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NORM-RESOLVENT CONVERGENCE FOR NEUMANN LAPLACIANS
ON MANIFOLDS THINNING TO GRAPHS

KIRILL D. CHEREDNICHENKO, YULIA YU. ERSHOVA, AND ALEXANDER V. KISELEV

Abstract. Norm-resolvent convergence with order-sharp error estimate is established for
Neumann Laplacians on thin domains in R2 and R3, converging to metric graphs in the
limit of vanishing thickness parameter in the resonant case.

1. Introduction

In [15, 20, 21], see also references therein, Neumann Laplacians Aε on thin manifolds,
converging to metric graphs G, were studied, see, e.g., Fig. 1. The named works attacked
the question of spectral convergence of such PDEs to the spectrum of a graph Laplacian with
some matching conditions at the graph vertices. Denoting the set of edges e of the limiting
graph G by E, each e = [0, le] is associated with the Hilbert space L2(e). Accordingly,
L2(G) := ⊕eL2(e). For each e, the graph Laplacian AG is generated by the differential
expression −u′′, u ∈ H2(e) (see [4] for details).

It was proved, that the spectra of Aε converge within any compact K ∈ C in the sense of
Hausdorff to the spectrum of a graph Laplacian AG, where the matching conditions at the
vertices might be either of:

• Kirchhoff, or standard, if the volumes of vertex subdomains are decaying faster, than
the volumes of edge subdomains;
• Resonant, described in terms of δ−type matching conditions with coupling constants

proportionate to the spectral parameter z, in the case when the volumes of vertex
subdomains are of the same order as the volumes of the edge ones;
• Finally, the limiting graph Laplacian is completely decoupled (i.e., the Dirichlet con-

dition is imposed at every vertex) if the vertex subdomains vanish slower than the
edge ones.

In the present paper, we are dealing with the most interesting resonant case. We show
that the Neumann Laplacians Aε in fact converge in norm-resolvent sense to an ODE acting
in the Hilbert space L2(G)⊕CN , where N is the number of vertices. The operator to which
it converges is in fact the one pointed out in [20] as the self-adjoint operator which spectrum
coincides with the Hausdorff limit of spectra for the family Aε. We also obtain a sharp error
bound, which in the planar case is O(ε/| log ε|) and in the case of R3 is O(ε), where in both
cases ε is the radius of the edge domain section.

This result easily implies the Hausdorff spectral convergence, at the same time yielding
a sharp estimate on its rate. Moreover, it paves the way to the consideration of higher
frequency regimes, i.e., of the setup where the spectral parameter is no longer constrained to
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asymptotics.
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a compact (but is still constrained by some power of the small parameter ε). This argument
will appear elsewhere. In view of better clarity of the paper, here we restrict ourselves to
the case where (with not a huge loss of generality) the edge subdomains are assumed to be
straight and uniformly thin, whereas the vertex subdomains are smooth with the exception
of the points where they meet the edges.

Figure 1. Thin structure: an example.

2. Problem setup and preliminaries

For simplicity, we will only treat the planar case of dimension 2 here. The corresponding
setup for higher dimensions is introduced likewise.

For the limiting graph (see Fig. 1), the following notation will be used: the graph G will
be identified with the set of edges E, each individual edge denoted by e ∈ E and treated
as an interval [0, le]. The set of vertices V of the graph is a collection of individual vertices
v ∈ V , treated as the sets of edge endpoints meeting at v. The graph G is assumed oriented
throughout.

Passing over to the setup pertaining to the Neumann Laplacian on a thin graph-convergent
structure, let a connected domain Q be the union of the vertex part QV and the edge part QE,
where QE will be assumed to be a finite collection of ε−thin rectangular boxes, QE = ∪eQe.
For each e, the domain Qe is assumed to be, up to a linear change of variables, defined by

Qe = {x ∈ R2 : x1 ∈ (0, le), x2 ∈ (0, ε)}.
It is further assumed that QV = ∪vQv, where each of disjoint domains Qv is assumed

simply connected with piecewise smooth boundary ∂Qv. This boundary is assumed to be
decomposed as ∂Qv = Γv ∪ Γεv, with Γεv further decomposable into a union of straight
segments, Γεv = ∪Γve. Here the union is taken over all edge domains Qe which are connected
to Qv, Qe ∩ Qv = Γve. In what follows, we will refer to the segments Γve as contact plates.
Since operators of the Zaremba (or mixed) boundary value problem will be used below, we
further require that the contact plates Γve meet Γv at angles strictly less than π, see [6, 7]
for the precise formulation. We will further assume that the curves Γv are smooth.

Moreover, the total number of vertex domains will be denoted by N , and each Qv will
be represented as a linear shift of a scaled fixed (i.e., ε−independent) domain Q0

v, that is,
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that for each v one has Qv = ε1/2Q0
v + bv, where bv is a vector in R2. We remark that this

guarantees that we are in the “resonant” case of [15, 20], i.e., that the volumes of the contact
plates are proportionate to the volumes of vertex domains.

Note that Q, Qv and Qe are all assumed to be ε−dependent, so that |Q| → 0 as ε → 0.
We elected to omit this dependence in notation for the sake of convenience.

On the domain Q we consider a family of self-adjoint operators Aε defined by the differ-
ential expression −∆ subject to Neumann boundary conditions.

Precisely, we will deal with the resolvent (Aε − z)−1 of a self-adjoint on L2(Rd) operator
Aε, defined by means of its coercive sesquilinear form. We will always assume that z ∈ C is
separated from the spectrum of the original operator family, more precisely, we assume that
z ∈ Kσ, where

Kσ :=
{
z ∈ C| z ∈ K a compact set in C, dist(z,R) ≥ σ > 0

}
.

After we have established the operator-norm asymptotics of (Aε−z)−1 for z ∈ Kσ, the result
is extended by analyticity to a compact set Kext

σ , the distance of which to the spectrum of
the leading order of the asymptotics is bounded below by σ.

Similar to, e.g., [16] in a related area of critical-contrast homogenisation and facilitated
by the abstract framework of [26], instead of the form-based definition of the operators Aε
we will consider them as operators of transmission problems, see [27] and references therein,
relative to the internal boundary Γ := ∪e,vΓev

The transmission problem introduced above is then formulated as, given a f ∈ L2(Q),
finding a u ∈ L2(Q) such that it solves (in the variational, or weak, formulation) the boundary
value problem 

−∆u(x)− zu(x) = f(x), x ∈ QV and x ∈ QE

uv(x) = ue(x), ∂uv
∂n
− ∂ue

∂n
= 0 on Γev,

∂u
∂n

= 0 on ∂Q.

(1)

Here uv := u|Qv , ue := u|Qe for all admissible e and v, and ∂/∂n represents the exterior
normal on ∂Q and the “edge-inward” normal (i.e., directed from Qv to Qe) on any of contact
plates Γev. By a classical argument the weak solution of the above problem is shown to be
equal to (Aε − z)−1f .

It of course remains to be seen that the linear operator of the transmission problem (1)
defined via Ryzhov’s technique of [26], which we briefly recall below, is precisely the same
operator Aε; the proof of this fact follows easily from [26] combined with the main estimate
of [27].

Following [26] (cf. [3],[8] and references therein for alternative approaches) which is in fact
based on the ideology of the classical Birman-Krĕın-Vǐsik theory (see [5, 19, 30]), the linear
operator of the transmission BVP is introduced as follows. Let H := L2(Γ) = ⊕e,vL2(Γev),
and consider the harmonic lift operators ΠV and ΠE defined on φ ∈ H via

ΠV φ := uφ,

{
∆uφ = 0, uφ ∈ L2(QV )

uφ|Γ = φ
and ΠEφ := uφ,

{
∆uφ = 0, uφ ∈ L2(QE)

uφ|Γ = φ
(2)

subject to Neumann boundary conditions on ∂Q.
These operators are first defined on φ ∈ C2(Γ), in which case the corresponding solutions

uφ can be seen as classical. The results of [6] allow to extend both harmonic lifts to bounded
3



(in fact, compact) operators on H, in which case uφ are to be treated as distributional
solutions of the respective BVPs.

The solution operator Π : H 7→ L2(Q) = L2(QV )⊕ L2(QE) is defined as follows:

Πφ := ΠV φ⊕ ΠEφ.

Consider the self-adjoint operator family A0 (note that we have elected to drop the sub-
script ε for notational convenience) to be the Dirichlet decoupling of the operator family Aε,
i.e., the operator of the boundary value problem on both QV and QE, where the Dirichlet
boundary conditions are imposed on Γ in conjunction with Neumann boundary conditions
on ∂Q. The operator A0 is generated by the same differential expression as Aε. Clearly, one
has A0 = AV0 ⊕AE0 relative to the orthogonal decomposition L2(Q) = L2(QV )⊕ L2(QE); all
three operators A0, A

V
0 and AE0 are self-adjoint and positive-definite. Moreover, by [6, 32]

there exists a bounded A−1
0 .

The intersection of domA0 with ran Π is clearly trivial, see [26].

Denoting Γ̃
V (E)
0 the left inverses of ΠV (E), respectively, one introduces the trace operator

Γ
V (E)
0 as the null extension of Γ̃

V (E)
0 to the domain domA

V (E)
0 u ran ΠV (E). In the same way

we introduce the operator Γ̃0 and its null extension Γ0 to the domain domA0 u ran Π.
The solution operators SVz , SEz of BVPs{

−∆uφ − zuφ = 0, uφ ∈ domAV0 u ran ΠV

ΓV0 uφ = φ
and{

−∆uφ − zuφ = 0, uφ ∈ domAE0 u ran ΠE

ΓE0 uφ = φ

are defined as linear mappings from φ to uφ, respectively. These operators are bounded from
L2(Γ) to L2(QV ) and L2(QE), respectively, and admit the following representations:

SEz = (1− z(AE0 )−1)−1ΠE, SVz = (1− z(AV0 )−1)−1ΠV . (3)

The solution operator Sz from L2(Γ) to L2(QV )⊕ L2(QE) is defined as Sz = SVz ⊕ SEz ; it
admits the representation Sz = (1− z(A0)−1)−1Π and is bounded.

Having introduced orthogonal projections PV and PE from L2(Q) onto L2(QV ) and L2(QE),
respectively, one has the obvious identities

SVz = PV Sz, SEz = PESz, and ΠV = PV Π, ΠE = PEΠ. (4)

Fix self-adjoint (and, in general, unbounded) operators ΛE, ΛV defined on domains dom ΛE,
dom ΛV ⊂ L2(Γ) (in what follows these operators will be chosen as Dirichlet-to-Neumann
maps of Zaremba problems on QE and QV , respectively, and well-defined on H1(Γ), where
H1(Γ) is the standard Sobolev space pertaining to the internal boundary Γ). Still following
[26], we define the “second boundary operators” ΓE1 and ΓV1 to be linear operators on the
domains

dom ΓE1 := domAE0 u ΠE dom ΛE, dom ΓV1 := domAV0 u ΠV dom ΛV . (5)

The action of Γ
E(V )
1 is set by:

ΓE1 : (AE0 )−1f u ΠEφ 7→ Π∗Ef + ΛEφ, ΓV1 : (AV0 )−1f u ΠV φ 7→ Π∗V f + ΛV φ (6)

for all f ∈ L2(QE), φ ∈ dom ΛE and f ∈ L2(QV ), φ ∈ dom ΛV , respectively.
4



Alongside Γ
E(V )
1 , introduce a self-adjoint Λ on dom Λ ⊂ H and the boundary operator Γ1

on the domain
dom Γ1 := domA−1

0 u Π dom Λ;

Γ1 : A−1
0 f u Πφ 7→ Π∗f + Λφ ∀ f ∈ L2(Q) and φ ∈ dom Λ.

We remark that the operators Γ1,Γ
E(V )
1 thus defined are assumed to be neither closed nor

indeed closable.
In our setup, we make the following concrete choice of the operators ΛE(V ): these operators

in what follows are the Dirichlet-to-Neumann maps pertaining to the components QE and
QV , respectively. Precisely, for the problem

∆uφ = 0; uφ ∈ L2(QE)

uφ|Γ = φ; ∂nuφ|∂Q = 0

ΛE maps the boundary values φ of uφ to the negative traces of its normal derivative1 ∂nuφ|Γ,
where n = −nE is as above the “edge-inward” normal. This operator is well-defined by its
sesquilinear form as a self-adjoint operator on L2(Γ) (see, e.g., [40, 39]); one has H1(Γ) ⊂
dom ΛE by [6].

On the vertex part QV one considers the problem

∆uφ = 0; uφ ∈ L2(QV )

uφ|Γ = φ; ∂nuφ|∂Q = 0,
(7)

and defines ΛV as the operator mapping the boundary values φ of uφ to the negative traces
of its normal derivative −∂nuφ|Γ, where n = nV is the “edge-inward” normal. The self-
adjointness of ΛV on dom ΛV ⊃ H1(Γ) follows by an unchanged argument.

Finally we introduce the operator Λ which on φ := H1(Γ) is the sum Λφ = ΛV φ + ΛEφ.
It is also a self-adjoint operator on dom Λ ⊃ H1(Γ). This can be ascertained either by the
argument of [27], in which case it is defined as the inverse of a compact self-adjoint operator
on L2(Γ)	 {c111}, extended to {c111} by zero, or, alternatively, from its definition by a closed
sesquilinear form.

The choice of ΛE(V ) made above allows us to consider Γ1 on the domain domA0uΠ dom Λ.
One then writes [26] the second Green identity in the following form:

〈Au, v〉L2(Q) − 〈u,Av〉L2(Q) = 〈Γ1u,Γ0v〉L2(Γ) − 〈Γ0u,Γ1v〉L2(Γ) (8)

for all u, v ∈ dom Γ1 = domA0 u Π dom Λ, where the operator A is the null extension (see
[25]) of the operator A0 onto dom Γ1. Thus the triple (H,Γ0,Γ1) is closely related to a
boundary quasi-triple of [3] (see also [2]) for the transmission problem considered; cf. [8] for
an alternative approach.

The calculation of Π∗ in [26] shows that Π∗ = Γ1A
−1
0 and therefore Γ1 as introduced above

acts as follows:
Γ1 : u = PEu+ PV u 7→ ∂nPeu|Γ − ∂nPV u|Γ,

where PE and PV are the orthogonal projections of L2(Q) onto L2(QE), L2(QV ), respectively.
The transmission problem at hand therefore (at least, formally so far) corresponds to the
matching condition Γ1u = 0.

1This definition is inspired by [26]. Note that the operator thus defined is negative the classical Dirichlet
to Neumann map DN of e.g. [16].
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Definition 2.1 ([26]). The operator-valued function M(z) defined on the domain dom Λ for
z ∈ ρ(A0) (and in particular, for z ∈ Kσ) by the formula

M(z)φ = Γ1Szφ = Γ1(1− zA−1
0 )−1Πφ (9)

is called the M-function of the problem (1).

The following result of [26] summarises the properties of the M−function which we will
need in what follows.

Proposition 2.2 ([26], Theorem 3.3.). 1. One has the following representation:

M(z) = Λ + zΠ∗(1− zA−1
0 )−1Π, z ∈ ρ(A0). (10)

2. M(z) is an analytic operator-function with values in the set of closed operators in L2(Γ)
densely defined on the z-independent domain dom Λ.

3. For z, ζ ∈ ρ(A0) the operator M(z)−M(ζ) is bounded and

M(z)−M(ζ) = (z − ζ)S∗z̄Sζ

In particular, =M(z) = (=z)S∗z̄Sz̄ and (M(z))∗ = M(z̄).
4. For uz ∈ ker(A− zI) ∩ {domA0 u Π dom Λ} the formula holds:

M(z)Γ0uz = Γ1uz.

Alongside M(z), we define MV (z) and ME(z) pertaining to the vertex QV and edge QE

parts of the domain Q by the formulae

MV (z)φ = ΓV1 S
V
z φ = ΓV1 (1− z(AV0 )−1)−1ΠV φ,

ME(z)φ = ΓE1 S
E
z φ = ΓE1 (1− z(AE0 )−1)−1ΠEφ.

(11)

The value of the fact that on φ ∈ H1(Γ) one has M(z)φ = MEφ+MV φ is clear: in contrast
to Aε which cannot be additively decomposed into “independent parts” pertaining to the
vertex and edge parts of the medium Q owing to the transmission interface conditions on the
internal boundary Γ of the two, the M−function turns out to be in fact additive (cf., e.g.,
[13], where this additivity was observed and exploited in an independent, but closely related,
setting of scattering). In what follows we will observe that the resolvent (Aε − z)−1 can be
expressed in terms of M(z) via a version of the celebrated Krĕın formula, thus reducing the
asymptotic analysis of the resolvent to that of the corresponding M−function (cf., e.g., [1, 3]
for alternative approaches to derivation of a Krĕın formula in our setting).

Alongside the transmission problem (1), the boundary conditions of which can be now
(so far, formally) represented as u ∈ domA0 u ΠL2(Γ), Γ1u = 0, in what follows we will
require a wider class of problems of this type. This class is formally given by the transmission
conditions of the type

u ∈ domA ≡ domA0 u ΠL2(Γ), β0Γ0u+ β1Γ1u = 0,

where β1 is a bounded operator on L2(Γ) and β0 is a linear operator defined on the domain
dom β0 ⊃ dom Λ.

In general, the operator β0Γ0 +β1Γ1 is not defined on the domain domA. This problem is
being taken care of by the following assumption, which will in fact be satisfied throughout:

β0 + β1Λ defined on dom Λ is closable in H.
6



We remark that by Proposition 2.2 the operators β0 +β1M(z) are closable for all z ∈ ρ(A0),
and the domains of their closures coincide with dom β0 + β1Λ.

For any f ∈ H and any φ ∈ dom Λ, the equality

(β0Γ0 + β1Γ1)(A−1
0 f + Πφ) = β1Π∗f + (β0 + β1Λ)φ

shows that the operator β0Γ0 + β1Γ1 is correctly defined on A−1
0 H u Π dom Λ ⊂ domA.

Denoting B := β0 + β1Λ with the domain domB ⊃ dom Λ, one checks that HB := A−1
0 H u

Π domB is a Hilbert space w.r.t. the norm

‖u‖2
B := ‖f‖2

H + ‖φ‖2
H + ‖Bφ‖2

H for u = A−1
0 f + Πφ.

It is then proved [26, Lemma 4.1] that β0Γ0 + β1Γ1 extends to a bounded operator from
HB to H, for which extension the same notation β0Γ0 + β1Γ1 is preserved for the sake of
convenience.

We will make use of the following version of the celebrated Krĕın formula:

Proposition 2.3 ([26],Theorem 5.1). Let z ∈ ρ(A0) be such that the operator β0 + β1M(z)
defined on domB is boundedly invertible. Then

Rβ0,β1(z) := (A0 − z)−1 + SzQβ0,β1(z)S∗z̄ , where Qβ0,β1 := −(β0 + β1M(z))−1β1 (12)

is the resolvent of a closed densely defined operator Aβ0,β1 with the domain

domAβ0,β1 = {u ∈ HB|(β0Γ0 + β1Γ1)u = 0} = ker(β0Γ0 + β1Γ1).

In particular, the (self-adjoint) operator of the transmission problem (1), which corre-
sponds to the choice β0 = 0, β1 = I, admits the following characterisation in terms of its
resolvent:

R0,I(z) = (A0 − z)−1 − SzM−1(z)S∗z̄ . (13)

In this case, one clearly has HB = A−1
0 H u Π dom Λ and domA0,I = {u ∈ HB|Γ1u = 0}

which, together with the discussion at the very beginning of this section, yields A0,I = Aε.
We remark that the operators β0 and β1 above can be assumed z−dependent, as this

change does not impact the corresponding proofs of [26]. In this case however, the corre-
sponding operator-function Rβ0,β1(z) is shown to be a resolvent of a z−dependent operator
family. Within the self-adjoint setup of the present paper, Rβ0,β1(z) will be guaranteed to
represent a generalised resolvent in the sense of [23, 24, 28].

3. Auxiliary estimates

In the present Section, we prove a number of auxiliary statements which we need to prove
our main result.

We start with the analysis of the operators ΠV and SVz introduced in Section 2. First we
note that each of these operators admits a decomposition into an orthogonal sum over N
vertex domains {Qv} of Q.

It suffices therefore to consider a single vertex domainQv (we recall for readers’ convenience
that the volume of this domain is assumed to be decaying with ε → 0). Its boundary ∂Qv

contains a disjoint set of straight segments belonging to the internal boundary Γ, which are,
in line with what has been said above, are denoted as Γev; the union of the latter is Γεv.

The decoupled operator A0 has L2(Qv) as its invariant subspace. We will denote by A
(v)
0 its

self-adjoint restriction, A
(v)
0 := A0|L2(Qv). By construction, the operator A

(v)
0 is the Laplacian

7



with the so-called Zaremba, or Neumann-Dirichlet mixed, boundary conditions [31, 17]. It
is subject to Dirichlet boundary conditions on Γεv and to Neumann boundary conditions on
its complement Γv. Clearly this operator is boundedly invertible; moreover, one has the
following

Proposition 3.1 (see [32, 33]). The following estimate holds:

‖(A(v)
0 )−1‖ ≤ C

|Qv|
| log ε|

.

Remark 3.2. We remark that the latter Proposition in fact holds under much more general
conditions than imposed by us. Namely, the domain Qv is only required to be Lipschitz and
no conditions whatsoever are imposed on the geometry of the set Γεv.

Next, we turn our attention to the solution operator S
(v)
z := SVz |Γε

v
and the corresponding

harmonic lift Π(v) := ΠV |Γε
v
. The two are clearly related by the formula

S(v)
z = (1− z(A

(v)
0 )−1)−1Π(v).

In order to bound the norm of Π(v), we first consider the corresponding Zaremba problem
on Q0

v. We follow by relating the norm of the corresponding Poisson operator to the least
Steklov eigenvalue of the bi-Laplacian, following the blueprint of [36], based in turn on
Fichera’s principle of duality, see [37]. Since the boundary of Q0

v is non-smooth, in doing
so we follow the generalisations developed in [34, 38], with obvious modifications required
in passing from Dirichlet to Zaremba setup. The estimate for the said Steklov eigenvalue
is then taken from the norm of the compact embedding of H2(Q0

v) to the traces of normal
derivatives on the contact plates, see e.g. [35]. Rescaling back to Qv, we obtain

Lemma 3.3. The following estimate holds:

‖Π(v)‖ ≤ C independent of ε.

By Proposition 3.1, this yields the following estimate for the solution operator S
(j)
z :

S(j)
z =

(
1 +O

(
ε

| log ε|

))
Π(v) = Π(v) +O

(
ε

| log ε|

)
,

where the error bounds are understood in the uniform operator norm topology.

Our next step is the analysis of the “part” of the Dirichlet-to-Neumann map ΛV pertaining
to the vertex domain Qv. We will denote by ΛV

v its self-adjoint restriction, ΛV
v := ΛV |L2(Γε

v).
Firstly, we note that the spectrum of ΛV

v (which can be termed as the Steklov spectrum

of the sloshing problem pertaining to A
(v)
0 , see [22]) is discrete and accumulates to negative

infinity. The point λ1 = 0 is the least (by absolute value) Steklov eigenvalue with ψv =
|Γεv|−1/2111|Γε

v
being the corresponding eigenvector. For the second eigenvalue λ2 one has by

scaling, see, e.g., [40] and references therein:

Lemma 3.4.

|λ2| ≥ C
1

ε
.
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Introduce the N -dimensional orthogonal projection

P :=
∑
v

〈·, ψv〉ψv,

define P⊥ := 1−P and consider the operator P⊥M(z)P⊥. Since obviously P dom Λ ⊂ dom Λ,
this is well-defined and by a straightforward estimate for the sesquilinear forms one has,
taking into account (10) applied to MV (z), Proposition 3.1, and Lemmata 3.3, 3.4

Lemma 3.5.

‖(P⊥M(z)P⊥)−1‖ ≤ Cε, z ∈ Kσ,

where the operator P⊥M(z)P⊥ is considered as a linear (unbounded) operator in PH.

4. Norm-resolvent asymptotics

We will make use of the Krĕın formula (13) to obtain a norm-resolvent asymptotics of
the family Aε. In so doing, we will compute the asymptotics of M−1(z) based on a Schur-
Frobenius type inversion formula, having first rewritten M(z) as a two by two operator
matrix relative to the orthogonal decomposition of the Hilbert space H = PH ⊕ P⊥H. In
the study of operator matrices, we rely upon the material of [29] and references therein.

The operator M(z) admits the block matrix representation,

M(z) =

(
A B
E D

)
with A,B,E bounded.

For the inversion of M(z) we then use the Schur-Frobenius inversion formula [29, Theorem
2.3.3](

A B
E D

)−1

=

(
A−1 + A−1BS−1EA−1 −A−1BS−1

−S−1EA−1 S−1

)
with S := D− EA−1B. (14)

Note that by Proposition 2.2, one has =M(z) = (=z)S∗z̄Sz̄. Moreover, since Sz = (1 −
zA−1

0 )−1Π, one has

S∗z̄Sz̄ = Π∗(1− zA−1
0 )−1(1− z̄A−1

0 )−1Π,

and therefore, for some constants c1, c2 > 0,

〈S∗z̄Sz̄Pφ,Pφ〉H =
∥∥(1− z̄A−1

0 )−1ΠPφ
∥∥2 ≥ c1‖ΠPφ‖2 ≥ c1‖ΠVPφ‖2 ≥ c2‖Pφ‖2

H

for all φ ∈ H, z ∈ Kσ, where we have used the fact that the operator A0 is bounded below
by a positive constant. It follows that A−1 = (PM(z)P)−1 is boundedly invertible.

Proceeding exactly as in [10] based on the estimate provided by Lemma 3.5 which reads

‖D−1‖ ≤ Cε,

use S−1 = (I − D−1EA−1B)−1D−1 to obtain S−1 = O(ε).
Returning to (14), one gets

M(z)−1 =

(
A B
E D

)−1

=

(
A−1 0

0 0

)
+O(ε) (15)

with a uniform estimate for the remainder term. Comparing our result with (12) of Propo-
sition 2.3 with β0 := P⊥ and β1 := P , one arrives at the following
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Theorem 4.1. For z ∈ Kσ one has the estimate

‖(Aε − z)−1 − (Aβ0,β1 − z)−1‖ ≤ Cε

for a universal constant C and β0 = P⊥, β1 = P, where the operator Aβ0,β1 is defined in
Proposition 2.3.

Proof. The proof is identical to that of [10, Theorem 3.1], we include it here for the sake of
completeness.

For the resolvent (Aε − z)−1 the formula (13) is applicable, in which for M(z)−1 we use

(15). As for the resolvent
(
AP⊥,P − z

)−1
, Proposition 2.3 with β0 = P⊥, β1 = P is clearly

applicable. Moreover, for this choice of β0, β1, the operator

QP⊥,P(z) = −
(
P⊥ + PM(z)

)−1P
in (12) is easily computable (e.g., by the Schur-Frobenius inversion formula of [29], see (14))2,
yielding

QP⊥,P(z) = −P
(
PM(z)P

)−1P , (16)

and the claim follows. �

The estimate of Theorem 4.1 already establishes norm-resolvent convergence of the family
Aε to an operator which is by (16) a relative finite-dimensional perturbation of the decoupled
operator A0. It is however possible to obtain a further simplification of this answer, relating
the leading order asymptotic term to a self-adjoint operator on the limiting metric graph.
This procedure follows the blueprint of our paper [10]. In what follows, we briefly outline
this argument.

Note first that (A0 − z)−1 = (AV0 − z)−1 ⊕ (AE0 − z)−1 is easily analysed. Indeed, by
Proposition 3.1 one has (AV0 − z)−1 = O(ε/| log ε|), whereas (AE0 − z)−1 by the separation of
variables converges to the Dirichlet Laplacian on the space

HG := ⊕vL2([0, le]× 111ε),

where 111e := ε−1/2111 is the constant normalised function in the variable perpendicular to
the direction of the edge e. The operator (A0 − z)−1 is therefore O(ε/| log ε|)-close, uni-
formly in z ∈ Kσ, to the operator unitary equivalent to the resolvent of AG0 , where AG0 is
the Dirichlet-decoupled graph Laplacian pertaining to the graph G. The finite-dimensional
second summand on the right hand side of (16) should therefore represent the matching
conditions at the vertices of the limiting graph G. In order to see this, one passes over to
the generalised resolvent Rε(z) := PE(Aε − z)−1PE, which is shown to admit the following
asymptotics.

Theorem 4.2. The operator family Rε(z) admits the following asymptotics in the operator-
norm topology for z ∈ Kσ:

Rε(z)−Reff(z) = O(ε),

where Reff(z) is the solution operator for the following spectral BVP on the edge domain QE:

−∆u− zu = f, f ∈ L2(QE),

β0(z)ΓE0 u+ β1ΓE1 u = 0,
(17)

2We remark that P⊥ + PM(z) is triangular (A = PM(z)P, B = PM(z)P⊥, E = 0, D = I in (14)) with
respect to the decomposition H = PH⊕ P⊥H.
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with β0(z) = P⊥ − PB(z)P, B(z) := −MV (z) and β1 = P.
The boundary condition in (17) can be written in the more conventional form

P⊥u|Γ = 0, P∂nu = PB(z)Pu
∣∣
Γ
.

Equivalently,

Rε(z)−
(
AEP⊥−PB(z)P,P − z

)−1

= O(ε),

where AEP⊥−PB(z)P,P , for any fixed z, is the operator in L2(QE) defined by Proposition 2.3

relative to the triple (H,ΠE,Λ
E), where the term “triple” is understood in the sense of [26].

This operator is maximal anti-dissipative for z ∈ C+ and maximal dissipative for z ∈ C−,
see [28].

The proof of the theorem follows immediately from Theorem 4.1, see [10, Theorem 3.6]
together with the observation that

PM(z)P = PME(z)P + PMV (z)P .

The next step of our argument is to introduce the truncated3 (reduced) boundary space

H̆ in order to make all the ingredients of our setup finite-dimensional.
We put H̆ := PH (note, that in our setup H̆ is N -dimensional). Introduce the truncated

Poisson operator on H̆ by Π̆E := ΠE|H̆ and the truncated Dirichlet-to-Neumann map Λ̆E :=
PΛE|H̆. Then

Proposition 4.3 ([10], Theorem 3.7). 1. The formula

Reff(z) =
(
AE0 − z

)−1 − S̆Ez
(
M̆E(z)− PB(z)P

)−1
(S̆Ez̄ )∗ (18)

holds, where S̆Ez is the solution operator of the problem

−∆uφ − zuφ = 0, uφ ∈ domAE0 u ran Π̆E,

ΓE0 uφ = φ, φ ∈ H̆,

and M̆E is the M-operator defined in accordance with (9), (11) relative to the triple (H̆, Π̆E, Λ̆
E).

2. The “effective” generalised resolvent Reff(z) is represented as the generalised resolvent
of the problem

−∆u− zu = f, f ∈ L2(QE), u ∈ domAE0 u ran Π̆E,

P∂nu
∣∣
Γ

= PB(z)Pu
∣∣
Γ
.

(19)

3. The triple (H̆, Γ̆E0 , Γ̆E1 ) is the classical boundary triple [18, 14] for the operator Amax

defined by the differential expression −∆ on the domain domAmax = domAE0 u ran Π̆E. Here

Γ̆E0 and Γ̆E1 are defined on domAmax as the operator of the boundary trace on Γ and P∂nu,
respectively.

3In what follows we consistently supply the (finite-dimensional) “truncated” spaces and operators per-
taining to them by the breve overscript.
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We now consider the operator PB(z)P in (18); since B = −MV by definition, we invoke
the estimates derived in Section 3 to obtain

PBP = −PΛVP − zPΠ∗V ΠVP +O(ε/| log ε|) = −zΠ̆∗V Π̆V +O(ε/| log ε|),

with a uniform estimate for the remainder term. Here the truncated Poisson operator Π̆V is
introduced as Π̆V := ΠV |H̆ relative to the same truncated boundary space as above, H̆ = PH.
As a result, we obtain

Reff(z)−Rhom(z) = O(ε/| log ε|),
with

Rhom(z) := (AE0 − z)−1 − S̆Ez
(
M̆E(z) + zΠ̆∗V Π̆V

)−1
(S̆Ez̄ )∗. (20)

By a classical result of [28] (see also [23, 24]), the operator Rhom(z) is a generalised resolvent,
so it defines a z-dependent family of closed densely defined operators in L2(QE), which are
maximal anti-dissipative for z ∈ C+ and maximal dissipative for z ∈ C−. Writing the
resolvent (Aε − z)−1 in the matrix form relative to the orthogonal decomposition L2(Q) =
PEL

2(Q)⊕ PVL2(Q) = L2(QE)⊕ L2(QV ) then yields the following

Theorem 4.4. The resolvent (Aε − z)−1 admits the following asymptotics in the uniform
operator-norm topology: (

Aε − z
)−1

= Rhom(z) +O(ε/| log ε|),

where the operator Rhom(z) has the following representation relative to the decomposition
L2(QE)⊕ L2(QV ):

Rhom(z) =

 Rhom(z)
(
Kz̄
[
Rhom(z̄)− (AE0 − z̄)−1

])∗
Π̆∗V

Π̆VKz
[
Rhom(z)− (AE0 − z)−1

]
Π̆VKz

(
Kz̄
[
Rhom(z̄)− (AE0 − z̄)−1

])∗
Π̆∗V

 .

(21)
Here Kz := ΓE0 |Nz with Nz := ranSEz P, z ∈ C±, and the generalised resolvent Rhom(z) is
defined by (20).

The above theorem provides us with the simplest possible leading-order term of the asymp-
totic expansion for (Aε−z)−1. However, it is not yet obvious whether this leading-order term

Rhom(z) is a resolvent of some self-adjoint operator in the space L2(QE)⊕ Π̆V H̆ ⊂ L2(Q). It
turns out that answer to this question is positive, which is proved by the following explicit
construction.

Put L2(G) := ⊕eL2[0, le], H
2(G) := ⊕eH2[0, le]. For any u ∈ H2(G) introduce the notation

uev for the limit of ue(x) := u|e(x) at the vertex v. Let Hhom = L2(G)⊕ CN , and set

domAhom =
{

(u, β)> ∈ Hhom : u ∈ H2(G), uv := uev = uve′ for any v

and e, e′ incident to v, and β = κuV

}
, (22)

where uV is the N -dimensional vector of {uv}v∈V and κ is the diagonal matrix,

κ = diag{|Q0
v|1/2}.
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The action of the operator is set by

Ahom

(
u

β

)
=

(
−u′′

−κ−1∂nu|V

)
,

(
u

β

)
∈ domAhom, (23)

where ∂nu|V is the N−dimensional vector of {
∑

e∈v ∂nue|v}v∈V , i.e., the vector, each element
of which is represented by the sum of edge-inward normal derivatives of the function u over
all the edges incident to the vertex v.

The main result of the present work, which follows by an explicit computation of the
resolvent of (22)–(23) followed by the comparison of the latter with (21), is as follows.

Theorem 4.5. The resolvent (Aε− z)−1 admits the following estimate in the uniform oper-
ator norm topology, uniform in z ∈ Kσ:(

Aε − z
)−1 −Θ

(
Ahom − z

)−1
Θ∗ = O(ε/| log ε|), (24)

where Θ is a partial isometry from Hhom onto L2(Q), acting as follows:

• for every edge e ∈ G, e = [0, le], it embeds u ∈ H2(e) into L2(Qe) as u(x)×ε−1/2111(y);
• for every vertex v ∈ G, it embeds the value uv, i.e., the common value of u ∈ H2(G)

at the vertex v, into L2(Qv) as ε−1/2uv111.
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Email address: julija.ershova@gmail.com
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Email address: alexander.v.kiselev@gmail.com

15


	1. Introduction
	2. Problem setup and preliminaries
	3. Auxiliary estimates
	4. Norm-resolvent asymptotics
	Acknowledgements
	References

