 
a read-only format to prevent accidental overwrite.
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Consent forms will be stored in a lock filing cupboard in my office until the end of the project when 
they will be securely destroyed.

4.2 Control of access to data and sharing with collaborators
The X drive folder will have access control restricted to myself and my research group.

4.3 File organisation and version control
Each participant’s data will be stored in a separate folder with a random unique identifier to 
anonymise the data.

4.4 Documentation that will accompany the data
A readme file will accompany the data set explaining how to interpret the data and providing context.

5 Archiving data
There is guidance and example wording for this section on the Data Management Plan Guidance Wiki
page.

5.1 Selection of data to be retained and deleted at the end of the project
Only processed data and aggregated population statistics will be retained after the end of the 
project. The original raw data and all consent forms will be destroyed

5.2 Data preservation strategy and retention period
As with other secondary data sources in the field data will be published in the University’s Research 
Data Archive for a minimum of ten years.

5.3 Maintenance of original software
Scripts and software will not be maintained beyond the end of this project. Software will be archived 
with appropriate documentation for use again.

6 Sharing data
There is guidance and example wording for this section on the Data Management Plan Guidance Wiki
page.

6.1 Justification for any restrictions on data sharing
No personal data will be included in published data set therefore there are no restrictions on data 
sharing. 

6.2 Arrangements for data sharing 
Data will be shared through the universities research archive with a data access statement provided 
in any publication based on it.

7 Implementation
There is guidance and example wording for this section on the Data Management Plan Guidance Wiki
page.
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7.1 Review of the Data Management Plan
The data management plan will be reviewed at the end of this experiment phase and before any 
subsequent experiments.

7.2 Special resources required for the project
No special resources required

7.3 Further training needs
I have attended data management and archiving courses and currently do no require further 
training.
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Appendix C

Sensor Datasheet

This appendix contains the data sheet for the Movesense wireless IMU used during data

collection[219].
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www.movesense.com info@movesense.com 12/2020 v2.0 

 
M O V E S E N S E  S E N S O R  
 

Versatile, light and small but extremely durable sensor capable of measuring any movement and 

much more. Customizable functionality through open APIs that enable development of unique in-

device apps. The functionality can be tailored to fit the exact needs of the target use case.  

 

• Swim and shock proof construction, suitable for any 
sports 

• Low profile snap connection for smooth and subtle 
attachment to apparel or gear 

• User replaceable coin cell battery 

• State of the art ultra-low power components 

• Small size, light weight and waterproof 

• Based on Suunto design and development   

• Developed, designed and manufactured in Finland 

• Available with custom branding  

 

 
 

 

  

 
T E C H N I C A L  H I G H L I G H T S  

 

• 9-axis movement sensor: acceleration, gyroscope, magnetometer 

• Heart rate, R-R- intervals, BLE heart rate service, optional: single channel ECG 

• 1-wire expansion bus 

• Temperature 

• Data logging memory 

• Bluetooth® 4.0 / 5.0 radio depending on firmware version 

• Tools for developing customized applications that run inside the sensor 

• Software libraries for developing compatible mobile applications 

• Wireless firmware update capability 

• Recognizes its attachment base through unique ID in Movesense connector 
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www.movesense.com info@movesense.com 12/2020 v2.0 

T E C H N I C A L  B R I E F  
 

 

 

 

 

 

 

 

D I M E N S I O N S  

• 36.6mm/1.44” dia. x 10.6mm/0.42” thick 

• Weight 9.4g / 0.33oz with battery 

• Water resistant to 30m/100ft  

 

I/O 

• Red led on the front, SW controllable 

• Wake-up, heart rate and 1 –wire expansion 

• Interface via Movesense studs, stud center-to 
center distance: 27.0mm/1.06” 

• Optional attaching accessories with unique ID 
(readable through 1-wire) 

 

SENSORS 

• Accelerometer & Gyroscope 

o ±2/±4/±8/±16g full scale 
 ±125/±245/±500/±1000/±2000°/s full scale, 
sampling frequency: 
12.5/26/52/104/208Hz/416Hz/833Hz 

• Magnetometer ±49 gauss full scale 

• Temperature 

o Accuracy <±0.5°C, 0°C to +65°C 

• Heart rate 

o Beats/minute, RR intervals, BLE HR service 

o 1 Channel ECG (non-medical) 

 

L O G G E R  M E M O R Y  

 •  3Mbit EEPROM  

 

S O F T W A R E  

• SDK for developing apps for the sensor 

• Sensors and peripherals controllable via API incl. 
BT advertising, power schemes 

• Easy to use C++ Movesense Device API 

• iOS and Android mobile libraries with wireless 

• sensor firmware update capability 

• GNU toolchain for embedded ARM  

 

M C U  

• Nordic Semiconductor nRF52832 

• 32 –bit ARM® Cortex®-M4 

• 64kB on-chip RAM* 

• 512kB on-chip FLASH* 

• (*) Memory is shared with the Movesense OS and 
the user application 

• Bluetooth Low Energy radio  

 

B A T T E R Y  

• CR 2025 Lithium coin cell battery 

• Operating time up to months, depending on the 
user application  

 

A P P R O V A L S  A N D  C O M P L I A N C E S  

• CE, FCC, IC, C-Tick, CMIIT 

• Conforms REACH, RoHS 

• Bluetooth 4.0 / 5.0 

 

P A T E N T S  

US 13/071,624, US 13/832,049, US 13/832,598, US 
13/917,668, US 13/397,872, USD 667,127, US 
8,386,009, US 8,750,959, US 8,814,574, US 8,886,281, 
others pending 
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Appendix D

Sample Data

This chapter contains full summary tables for the first hand data collected (Section D.1)

and plots of sample data (Section D.2).
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D.1 Summary Tables of Collected Data

Table D-1 contains the demographic data for all test subjects. Table D-2 contains a sum-

mary of the data collected during the first phase of data collection. Table D-3 show a

summary of the data collected during the second phase. Table D-4 contains a summary of

the first hand data collected during for one left trans-tibial individual.

Table D-1: Table of demographic data for study subjects

Subject ID Age Gender Height [cm] Weight [Kg]

01 27 Male 185 75
02 24 Male 180 77
03 25 Male 180 80
04 23 Male 180 72
05 24 Male 178 82
06 23 Male 170 68
07 24 Male 172 68
08 24 Male 165 80
09 26 Female 173 65
10 23 Male 180 75
11 26 Male 185 75
12 26 Female 170 68
13 45 Male 175 80
14 26 Male 182 85
15 25 Male 180 75
16 26 Male 187 80
17 25 Female 161 60
18 23 Female 163 63
19 24 Female 165 65
20 26 Male 186 90
21 63 Female 165 75
22 25 Male 185 70
A1 56 Male 178 70
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Table D-2: Summary of non-amputee data collected during the first phase of collection.
(Ramp Ascent (RA), Ramp Descent (RD), Stair Ascent (SA), Stair Descent (SD))

Subject ID WALK RA RD SA SD STOP

01 34618 0 0 5349 5025 1281
02 13564 0 0 4614 4447 1020
03 5005 0 0 3633 2568 1587
04 32336 0 0 6045 5482 0
05 32525 0 0 6621 5767 0
06 37895 0 0 8424 5636 0
07 21843 0 0 14074 10873 0
08 38590 0 0 11036 17801 0
09 40384 0 0 10826 7953 0
10 37353 0 0 10812 8084 0
11 8341 0 0 1614 1566 0
12 9038 0 0 6273 4926 0
13 252022 48821 53735 18778 16220 16887
14 302440 18531 18305 10936 9581 73781
15 12249 0 0 1452 1929 3498
16 23729 0 0 5332 2578 1651
17 113222 2702 3754 3190 3949 19127
18 37352 0 0 3747 2565 1133
19 4990 0 0 1240 1245 0
20 3487 0 0 2383 3054 0
21 4806 0 0 2551 190 206
22 9033 3274 3630 982 938 856

Total 1075111 73328 79426 139915 122378 121027

Table D-3: Data samples of non-amputee data collected during the second phase of col-
lection. (Ramp Ascent (RA), Ramp Descent (RD), Stair Ascent (SA), Stair Descent (SD))

Subject ID WALK RA RD SA SD STOP

01 462446 141268 139786 59685 44024 62397
03 291213 77508 59157 48695 50210 157867
09 368090 115299 82980 49530 51698 60605

Total 2100308 404127 364574 277250 252494 363669

Table D-4: Data samples of first hand amputee data collected during the third phase of
collection. (Ramp Ascent (RA), Ramp Descent (RD), Stair Ascent (SA), Stair Descent
(SD))

Subject ID WALK RA RD SA SD STOP

A1 38114 6159 7194 2872 2450 11763
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D.2 Example Sensor Data

Within this section example plots of the recorded sensor data are provided for reference.

The accelerometer and gyroscope data for each of the five sensor locations are included.

Each Figure shows example data for each of the six activities labelled.

Figures D-1 and D-2 show example data for the left ankle accelerometer and gyroscope

respectively. Figures D-3 and D-4 the right ankle. Figures D-1 and D-6 show the left hip

and Figures D-7 and D-8 the right hip. Figures D-9 and D-10 contain example plots for the

chest accelerometer and gyroscope.
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Figure D-1: Example data for the left ankle accelerometer. The x represent recording time
in seconds. The y axis show the measured acceleration in m/s/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.

173



0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(a) Walking

0 0.5 1 1.5 2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(b) Stopped

0 0.2 0.4 0.6 0.8 1
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(c) Stair Ascent

0 0.2 0.4 0.6 0.8 1
Time [s]

-500

-250

0

250

500
A

ng
ul

ar
 V

el
oc

ity
 [d

eg
/s

]/n

X Y Z

(d) Stair Descent

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(e) Ramp Ascent

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(f) Ramp Descent

Figure D-2: Example data for the left ankle gyroscope. The x represent recording time in
seconds. The y axis show the measured angular velocity in deg/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-3: Example data for the right ankle accelerometer. The x represent recording
time in seconds. The y axis show the measured acceleration in m/s/s. The red lines
represents the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z
axis.

175



0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(a) Walking

0 0.5 1 1.5 2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(b) Stopped

0 0.2 0.4 0.6 0.8 1
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(c) Stair Ascent

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500
A

ng
ul

ar
 V

el
oc

ity
 [d

eg
/s

]/n

X Y Z

(d) Stair Descent

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(e) Ramp Ascent

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

-500

-250

0

250

500

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]/n

X Y Z

(f) Ramp Descent

Figure D-4: Example data for the right ankle gyroscope. The x represent recording time
in seconds. The y axis show the measured angular velocity in deg/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-5: Example data for the left hip accelerometer. The x represent recording time
in seconds. The y axis show the measured acceleration in m/s/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-6: Example data for the left hip gyroscope. The x represent recording time in
seconds. The y axis show the measured angular velocity in deg/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-7: Example data for the right hip accelerometer. The x represent recording time
in seconds. The y axis show the measured acceleration in m/s/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-8: Example data for the right hip gyroscope. The x represent recording time in
seconds. The y axis show the measured angular velocity in deg/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-9: Example data for the chest accelerometer. The x represent recording time in
seconds. The y axis show the measured acceleration in m/s/s. The red lines represents the
x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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Figure D-10: Example data for the chest gyroscope. The x represent recording time in
seconds. The y axis show the measured angular velocity in deg/s. The red lines represents
the x axis of the sensor, the blue solid lines the y axis and the yellow lines the z axis.
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