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1 Dilation theory for dissipative operators

Functional model construction for a contractive linear operator 1" acting on a Hilbert space K is a
well developed domain of the operator theory. Since pioneering works by B. Sz.-Nagy, C. Foias [40],
P. D. Lax, R. S. Phillips [14], L. de Branges, J. Rovnyak [4, 5], and M. Livsic [I5], this research area
attracted many specialists in operator theory, complex analysis, system control, gaussian processes
and other disciplines. Multiple studies culminated in the development of a comprehensive theory
complemented by various applications, see [9] 10} 28 29] 31] and references therein.

The underlying idea of functional model is the fundamental theorem of B. Sz.-Nagy and C. Foias
stating that for a dissipative operator L under the assumption C_ C p(L) (dissipative operators
satisfying this condition are called mazimal), there exists a selfadjoint dilation of L, which is a
selfadjoint operator . on a wider space H D K such that

(L — ZI)_l = P (¥ — ZI)_1|K, zeC_, (1)

where Pk is an orthogonal projection from H onto K.

In applications, such a dilation .Z should be minimal; it should not contain any reducing self-
adjoint parts not related to the operator L. Mathematically the minimality condition is expressed
as the equality

clos \/ (L -2t gk =H,
z¢R
where H is the dilation space H D K. Construction of a dilation satisfying this condition is a
non-trivial task successfully solved for contractions by Sz.-Nagy and Foiag [40] with the help of
Neumark’s theorem [27], and by B. Pavov [34, [35] for two important cases of dissipative operators
arising in mathematical physics and successfully extended later to a general setting (more on this
in the following sections).

The functional model theory of non-selfadjoint operators studies operators L which have no non-
trivial reducing selfadjoint parts. Such operators are called completely non-selfadjoint or, using a
less accurate term, simple. In what follows, all non-selfadjoint operators are assumed closed, densely
defined and simple, with regular points in both lower and upper half-planes.
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1.1 Additive perturbations

Let A = A* be a selfadjoint unbounded operator on a Hilbert space K and V' a bounded (for
simplicity) non-negative operator V = V* = a?/2 > 0, where a = (2V)"/2. Let L = A + %aQ. The
operators A and V = a?/2 are the real and imaginary parts of L defined on dom(L) = dom(A).
Following Pavlov, denote E = closran « and define the dilation space as the direct sum of K
and the equivalents of incoming and outgoing channels of the Lax-Phillips scattering theory, see
4], D= L*(Ry, E),
H=D_OKeIDy. (2)
Elements of ‘H are represented as three-component vectors (v_, u, vy ) with vy € Dy andu € K. The

action of .Z on the channels D4 is defined by .2 : (v_,0,vy) — (iv”,0,iv/,). The self-adjointness
of £ = £* and the requirement (I]) lead to the form of dilation .# suggested in [34],

v_ z'CZ’—;

L v | =|Au+ 5 [vp(0) +v_(0)] |, (3)
v cdvy
+ L dx

defined on the domain
dom(Z) = {(v_,u,v+) € H | ve € W3 (Ry, E),u € dom(A),v4(0) — v_(0) = iau}

The “boundary condition” vy (0)—v_(0) = icvu can be interpreted as a coupling between the incom-
ing and outgoing channels D, realised by the imaginary part of L acting on E. The characteristic
function of L is the contractive operator-valued function defined by the formula

S(z)=Ip+ia(l* —2I) 'a: E - E, zeC,. (4)

Owing to the general theory [40], the operator L is unitary equivalent to its model in the spectral
representation of .Z in accordance with ().

Due to the operator version of Fatou’s theorem [40], non-tangential boundary values of the
function S exist in the strong operator topology almost everywhere on the real line. Denote S =
S(k) = s-lim. o S(k +ic), a. e. k € R. Similarly, let S* = §*(k) := s-lim,o[S(k +i€)]*, which exists
for almost all £ € R. The symmetric form of the functional model is obtained by factorisation and
completion of the dense linear set of vector-valued functions from the space L?(E) @ L?(FE) with

respect to the norm o * ) )
IOL =[5 )00, g

Note that the elements of J# are not individual functions from L?(E) @ L?(E), but rather equiv-
alence classes formed after factorization over elements with zero 7#—norm, followed by comple-
tion [29, 30]. It is easily seen that for each (g) € J the expressions g := Sg+g¢g and g_ := g+ S*g
are in fact usual square summable vector-functions from Lo(FE).

The space 7 = L2( § 5}*) with the norm defined by (B) turns out to be the spectral repre-
sentation space of the self-adjoint dilation £ of the operator L. Henceforth we will denote the
corresponding unitary mapping of H onto 5 by ®. It means that the operator of multiplication
by the independent variable acting on ¢, i.e., the operator f(k) — kf(k), is unitary equivalent
to the dilation .. Hence, for z € C\ R, the mapping (g) — (k — z)_l(g), where (g) e I is
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unitary equivalent to the resolvent of ¢ and therefore L is mapped to its functional model (with
the symbol ~ denoting unitary equivalence),

(L—2)'~ Py(k—2)7",, zeC_ (6)

The incoming and outgoing subspaces of the dilation space .7 admit the form

n
Dy = <H20(E)>, D_ = (HQ_O(E)>’ H =0 (D & D]
where HQi(E) are the Hardy classes of E-valued vector-functions analytic in C+ and o = ®D4. As
usual [36], the functions from vector-valued Hardy classes Hy (E) are identified with their bound-
ary values existing almost everywhere on the real line. They form two complementary mutually
orthogonal subspaces, so that Lo(FE) = Hy (E) @ H; (E).
The image # of K under the spectral mapping @ of the dilation space H to 7 is the subspace

%:{(5) e | g+S*ge Hy (E), S§+geH2+(E)}

The orthogonal projection P, from s onto ¢ is defined by formula (7). Note that the following
definition has to be understood on the dense set of functions from L?(E) @ L?(E) in JZ.

9\ _ (9— Ps(g+579) .
P (D) = (TSN g ) g < e, g

where P1 are the orthogonal projections from Lo onto the Hardy classes Hzi

2 Naboko’s functional model for a family of additive perturbations

The model approach to the analysis of dissipative operators outlined above relies exclusively on the
knowledge of a characteristic function of a dissipative completely non-selfadjoint operator L. The
properties of the operator are expressed in terms of its characteristic function, i. e., in the language
of analytic operator-valued functions theory. This represents the true value of the functional model
approach: all the abstract results obtained using model techniques become immediately available,
once the characteristic function of the operator is known.

Successful applications of the functional model approach for contractions and dissipative oper-
ators have inspired the search for models of non-dissipative operators. The attempts to follow the
blueprints of Sz.-Nagy-Foias and Lax-Philitps meet serious challenges rooted in the absence of a
self-adjoint dilation for such operators.

The breakthrough came in the late seventies with the publication of papers [16, [17] and es-
pecially [I8] by S. Naboko, who found a way to represent a non-dissipative operator in a model
space of a suitably chosen dissipative one. Apart from the model construction, his works largely
contributed to the development of various areas in the non-self-adjoint operator theory. In contrast
to the earlier results, his model representation does not rely on the uniqueness (up to a unitary
equivalence) of the characteristic function of a completely non-selfadjont operator. Based on the
dilation (B]), the paper [I8] provides an isometry between the dilation space (2] and the model
space () in an explicit form. This explicitness plays a crucial role in passage to the model rep-
resentation for non-dissipative operators using nothing more than Hilbert resolvent identities. All



the building blocks of the method are clearly presented in terms of the original problem, which is
especially appealing from the applications’ perspective. We next give a brief overview of the key
ideas presented in [16, 17 18].

2.1 Isometric map between the dilation and model spaces

Consider a non-self-adjoint operator
L=A+1iV (8)

acting in the Hilbert space K, where A = A* and V = V* is A-bounded with the relative bound
less than 1. The domains of A and L coincide and the operator L is closed. Note that V can
be written in the form V = % with a = /2|V|, J := signV : E — E defined according to
the functional calculus of self-adjoint operators. Like in (), £ := closrana. The characteristic
function of L admits the form (see, e.g., [39])

O(2)=Ip+iJa(L* —z2)'a: E— E, zep(L*). (9)

Alongside with L introduce the operator L' on the same domain dom(L!") = dom(L) as follows:

2
L' ::A+i|V|:A+i%. (10)

The operator L'l is precisely the dissipative operator of the preceding Section. The work [18]
contains the model construction, the definition of the isometry ® : H — ¢ from (a dense set in)
the dilation space (2)) to the model space (&) of L', which is a preliminary step towards the model
for its additive perturbations of the form (8)). Note that the characteristic function S of Ll is given
by the expression (4]) where L is replaced by L

S(z) =Ig +ia(L7" = 2I)7'a, zepL™), L= (@ (11)

The argument of [16] shows that the characteristic functions of L and L' are related via the
Potapov-Ginzburg operator linear-fractional transformation, or PG-transform [3]. This fact is
essentially geometric. It relates contractions on Krein spaces (i. e., the spaces with an indefinite
metric defined by the involution J = J* = J~1) to contractions on Hilbert spaces. The PG-trans-
form is invertible and the following assertion pointed out in [16] holds.

Proposition 2.1. The characteristic function (9) of L = A+ iV is J-contractive on its domain
and the PG-transform maps © to the contractive characteristic function of L' = A +i|V| defined

by (1), as follows:
O~ S=-Kx"-0x)"'(x —6x"), S—0=K +xTOKXT+x 9 (12

where x* = %(IE + J) are orthogonal projections onto the subspaces xTE (x~E, respectively).

It appears somewhat unexpected that two operator-valued functions connected by formulae (I2)
can be explicitly written down in terms of their “main operators” L and L~!l. This relationship
between the characteristic functions of L and L' goes in fact much deeper, see [2,[3]. In particular,
the self-adjoint dilation of L!' and the J-self-adjoint dilation of L are also related via a suitably



adjusted version of the PG-transform. Similar statements hold for the corresponding linear systems
or “generating operators” of the functions © and S, see [2[3]. This fact is crucial for the construction
of a model of a general closed, densely defined non-self-adjoint operator, see [38].

Assume as usual that the operator L'l is completely non-self-adjoint, and let .% be the minimal
self-adjoint dilation of L' of the form (3]).

Theorem 2.2 ([18], Theorem 2). There exists a mapping ® from the dilation space H onto Pavlov’s
model space F defined by (A) with the following properties.

1. ® is isometric.
2. g+ S*g=F,h, SGg+ 9= F_h, where (g) =®h, heH
3. Po(L —z)t=(k—-2)"1od 2€C\R
4. OH =, ODL=9., SK=X
5 o (L -2 ' =(k—-2)"1od 2ecC\R.
Here the bounded maps Fy : H — L*(R, E) are defined by the formulae

1

Fyhs ~ (L — Kk +i0) " tu + S* (k) (k) + 04 (k),
T ihs (I — k= i0) u+ b (k) + S(k)iy (),

Ver

where h = (v_,u,vy) € H and v+ are the Fourier transforms of vy € L*(R4, E).

2.2 Model representation of additive perturbations

Theorem opens a possibility of expressing a larger class of perturbations of A in the model
space . Namely, consider operators in K of the form

(67101

L*=A+ 5 dom(L*) = dom(A), (13)

where s is a bounded operator in E. The family {L* | »: E — E} includes A for » = 0, the
dissipative operator L!l for s = ilg, its adjoint L™ for 2 = —ilg, as well as self-adjoint and non-
self-adjoint operators corresponding to other values of the “parameter” . In particular, the non-
dissipative operator L = A+i1V = A —H’O‘TJ" of (8) is recovered by putting » = iJ. Representations
of the resolvent (L* — zI)™!, z € p(L*) in the model space .# are obtained using the properties of
Z+ given in Theorem 2.2]and resolvent identities for (L'—21)~!, (L7'—2I)~! and (L*—2zI)~!. The
key component of the proofs is the representation of .Z.(L* — zI)~!u in terms of Fyu for u € K.
For instance, it can be shown that there exist two analytic operator-functions ©7,,0,, : E — E,
bounded in C_, C respectively, such that for zg € p(L*), Imzp < 0, and all u € K

1 1

Fy (L7 — 20D)tu = —— (Fiu)(k —i0) — ——

I . 1
[ (Z_u)(k +1i0) — [

O, (k —i0)[0,(20)] " (F1u)(20)

(14)

F(L* — zl) 'u= O,.(k +10)[O7,(20)] ™ (Fu) (20)




Here #.u € Hi (E) since u € K and (F4u)(20) = (§+ S*g)(20) is the analytic continuation of the
function (§+.5*g) to the point zg in the lower half-plane. The possibiliy to express .Z4 (L* —zI) " u
using the spectral mappings .71 applied to u € K found on the right hand side of (I4) is the key
ingredient of calculations leading to the main theorem.

Theorem 2.3 (Model Theorem, [18]). If zo € C_ N p(L*) and (g) € X, then

e mige (T _p 1 . g
o =™ (0) = P (o st s

If zo € C4 N p(L*) and (g) € K, then

O(L* — 21) 10" @) = Px _1 - <§ — 15 [0 zo;]‘l(Sg + g)(20)>

2.3 Smooth vectors and the absolutely continuous subspace

In [18] 20] Sergey Naboko introduced absolutely continuous subspaces of the family L*. He always
admired Mark Krein, and in particular liked to quote him as saying: “the major instruments of self-
adjoint spectral analysis arise from the Hilbert space geometry, whereas in the non-self-adjoint setup
the modern complex analysis has to take the role of the main tool”. It is therefore not surprising
that his definition of spectral subspaces is formulated in the language of complex analysis.

In the functional model space # consider two subspaces .4 defined as follows:

~ N N T
N = {(?) €A P (xL(G+S%9) +x,(S7+9)) = 0}, where x% := Sl

2

These subspaces are then characterised in terms of the resolvent of the operator L*. This, again,
can be seen as a consequence of a much more general argument (see, e.g., [38, [37]). Consider the
counterparts of .4 in the original Hilbert space K :

N%:=®* Py N7, NZ:=closN%.

Now introduce the set Ne” = N n N” of so-called smooth vectors and its closure NZ(L7) =
clos(NZ).

The next assertion has been always singled out by S. Naboko in his lectures on functional models
as “the main result of the whole lecture course”. In particular, it motivates the term “the set of
smooth vectors” used for ﬁg‘ and opens up a possibility to construct a rich functional calculus of
the absolutely continuous “part” of the operator, leading in particular to the scattering theory (see
details in the next Section).

Theorem 2.4. The sets ]vj’; are described as follows:
Nfi={ueM:a(l”—zI)"'uec H2(E)}.

Moreover, for the functional model image of ]\Nfe” the following representation holds:

ONF = {P%@) eHN:

<g> € H satisties ®(L* — 21) ' ®* Py (;) = P%—Lz (;) VzeC_U (C+}. (15)
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The above Theorem together with Theorem motivated generalising the notion of the abso-
lutely continuous subspace H,.(L*) to the case of non-self-adjoint operators L* by identifying it
with the set NZ.

Definition 2.1. For a non-self-adjoint L* the absolutely continuous subspace Ha.(L*) is defined
by the formula Hac(L*) = NJ(L*).

In the case of a self-adjoint operator L*, Hac(L*) is to be understood in the sense of the classical
definition of the absolutely continuous subspace of a self-adjoint operator.

Theorem 2.5. Assume that 3 = »* and let o(L* —2I)~! be a Hilbert-Schmidt operator for at least
one point z € p(L*). Then the definition Hac(L*) = NZ is equivalent to the classical definition of
the absolutely continuous subspace of a self-adjoint operator, i.e., N = Hao(L7).

Remark 1. Alternative conditions, which are even less restrictive in general, that guarantee the
validity of the assertion of Theorem were obtained in [20)]. The absolutely continuous subspace
of a non-self-adjoint operator also admits different definitions [37], which in generic case can be
not equivalent to the one given above. This question is treated in full details by Romanov in [{1)].

2.4 Scattering theory

The intrinsic relationship between the scattering theory and the theory of dilations and functional
models is due to [I4]. The fact that the characteristic function of an arbitrary dissipative operator
L can be realised as the scattering matrix of its dilation . was observed by Adamyan and Arov
in [I]. This fact, as was reiterated by Sergey on many occasions, together with Birman’s seminal
works on the mathematical scattering theory, motivated his work on the construction of wave and
scattering operators in the functional model representation. With the introduction of smooth vector
sets which are dense in absolutely continuous subspaces of operators L*, it was natural to define
(see [16] [18]) the action of exponential groups expiL*t in J# as multiplication by exp(ikt) on the
smooth vectors.
In view of the classical definition of the wave operator of a pair of self-adjoint operators,
0 73\ . o1 iL0t —iL*t p
Wy (L, L*) := ts_)—lilgloe e PZ,
where Py is the projection onto the absolutely continuous subspace of L”, he observed that, at
least formally, for ®* P, (g) € ﬁg‘ one has

g g
and similar formulae hold for W, (L°, L*), Wy (L*, L?).

The need to attribute rigorous meaning to the right hand side of the latter equality, and thus
to prove the existence and completeness of wave operators, motivated Sergey to investigate the
boundary behaviour of operator-valued R—functions, see [19, 20] and references therein. This
research has since found numerous applications in as seemingly unrelated areas as, say, the theory
of Anderson localisation of stochastic differential operators. In the scattering theory (see [20]) it has
allowed him to prove the classical Krein—-Birman—Kuroda theorem, the invariance principle and their
non-self-adjoint generalisations by following the approach sketched above. It is worth mentioning
that the latter effectively blends together non-stationary, stationary and smooth formulations of
the self-adjoint scattering theory.



2.5 Singular spectrum of non-self-adjoint operators

A major thrust of Sergey’s research was towards the analysis of singular spectral subspaces of
non-self-adjoint operators. In the present section, we mention some of his results obtained in this
direction. The notation throughout is as in Sections 23] and 221 with s set to be equal to i.J
with an involution J (see Section 2I). To simplify the notation, we therefore consistently drop
the corresponding superscripts, as in L = L*. It is further assumed throughout that the non-
real spectrum of L is countable, with finite multiplicity. This latter condition holds in particular
when the perturbation V' is in trace class, which we will assume satisfied (similar results under less
restrictive conditions are also available).

The singular subspace of L is defined as follows: N;(L) := H © N (L*). For the operator L*, it
is set by N;(L*) := H © N.(L). These definitions prove to be consistent with the classical one for
self-adjoint operators due to the characterisation

Ny(L)={ue K:((L—t—ie) ' —(L—t+ie) Hu,v) - 0ase—0forallveK}
Define

01(2) =x"+85()XT, O2(2) =xT+S()xT, O1(2) =x"+S(EAXT, Oy(2) =xT+S (X,
(17)
so that for the characteristic function ©(z) one has (cf. (12]))

O(z) = O7(2)(0%)71(2), 2€Cy; O(2) =O5(2)(0]) (), z€C-.

Set

T (10 S A BN

. N (L) = <1>*P]/< y >

Hy (E) © ©:H; (E))
for the operator L and similarly

Hy(E)© 9’2H2_(E))>7

Ni(L*) = @*P,g< 0 N (L*) = @*P,g< 0 >

Hy (E) & 011, (E))

for the operator L*. The respective closures of these sets N (L), N* (L), N\ (L*) and N’ (L*) are
introduced in [2I]. These subspaces are invariant with respect to the resolvents of (L — z)~!,
(L* — 2)~!. Tt is shown that N% (L) can be seen as spectral for L, representing the parts of the
singular spectrum pertaining to the (closed) upper and lower half-planes, respectively. In particular,
eigenvectors and root vectors of the operator L, corresponding to z € C (2 € C_), belong to Ni(L)
(NE(L), respectively). The paper [21] discusses the conditions of separability of spectral subspaces

under the additional condition

sup max{[[x"S(2)x [l [x ST} <1, (18)
Im 2>0
which guarantees that the “interaction” of the positive and negative “parts” of the perturbation V
is “small”. This is to say that it restricts the class of operators considered to those which are not
too far from an orthogonal sum of a dissipative and an anti-dissipative (Im L < 0) operators.
In particular, [21I] provides non-restrictive additional conditions such that

Ni(L)mNe(L) :{0}7 Ni(L)\/Ne(L) =K



and sharp estimates for the angle between N;(L) and N.(L). What’s more,
NL(L)ANL(L) = {0}, Ni(L)VNL(L) = Ni(L)

with an explicit estimate for the angle between N (L) and N* (L). Further, L| N (L|yi ) is similar

to a dissipative (anti-dissipative, respectively) operator with purely singular spectrum.

Dropping the separability condition (I8) makes the spectral analysis of L much more involved.
The corresponding problems were posed by S. Naboko in [22]. Most of them are still awaiting
resolution, including the problem of a general spectral resolution of identity for a non-self-adjoint
operator of the class considered here, but some were successfully tackled in [23] by S. Naboko and
his student V. Veselov as well as in subsequent papers of V. Veselov. In particular, the named
paper concerns with an in-depth study of the spectral subspace N{(L), introduced in [22]. The
main result is formulated for V' € &; as follows:

det O(2) = det O\ 1) (2); Ni(L)VN_(L) = N (L) V Ng(L) vV N.(L),

generalising the corresponding result of Gohberg and Krein. It shows that the determinant of the
characteristic function of L contains no information on the spectral subspace

Ni(L) = K & {N_(L*) V N+(L")} C Ni(L), (19)

Le., detOp (z) = 1. Here in notation of Section 23] N4 (L*) = N;*/.

(107

The subspace N is precisely the “additional” spectral subspace corresponding to the real part
of the spectrum of L (in particular, it contains the eigenvectors and root vectors corresponding to
real values of the spectral parameter), the analytic structure of which has no parallels in the case
of dissipative operators. In a nutshell, it appears due to the interaction of the “incoming” and
“outgoing” energy channels in the non-conservative system modelled by L.

The role of N{ for the spectral analysis of non-dissipative operators is further revealed by the
following assertion:

N;(L) N Ne(L) C Ny(L),

i.e., if the absolutely continuous and singular subspaces intersect, the intersection must lie in N¢.
It is therefore the presence of N{ that ensures that N.(L*)V N;(L*) # K, which prevents a spectral
decomposition for the operator L*.

Sergey had mentioned to us, that he had seven to eight papers worth of further material on the
functional model and spectral analysis of non-dissipative operators. Unfortunately, he had never
published these results.

2.6 A functional model based on the Strauss characteristic function

In contrast to the model theory for contractions associated with the names of Sz.-Nagy-Foias and
de Branges-Rovnyak, the models of unbounded non-selfadjoint operators are usually concerned with
“concrete” operators arising in applications. In particular, the functional model for non-self-adjoint
additive perturbations discussed above was motivated by the spectral analysis of the Schrodinger
operator with a complex potential, see, e.g., [34] 24], 211, 20]. In fact, Sergey Naboko had reiterated
to us on a number of occasions, that his primary concern was the spectral theory of the Schrédinger
operator, rather than the development of abstract mathematical concepts: the functional model in



his view was simply the tool of choice in this area. More precisely, the Schrodinger operator —A +
p(z) +iq(x) in  Lo(R3), where p(x), g(x) are real-valued bounded functions of x € R3, can be
written in the form (8) with the operator o defined as a : f +— |q(z)|"/2f, where f € Ly(R?).
It is important to note that all the building blocks of the model construction are explicitly given
in terms of the problem at hand. Indeed, both the characteristic function S(z) and the “spectral
maps” Z are expressed via the non-real part of the complex potential (and the operator itself).
The true nature of the problem’s “non-selfadjointess”, i.e., the non-triviality of the imaginary part
of the potential, is thus faithfully preserved in the model representation.

The same observation is valid for other model constructions of non-selfadjoint operators available
in the literature, see, e.g., [8] in the present volume for the case of non-self-adjoint extensions of sym-
metric operators. Therefore it becomes increasingly important to express the non-selfadjointness
of the problem not in abstract terms (as it is commonly done in the operator theory), but rather
in terms of the concrete operator present in the problem statement.

The standard way to calculate the characteristic function of a non-self-adoint operator is based
on the definition given by A. Strauss in [39]. For a dissipative operator it reads as follows

Definition 2.2 ([39]). Let L be a closed mazimal densely defined dissipative operator on a Hilbert
space K. The characteristic function of L is a bounded operator-valued analytic function S(z) :
E — E,, z € p(L*), such that

S()Tf =T (L* — 2I) YL —2I)f, f e dom(L),
where the boundary operators T, T are defined for u,v € dom(L), u',v" € dom(L*) by the equalities
(Au,v) — (u, Av) = i(Tu,I'v) g, (u', A% — (A% 0" = i(T, Ty ) g,
and E := closran(I"), E, := closran(I'y) are Hilbert spaces.

According to this definition, the concrete form of the characteristic function of L depends on
the choice of boundary operators I', I'y. It is easy to see that for any Hilbert space isometries  :
E — FE' 7, : E, — E., the maps nI" and 7.I', are also boundary operators with the corresponding
characteristic function m,S(z)7* : E' — E.. In applications, a suitable definition of the boundary
operators is determined according to the problem statement itself. For example, the operator «
of (I0) (the root cause of the operator’s non-selfadointness) admits the role of both I and T',.
Convenient boundary operators appear “naturally” in the analysis of non-self-adjoint extensions of
symmetric operators as well. Once the triple {I',T',, S(z)} is explicitly defined, the construction of
the functional model follows the blueprint of S. Naboko [I§].

A further important contribution is contained in the two recent papers [6, [7] by B.M. Brown,
M. Marletta, S. Naboko, and I. Wood. The authors offer a model construction carried out in
the abstract setting of Strauss’ boundary operators I', 'y, resorting to no specific realisation of
them. This work therefore makes all the steps of the model construction explicit, regardless of any
particular form of the characteristic function, the latter to be set based on the requirements imposed
by a concrete application at hand. In particular, this makes it possible to construct a functional
model in the case where both the differential expression itself and the boundary conditions are
non-self-adjoint, which in our view is especially relevant for topical problems of materials science.
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2.7 Applications of the functional model technique

Here we list some notable applications of the functional model technique, in which Sergey Naboko
was involved, in addition to his work on the spectral analysis of non-self-adjoint Schrodinger oper-
ators mentioned earlier, see, e.g., [2I] and references therein.

1. In [33] B2] Sergey, together with Yu. Kuperin and R. Romanov, studied the non-self-
adjoint single-velocity Boltzmann transport operator. Using the functional model techniques, the
absolute continuity of this operator’s continuous spectrum was proved; the similarity problem of the
absolutely continuous “part” of the operator to a self-adjoint one was fully settled, and the existence
of a spectral singularity at zero ascertained for a singular set of multiplication coefficients.

2. In [25] 26], together with R. Romanov, Sergey Naboko analysed the impact of spectral
singularities on the asymtotic behaviour of the group of exponentials, generated by a maximal
dissipative operator L. It was shown that this asymptotics allows one to recover the orders and
locations of spectral singularities in the case, where their number is finite and they are of a finite
power order.

3. In [I1I] 12], for a non-dissipative trace class perturbation L of a self-adjoint operator on K
such that N¢(L) coincides with the Hilbert space K, a generalisation of the Caley identity was
obtained in the following form: there exists an outer in the upper half-plane C, uniformly bounded
scalar analytic function () such that w —lim. o y(L +ic) = 0. A generalisation of this result was
further obtained to the case of relative trace class perturbations.

4. In [13], the so-called matrix model was introduced and studied in some detail, i.e., a rank
two non-dissipative additive perturbation L in K of a self-adjoint operator under the assumption
that K = Né(L). This model represents the simplest possible case of a non-dissipative operator
which exhibits the properties not found in any dissipative one; despite its seeming simplicity, it
already includes the main analytic obstacles found in the general case. It has to be noted that this
model was the favourite sandbox of Sergey; unfortunately, many results obtained by him, up to
and including a von Neumann type estimate in BMO classes for functions of the operator L, have
never been published.
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