

Citation for published version:
Tan, HY, Mukherjee, S, Tang, J & Schönlieb, C-B 2022 'Data-Driven Mirror Descent with Input-Convex Neural
Networks'.

Publication date:
2022

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. Nov. 2022

https://researchportal.bath.ac.uk/en/publications/52e77897-8f7d-4118-ac99-0a589ca01fce

Data-Driven Mirror Descent with Input-Convex Neural Networks∗

Hong Ye Tan† , Subhadip Mukherjee† , Junqi Tang† , and Carola-Bibiane Schönlieb†

Abstract. Learning-to-optimize is an emerging framework that seeks to speed up the solution of certain op-
timization problems by leveraging training data. Learned optimization solvers have been shown to
outperform classical optimization algorithms in terms of convergence speed, especially for convex
problems. Many existing data-driven optimization methods are based on parameterizing the update
step and learning the optimal parameters (typically scalars) from the available data. We propose
a novel functional parameterization approach for learned convex optimization solvers based on the
classical mirror descent (MD) algorithm. Specifically, we seek to learn the optimal Bregman distance
in MD by modeling the underlying convex function using an input-convex neural network (ICNN).
The parameters of the ICNN are learned by minimizing the target objective function evaluated at
the MD iterate after a predetermined number of iterations. The inverse of the mirror map is mod-
eled approximately using another neural network, as the exact inverse is intractable to compute.
We derive convergence rate bounds for the proposed learned mirror descent (LMD) approach with
an approximate inverse mirror map and perform extensive numerical evaluation on various convex
problems such as image inpainting, denoising, learning a two-class support vector machine (SVM)
classifier and a multi-class linear classifier on fixed features.

Key words. Mirror Descent, data-driven convex optimization solvers, input-convex neural networks, inverse
problems.

AMS subject classifications. 46N10, 65K10, 65G50

1. Introduction. Convex optimization problems are pivotal in many modern data science
and engineering applications. These problems can generally be formulated as

(1.1) min
x∈X

[f(x) + g(x)] ,

where X is a Hilbert space, and f, g : X → R̄ are proper, convex, and lower semi-continuous
(l.s.c.) functions. In different scenarios, f and g have different levels of regularity such as
differentiability or strong convexity. In the context of inverse problems, f can be a data fidelity
loss and g a regularization function.

In the past few decades, extensive research has gone into developing efficient and provably
convergent optimization algorithms for finding the minimizer of a composite objective function
as in (1.1), leading to several major theoretical and algorithmic breakthroughs. For generic
convex programs with first-order oracles, optimal algorithms have been proposed under dif-
ferent levels of regularity [22, 15, 16], which are able to match the complexity lower-bounds
of the problem class. Although there exist algorithms that are optimal for generic problem
classes, practitioners in different scientific areas usually only need to focus on a very narrow
subclass, for which usually neither tight complexity lower-bounds nor optimal algorithms are
known. As such, it is extremely difficult and impractical to either find tight lower-bounds or
handcraft specialized optimal algorithms for every single subclass in practice.

∗Submitted to the SIAM J. on Mathematics of Data Science
†Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK (hyt35@cam.ac.uk,

sm2467@cam.ac.uk, jt814@cam.ac.uk, cbs31@cam.ac.uk).

1

ar
X

iv
:2

20
6.

06
73

3v
2

 [
m

at
h.

O
C

]
 1

8
Ju

l 2
02

2

mailto:hyt35@cam.ac.uk
mailto:sm2467@cam.ac.uk
mailto:jt814@cam.ac.uk
mailto:cbs31@cam.ac.uk

2 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

The aim of this work is learning to optimize convex objectives of the form (1.1) in a
provable manner. Learned optimization solvers have been proposed through various methods,
including reinforcement learning and unsupervised learning [2, 3, 11, 17]. The goal is to
minimize a fixed loss function as efficiently as possible, which can be formulated as minimizing
the loss after a certain number of iterations, or minimizing the number of iterations required
to attain a certain error. The common idea is to directly parameterize the update step as
a neural network, taking previous iterates and gradients as arguments. These methods have
been empirically shown to speed up optimization in various settings including training neural
networks [17, 2]. However, many of these methods lack theoretical guarantees, and there is a
lack of principled framework for integrating machine learning into existing classical algorithms.

Banert et al. developed a theoretically grounded method in [3] for parameterizing such
update steps using combinations of proximal steps, inspired by proximal splitting methods.
By learning the appropriate coefficients, the method was able to outperform the classical
primal-dual hybrid gradient (PDHG) scheme [8]. However, having a fixed model limits the
number of learnable parameters, and therefore the extent to which the solver can be adapted
to a particular problem class. Banert et al. later drifted away from the framework of learning
parameters of fixed models, and instead directly modeled an appropriate update function
using a deviation-based approach, allowing for a more expressive parameterization [4].

Learned optimizers are sometimes modeled using classical methods, as the existing con-
vergence guarantees can lead to insights on how neural networks may be incorporated with
similar convergence guarantees. Even if such guarantees are not available, such as in the
case of learned iterative shrinkage and thresholding algorithm (ISTA), they can still lead to
better results on certain problems [11]. Conversely, Maheswaranathan et al. showed that cer-
tain learned optimizers, parameterized by recurrent neural networks, can reproduce classical
methods used for accelerating optimization [19]. By using a recurrent neural network taking
the gradient as an input, the authors found that the learned optimizer expresses mechanisms
including momentum, gradient clipping, and adaptive learning rates.

One related idea to our problem is meta-learning, also known as “learning to learn”. This
typically concerns learning based on prior experience with similar tasks, utilizing techniques
such as transfer learning, to learn how similar an optimization task is to previous tasks using
statistical features [28]. Our problem setting will instead be mainly concerned with convex
optimization problems, as there are concrete classical results for comparison.

Integrating machine learning models into classical algorithms can also be found notably
in Plug-and-Play (PnP) algorithms. Instead of trying to learn a solver for a general class
of optimization problems, PnP methods deal with the specific class of image restoration.
By using proximal splitting algorithms and replacing certain proximal steps with generic
denoisers, the PnP algorithms, first proposed by Venkatakrishnan et al. in 2013, were able
to achieve fast and robust convergence for tomography problems [29]. This method was
originally only motivated in an intuitive sense, with some analysis of the theoretical properties
coming years later by Chan et al. [9], and more recently by Ryu et al. [26]. Most critically,
many subsequent methods of showing convergence rely on classical analysis such as monotone
operator and fixed point theory, demonstrating the importance of having a classical model-
based framework to build upon.

One of the main difficulties in learning to optimize is the choice of function class to learn on.

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 3

Intuitively, a more constrained function class may allow for the learned method to specialize
more. However, it is difficult to quantify the similarity between the geometry of different
problems. Banert et al. proposed instead to use naturally or qualitatively similar function
classes in [4], including regularized inverse problems such as inpainting or denoising, which
will be used in this work as well.

1.1. Contributions. We propose to learn an alternative parameterization using mirror
descent (MD), which is a well-known convex optimization algorithm first introduced by Ne-
mirovsky and Yudin [21]. Typical applications of MD require hand-crafted mirror maps, which
are limited in complexity by the requirement of a closed-form convex conjugate. We propose
to replace the mirror map in MD with an input convex neural network (ICNN) [1], which has
recently proved to be a powerful parameterization approach for convex functions [20]. By mod-
eling the mirror map in this manner, we seek to simultaneously introduce application-specific
optimization routines, as well as learn the problem geometry.

Using our new paradigm, we are able to obtain a learned optimization scheme with con-
vergence guarantees in the form of regret bounds. We observe numerically that our learned
mirror descent (LMD) algorithm is able to adapt to the structure of the class of optimization
problems that it was trained on, and provide significant acceleration.

This paper is organized as follows. In section 2, we recall the MD algorithm and the
existing convergence rate bounds. Section 3 presents our main results on convergence rate
bounds with inexact mirror maps, and a proposed procedure of ‘learning’ a mirror map. In
section 4, we will show some simple examples of both MD and its proposed learned variant
LMD in the setting where the inverse map is known exactly. Section 5 deals with numerical
experiments with inverse problems in imaging and linear classifier learning.

2. Background. In this section, we will outline the MD method as presented by Beck
and Teboulle [5]. Further work has been done by Gunasekar et al., showing that MD is
equivalent to natural/geodesic gradient descent on certain Riemannian manifolds [12]. We
will continue in the simpler setting where we have a potential given by a strictly convex Ψ to
aid parameterization, but this can be replaced by a suitable Hessian metric tensor.

Let X ⊂ Rn be a closed convex set with nonempty interior. Let (Rn)∗ denote the corre-
sponding dual space of Rn.

Definition 2.1 (Mirror Map). We say Ψ : X → R is a mirror potential if it is continuously
differentiable and strongly convex. We call the gradient ∇Ψ : X → (Rn)∗ a mirror map.

Remark 2.2. A mirror potential Ψ may also be referred to as a distance generating func-
tion, as a convex map induces a Bregman distance BΨ(x, y), defined by BΨ(x, y) = Ψ(x) −
Ψ(y)−〈∇Ψ(y), x−y〉. For example, taking Ψ(x) = ‖x‖22 recovers the usual squared Euclidean
distance BΨ(x, y) = ‖x− y‖22.

If Ψ is a mirror potential, then the convex conjugate Ψ∗ defined as

Ψ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}

is differentiable everywhere, and additionally satisfies ∇Ψ∗ = (∇Ψ)−1 [5, 25]. The (forward)
mirror map ∇Ψ mirrors from the primal space X into a subset of the dual space (Rn)∗, and

4 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

the inverse (backward) mirror map ∇Ψ∗ mirrors from the dual space dom (∇Ψ∗) ⊆ (Rn)∗

back into the primal space X .
Suppose first that we are trying to minimize a convex differentiable function f over the

entire space X = Rn:

(2.1) min
x∈X

f(x).

Suppose further for simplicity that dom (∇Ψ∗) = (Rn)∗. For an initial point x0 ∈ X and a
sequence of step-sizes (tk)k≥0, tk > 0, the mirror descent iterations can be written as follows:

yk = ∇Ψ(xk)− tk∇f(xk),

xk+1 = ∇Ψ∗(yk).
(2.2)

There are two main sequences, (xk)
∞
k=0 in the primal space X and (yk)

∞
k=0 in the dual space

(Rn)∗. The gradient step at each iteration is performed in the dual space, with the mirror
map ∇Ψ mapping between them. Observe that if Ψ = 1

2‖x‖
2
2, then ∇Ψ is the identity

map Rn → (Rn)∗ and we recover the standard gradient descent algorithm. An equivalent
formulation of the MD update rule in (2.2) is the subgradient algorithm [5]:

(2.3) xk+1 = arg min
x∈X

{
〈x,∇f(xk)〉+

1

tk
BΨ(x, xk)

}
.

This can be derived by using the definitions of the Bregman distance and of the convex
conjugate Ψ∗. Observe again that if Ψ = 1

2‖x‖
2
2, then BΨ(x, y) = 1

2‖x − y‖
2
2 and we recover

the argmin formulation of the gradient descent update rule.
MD enjoys the following convergence rate guarantees. Let ‖·‖ be a norm on Rn, and

‖·‖∗= max{〈·, x〉 : x ∈ Rn, ‖x‖≤ 1} be the corresponding dual norm. For a set X ⊆ Rn, let
int(X) denote the interior of X .

Theorem 2.3. [5, Thm 4.1] Let X be a closed convex subset of Rn with nonempty interior,
and f : X → R a convex function. Suppose that Ψ is a σ-strongly convex mirror potential.
Suppose further that the following hold:

1. f is Lipschitz with Lipschitz constant Lf with respect to ‖·‖;
2. The optimal set for the problem (2.1) is nonempty; let x∗ lie in the optimal set.

Let {xk}∞k=1 be the sequence generated by the MD iterations (2.2) with starting point x1 ∈
int(X). Then the iterates satisfy the following regret bound:

(2.4)
s∑

k=1

tk(f(xk)− f(x∗)) ≤ BΨ(x∗, x1)−BΨ(x∗, xs+1) + (2σ)−1
s∑

k=1

t2k‖∇f(xk)‖2∗.

In particular, we have

(2.5) min
1≤k≤s

f(xk)− f(x∗) ≤
BΨ(x∗, x1) + (2σ)−1

∑s
k=1 t

2
k‖∇f(xk)‖2∗∑s

k=1 tk
.

Remark 2.4. The proof of Theorem 2.3 depends only on the property that∇Ψ∗ = (∇Ψ)−1.
Therefore, the inverse mirror map (∇Ψ∗) as in (2.2) can be replaced with (∇Ψ)−1, yielding a
formulation of MD that does not reference the convex conjugate Ψ∗ of the mirror potential Ψ
itself, but only the gradient ∇Ψ∗.

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 5

To motivate our goal of learning mirror maps, we will demonstrate an application of MD
that drastically speeds up convergence over gradient descent. We consider optimization on
the simplex ∆d = {x ∈ Rd : x ≥ 0,

∑
j xj = 1}, equipped with a mirror potential given by

the (negative log-) entropy map [5]. We have the following mirror maps, where logarithms
and exponentials of vectors are to be taken component-wise:

Ψ(x) =
∑
j

xj log xj ,(2.6a)

∇Ψ(x) = 1 + log(x),(2.6b)

∇Ψ∗(y) =
exp(y)∑
j exp(yj)

.(2.6c)

This results in the entropic mirror descent algorithm. It can be shown to have similar conver-
gence rates as projected subgradient descent, with a O(1/

√
k) convergence rate [5, Thm 5.1].

Given that the optimization is over a probability simplex, a natural problem class to consider
is a probabilistic distance between points, given by the KL divergence.

Minimizing the KL divergence is a convex problem on the simplex x ∈ ∆d. For a point
y ∈ ∆d, the KL divergence is given as follows, where 0 log 0 is taken to be 0 by convention:

(2.7) min
x∈∆d

KL(x‖y) =

d∑
i=1

xi log

(
xi
yi

)
.

To demonstrate the potential of MD, we can apply the entropic MD algorithm to the problem
classes of minimizing KL divergence and of minimizing least squares loss over the simplex ∆d.
The function classes that we apply the entropic MD algorithm and gradient descent to are:

FKL = {KL(·‖y) : y ∈ ∆d} , Flsq =
{
‖· − y‖22: y ∈ ∆d

}
,

where the functions have domain ∆d. Note that the true minimizers of a function in either of
these function classes is given by the parameter y ∈ ∆d.

To compare these two optimization algorithms, we optimize 500 functions from the respec-
tive function classes, which were generated by uniformly sampling y on the simplex. Figure 1
plots the evolution of the loss for the entropic MD algorithm and gradient descent for these
two problem classes, applied with various step-sizes. The entropic MD algorithm gives lin-
ear convergence on the KL function class FKL, massively outperforming the gradient descent
algorithm. However, entropic MD is unable to maintain this convergence rate over the least-
squares function class Flsq. This difference in convergence rate demonstrates the importance of
choosing a suitable function class, as well as the potential of MD in accelerating convergence.

3. Main Results. To motivate the following results, we briefly explain our key objective of
approximate mirror descent. Recall that MD as given in (2.2) requires two mirror maps, ∇Ψ
and ∇Ψ∗. We wish to parameterize both Ψ and Ψ∗ using neural networks Mθ and M∗θ , and
weakly enforce the constraint that ∇M∗θ = (∇Mθ)

−1. To maintain the convergence guarantees
of MD, we will derive a bound on the regret depending on the deviation between ∇M∗θ and
(∇Mθ)

−1 in a sense that will be made precise later. We will call the inconsistency between
the parameterized mirror maps ∇M∗θ and (∇Mθ)

−1 the forward-backward inconsistency/loss.

6 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0 10 20 30 40 50
Iterations

10 7

10 5

10 3

10 1

101

KL
 D

iv
er

ge
nc

e

0 10 20 30 40 50
Iterations

10 12

10 10

10 8

10 6

10 4

10 2

100

102

Le
as

t s
qu

ar
e

lo
ss

Entropy MD
GD

Step-size multi
1/4
1/2
1
2
4

Figure 1: Effect of using the entropic MD method (2.6) to minimize KL divergence (left) and
least squares loss (right). The step-sizes were taken as 0.1×step-size multi. We can see that
entropic MD (green) outperforms the gradient descent method for the KL divergence task,
though loses out in the least squares task. The unstable iterations at low KL divergence are
due to machine precision.

Recall the problem setting as in Section 2. Let Ψ be a mirror potential, i.e. a C1 σ-
strongly-convex function with σ > 0. In this section, we shall work in the unconstrained case
X = Rn. We further assume f has a minimizer x∗ ∈ X .

Recall the MD iteration (2.2) with step sizes {tk}∞k=1 as follows. Throughout this section,
B = BΨ is the Bregman distance with respect to Ψ, and Ψ∗ is the convex conjugate of Ψ:

(3.1) xk+1 = arg min
x∈X
{〈x, tk∇f(xk)〉+B(x, xk)} = ∇Ψ∗(∇Ψ(xk)− tk∇f(xk)).

For a general mirror map Ψ, the convex conjugate Ψ∗ may not have a closed form, and we
may only have approximations. While we may be able to write the mirror map between the
primal and dual spaces as ∇Ψ∗ = (∇Ψ)−1, this may also not have a closed form. Therefore,
we write the approximate mirror descent scheme as follows:

x̃1 = x1,

xk+1 = arg min
x∈X
{〈x, tk∇f(x̃k)〉+B(x, x̃k)} = ∇Ψ∗(∇Ψ(x̃k)− tk∇f(x̃k)),

x̃k+1 ≈ xk+1.

(3.2)

The sequence {x̃k} represents some approximation of the mirror descent iteration at each step.
For example, if we parameterize Ψ and Ψ∗ with neural networks Mθ and M∗θ respectively, the
approximate mirror descent scheme that we get is:

(3.3) x̃k+1 = ∇M∗θ (∇Mθ(x̃k)− tk∇f(x̃k)).

For comparison, the exact mirror step from x̃k would be given by xk+1, where ∇M∗θ is now
replaced by (∇Mθ)

−1:

(3.4) xk+1 = (∇Mθ)
−1(∇Mθ(x̃k)− tk∇f(x̃k)).

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 7

Hereafter, we will refer to Mθ and M∗θ as the forward and backward (mirror) potentials
respectively, and the corresponding gradients as the forward and backward (mirror) maps.
For practical purposes, {x̃k} should be considered as the iterations that we can compute.
Typically, both the argmin and ∇Ψ∗ are not easily computable, so we will use xk purely for
comparing how close the forward and backward maps are from being inverses of each other.

The following theorem puts a convergence rate bound on the approximate MD scheme
(3.2) in terms of the forward-backward inconsistency. More precisely, the inconsistency is
quantified by the difference of the iterates in the dual space. This theorem can be applied to
any sequence of points {x̃k} in X , not necessarily generated by iterations of the form (3.3).

Theorem 3.1 (Regret Bound for Approximate MD). Suppose f is µ-strongly convex with
parameter µ > 0, and Ψ is a mirror potential with strong convexity parameter σ. Let {x̃k}∞k=0

be some sequence in X = Rn, and {xk}∞k=1 be the corresponding exact MD iterates generated
by (3.4). We have the following regret bound:

K∑
k=1

tk(f(x̃k)− f(x∗))

≤ B(x∗, x̃1) +
K∑
k=1

[
1

σ
t2k‖∇f(x̃k)‖2∗+

(
1

2tkµ
+

1

σ

)
‖∇Ψ(x̃k+1)−∇Ψ(xk+1)‖2∗

]
.

(3.5)

Proof. We start by employing amortization to find an upper bound on the following ex-
pression:

(3.6) tkf(x̃k)− tkf(x∗) + (B(x∗, x̃k+1)−B(x∗, x̃k)).

From the formulation (3.2), since ∇Ψ∗ = (∇Ψ)−1:

∇Ψ(xk+1) = ∇Ψ(x̃k)− tk∇f(x̃k).

We have the following bound on B(x∗, x̃k+1)−B(x∗, x̃k):

B(x∗, x̃k+1)−B(x∗, x̃k) = Ψ(x∗)−Ψ(x̃k+1)− 〈∇Ψ(x̃k+1), x∗ − x̃k+1〉
− [Ψ(x∗)−Ψ(x̃k)− 〈∇Ψ(x̃k), x

∗ − x̃k〉]
= Ψ(x̃k)−Ψ(x̃k+1)− 〈∇Ψ(x̃k+1), x∗ − x̃k+1〉+ 〈∇Ψ(x̃k), x

∗ − x̃k〉
= Ψ(x̃k)−Ψ(x̃k+1)− 〈∇Ψ(xk+1), x∗ − x̃k+1〉
− 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉+ 〈∇Ψ(x̃k), x

∗ − x̃k〉
= Ψ(x̃k)−Ψ(x̃k+1)− 〈∇Ψ(x̃k)− tk∇f(x̃k), x

∗ − x̃k+1〉
− 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉+ 〈∇Ψ(x̃k), x

∗ − x̃k〉
= Ψ(x̃k)−Ψ(x̃k+1) + 〈∇Ψ(x̃k), x̃k+1 − x̃k〉

+ 〈tk∇f(x̃k), x
∗ − x̃k+1〉 − 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉.

Observe that the first line in the final expression is precisely −BΨ(x̃k+1, x̃k). By σ-strong-
convexity of Ψ, we have −BΨ(x̃k+1, x̃k) ≤ −σ

2 ‖x̃k+1 − x̃k‖2. Therefore, our final bound for

8 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

this expression is:

B(x∗, x̃k+1)−B(x∗, x̃k)

≤ −σ
2
‖x̃k+1 − x̃k‖2+〈tk∇f(x̃k), x

∗ − x̃k+1〉 − 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉.
(3.7)

Returning to bounding the initial expression (3.6), we have by substituting (3.7):

tkf(x̃k)− tkf(x∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))

≤ tkf(x̃k)− tkf(x∗) + 〈tk∇f(x̃k), x
∗ − x̃k+1〉

− σ

2
‖x̃k+1 − x̃k‖2−〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉

= tkf(x̃k)− tkf(x∗) + 〈tk∇f(x̃k), x
∗ − x̃k〉+ 〈tk∇f(x̃k), x̃k − x̃k+1〉

− σ

2
‖x̃k+1 − x̃k‖2−〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k+1〉

= −tkBf (x∗, x̃k) + 〈tk∇f(x̃k), x̃k − x̃k+1〉

− σ

2
‖x̃k+1 − x̃k‖2−〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k〉

− 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x̃k − x̃k+1〉.

By µ-strong-convexity of f , we get −tkBf (x∗, x̃k) ≤ − tkµ
2 ‖x

∗ − x̃k‖2. Therefore, the bound
on the quantity in (3.6) reduces to

tkf(x̃k)− tkf(x∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))

≤ − tkµ
2
‖x∗ − x̃k‖2+〈tk∇f(x̃k), x̃k − x̃k+1〉

− σ

2
‖x̃k+1 − x̃k‖2−〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x∗ − x̃k〉

− 〈∇Ψ(x̃k+1)−∇Ψ(xk+1), x̃k − x̃k+1〉.

(3.8)

Liberally applying Cauchy-Schwarz and Young’s inequality to bound the inner product terms:

tkf(x̃k)− tkf(x∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))

≤ − tkµ
2
‖x∗ − x̃k‖2

+
1

σ
t2k‖∇f(x̃k)‖2∗+

σ

4
‖x̃k − x̃k+1‖2

− σ

2
‖x̃k+1 − x̃k‖2+

1

2tkµ
‖∇Ψ(x̃k+1)−∇Ψ(xk+1)‖2∗+

tkµ

2
‖x∗ − x̃k‖2

+
1

σ
‖∇Ψ(x̃k+1)−∇Ψ(xk+1)‖2∗+

σ

4
‖x̃k − x̃k+1‖2

≤ 1

σ
t2k‖∇f(x̃k)‖2∗+

(
1

2tkµ
+

1

σ

)
‖∇Ψ(x̃k+1)−∇Ψ(xk+1)‖2∗.

(3.9)

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 9

Summing from k = 1 to K, we get

K∑
k=1

[tkf(x̃k)− tkf(x∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))]

≤
K∑
k=1

[
1

σ
t2k‖∇f(x̃k)‖2∗+

(
1

2tkµ
+

1

σ

)
‖∇Ψ(x̃k+1)−∇Ψ(xk+1)‖2∗

]
.

(3.10)

Observe
∑K

k=1(B(x∗, x̃k+1)−B(x∗, x̃k)) = B(x∗, x̃K+1)−B(x∗, x̃1) ≥ −B(x∗, x̃1). Apply this
with (3.10) to finish the regret bound.

Remark 3.2. This bound may be extended to the constrained case X (Rn. This can be
shown by adding an extra projection step to the iterates of the form π(y) = arg minx∈X B(x, y),
and having x̃k+1 instead approximate the projection of the exact mirror step x̃k+1 ≈ π(xk+1))
in (3.2) [21]. Note that if y /∈ X , then B(x∗, π(y)) ≤ B(x∗, y) for any x∗ ∈ X .

Remark 3.3. The convex function f need not be differentiable, and having a non-empty
subgradient at every point is sufficient for the regret bound to hold. The proof will still work
if ∇f is replaced by a subgradient f ′ ∈ ∂f .

Remark 3.4. Observe there is a t−1
k coefficient in the approximation term. This prevents

us from taking tk ↘ 0 to get convergence as in the classical MD case. Intuitively, a suffi-
ciently large gradient step is required to correct for the approximation. However, due to the
Lipschitz condition on the objective f , the gradient step is still required to be limited above
for convergence.

This regret bound allows us to show approximate convergence when the inverse mirror
map is not known exactly. This is the case when we are parameterizing the forward mirror
potential with an ICNN, as there is no closed form for the convex conjugate in general.
Therefore, having these theorems allows us to approximate the backwards mirror potential
with another neural network, while maintaining approximate convergence guarantees. While
the true backward potential will be convex, these results allow us to use a non-convex network,
resulting in better numerical performance.

3.1. Relative Smoothness Assumption. We have seen that we can approximate the iter-
ations of MD and still obtain convergence guarantees. With the slightly weaker assumption of
relative smoothness and relative strong convexity, MD can be shown to converge [18]. We can
get a similar and cleaner bound by slightly modifying the proof of convergence for classical
MD under these new assumptions.

Definition 3.5 (Relative Smoothness/Convexity). Let Ψ : X → R be a differentiable con-
vex function, defined on a convex set X (with non-empty interior), which will be used as a
reference. Let f : X → R be another differentiable convex function.

f is L-smooth relative to Ψ if for any x, y ∈ int(X),

(3.11) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LBΨ(y, x).

f is µ-strongly-convex relative to Ψ if for any x, y ∈ int(X),

(3.12) f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µBΨ(y, x).

10 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

Observe that these definitions of relative smoothness and relative strong convexity extend
the usual notions of L-smoothness and strong convexity with the Euclidean norm by taking
Ψ = 1

2‖·‖
2
2, recovering BΨ(x, y) = 1

2‖x − y‖
2
2. Moreover, if ∇f is L-Lipschitz and Ψ is µ-

strongly convex with µ > 0, then f is L/µ smooth relative to Ψ. If both functions are
twice-differentiable, the above definitions are equivalent to the following [18, Prop 1.1]:

(3.13) µ∇2Ψ � ∇2f � L∇2Ψ.

Using the relative smoothness and relative strong convexity conditions, we can show con-
vergence even when the convex objective function f is flat, as long as our mirror potential Ψ
is also flat at those points. The analysis given in [18] readily extends to the case where our
iterations are approximate.

Theorem 3.6. Let f be relatively L-smooth and relatively µ-strongly-convex relative to the
mirror map Ψ, with L > 0, µ ≥ 0. Consider the iterations

xk+1 = arg min
x∈X
{〈x,∇f(x̃k)〉+ LB(x, x̃k)} ,

x̃k+1 ≈ xk+1,
(3.14)

i.e. approximate MD with fixed step size 1/L. We have the following bound (for any x ∈ X),
where the middle expression is discarded if µ = 0:

(3.15) min
1≤i≤k

f(x̃i)− f(x) ≤ µB(x, x̃0)

(1 + µ
L−µ)k − 1

+Mk ≤
L− µ
k

B(x, x̃0) +Mk,

where

(3.16) Mk =

∑k
i=1(L

L−µ)i[L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉+ 〈∇f(xi), x̃i − xi〉]∑k
i=1(L

L−µ)i
.

In particular, if L〈∇Ψ(xi) − ∇Ψ(x̃i), x − x̃i〉 + 〈∇f(xi), x̃i − xi〉 is uniformly bounded (from
above) by M , we can replace Mk by M in (3.15).

Proof. We follow the proof of [18, Thm 3.1] very closely. As in [18, Eq 28], we have for
any x ∈ X and i ≥ 1,

(3.17) f(x̃i) ≤ f(x) + (L− µ)B(x, x̃i−1)− LB(x, xi).

by applying the definition of L-smoothness, the three-point property ([18, Lemma 3.1], [27]),
and relative µ-strong convexity. We thus have

f(x̃i) = f(xi) + f(x̃i)− f(xi)

≤ f(x) + (L− µ)B(x, x̃i−1)− LB(x, xi) + f(x̃i)− f(xi)

= (L− µ)B(x, x̃i−1)− LB(x, x̃i)

+ [f(x) + LB(x, x̃i)− LB(x, xi) + f(x̃i)− f(xi)].

(3.18)

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 11

By induction/telescoping, we get:

k∑
i=1

(
L

L− µ

)i
f(x̃i) ≤

k∑
i=1

(
L

L− µ

)i
f(x) + LB(x, x̃0)

+
k∑
i=1

(
L

L− µ

)i
[L(B(x, x̃i)−B(x, xi)) + f(x̃i)− f(xi)].

(3.19)

The final “approximation error” term is

L(B(x, x̃i)−B(x, xi)) + f(x̃i)− f(xi)

= L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉 − LB(x̃i, xi) + f(x̃i)− f(xi)

≤ L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉 −Bf (x̃i, xi) + f(x̃i)− f(xi)

= L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉+ 〈∇f(xi), x̃i − xi〉,

(3.20)

where in the inequality, we use the definition of L-relative smoothness Bf (x, y) ≤ LBΨ(x, y).
(Recall B(c, a) +B(a, b)−B(c, b) = 〈∇Ψ(b)−∇Ψ(a), c− a〉 [5, Lemma 4.1].)

Substituting Ck defined by
k∑
i=1

(
L

L− µ

)i
=:

1

Ck

and rearranging, we get
(3.21)

min
1≤i≤k

f(x̃i)− f(x) ≤CkLB(x, x̃0)

+ Ck

k∑
i=1

(
L

L− µ

)i
[L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉+ 〈∇f(xi), x̃i − xi〉].

In particular, if we have a uniform bound on [L〈∇Ψ(xi)−∇Ψ(x̃i), x−x̃i〉+〈∇f(xi), x̃i−xi〉],
say M , then we have

(3.22) min
1≤i≤k

f(x̃i)− f(x) ≤ CkLB(x, x̃0) +M.

Theorem 3.6 gives us convergence rate bounds up to an additive approximation error
Mk, depending on how far the approximate iterates x̃k are from the true MD iterates xk.
By taking x in (3.15) to be an optimal point x∗ where f attains its minimum, we can get
approximate linear convergence and approximate O(1/k) convergence if the relative strong
convexity parameters satisfy µ > 0 and µ = 0 respectively. In particular, the quantity

(3.23) L〈∇Ψ(xi)−∇Ψ(x̃i), x− x̃i〉+ 〈∇f(xi), x̃i − xi〉

that we would like to bound gives an interpretation in terms of how the approximate iterates
x̃i should be close to xi. To minimize the first term, ∇Ψ(xi)−∇Ψ(x̃i) should be small, and
x̃i − xi should be small to minimize the second term.

12 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

3.2. Training Procedure. In this section, we will outline our general training procedure
and further detail our definitions for having faster convergence. Suppose we have a fixed
function class F consisting of convex functions f : X → R, where X ⊆ Rd is some convex set
that we wish to optimize over. Our goal is to efficiently minimize typical functions in F by
using our learned mirror descent scheme.

For a function f ∈ F , suppose we have data initializations x ∈ X drawn from a data dis-
tribution Px|f , possibly depending on our function. Let {x̃k}Kk=1 be the sequence constructed
by applying learned mirror descent with forward potential Mθ and backward potential M∗θ ,
with initialization x̃0 = x:

(3.24) x̃k+1 = ∇M∗θ (∇Mθ(x̃k)− tk∇f(x̃k)).

To parameterize our mirror potentials Mθ,M
∗
θ : Rd → R, we use the architecture proposed

by Amos et al. for an input convex neural network [1]. The input convex neural networks are
of the following form:

(3.25) zi+1 = σ
(
W

(z)
i zi +W

(x)
i x+ bi

)
, M(x; θ) = zl,

where σ is the leaky-ReLU activation function, and θ = {W (x)
0:l−1,W

(z)
1:l−1, b0:l−1} are the param-

eters of the network. For the forward mirror potential Mθ, we additionally clip the weights

such that W
(z)
i are non-negative, so the network is convex in y [1, Prop 1]. This can be done

for both fully connected and convolutional layers. By adding an additional small quadratic
term µ‖x‖2 to the ICNN, we are able to enforce strong convexity of the mirror map as well.

We would like to enforce that f(x̃k) is minimized quickly on average, over both the function
class and the distribution of initializations x̃0 = x corresponding to each individual f . One
possible method is to consider the value of the loss function at or up to a particular iteration
x̃N for fixed N . We also apply a soft penalty such that ∇M∗θ ≈ (∇Mθ)

−1 in order to maintain
reasonable convergence guarantees. The loss that we would hence like to optimize over the
neural network parameter space θ ∈ Θ is thus:

(3.26) arg min
θ∈Θ

Ef∈FEx|f [f(x̃N)] + EX [‖∇M∗θ ◦ ∇Mθ − I‖].

The expectations on the first term are taken over the function class, and further on the initial-
ization distribution conditioned on our function instance. To empirically speed up training,
we find it effective to track the loss at each stage, similar to Andrychowicz et al. [2]. Moreover,
it is impractical to have a consistency loss for the entire space X , so we instead limit it to
around the samples that are attained. The loss functions that we use will be variants of the
following:

x̃k+1 = ∇M∗θ (∇Mθ(x̃k)− tk∇f(x̃k)),(3.27a)

L(θ) = Ef∈FEx|f

[
N∑
k=1

rkf(x̃k) + sk‖(∇M∗θ ◦ ∇Mθ − I)(x̃k)‖

]
,(3.27b)

where rk, sk ≥ 0 are some arbitrary weights. For training purposes, we took rk = r = 1 as
constant throughout, and varied sk = sepoch to increase as training progresses. To train our

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 13

mirror maps, an empirical version of (3.27b) is optimized using the Adam optimizer. The
maximum training iteration was taken to be N = 10, which provided better generalization
to further iterations than for smaller N . While N could be taken to be larger, this comes at
higher computational cost due to the number of MD iterates that need to be computed. We
found that endowing X = Rd with the L1 norm was more effective than using the Euclidean
L2 norm. The aforementioned convergence results can be then applied with respect to the
dual norm ‖·‖∗= ‖·‖∞.

We additionally find it useful to allow the step-sizes to vary over each iteration, rather
than being fixed. We will refer to the procedure where we additionally learn the step-sizes
as adaptive LMD. The learned step-sizes have to be clipped to a fixed interval to maintain
convergence and prevent instability. The LMD mirror maps are trained under this “adaptive”
setting, and we will have a choice between using the learned step-sizes and using fixed step-
sizes when applying LMD on test data. For testing, we will plot the methods applied with
multiple step-sizes. These step-sizes are chosen relative to a ‘base step-size’, which is then
multiplied by a ‘step-size multiplier’, denoted as ‘step-size multi’ in subsequent figures.

All implementations were done in PyTorch, and training was done on RTX 6000 GPUs
with 24GB of memory [23]. The code for our experiments are publicly available1.

4. Learned Mirror Maps With Closed-Form Inverses. We illustrate the potential use of
LMD by learning simple mirror maps with closed-form backward maps, and how this can lead
to faster convergence rates on certain problems. We demonstrate these maps on two convex
problems: solving unconstrained least squares, and training an SVM on 50 features. We first
mention two functional mirror maps that can be parameterized using neural networks, and
describe the training setup in this scenario.

One possible parameterization of the mirror potential is using a quadratic form. This can
be interpreted as gradient descent, with a multiplier in front of the gradient step. The mirror
potentials and mirror maps are given as follows, where x ∈ Rd and A ∈ Rd×d:

Ψ(x) =
1

2
xTAx,(4.1a)

∇Ψ(x) =

(
1

2
A+

1

2
AT
)
x,(4.1b)

∇Ψ∗(y) =

[
1

2
A+

1

2
AT
]−1

y.(4.1c)

The weight matrix A was initialized as the identity matrix with entry-wise additive Gaussian
noise N(0, 0.01). While A needs to be positive definite for Ψ to be strictly convex, enforcing
this constraint was not necessary in our examples, as the symmetrized trained weight matrices
had positive eigenvalues. We found that instead initializing the weight matrix as a random
(positive) diagonal matrix with additive Gaussian noise caused a decrease in performance,
and instabilities in later training iterations.

Another simple parameterization of the mirror potential is in the form of a neural network
with one hidden layer. In particular, we will consider the case where our activation function

1https://github.com/hyt35/icnn-md

https://github.com/hyt35/icnn-md

14 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

is a smooth approximation to leaky-ReLU, given by g(t) := αt+ (1−α) log(1 + exp(t)). Here,
the binary operator � for two similarly shaped matrices/vectors is the Hadamard product,
defined by component-wise multiplication (x � y)i = xiyi. Operations such as reciprocals,
logarithms, exponentials and division applied to vectors are to be taken component-wise. For
x ∈ Rd, A ∈ Rd×d, w ∈ Rd+, the maps are given as follows:

Ψ(x) = wT g(Ax) = wT (αAx+ (1− α) log(1 + exp(Ax))),(4.2a)

∇Ψ(x) = αATw + (1− α)w � exp(Ax)

1 + exp(Ax)
,(4.2b)

∇Ψ∗(y) = A−1 log

(
(1− α)−1w−1 � (y − αATw)

1− (1− α)−1w−1 � (y − αATw)

)
.(4.2c)

This is quite a restrictive model for mirror descent, as it requires the perturbed dual vector
(1− α)−1w−1 � (y − αATw)− η∇f to lie component-wise in (0, 1) in order for the backward
mirror map to make sense. Nevertheless, this can be achieved by clipping the resulting gradient
value to an appropriate interval inside (0, 1).

The negative slope parameter was taken to be α = 0.2. The weight matrix A was initialized
as the identity matrix with entry-wise additive Gaussian noise N(0, 0.01), and the vector w
was initialized entry-wise using a uniform distribution Unif(0, 1/d).

4.1. Least Squares. The first problem class we wish to consider is that of least squares in
two dimensions. This was done with the following fixed weight matrix and randomized bias
vectors:

(4.3) min
x∈R2
‖Wx− b‖22, W =

(
2 1
1 2

)
, b ∈ R2.

For training LMD for least squares, the initialization vectors x and target bias vectors b
were independently randomly sampled as Gaussian vectors x, b ∼ N(0, I2). The function class
that we wish to optimize over in (3.26) is:

F = {fb(x) = ‖Wx− b‖22 : b ∈ R2}, x ∼ Px|f = N(0, I2),

where the expectations EF and Ex|f are taken over x, b ∼ N(0, I2).
Figure 2 and Figure 3 illustrate the results of training LMD using the quadratic mirror

potential and with the one-layer NN potential respectively. These figures include the evolution
of the loss function, the iterates after 10 iterations of adaptive LMD as in the training setting,
and a visualization of the mirror map. Figure 3b shows the instabilities that occur when the
domain of the backwards map is restricted. This is an example of a problem where applying
MD does not result in significantly accelerated convergence.

4.2. SVM. The second problem class is of training an SVM on the 4 and 9 classes of
MNIST. From each image, 50 features were extracted using a small neural network φ :
[0, 1]28×28 → R50, created by training a neural network to classify MNIST images and re-
moving the final layer. The goal is to train an SVM on these features using the hinge loss; see

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 15

0 5 10 15 20
Iterations

10 3

10 2

10 1

100

101

102

103

104

Le
as

t s
qu

ar
e

lo
ss

Adaptive LMD
LMD
GD
Adam

Step-size multi
0.25
0.50
1.00

(a) Evolution of least squares loss when using quadratic LMD.

2 1 0 1 2

2

1

0

1

2

(b) LMD iterations (blue) and
true solution (orange)

2 1 0 1 2 2
1

0
1

2
0
1
2
3

1

2

3

(c) Mirror potential Ψ

Figure 2: The increase in convergence rate is mostly due to the step-size being learned, as
the matrix A trains to be near the identity. This is shown by the purple and red lines having
similar characteristics in (a), as well as the mirror map being similar to a parabola in (c).
The optimized iterates in blue and the true solutions in orange are very close together in (b),
demonstrating the stability of this method in this simple case.

the SVM formulation in subsection 5.1.1 for more details. The problem class is of the form

F =

{
fI(w, b) =

1

2
wTw + C

∑
i∈I

max(0, 1− yi(wTφi + b))

}
.

This is the feature class of training SVMs with certain features φi and targets yi, with i taking
values in some index set I. In this case, the features and targets were taken as subsets of
features extracted from the MNIST dataset. The initializations (w, b) ∼ P(w,b)|f were taken
to be element-wise standard Gaussian.

Figure 4 and Figure 5 demonstrate the evolution of the SVM hinge loss under the quadratic
and one-layer NN mirror potentials respectively. In Figure 4, the loss evolution under LMD
is very similar to GD, demonstrating that the quadratic weight matrix A is very close to
the identity again. We can see clearly the effect of learning the step-sizes for increasing
convergence rate for the first 10 iterations in the “adaptive LMD” plot, as well as the effect

16 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

100

101

102

103

104

Le
as

t s
qu

ar
e

lo
ss

Adaptive LMD
LMD
GD
Adam

Step-size multi
0.10
0.25
0.50
1.00

(a) Evolution of least squares loss when using 1-layer-NN LMD.

2 1 0 1 2

3

2

1

0

1

2

3

(b) LMD iterations (blue) and
true solution (orange)

2 1 0 1 2 2
1

0
1

2

0

5

10

0

5

10

(c) Mirror potential Ψ

Figure 3: We can see the effect of needing to clip the dual iterates, as it creates a pair of lines
(in blue). This heavily affects the performance when using certain step-sizes, and demonstrates
the issues with such simple models. Note that the adaptive LMD and LMD with step-size
multi 0.5 are identical. This is due to the choice of interval that the step-size is clipped to
be in. The lower bound of the interval coincides with the step-size corresponding to step-size
multiplier 0.5, and adaptive LMD learns the step-sizes to be this lower bound.

of a non-optimized step-size after 10 iterations. In Figure 5, we can see that the one-layer
NN mirror potential can perform significantly better than both Adam and GD. However, the
instability due to the required clipping causes the hinge loss to increase for larger step-sizes.
This instability further motivates the use of using a more expressive neural network, as well
as directly modelling the backwards mirror map.

Both of these methods require parameterizations of matrices, and moreover require com-
puting the inverse of these matrices, which can cause instability when performing back-
propagation. Moreover, such closed form expressions of the convex conjugate are not readily
available in general, especially for more complicated mirror potentials parameterized using
deep networks. Therefore, training LMD under this setting can not be effectively scaled up to
higher dimensions. This motivates our proposed approach and analysis of using two separate
networks instead, modeling the mirror and inverse mirror mappings separately.

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 17

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

103

104

SV
M

 h
in

ge
 lo

ss
Adaptive LMD
LMD
GD
Adam

Step-size multi
0.25
0.50
1.00
2.00
4.00

Figure 4: Evolution of SVM hinge loss under quadratic LMD. The matrix A is again learned
to be the identity which is demonstrated by the red and purple lines being very close. The
adaptive step-size gives us better convergence for the first 10 iterations where it is learned.

5. Numerical Experiments. Motivated by the examples in the preceding section, we em-
ploy the LMD method for a number of convex problems arising in inverse problems and
machine learning. Specifically, we use a deep ICNN for learning the optimal forward mirror
potential. However, unlike the constructions in the previous section, the convex conjugate
cannot be expressed in a closed form. We instead approximate the inverse of the mirror map
using a second neural network, which is not necessarily the gradient of an ICNN. We will
demonstrate how this can allow for learning the geometry of the underlying problems and
result in faster convergence. We will namely be applying the LMD method to the problems of
learning a two-class SVM classifier, learning a linear classifier, and model-based denoising and
inpainting on STL-10. The dimensionality of these problems, with STL-10 containing images
of size 3 × 96 × 96, makes the matrix-based MD parameterizations proposed in the previous
section infeasible. A list of training and testing hyper-parameters can be found in Table 1.

5.1. SVM and Linear Classifier on MNIST. We consider first the problem of training
an two-class SVM classifier and a multi-class linear classifier using features extracted from
MNIST. A small 5 layer neural network (2 convolutional layers, 1 dropout layer and 2 fully
connected layers) was first trained to a 97% accuracy, with the penultimate layer having 50
features. We consider the problem of training an SVM on these features for two specific
classes. We also consider the problem of retraining the final layer of the neural network for
classification, which is equivalent to a linear classifier. Our goal is to minimize the correspond-
ing losses as quickly as possible using LMD. Let us denote the neural network that takes an
image and outputs the corresponding 50 features as φ : [0, 1]28×28 → R50. This will work as a
feature extractor, on which we will train our SVMs and linear classifiers.

18 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

103

104

105

106

SV
M

 h
in

ge
 lo

ss
Adaptive LMD
LMD
GD
Adam

Step-size multi
0.25
0.50
1.00
2.00
4.00

Figure 5: 1 layer NN mirror map applied to SVM training. In this case, LMD outperforms
the other methods for smaller step-sizes. The two LMD lines with higher loss is due to the
component-wise clipping that is required for this method.

5.1.1. SVM. Our objective is to train a support vector machine (SVM) on the 50 ex-
tracted features to classify two classes of digits, namely 4 and 9. Given feature vectors φi ∈ Rd
and target labels yi ∈ {±1}, an SVM consists of a weight vector w ∈ Rd and bias scalar b ∈ R.
The output of the SVM for a given feature vector is wTφi + b, and the aim is to find w and
b such that the prediction sign(wTφi + b) matches the target yi for most samples. The hinge
loss formulation of the problem is as follows, where C > 0 is some positive constant [6]:

(5.1) min
w,b

1

2
wTw + C

∑
i

max(0, 1− yi(wTφi + b)).

The function class that we wish to learn to optimize for is thus

(5.2) F =

{
fI(w, b) =

1

2
wTw + C

∑
i∈I

max(0, 1− yi(wTφi + b))

}
,

where each instance of f depends on the set of feature-target pairs, indexed by I. We use
C = 1 in our example. For each training iteration, I was sampled as a subset of 1000
feature-target pairs from the combined 4 and 9 classes of MNIST, giving us a target function
fI(w, b) ∈ F . A batch of 2000 initializations (w, b) was then sampled according to a standard
normal distribution P(w,b)|f = N(0, I50+1). Subsets from the training fold were used for
training LMD, and subsets from the test fold to test LMD.

Figure 6 shows the evolution of the hinge loss and SVM accuracy of the LMD method,
compared with GD and Adam. We can see that adaptive LMD and LMD with sufficiently

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 19

0 5 10 15 20
Iterations

103

104

SV
M

 h
in

ge
 lo

ss

0 5 10 15 20
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Adaptive LMD
LMD
GD
Adam

Step-size multi
1/4
1/2
1
2
4

Figure 6: Plot of the SVM hinge loss (left) and SVM test accuracy (right) when optimizing
from random SVM initializations. The mirror descent significantly outperforms both gradient
descent and Adam, and does not exhibit as large of a decrease in accuracy for later iterations.

large step-size both outperform GD and Adam. In particular, considering LMD with step-
size multiplier 2, we can see accelerated convergence after around 10 iterations. One possible
interpretation is that the network is learning more about the geometry near the minima, which
is why we do not see this increased convergence for smaller step-sizes. The LMD method with
approximate backwards map is much more stable in this case, even if it performs slightly
worse than LMD with the one-layer NN-based mirror potential as in Figure 5.

5.1.2. Linear Classifier. We additionally consider the problem of training a multi-class
linear classifier on the MNIST features. We use the same neural network φ to produce 50
features, and consider the task of training a linear final layer, taking the 50 features and
outputting 10 scores corresponding to each of the digits from 0-9. The task of finding the
optimal final layer with the cross entropy loss can be formulated as follows:

(5.3) min
W∈R50×10

E(φ,y)∈features×target

[
− log

exp(Wφ)y∑9
i=0 exp(Wφ)i

]
.

The corresponding feature class we wish to learn to optimize for is:

(5.4) F =

fI(W) =
1

|I|
∑

(φ,y)∈I

[
− log

exp(Wφ)y∑9
i=0 exp(Wφ)i

] ,

where each instance of f depends on the set of feature-target pairs, indexed by I. For each
training iteration, I was sampled as a subset of 2000 feature-target pairs from MNIST, giving
a target function fI(W) ∈ F . A batch of 2000 initializations W was then sampled according
to a standard normal distribution PW |f = N(0, I50×50) for training. Subsets from the training
fold were used for training LMD, and subsets from the test fold to test LMD.

20 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0 5 10 15 20
Iterations

105

106

107

108

109

Cr
os

s e
nt

ro
py

 lo
ss

0 5 10 15 20
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Adaptive LMD
LMD
GD
Adam

Step-size multi
1/4
1/2
1
2
4

Figure 7: Plots of the linear classifier cross entropy loss (left) and classification accuracy
(right). MD converges significantly faster than both GD and Adam. However, it suffers from
stability issues for larger step-sizes, demonstrated by the increase in loss after 10 iterations
with step-size multiplier 4. This increase in loss is also reflected in the decrease of accuracy.

Figure 7 shows the evolution of the cross-entropy loss and neural network classification
accuracy under our optimization schemes. All of the LMD methods converge quite quickly,
and we see that LMD with smaller step-sizes converge faster than larger step-sizes, reflecting
a similar phenomenon in gradient descent. We additionally see that for LMD with step-size
multiplier 4, the cross entropy loss has a large spike after 10 iterations. This is likely due to
the the step-size being too large for the Lipschitz constant of our problem.

5.2. Image Denoising. We further consider the problem of image denoising on the STL-10
image dataset [10]. Our goal is to have a fast solver for a single class of variational objectives
designed for denoising, rather than devise a state-of-the-art reconstruction approach. As the
reconstructions are completely model-driven and do not have a learned component, the quality
of the solution will depend completely on the chosen model.

The denoising problem is to minimize the distance between the reconstructed image with
an additional regularization term, which we have chosen to be total variation (TV). The
corresponding convex optimization problems can be represented as follows:

(5.5) min
x∈X
‖x− y‖2X+λ‖∇x‖1,X .

Here, X is the space of images from a pixel space S → [0, 1], y is a noisy image, λ > 0 is
a regularization parameter, and the gradient ∇x is taken over the pixel space. In the case of
STL-10, the pixel space is 3 × 96 × 96. The function class we wish to learn to optimize over
is thus:

(5.6) F =
{
f(x) = ‖x− y‖2X+λ‖∇x‖1,X : noisy images y

}
.

In our experiments, y was taken to have 5% random additive Gaussian noise over each

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 21

color channel, and the initializations x were taken to be the noisy images x = y. We trained
the LMD method on the training fold of STL10, and evaluated it on images in the test fold.

The TV regularization parameter was manually chosen to be λ = 0.3 by visually comparing
the reconstructions after running gradient descent for 400 iterations. To parameterize the
mirror potentials, we use a convolutional neural network with an ICNN structure, as the data
is in 2D (with 3 color channels). We additionally introduce a quadratic term in each layer
for added expressiveness. The resulting models are of the following form, where the squaring
operator is taken element-wise, and σ is a leaky-ReLU activation function:

(5.7) zi+1 = σ
(
W

(z)
i zi +W

(x,l)
i x+ [W

(x,q)
i x]2 + bi

)
, M(x; θ) = zl.

By clipping the kernel weights W
(z)
i to be non-negative, we are able to obtain an input convex

convolutional neural network.
Figure 8 and Figure 9 show the result of applying the LMD algorithm to the function class

of denoising models (5.6). In general, LMD and adaptive LMD outperform GD and Adam for
optimizing the reconstruction loss. Moreover, Figure 9 shows that the reconstructed image
using LMD is very similar to the ones obtained using Adam, which is a good indicator that
LMD indeed solves the corresponding optimization problem efficiently. Figure 9a shows a
pixel-wise ratio between the forward map Mθ(y) and noisy image y. The outline of the
horse demonstrates that Mθ learns away from the identity, which should contribute to the
accelerated convergence.

5.3. Image Inpainting. We additionally consider the problem of image inpainting with
added noise on STL10, in a similar setting to image denoising. 20% of the pixels in the image
were randomly chosen to be zero to create a fixed mask Z, and 5% Gaussian noise was added
to the masked images to create noisy masked images y. The inpainting problem is to minimize
the distance between the masked reconstructed image and the noisy masked image, including
TV regularization. The corresponding convex optimization problem is

(5.8) min
x∈X
‖Z ◦ (x− y)‖2X +λ‖∇x‖1,X ,

where Z denotes the masking map S → {0, 1}d, and the image difference x − y is taken
pixel-wise. The corresponding function class that we wish to learn to optimize over is:

(5.9) F =
{
f(x) = ‖Z ◦ (x− y)‖2X +λ‖∇x‖1,X : noisy masked images y

}
.

The initializations x were taken to be the noisy masked images x = y. We trained the
LMD method on the training fold of STL10, and evaluated it on images in the test fold.
The TV regularization parameter was chosen to be λ = 0.3 as in the denoising case, and the
mirror potentials are parameterized with a convolutional neural network similar to that used
in the denoising experiment. We trained the LMD method on the training fold of STL10, and
evaluated it on images in the test fold.

Figure 10 shows the loss evolution of applying the LMD algorithm to the function class
of inpainting models (5.9). LMD with sufficiently large step-size outperforms GD and Adam,
however having too small of a step-size can lead to instability. We can also clearly see the

22 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0 5 10 15 20
Iterations

103

3 × 102

4 × 102

6 × 102

Re
co

ns
tru

ct
io

n
lo

ss

Adaptive LMD
LMD
GD
Adam

Step-size multi
1/4
1/2
1
2
4

Figure 8: Denoising reconstruction loss. LMD outperforms both GD and Adam for earlier
iterations, however might not reach the minimum due to forward-backward inconsistency. The
sharp increase in loss for adaptive LMD after 10 iterations is due to the choice of step-size to
extend the trained 10 iterations.

effect of approximating our backward maps, as some of the LMD methods result in asymptotic
reconstruction loss that is higher than a minimum. Nonetheless, adaptive LMD results in the
best convergence out of the tested methods.

Figure 11 provides a visualization of the resulting iterations. Figure 11a plots the ratio
between the forward mapped masked image Mθ(y) and masked image y, with clipped values
to prevent blowup in the plot. We can again see a faint outline of the horse, with some
speckling due to the masked image. Figure 11b is a plot of the result after 20 iterations of
adaptive LMD, and it is qualitatively quite similar to the result after 20 iterations of Adam,
demonstrating the feasibility of LMD as a solver for model-based reconstruction.

5.4. Effect of Regularization Parameter. We now turn to studying the effect of the reg-
ularization parameters used to enforce consistency of the forward and backward mirror maps.
The regularization parameter sk = sepoch as in (3.27b) was initialized as 1, and subsequently
multiplied by 1.05 at regular epoch intervals.

Under the assumption that the model is trained well for each regularization parameter,
the training loss gives a perspective into the trade-off between the loss and the forward-
backward consistency of the learned mirror maps. Informally, the model will try to learn
a one-shot method similar to an end-to-end encoder-decoder model. Increasing the forward-
backward regularization parameter sepoch reduces this one-shot effect, and encourages a proper
optimization scheme to emerge. Therefore, it is natural that the objective loss will increase
as the forward-backward loss decreases. This effect can be seen in Figure 12, where the

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 23

0.5

0.0

0.5

1.0

1.5

(a) Ratio between forward map
and noisy image

(b) Reconstruction after
3 iterations of adaptive

LMD

(c) Reconstruction after
3 iterations of Adam

(d) Reconstruction after
10 iterations of Adam

Figure 9: Visualization of outputs when when applying LMD to the denoising problem. We
can see a faint outline of the horse when taking a pixel-wise ratio between the forward and
noisy image. LMD allows for much faster convergence compared to Adam here, reaching a
comparable reconstruction in only 3 iterations compared to 10 for Adam.

Table 1: Hyper-parameters for the problem classes considered.

SVM Linear Classifier Denoising Inpainting

Batch size 2000 2000 10 10
Epochs 10,000 10,000 1300 1100

All

ICNN training parameters (Adam) α = 10−5, β = (0.9, 0.99)
Learned iterations N 10
Learned step-size initialization 10−2

Learned step-size range (10−3, 10−1)
Testing base step-size (LMD,GD) 10−2

Testing base step-size (Adam) 5× 10−2

objective loss starts very low but then increases as the forward-backward error decreases.
This could be interpreted as the LMD learning a single good point, then switching to learning
how to optimize to a good point. In addition to encouraging a proper optimization scheme,
increasing the forward-backward regularization parameter has the added effect of encouraging
the forward-backward loss to continue decreasing. This can be seen in Figure 13, where the
objective loss also decreases before increasing again.

6. Discussion and Conclusions. In this work, we proposed a new paradigm for learning-
to-optimize with theoretical convergence guarantees, interpretability, and improved numerical
efficiency for convex optimization tasks in data science, based on learning the optimal Breg-
man distance of mirror descent modeled by input-convex neural networks. Due to this novel

24 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

0 5 10 15 20
Iterations

103

Re
co

ns
tru

ct
io

n
lo

ss

Adaptive LMD
LMD
GD
Adam

Step-size multi
1/4
1/2
1
2
4

Figure 10: Inpainting reconstruction loss. LMD outperforms both GD and Adam, however
suffers from instability when the step-size is small, as remarked in Remark 3.4. The increase
in loss after 10 iterations for adaptive LMD is due to the choice of step-size to extend the
trained 10 iterations.

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Ratio between forward
map and masked image

(b) Reconstruction after
10 iterations of adaptive

LMD

(c) Reconstruction after
10 iterations of Adam

(d) Reconstruction after
20 iterations of Adam

Figure 11: Visualization of some LMD on inpainting. While a faint outline of the horse is
visible, it is not as clear as in Figure 9. LMD is able to reach a reasonable reconstruction in
fewer iterations compared to Adam. While the LMD reconstruction has artifacts around the
edges, the Adam reconstruction is generally noisy.

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 25

50 1050 2050 3050 4050 5050 6050 7050 8050 9050

101

Ob
je

ct
iv

e
lo

ss

101

6 × 100

2 × 101

3 × 101

4 × 101

Fo
rw

ar
d-

ba
ck

wa
rd

 e
rro

r

Figure 12: Training loss and forward-backward consistency loss when training an SVM, plotted
against training epochs. We can see clearly the tradeoff between the loss and forward-backward
loss at the earlier iterations. Each vertical grey line corresponds to an epoch where the forward-
backward loss regularization is increased.

functional parameterization of the mirror map, and by taking a structured and theoretically-
principled approach, we are able to provide convergence guarantees akin to the standard
theoretical results of classical mirror descent. We then demonstrate the effectiveness of our
LMD approach via extensive experiments on various convex optimization tasks in data sci-
ence, comparing to classical gradient-based optimizers. The provable LMD approach achieves
competitive performance with Adam, a heuristically successful method. However, Adam lacks
convergence guarantees for the convex case, achieving only local convergence [24, 7, 31]. LMD
is able to achieve the fast convergence rates from Adam, while retaining convergence guaran-
tees from slower classical methods such as GD.

In this paper, we have only considered the most basic form of mirror descent as our starting
point. There is still much potential for further improvements on both theoretical results and
numerical performance of the algorithm. If a deep parameterization of convex functions with
closed form convex conjugate exists, then this would allow for exact convergence. One open
question is what an optimal mirror map should look like for a particular problem class such as
image denoising, and how well a deep network is able to approximate it. Our on-going works
include accelerating the convergence rates of LMD with momentum acceleration technique
which has been developed for accelerating classical mirror descent [13, 14], and stochastic
approximation schemes [30].

26 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

50 150 250 350 450 550 650 750 850 950 1050

4.2 × 103

4.4 × 103

4.6 × 103

4.8 × 103

5 × 103
Ob

je
ct

iv
e

lo
ss

103

Fo
rw

ar
d-

ba
ck

wa
rd

 e
rro

r

Figure 13: Training loss and forward-backward consistency loss when training inpainting on
STL10, plotted against training epochs. We can see the effect of increasing the forward-
backward regularization parameter as the forward-backward loss continues to decrease along
the iterations, while the loss begins to increase. Each vertical grey line corresponds to an
epoch where the forward-backward loss regularization is increased.

REFERENCES

[1] B. Amos, L. Xu, and J. Z. Kolter, Input convex neural networks, in Proceedings of the 34th Interna-
tional Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, PMLR,
2017, pp. 146–155.

[2] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. de Freitas, Learning to learn by gradient descent by gradient descent, in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.,
vol. 29, Curran Associates, Inc., 2016.

[3] S. Banert, A. Ringh, J. Adler, J. Karlsson, and O. Öktem, Data-driven nonsmooth optimization,
SIAM Journal on Optimization, 30 (2020), pp. 102–131.

[4] S. Banert, J. Rudzusika, O. Öktem, and J. Adler, Accelerated forward-backward optimization using
deep learning, 2021, https://doi.org/10.48550/ARXIV.2105.05210.

[5] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for convex
optimization, Operations Research Letters, 31 (2003), pp. 167–175.

[6] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-
Verlag, Berlin, Heidelberg, 2006.

[7] S. Bock and M. Weiß, A proof of local convergence for the adam optimizer, in 2019 International
Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8, https://doi.org/10.1109/IJCNN.2019.
8852239.

[8] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging and Vision, 40 (2010), pp. 120–145.

https://doi.org/10.48550/ARXIV.2105.05210
https://doi.org/10.1109/IJCNN.2019.8852239
https://doi.org/10.1109/IJCNN.2019.8852239

DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 27

[9] S. H. Chan, X. Wang, and O. A. Elgendy, Plug-and-play ADMM for image restoration: Fixed
point convergence and applications, CoRR, abs/1605.01710 (2016), http://arxiv.org/abs/1605.01710,
https://arxiv.org/abs/1605.01710.

[10] A. Coates, A. Ng, and H. Lee, An analysis of single-layer networks in unsupervised feature learning,
in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
G. Gordon, D. Dunson, and M. Dud́ık, eds., vol. 15 of Proceedings of Machine Learning Research,
Fort Lauderdale, FL, USA, 11–13 Apr 2011, PMLR, pp. 215–223.

[11] K. Gregor and Y. LeCun, Learning fast approximations of sparse coding, in Proceedings of the 27th
International Conference on International Conference on Machine Learning, ICML’10, Omnipress,
2010, p. 399–406.

[12] S. Gunasekar, B. Woodworth, and N. Srebro, Mirrorless mirror descent: A natural derivation of
mirror descent, in Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, A. Banerjee and K. Fukumizu, eds., vol. 130 of Proceedings of Machine Learning Research,
PMLR, 13–15 Apr 2021, pp. 2305–2313.

[13] F. Hanzely, P. Richtarik, and L. Xiao, Accelerated bregman proximal gradient methods for relatively
smooth convex optimization, Computational Optimization and Applications, 79 (2021), pp. 405–440.

[14] W. Krichene, A. Bayen, and P. L. Bartlett, Accelerated mirror descent in continuous and discrete
time, Advances in neural information processing systems, 28 (2015).

[15] G. Lan, An optimal method for stochastic composite optimization, Mathematical Programming, 133
(2012), pp. 365–397.

[16] G. Lan and Y. Zhou, An optimal randomized incremental gradient method, Mathematical programming,
171 (2018), pp. 167–215.

[17] K. Li and J. Malik, Learning to optimize, CoRR, abs/1606.01885 (2016), https://arxiv.org/abs/1606.
01885.

[18] H. Lu, R. M. Freund, and Y. Nesterov, Relatively smooth convex optimization by first-order methods,
and applications, SIAM Journal on Optimization, 28 (2018), pp. 333–354.

[19] N. Maheswaranathan, D. Sussillo, L. Metz, R. Sun, and J. Sohl-Dickstein, Reverse engineering
learned optimizers reveals known and novel mechanisms, CoRR, abs/2011.02159 (2020), https://arxiv.
org/abs/2011.02159.

[20] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem, and C.-B. Schönlieb, Learned con-
vex regularizers for inverse problems, arXiv:2008.02839v2, (2020), https://doi.org/10.48550/ARXIV.
2008.02839, https://arxiv.org/abs/2008.02839.

[21] A. S. A. S. Nemirovsky, Problem complexity and method efficiency in optimization / A.S. Nemirovsky,
D.B. Yudin ; translated by E.R. Dawson., Wiley-Interscience series in discrete mathematics, Wiley,
Chichester, 1983.

[22] Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical programming, 140
(2013), pp. 125–161.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, eds., Curran Associates, Inc., 2019, pp. 8024–8035, http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[24] S. J. Reddi, S. Kale, and S. Kumar, On the convergence of adam and beyond, CoRR, abs/1904.09237
(2019), http://arxiv.org/abs/1904.09237, https://arxiv.org/abs/1904.09237.

[25] R. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer Verlag, Heidelberg, Berlin, New
York, 1998.

[26] E. K. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, Plug-and-play methods provably
converge with properly trained denoisers, CoRR, abs/1905.05406 (2019), http://arxiv.org/abs/1905.
05406, https://arxiv.org/abs/1905.05406.

[27] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, tech. report, Uni-
versity of Washington, Seattle, 2008.

[28] J. Vanschoren, Meta-learning: A survey, CoRR, abs/1810.03548 (2018), https://arxiv.org/abs/1810.

http://arxiv.org/abs/1605.01710
https://arxiv.org/abs/1605.01710
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/2011.02159
https://arxiv.org/abs/2011.02159
https://doi.org/10.48550/ARXIV.2008.02839
https://doi.org/10.48550/ARXIV.2008.02839
https://arxiv.org/abs/2008.02839
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1905.05406
http://arxiv.org/abs/1905.05406
https://arxiv.org/abs/1905.05406
https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1810.03548

28 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

03548.
[29] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, Plug-and-play priors for model based

reconstruction, in 2013 IEEE Global Conference on Signal and Information Processing, 2013, pp. 945–
948, https://doi.org/10.1109/GlobalSIP.2013.6737048.

[30] P. Xu, T. Wang, and Q. Gu, Accelerated stochastic mirror descent: From continuous-time dynamics to
discrete-time algorithms, in International Conference on Artificial Intelligence and Statistics, PMLR,
2018, pp. 1087–1096.

[31] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, A sufficient condition for convergences of adam
and rmsprop, CoRR, abs/1811.09358 (2018), http://arxiv.org/abs/1811.09358, https://arxiv.org/
abs/1811.09358.

https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1810.03548
https://doi.org/10.1109/GlobalSIP.2013.6737048
http://arxiv.org/abs/1811.09358
https://arxiv.org/abs/1811.09358
https://arxiv.org/abs/1811.09358

	1 Introduction
	1.1 Contributions

	2 Background
	3 Main Results
	3.1 Relative Smoothness Assumption
	3.2 Training Procedure

	4 Learned Mirror Maps With Closed-Form Inverses
	4.1 Least Squares
	4.2 SVM

	5 Numerical Experiments
	5.1 SVM and Linear Classifier on MNIST
	5.1.1 SVM
	5.1.2 Linear Classifier

	5.2 Image Denoising
	5.3 Image Inpainting
	5.4 Effect of Regularization Parameter

	6 Discussion and Conclusions

