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REGULARIZATION BY INEXACT KRYLOV METHODS1

WITH APPLICATIONS TO BLIND DEBLURRING ∗2

SILVIA GAZZOLA † AND MALENA SABATÉ LANDMAN‡3

Abstract. This paper is concerned with the regularization of large-scale discrete inverse prob-4
lems by means of inexact Krylov methods. Specifically, we derive two new inexact Krylov methods5
that can be efficiently applied to unregularized or Tikhonov-regularized least squares problems, and6
we study their theoretical properties, including links with their exact counterparts and strategies to7
monitor the amount of inexactness. We then apply the new methods to separable nonlinear inverse8
problems arising in blind deblurring, where both the sharp image and the parameters defining the9
blur are unkown. When employing a variable projection method jointly with the new inexact solvers10
in this setting, the latter can naturally handle varying inexact blurring parameters while solving the11
linear deblurring subproblems, allowing for a much reduced number of total iterations and substantial12
computational savings with respect to their exact counterparts.13

Key words. Inexact Krylov methods, separable nonlinear inverse problems, variable projection14
method, Tikhonov regularization, image deblurring, blind deblurring15

AMS subject classifications. 65F20, 65F22, 65F3016

1. Introduction. Linear discrete inverse problems of the form17

(1.1) min
x∈Rn

‖Ax− b‖ , where b = btrue + e = Axtrue + e ,
‖e‖
‖btrue‖

� 1 ,18

and where e is an unknown perturbation affecting the data b, arise in many engineer-19

ing and scientific applications; see [4, 5, 18, 17]. Here and in the following, ‖·‖ denotes20

the vector 2-norm and the induced matrix 2-norm. We assume that the discretized21

forward operator A ∈ Rm×n, with m ≥ n, has full column rank with singular values22

quickly decaying and clustering at zero, so that A is ill-conditioned. Although, under23

these assumptions, problem (1.1) has a unique solution, the ill-conditioning of A and24

the presence of the noise e in b prompts the use of some regularization to recover a25

meaningful approximation of xtrue.26

In this paper we consider Tikhonov regularization, which computes27

(1.2) xtrue ≈ xλ = arg min
x∈Rn

‖Ax− b‖2 + λ2‖x− x0‖2 ,28

where an initial estimate x0 for xtrue is included. In other words, Tikhonov regu-29

larization replaces the original least squares (LS) problem (1.1) by a penalized LS30

problem, where a ‘small’ value of the regularization term ‖x − x0‖2, weighted by31

a regularization parameter λ2, is enforced. Prescribing a suitable value of λ > 032

is crucial to compute solutions that are neither under-regularized (λ too small) nor33

over-regularized (λ too big). Equivalently, with a simple change of variable, problem34

(1.2) can be reformulated as35

(1.3) zλ = arg min
z∈Rn

‖Az− r0‖2 + λ2‖z‖2 , where
r0 = b−Ax0

xλ = x0 + zλ
.36

∗Submitted to the editors DATE.
Funding: S. Gazzola is partially funded by EPSRC, under grant EP/T001593/1. M. Sabaté
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2 S. GAZZOLA AND M. SABATÉ LANDMAN

Although (1.3) has a closed-form solution, when dealing with a large-scale and un-37

structured A, and without prior knowledge of a suitable value of λ, computing a good38

zλ would potentially involve repeatedly applying a (matrix-free) iterative solver for39

LS problems, one for each considered value of λ. In this framework, many Krylov40

methods are successfully applied to either (1.1) (i.e., as stand-alone solvers that reg-41

ularize by early termination of the iterations), or (1.3) (in a so-called hybrid fashion,42

i.e., by combining projection onto Krylov subspaces of increasing dimensions and43

Tikhonov regularization, with the possibility of efficiently and adaptively choosing λ44

as the iterations progress); see, for instance, [1, 4, 13, 14] and the references therein.45

Among the Krylov methods routinely used for regularization, the mathematically46

equivalent LSQR and CGLS methods are arguably among the most popular ones, as47

their theoretical properties and practical performance are generally well-understood;48

see [16, 20].49

In many situations the (discretized) forward operator A in (1.1)–(1.3) is not fully50

known. Assuming specifically that A depends on a few unknown parameters y ∈ Rp,51

with p� n, these should be recovered replacing (1.1) by a problem of the form52

(1.4) min
x∈Rn,y∈Rp

‖A(y)x− b‖ , where b = btrue + e = A(ytrue)xtrue + e .53

This simple generalisation of (1.1) results in a much more difficult problem to solve:54

indeed, problem (1.4) is jointly nonlinear and nonconvex in (x,y), so that, in partic-55

ular, it may not have a unique solution. Moreover, since (1.4) is ill-posed, one should56

apply some regularization and consider, for instance,57

(1.5) (zλ,yλ) = arg min
z∈Rn,y∈Rp

‖A(y)z−r0‖2+λ2‖z‖2, where
r0 = b−A(y)x0

xλ = x0 + zλ
.58

The above problem generalizes (1.3); note that Tikhonov regularization is applied to59

z only, while regularization on y is implicitly enforced by assuming p � n (i.e., by60

considering a so-called reduced parameter space). Problems like (1.4)–(1.5) arise in a61

variety of signal and image processing tasks, such as instrument calibration [5, 15] and62

super-resolution [3], just to name a few. In this paper we are particularly interested in63

spatially invariant blind deblurring [4], where b is a blurred and noisy image (reshaped64

as a vector) and A(y) encodes information about a parametric blur (i.e., defined by65

the unknown parameters ytrue) that affects every pixel of the unperturbed unknown66

image xtrue (reshaped as a vector). To mitigate the complexity of problem (1.4) one67

can take advantage of separability, as the objective function in (1.4) is linear in x. For68

instance, the variable projection method [15] applied to (1.4) implicitly eliminates x,69

obtaining a reduced cost functional that depends only on y and that is optimized using70

a nonlinear LS solver. Note that, in a large-scale setting, to recover x one should still71

employ an iterative linear LS solver; i.e., one should adopt the strategies mentioned72

above for problems (1.1)–(1.3). In particular, [5] proposes a very efficient inner-outer73

iteration scheme that, while computing x for a fixed y using a LSQR-based hybrid74

method, determines a suitable regularization parameter λ on the fly; y is updated75

using a Gauss–Newton method.76

The main goals of this paper are to introduce inexact Krylov methods for regular-77

izing inverse problems (1.1)–(1.3) when exact matrix-vector products with A and AT78

cannot be performed, and to apply them to compute a solution of (1.4)–(1.5). Start-79

ing from a reformulation of the so-called inexact Golub-Kahan decomposition [11], we80

derive two new inexact Krylov solvers for LS problems (1.1) that can be regarded as81
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REGULARIZATION BY INEXACT KRYLOV METHODS 3

the inexact counterparts of LSQR and CGLS, respectively; also, we study bounds for82

the amount of inexactness, so that exact and inexact solvers have comparable accu-83

racy. We then explain how inexact LSQR and CGLS can be used in a hybrid fashion,84

i.e., to solve a Tikhonov-regularized LS problem (1.3). Exact hybrid methods are un-85

derpinned by a solid theory guaranteeing that first regularizing and then projecting86

(1.3) is equivalent to first projecting (1.1) and then regularizing; moreover, an adap-87

tive choice of the regularization parameter is possible thanks to the shift invariance of88

Krylov subspaces, see, e.g., [13, 14, 17]. When deriving inexact hybrid methods, we89

study conditions under which the new solvers keep enjoying such properties. Finally,90

we focus on the variable projection method applied to (1.4)–(1.5), in the setting of91

blind deblurring. Instead of updating y after a standard Krylov method is employed92

to recover x ∈ Rn for a fixed y 6= ytrue ∈ Rp as proposed in [5], we explain how93

the new inexact Krylov methods may allow updates of the parameters y as soon as a94

new approximation of x is available, i.e., at each iteration of the inexact linear solver.95

As far as specific conditions bounding the amount of inexactness are satisfied, this96

strategy delivers accurate results while allowing for great computational savings.97

Although we are aware of some research about the use of an inexact AT in iter-98

ative regularization methods for linear inverse problems in image deblurring [7] and99

computed tomography [10], to the best of our knowledge the systematic use of inexact100

Krylov methods for regularization and, in particular, for solving separable nonlinear101

inverse problems (1.4), (1.5), is novel. Inexact Krylov methods are however ubiquitous102

in a number of numerical linear algebra tasks, typically involving well-conditioned ma-103

trices: we refer to [24] for possible applications and a literature review, as well as for104

a comprehensive theoretical treatment and understanding of inexact Krylov methods.105

Even if the investigations in [24] may appear similar to some of the ones proposed here,106

our approach is significantly different in that: (i) we consider solvers based on the107

inexact Golub-Kahan decomposition rather than on the inexact Arnoldi algorithm;108

(ii) since A and A(y) are ill-conditioned, assuring that the exact and the inexact109

residuals are close is not enough to guarantee that the exact and inexact solutions110

are close, and alternative conditions should be derived; (iii) when considering (1.4),111

(1.5), the exact parameters ytrue are unknown and, as a consequence, the amount of112

inexactness in applying A(y) and AT (y) is unknown and some heuristics should be113

adopted to monitor it. Moreover, although [25] already considers inexact versions of114

the CG method based on either three-term recurrences or an inexact version of the115

Lanczos process, the new inexact CGLS method cannot be regarded as a straightfor-116

ward generalization of inexact CG because of the challenges in handling inexactness117

in both A and AT .118

This paper is organized as follows. Section 2 reviews some background about119

Krylov methods based on (exact) Golub-Kahan bidiagonalization, applied to (1.1) or120

to (1.3) in a hybrid fashion. Section 3 introduces the new inexact solvers based on the121

inexact Golub-Kahan decomposition, and develops some theory (including bounds for122

the amount of inexactness) that relates them to their exact counterparts. Section 4123

describes how the new inexact methods can be applied to the blind deblurring prob-124

lem, including computable strategies to define and bound inexactness; the results of125

some numerical tests are also displayed. Section 5 outlines some concluding remarks.126

Notations. In the following, matrices are denoted by boldfaced uppercase letters127

and [G]i,j denotes the (i, j)th entry of a matrix G, whose range is denoted by R(G).128

The letter I denotes the identity matrix, whose size should be clear from the context;129

ej is the jth canonical basis vector (i.e., the jth column of I); 0 denotes an array130

of zeros. Vectors are denoted by boldfaced lowercase letters and [g]i denotes the ith131
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4 S. GAZZOLA AND M. SABATÉ LANDMAN

entry of a vector g. The letter r is routinely used to denote residual vectors.132

2. Combining Krylov methods and Tikhonov regularization. In this sec-133

tion we assume that there is no inexactness in matrix-vector products with A and134

AT . We first recall the Golub-Kahan (GK) algorithm and its relations with the sym-135

metric Lanczos algorithm, and we then explain how both algorithms can be employed136

to approximate the solution of problems (1.1) and (1.3).137

Let x0 be an initial guess for the unknown x and let r0 = b−Ax0. Starting from138

(2.1) u1 = r0/‖r0‖ = r0/β, v1 = ATu1/‖ATu1‖ = ATu1/α1 ,139

the ith GK iteration computes140

(2.2) βi+1ui+1 = Avi−αiui , αi+1vi+1 = ATui+1−βi+1vi, i = 1, 2, . . . , n−1,141

with αi+1 and βi+1 chosen so that ‖vi+1‖ = 1 and ‖ui+1‖ = 1, respectively. In the142

following we assume that αi+1 6= 0 or βi+1 6= 0, i = 1, . . . , n − 1 (i.e., GK does not143

break down), so that relations (2.2) are always well-defined; we also note that, in144

practice, GK applied to (1.1) is feasible only if i� n iterations are computed. After145

k GK iterations are performed, one can write partial matrix factorizations of the form146

AVk = Uk+1B̄k , ATUk+1 = Vk+1B
T
k+1 ,(2.3)147

where Vk+1 = [v1, . . . ,vk,vk+1] ∈ Rn×(k+1) and Uk+1 = [u1, . . . ,uk+1] ∈ Rm×(k+1),148

are matrices whose orthonormal columns span the Krylov subspaces149

Kk+1(ATA,AT r0) and Kk+1(AAT , r0), respectively; Bk+1 ∈ R(k+1)×(k+1) is the150

lower bidiagonal matrix having [Bk+1]i,i = αi, i = 1, . . . , k+1 and [Bk+1]i+1,i = βi+1,151

i = 1, . . . , k; B̄k ∈ R(k+1)×k is obtained by removing the last column of Bk+1.152

The symmetric Lanczos [23, Chapter 6] and the GK algorithms are closely related:153

indeed, multiplying the first expression in (2.3) from the left by AT , and using again154

the second equation in (2.3), one obtains155

(2.4) ATA︸ ︷︷ ︸
=:Â

Vk = ATUk+1B̄k = Vk+1 BT
k+1B̄k︸ ︷︷ ︸
=:T̄k

= Vk B̄T
k B̄k︸ ︷︷ ︸

=:Tk

+αk+1βk+1vk+1e
T
k ,156

so that Vk can be regarded as the matrix generated by performing k steps of the157

symmetric Lanczos algorithm applied to ATA, with initial vector AT r0. We remark158

that the symmetric Lanczos algorithm is mathematically equivalent to the Arnoldi159

algorithm, the symmetric tridiagonal matrix Tk being linked to the fact that ATA160

is symmetric.161

LSQR is an iterative solver for (1.1) based on GK bidiagonalization (2.3). The162

kth iteration of LSQR computes163

(2.5) qk = arg min
q∈R(Uk+1B̄k)=R(AVk)

‖q− r0‖ .164

In other words, the kth iteration of LSQR projects the solution of (1.1) onto R(Vk)165

orthogonally to R(AVk). Equivalently, taking q = Uk+1B̄ks in the above relation,166

and exploiting the orthonormality of the columns of Uk+1, leads to the most common167

LSQR problem formulation168

(2.6) sk = arg min
s∈Rk

‖B̄ks− βe1‖ , i.e., (B̄T
k B̄k)sk = B̄T

k (βe1) ,169
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REGULARIZATION BY INEXACT KRYLOV METHODS 5

where the kth approximate solution to (1.1) is given by xk = x0 + zk = x0 + Vksk.170

LSQR is also mathematically equivalent to CGLS, i.e., the CG method applied to171

the normal equations ATAx = ATb associated to (1.1). Namely, (2.6) can be also172

expressed as173

(2.7)

=B̄Tk B̄k︷ ︸︸ ︷
VT
k (ATA)Vk sk =

B̄TkUT
k+1r0=B̄Tk βe1︷ ︸︸ ︷

VT
k AT r0 ,174

where equation (2.4) has been used to reformulate the leftmost quantity, and relations175

(2.1) and (2.3) have been used to get the rightmost equalities. This essentially means176

that CGLS computes177

(2.8) qk ∈ R(Vk+1T̄k) = R(ATAVk) such that

=:̂r0︷ ︸︸ ︷
AT r0−qk ⊥ R(Vk) ,178

i.e., CGLS projects the solution of ATAx = ATb ontoR(Vk) orthogonally toR(Vk).179

LSQR and CGLS can be adopted in a hybrid fashion to solve (1.3), too. In180

this setting, assuming for now that λ is fixed, we are faced with many equivalences181

that involve the interplay of regularization and projection, and leverage properties of182

Krylov basis vectors (such as orthonormality or shift invariance). Despite the specific183

formulation, the kth iteration of both the hybrid LSQR and CGLS methods computes184

(2.9) xtrue ≈ xλ,k = x0 + Vksλ,k ∈ Kk(ATA,AT r0) = Kk(ATA + λ2I,AT r0) .185

Starting from (1.3), and exploiting (2.1) and (2.3), we can write186

(2.10) sλ,k = arg min
s∈Rk

‖AVks− r0‖2 +λ2 ‖Vks‖2=arg min
s∈Rk

∥∥B̄ks− βe1

∥∥2
+λ2 ‖s‖2 .187

Alternatively, starting from the reformulation of (1.3) as an augmented LS problem,188

and exploiting similar properties, we can write189

(2.11) sλ,k = arg min
s∈Rk

∥∥∥∥[ A
λI

]
Vks−

[
r0

0

]∥∥∥∥2

= arg min
s∈Rk

∥∥∥∥[ B̄k

λI

]
s−

[
βe1

0

]∥∥∥∥2

.190

Obviously (2.10) and (2.11) are equivalent and, in particular, the leftmost quantities in191

both equations can be regarded as Tikhonov-regularized versions of the projected LS192

problem (2.6) solved by LSQR. Therefore, first regularizing (considering a penalized193

or augmented LS problem) and then projecting is equivalent to first projecting and194

then regularizing (considering a penalized or augmented LS problem, respectively).195

Note that, since Vk is generated with respect to A and r0 (i.e., it is independent of196

λ), one can potentially change λ at each GK iteration so that, if λ = λk at the kth197

iteration of the hybrid methods (2.10) and (2.11), an instance of problems (1.3) with198

λ = λk is approximated. This proves strategic in case a suitable value of λ is not199

known a priori (see [6]). Finally, we can consider the normal equations formulation200

associated to the Tikhonov augmented LS problem and, similarly to (2.7), we compute201

sλ,k =
(
VT
k (ATA + λ2I)Vk

)−1
VT
k (AT r0)(2.12)202

= (Tk + λ2I)−1‖AT r0‖e1 =
(
B̄T
k B̄k + λ2I

)−1
B̄T
k (βe1) ,203

where we have exploited (2.1) and (2.4). Note that sλ,k in (2.12) expresses the solution204

to the normal equations associated to (2.11), so that (2.12) is equivalent to (2.10)205

and (2.11). Also in this case, by exploiting the shift-invariance of Krylov subspaces206

(2.9), one can see that applying CG to the shifted (regularized) normal equations is207

equivalent to shifting (regularizing) the projected normal equations, implying that λ208

can be adaptively set during the iterations.209
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6 S. GAZZOLA AND M. SABATÉ LANDMAN

3. Combining inexact Krylov methods and Tikhonov regularization.210

In this section we first present the inexact Golub-Kahan decomposition, and we show211

how it can be employed to solve linear systems of the form (1.1). We then derive a212

couple of strategies to combine the inexact Golub-Kahan decomposition and Tikhonov213

regularization. Unfortunately, only a few of the equivalences presented in Section 2214

for the exact case extend to the inexact case.215

3.1. Inexact Golub-Kahan (iGK) decomposition. Assume that the actions216

of A and AT are just approximately available. Then the solution of linear systems217

of the form (1.1) can be efficiently approximated using methods based on the inexact218

Golub-Kahan (iGK) algorithm that, at the ith iteration, only uses the available actions219

of (A + Ei) and (A + Fi)
T . Starting from220

(3.1)
u1 = r0/‖r0‖ = r0/β, v1 = (A + F1)Tu1/‖(A + F1)Tu1‖

= (A + F1)Tu1/[L]1,1 ,
221

the ith iteration of the inexact Golub-Kahan (iGK) algorithm computes222

(3.2)
ūi = (A + Ei)vi, u = (I−UiU

T
i )ūi, ui+1 = u/‖u‖ ,

v̄i+1 = (A + Fi+1)Tui+1, v = (I−ViV
T
i )v̄i+1, vi+1 = v/‖v‖ ,223

where Ui = [u1, . . . ,ui] ∈ Rm×i, Vi = [v1, . . . ,vi] ∈ Rn×i are matrices with or-224

thonormal columns. Note that, if x0 6= 0, the starting vector r0 in (3.1) may already225

be affected by some inexactness, as r0 = b − (A + E0)x0; by committing a slight226

abuse of notation, here and in the following we will still denote such quantity by r0,227

even if it may be different from the one appearing in (1.3) and (2.1). After k iGK228

iterations are performed, one can write partial matrix factorizations of the form229

[(A + E1)v1, ..., (A + Ek)vk] = Uk+1Mk ,[
(A + F1)Tu1, ..., (A + Fk+1)Tuk+1

]
= Vk+1L

T
k+1 ,

230

where Mk ∈ R(k+1)×k is upper Hessenberg with [Mk]j,i = uTj ūi and [Mk]i+1,i = ‖u‖231

for 1 ≤ j ≤ i ≤ k, and Lk+1 ∈ R(k+1)×(k+1) is lower triangular with232

[Lk+1]i+1,j = vTj v̄i+1 and [Lk+1]i+1,i+1 = ‖v‖ for 1 ≤ j ≤ i ≤ k. Note that, to233

impose orthogonality, Mk and Lk+1 have to be considered rather than the bidiago-234

nal Bk+1 (and its variant) as in (2.3). The above relations can be re-written in the235

following even more compact form236

(3.3)
(A + Ek)Vk = Uk+1Mk

(A + Fk+1)TUk+1 = Vk+1L
T
k+1

, where
Ek =

∑k
i=1 Eiviv

T
i

Fk+1 =
∑k+1
i=1 (uiu

T
i )Fi

.237

Such partial decompositions involving the matrices A and AT were first introduced in238

[11] in the framework of matrix function computations; also, the iGK decomposition239

bears similarities to the flexible Golub-Kahan decomposition introduced in [2].240

Similarly to relation (2.4) in the exact case, starting from (3.3) and multiplying241

by (A +Fk+1)T both sides of the first equation appearing therein, one can derive the242

inexact Lanczos (iLanczos) decomposition243

(

=Â︷ ︸︸ ︷
ATA +

=:Êk︷ ︸︸ ︷
FTk+1A + ATEk + FTk+1Ek)Vk = Vk+1

=:Ĥk︷ ︸︸ ︷
LTk+1Mk(3.4)244

= VkL̄
T
kMk + [Ĥk]k+1,kvk+1e

T
k ,245
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REGULARIZATION BY INEXACT KRYLOV METHODS 7

where L̄k ∈ R(k+1)×k is the matrix obtained by removing the last column of Lk+1.246

Note that, although the iLanczos decomposition involves the symmetric matrix ATA,247

(Â+Êk) is generally non symmetric and, contrarily to the exact Lanczos case (2.4), an248

upper Hessenberg matrix Ĥk ∈ R(k+1)×k appears instead of a symmetric tridiagonal249

matrix Tk. Moreover, while (2.4) was a particular case of the Arnoldi decomposition250

(applied to Â), the iLanczos decomposition (3.4) cannot generally be regarded as251

a particular case of an inexact Arnoldi (iArnoldi) decomposition (associated to Â).252

Indeed, starting from viA1 = v1 as in (3.1), the ith iArnoldi iteration computes253

v̄i = (A + Fi+1)T (A + Ei)v
iA
i , v = (I−ViA

i (ViA
i )T )v̄i, viAi = v/‖v‖ ,254

where ViA
i = [viA1 , . . . ,viAi ] ∈ Rn×i has orthonormal columns. After k iArnoldi255

iterations are performed, one can write a partial matrix factorization of the form256 [
(A + F2)T (A + E1)viA1 , ..., (A + Fk+1)T (A + Ek)viAk

]
= ViA

k+1H
iA
k ,257

where HiA
k ∈ R(k+1)×k is upper Hessenberg with [HiA

k ]j,i = vTj v̄i and [HiA
k ]i+1,i = ‖v‖258

for j ≤ i ≤ k. More compactly,259

(3.5)
(Â + Ê iAk )ViA

k = ViA
k+1H

iA
k ,

where Ê iAk =
∑k
i=1(ATEi + FTi+1A + FTi+1Ei)v

iA
i (viAi )T .

260

By comparing (3.4) and (3.5), one can see that, for j = 1, . . . , k, iLanczos computes261

(3.6) ATAvj + ATEjvj + Fk+1Uk+1Mkej︸ ︷︷ ︸
=ATEjvj+

∑j+1
i=1 [Mk]i,jFTi ui=: êj

=

j+1∑
i=1

[Ĥk]j,ivi ,262

while iArnoldi computes263

ATAviAj + ATEjv
iA
j + FTj+1AviAj + FTj+1Ejv

iA
j =

j+1∑
i=1

[HiA
k ]j,iv

iA
i .264

It is clear that the two expressions above are generally different. They however co-265

incide in specific instances, e.g., when Fj+1 = 0, j = 1, . . . , k, i.e., when the matrix-266

vector products with AT are computed exactly.267

3.2. Linear solvers based on the iGK decomposition. We define the inex-268

act LSQR (iLSQR) method as an iterative solver for (1.1) that, at the kth iteration,269

computes270

(3.7) qk = arg min
q∈R(Uk+1Mk)

‖q− r0‖ .271

Thanks to the properties of the matrices appearing within the iGK decomposition272

(3.3), the equalities273

‖Mks− βe1‖ = ‖Uk+1Mks− r0‖ = ‖(A + Ek)Vks− r0‖274

hold, so that iLSQR equivalently computes275

(3.8) sk = arg min
s∈Rk

‖Mks− βe1‖ , i.e., (MT
kMk)sk = MT

k (βe1) ,276
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and takes xk = x0 +zk = x0 +Vksk. Although (3.7) and (3.8) are formally equivalent277

to (2.5) and (2.6), respectively (i.e., the analogous relations written for LSQR), be-278

cause of the presence of Ek in the first equation in (3.3), the kth iLSQR iteration does279

not minimize the exact residual ‖r0−Az‖ among the vectors z ∈ R(Vk), and R(Vk)280

is not a Krylov subspace anymore. Note that this is analogous to what happens in281

the case of GMRES and inexact GMRES; see [24] for more details.282

We define the inexact CGLS (iCGLS) method to be an iterative solver for (1.1)283

that, at the kth iteration, computes284

(3.9) qk ∈ R(Vk+1Ĥk) such that (A + Fk+1)T r0 − qk ⊥ R(Vk) .285

Note that, contrarily to exact case (2.8), iCGLS does not impose an orthogonality286

condition on the exact normal equation residual AT rk, and additional care should be287

taken because (A+Fk+1)T r0 = (A+F1)T r0 is also potentially affected by some errors.288

Equivalently, by exploiting the iLanczos decomposition (3.4), instead of imposing (3.9)289

one may impose290

(3.10) VT
k (Â + Êk)Vksk = VT

k (A + Fk+1)T r0 ,291

directly, so that iCGLS solves292

(3.11) L̄TkMksk = [L̄k]1,1βe1293

and takes xk = x0 + zk = x0 + Vksk.294

We must stress that iLSQR is not equivalent to iCGLS anymore (this is evident295

comparing equations (3.8) and (3.11)); also, differently to the exact case,296

MT
k βe1 6= ‖AT r0‖e1. However, the kth iteration of both iLSQR and iCGLS computes297

(3.12) xk = x0 + Vksk , where Vk is defined in (3.3) or, equivalently, in (3.4).298

In the following we will introduce two different strategies to combine Tikhonov299

regularization and inexact Krylov methods, based on iLSQR and iCGLS, respectively.300

3.3. A hybrid method based on iLSQR. A first way of combining iGK301

and Tikhonov regularization consists in applying the iLSQR condition (3.7) to the302

augmented LS problem formulation of Tikhonov regularization (1.3) assuming, for303

the moment, that λ is fixed. Namely, we extend relations (2.11) to the inexact case304

by computing, at the kth iteration,305

qλ,k = arg min
q∈R(Wλ,k)

∥∥∥∥q− [ r0

0

]∥∥∥∥ , where Wλ,k =

[
Uk+1Mk

λVk

]
.(3.13)306

Exploiting the relation307

(3.14)

[
A + Ek
λI

]
Vk =

[
Uk+1 0

0 Vk

] [
Mk

λI

]
=

[
Uk+1Mk

λVk

]
,308

which is a trivial extension of (3.3), and recalling the definition of u1 in (3.1), it is309

easy to see that solving problem (3.13) is equivalent to computing qλ,k = Wλ,ksλ,k,310

where311

sλ,k = arg min
s∈Rk

∥∥∥∥[ Mk

λI

]
s−

[
βe1

0

]∥∥∥∥2

= arg min
s∈Rk

‖Mks− βe1‖2 + λ2‖s‖2(3.15)312

= (MT
kMk + λ2I)−1MT

k (βe1).(3.16)313
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The kth approximate solution to (1.3) is then given by xλ,k=x0 + zλ,k=x0 + Vksλ,k.314

In the following we refer to the method in (3.13) or (3.15)–(3.16) as hybrid-iLSQR.315

Looking at the above equations, it is evident that first regularizing and then projecting316

(i.e., the path that we just followed) is equivalent to first projecting and then regular-317

izing. Indeed, the same problem (3.15) may be obtained by first applying iLSQR to318

(1.1) and then regularizing the projected LS problem (3.8) (using the augmented LS319

formulation of Tikhonov regularization). Note that, accounting for inexactness and320

using relations (3.3) and (3.14), taking xλ,k = x0 + Vksλ,k, one can link (3.15) to the321

full-dimensional problem322

sλ,k = arg min
s∈Rk

∥∥∥∥[ A + Ek
λI

]
Vks−

[
r0

0

]∥∥∥∥2

.(3.17)323

Looking at the above formulation it is evident that the optimality properties of hybrid324

LSQR (2.10) and hybrid-iLSQR are different, as the functional minimized by the latter325

is an error-corrupted version of the augmented-LS Tikhonov functional.326

3.4. A hybrid method based on iCGLS. A second way of combining iGK327

and Tikhonov regularization consists in extending (3.4) and condition (3.9) to the328

normal equations associated to the augmented LS problem formulation of Tikhonov329

regularization (1.3) assuming, for the moment, that λ is fixed. Namely, at the kth330

iteration, we impose331

(3.18) qλ,k ∈ R(Wλ,k) = R(Vk+1(Ĥk + λ2Ī)) , (A + Fk+1)T r0 − qλ,k ⊥ R(Vk) ,332

where Ī ∈ R(k+1)×k denotes the identity matrix of order (k + 1) without its last col-333

umn. Equivalently, we can apply the iCGLS condition (3.10) to the normal equations334

associated to the augmented LS problem formulation of Tikhonov regularization (1.3)335

assuming, for the moment, that λ is fixed. That is, we compute sλ,k such that336 (
VT
k (Â + Êk + λ2I)Vk

)
sλ,k = VT

k (A + Fk+1)T r0 , i.e.,(3.19)337

(L̄TkMk + λ2I)sλ,k = [L̄k]1,1βe1 ,338

and then take xλ,k = x0 + Vksλ,k. In the following we refer to the method in339

(3.18) or (3.19) as hybrid-iCGLS method. Looking at equation (3.19), it is evident340

that applying iCGLS to the shifted normal equations (i.e., the path that we just341

followed) is equivalent to shifting the projected normal equations (so that, similarly342

to hybrid LSQR, regularization and projection are interchangeable). However note343

that, differently from hybrid CGLS (2.12), hybrid-iCGLS projects the error-corrupted344

normal equations.345

3.5. Remarks about iLSQR, iCGLS, and their hybrid counterparts.346

As already mentioned in the previous sections, one of the upsides of using hybrid347

methods consists in the fact that they allow efficient and adaptive regularization348

parameter choice on the fly. This is essentially linked to the shift-invariance property349

of the approximation subspace for the solution, which is the same for LSQR-based350

and CGLS-based methods; see (2.9). Before considering possible parameter choice351

strategies for hybrid methods based on iGK, it is therefore natural to assess if shift352

invariance is still enjoyed by the inexact approximation subspace for the solution; see353

(3.12). In the iCGLS case we can state the following.354

Proposition 3.1. Assume that k iLanczos iterations (3.4) have been performed,355

so that the partial decomposition (3.4) can be written. Assume that {λi}i=1,...,k ⊂ R+
0356
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10 S. GAZZOLA AND M. SABATÉ LANDMAN

is such that λi 6= λj if i 6= j. If Êk is independent of λi (or, equivalently, both Ek and357

Fk+1 are independent of λi), i = 1, . . . , k, then the subspace R(Vk) is shift-invariant.358

Moreover, if Fk+1 = 0 and the error term in (3.4) is of the form359

(3.20)
Êi,Λ̃k =

∑i
j=1(Ej + λ̃2

jI)vjv
T
j = Êi + ViΛ̃

2

iV
T
i ,

Λ̃i = diag(λ̃1, . . . , λ̃i), i = 1, . . . , k,
360

then the subspace R(Vk) is shift-invariant.361

Proof. The proof follows directly from (3.4). Indeed, for the first statement, since

Êi is independent of λi, we have

(Â + Êi)Vi + λ2
iVi = Vi+1Ĥi + λ2

iVi+1Ī = Vi+1(Ĥi + λ2
i Ī) , i = 1, . . . , k .

For the second statement, since Êi in (3.20) is independent of λi, we get362

(Â + Êi,Λ̃k + λ2
i I)Vi = (Â + Êi)Vi + ViΛ̃

2

iV
T
i Vi + λ2

i IVi = Vi+1Ĥi + ViΛ̃
2

i + λ2
iVi363

= Vi+1

(
Ĥi +

[
Λ̃

2

i

0

]
+ λ2

i Ī

)
, i = 1, . . . , k . �364

We now derive bounds on norms of relevant quantities computed by the exact and365

inexact solvers. We start by studying the relationship between the exact residual rek366

and the inexact residual rk, k = 1, 2, . . . , extending to iLSQR and iCGLS the relations367

derived in [24] for inexact GMRES and FOM. When considering iLSQR (3.8), it is368

natural to bound the distance between the exact and the inexact residuals as follows369

‖rek − rk‖ = ‖re0 −Axk − (r0 − (A + Ek)xk)‖ = ‖E0x0 + EkVksk‖370

≤ ‖E0x0‖+

k∑
l=1

‖El‖ |[sk]l|371

Directly from the relation above, the following bound for the norm of exact residual372

can be derived373

‖rek‖ ≤ ‖rk‖+ ‖E0x0‖+

k∑
l=1

‖El‖ |[sk]l| .(3.21)374

Note that the residuals rk, k = 1, 2 . . . are the only ones that we can assume available375

(and whose norms can be efficiently computed, as ‖rk‖ = ‖Mksk − βe1‖). In the376

following we focus on bounds for the norm of the exact residuals only.377

Similar but somewhat more complicated estimates hold when considering iCGLS,378

as errors in both A and AT must be included; in particular, the right-hand-side vector379

in equation (3.10) is affected by errors in both r0 and AT . Indeed,380

r̂0 = (A + F1)T r0 = AT (b−Ax0)︸ ︷︷ ︸
=:̂re0

+ FT1 b︸︷︷︸
=:b̂0

− (FT1 A + ATE0 + FT1 E0)x0︸ ︷︷ ︸
=:Ê0x0

.381

When bounding the normal equations residual norm, one should then consider382

‖ r̂e0 − ÂVksk︸ ︷︷ ︸
=:̂rek

‖ = ‖r̂0 − b̂0 + Ê0x0 − (Â + Êk)Vksk + ÊkVksk‖383

≤ ‖[Lk]1,1βe1 − Ĥksk‖+ ‖b̂0‖+ ‖Ê0x0‖(3.22)384

+

k∑
j=1

‖ATEj‖|[sk]j |+
k∑
j=1

(
j+1∑
i=1

|[Mk]i,j | ‖FTi ‖

)
|[sk]j | ,385
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where the last two sums are obtained applying standard bounds to êj in (3.6).386

Contrarily to the well-posed case, when solving ill-posed problems using iLSQR387

and iCGLS, one should not expect rek and r̂ek to be close to zero, as this would imply388

data overfitting (recall the discussion in Section 2). As a consequence, one can allow389

more inexactness. The above relations extend to iLSQR and iCGLS used in a hybrid390

fashion.391

When considering hybrid-iLSQR (3.15) with a fixed λ, let us define392

reλ,k =:

[
re0
0

]
−
[

A
λI

]
Vksλ,k, rλ,k =:

[
r0

0

]
−
[

A + Ek
λI

]
Vksλ,k ,393

so that394 ∥∥reλ,k∥∥ =

∥∥∥∥rλ,k +

[
Ek
0

]
Vksλ,k +

[
E0

0

]
x0

∥∥∥∥395

≤ ‖rλ,k‖+ ‖E0x0‖+

k∑
l=1

‖El‖|[sλ,k]l| .(3.23)396

In order for the exact and inexact residual norms to be relatively close, one should397

have an estimate of the desired magnitude of ‖reλ,k‖. Contrarily to ‖rek‖, even running398

n iterations of (exact) hybrid LSQR would not deliver a value of ‖reλ,k‖ close to zero.399

We have that, ideally, if xtrue − x0 =: ztrue and e were known, the most desirable400

value of the objective function in (1.3) would be401 ∥∥reλ,k∥∥ =
(
‖Aztrue − re0‖2 + λ2‖ztrue‖2

)1/2
=
(
‖e‖2 + λ2‖ztrue‖2

)1/2
.402

Now, depending on the application, estimates for ‖e‖2 and ‖ztrue‖2 may be available.403

If not, one may use a noise estimator for the former (see, e.g., [8]) and, recalling that404

‖re0‖ ≤ ‖A‖‖ztrue‖+ ‖e‖ (directly from (1.1)), and ‖r0‖ ≤ ‖re0‖+ ‖E0x0‖ ,405

take the lower bound406

‖ztrue‖ ≥
1

‖A‖
(‖r0‖ − ‖e‖ − ‖E0x0‖)(3.24)407

for the latter, where ‖A‖ should be estimated as well.408

When considering hybrid-iCGLS (3.19) with a fixed λ, the estimates are very409

similar to the ones written above in the iCGLS case. Namely,410

‖r̂eλ,k‖ ≤ ‖r̂λ,k‖+ ‖b̂0‖+ ‖Ê0x0‖(3.25)411

+

k∑
j=1

‖ATEj‖|[sλ,k]j |+
k∑
j=1

(
j+1∑
i=1

|[Mk]i,j | ‖FTi ‖

)
|[sλ,k]j |412

where r̂eλ,k := r̂e0 − (Â + λ2I)zλ,k and r̂λ,k = r̂0 − ((Â + Êk) + λ2I)zλ,k. We should413

however stress that, differently from all the other estimates so far derived, ‖r̂eλ,k‖414

should be close to zero when, given a suitable value of λ, a regularized solution is415

computed (these are indeed the optimality conditions for problem (1.3)); therefore, a416

strict monitoring of the inexactness in r̂λ,k may be necessary.417

We conclude this section by mentioning that inequalities (3.21), (3.22), (3.23) and418

(3.25), being expressed with respect to the kth projected solutions sk or sλ,k, cannot be419
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12 S. GAZZOLA AND M. SABATÉ LANDMAN

straightforwardly employed when, at the jth iteration of the inexact solvers, 1 ≤ j ≤ k,420

one may need to bound every ‖Ej‖ to guarantee that ‖rk‖, ‖r̂k‖, ‖rλ,k‖ and ‖r̂λ,k‖ are421

close enough to their exact counterparts. To allow this, [24] considers upper bounds422

for the magnitude of the components of the kth projected solution depending on the423

norm of the jth inexact residual and the smallest singular value of the kth projected424

coefficient matrix: if the latter can be easily estimated ahead of the iterations, ‖Ej‖425

can then be adaptively bounded. This approach can be straightforwardly extended to426

the new methods introduced in this section. More precisely, denoting by σk(C) the427

kth singular value of a matrix C, one can state that, if428

(3.26) ‖Ej‖ ≤
σk(Mk)

k

1

‖rj−1‖
ε and ‖Ej‖ ≤

(σk(MT
kMk + λ2I))1/2

k

1

‖rλ,j−1‖
ε ,429

then the last term in the last inequality in (3.21) and (3.23), respectively, is bounded430

by ε. Similar bounds can be derived for the iCGLS-based solvers (3.22), (3.25).431

Although a careful analysis of the behavior of σk(Mk) and ‖rj−1‖ still has to be per-432

formed for iLSQR, it is well known that, if the (exact) GK algorithm were adopted433

in the framework of (1.1), then σk(Mk) would eventually be numerically zero, while434

‖rj−1‖ would eventually stabilize around ‖e‖; see [12, 13, 19]. This trend is en-435

hanced in the case of severely ill-posed problems. If such a behavior is also assumed436

when using iGK, the first bound in (3.26) would eventually prescribe a numerically437

zero ‖Ej‖, while the second bound in (3.26) would be more permissive, in that438

(σk(MT
kMk + λ2I))1/2 would eventually stabilize around λ. A numerical illustration439

is given in Section 4.2.440

4. Inexact Krylov methods for blind deblurring. In this section we explain441

how the inexact solvers presented in Section 3 can be adopted to solve separable442

nonlinear inverse problems of the form (1.4), which we compactly rewrite as443

(zλ,yλ) = arg min
z∈Rn,y∈Rp

g(z,y), where

g(z,y) = ‖F (z,y)‖2
F (z,y)= Ãλ(y)z− r̃0

Ãλ(y) = [ AT (y), λI ]T, r̃0 = [rT0 ,0
T ]T

xλ = x0 + zλ

.(4.1)444

In particular, we will target blind image deblurring problems using a variable pro-445

jection method, and we will display the results of some numerical tests, including446

comparisons with other Krylov-based approaches for blind deconvolution.447

4.1. Problem formulation. Here and in the following, the unknown x ∈ Rn448

appearing in (1.1) is a vectorialized image obtained by stacking the columns of the449

2D image X ∈ RN×N , with n = N2. Notation-wise, we denote this operation by450

x = vec(X). The matrix A ∈ Rn×n models a spatially invariant blurring process, i.e.,451

a convolution process defined assigning a point spread function (PSF) that describes452

the deformation undergone by each entry (pixel) of X, and boundary conditions (BC)453

that prescribe the behavior of the pixels at the boundaries of X. Conventionally (see,454

e.g., [5]), a PSF P ∈ RN×N is a sparse image with only a few nonzero pixels located455

at the center of P. In the parametric model adopted here, the entries of the PSF are456

assigned an analytical expression depending on some parameters y: such a parametric457

PSF is denoted by P(y). A parameter-dependent blurring matrix may be denoted by458

A(P(y)), using an alternative notation for A(y) appearing in (4.1). In the following459

we consider Gaussian blurs, where y = [σ1, σ2, ρ]T and the (i, j)th entry of the PSF460
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centred at pixel (χ1, χ2) reads461

(4.2) [P(y)]i,j = c(σ1, σ2, ρ) exp

(
−1

2

[
i− χ1

j − χ2

]T [
σ2

1 ρ2

ρ2 σ2
2

]−1 [
i− χ1

j − χ2

])
.462

Here σ1 and σ2 determine the spread of the Gaussian, and ρ determines its orientation;463

c(σ1, σ2, ρ) is a scaling factor introduced so that
∑N
i,j=1[P(y)]i,j = 1. Note that464

(4.3) σ2
1σ

2
2 − ρ4 > 0465

should also be imposed for (4.2) to be meaningful. An important property of the466

blurring matrix A is that, thanks to its particular structure,467

(4.4) A(y)x = A(y)vec(X) = A(P(y))vec(X) = A(X)vec(P(y)) .468

When considering blind deblurring within this framework, the parameters y = ytrue469

defining the blur are unknown and should be recovered alongside an approximation470

of x. Although the approaches described below generalize to other BCs, Reflexive (or471

Neumann) BC (fixed during the iterative solver) are assumed from now on.472

Up to Section 4.4, we give some numerical illustrations of the behaviour of inexact473

solvers on a specific simple test problem generated as follows. We take the well-474

known satellite test image of size 256×256 pixels from [21]: we apply a symmetric475

Gaussian blur (4.2) with parameters ytrue = [2.5, 2.5, 0]T (so that only one blurring476

parameter has to be recovered), followed by corruption by Gaussian white noise of477

level ‖e‖/‖btrue‖ = 10−2. Exact and corrupted images, together with the exact PSF,478

are displayed in Figure 1. The quality of the reconstructions (for both x and y) will479

be measured by the relative reconstruction error, i.e.,480

RREx =
‖x− xtrue‖
‖xtrue‖

, RREy =
‖y − ytrue‖
‖ytrue‖

.481

Exploiting the fact that (4.1) is linear in z = x − x0, the variable projection482

method [15] implicitly eliminates the dependence on the linear parameter z, and483

obtains a reduced cost functional that depends on y only. More precisely, using the484

same notations as in (4.1), we introduce the functional485

(4.5) h(y) := g(zλ(y),y) , where
zλ(y) = arg minz∈Rn g(z,y)

= (AT (y)A(y) + λ2I)−1AT (y)r0
,486

and take xλ(y) = x0 + zλ(y). We then apply Gauss-Newton to minimize h(y), so487

that we have to compute the gradient488

(4.6) ∇yh(y) =
dzλ
dy
∇zλg(zλ,y) +∇yg(zλ,y) = ∇yg(zλ,y) = JThF (zλ,y) ,489

where Jh is the Jacobian of the function F defined in (4.1), i.e.,490

(4.7) Jh =

[
d(A(y)zλ)/dy

0

]
=

[
Ĵh
0

]
.491

In deriving (4.6) we used the chain rule and, in the penultimate equality, the fact that492

∇zλg(zλ,y) = 0 because of the definition of zλ(y) in (4.5). The main steps involved in493

the application of the Gauss-Newton method to minimize h(y) in (4.5) are summarized494
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in Algorithm 4.1, lines 7 to 9. As observed in [5], the Jacobian Ĵh ∈ Rn×p can be495

computed analytically exploiting the property (4.4) and, since p� n, the LS problem496

in line 8 of Algorithm 4.1 can be conveniently solved. The steplength γl in line 9 of497

Algorithm 4.1 can be determined using a line search (such as an Armijo rule), which498

may require a repeated computation of zλ(y) (see, e.g., [26]). We emphasise that,499

in the setting of unstructured large-scale problems, two main challenges arise: first,500

zλ(y) cannot be computed directly using the formula appearing in (4.5); second, a501

suitable value of the regularization parameter λ may not be known in advance of the502

iterations and may depend on the current value of y. The authors of [5] devise an503

efficient and effective way of overcoming these challenges by using the LSQR-based504

hybrid method (2.10), with adaptive regularization parameter choice and a stopping505

criterion based on GCV: this is summarized in Algorithm 4.1, lines 3 to 6.

Algorithm 4.1 Variable projection with Gauss-Newton and hybrid LSQR solver

1: Choose initial guesses x0 and y0.
2: for l = 1, 2, . . . until a stopping criterion is satisfied do
3: for k = 1, 2, . . . until a stopping criterion is satisfied do
4: Expand Kk(A(yl−1)TA(yl−1),A(yl−1)T r0) using GK (2.3)
5: Compute xλ,k solving problem (2.10) with adaptive choice of λ
6: end for
7: Compute the residual rl = b−A(yl−1)xλ,k
8: Compute dl = arg mind ‖Ĵhd− rl‖
9: Update yl = yl−1 + γldl (setting the steplength γl)

10: Update x0

11: end for

506

4.2. Solution by inexact Krylov methods and error control. The method507

outlined in Algorithm 4.1 involves an inner-outer iteration scheme, where a hybrid508

LSQR method fully runs for each value of the blurring parameters determined within509

the Gauss-Newton outer iterations. The basic idea leading to the use of inexact Krylov510

methods in the setting of blind deblurring is to allow Gauss-Newton updates of the511

blurring parameters at each iteration of the hybrid method used to approximate the512

deblurred image. This implies that the coefficient matrix for the computation of zλ(y)513

in (4.1) is applied with a varying amount of inexactness, using the hybrid-iLSQR or514

the hybrid-iCGLS methods (Section 3.3 and 3.4, respectively) rather than the hybrid515

LSQR. The bounds derived in Section 3.5 should be employed to monitor the effect516

of inexactness on the solution: when exceeding the tolerated amount of inexactness,517

the hybrid inexact methods should be restarted. In the following we explain how518

inexactness is defined in the blind deblurring setting, and we tailor the iGK algorithm519

to this application; a sketch is provided in Algorithm 4.2. Note that only the hybrid-520

iLSQR method will be considered from now on: the derivations below can be easily521

extended to hybrid-iCGLS, which performs very similarly to hybrid-iLSQR on the522

tested problems.523

Defining inexactness in the setting of blind deblurring is not straightforward:524

since ytrue is unknown, A(ytrue) is unavailable and the error in A(yk) cannot be525

computed. Our pragmatical point of view is to consider as exact blurring matrix the526

latest computed approximation of A(y). That is, if j − 1 iterations of Algorithm 4.2527

(lines 3 to 9) are performed, A(yj−1) is regarded as the exact coefficient matrix for528
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(a) xtrue (b) P(ytrue) (c) b

Fig. 1: Illustrative satellite test problem. (a) Exact test image xtrue. (b) Blow
up (400%) of the exact Gaussian PSF (4.2) with ytrue = [2.5, 2.5, 0]T . (c) Data b
(blurred and noisy version of xtrue, with ‖e‖/‖btrue‖ = 10−2).

Algorithm 4.2 Variable projection with Gauss-Newton and hybrid-iLSQR solver

1: Choose initial guesses x0 and y0; set an accuracy ε.
2: for l = 1, 2, . . . until a stopping criterion is satisfied do
3: for k = 1, 2, . . . until inexactness exceeds the bound ε do
4: Expand the approximation subspace R(Vk) using A(yk−1) and iGK (3.3)
5: Compute xλ,k solving problem (3.15) with adaptive choice of λ
6: Compute the residual rk = b−A(yk−1)xλ,k
7: Compute dk = arg mind ‖Ĵhd− rk‖
8: Update yk = yk−1 + γkdk (setting the steplength γk)
9: end for

10: Update x0; take y0 = yk
11: end for

the jth iteration, so that529

(4.8) A(yi−1) = A(yj−1) + Ej
i , where Ej

i := A(yi−1)−A(yj−1) ,530

is the inexact matrix applied at iteration i ≤ j. A few remarks are in order here.531

First of all, such a definition of inexactness is iteration-dependent, i.e., it is valid532

at the jth iteration of Algorithm 4.2 only, and should be updated as the iterations533

proceed; hence the notation Ej
i for the error in A(yi−1). Second, according to (4.8),534

when computing the jth product at the jth iGK iteration, Ej
j = 0: this is somewhat535

opposite to the situation described in [24], where an increasing amount of inexactness536

is generally allowed as the iterations of the inexact solver proceed. The inexactness537

defined in (4.8) can anyway be tolerated, as far as the bounds derived in Section538

3.5 can be satisfied. Finally, the definition of inexactness (4.8) well-matches with the539

approach adopted in Algorithm 4.1: indeed, given a current value yj−1 of the blurring540

parameters, ‖Ej
i‖ quantifies how much the computed yi−1, i ≤ j, are allowed differ,541

so that the performance of hybrid-iLSQR with varying y in Algorithm 4.2 is similar542

to the performance of hybrid LSQR with fixed y = yj−1 in Algorithm 4.1.543

According to the definition (4.8), after j iGK iterations are performed (leading544

to the blurring parameter yj), the partial decomposition in (3.3) reads545

(A(yj−1) + Ejj )Vj = Uj+1Mj , (A(yj−1) + F jj+1)TUj+1 = Vj+1L
T
j+1 ,546
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where547

(4.9)
Ej
j =

∑j
i=1 Ej

iviv
T
i

F jj+1 =
∑j+1
i=1 uiu

T
i Ej

i−1

and
Ej

0 = A(y0)−A(yj−1)

Ej
i is as in (4.8), i = 1, . . . , j

.548

The specific expressions (4.9) are linked to the fact that the updated yj is computed549

after both uj+1 and vj+1 are computed (in this order).550

To guarantee that, at the jth iteration of Algorithm 4.2 with a fixed regulariza-551

tion parameter λ, the norm of the ‘exact’ residual (which would have been obtained552

applying hybrid LSQR with coefficient matrix A(yj−1)) is sufficiently close to the553

norm of the computed residual, the bound (3.23) should be checked. According to554

the iteration-specific definition of Ej
i , i = 1, . . . , j in (4.8), the (j+ 1)th iGK iteration555

is performed only if such a condition is satisfied (and condition (3.23) is then checked556

with the updated Ej
i , i = 1, . . . , j + 1); otherwise iGK should be restarted, possibly557

taking as initial guess x0 for the deblurred image the last valid approximation of x,558

i.e., x0 = xλ,j−1, and as an initial guess y0 for the blurring parameters their last559

computed value, i.e., y0 = yj . Alternatively, to guarantee that ‘exact’ and computed560

residuals are sufficiently close, one can employ the second bound in (3.26). It should561

be stressed that, in the blind deblurring setting, the amount of inexactness is dictated562

by the Gauss-Newton updates and, therefore, cannot be adaptively set.563

Figure 2 displays the behavior of some relevant quantities obtained running 60564

iLSQR and hybrid-iLSQR iterations (the latter with a fixed regularization parameter565

λ = 5 · 10−1), starting with x0 = 0 and y0 = [7, 7, 0]T . Looking at frame (a) we can566

clearly see that, as the number of iGK iterations k increases, both ‖rk‖ and σk(Mk)/k567

steadily decrease; when considering hybrid-iLSQR, thanks to regularization, ‖rλ,k‖568

stabilizes and the decay of the smallest singular value is slower. This implies that the569

bounds in (3.26), for a fixed ε, are more strict in the iLSQR than in the hybrid-iLSQR570

case, as it is evident in frames (c) and (d) (where ε = 1). Because of the behavior of571

‖rj−1‖ and ‖rλ,j−1‖, the most stringent bound in (3.26) is the one for j = 0: this is572

depicted in frame (b) for values of k = 1, . . . , 60.573

We conclude this section by providing some details about the blurring parameters574

updates performed by the Gauss-Newton method (Algorithm 4.2, line 8), as the inex-575

act solvers used to approximate zλ in (4.1) also have an impact on computation of y.576

Similarly to what happens at the lth outer iteration of Algorithm 4.1, at the (j+1)th577

iteration of Algorithm 4.2 we would like the (exact) Tikhonov objective function (4.1)578

to decrease, i.e.,579

(4.10) ‖Ãλ(yj)zλ,j+1 − r̃0‖ ≤ ‖Ãλ(yj−1)zλ,j − r̃0‖ .580

Assuming that the regularization parameter λ is fixed and using the notations581

Ẽj
i = [ (Ej

i )
T , 0T ]T ∈ R2n×n, i = 0, . . . , j, Ẽjj = [ (Ejj )T , 0T ]T ∈ R2n×n ,582

where Ej
i and Eji are defined as in (4.9), let us assume that583

(4.11) ‖Ẽj+1
0 x0‖+ ‖Ẽj+1

j Vjsλ,j︸ ︷︷ ︸
=zλ,j

‖ ≤ ε̃ , ‖Ẽj+1
0 x0‖+ ‖Ẽj+1

j+1 Vj+1sλ,j+1︸ ︷︷ ︸
=zλ,j+1

‖ ≤ ε̃ .584

Denoting by s̆λ,j+1 = [sTλ,j , 0]T ∈ Rj+1, it follows that585

‖Ãλ(yj)Vj+1sλ,j+1 − r̃0‖ − ε̃ ≤ ‖(Ãλ(yj) + Ẽj+1
j+1 )Vj+1sλ,j+1 − r̃0‖586

≤ ‖(Ãλ(yj) + Ẽj+1
j+1 )Vj+1s̆λ,j+1 − r̃0‖ = ‖(Ãλ(yj) + Ẽj+1

j )Vjsλ,j − r̃0‖587

≤ ‖Ãλ(yj)Vjsλ,j − r̃0‖+ ε̃ ≤ ‖Ãλ(yj−1)Vjsλ,j − r̃0‖+ ε̃ .588
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Fig. 2: Illustrative satellite test problem, with λ = 5 · 10−1: quantities appear-
ing in the bounds (3.26) after 60 iGK iterations are performed. (a) History of
the quantities σk(Mk)/k and ‖rk−1‖ (for iLSQR) and σk((MT

kMk + λ2I))1/2/k and
‖rλ,k−1‖ (for hybrid-iLSQR) versus k. (b) History of the quantities σk(Mk)/(k‖r0‖)
(for iLSQR) and σk((MT

kMk + λ2I))1/2/(k‖rλ,0‖) (for hybrid-iLSQR) versus k. (c)
Bounds (3.26) for iLSQR: history of the quantities σk(Mk)/(k‖rj−1‖) versus j, for
k = 2, 10, 20, 40, 60 and j = 1, . . . , k. (d) Bounds (3.26) for hybrid-iLSQR: his-
tory of the quantities σk((MT

kMk + λ2I))1/2/(k‖rλ,j−1‖) versus j, j = 1, . . . , k,
k = 2, 10, 20, 40, 60.

In the above chain of inequalities, the first one comes from the triangular inequality589

and (4.11), the second one comes from the hybrid-iLSQR optimality property (3.17),590

the third equality holds by construction of s̆λ,j+1, the fourth inequality comes from591

the triangular inequality and (4.11) and, finally, the fifth inequality holds because of592

the Gauss-Newton step (lines 7 and 8 of Algorithm 4.2, with Jh defined as in (4.7)).593

Therefore, instead of (4.10), we get594

(4.12) ‖Ãλ(yj)zλ,j+1 − r̃0‖ ≤ ‖Ãλ(yj−1)zλ,j − r̃0‖+ 2ε̃ ,595

so that, because of the inexactness in hybrid-iLSQR, in theory the decrease of the596

objective function in (1.5) is not guaranteed. To mitigate the theoretical lack of597

monotonicity (4.12), we choose an optimal steplength in the Gauss-Newton step with598

respect to the second argument of g(zλ(y),y) only, i.e., we compute599

(4.13) yj = yj−1 + γjdj−1 , where γj = arg min
γ≥0

g(zλ(yj−1),yj−1 + γdj−1) .600

This can be achieved using a numerical optimizer, such as MATLAB’s fminsearch,601

around γ = 1. Figure 3 frame (e) displays the behavior of the exact and inexact602

versions of the objective function g appearing in (4.1), i.e., computed with Ãλ(yj)603

and (Ãλ(yj) + Ẽj+1
j+1 ), respectively: one can clearly see that both of them decrease as604
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(a) RREx (b) y = σ1 = σ2

0 10 20 30 40 50

iGK iterations

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 10 20 30 40 50

iGK iterations

2

3

4

5

6

7

(c) distance subsp. (d) iteration count (e)

0 2 4 6 8 10

iGK iterations

0

0.2

0.4

0.6

0.8

1
=0, 

2
=0.5

1
=0, 

2
 wGCV

0 10 20 30

restart count

0

1

2

3

4

5

6

7

0 20 40 60

iGK iterations

10
-4

10
-3

10
-2

inexact g

exact g

Fig. 3: Illustrative satellite test problem, for Algorithm 4.2 with λ = 5 · 10−1. (a)
Relative errors versus total iterations. (b) Value of the blurring parameter y = σ1 =
σ2 versus total iterations. (c) Distance between the subspaces R(Vλ1

i ) and R(Vλ2
i ),

i = 1, . . . , 10, computed with respect to different values of λ: λ1 is always fixed to 0
and λ2 is either fixed to 0.5 or adaptively set according to the wGCV. (d) Number
of iterations before restarts. (e) Exact and inexact objective function g (computed

using Ãλ(yj) and (Ãλ(yj) + Ẽj+1
j+1 ), respectively), versus total iterations.

the iterations j progress, and their values are quite similar. Although these results605

refer to the test problem described in Section 4.1 with ε̃ = 10−2, this desirable behavior606

was observed in all the performed experiments. Finally, in order for the Gaussian PSF607

(4.2) to be defined, the entries of y should satisfy the constraint (4.3), which should608

be imposed when computing the Gauss-Newton update (4.13) at the jth iteration609

of Algorithm 4.2. Moreover, as the left-hand-side of (4.3) approaches zero, the PSF610

reduces to a single bright pixel, and multiplication by the corresponding blurring611

matrix (at the (j + 1)th iteration of Algorithm 4.2) would lead to stagnation of the612

iGK algorithm (3.2). When constraint violation happens we skip the Gauss-Newton613

update of y (i.e., we take γj = 0) but we keep updating x, leading to a reduction of614

the inexact objective function in (4.1).615

4.3. Computational strategies. In this section we discuss some implementa-616

tion details, which were just briefly mentioned in the previous sections. In particular,617

we focus on the computation of error bounds for controlling inexactness of the solvers,618

adaptive regularization parameter choice, and stopping criteria.619

Computable bounds for ‖Ej‖. As mentioned in the previous sections and illus-620

trated in frame (a) of Figure 4, error control must be implemented to expect mean-621

ingful approximations when using inexact methods. In this section we describe how622

bounds for the errors can be cheaply obtained when considering blurring matrices.623

Under specific assumptions on the PSF and the boundary conditions, the coef-624

ficient matrix in (1.1) has a special structure that can be exploited for computing625
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Fig. 4: Illustrative satellite test problem. (a) Relative errors versus total iter-
ations for the exact LSQR-based hybrid method (with A = A(y0)), iLSQR-based
hybrid method without error control, and Algorithm 4.2. (b) Relative errors versus
total iterations for Algorithm 4.1 and Algorithm 4.2. (c) Relative errors versus total
iterations for Algorithm 4.2 with fixed λ and with iteration-dependent λ chosen by
wGCV. (d) Blurring parameter y = σ1 = σ2 versus total iterations for LSQR-based
hybrid method (with y = y0 = 7), iLSQR-based hybrid method without error control,
and Algorithm 4.2. (e) Blurring parameter y = σ1 = σ2 versus total iterations for
Algorithm 4.1 and Algorithm 4.2. (f) Blurring parameter y = σ1 = σ2 versus total
iterations for Algorithm 4.2 with fixed λ and with iteration-dependent λ chosen by
wGCV. Black markers in (b) and (e) highlight the values at each outer iteration.

its eigendecomposition or its SVD: we refer to [18, Chapter 4] for an overview. We626

remark that, within the blind deconvolution framework described in Section 4.1, such627

assumptions (e.g., rank-1 or symmetric PSF, circulant boundary conditions) cannot628

generally be made, as they will result in corrupted reconstructions; see, for instance,629

[9] and the references therein. In the following, and in agreement with Section 4.1,630

we provide details for the reflexive boundary conditions case.631

It is well known that, when the PSF is doubly symmetric and reflexive boundary632

conditions are imposed, the blurring matrix is a block Toeplitz-plus-Hankel matrix633

with Toeplitz-plus-Hankel blocks and can be diagonalized using the discrete cosine634

transform (DCT), which can be implemented as fast cosine transform (FCT); see635

[22]. More precisely, at the jth iteration of Algorithm 4.2, one can write636

A(yj−1) = CTΛjC = CTdiag(λ
(j)
1 , ..., λ(j)

n )C , where λ
(j)
l = [CA(yj−1)e1]l/[C]l,1637

and C is the two-dimensional orthogonal discrete cosine transform matrix. Therefore,638
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Hybrid-iLSQR Algorithm 4.1 Algorithm 4.2
(it. 30, RREx 0.5819) (it. 577, RREx 0.2454) (it. 79, RREx 0.2474)

Fig. 5: Illustrative satellite test problem: images computed by different solvers
(total iteration number and relative error are reported in brackets). Hybrid-iLSQR is
implemented without error control.

according to the definition in (4.8), for i ≤ j,639

‖Ej
i‖ = ‖A(yi−1)−A(yj−1)‖ = ‖CT (Λi −Λj)C‖ = ‖Λi −Λj‖(4.14)640

= max
k=1,...,n

∣∣∣λ(i)
k − λ

(j)
k

∣∣∣ .641

Moreover, thanks to the normalization condition for the PSF in (4.2), it follows that,642

in this case, ‖A(yi−1)‖ = 1, i ≤ j: this is useful if the bound (3.23), involving the643

estimate (3.24) is employed.644

If the PSF is not doubly symmetric, then one can replace the blurring matrix645

with its optimal approximation in the Frobenius norm ‖ · ‖F obtained through cosine646

transformation. Namely, at the jth iteration of Algorithm 4.2, one approximates647

A(yj−1) by648

(4.15) Ā(yj−1) = CT Λ̄jC, where Λ̄j = diag

(
1

2
C(A(yj−1) + AT (yj−1))CT

)
.649

In other words, one should just take the symmetric part of the PSF and form a struc-650

tured matrix with respect to it. The error associated to such optimal approximation651

is ‖Ā(yj−1) − A(yj−1)‖2F = 1/2‖C(A(yj−1) − AT (yj−1))CT ‖2F , i.e., Ā(yj−1) is a652

good approximation of A(yj−1) if the blurring matrix (or the PSF P(yj−1)) is close653

to symmetric. The approximation (4.15) is typically used when devising precondi-654

tioners for image deblurring problems (1.1); see again [22]. Within the framework655

described in Section 4.2 we propose to use approximation (4.15) to efficiently control656

the inexactness of the hybrid-iLSQR methods, i.e., for i ≤ j, we take657

‖Ej
i‖ ' ‖Ē

j
i‖ := ‖Ā(yi−1)− Ā(yj−1)‖ = ‖Λ̄i − Λ̄j‖ .658

Parameter choice. As already remarked in [5], being able to adaptively set the659

regularization parameter λ in (4.1) is of pivotal importance when performing blind660

deconvolution, since the amount of regularization should be linked to the amount of661

blur, as specified by the varying unknown blur parameters y. When using inexact662

hybrid methods in this setting, since y and the errors (4.9) depend on the current λ663

through the current approximate solution x, it cannot generally be guaranteed that664

the approximation subspace for the solution x is invariant with respect to λ. Indeed,665

this is the case for the illustrative example described in Section 4.1: frame (c) of666
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Figure 3 displays the values of the distance between the two inexact approximation667

subspaces R(Vλ1
i ) and R(Vλ2

i ) of dimension i versus i, for i = 1, . . . , 10; these are668

generated with respect to different values of the regularization parameter λ. It is669

clear that, starting from iteration 4 (i.e., according to frame (c), when the blurring670

parameter y starts to vary), these subspaces are different. As a consequence, although671

one can successfully regularize the projected inexact problem (as described below),672

this may not be equivalent to regularizing the exact full-dimensional problem.673

If a good estimate of the magnitude of the noise ‖e‖ is available, we can apply the674

discrepancy principle to the projected problem (3.15), i.e., at the kth hybrid-iLSQR675

iteration we compute λ = λk such that676

‖Mksλ,k − βe1‖ = τ‖e‖ where τ is a safety threshold (typically τ > 1, τ ' 1).677

We note that satisfying the above condition does not guarantee that the ‘exact’ dis-678

crepancy principle is satisfied. Indeed, similarly to (3.23), we get679

τ‖e‖ − ε ≤ ‖Axλ,k − b‖ ≤ τ‖e‖+ ε , where ε = ‖E0x0‖+

k∑
l=1

‖El‖|[sλ,k]l|680

is controlled through the inexactness bounds derived in Section 3.5. Recalling that681

‖Axλ,k−b‖ is an increasing function of λ, and depending on the above bounds being682

quite strict or loose, xλ,k may be under- or over- regularized for the original problem.683

Alternatively, following [5], we may use the weighted GCV (wGCV) criterion684

applied to the projected problem (3.15), i.e., at the kth hybrid-iLSQR iteration we685

compute686

λk = arg min
λ≥0

k‖(I−Mk(MT
kMk + λ2I)−1MT

k )βe1‖2

(trace(I− ωMk(MT
kMk + λ2I)−1MT

k ))2
, where ω > 0 is a weight687

that can be chosen to enforce smoother solutions. Other parameter choice rules typi-688

cally employed within (exact) hybrid methods (see, e.g., [13, 14]), can be adapted to689

work with inexactness; moreover, other strategies that rely on structured approxima-690

tions of the blurring matrix can be exploited (as suggested by [6]).691

Stopping criteria. When solving the blind deconvolution problem, one is recov-692

ering the unknown sharp image x ∈ Rn as well as the unknown blurring parameters693

y ∈ Rp: for this reason, effective stopping criteria should be devised, based on the694

behavior of both variables. Moreover, when inexact methods are applied as described695

in Section 4.2, the effect of the errors in the estimated blurring matrix has to be con-696

sidered: indeed, as specified in line 3 of Algorithm 4.2, one should restart the hybrid-697

iLSQR method as soon as the difference between exact and inexact residual (bounded698

as in (3.23) or (3.26)) exceeds a pre-specified or adaptively estimated tolerance ε.699

Looking at the progress of both x and y it would be natural to stop the iterations700

of Algorithms 4.2 as soon as the relative gradient norm ‖∇yh(y)‖/‖∇yh(y0)‖ of the701

objective function is approximately zero, which means that a stationary point for the702

objective function h (defined in (4.5)) has been reached. In addition to this, one may703

monitor the (relative) stabilization of some relevant quantities, e.g., stop when704

|λk − λk−1|
λk−1

≤ θ1 ,
‖xλ,k − xλ,k−1‖
‖xλ,k−1‖

≤ θ2 ,
‖yk − yk−1‖
‖yk−1‖

≤ θ3 , k = 2, 3, . . . ,705

where θ1, θ2, θ3 > 0 are user-specified tolerances. If wGCV is employed to set λ, it706

can be also (simultaneously) used as a stopping criterion; we refer to [5] for additional707

details.708
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Further comments on hybrid-iLSQR for the illustrative test problem in Figure 1.709

We conclude this section by providing some comments about the performance of the710

hybrid-iLSQR method, especially in comparison with the well-established Algorithm711

4.1, which is implemented with ‘cold’ restarts (i.e., taking x0 = 0 at line 10); Algo-712

rithm 4.2 is instead implemented with ‘warm’ restarts, i.e., taking x0 = xλ,k at line713

10. Note that, to enforce that σ1 = σ2 (and ρ = 0) in (4.2) and keep the illustrative714

example simple, the solvers are coded in such a way that only one blurring parame-715

ter, i.e., y = σ1, has to be computed. Looking at Figures 4 and 5, it is evident that716

both Algorithms 4.1 and 4.2 eventually compute reconstructions of the same quality,717

as the values of the relative errors and the blurring parameter are quite similar; in718

particular, since ytrue = 2.5, y is better approximated using Algorithm 4.2). All the719

graphs in Figure 4 display the behavior of the methods versus the total number of720

iterations. In particular, the first inner loops of Algorithm 4.1 are affected by the so-721

called semi-convergence phenomenon (i.e., permanent increase of the error after only722

a few iterations): this is evident looking at frame (b), and can probably be mitigated723

by a more accurate tuning of the inner stopping criteria; nevertheless, the values at724

the outer iterations are generally decreasing. Some oscillations in the reconstruction725

quality also affect Algorithm 4.2 implemented with the wGCV criterion, while we note726

that, for this test problem, the behavior versus the number of iterations seems more727

stable when a fixed regularization parameter is employed (see Figure 4, frames (c)728

and (f)). Algorithm 4.2 is implemented with error control as described in (4.14): note729

that the FCT-based decomposition appearing therein is exact for this test problem,730

as σ1 = σ2 is enforced at each iteration, implying that the PSF is doubly symmetric.731

Finally, we remark that the performance of both Algorithms 4.1 and 4.2 depends on732

the initial guess for the blurring parameters (for the examples shown here, y0 = 7).733

The cost of k iterations of Algorithms 4.1 and 4.2 is comparable when k � n.734

Indeed, both algorithms have to compute k matrix-vector products with A and AT735

to generate the approximation subspace for x: while this in general costs O(kn2)736

flops, it can be reduced to O(kn log n) if additional assumptions on the PSF (and737

the boundary conditions) hold; see [18, Chapter 4] for an overview. Generating an738

orthonormal basis for the solution subspace amounts to O(kn) flops for Algorithm739

4.1 (thanks to short recurrences) and O(k2n) flops for Algorithm 4.2 (because of full740

orthonormalization). Solving the projected problem costs O(k) flops for Algorithm 4.1741

(exploiting the bidiagonal structure of the matrix in (2.10)) and O(k2) for Algorithm742

4.2. Following the startegy in [5], the cost of updating the blurring parameters for743

both algorithms amounts to O(pn2) flops for computing the Jacobian (4.7) and O(p3)744

for performing a Gauss-Newton step (4.13): these are negligible if p� n.745

4.4. Numerical experiments. To further validate the performance of Algo-746

rithm 4.2 we display the results of one additional blind image deblurring test problem:747

we take the cameraman test image of size 256×256 pixels (shown in the top left frame748

of Figure 6) and we corrupt it by applying a Gaussian blur (4.2) with parameters749

ytrue = [3, 4, 0.5]T and Gaussian white noise of level ‖e‖/‖btrue‖ = 10−2. We start750

both Algorithms 4.1 and 4.2 with initial guesses x0 = 0 and y0 = [5, 6, 1]T . Figure 6751

displays the reconstruction of the images and the PSFs obtained by the two methods:752

although the values of RREx are comparable, the image computed by Algorithm 4.1753

still appears slightly blurred, while the image computed by Algorithm 4.2 appears754

sharper but currupted by some artefacts; Algorithm 4.1 computes a better approxi-755

mated PSF than Algorithm 4.2: indeed, as it can be also seen in frames (b) and (e)756

of Figure 7, the parameter ρ governing the orientation of the PSF is overestimated757
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exact Algorithm 4.1 Algorithm 4.2

(it. 927, RREx 0.1286) (it. 82, RREx 0.1219)

(it. 927, RREy 0.0679) (it. 82, RREy 0.1438)

Fig. 6: cameraman test problem. Exact quantities and reconstructions thereof; total
iteration number and relative reconstruction error are reported in brackets.

by Algorithm 4.2. The remaining frames of Figure 7 display the behavior of relevant758

quantities computed by Algorithm 4.1 and different variants of Algorithm 4.2, versus759

the (total) number of iterations. As it can be seen in frame (a), although the first760

inner loops of Algorithm 4.1 are affected by semi-convergence, the relative error de-761

creases as the outer iterations proceed (especially during the final cycles). As it can762

be seen in frames (c) and (f), not considering error control in Algorithm 4.2 results in763

spoiled reconstructions; the discrepancy principle performs better than wGCV when764

used to adaptively set the regularization parameter for this test problem.765

5. Conclusions and outlook. In this paper we introduced and analysed the766

new iLSQR and iCGLS methods: these are inexact Krylov methods based on the767

inexact Golub-Kahan decomposition that, when used as purely iterative methods, or768

in combination with Tikhonov regularization, can be efficiently employed to regularize769

large-scale ill-posed problems, provided that the amount of inexactness is monitored770

at each iteration. We tested the new methods on separable nonlinear inverse problems771

arising in blind deblurring, handled with a variable projection approach.772

Future work will be performed with the goals of: (i) deriving new inexact solvers773

other than iLSQR and iCGLS, combined with methods other than standard form774

Tikhonov; (ii) handling nonlinear separable inverse problems other than blind deblur-775

ring. Regarding (i): still leveraging the inexact Golub-Kahan decomposition, one may776

devise an inexact version of LSMR, similarly to what was done for flexible solvers;777

see [2]. Alternatively, one may employ the inexact GMRES and FOM solvers based778

on the inexact Arnoldi decomposition described in [24]. Moreover, one may consider779

the combination of inexact methods and general-form Tikhonov regularization, where780

the penality term λ2‖Lz‖22 replaces λ2‖z‖22 in (1.3), and where the regularization ma-781

trix L ∈ Rn′×n enforces some prior information about the solution. Regarding (ii):782
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(a) RREx (b) y for Algorithm 4.1 (c) RREx
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Fig. 7: cameramen test problem. (a) RREx versus total iterations for Algorithms 4.1
and 4.2 implemented with the discrepancy principle. (b), (e) Values of the blurring
parameter y = [σ1, σ2, ρ]T versus total iterations. (c) RREx versus iterations for
the hybrid-iLSQR method without error control, and Algorithm 4.2 with the wGCV
criterion or the discrepancy principle for setting λ. (d) RREy versus total iterations
for Algorithms 4.1 and 4.2 implemented with the discrepancy principle. (f) RREy

versus iterations for the hybrid-iLSQR method without error control, and Algorithm
4.2 with the wGCV criterion or the discrepancy principle for setting λ. Black markers
in (a) and (d) highlight the values at each outer iteration.

the survey paper [15] describes a number of applications where the variable projection783

method is routinely used and that, therefore, may be potentially adapted to work with784

inexact Krylov methods. These include many inverse problems, such as magnetic res-785

onance imaging in medicine, superresolution of images, instrumental calibration, but786

also machine learning tasks such as the training of neural networks.787
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