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Abstract

In recent years, deep learning has achieved remarkable empirical success for image reconstruction.

This has catalyzed an ongoing quest for precise characterization of correctness and reliability of data-

driven methods in critical use-cases, for instance in medical imaging. Notwithstanding the excellent

performance and efficacy of deep learning-based methods, concerns have been raised regarding their

stability, or lack thereof, with serious practical implications. Significant advances have been made in

recent years to unravel the inner workings of data-driven image recovery methods, challenging their

widely perceived black-box nature. In this article, we will specify relevant notions of convergence

for data-driven image reconstruction, which will form the basis of a survey of learned methods with

mathematically rigorous reconstruction guarantees. An example that is highlighted is the role of input-

convex neural networks (ICNNs), offering the possibility to combine the power of deep learning with

classical convex regularization theory for devising methods that are provably convergent.

This survey article is aimed at both methodological researchers seeking to advance the frontiers of

our understanding of data-driven image reconstruction methods as well as practitioners, by providing an

accessible description of useful convergence concepts and by placing some of the existing empirical

practices on a solid mathematical foundation.

Index Terms

Inverse problems, data-driven regularization, convexity, convergence guarantees, Bayesian methods.

I. INTRODUCTION

Image reconstruction problems are virtually ubiquitous in scientific and engineering applications;

ranging from astronomy to clinical diagnosis, from tomographic imaging in 3D electron microscopy to

X-ray crystallography. In such problems, an image of interest needs to be recovered from its incomplete

and noisy observation. The data generation process is governed by an underlying physical process,

precise knowledge of which is a prerequisite to formulate an accurate image reconstruction problem.

ar
X

iv
:2

20
6.

05
43

1v
3 

 [
cs

.C
V

] 
 1

4 
Se

p 
20

22

mailto:andreas.hauptmann@oulu.fi
mailto:sm2467@cam.ac.uk
mailto:ozan@kth.se
mailto:m.pereyra@hw.ac.uk
mailto:cbs31@cam.ac.uk


IEEE SP MAGAZINE SPECIAL ISSUE ON PHYSICS-DRIVEN MACHINE LEARNING FOR COMPUTATIONAL IMAGING 2

It is of paramount importance, especially for critical applications such as medical imaging, to obtain

image reconstructions with reliable content as they contain critical structural information about the

object of interest. Moreover, in many applications of computational imaging, image reconstruction

is used as a tool for scientific discovery without any ground-truth being available. Therefore, one

needs to be able to rely on the correctness of the reconstruction result. Correctness and reliability of

reconstruction algorithms have been traditionally provided in terms of convergence guarantees, and

more specifically, in the framework of model-based variational regularization [1], [2]. Mathematically,

image reconstruction is an example of an inverse problem, where research is primarily concerned with

the development and analysis of mathematical theory and algorithms in a fairly general setting. Such

guarantees also offer a principled framework for practitioners to control the reconstruction process.

The emergence of deep learning and the availability of high-quality training data and computing

capabilities have considerably transformed the research landscape of image reconstruction [3], [4]. Image

quality has improved to a considerable extent as compared to the classical model-based techniques,

both qualitatively and quantitatively, driven by task-specific image data sets and sophisticated machine

learning algorithms. Some concerns have been voiced nevertheless, pointing out the lack of adequate

comprehension of what happens within the learned reconstruction methods, putting forward the argument

that a more thorough understanding is needed for reliable utilization of these techniques. Consequently,

in parallel with the ongoing enterprise of designing more efficient and better-performing data-driven

reconstruction approaches, researchers have begun to investigate theoretical properties of these methods

for image reconstruction.

A specific question is whether one can provide reconstruction guarantees and convergence results for

deep learning-based methods. This question is important to theoreticians and practitioners alike, since

successful answers would place empirically well-performing methods, often based on heuristics, on a

rigorous theoretical foundation. Nevertheless, the notion of theoretical guarantees is imprecise and can

have different meanings depending on the specific context.

This survey attempts to define different notions of convergence within the realm of image reconstruc-

tion, elaborate on their practical implications, and present an overview of recent deep learning-based

image reconstruction methods that fit into the different notions of convergence. We argue that many of

the recently proposed deep learning-based approaches come with more theoretical backing than it is

often communicated and are, in fact, not as much a black-box as they are generally referred to be. In

particular, identifying the connections between model- and data-driven methods will help unite the two

seemingly disparate paradigms and broaden our knowledge of this exciting new line of research.

The article is organized as follows. In Sec. II, we provide the mathematical preliminaries for inverse

problems and explain different training strategies for data-driven image reconstruction. This section

facilitates precise characterization of different convergence notions, which appears in Sec. III, in a
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rigorous yet accessible manner. The ideas of convergence considered in this article are primarily derived

from the classical regularization, convex analysis, and statistics literature. Sections IV and V provide a

review of recent notable data-driven methods that come with convergence guarantees introduced in the

preceding section, in the classical functional-analytic and Bayesian settings, respectively. Our survey is

not exhaustive by any means, in that it excludes approaches that are based on heuristics and are not

provably convergent (except for a few pioneering methods that inspired new lines of research). It is

also worth emphasizing that the methods chosen for review are not necessarily the best-performing

methods empirically, but they are more interpretable in the classical sense and hence more transparent

as compared to competing techniques with possibly superior numerical performance. Finally, we present

a summary and make some concluding remarks in Sec. VI.

II. MATHEMATICAL FOUNDATIONS

In order to characterize what convergence and reconstruction guarantees mean for an image

reconstruction problem, we need to mathematically formulate the reconstruction task.

In the traditional deterministic functional analytical setting, this is viewed as solving an operator

equation. More precisely, one seeks to find x∗ ∈ X, which is unknown but deterministic, from measured

data y ∈ Y under the measurement model y = Ax∗ + e, where e ∈ Y denotes observation error. Here,

A : X→ Y (forward operator) models how an image gives rise to data in the absence of observation

error and is typically derived from a careful modeling of the involved physics. In what follows, we focus

on the linear setting where A is a linear operator that can be represented by a matrix for discretized

images. As we discuss convergence results for the linear setting, we will comment on extensions to the

nonlinear case wherever appropriate.

The spaces X and Y can be fairly general and potentially infinite-dimensional function spaces. However

for the purpose of our exposition, it suffices to consider them as finite-dimensional vector spaces endowed

with an inner-product and norm (in particular, subsets of Euclidean spaces). Given the forward model,

an estimate of the desired image x∗ is obtained by formulating a reconstruction method, represented by

a mapping R : Y→ X. In the functional analytic setting, this corresponds to a regularized inverse of A.

Bayesian inversion extends the above by modeling the true (unknown) image x∗ ∈ X as a realization

of an X-valued random variable x [5]. The distribution of x, known in the literature as the prior

distribution, constitutes a statistical model for images in X that encodes desired and expected properties

about the solution. For example, in the context of limited-angle CT chest imaging, x would represent our

expectations about what a CT chest image looks like at a population level in noise-free high-resolution

conditions, with x∗ understood as a realization of x stemming from performing a CT scan for an

individual in that population. The measured data y ∈ Y, acquired by the scanner in limited-angle

conditions and corrupted by noise, is regarded as a realization of a Y-valued random variable y
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conditioned on x = x∗, with the two random variables being related by the forward model y = Ax+e,

where e is a random variable for the measurement noise. Given y, Bayesian image reconstruction

becomes a statistical inference task underpinned by the conditional distribution of (x|y = y), commonly

known as the posterior distribution of x. Bayesian estimators stem from seeking to optimally summarize

this posterior distribution as a single point in X, with different optimality criteria leading to different

Bayesian estimators [6].

A key challenge in both the functional analytical and the Bayesian frameworks is to handle the

ill-posedness of inversion, which arises from the fact that the forward operator A in practical inverse

problems is either under-determined or poorly-conditioned with an unstable inverse. This leads to

non-uniqueness and instability of reconstruction, meaning that many candidate images explain the

measured data even in the absence of noise, or a small amount of noise in the data results in large

changes in the recovered image. One can circumvent ill-posedness by introducing a regularization to

stabilize the reconstruction, for instance by enforcing certain regularity conditions, such as smoothness.

In Bayesian inversion, regularization is often achieved by selecting a prior distribution on images,

which assigns low likelihood to images with unwanted features. In both settings, regularization involves

a handcrafted a model that encodes prior knowledge as well as expected properties of the solution.

A. Model-based reconstruction

The design of regularized reconstruction methods is traditionally based on the functional analytic

view. Early approaches sought to provide an analytic pseudo-inverse to the forward operator (direct

regularization). An example is the filtered back-projection (FBP) method for tomographic image

reconstruction, which regularizes by recovering the band-limited part of the image. A drawback of

such an approach is that it is problem-specific, and does not generalize to a different forward operator.

Thus, it is desirable to formulate a general class of reconstruction methods that allow us to replace the

forward operator in a plug-and-play manner. This leads to variational models, where the reconstruction

task is formulated as a minimization problem of some penalty function J : X× Y→ R that ensures

data-consistency and incorporates a regularizer. More precisely, such a penalty function typically takes

the form J θ(x, y) := LY
(
Ax, y

)
+ Sθ(x), where LY : Y × Y → R quantifies consistency in data

space Y and the regularizer Sθ : X→ R penalizes undesirable solutions. The data consistency term

is often taken to be the least-squares loss LY
(
Ax, y

)
:= ‖Ax − y‖22, which, if minimized without

regularization, leads to overfitting the measurement noise. This underlines the need of including a

regularization term Sθ with possible hyper-parameters θ ∈ Rd, which allows to encode prior knowledge

about desirable solutions, such as sparsity assumptions [2], [7], [8], [9]. The reconstruction method

Rθ : Y→ X with θ ∈ Rd is now defined as the solution operator for the minimization problem

Rθ(y) ∈ arg min
x∈X

J θ(x, y) where J θ(x, y) := LY
(
Ax, y

)
+ Sθ(x). (1)



IEEE SP MAGAZINE SPECIAL ISSUE ON PHYSICS-DRIVEN MACHINE LEARNING FOR COMPUTATIONAL IMAGING 5

The hyper-parameter θ needs to be chosen beforehand depending on the noise level in the data. A

simple yet widely popular special case is to construct Sθ(x) as Sθ(x) = λSϑ(x), where θ = (λ, ϑ)

with λ > 0. Typically, only λ is adjusted depending on the noise level δ, while the parameter ϑ of the

functional Sϑ is kept fixed (either hand-crafted or pre-trained on some training data set). Solutions to

(1) are then often computed through an iterative scheme by (proximal) gradient-based methods, which

are the basis for the unrolling techniques discussed in Sec. IV.

Reconstructions arising from minimizing a variational potential such as (1) can alternatively be

interpreted as Bayes estimators. If the data-discrepancy LY
(
Ax, y

)
is proportional to the negative

log-likelihood for (y|x = x), then minimizing it corresponds to maximum-likelihood estimation. In

addition, if the regularizer Sθ(x) in (1) is proportional to the negative log-prior density of x, then (1)

can be interpreted as the maximum a-posteriori probability (MAP) estimation [6].

Finally, it is important to note that the majority of physical phenomena are of nonlinear nature, but

often a linearity assumption can be made under ideal measurement conditions. Nevertheless, for more

advanced techniques or when accurate quantitative estimates are needed, the full nonlinear model is

necessary. In this case, convergence guarantees often hold only locally [10].

A relevant question in practice is now what happens if the model in the physics-driven reconstruction

is inaccurately approximated or linearized. Unfortunately, in general a recovery of the true unknown

can only be guaranteed if the model mismatch is taken into account [11]. But, as these approximation

errors are often of nonlinear nature, modern data-driven approaches offer a new and promising avenue

to take these into account [12].

B. Data driven reconstruction

Although model-based inversion such as variational regularization with highly complex and sophis-

ticated analytical regularizers represents a promising approach to solve ill-posed inverse problems,

they pose two key challenges: (i) handcrafting a sufficiently expressive regularizer (or prior) and

(ii) ensuring computational feasibility of hyper-parameter selection and evaluation. These challenges

are more pronounced for Bayesian inversion. Algorithms to approximate the posterior mean and to

perform uncertainty quantification are typically based on Markov chain Monte Carlo (MCMC) methods,

which require carefully constructed priors and tend to be computationally infeasible for time-critical

applications.

The development of data-driven reconstruction is inspired by the need to address the above challenges

of achieving computational feasibility and selection of a domain-adapted regularizer/prior. Instead

of handcrafting a reconstruction method, data-driven methods use training data to learn an optimal

reconstruction method based on statistical learning. We will focus here on (learned reconstruction)

methods Rθ : Y→ X that are typically parameterized by some suitably chosen deep neural network
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(DNN) and thus learning refers to selecting optimal parameters θ̂ from the training data. This, however,

depends on the statistical properties of the training data as discussed in the following and, as we will

see later, has an effect on the type of convergence we obtain.

a) Supervised learning: In this case, one has access to pairs of ground-truth images and the

corresponding measurements following the measurement model y = Ax + e. That is, training data

are given as i.i.d. samples (x1, y1) . . . , (xn, yn) ∈ X × Y of (x,y). An optimal set of parameters θ̂

for the reconstruction method is found by empirical risk minimization given a suitable loss function

LX : X× X→ R in the image domain:

θ̂ ∈ arg min
θ

1

n

n∑
i=1

LX
(
Rθ(yi), xi)

)
. (2)

Usual choices for the loss function include the squared `2-norm, where LX(x, x′) := ‖x− x′‖22. So

far as the training data is concerned, we assume here that we have access to appropriate training data

distributions. Nevertheless, the choice of the training data plays an important role in the performance

of the trained models and can lead to overly optimistic results, a phenomenon referred to as implicit

data crime by [13].

The formulation in (2) does not explicitly include the forward operator, or more generally, the

data likelihood. Nevertheless, this is implicitly incorporated by the choice of training data that satisfy

yi ≈ Axi. One can now select a parametrization Rθ : Y→ X that accounts for the fact that a trained

estimator should represent a regularized inversion method. A popular example of such a domain-adapted

parametrization is to combine a DNN Cθ : X → X with a handcrafted pseudo inverse A† : Y → X,

which incorporates a direct regularization, as discussed in Sec. II-A. The learned reconstruction operator

is then represented by the composition Rθ := Cθ ◦A† where Cθ : X → X acts as a learned post-

processing operator that removes noise and under-sampling artifacts. Popular architectures in imaging

are based on convolutional neural networks (CNNs), more specifically convolutional autoencoders with

an encoding/decoding branch, such as the popular U-Net [14] and related architectures inspired by

harmonic analysis [15]. The supervised setting applies to the case where pairs of high- and low-quality

reconstructions are available, such as low-dose and high-dose computed tomography (CT) scans. In this

case, the high-dose reconstruction can be identified with x and the low-dose measurements provides

the data y to obtain an initial reconstruction by applying the pseudo-inverse operator A†, which can be

considered a pre-computation step before the training procedure.

Another highly popular parameterization for Rθ is based on so-called unrolling. The idea is to start

with some iterative scheme, like one designed to minimize x 7→ LY
(
Ax, y

)
or the objective in (1).

Next, the iterative scheme is truncated to a fixed number of iterations and unrolled by replacing selected

handcrafted updates with (possibly shallow) neural networks (NNs). Notably, for model-based learning,

one does not usually replace A and its adjoint A>, but other components such as the proximal operator
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[3, Sec. 4.9.1]. Hence, the DNN for Rθ is formed by combining (shallow) NNs with physics-driven

operators. Popular examples of unrolled networks include learned primal-dual [16], and variational

networks [17]. At this point, we would like to stress that unrolling is merely a way to select an

architecture for the DNN parametrizing Rθ. In particular, training an unrolled reconstruction network

following (2) does not, in general, lead to an Rθ that minimizes a variational objective as in (1), even

though the architecture of Rθ is constructed by unrolling an optimization solver. One can instead

interpret Rθ as a Bayes estimator that summarizes the posterior distribution of x conditioned on y = y

using a point estimate. The statistical characterization of this estimate depends on the choice of the

loss function LX. For instance, when LX is the squared `2 distance, Rθ approximates the classical

minimum mean-squared error (MMSE) estimate (i.e., the conditional posterior mean E [x|y = y]) in

the limit of infinite training data.

b) Unsupervised learning: This type of learning comes in two flavors, depending on whether

high-quality images or measurement data are available. In the former case, training data x1, . . . , xn ∈ X

are i.i.d. samples of x. One can then consider reconstruction methods Rθ of the form in (1) with

a regularizer/prior Sθ : X → R that is learned from training data through generative modeling, like

generative adversarial networks (GANs) or variational auto-encoders (VAEs). GAN-based approaches

implicitly regularize the reconstruction by restricting it to the range of a pre-trained generator [18],

whereas the other alternative is to learn an explicit regularizer parametrized by a DNN [19], [20].

The other variant is when training data y1, . . . , yn ∈ Y are i.i.d. samples of y. One option is to learn

a data-driven solver for optimization problems of the type in (1) where the objective is parameterized

by y ∈ Y (see [21] for further details). In this setting, it is quite natural to parametrize Rθ by a DNN

whose architecture is given by unrolling an optimization solver for (1). Unlike the supervised setting

where the reconstruction operator does not necessarily minimize a variational potential, the trained

DNN in this case is designed specifically to solve an underlying variational problem of the form (1).

c) Weakly supervised learning: This refers to the case where samples of measurement data

and ground-truth are available, but they are not paired. Training data then consists of un-paired

x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y in the sense that xi ∈ X and yi ∈ Y are i.i.d. samples of the x-

and y–marginal distributions of (x,y), respectively. Such data can be used to set-up a learning problem

which quantifies consistency against data and image error similar to (2), but using loss functions on

both X and Y. This is complemented with a term that quantifies similarity of probability distributions

induced by training data, thus resulting in an elaborate learning problem, see [3, eq. (5.3)]. The learning

problem is recast into a more suitable form by using deep generative models.

Notable methods that fall within the weakly supervised training paradigm are adversarial regularizer

(AR) [20], [22] and its convex variant given by adversarial convex regularizer (ACR) [23]. Both of

these methods seek to learn a regularizer in a variational model as a critic that can tell apart noisy
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reconstructions (obtained through some simple baseline approach, e.g., by applying the pseudo-inverse

of A on the measurements) from the ground-truth image samples xi. The regularizer is restricted to

be Lipschitz-continuous (and convex in case of ACR), which plays an important role in the stability

analysis of the resulting variational model. Lipschitz-continuity of the regularizer is enforced via a

soft-penalty (see [20], [23] and references therein), whereas convexity is enforced by the choice of

DNN architecture.

III. TYPES OF CONVERGENCE

Now that we have established the concept of reconstruction methods, regularization, and learned

reconstruction, the question that remains is: what are the theoretically desired properties of a learned

reconstruction? For instance, if we think about iterative reconstruction, the question of convergence is

relevant. Does the iterative scheme converge to a fixed point? Does this fixed point correspond to a

minimizer of a variational loss, such as in (1)? Moreover, is it, in fact, a regularization method? These

are not only purely academic questions, but provide interpretability and guarantees of correctness of

the obtained solution. This section outlines important notions of convergence relevant for the image

reconstruction task at hand in an accessible way, while not compromising on the mathematical rigor.

a) Formal stability: The weakest and arguably the most fundamental mathematical guarantee

comes in the form of stability, which has its origin in Hadamard’s definition of well-posedness [2].

Stability refers to a smooth variation of the reconstruction with respect to changes in the observed data

(see box). The notion of stability can also be applied to Bayesian inversion, in which case it refers to

the stability of posterior probabilities, statistical moments, and/or Bayesian estimators. When we refer

to provable stability in the following, we mean that it is possible to estimate and control the maximal

error in the reconstruction with respect to deviations in the measurement (for instance, in terms of the

Lipschitz constant). It should be also noted, that the notion of stability (or lack thereof) itself can be

quite meaningless, if no further conditions are provided. For instance, a reconstruction method that

always produces the same image from varying data is in fact stable, but useless in practice.

Stability versus accuracy

Consider a trained reconstruction operator Rθ with fixed network parameters (learned from

training data). The reconstruction produced by Rθ is said to be stable if Rθ : Y → X is a

continuous function of the observed data. Formally, stability demands that

‖Rθ(y + w)−Rθ(y)‖X → 0 as ‖w‖Y → 0.

One possibility for a stability analysis is to consider the Lipschitz constant L of the mapping
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Rθ, which is given by the smallest L > 0, such that

‖Rθ(y1)−Rθ(y2)‖ ≤ L‖y1 − y2‖, for all y1, y2 ∈ Y. (3)

It is important to note that since DNNs are compositions of affine functions and smoothly

varying nonlinear activations, a mapping Rθ modeled using DNNs is continuous and a constant

L satisfying (3) exists. However, although Rθ is formally stable, the constant L might be large,

leading to large deviations in the reconstruction for small changes in the measurement.

Additionally, a consequence of (3) is that the reconstruction of a slightly perturbed image must

satisfy

‖Rθ(A(x+ η))−Rθ(Ax)‖ ≤ L‖A η‖, for any perturbation η.

Since the forward operator A is ill-posed and with possibly non-trivial null space, ‖A η‖ could

be arbitrarily small for some perturbation η. As a result, the reconstruction remains insensitive

to such changes, thereby compromising in accuracy if L is small, and consequently an accurate

Rθ for small perturbations must have a large Lipschitz constant L.

Adversarial robustness

Adversarial robustness of a trained reconstruction operator Rθ is measured by the largest deviation

caused in the reconstruction by a small amount of noise in the data. For a given y0 = Ax0 ∈ Y,

where x0 is the underlying image, and a given noise level ε0, this is defined formally as [24]:

δadv = sup
w:‖w‖≤ε0

‖Rθ(y0 + w)−Rθ(y0)‖2 . (4)

If δadv is small for small ε0, the reconstruction method Rθ is said to be adversarially robust.

Adversarial robustness of image recovery methods, learning-based or classical, is crucial for

their safe deployment in decision-critical applications such as medical imaging. Some skepticism

about adversarial stability (or lack thereof) of deep learning-based approaches has been raised in

[25]. Nevertheless, subsequent work on adversarial robustness of learned methods in [24] put

this concern into perspective and performed a systematic comparison of data-driven methods

with the classical (and provably stable) total variation (TV)-regularized solution. In a compressed

sensing experiment with random Gaussian measurements, the learned methods were found to

be as robust as TV to adversarial noise, and superior to TV for statistical noise. Further, on

the fastMRI knee dataseta, the learned methods were shown to be even more resilient to large

adversarial perturbations as compared to TV. Very recently, [26] considered an `∞-norm-based

measure of adversarial stability, as opposed to the `2-norm, owing to its relevance in capturing

localized reconstruction artifacts. The authors showed that neural network-based methods are
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more robust to `∞-based adversarial perturbations in comparison with TV.

The studies of adversarial robustness as discussed above pertain to supervised methods trained

end-to-end, and only concern robustness to noise in the measurement. A principled empirical and

theoretical analyses are needed for a quantitative understanding of the robustness of unsupervised

methods (such as AR, ACR, network Tikhonov (NETT), plug-and-play (PnP) methods, etc.) to

noise and possibly to other types of distortions that go beyond noise (e.g., forward-model and/or

prior mismatch).

afastMRI data set available at: https://fastmri.med.nyu.edu/

b) Fixed-point convergence: To solve a reconstruction problem iteratively starting from an initial

guess, one applies an operator updating T : X → X on the previous iterate(s): xk+1 := T (xk). The

operator T typically involves the forward operator, its adjoint, and the observed data. It is important

to determine whether the iterates converge. One such notion is fixed-point convergence, which means

that limk→∞ xk = x∞, where x∞ := T (x∞) is a fixed-point of T . If fixed-point convergence holds,

the iterates stabilize after sufficiently many steps, which is clearly desirable for an iterative scheme.

However, it does not necessarily tell anything about what kind of solutions the iteration converges to.

c) Convergence to the minimum of a variational loss (objective convergence): For a stronger

notion of convergence of an iterative algorithm, one can consider minimizing a variational loss, similar

to (1). That is, we consider the loss function of the form J (x) := LY
(
Ax, y

)
+ S(x) for data

y ∈ Y. In an optimization algorithm, an initial guess is refined iteratively by exploiting, for instance,

information about the gradient ∇J at each step to compute a minimizer. Such an iterative scheme

xk+1 := ψϑk
(
xk,∇J (xk)

)
with an updating rule ψϑk : X×X→ X and iteration-dependent parameters

ϑ := {ϑ1, ϑ2, . . .} is said to converge to a minimizer if xk → arg minx∈X J (x) as k →∞. That is,

we can now characterize the point of convergence as the minimizer of an objective function. We will

refer to this notion of convergence as objective convergence in the remainder of the paper.

d) Convergent regularization: The strongest form of convergence we discuss here considers whether

a regularized solution for an ill-posed inverse problem with (linear) forward operator A : X→ Y tends

to the solution corresponding to noise-free data y0 ∈ Y as the noise level vanishes. This could be

viewed as a second level of convergence, as convergence of the iterative scheme is needed.

Formally, a regularization method can be understood as a parameterized family {Rθ}θ∈Rd of

reconstruction methods. Here, the parameter θ depends on the noise level δ > 0, where ‖yδ − y0‖ ≤ δ

with y0 := Ax∗ denoting noise-free data. A regularization method is convergent if there exists a

parameter choice rule δ 7→ θ(δ, yδ) such that reconstructions converge to a pseudo-inverse solution as

noise vanishes, i.e., Rθ(δ,yδ)(yδ)→ A†(y0) as δ → 0.

In the context of variational models (1), one can re-formulate the above as follows: Let xθ,δ ∈ X denote

a minimizer to the objective in (1) for given θ and data yδ ∈ Y with noise level ‖e‖ = ‖y − y0‖ < δ.
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Next, assume also that there is a parameter choice rule δ 7→ θ(δ, yδ), such that θ(δ, yδ)→ θ0 as δ → 0.

The variational model defined by (1) is said to converge to an S-minimizing solution if xθ(δ,yδ),δ → x†

as δ → 0. Here, x† ∈ X denotes a minimizer of the regularization functional Sθ0 among all solutions

that are consistent with the clean measured data y0. The S-minimizing solution is formally defined as

x† ∈ arg min
x∈X

Sθ0(x) subject to y0 = Ax, where θ0 := lim
δ→0

θ(δ, yδ). (5)

Fig. 1 shows such convergence in the context of ACR [23], a learned convex regularizer. Here, the

regularizer is constructed as Sθ(x) = λSϑ(x), where the functional Sϑ is modeled using an ICNN

and the parameters ϑ are learned from training data. For reconstruction, the variational optimization

problem in (1) is solved with θ = (λ, ϑ∗), where ϑ∗ denotes the parameter of a trained model and

λ : δ 7→ λ(δ), the regularization penalty, should be chosen appropriately based on δ to guarantee

convergence to the Sϑ∗ -minimizing solution [23].

(a) δ = 4.0 (b) δ = 2.0 (c) δ = 1.0

(d) δ = 0.50 (e) δ = 0.25 (f) Ground-truth

Fig. 1: ACR [23] as a convergent regularization strategy: The reconstructed image converges to the ground-truth
as δ → 0, subject to an appropriate parameter choice rule for the scalar regularization parameter: δ 7→ λ(δ) > 0.
Here, the regularizer parameter ϑ is learned from data and kept fixed during reconstruction. The highlighted regions
show the key differences between the reconstructed images for different values of the pair (δ, λ(δ)).

IV. PROVABLE STABILITY AND CONVERGENCE

Most learned reconstruction methods Rθ : Y → X are formally stable since they are continuous

mappings. This is the case with one-step methods Rθ := Cθ ◦A† whenever the pseudo-inverse

A† : Y→ X and the learned post-processor Cθ : X→ X are continuous. Likewise, common unrolling
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architectures for Rθ, like variational networks [17] and learned primal-dual (LPD) [16], are continuous.

The above claims are supported by Fig. 2, which shows performance of FBPconvNet (one-step method)

and LPD (unrolling architecture) for sparse-view CT reconstruction. In contrast, a reconstruction operator

given by a variational scheme with a learned regularizer, as in AR, is not necessarily continuous.

Further, even if the reconstruction operator is formally continuous, its Lipschitz constant can be large,

resulting in loose stability bounds.

Fig. 2: Reconstruction quality (PSNR (dB) on the left and SSIM on the right) as a function of noise
level in data for LPD (unrolling) [16] and FBPconvNet (one-step) [14] methods. Both methods are
trained against simulated noise-free 2D sparse-view CT data generated from 2D images that are cross
sections of anthropomorphic phantoms in the AAPM low-dose CT challenge [27].

Regarding convergence, most results can be placed within the variational framework with either

an explicit or an implicit regularizer, see Fig. 3 for an overview of the discussed methods. Explicit

regularization schemes model the regularizer directly through a neural network, whereas the implicit

schemes regularize the solution via a denoiser (also known as plug-and-play methods). The explicit

regularization schemes [20], [19], [23] typically come with a stability or convergent regularization

guarantees, whereas the plug-and-play methods have been shown to possess either fixed-point or

objective convergence subject to different constraints on the denoiser [28], [29].

Fig. 3: Categorization of data-driven reconstruction approaches, which are color-coded based on the
strongest type of convergence guarantee they satisfy.
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A. Learned regularization methods

These methods are based on learning a DNN representing a regularizer Sθ : X→ R in a variational

model of the form (1) (learned regularizer) or reconstruction by considering images generated by a

DNN (regularization-by-architecture).

Inspired by the optimal transport theory, an adversarial framework for learning the regularizer was

proposed in [20]. This method, also referred to as the adversarial regularizer (AR) method, comes with

stability guarantees subject to the regularizer being 1-Lipschitz and coercive. Its convex counterpart

(abbreviated as ACR) models the regularizer using an ICNN [30]. The analysis of ACR [23] follows

from the classical convex regularization theory and one can formally establish well-posedness of the

reconstruction problem (i.e., existence and uniqueness of the solution, and its continuous dependence

on the observed data) using (strong) convexity of the regularizer. Moreover, ACR can be shown to be

a convergent regularization technique using function-analytic tools in classical regularization theory

for inverse problems. Another approach to learning a regularizer is the NETT method [19], which

considers a learned regularizer given by a CNN that is trained using an encoder-decoder set-up. The

resulting variational model is shown to be well-posed and convergent subject to mild conditions (see [19,

Condition 2.2]) on the neural network that parameterizes the regularizer. Other variants and extensions

of NETT (such as augmented NETT [31] and the synthesis counterpart of NETT [32]) are also provably

convergent regularization methods.

A slightly different approach is [33], which can be seen as a regularization-by-architecture scheme

akin to deep image prior [34]. Regularization properties for this method are shown rigorously by

constructing the generator as a multi-level sparse coding network. The approach proposed in [35] is

similar in spirit with [33], in the sense that regularization is achieved by restricting the image to lie in

the range of an untrained generator network. The paper provides recovery guarantees that are similar

to the compressed sensing guarantees in flavor (using the so-called set-restricted eigenvalue condition).

This condition is essentially the same as the restricted isometry condition [9, Definition 2], but defined

for all images in the range of the generator. In contrast with [34], [35], the method developed in [36]

seeks a reconstruction in the range of a pre-trained generator. A proximal gradient-descent (PGD)

algorithm is used for recovery by replacing the projection operator onto the range of the generator

with a learned network. The recovery algorithm is provably convergent.

Adversarial regularizers: Why convexity matters

Consider a denoising problem on the real linea (i.e., X = R), where the distribution of ground-

truth is given by p?(x) = 1
2

(
δ−1(x) + δ1(x)

)
, two Dirac pulses at +1 and −1. Let the noisy

data have distribution pnoisy = U
(
[− 1

2 ,
1
2 ]
)
, the uniform distribution over [− 1

2 ,
1
2 ]. Recall the

adversarial learning framework [20], wherein the regularizer is trained to discern the distribution
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of the ground-truth from that of some baseline reconstruction by minimizing the functional

LAR(S ) = Ex∼p?S (x)− Ex∼pnoisyS (x),

over S ∈ Lip(X), where Lip(X) denotes the class of 1-Lipschitz functionals on X.

Thanks to the Kantorovich-Rubinstein duality, the optimal regularizer S ∗ satisfies LAR(S ∗) =

−W1 (pnoisy, p
?), the negative Wasserstein-1 distance between p? and pnoisy. As apparent in this

case, the optimal transport map from pnoisy to p? is given by

T (x) =


1 for x ≥ 0

−1 for x < 0.
(6)

Consequently, the Wasserstein-1 distance evaluates to:

W1 (pnoisy, p
?) =

∫ 0

− 1
2

|x− (−1)|dx+

∫ 1
2

0

|x− 1|dx =
3

4
.

The function S ∗(x) = −|x| is 1-Lipschitz and achieves LAR(S ∗) = − 3
4 , and is therefore the

optimal regularizer. The resulting variational problem for denoising reads

min
x

1

2
(x− y)2 − λ |x|, where − 1

2
≤ y ≤ 1

2
and λ > 0. (7)

One can solve (7) in closed form as

x̂(y) =


y + λ for y ≥ 0

y − λ for y < 0.
(8)

Clearly, the reconstruction given by (8) changes drastically as the data y changes sign and is

therefore discontinuous at y = 0. Note that it does not violate the stability guarantee of AR, which

only ensures convergence up to sub-sequences. For instance, consider a sequence yk = (−1)k 1
k

for k = 1, 2, . . ., so yk → 0 as k →∞. The corresponding sequence of reconstructions is given

by
{

(−1)k 1
k + (−1)kλ

}
k≥1, which does not converge, but has a sub-sequence converging to λ,

which is a solution of (7) for y = 0.

Imposing (strong) convexity on the regularizer [23] helps achieve stronger forms of convergence

and precludes such discontinuities in the reconstruction. More precisely, for two measurement

vectors y1 and y2 that are δ apart (in norm on Y), the corresponding reconstructions can vary

(with respect to norm on X) by at most βδ
λρ , where β is the spectral norm of A and Sϑ is

ρ-strongly convex [23, Prop. 2]. Notably, ACR is also a convergent regularization scheme,

meaning that the reconstruction converges to the Sϑ-minimizing solution of Ax = y0, where y0

denotes clean data, as the noise level δ → 0, provided that the regularization penalty δ 7→ λ(δ)
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satisfies lim
δ→0

λ(δ) = lim
δ→0

δ
λ(δ) = 0 [23, Prop. 3]. The importance of convexity prior for stability

is demonstrated through the example of limited-view CT reconstruction from [23]b in Fig. 4.

Notably, such convergence results for strongly convex regularizers are not limited to only linear

forward operators. If the forward operator A is nonlinear, it needs to satisfy some additional

technical conditions for the variational reconstruction to converge to the S-minimizing solution

as δ → 0. One such condition is that the level sets Lt := {x ∈ X : J θ(x, y) ≤ t} ⊂ X of the

variational objective are required to be sequentially pre-compact for any t > 0, meaning that,

every sequence in Lt must have a sub-sequence converging to some element in X (which does not

necessarily have to be in Lt). For a complete and precise statement of such strong convergence

results, we refer interested readers to Proposition 3.32 in [1].

aThanks to Sebastian Lunz for providing this example
bThanks in particular to Zakhar Shumaylov for the limited-view CT experiments.

B. Iterative unrolling with fixed-point convergence

The main philosophy behind algorithm unrolling is to construct a DNN architecture by unfolding a

fixed number of iterations of an optimization algorithm. Subsequently, different components of the

algorithm are replaced by learnable units (typically modeled using shallow neural networks) and the

overall network is trained end-to-end to produce a reconstruction from its corresponding measurement.

The origin of unrolling can be traced back to the seminal work by Gregor and LeCun [37] for solving

sparse coding via unfolding the iterative soft-thresholding algorithm. The output of the kth layer of

a generic unrolled architecture can be expressed as xk+1 = ψθk(xk, y), where ψθk is a non-linear

mapping with parameters θk.

As we remarked in Sec. II.B.a, the reconstruction of an end-to-end trained unrolled network can

be interpreted as a Bayes estimator. Recall that the conditional mean estimator, given by R∗(y) =

E [x|y = y] is a solution of

R∗ = arg min
R:Y→X

Ex,y ‖R(y)− x‖22 , (9)

where the minimization is carried out over all measurable mappings from Y to X (see Proposition 2

in [38]). Therefore, an unrolled network with a sufficiently powerful parameterization to approximate

any measurable map from the data space to the image space essentially seeks to approximate R∗

given enough training data. One can obtain an approximation to a different Bayes estimator by using a

different loss function for training.

However, without any further assumptions on ψθk , it is generally not possible to characterize the

estimate of an unrolled network as the stationary point of a variational potential or a fixed-point of a

non-linear map. Further, one trains an unrolled architecture for a few iterations (typically ≤ 20) due to

memory constraints, and the reconstruction deteriorates if more iterations are performed at test time

than the number of iterations that were used in training.
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The deep equilibrium (DEQ) model proposed in [39] provided a promising avenue to reduce the

memory requirement of training unrolled networks. The key idea was to represent the output of a feed-

forward model as a fixed-point of a nonlinear transformation, through which one can back-propagate

using implicit differentiation. This approach can effectively learn an infinite depth network with a

constant memory footprint. The DEQ models were leveraged in [40] for imaging inverse problems.

Such models come with two notable characteristics: (i) weight-sharing, i.e., by using the same set of

parameters at each layer (θk = θ for all k), and (ii) explicitly constraining the output x∗(y, θ) of the

unrolled network to be a fixed-point of ψθ, while further ensuring that the (nonlinear) operator ψθ is

contractive. The training problem reads

min
θ

1

n

n∑
i=1

‖x∗i (yi, θ)− xi‖
2
2 subject to x∗i (yi, θ) = ψθ (x∗i (yi, θ), yi) . (10)

It is shown in [40] that the trained map ψθ can be applied iteratively beyond the number of iterations

trained without any degradation in reconstruction quality. The DEQ architectures come with fixed-point

convergence incorporated into them by construction.

Back-propagating through an infinite-depth network in DEQ models essentially requires computing

inverse Jacobian-vector product, which is approximated using fixed-point iterations [40, Sec. 4.2] or via

quasi-Newton (QN) methods, namely Broyden methods [39, Sec. 3.1.3]. Such an iterative approximation

of inverse Jacobian-vector products could be computationally demanding, which slows down the training

of DEQ models. Some recent works have sought to accelerate the training of DEQ networks, for

instance via Jacobian-free back-propagation [41], or by using the SHINE approach in [42], which

considered QN methods to compute the forward pass of DEQ models and used the QN matrices (that

are available as a bi-product of the forward pass) to approximate the inverse Jacobian.

Generally, sharing the weights of different layers in an unrolling scheme leads to a less expressive

model and the image quality might suffer as a consequence. However, we would like to emphasize

that weight-sharing is not essential for having a provable unrolled scheme. For instance, the stochastic

unrolled network proposed in [43] is a memory-efficient unrolling scheme that comes with recovery

guarantees, but with no weight-sharing across the layers. Learned optimization solvers (see Sec. IV-E

and [21] for more details) also rely on unrolling, but without any weight-sharing, and can be shown to

converge to the minimizer of a variational potential.

Notably, unrolling an iterative scheme can be constructed to have objective convergence. The key

idea behind such constructions is to parametrize the neural network in a manner such that it corresponds

to the proximal operator of an underlying proper, convex, and lower semi-continuous function. One

example is Parseval proximal neural network [44] that use tight frames to parametrize the affine layers.
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C. One-step methods

The one-step methods consist in learning a deep neural network-based post-processing of a model-

based reconstruction based on pairs of input and target images [14]. More specifically, the reconstruction

operator is parameterized as Rθ := Cθ ◦B, where B : Y→ X denotes a classical reconstruction method

(with no or few tune-able parameters, e.g., FBP or TV in X-ray CT) and Cθ : X→ X represents a deep

convolutional network with parameters θ. The reconstructed image produced by such a post-processing

method fails to satisfy the data-consistency criterion. That is, a small value of
∥∥Ax† − yδ∥∥ does

not necessarily imply a small value for the data-fidelity term
∥∥ACθ(x†)− yδ∥∥ corresponding to the

output of Cθ, where x† is the reconstruction obtained using B. Consequently, such post-processing

schemes do not lead to convergent regularization strategies. This issue was addressed in [45] by

parametrizing the operator Cθ as Cθ = Id +
(

Id−A†A
)
Qθ, where Qθ is a Lipschitz-continuous DNN.

Since
(

Id−A†A
)

is the projection operator onto the null-space of A, the operator Cθ (referred to

as null-space network) always satisfies ACθ(x†) = Ax†, ensuring that the output of Cθ explains the

observed data. Null-space networks are shown to provide convergent regularization schemes [45].

Deep convolutional framelets [15] aim to gain a better understanding and interpretability of deep

learning by establishing a link with wavelet theory. An image is here represented by convolving local and

non-local bases. The convolutional framelets generalize the theory of low-rank Hankel matrix approaches

for inverse problems and [15] extends the idea to obtain a DNN using multilayer convolutional framelets

that enable perfect representation of an image. The analysis in [15] shows that the popular deep network

components such as residual block, redundant filter channels, and concatenated rectified linear units

(ReLU) do indeed offer perfect representation, while the pooling and unpooling layers should be

augmented with high-pass branches to meet the perfect representation condition.

D. Plug-and-play denoising

Reconstruction in the variational setting typically requires an iterative algorithm to minimize

the underlying variational loss. Popular iterative techniques such as PGD and alternating-directions

method of multipliers (ADMM) entail applying the proximal operator corresponding to the (possibly

non-smooth) regularizer to update the estimate. The seminal work by Venkatakrishnan et al. [46]

pioneered the idea of replacing the proximal operator with an off-the-shelf denoiser. To give a

specific example, such a PnP-denoising used inside the PGD algorithm leads to the iterative scheme

xk+1 = Dσ

(
xk − η∇x LY

(
Ax, y

)∣∣
x=xk

)
for reconstruction, starting from an initial estimate x0. Here,

Dσ : X→ X is typically a denoiser to remove Gaussian noise of standard deviation σ. Traditionally,

the choice of the denoiser has been model-inspired (e.g., BM3D, dictionary-based denoisers like

K-SVD, TV, etc.), but more recently, PnP algorithms have used off-the-shelf deep neural network-based

denoisers (e.g., DnCNN). These methods have shown excellent empirical performance for practical



IEEE SP MAGAZINE SPECIAL ISSUE ON PHYSICS-DRIVEN MACHINE LEARNING FOR COMPUTATIONAL IMAGING 18

(a) Ground-truth (b) FBP: 21.61 dB, 0.17 (c) TV: 25.74 dB, 0.80

(d) LPD: 29.51 dB, 0.85 (e) AR: 26.83 dB, 0.71 (f) ACR: 27.98 dB, 0.84

Fig. 4: A comparison of different model-driven and learned methods for limited-angle CT (with the PSNR (dB)
and SSIM scores indicated below). While the FBP reconstruction is noisy, TV fails to preserve important details in
the reconstructed image. The LPD method, which was trained on pairs of ground-truth images and limited-angle
projection data in this case, does not faithfully reconstruct the image, especially the highlighted regions. One
possible reason behind this is that LPD, or any other end-to-end supervised method for that matter, does not
necessarily produce a data-consistent reconstruction (see Sec. IV-C for further explanation). The AR leads to
artifacts in the reconstructed image, as it favors oscillations in the direction of blurring artifacts in the FBP images.
Imposing convexity on the regularizer helps prevent such oscillations and resulting instability, as seen in the
images reconstructed by ACR. Notably, unlike LPD and AR, ACR is a convergent regularization scheme and the
reconstructions exemplify the importance of this type of theoretical guarantee.

inverse problems, which inspired a recent line of research to analyze their convergence theoretically.

Generally, PnP methods, subject to appropriate conditions on the denoiser, have been shown to possess

fixed-point and/or objective convergence.

One of the first results on the global objective convergence of PnP-ADMM was shown in [47].

Their theorem requires that the denoiser is continuously differentiable and has a doubly-stochastic

gradient matrix, which are equivalent to the denoiser being a proximal operator for some convex

function. Fixed-point convergence of PnP-ADMM with a continuation scheme and bounded denoisers

was established in [28]. It was shown in [48] that the iterations of PnP-PGD and PnP-ADMM are

contractive (and, hence converges to a fixed-point) if the denoiser satisfies a ‘Lipschitz-like’ condition

(see Assumption A in [48]). Both objective and fixed-point convergence of PnP-forward-backward

splitting (FBS) and PnP-ADMM were proved in [49] for linear denoisers D(x) = Wx, where W is

diagonalizable with eigenvalues in [0, 1]. The denoiser scaling approach, which provides a systematic

way to control the regularization of PnP denoisers, is shown to be fixed-point convergent using the

consensus equilibrium (CE) framework [50].
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Typically, the convergence results for PnP methods either assume the denoiser to satisfy a hard

Lipschitz bound, or require the data-fidelity term to be strongly-convex in x. While the former is

restrictive for deep denoisers, as it affects the denoising performance adversely, the latter assumption

excludes inverse problems where the forward operator has a non-trivial null-space (e.g., sparse-view

CT, or compressed sensing). Recently, convergence guarantees for PnP methods were derived in [29]

with gradient-step (GS) denoisers, alleviating the need for such restrictive assumptions. GS denoisers

are constructed as Dσ = Id−∇gσ, where gσ(x) = 1
2 ‖x− Pσ(x)‖22, with Pσ being a deep network

without any structural constraints. This parametrization was shown to have enough expressive power to

achieve state-of-the-art denoising performance in [29]. Notably, GS denoisers have a scalar potential

given by hσ(x) = 1
2 ‖x‖

2
2 − gσ(x). When the potential hσ is convex, GS denoisers are proximal

operators corresponding to a potentially non-convex function. Therefore, this approach can target to

minimize a variational objective with a potentially non-convex regularizer.

A closely related PnP approach was adopted in [51] with a similar aim of providing an asymptotic

characterization of iterative PnP solutions. The main idea was to model maximally monotone operators

(MMO) using a NN and interpret the reconstruction as the solution of a monotone inclusion problem

(which generalizes convex optimization problems). The parametrization of MMOs was done by modeling

the resolvent via a non-expansive NN.

Regularization-by-denoising (RED) is another prominent PnP approach that utilizes an off-the-shelf

denoiser D(x) to construct an explicit regularizer S(x) = λ · x> (x−D(x)). If the denoiser is such

that the gradient condition ∇S(x) = λ · (x−D(x)) holds, the RED algorithms recover the stationary

point of x 7→ 1
2‖Ax− y‖

2
2 + S(x). It was shown in [52] that the gradient condition does not hold for

denoisers with a non-symmetric Jacobian, which is the case for most practical (classical or data-driven).

A new analysis framework based on score-matching was developed in [52] to explain the empirical

success of the RED algorithms. Specifically, if the denoiser is such that D(x)−x
ε approximates the

score function (i.e., the gradient of the log prior), the stationarity condition for the MAP estimation

problem (with the prior replaced by a smooth surrogate) leads to the following fixed-point equation

(see Sec. IV.C in [52]): 1
2 A
> (Ax∗ − y) + λ (x∗ −D(x∗)) = 0, where λ = σ2

ε , with σ2 being the

variance of measurement noise. The equation above is identical to the fixed-point equation that the RED

algorithm seeks to recover. Here, the denoiser D is not required to have a symmetric Jacobian. With

this new interpretation, several variants of the RED algorithm were proposed in [52] with fixed-point

convergence.

Objective convergence of PnP with GS denoisers [29]

The convergence of PnP denoisers used with half-quadratic splitting (HQS) was established in

[29]. The denoiser is constructed as a GS denoiser as explained in Sec. IV-D, i.e., Dσ = Id−∇gσ ,
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where gσ is proper, lower semi-continuous, and differentiable with an L-Lipschitz gradient. The

PnP algorithm proposed in [29] takes the form xk+1 = proxτ f (xk − τ λ∇gσ(xk)), where

f : Rd → R ∪ {+∞} measures the data-fidelity and is assumed to be convex and lower semi-

continuous. Under these assumptions on f and gσ , the following guarantees hold for τ < 1
λL :

1) The sequence F (xk), where F = f + λ gσ , is non-increasing and convergent.

2) ‖xk+1 − xk‖2 → 0, which indicates that iterations are stable, in the sense that they do not

diverge if one iterates indefinitely.

3) All limit points of {xk} are stationary points of F (x).

Fixed-point convergence of PnP with Douglas–Rachford splitting (PnP-DRS) [48]

Consider the PnP-DRS algorithm, given by

xk+ 1
2

= proxτ f (zk) , xk+1 = Dσ

(
2xk+ 1

2
− zk

)
, and zk+1 = zk + xk+1 − xk+ 1

2
. (11)

Here, f denotes the data-fidelity term and is assumed to be µ-strongly convex. One can equivalently

express (11) as the fixed-point iteration zk+1 = T (zk), where

T =
1

2
Id +

1

2
(2Dσ − Id)

(
2proxτ f − Id

)
. (12)

Suppose, the denoiser satisfies

‖(Dσ − Id) (u)− (Dσ − Id) (v)‖2 ≤ ε ‖u− v‖2 , (13)

for all u, v ∈ X and some ε > 0. It was shown in [48] that if the strong convexity parameter µ is

such that
ε

(1 + ε− 2ε2)µ
< τ holds, the operator T is contractive and the PnP-DRS algorithm

is fixed-point convergent. That is, (xk, zk)→ (x∞, z∞), where (x∞, z∞) satisfy

x∞ = proxτ f (z∞) and x∞ = Dσ (2x∞ − z∞) . (14)

As remarked in [48], the convergence of PnP-DRS follows from monotone operator theory if

(2Dσ − Id) is non-expansive, but (13) imposes a less restrictive condition on the denoiser.

E. Learned optimization solvers

Reconstruction in imaging inverse problems is framed as an optimization problem as in (1), which

could be computationally demanding to solve, especially when the image lives in a high-dimensional

vector space. Some recent works [21] have developed data-driven solvers with convergence guarantees

for minimizing convex variational objectives. They seek to learn a solver for a family of optimization

problems of the form min
x∈X

Fy(x), parametrized by y. In the context of inverse problems, the functional

Fy(x) is the variational objective defined in (1). The key idea is to build a parametric solver of the
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form T N,θ : Y → X by unrolling a fixed number of iterations (denoted as N ) of a gradient-based

algorithm. Subsequently, the parameters θ of the solver are learned in an unsupervised manner by

minimizing 1
n

∑n
i=1 Fyi (T N,θ(yi)) over θ, where (yi)

n
i=1 are n i.i.d. samples drawn from the marginal

distribution of the data y. The iterative solver is constructed by adding a neural network-based deviation

term to the gradient-based update, and convergence is shown in the case where the deviation term

lies in an appropriately defined set. In practice, such learned solvers converge significantly faster than

a conventional first-order solver with suitably chosen step-size parameters. See Sections 3 and 4 in

[21] for more technical details about the construction and convergence proof of learned optimization

solvers. Similar provably convergent data-driven optimization solvers based on mirror-descent with an

ICNN-based Bregman distance were recently proposed in [53].

V. PROVABLE LEARNED BAYESIAN METHODS

A. Bayesian inference in imaging inverse problems

As explained in Sec. II, the Bayesian framework represents the unknown image x∗ as a realization

of a random variable x taking values in X according to a prior distribution with density p(x). The

measured data is modeled by a Y-valued random variable y that is related to x through the measurement

equation y = Ax + e. The observed data y ∈ Y is then understood as a realization of (y|x = x∗).

The statistical representation of this forward model is given by the conditional density p(y|x), which is

known in the literature as the data likelihood function. Given the prior and the likelihood, one can use

Bayes’ theorem to derive the posterior distribution for (x|y = y) with density given by [54]

p(x|y) =
p(y|x)p(x)∫

X p(y|x̃)p(x̃)dx̃
. (15)

The posterior distribution describes how the probability mass is distributed over the solution space X

and plays a central role in Bayesian inversion. The posterior distribution not only underpins Bayesian

estimators such as the minimum mean-squared error (MMSE) estimator, given by the posterior mean

E[x|y = y] =

∫
X
x p(x|y) dx, but also has an important role in uncertainty quantification and model

selection techniques [54].

From a computational perspective, Bayesian inference often requires computing posterior probabilities

and expectations, which is challenging because of the high-dimensional integrals involved. Bayesian

computational algorithms based on stochastic sampling address this difficulty by using Monte Carlo

integration, wherein one constructs a sequence of random variables {x̃i}mi=1 such that averages computed

along the sequence coincide with the desired probabilities and expectations as m→∞. For instance,

the posterior mean is approximated by the Monte Carlo estimator E[x|y = y] ≈ 1

m

m∑
i=1

x̃i, with the

approximation error vanishing as m→∞. The same strategy is used to compute posterior probabilities
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and other quantities of interest, e.g., higher-order statistical moments that can be used for uncertainty

quantification [55].

Constructing a sequence {x̃i}mi=1 leading to provably fast converging Monte Carlo estimators is

challenging when the dimension of X is large. The main approach in imaging is to construct such a

sequence iteratively, as a Markov chain, by using a stochastic update rule that contracts the iterates

towards (x|y = y) and has it as its unique fixed point. In philosophy, this is similar to iterative

optimization schemes that contract iterates towards a fixed-point of interest, except for the important

distinction that one works with random variables here. This approach is known as Markov chain Monte

Carlo (MCMC) [55] and plays an instrumental role in Bayesian inferencing.

Convergence results for MCMC algorithms characterize how quickly the iterates contract towards

(x|y = y) w.r.t. a given probability measure distance, with different distances describing different forms

of convergence. MCMC algorithms that contract geometrically fast as m increases are particularly

interesting for Bayesian computation. A detailed convergence analysis seeks to explicitly bound the

distance to (x|y = y) as a function of the number of iterations m and the initialization, and also

characterizes the dependence of the geometric contraction rate on various key aspects of the problem

(e.g., dimension, conditioning, and tail behavior). In principle, such results allow bounding the number

of iterations m that are required to reach a desired numerical precision, but the bounds are too loose to

be useful in practice. Instead, m is often set by monitoring the quantities of interest and stopping the

algorithm once these quantities are sufficiently stable. It is also recommended to discard the first 10%

of the Markov chain to reduce the initialization bias. Improving MCMC convergence theory to provide

sharper bounds that are useful for setting m is an active research area.

Moreover, while conventional Bayesian computation approaches are asymptotically unbiased, i.e.,

they converge exactly to (x|y = y), modern large-scale strategies often accept some bias, by allowing

convergence to a controlled neighborhood of (x|y = y) to achieve significantly faster convergence rates.

Similarly as optimization methods, the convergence properties of MCMC methods depend crucially

on the regularity properties of the posterior p(x|y) (e.g., smoothness, convexity, and tail behavior).

Checking that p(x|y) satisfies relevant regularity properties is challenging for Bayesian modeling

strategies that use learned priors encoded by neural networks, which we will discuss later in this section.

Distances between probability measures for studying convergence of Markov chains

To define probability measures, one needs an underlying Borel-measurable space (X,B(X)),

where B(X) is the Borel σ-algebra of X. It is the smallest σ-algebra generated by the open

subsets of X and contains all those subsets of X to which one can assign probabilities consistently

using a probability measure. Any probability measure on (X,B(X)) is formally defined as a

function that maps B(X) to the interval [0, 1].
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Consider two such probability measures π1 and π2 defined on (X,B(X)). A notion of distance

between π1 and π2 is generally of the form

D(π1, π2) = sup
f∈F

∣∣∣∣∫ fdπ1 −
∫
Qfdπ2

∣∣∣∣ , (16)

where F is some class of functions defined on X and Q : F 7→ F .

When F = {IA ; A ∈ B(X)} is the class of all indicator functions of the Borel subsets of X

and Qf = f , (16) leads to the well-known total variation (TV) distance given by

TV(π1, π2) = sup
A∈B(X)

|π1(A)− π2(A)| . (17)

In other words, the total-variation distance measures the largest deviation in the probabilities

assigned by the two measures to any event A ∈ B(X). For Markov chain Monte Carlo methods,

convergence in TV metric implies that probabilities computed from the Markov chain converge

to the posterior probabilities of interest.

In the case where F contains all 1-Lipschitz functions on X and Qf = f , (16) recovers the

Wasserstein-1 distance between π1 and π2. Similarly, (16) leads to the Wasserstein-2 distance

between π1 and π2 when F contains all bounded continuous functions on X and

(Qf)(x) = sup
u∈X

f(u)− ‖u− x‖22,

for any x ∈ X. Wasserstein distances play a complementary role to the TV distance in the

analysis of MCMC methods. Unlike TV, convergence in a Wasserstein-p distance guarantees the

convergence of expectations of bounded continuous functions, as well as the convergence of the

first p statistical moments, but not convergence of probabilities.

Convergence issues aside, theoretical analysis of a Bayesian imaging procedure might also seek to

prove that the posterior distribution associated with (x|y = y) is well-posed, and that the posterior

quantities of interest exist and inherit this stability. A Bayesian inverse problem is said to be well-posed

if the posterior distribution of (x|y = y) is well-defined and unique, and varies continuously w.r.t. y

under a given distance metric D (e.g. the total-variation (TV) or the Wasserstein-p distances). Formally,

we consider two data realizations y1 ∈ Y and y2 ∈ Y and denote by π1 and π2 the two probability

measures related to the posterior distributions of (x|y = y1) and (x|y = y2). Stability in the Bayesian

setting requires that D(π1, π2) is a continuous function w.r.t. (y1, y2) ∈ Y×Y. Different choices for D

can capture different forms of stability: well-posedness in the TV distance guarantees that the posterior

probabilities are stable w.r.t. perturbations in y, whereas well-posedness in a Wasserstein-p distance

describes the stability of expectations of bounded continuous functions (but not probabilities), as well

as the stability of the first p posterior moments [56].



IEEE SP MAGAZINE SPECIAL ISSUE ON PHYSICS-DRIVEN MACHINE LEARNING FOR COMPUTATIONAL IMAGING 24

B. Bayesian inference with learned priors

The recent advances in data-driven modeling have inspired Bayesian strategies similarly as for

variational regularization. In this case, instead of hand-crafting a plausible prior distribution, we now

assume to have access to i.i.d. samples {xi}ni=1 from the true marginal distribution of x, say for instance,

by taking MR scans of randomly sampled people on the street. We henceforth denote by p?(x) the

density associated with this marginal distribution, and by p?(x|y) the corresponding posterior density

resulting from Bayes’ theorem. We view p?(x) and p?(x|y) as the true prior and posterior, respectively,

inasmuch they represent how nature assigns probability mass for x. Unfortunately, it is not possible

to perform inference directly with p?(x|y) because the prior is only known through representative

samples. Moreover, the lack of an analytical expression for p?(x) means that we cannot guarantee that

p?(x|y) is well-posed and that the quantities of interest exist and are stable w.r.t. perturbations of y, or

that the regularity conditions required for efficient gradient-based MCMC computation are satisfied.

Learned Bayesian imaging methods use the available samples to construct an approximation of p?(x|y).

In the following we focus on theoretically rigorous strategies for this task that are by construction

well-posed and amenable to provably convergent computation1. Specifically, we discuss two strategies:

a) PnP Bayesian methods that encode the prior distribution in the form of an end-to-end denoising

neural network that is used within a Bayesian computation algorithm, and b) algorithms that rely on

a generative model trained to reproduce the prior distribution from its samples, such as generative

adversarial networks (GANs) or variational auto-encoders (VAEs).

a) Bayesian methods with plug-and-play priors: The aim is now to learn a prior by exploiting its

relation to a learned denoiser, similarly as in Sec. IV-D. For that purpose, we denote by D?
σ : X 7→ X

the optimal minimum mean-squared-error (MMSE) denoiser that estimates x from its noisy observation

u = x + σz, where z is a standard Gaussian random variable. From Bayesian decision theory, D?
σ is

given by D?
σ(u) = E[x|u = u] for any u ∈ X, where the expectation is computed under the assumption

that x has marginal density p?. In practice, D?
σ is of course unknown, because p? is unknown. However,

it can be approximated using a deep neural network Dσ trained on the available samples from p?.

Plug-and-play (PnP) Bayesian methods now use this denoiser Dσ trained to mimic D?
σ in order

to perform approximate inference w.r.t. the oracle p?(x|y). More precisely, this can be achieved by

mimicking gradient-based Bayesian computation algorithms that target a regularized approximation

of p?(x|y), which, by construction, verifies the regularity properties required for fast convergence

[59], [60]. In particular, PnP Bayesian methods stem from the observation that D?
σ is related to p? by

Tweedie’s identity:

σ2∇ log p?σ(x) = D?
σ(x)− x,

1Here we focus on non-asymptotic convergence results that can be applied to a broad class of models. There are other results,
e.g., [57], [58], that provide some guarantees for approximate message passing algorithms, but they require stronger assumptions
on the forward model and they only hold asymptotically, in a limit where the dimension of X and Y diverge in a specific way.
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for all x ∈ X and σ > 0, where p?σ is a regularized approximation of p? obtained via the convolution

of p? with a Gaussian smoothing kernel of bandwidth σ. Unlike p? which may be degenerate or

non-smooth, p?σ is by construction proper and smooth, with its gradient x 7→ ∇ log p?σ(x) being globally

Lipschitz continuous under mild conditions [59]. Also, p?σ(x) can be made arbitrarily close to p?(x)

by reducing σ to control the approximation error involved.

Equipped with this regularized prior, PnP Bayesian methods use Bayes’ theorem to derive the

regularized posterior density p?σ(x|y) ∝ p(y|x)p?σ(x). Under gentle assumptions on the likelihood p(y|x),

p?σ(x|y) inherits the favorable regularity properties of p?σ(x) and provides an approximation to p?(x|y)

that is amenable to efficient computation by gradient-based algorithms such as the unadjusted Langevin

algorithm (ULA) and stochastic gradient-descent (SGD) [59]. By controlling σ, the approximation

p?σ(x|y) can be made as close to p?(x|y) as required in order to control the estimation bias. This,

however, comes at the expense of additional computation due to slower convergence of gradient-based

algorithms. In addition, [59] provides verifiable conditions that guarantee that p?σ(x|y) is well-posed

w.r.t. the TV distance, and key quantities such as the posterior moments exist.

With regards to the maximum a-posteriori probability (MAP) estimation for p?σ(x|y), defined as

x̂map ∈ arg max
x∈X

p?σ(x|y),

it is worth mentioning two main results from [60] before discussing practical computational issues.

First, MAP solutions of p?σ(x|y) lie in a neighborhood of MAP solutions of p?(x|y) and they vary in a

stable manner w.r.t. σ, with the two sets of solutions coinciding as σ → 0. Second, MAP solutions

of p?σ(x|y) are locally Lipschitz continuous w.r.t. to perturbations in y ∈ Y, which is a weak form of

well-posedness (see [60] for details).

From a Bayesian computation viewpoint, the main theoretical insight underpinning PnP Bayesian

methods such as the PnP-ULA and PnP-SGD studied in [59], [60] is that one can use ∇ log p?σ to

formulate idealized ULA and SGD algorithms for inference w.r.t. p?σ, and subsequently substitute

∇ log p?σ(x) = (D?
σ(x)− x)/σ2 within these algorithms by the learned approximation (Dσ(x)− x)/σ2

without significantly affecting their convergence properties, even if Dσ(x) is not a gradient or a

maximally monotone operator. Approximating the oracle denoiser D?
σ by a learned denoiser Dσ

introduces some bias; i.e., the algorithms produce a solution in the neighborhood of the oracle solution

that would be produced by the idealized algorithms. The magnitude of this bias w.r.t. the oracle depends

primarily on how close Dσ is to D?
σ .

The plug-and-play unadjusted Langevin algorithm (PnP-ULA) and stochastic gradient-

descent (PnP-SGD)

PnP-ULA to sample from the regularized posterior p?σ(x|y) is defined by the following recursion
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[59], where k ∈ N :

x̃k+1 = x̃k + δ∇ log p(y|x̃k) +
δ

σ2
[Dσ(x̃k)− x̃k] +

δ

λ
[ΠC(x̃k)− x̃k] +

√
2δ zk+1. (18)

Here, δ is a step-size, λ is a tail regularization parameter, C ⊂ X denotes a compact convex set

that contains most of the prior probability mass of x, ΠC is the projection operator onto C, and

{zk}k∈N are i.i.d. standard Gaussian random variables.

For maximum a-posteriori probability (MAP) estimation for p?(x|y), the PnP-SGD algorithm

is defined by the following recursion [60], for k ∈ N:

x̃k+1 =x̃k + δk∇ log p(y|x̃k) +
δk
σ2

[Dσ(x̃k)− x̃k] + δkzk+1 , (19)

where {δk}k∈N is a family of decreasing positive step-sizes and {zk}k∈N are again i.i.d. standard

Gaussian random variables.

Convergence guarantees for these two algorithms require that the denoiser satisfies the same

condition as in (13), for all u, v ∈ X, and for some ε > 0. In addition, to characterize the error

introduced by approximating D?
σ through Dσ , one needs that for any R > 0 there exists MR ≥ 0

such that ‖Dσ(u)−D?
σ(u)‖2 ≤ MR for all u ∈ X with ‖u‖2 < R. Further, the likelihood

p(y|x) is assumed to be finite and differentiable w.r.t. x, with ∇ log p(y|x) being Ly-Lipschitz.

Then, for any δ <
1

3

(
ε

σ
+ Ly +

1

λ

)
and λ ∈

(
0, 12

(
ε
σ + 2Ly

))
, the Markov chain generated

by (18) converges geometrically fast to a neighborhood of p?σ(x|y), in TV and Wasserstein-1

distances. The asymptotic bias and the convergence rate depend on δ, λ,C,MR and the dimension

of X (see [59, Section 3.2] for details).

For the PnP-SGD algorithm in (19), assume that the step-sizes satisfy

lim
k→∞

δk = 0 ,

∞∑
k=0

δk = +∞ ,

∞∑
k=0

δ2k < +∞ .

Then, it is shown in [60] that all stable sequences generated by (19) converge to a neighborhood

of the stationary points of ∇ log p?σ(x|y), and the size of the neighborhood is controlled by MR

(see [60, Proposition 3] for technical details). Whether all the sequences generated by (19) are

stable is an open question.

For illustration, Fig. 5 presents the results of an image deblurring experiment where PnP-ULA and

PnP-SGD are used to compute the MMSE and MAP estimators, respectively, using the denoiser of

[48] with σ = 5/255. The main strength of Monte Carlo algorithms such as PnP-ULA is their capacity

for Bayesian analyses beyond point estimation, such as uncertainty quantification, as depicted in the

bottom row of Fig. 5.

b) Bayesian methods with generative priors: A prominent alternative to plug-and-play denoising

is to construct a prior distribution for x by leveraging recent developments in deep generative modeling,
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(a) 22.62 dB, 0.66 (b) 30.62 dB, 0.93 (c) 28.90 dB, 0.90

(d) scale 2× 2 (e) scale 4× 4 (f) scale 8× 8

Fig. 5: Image deblurring using the denoiser [48] in a PnP fashion. Top row shows data (left), a blurred 256× 256
image with additive Gaussian noise with standard deviation 1/255, along with MMSE solution from PnP-ULA
(middle) and MAP solution from PnP-SGD (right). The corresponding PSNR (dB) and SSIM values are indicated
below the images. The bottom row shows uncertainty plots at the scales of 2× 2 (left), 4× 4 (middle), and 8× 8
pixels (right), computed by PnP-ULA. See [59] for details.

such as VAEs, GANs, and normalizing flows. The Bayesian approach in [61] adopts the manifold

hypothesis to construct a prior distribution that is supported on a sub-manifold of X, the dimension of

which is much smaller than the ambient dimension of X. Operating on this manifold of dramatically

reduced dimensionality simultaneously allows to effectively regularize the posterior and perform

computations efficiently. The reduction in dimensionality is achieved by introducing a latent Gaussian

variable z ∼ N (0, Id) on Rd and a deep generative network Gθ : Rd 7→ X designed such that the random

variable Gθ(z) is close in distribution to x. In [61], Gθ is derived from a VAE architecture, but the strategy

is agnostic to the choice of the specific generative model, and a GAN or a normalizing flow-based model

could be used instead. Given this construction, the latent posterior is derived as p(z|y) ∝ p(y|z)p(z),

where p(z) is a standard Gaussian density on Rd and the likelihood is p(y|z) = py|x(y| Gθ(z)). The

posterior distribution of (x|y = y) is then given by using Gθ to map (z|y = y) onto X. The resulting

Bayesian inversion is shown to be well-posed under mild conditions on the likelihood, and important

quantities such as the posterior mean exist.

Well-posedness of linear Bayesian inverse problems with generative priors

Consider the generative model x = Gθ(z) where z ∼ N (0, Id) is a latent random variable

and Gθ : Rd 7→ X ⊆ Rp is a Lipschitz-continuous neural network. Suppose that the observed
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data y ∈ Rn is a realization of a random variable y = AGθ(z) + e, where A ∈ Rn×p and

e is Gaussian noise. Then, it is shown in [61] that the posterior distributions associated with

(z|y = y) and (x|y = y) are well-posed w.r.t. the TV and Wasserstein-2 distances. Moreover, all

posterior moments exist, and in particular the minimum mean-squared error (MMSE) Bayesian

estimators for (z|y = y) and (x|y = y) are well-posed.

With regards to computation, [61] takes advantage of the fact that z is relatively low-dimensional and

has a Gaussian prior to generate samples for (z|y = y) by using the following simple MCMC procedure

specialized for this class of models: for any k ∈ N, draw z
† ∼ N (

√
1− δ2zk, Id) and set zk+1 = z

†

with probability min(1, p(y|z†)/p(y|zk)); otherwise set zk+1 = zk. This MCMC algorithm, known as

the preconditioned Crank-Nicolson algorithm, is provably convergent under mild assumptions on p(y|z)

that are verified in particular for linear Gaussian observation models of the form y = AGθ(z) + e.

Given Monte Carlo samples for the latent variable (z|y = y), samples for (x|y = y) are obtained by

applying the generator Gθ.

A Bayesian model with a prior encoded by a VAE was considered in [62], with an objective of

MAP estimation. Unlike the approach in [61], where one constraints x to take values in the range

of Gθ in order to reduce dimensionality, [62] considers an augmented model p(x, z) on X× Rd that

concentrates mass in the neighborhood of x = Gθ(z) while carefully allowing for deviations from

this sub-manifold to better fit the training images. This leads to an augmented posterior distribution

p(x, z|y) ∝ p(y|x)p(x, z) that is a more accurate model than the marginal posterior model considered

in [61]. Inference with p(x, z|y) is significantly more computationally challenging, a difficulty that

was addressed by focusing exclusively on MAP estimation. Crucially, the authors established that

the potential (x, z) 7→ − log p(x, z|y) is weakly bi-convex under realistic conditions on the VAE, and

subsequently proposed three provably convergent alternating optimization schemes to compute a critical

point of this potential efficiently.

VI. CONCLUSIONS AND OUTLOOK

In scientific disciplines where imaging drives new discoveries or in real-world applications where

imaging is used for making critical decisions, it is essential to have mathematical correctness guarantees

for the algorithms used for image recovery. While the classical variational approaches come with such

certificates, they fall short in terms of empirical performance as compared to the modern data-driven

imaging algorithms. We formalized different notions of correctness as they apply to image reconstruction

methods and surveyed some of the notable deep learning-based approaches, both deterministic and

stochastic, that fit within these notions. We discussed some of the essential components, e.g., network

architecture design, training strategies, etc. that typically aid deriving such theoretical certificates. While

we sought to dispel the widely held belief about the black-box nature of deep learning algorithms for

image reconstruction, we also highlighted the gaps in theoretical understanding about well-performing



IEEE SP MAGAZINE SPECIAL ISSUE ON PHYSICS-DRIVEN MACHINE LEARNING FOR COMPUTATIONAL IMAGING 29

methods rooted in robust heuristics. The methods we reviewed in this article broadly derive their origin

from the variational regularization framework and convex analysis, two of the major theoretical pillars

that the classical methods rest on. In fact, convexity arose as a recurring theme for proving convergence

results in both deterministic and stochastic settings, which underscores the importance of ICNNs

for combining classical theory with data-driven learning. In summary, we argued that the classical

mathematical machinery can go a long way when it comes to devising and analyzing data-driven

methods, leading to better reliability and transparency of deep learning for imaging.
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